diff options
Diffstat (limited to 'kernel/sched_fair.c')
| -rw-r--r-- | kernel/sched_fair.c | 1243 |
1 files changed, 0 insertions, 1243 deletions
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c deleted file mode 100644 index 67c67a87146..00000000000 --- a/kernel/sched_fair.c +++ /dev/null @@ -1,1243 +0,0 @@ -/* - * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) - * - * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> - * - * Interactivity improvements by Mike Galbraith - * (C) 2007 Mike Galbraith <efault@gmx.de> - * - * Various enhancements by Dmitry Adamushko. - * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> - * - * Group scheduling enhancements by Srivatsa Vaddagiri - * Copyright IBM Corporation, 2007 - * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> - * - * Scaled math optimizations by Thomas Gleixner - * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> - * - * Adaptive scheduling granularity, math enhancements by Peter Zijlstra - * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> - */ - -/* - * Targeted preemption latency for CPU-bound tasks: - * (default: 20ms, units: nanoseconds) - * - * NOTE: this latency value is not the same as the concept of - * 'timeslice length' - timeslices in CFS are of variable length. - * (to see the precise effective timeslice length of your workload, - * run vmstat and monitor the context-switches field) - * - * On SMP systems the value of this is multiplied by the log2 of the - * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way - * systems, 4x on 8-way systems, 5x on 16-way systems, etc.) - * Targeted preemption latency for CPU-bound tasks: - */ -unsigned int sysctl_sched_latency __read_mostly = 20000000ULL; - -/* - * Minimal preemption granularity for CPU-bound tasks: - * (default: 2 msec, units: nanoseconds) - */ -unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL; - -/* - * sys_sched_yield() compat mode - * - * This option switches the agressive yield implementation of the - * old scheduler back on. - */ -unsigned int __read_mostly sysctl_sched_compat_yield; - -/* - * SCHED_BATCH wake-up granularity. - * (default: 25 msec, units: nanoseconds) - * - * This option delays the preemption effects of decoupled workloads - * and reduces their over-scheduling. Synchronous workloads will still - * have immediate wakeup/sleep latencies. - */ -unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly = 25000000UL; - -/* - * SCHED_OTHER wake-up granularity. - * (default: 1 msec, units: nanoseconds) - * - * This option delays the preemption effects of decoupled workloads - * and reduces their over-scheduling. Synchronous workloads will still - * have immediate wakeup/sleep latencies. - */ -unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000UL; - -unsigned int sysctl_sched_stat_granularity __read_mostly; - -/* - * Initialized in sched_init_granularity() [to 5 times the base granularity]: - */ -unsigned int sysctl_sched_runtime_limit __read_mostly; - -/* - * Debugging: various feature bits - */ -enum { - SCHED_FEAT_FAIR_SLEEPERS = 1, - SCHED_FEAT_SLEEPER_AVG = 2, - SCHED_FEAT_SLEEPER_LOAD_AVG = 4, - SCHED_FEAT_PRECISE_CPU_LOAD = 8, - SCHED_FEAT_START_DEBIT = 16, - SCHED_FEAT_SKIP_INITIAL = 32, -}; - -unsigned int sysctl_sched_features __read_mostly = - SCHED_FEAT_FAIR_SLEEPERS *1 | - SCHED_FEAT_SLEEPER_AVG *0 | - SCHED_FEAT_SLEEPER_LOAD_AVG *1 | - SCHED_FEAT_PRECISE_CPU_LOAD *1 | - SCHED_FEAT_START_DEBIT *1 | - SCHED_FEAT_SKIP_INITIAL *0; - -extern struct sched_class fair_sched_class; - -/************************************************************** - * CFS operations on generic schedulable entities: - */ - -#ifdef CONFIG_FAIR_GROUP_SCHED - -/* cpu runqueue to which this cfs_rq is attached */ -static inline struct rq *rq_of(struct cfs_rq *cfs_rq) -{ - return cfs_rq->rq; -} - -/* currently running entity (if any) on this cfs_rq */ -static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq) -{ - return cfs_rq->curr; -} - -/* An entity is a task if it doesn't "own" a runqueue */ -#define entity_is_task(se) (!se->my_q) - -static inline void -set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) -{ - cfs_rq->curr = se; -} - -#else /* CONFIG_FAIR_GROUP_SCHED */ - -static inline struct rq *rq_of(struct cfs_rq *cfs_rq) -{ - return container_of(cfs_rq, struct rq, cfs); -} - -static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq) -{ - struct rq *rq = rq_of(cfs_rq); - - if (unlikely(rq->curr->sched_class != &fair_sched_class)) - return NULL; - - return &rq->curr->se; -} - -#define entity_is_task(se) 1 - -static inline void -set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { } - -#endif /* CONFIG_FAIR_GROUP_SCHED */ - -static inline struct task_struct *task_of(struct sched_entity *se) -{ - return container_of(se, struct task_struct, se); -} - - -/************************************************************** - * Scheduling class tree data structure manipulation methods: - */ - -/* - * Enqueue an entity into the rb-tree: - */ -static inline void -__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) -{ - struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; - struct rb_node *parent = NULL; - struct sched_entity *entry; - s64 key = se->fair_key; - int leftmost = 1; - - /* - * Find the right place in the rbtree: - */ - while (*link) { - parent = *link; - entry = rb_entry(parent, struct sched_entity, run_node); - /* - * We dont care about collisions. Nodes with - * the same key stay together. - */ - if (key - entry->fair_key < 0) { - link = &parent->rb_left; - } else { - link = &parent->rb_right; - leftmost = 0; - } - } - - /* - * Maintain a cache of leftmost tree entries (it is frequently - * used): - */ - if (leftmost) - cfs_rq->rb_leftmost = &se->run_node; - - rb_link_node(&se->run_node, parent, link); - rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); - update_load_add(&cfs_rq->load, se->load.weight); - cfs_rq->nr_running++; - se->on_rq = 1; - - schedstat_add(cfs_rq, wait_runtime, se->wait_runtime); -} - -static inline void -__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) -{ - if (cfs_rq->rb_leftmost == &se->run_node) - cfs_rq->rb_leftmost = rb_next(&se->run_node); - rb_erase(&se->run_node, &cfs_rq->tasks_timeline); - update_load_sub(&cfs_rq->load, se->load.weight); - cfs_rq->nr_running--; - se->on_rq = 0; - - schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime); -} - -static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq) -{ - return cfs_rq->rb_leftmost; -} - -static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq) -{ - return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node); -} - -/************************************************************** - * Scheduling class statistics methods: - */ - -/* - * Calculate the preemption granularity needed to schedule every - * runnable task once per sysctl_sched_latency amount of time. - * (down to a sensible low limit on granularity) - * - * For example, if there are 2 tasks running and latency is 10 msecs, - * we switch tasks every 5 msecs. If we have 3 tasks running, we have - * to switch tasks every 3.33 msecs to get a 10 msecs observed latency - * for each task. We do finer and finer scheduling up to until we - * reach the minimum granularity value. - * - * To achieve this we use the following dynamic-granularity rule: - * - * gran = lat/nr - lat/nr/nr - * - * This comes out of the following equations: - * - * kA1 + gran = kB1 - * kB2 + gran = kA2 - * kA2 = kA1 - * kB2 = kB1 - d + d/nr - * lat = d * nr - * - * Where 'k' is key, 'A' is task A (waiting), 'B' is task B (running), - * '1' is start of time, '2' is end of time, 'd' is delay between - * 1 and 2 (during which task B was running), 'nr' is number of tasks - * running, 'lat' is the the period of each task. ('lat' is the - * sched_latency that we aim for.) - */ -static long -sched_granularity(struct cfs_rq *cfs_rq) -{ - unsigned int gran = sysctl_sched_latency; - unsigned int nr = cfs_rq->nr_running; - - if (nr > 1) { - gran = gran/nr - gran/nr/nr; - gran = max(gran, sysctl_sched_min_granularity); - } - - return gran; -} - -/* - * We rescale the rescheduling granularity of tasks according to their - * nice level, but only linearly, not exponentially: - */ -static long -niced_granularity(struct sched_entity *curr, unsigned long granularity) -{ - u64 tmp; - - if (likely(curr->load.weight == NICE_0_LOAD)) - return granularity; - /* - * Positive nice levels get the same granularity as nice-0: - */ - if (likely(curr->load.weight < NICE_0_LOAD)) { - tmp = curr->load.weight * (u64)granularity; - return (long) (tmp >> NICE_0_SHIFT); - } - /* - * Negative nice level tasks get linearly finer - * granularity: - */ - tmp = curr->load.inv_weight * (u64)granularity; - - /* - * It will always fit into 'long': - */ - return (long) (tmp >> (WMULT_SHIFT-NICE_0_SHIFT)); -} - -static inline void -limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se) -{ - long limit = sysctl_sched_runtime_limit; - - /* - * Niced tasks have the same history dynamic range as - * non-niced tasks: - */ - if (unlikely(se->wait_runtime > limit)) { - se->wait_runtime = limit; - schedstat_inc(se, wait_runtime_overruns); - schedstat_inc(cfs_rq, wait_runtime_overruns); - } - if (unlikely(se->wait_runtime < -limit)) { - se->wait_runtime = -limit; - schedstat_inc(se, wait_runtime_underruns); - schedstat_inc(cfs_rq, wait_runtime_underruns); - } -} - -static inline void -__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta) -{ - se->wait_runtime += delta; - schedstat_add(se, sum_wait_runtime, delta); - limit_wait_runtime(cfs_rq, se); -} - -static void -add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta) -{ - schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime); - __add_wait_runtime(cfs_rq, se, delta); - schedstat_add(cfs_rq, wait_runtime, se->wait_runtime); -} - -/* - * Update the current task's runtime statistics. Skip current tasks that - * are not in our scheduling class. - */ -static inline void -__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr) -{ - unsigned long delta, delta_exec, delta_fair, delta_mine; - struct load_weight *lw = &cfs_rq->load; - unsigned long load = lw->weight; - - delta_exec = curr->delta_exec; - schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max)); - - curr->sum_exec_runtime += delta_exec; - cfs_rq->exec_clock += delta_exec; - - if (unlikely(!load)) - return; - - delta_fair = calc_delta_fair(delta_exec, lw); - delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw); - - if (cfs_rq->sleeper_bonus > sysctl_sched_min_granularity) { - delta = min((u64)delta_mine, cfs_rq->sleeper_bonus); - delta = min(delta, (unsigned long)( - (long)sysctl_sched_runtime_limit - curr->wait_runtime)); - cfs_rq->sleeper_bonus -= delta; - delta_mine -= delta; - } - - cfs_rq->fair_clock += delta_fair; - /* - * We executed delta_exec amount of time on the CPU, - * but we were only entitled to delta_mine amount of - * time during that period (if nr_running == 1 then - * the two values are equal) - * [Note: delta_mine - delta_exec is negative]: - */ - add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec); -} - -static void update_curr(struct cfs_rq *cfs_rq) -{ - struct sched_entity *curr = cfs_rq_curr(cfs_rq); - unsigned long delta_exec; - - if (unlikely(!curr)) - return; - - /* - * Get the amount of time the current task was running - * since the last time we changed load (this cannot - * overflow on 32 bits): - */ - delta_exec = (unsigned long)(rq_of(cfs_rq)->clock - curr->exec_start); - - curr->delta_exec += delta_exec; - - if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) { - __update_curr(cfs_rq, curr); - curr->delta_exec = 0; - } - curr->exec_start = rq_of(cfs_rq)->clock; -} - -static inline void -update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) -{ - se->wait_start_fair = cfs_rq->fair_clock; - schedstat_set(se->wait_start, rq_of(cfs_rq)->clock); -} - -/* - * We calculate fair deltas here, so protect against the random effects - * of a multiplication overflow by capping it to the runtime limit: - */ -#if BITS_PER_LONG == 32 -static inline unsigned long -calc_weighted(unsigned long delta, unsigned long weight, int shift) -{ - u64 tmp = (u64)delta * weight >> shift; - - if (unlikely(tmp > sysctl_sched_runtime_limit*2)) - return sysctl_sched_runtime_limit*2; - return tmp; -} -#else -static inline unsigned long -calc_weighted(unsigned long delta, unsigned long weight, int shift) -{ - return delta * weight >> shift; -} -#endif - -/* - * Task is being enqueued - update stats: - */ -static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) -{ - s64 key; - - /* - * Are we enqueueing a waiting task? (for current tasks - * a dequeue/enqueue event is a NOP) - */ - if (se != cfs_rq_curr(cfs_rq)) - update_stats_wait_start(cfs_rq, se); - /* - * Update the key: - */ - key = cfs_rq->fair_clock; - - /* - * Optimize the common nice 0 case: - */ - if (likely(se->load.weight == NICE_0_LOAD)) { - key -= se->wait_runtime; - } else { - u64 tmp; - - if (se->wait_runtime < 0) { - tmp = -se->wait_runtime; - key += (tmp * se->load.inv_weight) >> - (WMULT_SHIFT - NICE_0_SHIFT); - } else { - tmp = se->wait_runtime; - key -= (tmp * se->load.inv_weight) >> - (WMULT_SHIFT - NICE_0_SHIFT); - } - } - - se->fair_key = key; -} - -/* - * Note: must be called with a freshly updated rq->fair_clock. - */ -static inline void -__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) -{ - unsigned long delta_fair = se->delta_fair_run; - - schedstat_set(se->wait_max, max(se->wait_max, - rq_of(cfs_rq)->clock - se->wait_start)); - - if (unlikely(se->load.weight != NICE_0_LOAD)) - delta_fair = calc_weighted(delta_fair, se->load.weight, - NICE_0_SHIFT); - - add_wait_runtime(cfs_rq, se, delta_fair); -} - -static void -update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) -{ - unsigned long delta_fair; - - if (unlikely(!se->wait_start_fair)) - return; - - delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit), - (u64)(cfs_rq->fair_clock - se->wait_start_fair)); - - se->delta_fair_run += delta_fair; - if (unlikely(abs(se->delta_fair_run) >= - sysctl_sched_stat_granularity)) { - __update_stats_wait_end(cfs_rq, se); - se->delta_fair_run = 0; - } - - se->wait_start_fair = 0; - schedstat_set(se->wait_start, 0); -} - -static inline void -update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) -{ - update_curr(cfs_rq); - /* - * Mark the end of the wait period if dequeueing a - * waiting task: - */ - if (se != cfs_rq_curr(cfs_rq)) - update_stats_wait_end(cfs_rq, se); -} - -/* - * We are picking a new current task - update its stats: - */ -static inline void -update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) -{ - /* - * We are starting a new run period: - */ - se->exec_start = rq_of(cfs_rq)->clock; -} - -/* - * We are descheduling a task - update its stats: - */ -static inline void -update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se) -{ - se->exec_start = 0; -} - -/************************************************** - * Scheduling class queueing methods: - */ - -static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) -{ - unsigned long load = cfs_rq->load.weight, delta_fair; - long prev_runtime; - - /* - * Do not boost sleepers if there's too much bonus 'in flight' - * already: - */ - if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit)) - return; - - if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG) - load = rq_of(cfs_rq)->cpu_load[2]; - - delta_fair = se->delta_fair_sleep; - - /* - * Fix up delta_fair with the effect of us running - * during the whole sleep period: - */ - if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG) - delta_fair = div64_likely32((u64)delta_fair * load, - load + se->load.weight); - - if (unlikely(se->load.weight != NICE_0_LOAD)) - delta_fair = calc_weighted(delta_fair, se->load.weight, - NICE_0_SHIFT); - - prev_runtime = se->wait_runtime; - __add_wait_runtime(cfs_rq, se, delta_fair); - delta_fair = se->wait_runtime - prev_runtime; - - /* - * Track the amount of bonus we've given to sleepers: - */ - cfs_rq->sleeper_bonus += delta_fair; -} - -static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) -{ - struct task_struct *tsk = task_of(se); - unsigned long delta_fair; - - if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) || - !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS)) - return; - - delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit), - (u64)(cfs_rq->fair_clock - se->sleep_start_fair)); - - se->delta_fair_sleep += delta_fair; - if (unlikely(abs(se->delta_fair_sleep) >= - sysctl_sched_stat_granularity)) { - __enqueue_sleeper(cfs_rq, se); - se->delta_fair_sleep = 0; - } - - se->sleep_start_fair = 0; - -#ifdef CONFIG_SCHEDSTATS - if (se->sleep_start) { - u64 delta = rq_of(cfs_rq)->clock - se->sleep_start; - - if ((s64)delta < 0) - delta = 0; - - if (unlikely(delta > se->sleep_max)) - se->sleep_max = delta; - - se->sleep_start = 0; - se->sum_sleep_runtime += delta; - } - if (se->block_start) { - u64 delta = rq_of(cfs_rq)->clock - se->block_start; - - if ((s64)delta < 0) - delta = 0; - - if (unlikely(delta > se->block_max)) - se->block_max = delta; - - se->block_start = 0; - se->sum_sleep_runtime += delta; - - /* - * Blocking time is in units of nanosecs, so shift by 20 to - * get a milliseconds-range estimation of the amount of - * time that the task spent sleeping: - */ - if (unlikely(prof_on == SLEEP_PROFILING)) { - profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk), - delta >> 20); - } - } -#endif -} - -static void -enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup) -{ - /* - * Update the fair clock. - */ - update_curr(cfs_rq); - - if (wakeup) - enqueue_sleeper(cfs_rq, se); - - update_stats_enqueue(cfs_rq, se); - __enqueue_entity(cfs_rq, se); -} - -static void -dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) -{ - update_stats_dequeue(cfs_rq, se); - if (sleep) { - se->sleep_start_fair = cfs_rq->fair_clock; -#ifdef CONFIG_SCHEDSTATS - if (entity_is_task(se)) { - struct task_struct *tsk = task_of(se); - - if (tsk->state & TASK_INTERRUPTIBLE) - se->sleep_start = rq_of(cfs_rq)->clock; - if (tsk->state & TASK_UNINTERRUPTIBLE) - se->block_start = rq_of(cfs_rq)->clock; - } -#endif - } - __dequeue_entity(cfs_rq, se); -} - -/* - * Preempt the current task with a newly woken task if needed: - */ -static void -__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, - struct sched_entity *curr, unsigned long granularity) -{ - s64 __delta = curr->fair_key - se->fair_key; - unsigned long ideal_runtime, delta_exec; - - /* - * ideal_runtime is compared against sum_exec_runtime, which is - * walltime, hence do not scale. - */ - ideal_runtime = max(sysctl_sched_latency / cfs_rq->nr_running, - (unsigned long)sysctl_sched_min_granularity); - - /* - * If we executed more than what the latency constraint suggests, - * reduce the rescheduling granularity. This way the total latency - * of how much a task is not scheduled converges to - * sysctl_sched_latency: - */ - delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; - if (delta_exec > ideal_runtime) - granularity = 0; - - /* - * Take scheduling granularity into account - do not - * preempt the current task unless the best task has - * a larger than sched_granularity fairness advantage: - * - * scale granularity as key space is in fair_clock. - */ - if (__delta > niced_granularity(curr, granularity)) - resched_task(rq_of(cfs_rq)->curr); -} - -static inline void -set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) -{ - /* - * Any task has to be enqueued before it get to execute on - * a CPU. So account for the time it spent waiting on the - * runqueue. (note, here we rely on pick_next_task() having - * done a put_prev_task_fair() shortly before this, which - * updated rq->fair_clock - used by update_stats_wait_end()) - */ - update_stats_wait_end(cfs_rq, se); - update_stats_curr_start(cfs_rq, se); - set_cfs_rq_curr(cfs_rq, se); - se->prev_sum_exec_runtime = se->sum_exec_runtime; -} - -static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) -{ - struct sched_entity *se = __pick_next_entity(cfs_rq); - - set_next_entity(cfs_rq, se); - - return se; -} - -static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) -{ - /* - * If still on the runqueue then deactivate_task() - * was not called and update_curr() has to be done: - */ - if (prev->on_rq) - update_curr(cfs_rq); - - update_stats_curr_end(cfs_rq, prev); - - if (prev->on_rq) - update_stats_wait_start(cfs_rq, prev); - set_cfs_rq_curr(cfs_rq, NULL); -} - -static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) -{ - struct sched_entity *next; - - /* - * Dequeue and enqueue the task to update its - * position within the tree: - */ - dequeue_entity(cfs_rq, curr, 0); - enqueue_entity(cfs_rq, curr, 0); - - /* - * Reschedule if another task tops the current one. - */ - next = __pick_next_entity(cfs_rq); - if (next == curr) - return; - - __check_preempt_curr_fair(cfs_rq, next, curr, - sched_granularity(cfs_rq)); -} - -/************************************************** - * CFS operations on tasks: - */ - -#ifdef CONFIG_FAIR_GROUP_SCHED - -/* Walk up scheduling entities hierarchy */ -#define for_each_sched_entity(se) \ - for (; se; se = se->parent) - -static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) -{ - return p->se.cfs_rq; -} - -/* runqueue on which this entity is (to be) queued */ -static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) -{ - return se->cfs_rq; -} - -/* runqueue "owned" by this group */ -static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) -{ - return grp->my_q; -} - -/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on - * another cpu ('this_cpu') - */ -static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu) -{ - /* A later patch will take group into account */ - return &cpu_rq(this_cpu)->cfs; -} - -/* Iterate thr' all leaf cfs_rq's on a runqueue */ -#define for_each_leaf_cfs_rq(rq, cfs_rq) \ - list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) - -/* Do the two (enqueued) tasks belong to the same group ? */ -static inline int is_same_group(struct task_struct *curr, struct task_struct *p) -{ - if (curr->se.cfs_rq == p->se.cfs_rq) - return 1; - - return 0; -} - -#else /* CONFIG_FAIR_GROUP_SCHED */ - -#define for_each_sched_entity(se) \ - for (; se; se = NULL) - -static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) -{ - return &task_rq(p)->cfs; -} - -static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) -{ - struct task_struct *p = task_of(se); - struct rq *rq = task_rq(p); - - return &rq->cfs; -} - -/* runqueue "owned" by this group */ -static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) -{ - return NULL; -} - -static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu) -{ - return &cpu_rq(this_cpu)->cfs; -} - -#define for_each_leaf_cfs_rq(rq, cfs_rq) \ - for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) - -static inline int is_same_group(struct task_struct *curr, struct task_struct *p) -{ - return 1; -} - -#endif /* CONFIG_FAIR_GROUP_SCHED */ - -/* - * The enqueue_task method is called before nr_running is - * increased. Here we update the fair scheduling stats and - * then put the task into the rbtree: - */ -static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup) -{ - struct cfs_rq *cfs_rq; - struct sched_entity *se = &p->se; - - for_each_sched_entity(se) { - if (se->on_rq) - break; - cfs_rq = cfs_rq_of(se); - enqueue_entity(cfs_rq, se, wakeup); - } -} - -/* - * The dequeue_task method is called before nr_running is - * decreased. We remove the task from the rbtree and - * update the fair scheduling stats: - */ -static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep) -{ - struct cfs_rq *cfs_rq; - struct sched_entity *se = &p->se; - - for_each_sched_entity(se) { - cfs_rq = cfs_rq_of(se); - dequeue_entity(cfs_rq, se, sleep); - /* Don't dequeue parent if it has other entities besides us */ - if (cfs_rq->load.weight) - break; - } -} - -/* - * sched_yield() support is very simple - we dequeue and enqueue. - * - * If compat_yield is turned on then we requeue to the end of the tree. - */ -static void yield_task_fair(struct rq *rq, struct task_struct *p) -{ - struct cfs_rq *cfs_rq = task_cfs_rq(p); - struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; - struct sched_entity *rightmost, *se = &p->se; - struct rb_node *parent; - - /* - * Are we the only task in the tree? - */ - if (unlikely(cfs_rq->nr_running == 1)) - return; - - if (likely(!sysctl_sched_compat_yield)) { - __update_rq_clock(rq); - /* - * Dequeue and enqueue the task to update its - * position within the tree: - */ - dequeue_entity(cfs_rq, &p->se, 0); - enqueue_entity(cfs_rq, &p->se, 0); - - return; - } - /* - * Find the rightmost entry in the rbtree: - */ - do { - parent = *link; - link = &parent->rb_right; - } while (*link); - - rightmost = rb_entry(parent, struct sched_entity, run_node); - /* - * Already in the rightmost position? - */ - if (unlikely(rightmost == se)) - return; - - /* - * Minimally necessary key value to be last in the tree: - */ - se->fair_key = rightmost->fair_key + 1; - - if (cfs_rq->rb_leftmost == &se->run_node) - cfs_rq->rb_leftmost = rb_next(&se->run_node); - /* - * Relink the task to the rightmost position: - */ - rb_erase(&se->run_node, &cfs_rq->tasks_timeline); - rb_link_node(&se->run_node, parent, link); - rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); -} - -/* - * Preempt the current task with a newly woken task if needed: - */ -static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p) -{ - struct task_struct *curr = rq->curr; - struct cfs_rq *cfs_rq = task_cfs_rq(curr); - unsigned long gran; - - if (unlikely(rt_prio(p->prio))) { - update_rq_clock(rq); - update_curr(cfs_rq); - resched_task(curr); - return; - } - - gran = sysctl_sched_wakeup_granularity; - /* - * Batch tasks prefer throughput over latency: - */ - if (unlikely(p->policy == SCHED_BATCH)) - gran = sysctl_sched_batch_wakeup_granularity; - - if (is_same_group(curr, p)) - __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran); -} - -static struct task_struct *pick_next_task_fair(struct rq *rq) -{ - struct cfs_rq *cfs_rq = &rq->cfs; - struct sched_entity *se; - - if (unlikely(!cfs_rq->nr_running)) - return NULL; - - do { - se = pick_next_entity(cfs_rq); - cfs_rq = group_cfs_rq(se); - } while (cfs_rq); - - return task_of(se); -} - -/* - * Account for a descheduled task: - */ -static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) -{ - struct sched_entity *se = &prev->se; - struct cfs_rq *cfs_rq; - - for_each_sched_entity(se) { - cfs_rq = cfs_rq_of(se); - put_prev_entity(cfs_rq, se); - } -} - -/************************************************** - * Fair scheduling class load-balancing methods: - */ - -/* - * Load-balancing iterator. Note: while the runqueue stays locked - * during the whole iteration, the current task might be - * dequeued so the iterator has to be dequeue-safe. Here we - * achieve that by always pre-iterating before returning - * the current task: - */ -static inline struct task_struct * -__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr) -{ - struct task_struct *p; - - if (!curr) - return NULL; - - p = rb_entry(curr, struct task_struct, se.run_node); - cfs_rq->rb_load_balance_curr = rb_next(curr); - - return p; -} - -static struct task_struct *load_balance_start_fair(void *arg) -{ - struct cfs_rq *cfs_rq = arg; - - return __load_balance_iterator(cfs_rq, first_fair(cfs_rq)); -} - -static struct task_struct *load_balance_next_fair(void *arg) -{ - struct cfs_rq *cfs_rq = arg; - - return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr); -} - -#ifdef CONFIG_FAIR_GROUP_SCHED -static int cfs_rq_best_prio(struct cfs_rq *cfs_rq) -{ - struct sched_entity *curr; - struct task_struct *p; - - if (!cfs_rq->nr_running) - return MAX_PRIO; - - curr = __pick_next_entity(cfs_rq); - p = task_of(curr); - - return p->prio; -} -#endif - -static unsigned long -load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, - unsigned long max_nr_move, unsigned long max_load_move, - struct sched_domain *sd, enum cpu_idle_type idle, - int *all_pinned, int *this_best_prio) -{ - struct cfs_rq *busy_cfs_rq; - unsigned long load_moved, total_nr_moved = 0, nr_moved; - long rem_load_move = max_load_move; - struct rq_iterator cfs_rq_iterator; - - cfs_rq_iterator.start = load_balance_start_fair; - cfs_rq_iterator.next = load_balance_next_fair; - - for_each_leaf_cfs_rq(busiest, busy_cfs_rq) { -#ifdef CONFIG_FAIR_GROUP_SCHED - struct cfs_rq *this_cfs_rq; - long imbalance; - unsigned long maxload; - - this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu); - - imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight; - /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */ - if (imbalance <= 0) - continue; - - /* Don't pull more than imbalance/2 */ - imbalance /= 2; - maxload = min(rem_load_move, imbalance); - - *this_best_prio = cfs_rq_best_prio(this_cfs_rq); -#else -# define maxload rem_load_move -#endif - /* pass busy_cfs_rq argument into - * load_balance_[start|next]_fair iterators - */ - cfs_rq_iterator.arg = busy_cfs_rq; - nr_moved = balance_tasks(this_rq, this_cpu, busiest, - max_nr_move, maxload, sd, idle, all_pinned, - &load_moved, this_best_prio, &cfs_rq_iterator); - - total_nr_moved += nr_moved; - max_nr_move -= nr_moved; - rem_load_move -= load_moved; - - if (max_nr_move <= 0 || rem_load_move <= 0) - break; - } - - return max_load_move - rem_load_move; -} - -/* - * scheduler tick hitting a task of our scheduling class: - */ -static void task_tick_fair(struct rq *rq, struct task_struct *curr) -{ - struct cfs_rq *cfs_rq; - struct sched_entity *se = &curr->se; - - for_each_sched_entity(se) { - cfs_rq = cfs_rq_of(se); - entity_tick(cfs_rq, se); - } -} - -/* - * Share the fairness runtime between parent and child, thus the - * total amount of pressure for CPU stays equal - new tasks - * get a chance to run but frequent forkers are not allowed to - * monopolize the CPU. Note: the parent runqueue is locked, - * the child is not running yet. - */ -static void task_new_fair(struct rq *rq, struct task_struct *p) -{ - struct cfs_rq *cfs_rq = task_cfs_rq(p); - struct sched_entity *se = &p->se, *curr = cfs_rq_curr(cfs_rq); - - sched_info_queued(p); - - update_curr(cfs_rq); - update_stats_enqueue(cfs_rq, se); - /* - * Child runs first: we let it run before the parent - * until it reschedules once. We set up the key so that - * it will preempt the parent: - */ - se->fair_key = curr->fair_key - - niced_granularity(curr, sched_granularity(cfs_rq)) - 1; - /* - * The first wait is dominated by the child-runs-first logic, - * so do not credit it with that waiting time yet: - */ - if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL) - se->wait_start_fair = 0; - - /* - * The statistical average of wait_runtime is about - * -granularity/2, so initialize the task with that: - */ - if (sysctl_sched_features & SCHED_FEAT_START_DEBIT) - se->wait_runtime = -(sched_granularity(cfs_rq) / 2); - - __enqueue_entity(cfs_rq, se); -} - -#ifdef CONFIG_FAIR_GROUP_SCHED -/* Account for a task changing its policy or group. - * - * This routine is mostly called to set cfs_rq->curr field when a task - * migrates between groups/classes. - */ -static void set_curr_task_fair(struct rq *rq) -{ - struct sched_entity *se = &rq->curr->se; - - for_each_sched_entity(se) - set_next_entity(cfs_rq_of(se), se); -} -#else -static void set_curr_task_fair(struct rq *rq) -{ -} -#endif - -/* - * All the scheduling class methods: - */ -struct sched_class fair_sched_class __read_mostly = { - .enqueue_task = enqueue_task_fair, - .dequeue_task = dequeue_task_fair, - .yield_task = yield_task_fair, - - .check_preempt_curr = check_preempt_curr_fair, - - .pick_next_task = pick_next_task_fair, - .put_prev_task = put_prev_task_fair, - - .load_balance = load_balance_fair, - - .set_curr_task = set_curr_task_fair, - .task_tick = task_tick_fair, - .task_new = task_new_fair, -}; - -#ifdef CONFIG_SCHED_DEBUG -static void print_cfs_stats(struct seq_file *m, int cpu) -{ - struct cfs_rq *cfs_rq; - - for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) - print_cfs_rq(m, cpu, cfs_rq); -} -#endif |
