aboutsummaryrefslogtreecommitdiff
path: root/kernel/sched/sched.h
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched/sched.h')
-rw-r--r--kernel/sched/sched.h725
1 files changed, 554 insertions, 171 deletions
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 98c0c2623db..31cc02ebc54 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -1,57 +1,90 @@
#include <linux/sched.h>
+#include <linux/sched/sysctl.h>
+#include <linux/sched/rt.h>
+#include <linux/sched/deadline.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/stop_machine.h>
+#include <linux/tick.h>
+#include <linux/slab.h>
#include "cpupri.h"
+#include "cpudeadline.h"
+#include "cpuacct.h"
+
+struct rq;
extern __read_mostly int scheduler_running;
-/*
- * Convert user-nice values [ -20 ... 0 ... 19 ]
- * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
- * and back.
- */
-#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
-#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
-#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
+extern unsigned long calc_load_update;
+extern atomic_long_t calc_load_tasks;
-/*
- * 'User priority' is the nice value converted to something we
- * can work with better when scaling various scheduler parameters,
- * it's a [ 0 ... 39 ] range.
- */
-#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
-#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
-#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
+extern long calc_load_fold_active(struct rq *this_rq);
+extern void update_cpu_load_active(struct rq *this_rq);
/*
* Helpers for converting nanosecond timing to jiffy resolution
*/
#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
+/*
+ * Increase resolution of nice-level calculations for 64-bit architectures.
+ * The extra resolution improves shares distribution and load balancing of
+ * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
+ * hierarchies, especially on larger systems. This is not a user-visible change
+ * and does not change the user-interface for setting shares/weights.
+ *
+ * We increase resolution only if we have enough bits to allow this increased
+ * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
+ * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
+ * increased costs.
+ */
+#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
+# define SCHED_LOAD_RESOLUTION 10
+# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
+# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
+#else
+# define SCHED_LOAD_RESOLUTION 0
+# define scale_load(w) (w)
+# define scale_load_down(w) (w)
+#endif
+
+#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
+#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
+
#define NICE_0_LOAD SCHED_LOAD_SCALE
#define NICE_0_SHIFT SCHED_LOAD_SHIFT
/*
+ * Single value that decides SCHED_DEADLINE internal math precision.
+ * 10 -> just above 1us
+ * 9 -> just above 0.5us
+ */
+#define DL_SCALE (10)
+
+/*
* These are the 'tuning knobs' of the scheduler:
- *
- * default timeslice is 100 msecs (used only for SCHED_RR tasks).
- * Timeslices get refilled after they expire.
*/
-#define DEF_TIMESLICE (100 * HZ / 1000)
/*
* single value that denotes runtime == period, ie unlimited time.
*/
#define RUNTIME_INF ((u64)~0ULL)
+static inline int fair_policy(int policy)
+{
+ return policy == SCHED_NORMAL || policy == SCHED_BATCH;
+}
+
static inline int rt_policy(int policy)
{
- if (policy == SCHED_FIFO || policy == SCHED_RR)
- return 1;
- return 0;
+ return policy == SCHED_FIFO || policy == SCHED_RR;
+}
+
+static inline int dl_policy(int policy)
+{
+ return policy == SCHED_DEADLINE;
}
static inline int task_has_rt_policy(struct task_struct *p)
@@ -59,6 +92,25 @@ static inline int task_has_rt_policy(struct task_struct *p)
return rt_policy(p->policy);
}
+static inline int task_has_dl_policy(struct task_struct *p)
+{
+ return dl_policy(p->policy);
+}
+
+static inline bool dl_time_before(u64 a, u64 b)
+{
+ return (s64)(a - b) < 0;
+}
+
+/*
+ * Tells if entity @a should preempt entity @b.
+ */
+static inline bool
+dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
+{
+ return dl_time_before(a->deadline, b->deadline);
+}
+
/*
* This is the priority-queue data structure of the RT scheduling class:
*/
@@ -74,6 +126,47 @@ struct rt_bandwidth {
u64 rt_runtime;
struct hrtimer rt_period_timer;
};
+/*
+ * To keep the bandwidth of -deadline tasks and groups under control
+ * we need some place where:
+ * - store the maximum -deadline bandwidth of the system (the group);
+ * - cache the fraction of that bandwidth that is currently allocated.
