diff options
Diffstat (limited to 'kernel/srcu.c')
| -rw-r--r-- | kernel/srcu.c | 285 |
1 files changed, 0 insertions, 285 deletions
diff --git a/kernel/srcu.c b/kernel/srcu.c deleted file mode 100644 index 818d7d9aa03..00000000000 --- a/kernel/srcu.c +++ /dev/null @@ -1,285 +0,0 @@ -/* - * Sleepable Read-Copy Update mechanism for mutual exclusion. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. - * - * Copyright (C) IBM Corporation, 2006 - * - * Author: Paul McKenney <paulmck@us.ibm.com> - * - * For detailed explanation of Read-Copy Update mechanism see - - * Documentation/RCU/ *.txt - * - */ - -#include <linux/module.h> -#include <linux/mutex.h> -#include <linux/percpu.h> -#include <linux/preempt.h> -#include <linux/rcupdate.h> -#include <linux/sched.h> -#include <linux/slab.h> -#include <linux/smp.h> -#include <linux/srcu.h> - -/** - * init_srcu_struct - initialize a sleep-RCU structure - * @sp: structure to initialize. - * - * Must invoke this on a given srcu_struct before passing that srcu_struct - * to any other function. Each srcu_struct represents a separate domain - * of SRCU protection. - */ -int init_srcu_struct(struct srcu_struct *sp) -{ - sp->completed = 0; - mutex_init(&sp->mutex); - sp->per_cpu_ref = alloc_percpu(struct srcu_struct_array); - return (sp->per_cpu_ref ? 0 : -ENOMEM); -} -EXPORT_SYMBOL_GPL(init_srcu_struct); - -/* - * srcu_readers_active_idx -- returns approximate number of readers - * active on the specified rank of per-CPU counters. - */ - -static int srcu_readers_active_idx(struct srcu_struct *sp, int idx) -{ - int cpu; - int sum; - - sum = 0; - for_each_possible_cpu(cpu) - sum += per_cpu_ptr(sp->per_cpu_ref, cpu)->c[idx]; - return sum; -} - -/** - * srcu_readers_active - returns approximate number of readers. - * @sp: which srcu_struct to count active readers (holding srcu_read_lock). - * - * Note that this is not an atomic primitive, and can therefore suffer - * severe errors when invoked on an active srcu_struct. That said, it - * can be useful as an error check at cleanup time. - */ -static int srcu_readers_active(struct srcu_struct *sp) -{ - return srcu_readers_active_idx(sp, 0) + srcu_readers_active_idx(sp, 1); -} - -/** - * cleanup_srcu_struct - deconstruct a sleep-RCU structure - * @sp: structure to clean up. - * - * Must invoke this after you are finished using a given srcu_struct that - * was initialized via init_srcu_struct(), else you leak memory. - */ -void cleanup_srcu_struct(struct srcu_struct *sp) -{ - int sum; - - sum = srcu_readers_active(sp); - WARN_ON(sum); /* Leakage unless caller handles error. */ - if (sum != 0) - return; - free_percpu(sp->per_cpu_ref); - sp->per_cpu_ref = NULL; -} -EXPORT_SYMBOL_GPL(cleanup_srcu_struct); - -/** - * srcu_read_lock - register a new reader for an SRCU-protected structure. - * @sp: srcu_struct in which to register the new reader. - * - * Counts the new reader in the appropriate per-CPU element of the - * srcu_struct. Must be called from process context. - * Returns an index that must be passed to the matching srcu_read_unlock(). - */ -int srcu_read_lock(struct srcu_struct *sp) -{ - int idx; - - preempt_disable(); - idx = sp->completed & 0x1; - barrier(); /* ensure compiler looks -once- at sp->completed. */ - per_cpu_ptr(sp->per_cpu_ref, smp_processor_id())->c[idx]++; - srcu_barrier(); /* ensure compiler won't misorder critical section. */ - preempt_enable(); - return idx; -} -EXPORT_SYMBOL_GPL(srcu_read_lock); - -/** - * srcu_read_unlock - unregister a old reader from an SRCU-protected structure. - * @sp: srcu_struct in which to unregister the old reader. - * @idx: return value from corresponding srcu_read_lock(). - * - * Removes the count for the old reader from the appropriate per-CPU - * element of the srcu_struct. Note that this may well be a different - * CPU than that which was incremented by the corresponding srcu_read_lock(). - * Must be called from process context. - */ -void srcu_read_unlock(struct srcu_struct *sp, int idx) -{ - preempt_disable(); - srcu_barrier(); /* ensure compiler won't misorder critical section. */ - per_cpu_ptr(sp->per_cpu_ref, smp_processor_id())->c[idx]--; - preempt_enable(); -} -EXPORT_SYMBOL_GPL(srcu_read_unlock); - -/* - * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). - */ -void __synchronize_srcu(struct srcu_struct *sp, void (*sync_func)(void)) -{ - int idx; - - idx = sp->completed; - mutex_lock(&sp->mutex); - - /* - * Check to see if someone else did the work for us while we were - * waiting to acquire the lock. We need -two- advances of - * the counter, not just one. If there was but one, we might have - * shown up -after- our helper's first synchronize_sched(), thus - * having failed to prevent CPU-reordering races with concurrent - * srcu_read_unlock()s on other CPUs (see comment below). So we - * either (1) wait for two or (2) supply the second ourselves. - */ - - if ((sp->completed - idx) >= 2) { - mutex_unlock(&sp->mutex); - return; - } - - sync_func(); /* Force memory barrier on all CPUs. */ - - /* - * The preceding synchronize_sched() ensures that any CPU that - * sees the new value of sp->completed will also see any preceding - * changes to data structures made by this CPU. This prevents - * some other CPU from reordering the accesses in its SRCU - * read-side critical section to precede the corresponding - * srcu_read_lock() -- ensuring that such references will in - * fact be protected. - * - * So it is now safe to do the flip. - */ - - idx = sp->completed & 0x1; - sp->completed++; - - sync_func(); /* Force memory barrier on all CPUs. */ - - /* - * At this point, because of the preceding synchronize_sched(), - * all srcu_read_lock() calls using the old counters have completed. - * Their corresponding critical sections might well be still - * executing, but the srcu_read_lock() primitives themselves - * will have finished executing. - */ - - while (srcu_readers_active_idx(sp, idx)) - schedule_timeout_interruptible(1); - - sync_func(); /* Force memory barrier on all CPUs. */ - - /* - * The preceding synchronize_sched() forces all srcu_read_unlock() - * primitives that were executing concurrently with the preceding - * for_each_possible_cpu() loop to have completed by this point. - * More importantly, it also forces the corresponding SRCU read-side - * critical sections to have also completed, and the corresponding - * references to SRCU-protected data items to be dropped. - * - * Note: - * - * Despite what you might think at first glance, the - * preceding synchronize_sched() -must- be within the - * critical section ended by the following mutex_unlock(). - * Otherwise, a task taking the early exit can race - * with a srcu_read_unlock(), which might have executed - * just before the preceding srcu_readers_active() check, - * and whose CPU might have reordered the srcu_read_unlock() - * with the preceding critical section. In this case, there - * is nothing preventing the synchronize_sched() task that is - * taking the early exit from freeing a data structure that - * is still being referenced (out of order) by the task - * doing the srcu_read_unlock(). - * - * Alternatively, the comparison with "2" on the early exit - * could be changed to "3", but this increases synchronize_srcu() - * latency for bulk loads. So the current code is preferred. - */ - - mutex_unlock(&sp->mutex); -} - -/** - * synchronize_srcu - wait for prior SRCU read-side critical-section completion - * @sp: srcu_struct with which to synchronize. - * - * Flip the completed counter, and wait for the old count to drain to zero. - * As with classic RCU, the updater must use some separate means of - * synchronizing concurrent updates. Can block; must be called from - * process context. - * - * Note that it is illegal to call synchronize_srcu() from the corresponding - * SRCU read-side critical section; doing so will result in deadlock. - * However, it is perfectly legal to call synchronize_srcu() on one - * srcu_struct from some other srcu_struct's read-side critical section. - */ -void synchronize_srcu(struct srcu_struct *sp) -{ - __synchronize_srcu(sp, synchronize_sched); -} -EXPORT_SYMBOL_GPL(synchronize_srcu); - -/** - * synchronize_srcu_expedited - like synchronize_srcu, but less patient - * @sp: srcu_struct with which to synchronize. - * - * Flip the completed counter, and wait for the old count to drain to zero. - * As with classic RCU, the updater must use some separate means of - * synchronizing concurrent updates. Can block; must be called from - * process context. - * - * Note that it is illegal to call synchronize_srcu_expedited() - * from the corresponding SRCU read-side critical section; doing so - * will result in deadlock. However, it is perfectly legal to call - * synchronize_srcu_expedited() on one srcu_struct from some other - * srcu_struct's read-side critical section. - */ -void synchronize_srcu_expedited(struct srcu_struct *sp) -{ - __synchronize_srcu(sp, synchronize_sched_expedited); -} -EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); - -/** - * srcu_batches_completed - return batches completed. - * @sp: srcu_struct on which to report batch completion. - * - * Report the number of batches, correlated with, but not necessarily - * precisely the same as, the number of grace periods that have elapsed. - */ - -long srcu_batches_completed(struct srcu_struct *sp) -{ - return sp->completed; -} -EXPORT_SYMBOL_GPL(srcu_batches_completed); |
