diff options
Diffstat (limited to 'kernel/sched_rt.c')
| -rw-r--r-- | kernel/sched_rt.c | 1778 | 
1 files changed, 0 insertions, 1778 deletions
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c deleted file mode 100644 index bea7d79f7e9..00000000000 --- a/kernel/sched_rt.c +++ /dev/null @@ -1,1778 +0,0 @@ -/* - * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR - * policies) - */ - -#ifdef CONFIG_RT_GROUP_SCHED - -#define rt_entity_is_task(rt_se) (!(rt_se)->my_q) - -static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) -{ -#ifdef CONFIG_SCHED_DEBUG -	WARN_ON_ONCE(!rt_entity_is_task(rt_se)); -#endif -	return container_of(rt_se, struct task_struct, rt); -} - -static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) -{ -	return rt_rq->rq; -} - -static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) -{ -	return rt_se->rt_rq; -} - -#else /* CONFIG_RT_GROUP_SCHED */ - -#define rt_entity_is_task(rt_se) (1) - -static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) -{ -	return container_of(rt_se, struct task_struct, rt); -} - -static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) -{ -	return container_of(rt_rq, struct rq, rt); -} - -static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) -{ -	struct task_struct *p = rt_task_of(rt_se); -	struct rq *rq = task_rq(p); - -	return &rq->rt; -} - -#endif /* CONFIG_RT_GROUP_SCHED */ - -#ifdef CONFIG_SMP - -static inline int rt_overloaded(struct rq *rq) -{ -	return atomic_read(&rq->rd->rto_count); -} - -static inline void rt_set_overload(struct rq *rq) -{ -	if (!rq->online) -		return; - -	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); -	/* -	 * Make sure the mask is visible before we set -	 * the overload count. That is checked to determine -	 * if we should look at the mask. It would be a shame -	 * if we looked at the mask, but the mask was not -	 * updated yet. -	 */ -	wmb(); -	atomic_inc(&rq->rd->rto_count); -} - -static inline void rt_clear_overload(struct rq *rq) -{ -	if (!rq->online) -		return; - -	/* the order here really doesn't matter */ -	atomic_dec(&rq->rd->rto_count); -	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); -} - -static void update_rt_migration(struct rt_rq *rt_rq) -{ -	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { -		if (!rt_rq->overloaded) { -			rt_set_overload(rq_of_rt_rq(rt_rq)); -			rt_rq->overloaded = 1; -		} -	} else if (rt_rq->overloaded) { -		rt_clear_overload(rq_of_rt_rq(rt_rq)); -		rt_rq->overloaded = 0; -	} -} - -static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) -{ -	if (!rt_entity_is_task(rt_se)) -		return; - -	rt_rq = &rq_of_rt_rq(rt_rq)->rt; - -	rt_rq->rt_nr_total++; -	if (rt_se->nr_cpus_allowed > 1) -		rt_rq->rt_nr_migratory++; - -	update_rt_migration(rt_rq); -} - -static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) -{ -	if (!rt_entity_is_task(rt_se)) -		return; - -	rt_rq = &rq_of_rt_rq(rt_rq)->rt; - -	rt_rq->rt_nr_total--; -	if (rt_se->nr_cpus_allowed > 1) -		rt_rq->rt_nr_migratory--; - -	update_rt_migration(rt_rq); -} - -static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) -{ -	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); -	plist_node_init(&p->pushable_tasks, p->prio); -	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); -} - -static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) -{ -	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); -} - -static inline int has_pushable_tasks(struct rq *rq) -{ -	return !plist_head_empty(&rq->rt.pushable_tasks); -} - -#else - -static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) -{ -} - -static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) -{ -} - -static inline -void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) -{ -} - -static inline -void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) -{ -} - -#endif /* CONFIG_SMP */ - -static inline int on_rt_rq(struct sched_rt_entity *rt_se) -{ -	return !list_empty(&rt_se->run_list); -} - -#ifdef CONFIG_RT_GROUP_SCHED - -static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) -{ -	if (!rt_rq->tg) -		return RUNTIME_INF; - -	return rt_rq->rt_runtime; -} - -static inline u64 sched_rt_period(struct rt_rq *rt_rq) -{ -	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); -} - -#define for_each_leaf_rt_rq(rt_rq, rq) \ -	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) - -#define for_each_sched_rt_entity(rt_se) \ -	for (; rt_se; rt_se = rt_se->parent) - -static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) -{ -	return rt_se->my_q; -} - -static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); -static void dequeue_rt_entity(struct sched_rt_entity *rt_se); - -static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) -{ -	int this_cpu = smp_processor_id(); -	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; -	struct sched_rt_entity *rt_se; - -	rt_se = rt_rq->tg->rt_se[this_cpu]; - -	if (rt_rq->rt_nr_running) { -		if (rt_se && !on_rt_rq(rt_se)) -			enqueue_rt_entity(rt_se, false); -		if (rt_rq->highest_prio.curr < curr->prio) -			resched_task(curr); -	} -} - -static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) -{ -	int this_cpu = smp_processor_id(); -	struct sched_rt_entity *rt_se; - -	rt_se = rt_rq->tg->rt_se[this_cpu]; - -	if (rt_se && on_rt_rq(rt_se)) -		dequeue_rt_entity(rt_se); -} - -static inline int rt_rq_throttled(struct rt_rq *rt_rq) -{ -	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; -} - -static int rt_se_boosted(struct sched_rt_entity *rt_se) -{ -	struct rt_rq *rt_rq = group_rt_rq(rt_se); -	struct task_struct *p; - -	if (rt_rq) -		return !!rt_rq->rt_nr_boosted; - -	p = rt_task_of(rt_se); -	return p->prio != p->normal_prio; -} - -#ifdef CONFIG_SMP -static inline const struct cpumask *sched_rt_period_mask(void) -{ -	return cpu_rq(smp_processor_id())->rd->span; -} -#else -static inline const struct cpumask *sched_rt_period_mask(void) -{ -	return cpu_online_mask; -} -#endif - -static inline -struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) -{ -	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; -} - -static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) -{ -	return &rt_rq->tg->rt_bandwidth; -} - -#else /* !CONFIG_RT_GROUP_SCHED */ - -static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) -{ -	return rt_rq->rt_runtime; -} - -static inline u64 sched_rt_period(struct rt_rq *rt_rq) -{ -	return ktime_to_ns(def_rt_bandwidth.rt_period); -} - -#define for_each_leaf_rt_rq(rt_rq, rq) \ -	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) - -#define for_each_sched_rt_entity(rt_se) \ -	for (; rt_se; rt_se = NULL) - -static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) -{ -	return NULL; -} - -static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) -{ -	if (rt_rq->rt_nr_running) -		resched_task(rq_of_rt_rq(rt_rq)->curr); -} - -static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) -{ -} - -static inline int rt_rq_throttled(struct rt_rq *rt_rq) -{ -	return rt_rq->rt_throttled; -} - -static inline const struct cpumask *sched_rt_period_mask(void) -{ -	return cpu_online_mask; -} - -static inline -struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) -{ -	return &cpu_rq(cpu)->rt; -} - -static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) -{ -	return &def_rt_bandwidth; -} - -#endif /* CONFIG_RT_GROUP_SCHED */ - -#ifdef CONFIG_SMP -/* - * We ran out of runtime, see if we can borrow some from our neighbours. - */ -static int do_balance_runtime(struct rt_rq *rt_rq) -{ -	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); -	struct root_domain *rd = cpu_rq(smp_processor_id())->rd; -	int i, weight, more = 0; -	u64 rt_period; - -	weight = cpumask_weight(rd->span); - -	raw_spin_lock(&rt_b->rt_runtime_lock); -	rt_period = ktime_to_ns(rt_b->rt_period); -	for_each_cpu(i, rd->span) { -		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); -		s64 diff; - -		if (iter == rt_rq) -			continue; - -		raw_spin_lock(&iter->rt_runtime_lock); -		/* -		 * Either all rqs have inf runtime and there's nothing to steal -		 * or __disable_runtime() below sets a specific rq to inf to -		 * indicate its been disabled and disalow stealing. -		 */ -		if (iter->rt_runtime == RUNTIME_INF) -			goto next; - -		/* -		 * From runqueues with spare time, take 1/n part of their -		 * spare time, but no more than our period. -		 */ -		diff = iter->rt_runtime - iter->rt_time; -		if (diff > 0) { -			diff = div_u64((u64)diff, weight); -			if (rt_rq->rt_runtime + diff > rt_period) -				diff = rt_period - rt_rq->rt_runtime; -			iter->rt_runtime -= diff; -			rt_rq->rt_runtime += diff; -			more = 1; -			if (rt_rq->rt_runtime == rt_period) { -				raw_spin_unlock(&iter->rt_runtime_lock); -				break; -			} -		} -next: -		raw_spin_unlock(&iter->rt_runtime_lock); -	} -	raw_spin_unlock(&rt_b->rt_runtime_lock); - -	return more; -} - -/* - * Ensure this RQ takes back all the runtime it lend to its neighbours. - */ -static void __disable_runtime(struct rq *rq) -{ -	struct root_domain *rd = rq->rd; -	struct rt_rq *rt_rq; - -	if (unlikely(!scheduler_running)) -		return; - -	for_each_leaf_rt_rq(rt_rq, rq) { -		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); -		s64 want; -		int i; - -		raw_spin_lock(&rt_b->rt_runtime_lock); -		raw_spin_lock(&rt_rq->rt_runtime_lock); -		/* -		 * Either we're all inf and nobody needs to borrow, or we're -		 * already disabled and thus have nothing to do, or we have -		 * exactly the right amount of runtime to take out. -		 */ -		if (rt_rq->rt_runtime == RUNTIME_INF || -				rt_rq->rt_runtime == rt_b->rt_runtime) -			goto balanced; -		raw_spin_unlock(&rt_rq->rt_runtime_lock); - -		/* -		 * Calculate the difference between what we started out with -		 * and what we current have, that's the amount of runtime -		 * we lend and now have to reclaim. -		 */ -		want = rt_b->rt_runtime - rt_rq->rt_runtime; - -		/* -		 * Greedy reclaim, take back as much as we can. -		 */ -		for_each_cpu(i, rd->span) { -			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); -			s64 diff; - -			/* -			 * Can't reclaim from ourselves or disabled runqueues. -			 */ -			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) -				continue; - -			raw_spin_lock(&iter->rt_runtime_lock); -			if (want > 0) { -				diff = min_t(s64, iter->rt_runtime, want); -				iter->rt_runtime -= diff; -				want -= diff; -			} else { -				iter->rt_runtime -= want; -				want -= want; -			} -			raw_spin_unlock(&iter->rt_runtime_lock); - -			if (!want) -				break; -		} - -		raw_spin_lock(&rt_rq->rt_runtime_lock); -		/* -		 * We cannot be left wanting - that would mean some runtime -		 * leaked out of the system. -		 */ -		BUG_ON(want); -balanced: -		/* -		 * Disable all the borrow logic by pretending we have