diff options
Diffstat (limited to 'kernel/sched/sched.h')
| -rw-r--r-- | kernel/sched/sched.h | 1549 | 
1 files changed, 1549 insertions, 0 deletions
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h new file mode 100644 index 00000000000..31cc02ebc54 --- /dev/null +++ b/kernel/sched/sched.h @@ -0,0 +1,1549 @@ + +#include <linux/sched.h> +#include <linux/sched/sysctl.h> +#include <linux/sched/rt.h> +#include <linux/sched/deadline.h> +#include <linux/mutex.h> +#include <linux/spinlock.h> +#include <linux/stop_machine.h> +#include <linux/tick.h> +#include <linux/slab.h> + +#include "cpupri.h" +#include "cpudeadline.h" +#include "cpuacct.h" + +struct rq; + +extern __read_mostly int scheduler_running; + +extern unsigned long calc_load_update; +extern atomic_long_t calc_load_tasks; + +extern long calc_load_fold_active(struct rq *this_rq); +extern void update_cpu_load_active(struct rq *this_rq); + +/* + * Helpers for converting nanosecond timing to jiffy resolution + */ +#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) + +/* + * Increase resolution of nice-level calculations for 64-bit architectures. + * The extra resolution improves shares distribution and load balancing of + * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup + * hierarchies, especially on larger systems. This is not a user-visible change + * and does not change the user-interface for setting shares/weights. + * + * We increase resolution only if we have enough bits to allow this increased + * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution + * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the + * increased costs. + */ +#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */ +# define SCHED_LOAD_RESOLUTION	10 +# define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION) +# define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION) +#else +# define SCHED_LOAD_RESOLUTION	0 +# define scale_load(w)		(w) +# define scale_load_down(w)	(w) +#endif + +#define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION) +#define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT) + +#define NICE_0_LOAD		SCHED_LOAD_SCALE +#define NICE_0_SHIFT		SCHED_LOAD_SHIFT + +/* + * Single value that decides SCHED_DEADLINE internal math precision. + * 10 -> just above 1us + * 9  -> just above 0.5us + */ +#define DL_SCALE (10) + +/* + * These are the 'tuning knobs' of the scheduler: + */ + +/* + * single value that denotes runtime == period, ie unlimited time. + */ +#define RUNTIME_INF	((u64)~0ULL) + +static inline int fair_policy(int policy) +{ +	return policy == SCHED_NORMAL || policy == SCHED_BATCH; +} + +static inline int rt_policy(int policy) +{ +	return policy == SCHED_FIFO || policy == SCHED_RR; +} + +static inline int dl_policy(int policy) +{ +	return policy == SCHED_DEADLINE; +} + +static inline int task_has_rt_policy(struct task_struct *p) +{ +	return rt_policy(p->policy); +} + +static inline int task_has_dl_policy(struct task_struct *p) +{ +	return dl_policy(p->policy); +} + +static inline bool dl_time_before(u64 a, u64 b) +{ +	return (s64)(a - b) < 0; +} + +/* + * Tells if entity @a should preempt entity @b. + */ +static inline bool +dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) +{ +	return dl_time_before(a->deadline, b->deadline); +} + +/* + * This is the priority-queue data structure of the RT scheduling class: + */ +struct rt_prio_array { +	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ +	struct list_head queue[MAX_RT_PRIO]; +}; + +struct rt_bandwidth { +	/* nests inside the rq lock: */ +	raw_spinlock_t		rt_runtime_lock; +	ktime_t			rt_period; +	u64			rt_runtime; +	struct hrtimer		rt_period_timer; +}; +/* + * To keep the bandwidth of -deadline tasks and groups under control + * we need some place where: + *  - store the maximum -deadline bandwidth of the system (the group); + *  - cache the fraction of that bandwidth that is currently allocated. + * + * This is all done in the data structure below. It is similar to the + * one used for RT-throttling (rt_bandwidth), with the main difference + * that, since here we are only interested in admission control, we + * do not decrease any runtime while the group "executes", neither we + * need a timer to replenish it. + * + * With respect to SMP, the bandwidth is given on a per-CPU basis, + * meaning that: + *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU; + *  - dl_total_bw array contains, in the i-eth element, the currently + *    allocated bandwidth on the i-eth CPU. + * Moreover, groups consume bandwidth on each CPU, while tasks only + * consume bandwidth on the CPU they're running on. + * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw + * that will be shown the next time the proc or cgroup controls will + * be red. It on its turn can be changed by writing on its own + * control. + */ +struct dl_bandwidth { +	raw_spinlock_t dl_runtime_lock; +	u64 dl_runtime; +	u64 dl_period; +}; + +static inline int dl_bandwidth_enabled(void) +{ +	return sysctl_sched_rt_runtime >= 0; +} + +extern struct dl_bw *dl_bw_of(int i); + +struct dl_bw { +	raw_spinlock_t lock; +	u64 bw, total_bw; +}; + +extern struct mutex sched_domains_mutex; + +#ifdef CONFIG_CGROUP_SCHED + +#include <linux/cgroup.h> + +struct cfs_rq; +struct rt_rq; + +extern struct list_head task_groups; + +struct cfs_bandwidth { +#ifdef CONFIG_CFS_BANDWIDTH +	raw_spinlock_t lock; +	ktime_t period; +	u64 quota, runtime; +	s64 hierarchal_quota; +	u64 runtime_expires; + +	int idle, timer_active; +	struct hrtimer period_timer, slack_timer; +	struct list_head throttled_cfs_rq; + +	/* statistics */ +	int nr_periods, nr_throttled; +	u64 throttled_time; +#endif +}; + +/* task group related information */ +struct task_group { +	struct cgroup_subsys_state css; + +#ifdef CONFIG_FAIR_GROUP_SCHED +	/* schedulable entities of this group on each cpu */ +	struct sched_entity **se; +	/* runqueue "owned" by this group on each cpu */ +	struct cfs_rq **cfs_rq; +	unsigned long shares; + +#ifdef	CONFIG_SMP +	atomic_long_t load_avg; +	atomic_t runnable_avg; +#endif +#endif + +#ifdef CONFIG_RT_GROUP_SCHED +	struct sched_rt_entity **rt_se; +	struct rt_rq **rt_rq; + +	struct rt_bandwidth rt_bandwidth; +#endif + +	struct rcu_head rcu; +	struct list_head list; + +	struct task_group *parent; +	struct list_head siblings; +	struct list_head children; + +#ifdef CONFIG_SCHED_AUTOGROUP +	struct autogroup *autogroup; +#endif + +	struct cfs_bandwidth cfs_bandwidth; +}; + +#ifdef CONFIG_FAIR_GROUP_SCHED +#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD + +/* + * A weight of 0 or 1 can cause arithmetics problems. + * A weight of a cfs_rq is the sum of weights of which entities + * are queued on this cfs_rq, so a weight of a entity should not be + * too large, so as the shares value of a task group. + * (The default weight is 1024 - so there's no practical + *  limitation from this.) + */ +#define MIN_SHARES	(1UL <<  1) +#define MAX_SHARES	(1UL << 18) +#endif + +typedef int (*tg_visitor)(struct task_group *, void *); + +extern int walk_tg_tree_from(struct task_group *from, +			     tg_visitor down, tg_visitor up, void *data); + +/* + * Iterate the full tree, calling @down when first entering a node and @up when + * leaving it for the final time. + * + * Caller must hold rcu_lock or sufficient equivalent. + */ +static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) +{ +	return walk_tg_tree_from(&root_task_group, down, up, data); +} + +extern int tg_nop(struct task_group *tg, void *data); + +extern void free_fair_sched_group(struct task_group *tg); +extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); +extern void unregister_fair_sched_group(struct task_group *tg, int cpu); +extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, +			struct sched_entity *se, int cpu, +			struct sched_entity *parent); +extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); +extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); + +extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); +extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force); +extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); + +extern void free_rt_sched_group(struct task_group *tg); +extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); +extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, +		struct sched_rt_entity *rt_se, int cpu, +		struct sched_rt_entity *parent); + +extern struct task_group *sched_create_group(struct task_group *parent); +extern void sched_online_group(struct task_group *tg, +			       struct task_group *parent); +extern void sched_destroy_group(struct task_group *tg); +extern void sched_offline_group(struct task_group *tg); + +extern void sched_move_task(struct task_struct *tsk); + +#ifdef CONFIG_FAIR_GROUP_SCHED +extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); +#endif + +#else /* CONFIG_CGROUP_SCHED */ + +struct cfs_bandwidth { }; + +#endif	/* CONFIG_CGROUP_SCHED */ + +/* CFS-related fields in a runqueue */ +struct cfs_rq { +	struct load_weight load; +	unsigned int nr_running, h_nr_running; + +	u64 exec_clock; +	u64 min_vruntime; +#ifndef CONFIG_64BIT +	u64 min_vruntime_copy; +#endif + +	struct rb_root tasks_timeline; +	struct rb_node *rb_leftmost; + +	/* +	 * 'curr' points to currently running entity on this cfs_rq. +	 * It is set to NULL otherwise (i.e when none are currently running). +	 */ +	struct sched_entity *curr, *next, *last, *skip; + +#ifdef	CONFIG_SCHED_DEBUG +	unsigned int nr_spread_over; +#endif + +#ifdef CONFIG_SMP +	/* +	 * CFS Load tracking +	 * Under CFS, load is tracked on a per-entity basis and aggregated up. +	 * This allows for the description of both thread and group usage (in +	 * the FAIR_GROUP_SCHED case). +	 */ +	unsigned long runnable_load_avg, blocked_load_avg; +	atomic64_t decay_counter; +	u64 last_decay; +	atomic_long_t removed_load; + +#ifdef CONFIG_FAIR_GROUP_SCHED +	/* Required to track per-cpu representation of a task_group */ +	u32 tg_runnable_contrib; +	unsigned long tg_load_contrib; + +	/* +	 *   h_load = weight * f(tg) +	 * +	 * Where f(tg) is the recursive weight fraction assigned to +	 * this group. +	 */ +	unsigned long h_load; +	u64 last_h_load_update; +	struct sched_entity *h_load_next; +#endif /* CONFIG_FAIR_GROUP_SCHED */ +#endif /* CONFIG_SMP */ + +#ifdef CONFIG_FAIR_GROUP_SCHED +	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */ + +	/* +	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in +	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities +	 * (like users, containers etc.) +	 * +	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This +	 * list is used during load balance. +	 */ +	int on_list; +	struct list_head leaf_cfs_rq_list; +	struct task_group *tg;	/* group that "owns" this runqueue */ + +#ifdef CONFIG_CFS_BANDWIDTH +	int runtime_enabled; +	u64 runtime_expires; +	s64 runtime_remaining; + +	u64 throttled_clock, throttled_clock_task; +	u64 throttled_clock_task_time; +	int throttled, throttle_count; +	struct list_head throttled_list; +#endif /* CONFIG_CFS_BANDWIDTH */ +#endif /* CONFIG_FAIR_GROUP_SCHED */ +}; + +static inline int rt_bandwidth_enabled(void) +{ +	return sysctl_sched_rt_runtime >= 0; +} + +/* Real-Time classes' related field in a runqueue: */ +struct rt_rq { +	struct rt_prio_array active; +	unsigned int rt_nr_running; +#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED +	struct { +		int curr; /* highest queued rt task prio */ +#ifdef CONFIG_SMP +		int next; /* next highest */ +#endif +	} highest_prio; +#endif +#ifdef CONFIG_SMP +	unsigned long rt_nr_migratory; +	unsigned long rt_nr_total; +	int overloaded; +	struct plist_head pushable_tasks; +#endif +	int rt_queued; + +	int rt_throttled; +	u64 rt_time; +	u64 rt_runtime; +	/* Nests inside the rq lock: */ +	raw_spinlock_t rt_runtime_lock; + +#ifdef CONFIG_RT_GROUP_SCHED +	unsigned long rt_nr_boosted; + +	struct rq *rq; +	struct task_group *tg; +#endif +}; + +/* Deadline class' related fields in a runqueue */ +struct dl_rq { +	/* runqueue is an rbtree, ordered by deadline */ +	struct rb_root rb_root; +	struct rb_node *rb_leftmost; + +	unsigned long dl_nr_running; + +#ifdef CONFIG_SMP +	/* +	 * Deadline values of the currently executing and the +	 * earliest ready task on this rq. Caching these facilitates +	 * the decision wether or not a ready but not running task +	 * should migrate somewhere else. +	 */ +	struct { +		u64 curr; +		u64 next; +	} earliest_dl; + +	unsigned long dl_nr_migratory; +	int overloaded; + +	/* +	 * Tasks on this rq that can be pushed away. They are kept in +	 * an rb-tree, ordered by tasks' deadlines, with caching +	 * of the leftmost (earliest deadline) element. +	 */ +	struct rb_root pushable_dl_tasks_root; +	struct rb_node *pushable_dl_tasks_leftmost; +#else +	struct dl_bw dl_bw; +#endif +}; + +#ifdef CONFIG_SMP + +/* + * We add the notion of a root-domain which will be used to define per-domain + * variables. Each exclusive cpuset essentially defines an island domain by + * fully partitioning the member cpus from any other cpuset. Whenever a new + * exclusive cpuset is created, we also create and attach a new root-domain + * object. + * + */ +struct root_domain { +	atomic_t refcount; +	atomic_t rto_count; +	struct rcu_head rcu; +	cpumask_var_t span; +	cpumask_var_t online; + +	/* +	 * The bit corresponding to a CPU gets set here if such CPU has more +	 * than one runnable -deadline task (as it is below for RT tasks). +	 */ +	cpumask_var_t dlo_mask; +	atomic_t dlo_count; +	struct dl_bw dl_bw; +	struct cpudl cpudl; + +	/* +	 * The "RT overload" flag: it gets set if a CPU has more than +	 * one runnable RT task. +	 */ +	cpumask_var_t rto_mask; +	struct cpupri cpupri; +}; + +extern struct root_domain def_root_domain; + +#endif /* CONFIG_SMP */ + +/* + * This is the main, per-CPU runqueue data structure. + * + * Locking rule: those places that want to lock multiple runqueues + * (such as the load balancing or the thread migration code), lock + * acquire operations must be ordered by ascending &runqueue. + */ +struct rq { +	/* runqueue lock: */ +	raw_spinlock_t lock; + +	/* +	 * nr_running and cpu_load should be in the same cacheline because +	 * remote CPUs use both these fields when doing load calculation. +	 */ +	unsigned int nr_running; +#ifdef CONFIG_NUMA_BALANCING +	unsigned int nr_numa_running; +	unsigned int nr_preferred_running; +#endif +	#define CPU_LOAD_IDX_MAX 5 +	unsigned long cpu_load[CPU_LOAD_IDX_MAX]; +	unsigned long last_load_update_tick; +#ifdef CONFIG_NO_HZ_COMMON +	u64 nohz_stamp; +	unsigned long nohz_flags; +#endif +#ifdef CONFIG_NO_HZ_FULL +	unsigned long last_sched_tick; +#endif +	int skip_clock_update; + +	/* capture load from *all* tasks on this cpu: */ +	struct load_weight load; +	unsigned long nr_load_updates; +	u64 nr_switches; + +	struct cfs_rq cfs; +	struct rt_rq rt; +	struct dl_rq dl; + +#ifdef CONFIG_FAIR_GROUP_SCHED +	/* list of leaf cfs_rq on this cpu: */ +	struct list_head leaf_cfs_rq_list; + +	struct sched_avg avg; +#endif /* CONFIG_FAIR_GROUP_SCHED */ + +	/* +	 * This is part of a global counter where only the total sum +	 * over all CPUs matters. A task can increase this counter on +	 * one CPU and if it got migrated afterwards it may decrease +	 * it on another CPU. Always updated under the runqueue lock: +	 */ +	unsigned long nr_uninterruptible; + +	struct task_struct *curr, *idle, *stop; +	unsigned long next_balance; +	struct mm_struct *prev_mm; + +	u64 clock; +	u64 clock_task; + +	atomic_t nr_iowait; + +#ifdef CONFIG_SMP +	struct root_domain *rd; +	struct sched_domain *sd; + +	unsigned long cpu_capacity; + +	unsigned char idle_balance; +	/* For active balancing */ +	int post_schedule; +	int active_balance; +	int push_cpu; +	struct cpu_stop_work active_balance_work; +	/* cpu of this runqueue: */ +	int cpu; +	int online; + +	struct list_head cfs_tasks; + +	u64 rt_avg; +	u64 age_stamp; +	u64 idle_stamp; +	u64 avg_idle; + +	/* This is used to determine avg_idle's max value */ +	u64 max_idle_balance_cost; +#endif + +#ifdef CONFIG_IRQ_TIME_ACCOUNTING +	u64 prev_irq_time; +#endif +#ifdef CONFIG_PARAVIRT +	u64 prev_steal_time; +#endif +#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING +	u64 prev_steal_time_rq; +#endif + +	/* calc_load related fields */ +	unsigned long calc_load_update; +	long calc_load_active; + +#ifdef CONFIG_SCHED_HRTICK +#ifdef CONFIG_SMP +	int hrtick_csd_pending; +	struct call_single_data hrtick_csd; +#endif +	struct hrtimer hrtick_timer; +#endif + +#ifdef CONFIG_SCHEDSTATS +	/* latency stats */ +	struct sched_info rq_sched_info; +	unsigned long long rq_cpu_time; +	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ + +	/* sys_sched_yield() stats */ +	unsigned int yld_count; + +	/* schedule() stats */ +	unsigned int sched_count; +	unsigned int sched_goidle; + +	/* try_to_wake_up() stats */ +	unsigned int ttwu_count; +	unsigned int ttwu_local; +#endif + +#ifdef CONFIG_SMP +	struct llist_head wake_list; +#endif +}; + +static inline int cpu_of(struct rq *rq) +{ +#ifdef CONFIG_SMP +	return rq->cpu; +#else +	return 0; +#endif +} + +DECLARE_PER_CPU(struct rq, runqueues); + +#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu))) +#define this_rq()		(&__get_cpu_var(runqueues)) +#define task_rq(p)		cpu_rq(task_cpu(p)) +#define cpu_curr(cpu)		(cpu_rq(cpu)->curr) +#define raw_rq()		(&__raw_get_cpu_var(runqueues)) + +static inline u64 rq_clock(struct rq *rq) +{ +	return rq->clock; +} + +static inline u64 rq_clock_task(struct rq *rq) +{ +	return rq->clock_task; +} + +#ifdef CONFIG_NUMA_BALANCING +extern void sched_setnuma(struct task_struct *p, int node); +extern int migrate_task_to(struct task_struct *p, int cpu); +extern int migrate_swap(struct task_struct *, struct task_struct *); +#endif /* CONFIG_NUMA_BALANCING */ + +#ifdef CONFIG_SMP + +extern void sched_ttwu_pending(void); + +#define rcu_dereference_check_sched_domain(p) \ +	rcu_dereference_check((p), \ +			      lockdep_is_held(&sched_domains_mutex)) + +/* + * The domain tree (rq->sd) is protected by RCU's quiescent state transition. + * See detach_destroy_domains: synchronize_sched for details. + * + * The domain tree of any CPU may only be accessed from within + * preempt-disabled sections. + */ +#define for_each_domain(cpu, __sd) \ +	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ +			__sd; __sd = __sd->parent) + +#define for_each_lower_domain(sd) for (; sd; sd = sd->child) + +/** + * highest_flag_domain - Return highest sched_domain containing flag. + * @cpu:	The cpu whose highest level of sched domain is to + *		be returned. + * @flag:	The flag to check for the highest sched_domain + *		for the given cpu. + * + * Returns the highest sched_domain of a cpu which contains the given flag. + */ +static inline struct sched_domain *highest_flag_domain(int cpu, int flag) +{ +	struct sched_domain *sd, *hsd = NULL; + +	for_each_domain(cpu, sd) { +		if (!(sd->flags & flag)) +			break; +		hsd = sd; +	} + +	return hsd; +} + +static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) +{ +	struct sched_domain *sd; + +	for_each_domain(cpu, sd) { +		if (sd->flags & flag) +			break; +	} + +	return sd; +} + +DECLARE_PER_CPU(struct sched_domain *, sd_llc); +DECLARE_PER_CPU(int, sd_llc_size); +DECLARE_PER_CPU(int, sd_llc_id); +DECLARE_PER_CPU(struct sched_domain *, sd_numa); +DECLARE_PER_CPU(struct sched_domain *, sd_busy); +DECLARE_PER_CPU(struct sched_domain *, sd_asym); + +struct sched_group_capacity { +	atomic_t ref; +	/* +	 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity +	 * for a single CPU. +	 */ +	unsigned int capacity, capacity_orig; +	unsigned long next_update; +	int imbalance; /* XXX unrelated to capacity but shared group state */ +	/* +	 * Number of busy cpus in this group. +	 */ +	atomic_t nr_busy_cpus; + +	unsigned long cpumask[0]; /* iteration mask */ +}; + +struct sched_group { +	struct sched_group *next;	/* Must be a circular list */ +	atomic_t ref; + +	unsigned int group_weight; +	struct sched_group_capacity *sgc; + +	/* +	 * The CPUs this group covers. +	 * +	 * NOTE: this field is variable length. (Allocated dynamically +	 * by attaching extra space to the end of the structure, +	 * depending on how many CPUs the kernel has booted up with) +	 */ +	unsigned long cpumask[0]; +}; + +static inline struct cpumask *sched_group_cpus(struct sched_group *sg) +{ +	return to_cpumask(sg->cpumask); +} + +/* + * cpumask masking which cpus in the group are allowed to iterate up the domain + * tree. + */ +static inline struct cpumask *sched_group_mask(struct sched_group *sg) +{ +	return to_cpumask(sg->sgc->cpumask); +} + +/** + * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. + * @group: The group whose first cpu is to be returned. + */ +static inline unsigned int group_first_cpu(struct sched_group *group) +{ +	return cpumask_first(sched_group_cpus(group)); +} + +extern int group_balance_cpu(struct sched_group *sg); + +#else + +static inline void sched_ttwu_pending(void) { } + +#endif /* CONFIG_SMP */ + +#include "stats.h" +#include "auto_group.h" + +#ifdef CONFIG_CGROUP_SCHED + +/* + * Return the group to which this tasks belongs. + * + * We cannot use task_css() and friends because the cgroup subsystem + * changes that value before the cgroup_subsys::attach() method is called, + * therefore we cannot pin it and might observe the wrong value. + * + * The same is true for autogroup's p->signal->autogroup->tg, the autogroup + * core changes this before calling sched_move_task(). + * + * Instead we use a 'copy' which is updated from sched_move_task() while + * holding both task_struct::pi_lock and rq::lock. + */ +static inline struct task_group *task_group(struct task_struct *p) +{ +	return p->sched_task_group; +} + +/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ +static inline void set_task_rq(struct task_struct *p, unsigned int cpu) +{ +#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) +	struct task_group *tg = task_group(p); +#endif + +#ifdef CONFIG_FAIR_GROUP_SCHED +	p->se.cfs_rq = tg->cfs_rq[cpu]; +	p->se.parent = tg->se[cpu]; +#endif + +#ifdef CONFIG_RT_GROUP_SCHED +	p->rt.rt_rq  = tg->rt_rq[cpu]; +	p->rt.parent = tg->rt_se[cpu]; +#endif +} + +#else /* CONFIG_CGROUP_SCHED */ + +static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } +static inline struct task_group *task_group(struct task_struct *p) +{ +	return NULL; +} + +#endif /* CONFIG_CGROUP_SCHED */ + +static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) +{ +	set_task_rq(p, cpu); +#ifdef CONFIG_SMP +	/* +	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be +	 * successfuly executed on another CPU. We must ensure that updates of +	 * per-task data have been completed by this moment. +	 */ +	smp_wmb(); +	task_thread_info(p)->cpu = cpu; +	p->wake_cpu = cpu; +#endif +} + +/* + * Tunables that become constants when CONFIG_SCHED_DEBUG is off: + */ +#ifdef CONFIG_SCHED_DEBUG +# include <linux/static_key.h> +# define const_debug __read_mostly +#else +# define const_debug const +#endif + +extern const_debug unsigned int sysctl_sched_features; + +#define SCHED_FEAT(name, enabled)	\ +	__SCHED_FEAT_##name , + +enum { +#include "features.h" +	__SCHED_FEAT_NR, +}; + +#undef SCHED_FEAT + +#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) +static __always_inline bool static_branch__true(struct static_key *key) +{ +	return static_key_true(key); /* Not out of line branch. */ +} + +static __always_inline bool static_branch__false(struct static_key *key) +{ +	return static_key_false(key); /* Out of line branch. */ +} + +#define SCHED_FEAT(name, enabled)					\ +static __always_inline bool static_branch_##name(struct static_key *key) \ +{									\ +	return static_branch__##enabled(key);				\ +} + +#include "features.h" + +#undef SCHED_FEAT + +extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; +#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) +#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ +#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) +#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ + +#ifdef CONFIG_NUMA_BALANCING +#define sched_feat_numa(x) sched_feat(x) +#ifdef CONFIG_SCHED_DEBUG +#define numabalancing_enabled sched_feat_numa(NUMA) +#else +extern bool numabalancing_enabled; +#endif /* CONFIG_SCHED_DEBUG */ +#else +#define sched_feat_numa(x) (0) +#define numabalancing_enabled (0) +#endif /* CONFIG_NUMA_BALANCING */ + +static inline u64 global_rt_period(void) +{ +	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; +} + +static inline u64 global_rt_runtime(void) +{ +	if (sysctl_sched_rt_runtime < 0) +		return RUNTIME_INF; + +	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; +} + +static inline int task_current(struct rq *rq, struct task_struct *p) +{ +	return rq->curr == p; +} + +static inline int task_running(struct rq *rq, struct task_struct *p) +{ +#ifdef CONFIG_SMP +	return p->on_cpu; +#else +	return task_current(rq, p); +#endif +} + + +#ifndef prepare_arch_switch +# define prepare_arch_switch(next)	do { } while (0) +#endif +#ifndef finish_arch_switch +# define finish_arch_switch(prev)	do { } while (0) +#endif +#ifndef finish_arch_post_lock_switch +# define finish_arch_post_lock_switch()	do { } while (0) +#endif + +#ifndef __ARCH_WANT_UNLOCKED_CTXSW +static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) +{ +#ifdef CONFIG_SMP +	/* +	 * We can optimise this out completely for !SMP, because the +	 * SMP rebalancing from interrupt is the only thing that cares +	 * here. +	 */ +	next->on_cpu = 1; +#endif +} + +static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) +{ +#ifdef CONFIG_SMP +	/* +	 * After ->on_cpu is cleared, the task can be moved to a different CPU. +	 * We must ensure this doesn't happen until the switch is completely +	 * finished. +	 */ +	smp_wmb(); +	prev->on_cpu = 0; +#endif +#ifdef CONFIG_DEBUG_SPINLOCK +	/* this is a valid case when another task releases the spinlock */ +	rq->lock.owner = current; +#endif +	/* +	 * If we are tracking spinlock dependencies then we have to +	 * fix up the runqueue lock - which gets 'carried over' from +	 * prev into current: +	 */ +	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); + +	raw_spin_unlock_irq(&rq->lock); +} + +#else /* __ARCH_WANT_UNLOCKED_CTXSW */ +static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) +{ +#ifdef CONFIG_SMP +	/* +	 * We can optimise this out completely for !SMP, because the +	 * SMP rebalancing from interrupt is the only thing that cares +	 * here. +	 */ +	next->on_cpu = 1; +#endif +	raw_spin_unlock(&rq->lock); +} + +static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) +{ +#ifdef CONFIG_SMP +	/* +	 * After ->on_cpu is cleared, the task can be moved to a different CPU. +	 * We must ensure this doesn't happen until the switch is completely +	 * finished. +	 */ +	smp_wmb(); +	prev->on_cpu = 0; +#endif +	local_irq_enable(); +} +#endif /* __ARCH_WANT_UNLOCKED_CTXSW */ + +/* + * wake flags + */ +#define WF_SYNC		0x01		/* waker goes to sleep after wakeup */ +#define WF_FORK		0x02		/* child wakeup after fork */ +#define WF_MIGRATED	0x4		/* internal use, task got migrated */ + +/* + * To aid in avoiding the subversion of "niceness" due to uneven distribution + * of tasks with abnormal "nice" values across CPUs the contribution that + * each task makes to its run queue's load is weighted according to its + * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a + * scaled version of the new time slice allocation that they receive on time + * slice expiry etc. + */ + +#define WEIGHT_IDLEPRIO                3 +#define WMULT_IDLEPRIO         1431655765 + +/* + * Nice levels are multiplicative, with a gentle 10% change for every + * nice level changed. I.e. when a CPU-bound task goes from nice 0 to + * nice 1, it will get ~10% less CPU time than another CPU-bound task + * that remained on nice 0. + * + * The "10% effect" is relative and cumulative: from _any_ nice level, + * if you go up 1 level, it's -10% CPU usage, if you go down 1 level + * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. + * If a task goes up by ~10% and another task goes down by ~10% then + * the relative distance between them is ~25%.) + */ +static const int prio_to_weight[40] = { + /* -20 */     88761,     71755,     56483,     46273,     36291, + /* -15 */     29154,     23254,     18705,     14949,     11916, + /* -10 */      9548,      7620,      6100,      4904,      3906, + /*  -5 */      3121,      2501,      1991,      1586,      1277, + /*   0 */      1024,       820,       655,       526,       423, + /*   5 */       335,       272,       215,       172,       137, + /*  10 */       110,        87,        70,        56,        45, + /*  15 */        36,        29,        23,        18,        15, +}; + +/* + * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. + * + * In cases where the weight does not change often, we can use the + * precalculated inverse to speed up arithmetics by turning divisions + * into multiplications: + */ +static const u32 prio_to_wmult[40] = { + /* -20 */     48388,     59856,     76040,     92818,    118348, + /* -15 */    147320,    184698,    229616,    287308,    360437, + /* -10 */    449829,    563644,    704093,    875809,   1099582, + /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326, + /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587, + /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126, + /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717, + /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153, +}; + +#define ENQUEUE_WAKEUP		1 +#define ENQUEUE_HEAD		2 +#ifdef CONFIG_SMP +#define ENQUEUE_WAKING		4	/* sched_class::task_waking was called */ +#else +#define ENQUEUE_WAKING		0 +#endif +#define ENQUEUE_REPLENISH	8 + +#define DEQUEUE_SLEEP		1 + +#define RETRY_TASK		((void *)-1UL) + +struct sched_class { +	const struct sched_class *next; + +	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); +	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); +	void (*yield_task) (struct rq *rq); +	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); + +	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); + +	/* +	 * It is the responsibility of the pick_next_task() method that will +	 * return the next task to call put_prev_task() on the @prev task or +	 * something equivalent. +	 * +	 * May return RETRY_TASK when it finds a higher prio class has runnable +	 * tasks. +	 */ +	struct task_struct * (*pick_next_task) (struct rq *rq, +						struct task_struct *prev); +	void (*put_prev_task) (struct rq *rq, struct task_struct *p); + +#ifdef CONFIG_SMP +	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags); +	void (*migrate_task_rq)(struct task_struct *p, int next_cpu); + +	void (*post_schedule) (struct rq *this_rq); +	void (*task_waking) (struct task_struct *task); +	void (*task_woken) (struct rq *this_rq, struct task_struct *task); + +	void (*set_cpus_allowed)(struct task_struct *p, +				 const struct cpumask *newmask); + +	void (*rq_online)(struct rq *rq); +	void (*rq_offline)(struct rq *rq); +#endif + +	void (*set_curr_task) (struct rq *rq); +	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); +	void (*task_fork) (struct task_struct *p); +	void (*task_dead) (struct task_struct *p); + +	void (*switched_from) (struct rq *this_rq, struct task_struct *task); +	void (*switched_to) (struct rq *this_rq, struct task_struct *task); +	void (*prio_changed) (struct rq *this_rq, struct task_struct *task, +			     int oldprio); + +	unsigned int (*get_rr_interval) (struct rq *rq, +					 struct task_struct *task); + +#ifdef CONFIG_FAIR_GROUP_SCHED +	void (*task_move_group) (struct task_struct *p, int on_rq); +#endif +}; + +static inline void put_prev_task(struct rq *rq, struct task_struct *prev) +{ +	prev->sched_class->put_prev_task(rq, prev); +} + +#define sched_class_highest (&stop_sched_class) +#define for_each_class(class) \ +   for (class = sched_class_highest; class; class = class->next) + +extern const struct sched_class stop_sched_class; +extern const struct sched_class dl_sched_class; +extern const struct sched_class rt_sched_class; +extern const struct sched_class fair_sched_class; +extern const struct sched_class idle_sched_class; + + +#ifdef CONFIG_SMP + +extern void update_group_capacity(struct sched_domain *sd, int cpu); + +extern void trigger_load_balance(struct rq *rq); + +extern void idle_enter_fair(struct rq *this_rq); +extern void idle_exit_fair(struct rq *this_rq); + +#else + +static inline void idle_enter_fair(struct rq *rq) { } +static inline void idle_exit_fair(struct rq *rq) { } + +#endif + +extern void sysrq_sched_debug_show(void); +extern void sched_init_granularity(void); +extern void update_max_interval(void); + +extern void init_sched_dl_class(void); +extern void init_sched_rt_class(void); +extern void init_sched_fair_class(void); +extern void init_sched_dl_class(void); + +extern void resched_task(struct task_struct *p); +extern void resched_cpu(int cpu); + +extern struct rt_bandwidth def_rt_bandwidth; +extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); + +extern struct dl_bandwidth def_dl_bandwidth; +extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); +extern void init_dl_task_timer(struct sched_dl_entity *dl_se); + +unsigned long to_ratio(u64 period, u64 runtime); + +extern void update_idle_cpu_load(struct rq *this_rq); + +extern void init_task_runnable_average(struct task_struct *p); + +static inline void add_nr_running(struct rq *rq, unsigned count) +{ +	unsigned prev_nr = rq->nr_running; + +	rq->nr_running = prev_nr + count; + +#ifdef CONFIG_NO_HZ_FULL +	if (prev_nr < 2 && rq->nr_running >= 2) { +		if (tick_nohz_full_cpu(rq->cpu)) { +			/* Order rq->nr_running write against the IPI */ +			smp_wmb(); +			smp_send_reschedule(rq->cpu); +		} +       } +#endif +} + +static inline void sub_nr_running(struct rq *rq, unsigned count) +{ +	rq->nr_running -= count; +} + +static inline void rq_last_tick_reset(struct rq *rq) +{ +#ifdef CONFIG_NO_HZ_FULL +	rq->last_sched_tick = jiffies; +#endif +} + +extern void update_rq_clock(struct rq *rq); + +extern void activate_task(struct rq *rq, struct task_struct *p, int flags); +extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); + +extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); + +extern const_debug unsigned int sysctl_sched_time_avg; +extern const_debug unsigned int sysctl_sched_nr_migrate; +extern const_debug unsigned int sysctl_sched_migration_cost; + +static inline u64 sched_avg_period(void) +{ +	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; +} + +#ifdef CONFIG_SCHED_HRTICK + +/* + * Use hrtick when: + *  - enabled by features + *  - hrtimer is actually high res + */ +static inline int hrtick_enabled(struct rq *rq) +{ +	if (!sched_feat(HRTICK)) +		return 0; +	if (!cpu_active(cpu_of(rq))) +		return 0; +	return hrtimer_is_hres_active(&rq->hrtick_timer); +} + +void hrtick_start(struct rq *rq, u64 delay); + +#else + +static inline int hrtick_enabled(struct rq *rq) +{ +	return 0; +} + +#endif /* CONFIG_SCHED_HRTICK */ + +#ifdef CONFIG_SMP +extern void sched_avg_update(struct rq *rq); +static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) +{ +	rq->rt_avg += rt_delta; +	sched_avg_update(rq); +} +#else +static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } +static inline void sched_avg_update(struct rq *rq) { } +#endif + +extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); + +#ifdef CONFIG_SMP +#ifdef CONFIG_PREEMPT + +static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); + +/* + * fair double_lock_balance: Safely acquires both rq->locks in a fair + * way at the expense of forcing extra atomic operations in all + * invocations.  This assures that the double_lock is acquired using the + * same underlying policy as the spinlock_t on this architecture, which + * reduces latency compared to the unfair variant below.  However, it + * also adds more overhead and therefore may reduce throughput. + */ +static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) +	__releases(this_rq->lock) +	__acquires(busiest->lock) +	__acquires(this_rq->lock) +{ +	raw_spin_unlock(&this_rq->lock); +	double_rq_lock(this_rq, busiest); + +	return 1; +} + +#else +/* + * Unfair double_lock_balance: Optimizes throughput at the expense of + * latency by eliminating extra atomic operations when the locks are + * already in proper order on entry.  This favors lower cpu-ids and will + * grant the double lock to lower cpus over higher ids under contention, + * regardless of entry order into the function. + */ +static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) +	__releases(this_rq->lock) +	__acquires(busiest->lock) +	__acquires(this_rq->lock) +{ +	int ret = 0; + +	if (unlikely(!raw_spin_trylock(&busiest->lock))) { +		if (busiest < this_rq) { +			raw_spin_unlock(&this_rq->lock); +			raw_spin_lock(&busiest->lock); +			raw_spin_lock_nested(&this_rq->lock, +					      SINGLE_DEPTH_NESTING); +			ret = 1; +		} else +			raw_spin_lock_nested(&busiest->lock, +					      SINGLE_DEPTH_NESTING); +	} +	return ret; +} + +#endif /* CONFIG_PREEMPT */ + +/* + * double_lock_balance - lock the busiest runqueue, this_rq is locked already. + */ +static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) +{ +	if (unlikely(!irqs_disabled())) { +		/* printk() doesn't work good under rq->lock */ +		raw_spin_unlock(&this_rq->lock); +		BUG_ON(1); +	} + +	return _double_lock_balance(this_rq, busiest); +} + +static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) +	__releases(busiest->lock) +{ +	raw_spin_unlock(&busiest->lock); +	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); +} + +static inline void double_lock(spinlock_t *l1, spinlock_t *l2) +{ +	if (l1 > l2) +		swap(l1, l2); + +	spin_lock(l1); +	spin_lock_nested(l2, SINGLE_DEPTH_NESTING); +} + +static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) +{ +	if (l1 > l2) +		swap(l1, l2); + +	spin_lock_irq(l1); +	spin_lock_nested(l2, SINGLE_DEPTH_NESTING); +} + +static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) +{ +	if (l1 > l2) +		swap(l1, l2); + +	raw_spin_lock(l1); +	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); +} + +/* + * double_rq_lock - safely lock two runqueues + * + * Note this does not disable interrupts like task_rq_lock, + * you need to do so manually before calling. + */ +static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) +	__acquires(rq1->lock) +	__acquires(rq2->lock) +{ +	BUG_ON(!irqs_disabled()); +	if (rq1 == rq2) { +		raw_spin_lock(&rq1->lock); +		__acquire(rq2->lock);	/* Fake it out ;) */ +	} else { +		if (rq1 < rq2) { +			raw_spin_lock(&rq1->lock); +			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); +		} else { +			raw_spin_lock(&rq2->lock); +			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); +		} +	} +} + +/* + * double_rq_unlock - safely unlock two runqueues + * + * Note this does not restore interrupts like task_rq_unlock, + * you need to do so manually after calling. + */ +static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) +	__releases(rq1->lock) +	__releases(rq2->lock) +{ +	raw_spin_unlock(&rq1->lock); +	if (rq1 != rq2) +		raw_spin_unlock(&rq2->lock); +	else +		__release(rq2->lock); +} + +#else /* CONFIG_SMP */ + +/* + * double_rq_lock - safely lock two runqueues + * + * Note this does not disable interrupts like task_rq_lock, + * you need to do so manually before calling. + */ +static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) +	__acquires(rq1->lock) +	__acquires(rq2->lock) +{ +	BUG_ON(!irqs_disabled()); +	BUG_ON(rq1 != rq2); +	raw_spin_lock(&rq1->lock); +	__acquire(rq2->lock);	/* Fake it out ;) */ +} + +/* + * double_rq_unlock - safely unlock two runqueues + * + * Note this does not restore interrupts like task_rq_unlock, + * you need to do so manually after calling. + */ +static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) +	__releases(rq1->lock) +	__releases(rq2->lock) +{ +	BUG_ON(rq1 != rq2); +	raw_spin_unlock(&rq1->lock); +	__release(rq2->lock); +} + +#endif + +extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); +extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); +extern void print_cfs_stats(struct seq_file *m, int cpu); +extern void print_rt_stats(struct seq_file *m, int cpu); + +extern void init_cfs_rq(struct cfs_rq *cfs_rq); +extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); +extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq); + +extern void cfs_bandwidth_usage_inc(void); +extern void cfs_bandwidth_usage_dec(void); + +#ifdef CONFIG_NO_HZ_COMMON +enum rq_nohz_flag_bits { +	NOHZ_TICK_STOPPED, +	NOHZ_BALANCE_KICK, +}; + +#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags) +#endif + +#ifdef CONFIG_IRQ_TIME_ACCOUNTING + +DECLARE_PER_CPU(u64, cpu_hardirq_time); +DECLARE_PER_CPU(u64, cpu_softirq_time); + +#ifndef CONFIG_64BIT +DECLARE_PER_CPU(seqcount_t, irq_time_seq); + +static inline void irq_time_write_begin(void) +{ +	__this_cpu_inc(irq_time_seq.sequence); +	smp_wmb(); +} + +static inline void irq_time_write_end(void) +{ +	smp_wmb(); +	__this_cpu_inc(irq_time_seq.sequence); +} + +static inline u64 irq_time_read(int cpu) +{ +	u64 irq_time; +	unsigned seq; + +	do { +		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); +		irq_time = per_cpu(cpu_softirq_time, cpu) + +			   per_cpu(cpu_hardirq_time, cpu); +	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); + +	return irq_time; +} +#else /* CONFIG_64BIT */ +static inline void irq_time_write_begin(void) +{ +} + +static inline void irq_time_write_end(void) +{ +} + +static inline u64 irq_time_read(int cpu) +{ +	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); +} +#endif /* CONFIG_64BIT */ +#endif /* CONFIG_IRQ_TIME_ACCOUNTING */  | 