+ *
+ * This is all done in the data structure below. It is similar to the
+ * one used for RT-throttling (rt_bandwidth), with the main difference
+ * that, since here we are only interested in admission control, we
+ * do not decrease any runtime while the group "executes", neither we
+ * need a timer to replenish it.
+ *
+ * With respect to SMP, the bandwidth is given on a per-CPU basis,
+ * meaning that:
+ * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
+ * - dl_total_bw array contains, in the i-eth element, the currently
+ * allocated bandwidth on the i-eth CPU.
+ * Moreover, groups consume bandwidth on each CPU, while tasks only
+ * consume bandwidth on the CPU they're running on.
+ * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
+ * that will be shown the next time the proc or cgroup controls will
+ * be red. It on its turn can be changed by writing on its own
+ * control.
+ */
+struct dl_bandwidth {
+ raw_spinlock_t dl_runtime_lock;
+ u64 dl_runtime;
+ u64 dl_period;
+};
+
+static inline int dl_bandwidth_enabled(void)
+{
+ return sysctl_sched_rt_runtime >= 0;
+}
+
+extern struct dl_bw *dl_bw_of(int i);
+
+struct dl_bw {
+ raw_spinlock_t lock;
+ u64 bw, total_bw;
+};
extern struct mutex sched_domains_mutex;
@@ -84,7 +177,7 @@ extern struct mutex sched_domains_mutex;
struct cfs_rq;
struct rt_rq;
-static LIST_HEAD(task_groups);
+extern struct list_head task_groups;
struct cfs_bandwidth {
#ifdef CONFIG_CFS_BANDWIDTH
@@ -115,7 +208,10 @@ struct task_group {
struct cfs_rq **cfs_rq;
unsigned long shares;
- atomic_t load_weight;
+#ifdef CONFIG_SMP
+ atomic_long_t load_avg;
+ atomic_t runnable_avg;
+#endif
#endif
#ifdef CONFIG_RT_GROUP_SCHED
@@ -154,11 +250,6 @@ struct task_group {
#define MAX_SHARES (1UL << 18)
#endif
-/* Default task group.
- * Every task in system belong to this group at bootup.
- */
-extern struct task_group root_task_group;
-
typedef int (*tg_visitor)(struct task_group *, void *);
extern int walk_tg_tree_from(struct task_group *from,
@@ -187,7 +278,7 @@ extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
-extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
+extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
extern void free_rt_sched_group(struct task_group *tg);
@@ -196,6 +287,18 @@ extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
struct sched_rt_entity *rt_se, int cpu,
struct sched_rt_entity *parent);
+extern struct task_group *sched_create_group(struct task_group *parent);
+extern void sched_online_group(struct task_group *tg,
+ struct task_group *parent);
+extern void sched_destroy_group(struct task_group *tg);
+extern void sched_offline_group(struct task_group *tg);
+
+extern void sched_move_task(struct task_struct *tsk);
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
+#endif
+
#else /* CONFIG_CGROUP_SCHED */
struct cfs_bandwidth { };
@@ -205,7 +308,7 @@ struct cfs_bandwidth { };
/* CFS-related fields in a runqueue */
struct cfs_rq {
struct load_weight load;
- unsigned long nr_running, h_nr_running;
+ unsigned int nr_running, h_nr_running;
u64 exec_clock;
u64 min_vruntime;
@@ -216,9 +319,6 @@ struct cfs_rq {
struct rb_root tasks_timeline;
struct rb_node *rb_leftmost;
- struct list_head tasks;
- struct list_head *balance_iterator;
-
/*
* 'curr' points to currently running entity on this cfs_rq.
* It is set to NULL otherwise (i.e when none are currently running).
@@ -229,26 +329,22 @@ struct cfs_rq {
unsigned int nr_spread_over;
#endif
-#ifdef CONFIG_FAIR_GROUP_SCHED
- struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
-
- /*
- * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
- * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
- * (like users, containers etc.)