inf -		 * runtime - in which case borrowing doesn't make sense. -		 */ -		rt_rq->rt_runtime = RUNTIME_INF; -		raw_spin_unlock(&rt_rq->rt_runtime_lock); -		raw_spin_unlock(&rt_b->rt_runtime_lock); -	} -} - -static void disable_runtime(struct rq *rq) -{ -	unsigned long flags; - -	raw_spin_lock_irqsave(&rq->lock, flags); -	__disable_runtime(rq); -	raw_spin_unlock_irqrestore(&rq->lock, flags); -} - -static void __enable_runtime(struct rq *rq) -{ -	struct rt_rq *rt_rq; - -	if (unlikely(!scheduler_running)) -		return; - -	/* -	 * Reset each runqueue's bandwidth settings -	 */ -	for_each_leaf_rt_rq(rt_rq, rq) { -		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); - -		raw_spin_lock(&rt_b->rt_runtime_lock); -		raw_spin_lock(&rt_rq->rt_runtime_lock); -		rt_rq->rt_runtime = rt_b->rt_runtime; -		rt_rq->rt_time = 0; -		rt_rq->rt_throttled = 0; -		raw_spin_unlock(&rt_rq->rt_runtime_lock); -		raw_spin_unlock(&rt_b->rt_runtime_lock); -	} -} - -static void enable_runtime(struct rq *rq) -{ -	unsigned long flags; - -	raw_spin_lock_irqsave(&rq->lock, flags); -	__enable_runtime(rq); -	raw_spin_unlock_irqrestore(&rq->lock, flags); -} - -static int balance_runtime(struct rt_rq *rt_rq) -{ -	int more = 0; - -	if (rt_rq->rt_time > rt_rq->rt_runtime) { -		raw_spin_unlock(&rt_rq->rt_runtime_lock); -		more = do_balance_runtime(rt_rq); -		raw_spin_lock(&rt_rq->rt_runtime_lock); -	} - -	return more; -} -#else /* !CONFIG_SMP */ -static inline int balance_runtime(struct rt_rq *rt_rq) -{ -	return 0; -} -#endif /* CONFIG_SMP */ - -static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) -{ -	int i, idle = 1; -	const struct cpumask *span; - -	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) -		return 1; - -	span = sched_rt_period_mask(); -	for_each_cpu(i, span) { -		int enqueue = 0; -		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); -		struct rq *rq = rq_of_rt_rq(rt_rq); - -		raw_spin_lock(&rq->lock); -		if (rt_rq->rt_time) { -			u64 runtime; - -			raw_spin_lock(&rt_rq->rt_runtime_lock); -			if (rt_rq->rt_throttled) -				balance_runtime(rt_rq); -			runtime = rt_rq->rt_runtime; -			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); -			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { -				rt_rq->rt_throttled = 0; -				enqueue = 1; -			} -			if (rt_rq->rt_time || rt_rq->rt_nr_running) -				idle = 0; -			raw_spin_unlock(&rt_rq->rt_runtime_lock); -		} else if (rt_rq->rt_nr_running) -			idle = 0; - -		if (enqueue) -			sched_rt_rq_enqueue(rt_rq); -		raw_spin_unlock(&rq->lock); -	} - -	return idle; -} - -static inline int rt_se_prio(struct sched_rt_entity *rt_se) -{ -#ifdef CONFIG_RT_GROUP_SCHED -	struct rt_rq *rt_rq = group_rt_rq(rt_se); - -	if (rt_rq) -		return rt_rq->highest_prio.curr; -#endif - -	return rt_task_of(rt_se)->prio; -} - -static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) -{ -	u64 runtime = sched_rt_runtime(rt_rq); - -	if (rt_rq->rt_throttled) -		return rt_rq_throttled(rt_rq); - -	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq)) -		return 0; - -	balance_runtime(rt_rq); -	runtime = sched_rt_runtime(rt_rq); -	if (runtime == RUNTIME_INF) -		return 0; - -	if (rt_rq->rt_time > runtime) { -		rt_rq->rt_throttled = 1; -		if (rt_rq_throttled(rt_rq)) { -			sched_rt_rq_dequeue(rt_rq); -			return 1; -		} -	} - -	return 0; -} - -/* - * Update the current task's runtime statistics. Skip current tasks that - * are not in our scheduling class. - */ -static void update_curr_rt(struct rq *rq) -{ -	struct task_struct *curr = rq->curr; -	struct sched_rt_entity *rt_se = &curr->rt; -	struct rt_rq *rt_rq = rt_rq_of_se(rt_se); -	u64 delta_exec; - -	if (!task_has_rt_policy(curr)) -		return; - -	delta_exec = rq->clock_task - curr->se.exec_start; -	if (unlikely((s64)delta_exec < 0)) -		delta_exec = 0; - -	schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec)); - -	curr->se.sum_exec_runtime += delta_exec; -	account_group_exec_runtime(curr, delta_exec); - -	curr->se.exec_start = rq->clock_task; -	cpuacct_charge(curr, delta_exec); - -	sched_rt_avg_update(rq, delta_exec); - -	if (!rt_bandwidth_enabled()) -		return; - -	for_each_sched_rt_entity(rt_se) { -		rt_rq = rt_rq_of_se(rt_se); - -		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { -			raw_spin_lock(&rt_rq->rt_runtime_lock); -			rt_rq->rt_time += delta_exec; -			if (sched_rt_runtime_exceeded(rt_rq)) -				resched_task(curr); -			raw_spin_unlock(&rt_rq->rt_runtime_lock); -		} -	} -} - -#if defined CONFIG_SMP - -static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu); - -static inline int next_prio(struct rq *rq) -{ -	struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu); - -	if (next && rt_prio(next->prio)) -		return next->prio; -	else -		return MAX_RT_PRIO; -} - -static void -inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) -{ -	struct rq *rq = rq_of_rt_rq(rt_rq); - -	if (prio < prev_prio) { - -		/* -		 * If the new task is higher in priority than anything on the -		 * run-queue, we know that the previous high becomes our -		 * next-highest. -		 */ -		rt_rq->highest_prio.next = prev_prio; - -		if (rq->online) -			cpupri_set(&rq->rd->cpupri, rq->cpu, prio); - -	} else if (prio == rt_rq->highest_prio.curr) -		/* -		 * If the next task is equal in priority to the highest on -		 * the run-queue, then we implicitly know that the next highest -		 * task cannot be any lower than current -		 */ -		rt_rq->highest_prio.next = prio; -	else if (prio < rt_rq->highest_prio.next) -		/* -		 * Otherwise, we need to recompute next-highest -		 */ -		rt_rq->highest_prio.next = next_prio(rq); -} - -static void -dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) -{ -	struct rq *rq = rq_of_rt_rq(rt_rq); - -	if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next)) -		rt_rq->highest_prio.next = next_prio(rq); - -	if (rq->online && rt_rq->highest_prio.curr != prev_prio) -		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); -} - -#else /* CONFIG_SMP */ - -static inline -void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} -static inline -void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} - -#endif /* CONFIG_SMP */ - -#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED -static void -inc_rt_prio(struct rt_rq *rt_rq, int prio) -{ -	int prev_prio = rt_rq->highest_prio.curr; - -	if (prio < prev_prio) -		rt_rq->highest_prio.curr = prio; - -	inc_rt_prio_smp(rt_rq, prio, prev_prio); -} - -static void -dec_rt_prio(struct rt_rq *rt_rq, int prio) -{ -	int prev_prio = rt_rq->highest_prio.curr; - -	if (rt_rq->rt_nr_running) { - -		WARN_ON(prio < prev_prio); - -		/* -		 * This may have been our highest task, and therefore -		 * we may have some recomputation to do -		 */ -		if (prio == prev_prio) { -			struct rt_prio_array *array = &rt_rq->active; - -			rt_rq->highest_prio.curr = -				sched_find_first_bit(array->bitmap); -		} - -	} else -		rt_rq->highest_prio.curr = MAX_RT_PRIO; - -	dec_rt_prio_smp(rt_rq, prio, prev_prio); -} - -#else - -static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} -static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} - -#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ - -#ifdef CONFIG_RT_GROUP_SCHED - -static void -inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) -{ -	if (rt_se_boosted(rt_se)) -		rt_rq->rt_nr_boosted++; - -	if (rt_rq->tg) -		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); -} - -static void -dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) -{ -	if (rt_se_boosted(rt_se)) -		rt_rq->rt_nr_boosted--; - -	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); -} - -#else /* CONFIG_RT_GROUP_SCHED */ - -static void -inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) -{ -	start_rt_bandwidth(&def_rt_bandwidth); -} - -static inline -void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} - -#endif /* CONFIG_RT_GROUP_SCHED */ - -static inline -void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) -{ -	int prio = rt_se_prio(rt_se); - -	WARN_ON(!rt_prio(prio)); -	rt_rq->rt_nr_running++; - -	inc_rt_prio(rt_rq, prio); -	inc_rt_migration(rt_se, rt_rq); -	inc_rt_group(rt_se, rt_rq); -} - -static inline -void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) -{ -	WARN_ON(!rt_prio(rt_se_prio(rt_se))); -	WARN_ON(!rt_rq->rt_nr_running); -	rt_rq->rt_nr_running--; - -	dec_rt_prio(rt_rq, rt_se_prio(rt_se)); -	dec_rt_migration(rt_se, rt_rq); -	dec_rt_group(rt_se, rt_rq); -} - -static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) -{ -	struct rt_rq *rt_rq = rt_rq_of_se(rt_se); -	struct rt_prio_array *array = &rt_rq->active; -	struct rt_rq *group_rq = group_rt_rq(rt_se); -	struct list_head *queue = array->queue + rt_se_prio(rt_se); - -	/* -	 * Don't enqueue the group if its throttled, or when empty. -	 * The latter is a consequence of the former when a child group -	 * get throttled and the current group doesn't have any other -	 * active members. -	 */ -	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) -		return; - -	if (head) -		list_add(&rt_se->run_list, queue); -	else -		list_add_tail(&rt_se->run_list, queue); -	__set_bit(rt_se_prio(rt_se), array->bitmap); - -	inc_rt_tasks(rt_se, rt_rq); -} - -static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) -{ -	struct rt_rq *rt_rq = rt_rq_of_se(rt_se); -	struct rt_prio_array *array = &rt_rq->active; - -	list_del_init(&rt_se->run_list); -	if (list_empty(array->queue + rt_se_prio(rt_se))) -		__clear_bit(rt_se_prio(rt_se), array->bitmap); - -	dec_rt_tasks(rt_se, rt_rq); -} - -/* - * Because the prio of an upper entry depends on the lower - * entries, we must remove entries top - down. - */ -static void dequeue_rt_stack(struct sched_rt_entity *rt_se) -{ -	struct sched_rt_entity *back = NULL; - -	for_each_sched_rt_entity(rt_se) { -		rt_se->back = back; -		back = rt_se; -	} - -	for (rt_se = back; rt_se; rt_se = rt_se->back) { -		if (on_rt_rq(rt_se)) -			__dequeue_rt_entity(rt_se); -	} -} - -static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) -{ -	dequeue_rt_stack(rt_se); -	for_each_sched_rt_entity(rt_se) -		__enqueue_rt_entity(rt_se, head); -} - -static void dequeue_rt_entity(struct sched_rt_entity *rt_se) -{ -	dequeue_rt_stack(rt_se); - -	for_each_sched_rt_entity(rt_se) { -		struct rt_rq *rt_rq = group_rt_rq(rt_se); - -		if (rt_rq && rt_rq->rt_nr_running) -			__enqueue_rt_entity(rt_se, false); -	} -} - -/* - * Adding/removing a task to/from a priority array: - */ -static void -enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) -{ -	struct sched_rt_entity *rt_se = &p->rt; - -	if (flags & ENQUEUE_WAKEUP) -		rt_se->timeout = 0; - -	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); - -	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) -		enqueue_pushable_task(rq, p); -} - -static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) -{ -	struct sched_rt_entity *rt_se = &p->rt; - -	update_curr_rt(rq); -	dequeue_rt_entity(rt_se); - -	dequeue_pushable_task(rq, p); -} - -/* - * Put task to the end of the run list without the overhead of dequeue - * followed by enqueue. - */ -static void -requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) -{ -	if (on_rt_rq(rt_se)) { -		struct rt_prio_array *array = &rt_rq->active; -		struct list_head *queue = array->queue + rt_se_prio(rt_se); - -		if (head) -			list_move(&rt_se->run_list, queue); -		else -			list_move_tail(&rt_se->run_list, queue); -	} -} - -static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) -{ -	struct sched_rt_entity *rt_se = &p->rt; -	struct rt_rq *rt_rq; - -	for_each_sched_rt_entity(rt_se) { -		rt_rq = rt_rq_of_se(rt_se); -		requeue_rt_entity(rt_rq, rt_se, head); -	} -} - -static void yield_task_rt(struct rq *rq) -{ -	requeue_task_rt(rq, rq->curr, 0); -} - -#ifdef CONFIG_SMP -static int find_lowest_rq(struct task_struct *task); - -static int -select_task_rq_rt(struct rq *rq, struct task_struct *p, int sd_flag, int flags) -{ -	if (sd_flag != SD_BALANCE_WAKE) -		return smp_processor_id(); - -	/* -	 * If the current task is an RT task, then -	 * try to see if we can wake this RT task up on another -	 * runqueue. Otherwise simply start this RT task -	 * on its current runqueue. -	 * -	 * We want to avoid overloading runqueues. If the woken -	 * task is a higher priority, then it will stay on this CPU -	 * and the lower prio task should be moved to another CPU. -	 * Even though this will probably make the lower prio task -	 * lose its cache, we do not want to bounce a higher task -	 * around just because it gave up its CPU, perhaps for a -	 * lock? -	 * -	 * For equal prio tasks, we just let the scheduler sort it out. -	 */ -	if (unlikely(rt_task(rq->curr)) && -	    (rq->curr->rt.nr_cpus_allowed < 2 || -	     rq->curr->prio < p->prio) && -	    (p->rt.nr_cpus_allowed > 1)) { -		int cpu = find_lowest_rq(p); - -		return (cpu == -1) ? task_cpu(p) : cpu; -	} - -	/* -	 * Otherwise, just let it ride on the affined RQ and the -	 * post-schedule router will push the preempted task away -	 */ -	return task_cpu(p); -} - -static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) -{ -	if (rq->curr->rt.nr_cpus_allowed == 1) -		return; - -	if (p->rt.nr_cpus_allowed != 1 -	    && cpupri_find(&rq->rd->cpupri, p, NULL)) -		return; - -	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) -		return; - -	/* -	 * There appears to be other cpus that can accept -	 * current and none to run 'p', so lets reschedule -	 * to try and push current away: -	 */ -	requeue_task_rt(rq, p, 1); -	resched_task(rq->curr); -} - -#endif /* CONFIG_SMP */ - -/* - * Preempt the current task with a newly woken task if needed: - */ -static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) -{ -	if (p->prio < rq->curr->prio) { -		resched_task(rq->curr); -		return; -	} - -#ifdef CONFIG_SMP -	/* -	 * If: -	 * -	 * - the newly woken task is of equal priority to the current task -	 * - the newly woken task is non-migratable while current is migratable -	 * - current will be preempted on the next reschedule -	 * -	 * we should check to see if current can readily move to a different -	 * cpu.  If so, we will reschedule to allow the push logic to try -	 * to move current somewhere else, making room for our non-migratable -	 * task. -	 */ -	if (p->prio == rq->curr->prio && !need_resched()) -		check_preempt_equal_prio(rq, p); -#endif -} - -static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, -						   struct rt_rq *rt_rq) -{ -	struct rt_prio_array *array = &rt_rq->active; -	struct sched_rt_entity *next = NULL; -	struct list_head *queue; -	int idx; - -	idx = sched_find_first_bit(array->bitmap); -	BUG_ON(idx >= MAX_RT_PRIO); - -	queue = array->queue + idx; -	next = list_entry(queue->next, struct sched_rt_entity, run_list); - -	return next; -} - -static struct task_struct *_pick_next_task_rt(struct rq *rq) -{ -	struct sched_rt_entity *rt_se; -	struct task_struct *p; -	struct rt_rq *rt_rq; - -	rt_rq = &rq->rt; - -	if (unlikely(!rt_rq->rt_nr_running)) -		return NULL; - -	if (rt_rq_throttled(rt_rq)) -		return NULL; - -	do { -		rt_se = pick_next_rt_entity(rq, rt_rq); -		BUG_ON(!rt_se); -		rt_rq = group_rt_rq(rt_se); -	} while (rt_rq); - -	p = rt_task_of(rt_se); -	p->se.exec_start = rq->clock_task; - -	return p; -} - -static struct task_struct *pick_next_task_rt(struct rq *rq) -{ -	struct task_struct *p = _pick_next_task_rt(rq); - -	/* The running task is never eligible for pushing */ -	if (p) -		dequeue_pushable_task(rq, p); - -#ifdef CONFIG_SMP -	/* -	 * We detect this state here so that we can avoid taking the RQ -	 * lock again later if there is no need to push -	 */ -	rq->post_schedule = has_pushable_tasks(rq); -#endif - -	return p; -} - -static void put_prev_task_rt(struct rq *rq, struct task_struct *p) -{ -	update_curr_rt(rq); -	p->se.exec_start = 0; - -	/* -	 * The previous task needs to be made eligible for pushing -	 * if it is still active -	 */ -	if (p->se.on_rq && p->rt.nr_cpus_allowed > 1) -		enqueue_pushable_task(rq, p); -} - -#ifdef CONFIG_SMP - -/* Only try algorithms three times */ -#define RT_MAX_TRIES 3 - -static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep); - -static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) -{ -	if (!task_running(rq, p) && -	    (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) && -	    (p->rt.nr_cpus_allowed > 1)) -		return 1; -	return 0; -} - -/* Return the second highest RT task, NULL otherwise */ -static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) -{ -	struct task_struct *next = NULL; -	struct sched_rt_entity *rt_se; -	struct rt_prio_array *array; -	struct rt_rq *rt_rq; -	int idx; - -	for_each_leaf_rt_rq(rt_rq, rq) { -		array = &rt_rq->active; -		idx = sched_find_first_bit(array->bitmap); -next_idx: -		if (idx >= MAX_RT_PRIO) -			continue; -		if (next && next->prio < idx) -			continue; -		list_for_each_entry(rt_se, array->queue + idx, run_list) { -			struct task_struct *p; - -			if (!rt_entity_is_task(rt_se)) -				continue; - -			p = rt_task_of(rt_se); -			if (pick_rt_task(rq, p, cpu)) { -				next = p; -				break; -			} -		} -		if (!next) { -			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); -			goto next_idx; -		} -	} - -	return next; -} - -static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); - -static int find_lowest_rq(struct task_struct *task) -{ -	struct sched_domain *sd; -	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); -	int this_cpu = smp_processor_id(); -	int cpu      = task_cpu(task); - -	if (task->rt.nr_cpus_allowed == 1) -		return -1; /* No other targets possible */ - -	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) -		return -1; /* No targets found */ - -	/* -	 * At this point we have built a mask of cpus representing the -	 * lowest priority tasks in the system.  Now we want to elect -	 * the best one based on our affinity and topology. -	 * -	 * We prioritize the last cpu that the task executed on since -	 * it is most likely cache-hot in that location. -	 */ -	if (cpumask_test_cpu(cpu, lowest_mask)) -		return cpu; - -	/* -	 * Otherwise, we consult the sched_domains span maps to figure -	 * out which cpu is logically closest to our hot cache data. -	 */ -	if (!cpumask_test_cpu(this_cpu, lowest_mask)) -		this_cpu = -1; /* Skip this_cpu opt if not among lowest */ - -	for_each_domain(cpu, sd) { -		if (sd->flags & SD_WAKE_AFFINE) { -			int best_cpu; - -			/* -			 * "this_cpu" is cheaper to preempt than a -			 * remote processor. -			 */ -			if (this_cpu != -1 && -			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) -				return this_cpu; - -			best_cpu = cpumask_first_and(lowest_mask, -						     sched_domain_span(sd)); -			if (best_cpu < nr_cpu_ids) -				return best_cpu; -		} -	} - -	/* -	 * And finally, if there were no matches within the domains -	 * just give the caller *something* to work with from the compatible -	 * locations. -	 */ -	if (this_cpu != -1) -		return this_cpu; - -	cpu = cpumask_any(lowest_mask); -	if (cpu < nr_cpu_ids) -		return cpu; -	return -1; -} - -/* Will lock the rq it finds */ -static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) -{ -	struct rq *lowest_rq = NULL; -	int tries; -	int cpu; - -	for (tries = 0; tries < RT_MAX_TRIES; tries++) { -		cpu = find_lowest_rq(task); - -		if ((cpu == -1) || (cpu == rq->cpu)) -			break; - -		lowest_rq = cpu_rq(cpu); - -		/* if the prio of this runqueue changed, try again */ -		if (double_lock_balance(rq, lowest_rq)) { -			/* -			 * We had to unlock the run queue. In -			 * the mean time, task could have -			 * migrated already or had its affinity changed. -			 * Also make sure that it wasn't scheduled on its rq. -			 */ -			if (unlikely(task_rq(task) != rq || -				     !cpumask_test_cpu(lowest_rq->cpu, -						       &task->cpus_allowed) || -				     task_running(rq, task) || -				     !task->se.on_rq)) { - -				raw_spin_unlock(&lowest_rq->lock); -				lowest_rq = NULL; -				break; -			} -		} - -		/* If this rq is still suitable use it. */ -		if (lowest_rq->rt.highest_prio.curr > task->prio) -			break; - -		/* try again */ -		double_unlock_balance(rq, lowest_rq); -		lowest_rq = NULL; -	} - -	return lowest_rq; -} - -static struct task_struct *pick_next_pushable_task(struct rq *rq) -{ -	struct task_struct *p; - -	if (!has_pushable_tasks(rq)) -		return NULL; - -	p = plist_first_entry(&rq->rt.pushable_tasks, -			      struct task_struct, pushable_tasks); - -	BUG_ON(rq->cpu != task_cpu(p)); -	BUG_ON(task_current(rq, p)); -	BUG_ON(p->rt.nr_cpus_allowed <= 1); - -	BUG_ON(!p->se.on_rq); -	BUG_ON(!rt_task(p)); - -	return p; -} - -/* - * If the current CPU has more than one RT task, see if the non - * running task can migrate over to a CPU that is running a task - * of lesser priority. - */ -static int push_rt_task(struct rq *rq) -{ -	struct task_struct *next_task; -	struct rq *lowest_rq; - -	if (!rq->rt.overloaded) -		return 0; - -	next_task = pick_next_pushable_task(rq); -	if (!next_task) -		return 0; - -retry: -	if (unlikely(next_task == rq->curr)) { -		WARN_ON(1); -		return 0; -	} - -	/* -	 * It's possible that the next_task slipped in of -	 * higher priority than current. If that's the case -	 * just reschedule current. -	 */ -	if (unlikely(next_task->prio < rq->curr->prio)) { -		resched_task(rq->curr); -		return 0; -	} - -	/* We might release rq lock */ -	get_task_struct(next_task); - -	/* find_lock_lowest_rq locks the rq if found */ -	lowest_rq = find_lock_lowest_rq(next_task, rq); -	if (!lowest_rq) { -		struct task_struct *task; -		/* -		 * find lock_lowest_rq releases rq->lock -		 * so it is possible that next_task has migrated. -		 * -		 * We need to make sure that the task is still on the same -		 * run-queue and is also still the next task eligible for -		 * pushing. -		 */ -		task = pick_next_pushable_task(rq); -		if (task_cpu(next_task) == rq->cpu && task == next_task) { -			/* -			 * If we get here, the task hasnt moved at all, but -			 * it has failed to push.  