diff options
Diffstat (limited to 'kernel/sched/proc.c')
| -rw-r--r-- | kernel/sched/proc.c | 591 | 
1 files changed, 591 insertions, 0 deletions
| diff --git a/kernel/sched/proc.c b/kernel/sched/proc.c new file mode 100644 index 00000000000..16f5a30f9c8 --- /dev/null +++ b/kernel/sched/proc.c @@ -0,0 +1,591 @@ +/* + *  kernel/sched/proc.c + * + *  Kernel load calculations, forked from sched/core.c + */ + +#include <linux/export.h> + +#include "sched.h" + +unsigned long this_cpu_load(void) +{ +	struct rq *this = this_rq(); +	return this->cpu_load[0]; +} + + +/* + * