diff options
Diffstat (limited to 'kernel/sched/wait.c')
| -rw-r--r-- | kernel/sched/wait.c | 504 | 
1 files changed, 504 insertions, 0 deletions
diff --git a/kernel/sched/wait.c b/kernel/sched/wait.c new file mode 100644 index 00000000000..0ffa20ae657 --- /dev/null +++ b/kernel/sched/wait.c @@ -0,0 +1,504 @@ +/* + * Generic waiting primitives. + * + * (C) 2004 Nadia Yvette Chambers, Oracle + */ +#include <linux/init.h> +#include <linux/export.h> +#include <linux/sched.h> +#include <linux/mm.h> +#include <linux/wait.h> +#include <linux/hash.h> + +void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key) +{ +	spin_lock_init(&q->lock); +	lockdep_set_class_and_name(&q->lock, key, name); +	INIT_LIST_HEAD(&q->task_list); +} + +EXPORT_SYMBOL(__init_waitqueue_head); + +void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) +{ +	unsigned long flags; + +	wait->flags &= ~WQ_FLAG_EXCLUSIVE; +	spin_lock_irqsave(&q->lock, flags); +	__add_wait_queue(q, wait); +	spin_unlock_irqrestore(&q->lock, flags); +} +EXPORT_SYMBOL(add_wait_queue); + +void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait) +{ +	unsigned long flags; + +	wait->flags |= WQ_FLAG_EXCLUSIVE; +	spin_lock_irqsave(&q->lock, flags); +	__add_wait_queue_tail(q, wait); +	spin_unlock_irqrestore(&q->lock, flags); +} +EXPORT_SYMBOL(add_wait_queue_exclusive); + +void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) +{ +	unsigned long flags; + +	spin_lock_irqsave(&q->lock, flags); +	__remove_wait_queue(q, wait); +	spin_unlock_irqrestore(&q->lock, flags); +} +EXPORT_SYMBOL(remove_wait_queue); + + +/* + * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just + * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve + * number) then we wake all the non-exclusive tasks and one exclusive task. + * + * There are circumstances in which we can try to wake a task which has already + * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns + * zero in this (rare) case, and we handle it by continuing to scan the queue. + */ +static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, +			int nr_exclusive, int wake_flags, void *key) +{ +	wait_queue_t *curr, *next; + +	list_for_each_entry_safe(curr, next, &q->task_list, task_list) { +		unsigned flags = curr->flags; + +		if (curr->func(curr, mode, wake_flags, key) && +				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) +			break; +	} +} + +/** + * __wake_up - wake up threads blocked on a waitqueue. + * @q: the waitqueue + * @mode: which threads + * @nr_exclusive: how many wake-one or wake-many threads to wake up + * @key: is directly passed to the wakeup function + * + * It may be assumed that this function implies a write memory barrier before + * changing the task state if and only if any tasks are woken up. + */ +void __wake_up(wait_queue_head_t *q, unsigned int mode, +			int nr_exclusive, void *key) +{ +	unsigned long flags; + +	spin_lock_irqsave(&q->lock, flags); +	__wake_up_common(q, mode, nr_exclusive, 0, key); +	spin_unlock_irqrestore(&q->lock, flags); +} +EXPORT_SYMBOL(__wake_up); + +/* + * Same as __wake_up but called with the spinlock in wait_queue_head_t held. + */ +void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) +{ +	__wake_up_common(q, mode, nr, 0, NULL); +} +EXPORT_SYMBOL_GPL(__wake_up_locked); + +void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) +{ +	__wake_up_common(q, mode, 1, 0, key); +} +EXPORT_SYMBOL_GPL(__wake_up_locked_key); + +/** + * __wake_up_sync_key - wake up threads blocked on a waitqueue. + * @q: the waitqueue + * @mode: which threads + * @nr_exclusive: how many wake-one or wake-many threads to wake up + * @key: opaque value to be passed to wakeup targets + * + * The sync wakeup differs that the waker knows that it will schedule + * away soon, so while the target thread will be woken up, it will not + * be migrated to another CPU - ie. the two threads are 'synchronized' + * with each other. This can prevent needless bouncing between CPUs. + * + * On UP it can prevent extra preemption. + * + * It may be assumed that this function implies a write memory barrier before + * changing the task state if and only if any tasks are woken up. + */ +void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, +			int nr_exclusive, void *key) +{ +	unsigned long flags; +	int wake_flags = 1; /* XXX WF_SYNC */ + +	if (unlikely(!q)) +		return; + +	if (unlikely(nr_exclusive != 1)) +		wake_flags = 0; + +	spin_lock_irqsave(&q->lock, flags); +	__wake_up_common(q, mode, nr_exclusive, wake_flags, key); +	spin_unlock_irqrestore(&q->lock, flags); +} +EXPORT_SYMBOL_GPL(__wake_up_sync_key); + +/* + * __wake_up_sync - see __wake_up_sync_key() + */ +void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) +{ +	__wake_up_sync_key(q, mode, nr_exclusive, NULL); +} +EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */ + +/* + * Note: we use "set_current_state()" _after_ the wait-queue add, + * because we need a memory barrier there on SMP, so that any + * wake-function that tests for the wait-queue being active + * will be guaranteed to see waitqueue addition _or_ subsequent + * tests in this thread will see the wakeup having taken place. + * + * The spin_unlock() itself is semi-permeable and only protects + * one way (it only protects stuff inside the critical region and + * stops them from bleeding out - it would still allow subsequent + * loads to move into the critical region). + */ +void +prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state) +{ +	unsigned long flags; + +	wait->flags &= ~WQ_FLAG_EXCLUSIVE; +	spin_lock_irqsave(&q->lock, flags); +	if (list_empty(&wait->task_list)) +		__add_wait_queue(q, wait); +	set_current_state(state); +	spin_unlock_irqrestore(&q->lock, flags); +} +EXPORT_SYMBOL(prepare_to_wait); + +void +prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state) +{ +	unsigned long flags; + +	wait->flags |= WQ_FLAG_EXCLUSIVE; +	spin_lock_irqsave(&q->lock, flags); +	if (list_empty(&wait->task_list)) +		__add_wait_queue_tail(q, wait); +	set_current_state(state); +	spin_unlock_irqrestore(&q->lock, flags); +} +EXPORT_SYMBOL(prepare_to_wait_exclusive); + +long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state) +{ +	unsigned long flags; + +	if (signal_pending_state(state, current)) +		return -ERESTARTSYS; + +	wait->private = current; +	wait->func = autoremove_wake_function; + +	spin_lock_irqsave(&q->lock, flags); +	if (list_empty(&wait->task_list)) { +		if (wait->flags & WQ_FLAG_EXCLUSIVE) +			__add_wait_queue_tail(q, wait); +		else +			__add_wait_queue(q, wait); +	} +	set_current_state(state); +	spin_unlock_irqrestore(&q->lock, flags); + +	return 0; +} +EXPORT_SYMBOL(prepare_to_wait_event); + +/** + * finish_wait - clean up after waiting in a queue + * @q: waitqueue waited on + * @wait: wait descriptor + * + * Sets current thread back to running state and removes + * the wait descriptor from the given waitqueue if still + * queued. + */ +void finish_wait(wait_queue_head_t *q, wait_queue_t *wait) +{ +	unsigned long flags; + +	__set_current_state(TASK_RUNNING); +	/* +	 * We can check for list emptiness outside the lock +	 * IFF: +	 *  - we use the "careful" check that verifies both +	 *    the next and prev pointers, so that there cannot +	 *    be any half-pending updates in progress on other +	 *    CPU's that we haven't seen yet (and that might +	 *    still change the stack area. +	 * and +	 *  - all other users take the lock (ie we can only +	 *    have _one_ other CPU that looks at or modifies +	 *    the list). +	 */ +	if (!list_empty_careful(&wait->task_list)) { +		spin_lock_irqsave(&q->lock, flags); +		list_del_init(&wait->task_list); +		spin_unlock_irqrestore(&q->lock, flags); +	} +} +EXPORT_SYMBOL(finish_wait); + +/** + * abort_exclusive_wait - abort exclusive waiting in a queue + * @q: waitqueue waited on + * @wait: wait descriptor + * @mode: runstate of the waiter to be woken + * @key: key to identify a wait bit queue or %NULL + * + * Sets current thread back to running state and removes + * the wait descriptor from the given waitqueue if still + * queued. + * + * Wakes up the next waiter if the caller is concurrently + * woken up through the queue. + * + * This prevents waiter starvation where an exclusive waiter + * aborts and is woken up concurrently and no one wakes up + * the next waiter. + */ +void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait, +			unsigned int mode, void *key) +{ +	unsigned long flags; + +	__set_current_state(TASK_RUNNING); +	spin_lock_irqsave(&q->lock, flags); +	if (!list_empty(&wait->task_list)) +		list_del_init(&wait->task_list); +	else if (waitqueue_active(q)) +		__wake_up_locked_key(q, mode, key); +	spin_unlock_irqrestore(&q->lock, flags); +} +EXPORT_SYMBOL(abort_exclusive_wait); + +int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) +{ +	int ret = default_wake_function(wait, mode, sync, key); + +	if (ret) +		list_del_init(&wait->task_list); +	return ret; +} +EXPORT_SYMBOL(autoremove_wake_function); + +int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg) +{ +	struct wait_bit_key *key = arg; +	struct wait_bit_queue *wait_bit +		= container_of(wait, struct wait_bit_queue, wait); + +	if (wait_bit->key.flags != key->flags || +			wait_bit->key.bit_nr != key->bit_nr || +			test_bit(key->bit_nr, key->flags)) +		return 0; +	else +		return autoremove_wake_function(wait, mode, sync, key); +} +EXPORT_SYMBOL(wake_bit_function); + +/* + * To allow interruptible waiting and asynchronous (i.e. nonblocking) + * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are + * permitted return codes. Nonzero return codes halt waiting and return. + */ +int __sched +__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q, +			int (*action)(void *), unsigned mode) +{ +	int ret = 0; + +	do { +		prepare_to_wait(wq, &q->wait, mode); +		if (test_bit(q->key.bit_nr, q->key.flags)) +			ret = (*action)(q->key.flags); +	} while (test_bit(q->key.bit_nr, q->key.flags) && !ret); +	finish_wait(wq, &q->wait); +	return ret; +} +EXPORT_SYMBOL(__wait_on_bit); + +int __sched out_of_line_wait_on_bit(void *word, int bit, +					int (*action)(void *), unsigned mode) +{ +	wait_queue_head_t *wq = bit_waitqueue(word, bit); +	DEFINE_WAIT_BIT(wait, word, bit); + +	return __wait_on_bit(wq, &wait, action, mode); +} +EXPORT_SYMBOL(out_of_line_wait_on_bit); + +int __sched +__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q, +			int (*action)(void *), unsigned mode) +{ +	do { +		int ret; + +		prepare_to_wait_exclusive(wq, &q->wait, mode); +		if (!test_bit(q->key.bit_nr, q->key.flags)) +			continue; +		ret = action(q->key.flags); +		if (!ret) +			continue; +		abort_exclusive_wait(wq, &q->wait, mode, &q->key); +		return ret; +	} while (test_and_set_bit(q->key.bit_nr, q->key.flags)); +	finish_wait(wq, &q->wait); +	return 0; +} +EXPORT_SYMBOL(__wait_on_bit_lock); + +int __sched out_of_line_wait_on_bit_lock(void *word, int bit, +					int (*action)(void *), unsigned mode) +{ +	wait_queue_head_t *wq = bit_waitqueue(word, bit); +	DEFINE_WAIT_BIT(wait, word, bit); + +	return __wait_on_bit_lock(wq, &wait, action, mode); +} +EXPORT_SYMBOL(out_of_line_wait_on_bit_lock); + +void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit) +{ +	struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit); +	if (waitqueue_active(wq)) +		__wake_up(wq, TASK_NORMAL, 1, &key); +} +EXPORT_SYMBOL(__wake_up_bit); + +/** + * wake_up_bit - wake up a waiter on a bit + * @word: the word being waited on, a kernel virtual address + * @bit: the bit of the word being waited on + * + * There is a standard hashed waitqueue table for generic use. This + * is the part of the hashtable's accessor API that wakes up waiters + * on a bit. For instance, if one were to have waiters on a bitflag, + * one would call wake_up_bit() after clearing the bit. + * + * In order for this to function properly, as it uses waitqueue_active() + * internally, some kind of memory barrier must be done prior to calling + * this. Typically, this will be smp_mb__after_atomic(), but in some + * cases where bitflags are manipulated non-atomically under a lock, one + * may need to use a less regular barrier, such fs/inode.c's smp_mb(), + * because spin_unlock() does not guarantee a memory barrier. + */ +void wake_up_bit(void *word, int bit) +{ +	__wake_up_bit(bit_waitqueue(word, bit), word, bit); +} +EXPORT_SYMBOL(wake_up_bit); + +wait_queue_head_t *bit_waitqueue(void *word, int bit) +{ +	const int shift = BITS_PER_LONG == 32 ? 5 : 6; +	const struct zone *zone = page_zone(virt_to_page(word)); +	unsigned long val = (unsigned long)word << shift | bit; + +	return &zone->wait_table[hash_long(val, zone->wait_table_bits)]; +} +EXPORT_SYMBOL(bit_waitqueue); + +/* + * Manipulate the atomic_t address to produce a better bit waitqueue table hash + * index (we're keying off bit -1, but that would produce a horrible hash + * value). + */ +static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p) +{ +	if (BITS_PER_LONG == 64) { +		unsigned long q = (unsigned long)p; +		return bit_waitqueue((void *)(q & ~1), q & 1); +	} +	return bit_waitqueue(p, 0); +} + +static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync, +				  void *arg) +{ +	struct wait_bit_key *key = arg; +	struct wait_bit_queue *wait_bit +		= container_of(wait, struct wait_bit_queue, wait); +	atomic_t *val = key->flags; + +	if (wait_bit->key.flags != key->flags || +	    wait_bit->key.bit_nr != key->bit_nr || +	    atomic_read(val) != 0) +		return 0; +	return autoremove_wake_function(wait, mode, sync, key); +} + +/* + * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting, + * the actions of __wait_on_atomic_t() are permitted return codes.  Nonzero + * return codes halt waiting and return. + */ +static __sched +int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q, +		       int (*action)(atomic_t *), unsigned mode) +{ +	atomic_t *val; +	int ret = 0; + +	do { +		prepare_to_wait(wq, &q->wait, mode); +		val = q->key.flags; +		if (atomic_read(val) == 0) +			break; +		ret = (*action)(val); +	} while (!ret && atomic_read(val) != 0); +	finish_wait(wq, &q->wait); +	return ret; +} + +#define DEFINE_WAIT_ATOMIC_T(name, p)					\ +	struct wait_bit_queue name = {					\ +		.key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p),		\ +		.wait	= {						\ +			.private	= current,			\ +			.func		= wake_atomic_t_function,	\ +			.task_list	=				\ +				LIST_HEAD_INIT((name).wait.task_list),	\ +		},							\ +	} + +__sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *), +					 unsigned mode) +{ +	wait_queue_head_t *wq = atomic_t_waitqueue(p); +	DEFINE_WAIT_ATOMIC_T(wait, p); + +	return __wait_on_atomic_t(wq, &wait, action, mode); +} +EXPORT_SYMBOL(out_of_line_wait_on_atomic_t); + +/** + * wake_up_atomic_t - Wake up a waiter on a atomic_t + * @p: The atomic_t being waited on, a kernel virtual address + * + * Wake up anyone waiting for the atomic_t to go to zero. + * + * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t + * check is done by the waiter's wake function, not the by the waker itself). + */ +void wake_up_atomic_t(atomic_t *p) +{ +	__wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR); +} +EXPORT_SYMBOL(wake_up_atomic_t);  | 