- *
- * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
- * list is used during load balance.
- */
- int on_list;
- struct list_head leaf_cfs_rq_list;
- struct task_group *tg; /* group that "owns" this runqueue */
-
#ifdef CONFIG_SMP
/*
- * the part of load.weight contributed by tasks
+ * CFS Load tracking
+ * Under CFS, load is tracked on a per-entity basis and aggregated up.
+ * This allows for the description of both thread and group usage (in
+ * the FAIR_GROUP_SCHED case).
*/
- unsigned long task_weight;
+ unsigned long runnable_load_avg, blocked_load_avg;
+ atomic64_t decay_counter;
+ u64 last_decay;
+ atomic_long_t removed_load;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+ /* Required to track per-cpu representation of a task_group */
+ u32 tg_runnable_contrib;
+ unsigned long tg_load_contrib;
/*
* h_load = weight * f(tg)
@@ -257,26 +353,33 @@ struct cfs_rq {
* this group.
*/
unsigned long h_load;
+ u64 last_h_load_update;
+ struct sched_entity *h_load_next;
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+#endif /* CONFIG_SMP */
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+ struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
/*
- * Maintaining per-cpu shares distribution for group scheduling
+ * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
+ * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
+ * (like users, containers etc.)
*
- * load_stamp is the last time we updated the load average
- * load_last is the last time we updated the load average and saw load
- * load_unacc_exec_time is currently unaccounted execution time
+ * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
+ * list is used during load balance.
*/
- u64 load_avg;
- u64 load_period;
- u64 load_stamp, load_last, load_unacc_exec_time;
+ int on_list;
+ struct list_head leaf_cfs_rq_list;
+ struct task_group *tg; /* group that "owns" this runqueue */
- unsigned long load_contribution;
-#endif /* CONFIG_SMP */
#ifdef CONFIG_CFS_BANDWIDTH
int runtime_enabled;
u64 runtime_expires;
s64 runtime_remaining;
- u64 throttled_timestamp;
+ u64 throttled_clock, throttled_clock_task;
+ u64 throttled_clock_task_time;
int throttled, throttle_count;
struct list_head throttled_list;
#endif /* CONFIG_CFS_BANDWIDTH */
@@ -291,7 +394,7 @@ static inline int rt_bandwidth_enabled(void)
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
struct rt_prio_array active;
- unsigned long rt_nr_running;
+ unsigned int rt_nr_running;
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
struct {
int curr; /* highest queued rt task prio */
@@ -306,6 +409,8 @@ struct rt_rq {
int overloaded;
struct plist_head pushable_tasks;
#endif
+ int rt_queued;
+
int rt_throttled;
u64 rt_time;
u64 rt_runtime;
@@ -316,11 +421,45 @@ struct rt_rq {
unsigned long rt_nr_boosted;
struct rq *rq;
- struct list_head leaf_rt_rq_list;
struct task_group *tg;
#endif
};
+/* Deadline class' related fields in a runqueue */
+struct dl_rq {
+ /* runqueue is an rbtree, ordered by deadline */
+ struct rb_root rb_root;
+ struct rb_node *rb_leftmost;
+
+ unsigned long dl_nr_running;
+
+#ifdef CONFIG_SMP
+ /*
+ * Deadline values of the currently executing and the
+ * earliest ready task on this rq. Caching these facilitates
+ * the decision wether or not a ready but not running task
+ * should migrate somewhere else.
+ */
+ struct {
+ u64 curr;
+ u64 next;
+ } earliest_dl;
+
+ unsigned long dl_nr_migratory;
+ int overloaded;
+
+ /*
+ * Tasks on this rq that can be pushed away. They are kept in
+ * an rb-tree, ordered by tasks' deadlines, with caching
+ * of the leftmost (earliest deadline) element.
+ */
+ struct rb_root pushable_dl_tasks_root;
+ struct rb_node *pushable_dl_tasks_leftmost;
+#else
+ struct dl_bw dl_bw;
+#endif
+};
+
#ifdef CONFIG_SMP
/*
@@ -339,6 +478,15 @@ struct root_domain {
cpumask_var_t online;
/*
+ * The bit corresponding to a CPU gets set here if such CPU has more
+ * than one runnable -deadline task (as it is below for RT tasks).
+ */
+ cpumask_var_t dlo_mask;
+ atomic_t dlo_count;
+ struct dl_bw dl_bw;
+ struct cpudl cpudl;
+
+ /*
* The "RT overload" flag: it gets set if a CPU has more than
* one runnable RT task.
*/
@@ -365,14 +513,21 @@ struct rq {
* nr_running and cpu_load should be in the same cacheline because
* remote CPUs use both these fields when doing load calculation.
*/
- unsigned long nr_running;
+ unsigned int nr_running;
+#ifdef CONFIG_NUMA_BALANCING
+ unsigned int nr_numa_running;
+ unsigned int nr_preferred_running;
+#endif
#define CPU_LOAD_IDX_MAX 5
unsigned long cpu_load[CPU_LOAD_IDX_MAX];
unsigned long last_load_update_tick;
-#ifdef CONFIG_NO_HZ
+#ifdef CONFIG_NO_HZ_COMMON
u64 nohz_stamp;
unsigned long nohz_flags;
#endif
+#ifdef CONFIG_NO_HZ_FULL
+ unsigned long last_sched_tick;
+#endif
int skip_clock_update;
/* capture load from *all* tasks on this cpu: */
@@ -382,14 +537,14 @@ struct rq {
struct cfs_rq cfs;
struct rt_rq rt;
+ struct dl_rq dl;
#ifdef CONFIG_FAIR_GROUP_SCHED
/* list of leaf cfs_rq on this cpu: */
struct list_head leaf_cfs_rq_list;
-#endif
-#ifdef CONFIG_RT_GROUP_SCHED
- struct list_head leaf_rt_rq_list;
-#endif
+
+ struct sched_avg avg;
+#endif /* CONFIG_FAIR_GROUP_SCHED */
/*
* This is part of a global counter where only the total sum
@@ -412,7 +567,7 @@ struct rq {
struct root_domain *rd;
struct sched_domain *sd;
- unsigned long cpu_power;
+ unsigned long cpu_capacity;
unsigned char idle_balance;
/* For active balancing */
@@ -424,10 +579,15 @@ struct rq {
int cpu;
int online;
+ struct list_head cfs_tasks;
+
u64 rt_avg;
u64 age_stamp;
u64 idle_stamp;
u64 avg_idle;
+
+ /* This is used to determine avg_idle's max value */
+ u64 max_idle_balance_cost;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
@@ -462,7 +622,6 @@ struct rq {
unsigned int yld_count;
/* schedule() stats */
- unsigned int sched_switch;
unsigned int sched_count;
unsigned int sched_goidle;
@@ -493,8 +652,26 @@ DECLARE_PER_CPU(struct rq, runqueues);
#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
#define raw_rq() (&__raw_get_cpu_var(runqueues))
+static inline u64 rq_clock(struct rq *rq)
+{
+ return rq->clock;
+}
+
+static inline u64 rq_clock_task(struct rq *rq)
+{
+ return rq->clock_task;
+}
+
+#ifdef CONFIG_NUMA_BALANCING
+extern void sched_setnuma(struct task_struct *p, int node);
+extern int migrate_task_to(struct task_struct *p, int cpu);
+extern int migrate_swap(struct task_struct *, struct task_struct *);
+#endif /* CONFIG_NUMA_BALANCING */
+
#ifdef CONFIG_SMP
+extern void sched_ttwu_pending(void);
+
#define rcu_dereference_check_sched_domain(p) \
rcu_dereference_check((p), \
lockdep_is_held(&sched_domains_mutex))
@@ -534,8 +711,87 @@ static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
return hsd;
}
+static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
+{
+ struct sched_domain *sd;
+
+ for_each_domain(cpu, sd) {
+ if (sd->flags & flag)
+ break;
+ }
+
+ return sd;
+}
+
DECLARE_PER_CPU(struct sched_domain *, sd_llc);
+DECLARE_PER_CPU(int, sd_llc_size);
DECLARE_PER_CPU(int, sd_llc_id);
+DECLARE_PER_CPU(struct sched_domain *, sd_numa);
+DECLARE_PER_CPU(struct sched_domain *, sd_busy);
+DECLARE_PER_CPU(struct sched_domain *, sd_asym);
+
+struct sched_group_capacity {
+ atomic_t ref;
+ /*
+ * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
+ * for a single CPU.
+ */
+ unsigned int capacity, capacity_orig;
+ unsigned long next_update;
+ int imbalance; /* XXX unrelated to capacity but shared group state */
+ /*
+ * Number of busy cpus in this group.
+ */
+ atomic_t nr_busy_cpus;
+
+ unsigned long cpumask[0]; /* iteration mask */
+};
+
+struct sched_group {
+ struct sched_group *next; /* Must be a circular list */
+ atomic_t ref;
+
+ unsigned int group_weight;
+ struct sched_group_capacity *sgc;
+
+ /*
+ * The CPUs this group covers.
+ *
+ * NOTE: this field is variable length. (Allocated dynamically
+ * by attaching extra space to the end of the structure,
+ * depending on how many CPUs the kernel has booted up with)
+ */
+ unsigned long cpumask[0];
+};
+
+static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
+{
+ return to_cpumask(sg->cpumask);
+}
+
+/*
+ * cpumask masking which cpus in the group are allowed to iterate up the domain
+ * tree.
+ */
+static inline struct cpumask *sched_group_mask(struct sched_group *sg)
+{
+ return to_cpumask(sg->sgc->cpumask);
+}
+
+/**
+ * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
+ * @group: The group whose first cpu is to be returned.
+ */
+static inline unsigned int group_first_cpu(struct sched_group *group)
+{
+ return cpumask_first(sched_group_cpus(group));
+}
+
+extern int group_balance_cpu(struct sched_group *sg);
+
+#else
+
+static inline void sched_ttwu_pending(void) { }
#endif /* CONFIG_SMP */
@@ -547,22 +803,19 @@ DECLARE_PER_CPU(int, sd_llc_id);
/*
* Return the group to which this tasks belongs.
*
- * We use task_subsys_state_check() and extend the RCU verification with
- * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
- * task it moves into the cgroup. Therefore by holding either of those locks,
- * we pin the task to the current cgroup.
+ * We cannot use task_css() and friends because the cgroup subsystem
+ * changes that value before the cgroup_subsys::attach() method is called,
+ * therefore we cannot pin it and might observe the wrong value.
+ *
+ * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
+ * core changes this before calling sched_move_task().
+ *
+ * Instead we use a 'copy' which is updated from sched_move_task() while
+ * holding both task_struct::pi_lock and rq::lock.
*/
static inline struct task_group *task_group(struct task_struct *p)
{
- struct task_group *tg;
- struct cgroup_subsys_state *css;
-
- css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
- lockdep_is_held(&p->pi_lock) ||
- lockdep_is_held(&task_rq(p)->lock));
- tg = container_of(css, struct task_group, css);
-
- return autogroup_task_group(p, tg);
+ return p->sched_task_group;
}
/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
@@ -604,6 +857,7 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
*/
smp_wmb();
task_thread_info(p)->cpu = cpu;
+ p->wake_cpu = cpu;
#endif
}
@@ -611,7 +865,7 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
* Tunables that become constants when CONFIG_SCHED_DEBUG is off:
*/
#ifdef CONFIG_SCHED_DEBUG
-# include <linux/jump_label.h>
+# include <linux/static_key.h>
# define const_debug __read_mostly
#else
# define const_debug const
@@ -630,18 +884,18 @@ enum {
#undef SCHED_FEAT
#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
-static __always_inline bool static_branch__true(struct jump_label_key *key)
+static __always_inline bool static_branch__true(struct static_key *key)
{
- return likely(static_branch(key)); /* Not out of line branch. */
+ return static_key_true(key); /* Not out of line branch. */
}
-static __always_inline bool static_branch__false(struct jump_label_key *key)
+static __always_inline bool static_branch__false(struct static_key *key)
{
- return unlikely(static_branch(key)); /* Out of line branch. */
+ return static_key_false(key); /* Out of line branch. */
}
#define SCHED_FEAT(name, enabled) \
-static __always_inline bool static_branch_##name(struct jump_label_key *key) \
+static __always_inline bool static_branch_##name(struct static_key *key) \
{ \
return static_branch__##enabled(key); \
}
@@ -650,12 +904,24 @@ static __always_inline bool static_branch_##name(struct jump_label_key *key) \
#undef SCHED_FEAT
-extern struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR];
+extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
+#ifdef CONFIG_NUMA_BALANCING
+#define sched_feat_numa(x) sched_feat(x)
+#ifdef CONFIG_SCHED_DEBUG
+#define numabalancing_enabled sched_feat_numa(NUMA)
+#else
+extern bool numabalancing_enabled;
+#endif /* CONFIG_SCHED_DEBUG */
+#else
+#define sched_feat_numa(x) (0)
+#define numabalancing_enabled (0)
+#endif /* CONFIG_NUMA_BALANCING */
+
static inline u64 global_rt_period(void)
{
return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
@@ -669,8 +935,6 @@ static inline u64 global_rt_runtime(void)
return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
-
-
static inline int task_current(struct rq *rq, struct task_struct *p)
{
return rq->curr == p;
@@ -692,6 +956,9 @@ static inline int task_running(struct rq *rq, struct task_struct *p)
#ifndef finish_arch_switch
# define finish_arch_switch(prev) do { } while (0)
#endif
+#ifndef finish_arch_post_lock_switch
+# define finish_arch_post_lock_switch() do { } while (0)
+#endif
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
@@ -742,11 +1009,7 @@ static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
*/
next->on_cpu = 1;
#endif
-#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
- raw_spin_unlock_irq(&rq->lock);
-#else
raw_spin_unlock(&rq->lock);
-#endif
}
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
@@ -760,30 +1023,16 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
smp_wmb();
prev->on_cpu = 0;
#endif
-#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
local_irq_enable();
-#endif
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
-
-static inline void update_load_add(struct load_weight *lw, unsigned long inc)
-{
- lw->weight += inc;
- lw->inv_weight = 0;
-}
-
-static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
-{
- lw->weight -= dec;
- lw->inv_weight = 0;
-}
-
-static inline void update_load_set(struct load_weight *lw, unsigned long w)
-{
- lw->weight = w;
- lw->inv_weight = 0;
-}
+/*
+ * wake flags
+ */
+#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
+#define WF_FORK 0x02 /* child wakeup after fork */
+#define WF_MIGRATED 0x4 /* internal use, task got migrated */
/*
* To aid in avoiding the subversion of "niceness" due to uneven distribution
@@ -838,20 +1087,85 @@ static const u32 prio_to_wmult[40] = {
/* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};
-/* Time spent by the tasks of the cpu accounting group executing in ... */
-enum cpuacct_stat_index {
- CPUACCT_STAT_USER, /* ... user mode */
- CPUACCT_STAT_SYSTEM, /* ... kernel mode */
+#define ENQUEUE_WAKEUP 1
+#define ENQUEUE_HEAD 2
+#ifdef CONFIG_SMP
+#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
+#else
+#define ENQUEUE_WAKING 0
+#endif
+#define ENQUEUE_REPLENISH 8
+
+#define DEQUEUE_SLEEP 1
+
+#define RETRY_TASK ((void *)-1UL)
+
+struct sched_class {
+ const struct sched_class *next;
+
+ void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
+ void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
+ void (*yield_task) (struct rq *rq);
+ bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
+
+ void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
+
+ /*
+ * It is the responsibility of the pick_next_task() method that will
+ * return the next task to call put_prev_task() on the @prev task or
+ * something equivalent.
+ *
+ * May return RETRY_TASK when it finds a higher prio class has runnable
+ * tasks.
+ */
+ struct task_struct * (*pick_next_task) (struct rq *rq,
+ struct task_struct *prev);
+ void (*put_prev_task) (struct rq *rq, struct task_struct *p);
+
+#ifdef CONFIG_SMP
+ int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
+ void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
+
+ void (*post_schedule) (struct rq *this_rq);
+ void (*task_waking) (struct task_struct *task);
+ void (*task_woken) (struct rq *this_rq, struct task_struct *task);
- CPUACCT_STAT_NSTATS,
+ void (*set_cpus_allowed)(struct task_struct *p,
+ const struct cpumask *newmask);
+
+ void (*rq_online)(struct rq *rq);
+ void (*rq_offline)(struct rq *rq);
+#endif
+
+ void (*set_curr_task) (struct rq *rq);
+ void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
+ void (*task_fork) (struct task_struct *p);
+ void (*task_dead) (struct task_struct *p);
+
+ void (*switched_from) (struct rq *this_rq, struct task_struct *task);
+ void (*switched_to) (struct rq *this_rq, struct task_struct *task);
+ void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
+ int oldprio);
+
+ unsigned int (*get_rr_interval) (struct rq *rq,
+ struct task_struct *task);
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+ void (*task_move_group) (struct task_struct *p, int on_rq);
+#endif
};
+static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
+{
+ prev->sched_class->put_prev_task(rq, prev);
+}
#define sched_class_highest (&stop_sched_class)
#define for_each_class(class) \
for (class = sched_class_highest; class; class = class->next)
extern const struct sched_class stop_sched_class;
+extern const struct sched_class dl_sched_class;
extern const struct sched_class rt_sched_class;
extern const struct sched_class fair_sched_class;
extern const struct sched_class idle_sched_class;
@@ -859,24 +1173,28 @@ extern const struct sched_class idle_sched_class;
#ifdef CONFIG_SMP
-extern void trigger_load_balance(struct rq *rq, int cpu);
-extern void idle_balance(int this_cpu, struct rq *this_rq);
+extern void update_group_capacity(struct sched_domain *sd, int cpu);
-#else /* CONFIG_SMP */
+extern void trigger_load_balance(struct rq *rq);
-static inline void idle_balance(int cpu, struct rq *rq)
-{
-}
+extern void idle_enter_fair(struct rq *this_rq);
+extern void idle_exit_fair(struct rq *this_rq);
+
+#else
+
+static inline void idle_enter_fair(struct rq *rq) { }
+static inline void idle_exit_fair(struct rq *rq) { }
#endif
extern void sysrq_sched_debug_show(void);
extern void sched_init_granularity(void);
extern void update_max_interval(void);
-extern void update_group_power(struct sched_domain *sd, int cpu);
-extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
+
+extern void init_sched_dl_class(void);
extern void init_sched_rt_class(void);
extern void init_sched_fair_class(void);
+extern void init_sched_dl_class(void);
extern void resched_task(struct task_struct *p);
extern void resched_cpu(int cpu);
@@ -884,52 +1202,43 @@ extern void resched_cpu(int cpu);
extern struct rt_bandwidth def_rt_bandwidth;
extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
-extern void update_cpu_load(struct rq *this_rq);
+extern struct dl_bandwidth def_dl_bandwidth;
+extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
+extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
-#ifdef CONFIG_CGROUP_CPUACCT
-#include <linux/cgroup.h>
-/* track cpu usage of a group of tasks and its child groups */
-struct cpuacct {
- struct cgroup_subsys_state css;
- /* cpuusage holds pointer to a u64-type object on every cpu */
- u64 __percpu *cpuusage;
- struct kernel_cpustat __percpu *cpustat;
-};
+unsigned long to_ratio(u64 period, u64 runtime);
-/* return cpu accounting group corresponding to this container */
-static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
-{
- return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
- struct cpuacct, css);
-}
+extern void update_idle_cpu_load(struct rq *this_rq);
-/* return cpu accounting group to which this task belongs */
-static inline struct cpuacct *task_ca(struct task_struct *tsk)
-{
- return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
- struct cpuacct, css);
-}
+extern void init_task_runnable_average(struct task_struct *p);
-static inline struct cpuacct *parent_ca(struct cpuacct *ca)
+static inline void add_nr_running(struct rq *rq, unsigned count)
{
- if (!ca || !ca->css.cgroup->parent)
- return NULL;
- return cgroup_ca(ca->css.cgroup->parent);
-}
+ unsigned prev_nr = rq->nr_running;
-extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
-#else
-static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
+ rq->nr_running = prev_nr + count;
+
+#ifdef CONFIG_NO_HZ_FULL
+ if (prev_nr < 2 && rq->nr_running >= 2) {
+ if (tick_nohz_full_cpu(rq->cpu)) {
+ /* Order rq->nr_running write against the IPI */
+ smp_wmb();
+ smp_send_reschedule(rq->cpu);
+ }
+ }
#endif
+}
-static inline void inc_nr_running(struct rq *rq)
+static inline void sub_nr_running(struct rq *rq, unsigned count)
{
- rq->nr_running++;
+ rq->nr_running -= count;
}
-static inline void dec_nr_running(struct rq *rq)
+static inline void rq_last_tick_reset(struct rq *rq)
{
- rq->nr_running--;
+#ifdef CONFIG_NO_HZ_FULL
+ rq->last_sched_tick = jiffies;
+#endif
}
extern void update_rq_clock(struct rq *rq);
@@ -948,8 +1257,6 @@ static inline u64 sched_avg_period(void)
return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}
-void calc_load_account_idle(struct rq *this_rq);
-
#ifdef CONFIG_SCHED_HRTICK
/*
@@ -1067,6 +1374,33 @@ static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
+static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
+{
+ if (l1 > l2)
+ swap(l1, l2);
+
+ spin_lock(l1);
+ spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
+}
+
+static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
+{
+ if (l1 > l2)
+ swap(l1, l2);
+
+ spin_lock_irq(l1);
+ spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
+}
+
+static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
+{
+ if (l1 > l2)
+ swap(l1, l2);
+
+ raw_spin_lock(l1);
+ raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
+}
+
/*
* double_rq_lock - safely lock two runqueues
*
@@ -1151,16 +1485,65 @@ extern void print_rt_stats(struct seq_file *m, int cpu);
extern void init_cfs_rq(struct cfs_rq *cfs_rq);
extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
-extern void unthrottle_offline_cfs_rqs(struct rq *rq);
+extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
-extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
+extern void cfs_bandwidth_usage_inc(void);
+extern void cfs_bandwidth_usage_dec(void);
-#ifdef CONFIG_NO_HZ
+#ifdef CONFIG_NO_HZ_COMMON
enum rq_nohz_flag_bits {
NOHZ_TICK_STOPPED,
NOHZ_BALANCE_KICK,
- NOHZ_IDLE,
};
#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
#endif
+
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
+
+DECLARE_PER_CPU(u64, cpu_hardirq_time);
+DECLARE_PER_CPU(u64, cpu_softirq_time);
+
+#ifndef CONFIG_64BIT
+DECLARE_PER_CPU(seqcount_t, irq_time_seq);
+
+static inline void irq_time_write_begin(void)
+{
+ __this_cpu_inc(irq_time_seq.sequence);
+ smp_wmb();
+}
+
+static inline void irq_time_write_end(void)
+{
+ smp_wmb();
+ __this_cpu_inc(irq_time_seq.sequence);
+}
+
+static inline u64 irq_time_read(int cpu)
+{
+ u64 irq_time;
+ unsigned seq;
+
+ do {
+ seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
+ irq_time = per_cpu(cpu_softirq_time, cpu) +
+ per_cpu(cpu_hardirq_time, cpu);
+ } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
+
+ return irq_time;
+}
+#else /* CONFIG_64BIT */
+static inline void irq_time_write_begin(void)
+{
+}
+
+static inline void irq_time_write_end(void)
+{
+}
+
+static inline u64 irq_time_read(int cpu)
+{
+ return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
+}
+#endif /* CONFIG_64BIT */
+#endif /* CONFIG_IRQ_TIME_ACCOUNTING */