We will not try again, -			 * since the other cpus will pull from us when they -			 * are ready. -			 */ -			dequeue_pushable_task(rq, next_task); -			goto out; -		} - -		if (!task) -			/* No more tasks, just exit */ -			goto out; - -		/* -		 * Something has shifted, try again. -		 */ -		put_task_struct(next_task); -		next_task = task; -		goto retry; -	} - -	deactivate_task(rq, next_task, 0); -	set_task_cpu(next_task, lowest_rq->cpu); -	activate_task(lowest_rq, next_task, 0); - -	resched_task(lowest_rq->curr); - -	double_unlock_balance(rq, lowest_rq); - -out: -	put_task_struct(next_task); - -	return 1; -} - -static void push_rt_tasks(struct rq *rq) -{ -	/* push_rt_task will return true if it moved an RT */ -	while (push_rt_task(rq)) -		; -} - -static int pull_rt_task(struct rq *this_rq) -{ -	int this_cpu = this_rq->cpu, ret = 0, cpu; -	struct task_struct *p; -	struct rq *src_rq; - -	if (likely(!rt_overloaded(this_rq))) -		return 0; - -	for_each_cpu(cpu, this_rq->rd->rto_mask) { -		if (this_cpu == cpu) -			continue; - -		src_rq = cpu_rq(cpu); - -		/* -		 * Don't bother taking the src_rq->lock if the next highest -		 * task is known to be lower-priority than our current task. -		 * This may look racy, but if this value is about to go -		 * logically higher, the src_rq will push this task away. -		 * And if its going logically lower, we do not care -		 */ -		if (src_rq->rt.highest_prio.next >= -		    this_rq->rt.highest_prio.curr) -			continue; - -		/* -		 * We can potentially drop this_rq's lock in -		 * double_lock_balance, and another CPU could -		 * alter this_rq -		 */ -		double_lock_balance(this_rq, src_rq); - -		/* -		 * Are there still pullable RT tasks? -		 */ -		if (src_rq->rt.rt_nr_running <= 1) -			goto skip; - -		p = pick_next_highest_task_rt(src_rq, this_cpu); - -		/* -		 * Do we have an RT task that preempts -		 * the to-be-scheduled task? -		 */ -		if (p && (p->prio < this_rq->rt.highest_prio.curr)) { -			WARN_ON(p == src_rq->curr); -			WARN_ON(!p->se.on_rq); - -			/* -			 * There's a chance that p is higher in priority -			 * than what's currently running on its cpu. -			 * This is just that p is wakeing up and hasn't -			 * had a chance to schedule. We only pull -			 * p if it is lower in priority than the -			 * current task on the run queue -			 */ -			if (p->prio < src_rq->curr->prio) -				goto skip; - -			ret = 1; - -			deactivate_task(src_rq, p, 0); -			set_task_cpu(p, this_cpu); -			activate_task(this_rq, p, 0); -			/* -			 * We continue with the search, just in -			 * case there's an even higher prio task -			 * in another runqueue. (low likelyhood -			 * but possible) -			 */ -		} -skip: -		double_unlock_balance(this_rq, src_rq); -	} - -	return ret; -} - -static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) -{ -	/* Try to pull RT tasks here if we lower this rq's prio */ -	if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio) -		pull_rt_task(rq); -} - -static void post_schedule_rt(struct rq *rq) -{ -	push_rt_tasks(rq); -} - -/* - * If we are not running and we are not going to reschedule soon, we should - * try to push tasks away now - */ -static void task_woken_rt(struct rq *rq, struct task_struct *p) -{ -	if (!task_running(rq, p) && -	    !test_tsk_need_resched(rq->curr) && -	    has_pushable_tasks(rq) && -	    p->rt.nr_cpus_allowed > 1 && -	    rt_task(rq->curr) && -	    (rq->curr->rt.nr_cpus_allowed < 2 || -	     rq->curr->prio < p->prio)) -		push_rt_tasks(rq); -} - -static void set_cpus_allowed_rt(struct task_struct *p, -				const struct cpumask *new_mask) -{ -	int weight = cpumask_weight(new_mask); - -	BUG_ON(!rt_task(p)); - -	/* -	 * Update the migration status of the RQ if we have an RT task -	 * which is running AND changing its weight value. -	 */ -	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { -		struct rq *rq = task_rq(p); - -		if (!task_current(rq, p)) { -			/* -			 * Make sure we dequeue this task from the pushable list -			 * before going further.  It will either remain off of -			 * the list because we are no longer pushable, or it -			 * will be requeued. -			 */ -			if (p->rt.nr_cpus_allowed > 1) -				dequeue_pushable_task(rq, p); - -			/* -			 * Requeue if our weight is changing and still > 1 -			 */ -			if (weight > 1) -				enqueue_pushable_task(rq, p); - -		} - -		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { -			rq->rt.rt_nr_migratory++; -		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { -			BUG_ON(!rq->rt.rt_nr_migratory); -			rq->rt.rt_nr_migratory--; -		} - -		update_rt_migration(&rq->rt); -	} - -	cpumask_copy(&p->cpus_allowed, new_mask); -	p->rt.nr_cpus_allowed = weight; -} - -/* Assumes rq->lock is held */ -static void rq_online_rt(struct rq *rq) -{ -	if (rq->rt.overloaded) -		rt_set_overload(rq); - -	__enable_runtime(rq); - -	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); -} - -/* Assumes rq->lock is held */ -static void rq_offline_rt(struct rq *rq) -{ -	if (rq->rt.overloaded) -		rt_clear_overload(rq); - -	__disable_runtime(rq); - -	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); -} - -/* - * When switch from the rt queue, we bring ourselves to a position - * that we might want to pull RT tasks from other runqueues. - */ -static void switched_from_rt(struct rq *rq, struct task_struct *p, -			   int running) -{ -	/* -	 * If there are other RT tasks then we will reschedule -	 * and the scheduling of the other RT tasks will handle -	 * the balancing. But if we are the last RT task -	 * we may need to handle the pulling of RT tasks -	 * now. -	 */ -	if (!rq->rt.rt_nr_running) -		pull_rt_task(rq); -} - -static inline void init_sched_rt_class(void) -{ -	unsigned int i; - -	for_each_possible_cpu(i) -		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), -					GFP_KERNEL, cpu_to_node(i)); -} -#endif /* CONFIG_SMP */ - -/* - * When switching a task to RT, we may overload the runqueue - * with RT tasks. In this case we try to push them off to - * other runqueues. - */ -static void switched_to_rt(struct rq *rq, struct task_struct *p, -			   int running) -{ -	int check_resched = 1; - -	/* -	 * If we are already running, then there's nothing -	 * that needs to be done. But if we are not running -	 * we may need to preempt the current running task. -	 * If that current running task is also an RT task -	 * then see if we can move to another run queue. -	 */ -	if (!running) { -#ifdef CONFIG_SMP -		if (rq->rt.overloaded && push_rt_task(rq) && -		    /* Don't resched if we changed runqueues */ -		    rq != task_rq(p)) -			check_resched = 0; -#endif /* CONFIG_SMP */ -		if (check_resched && p->prio < rq->curr->prio) -			resched_task(rq->curr); -	} -} - -/* - * Priority of the task has changed. This may cause - * us to initiate a push or pull. - */ -static void prio_changed_rt(struct rq *rq, struct task_struct *p, -			    int oldprio, int running) -{ -	if (running) { -#ifdef CONFIG_SMP -		/* -		 * If our priority decreases while running, we -		 * may need to pull tasks to this runqueue. -		 */ -		if (oldprio < p->prio) -			pull_rt_task(rq); -		/* -		 * If there's a higher priority task waiting to run -		 * then reschedule. Note, the above pull_rt_task -		 * can release the rq lock and p could migrate. -		 * Only reschedule if p is still on the same runqueue. -		 */ -		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) -			resched_task(p); -#else -		/* For UP simply resched on drop of prio */ -		if (oldprio < p->prio) -			resched_task(p); -#endif /* CONFIG_SMP */ -	} else { -		/* -		 * This task is not running, but if it is -		 * greater than the current running task -		 * then reschedule. -		 */ -		if (p->prio < rq->curr->prio) -			resched_task(rq->curr); -	} -} - -static void watchdog(struct rq *rq, struct task_struct *p) -{ -	unsigned long soft, hard; - -	/* max may change after cur was read, this will be fixed next tick */ -	soft = task_rlimit(p, RLIMIT_RTTIME); -	hard = task_rlimit_max(p, RLIMIT_RTTIME); - -	if (soft != RLIM_INFINITY) { -		unsigned long next; - -		p->rt.timeout++; -		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); -		if (p->rt.timeout > next) -			p->cputime_expires.sched_exp = p->se.sum_exec_runtime; -	} -} - -static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) -{ -	update_curr_rt(rq); - -	watchdog(rq, p); - -	/* -	 * RR tasks need a special form of timeslice management. -	 * FIFO tasks have no timeslices. -	 */ -	if (p->policy != SCHED_RR) -		return; - -	if (--p->rt.time_slice) -		return; - -	p->rt.time_slice = DEF_TIMESLICE; - -	/* -	 * Requeue to the end of queue if we are not the only element -	 * on the queue: -	 */ -	if (p->rt.run_list.prev != p->rt.run_list.next) { -		requeue_task_rt(rq, p, 0); -		set_tsk_need_resched(p); -	} -} - -static void set_curr_task_rt(struct rq *rq) -{ -	struct task_struct *p = rq->curr; - -	p->se.exec_start = rq->clock_task; - -	/* The running task is never eligible for pushing */ -	dequeue_pushable_task(rq, p); -} - -static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) -{ -	/* -	 * Time slice is 0 for SCHED_FIFO tasks -	 */ -	if (task->policy == SCHED_RR) -		return DEF_TIMESLICE; -	else -		return 0; -} - -static const struct sched_class rt_sched_class = { -	.next			= &fair_sched_class, -	.enqueue_task		= enqueue_task_rt, -	.dequeue_task		= dequeue_task_rt, -	.yield_task		= yield_task_rt, - -	.check_preempt_curr	= check_preempt_curr_rt, - -	.pick_next_task		= pick_next_task_rt, -	.put_prev_task		= put_prev_task_rt, - -#ifdef CONFIG_SMP -	.select_task_rq		= select_task_rq_rt, - -	.set_cpus_allowed       = set_cpus_allowed_rt, -	.rq_online              = rq_online_rt, -	.rq_offline             = rq_offline_rt, -	.pre_schedule		= pre_schedule_rt, -	.post_schedule		= post_schedule_rt, -	.task_woken		= task_woken_rt, -	.switched_from		= switched_from_rt, -#endif - -	.set_curr_task          = set_curr_task_rt, -	.task_tick		= task_tick_rt, - -	.get_rr_interval	= get_rr_interval_rt, - -	.prio_changed		= prio_changed_rt, -	.switched_to		= switched_to_rt, -}; - -#ifdef CONFIG_SCHED_DEBUG -extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); - -static void print_rt_stats(struct seq_file *m, int cpu) -{ -	struct rt_rq *rt_rq; - -	rcu_read_lock(); -	for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu)) -		print_rt_rq(m, cpu, rt_rq); -	rcu_read_unlock(); -} -#endif /* CONFIG_SCHED_DEBUG */ -  | 
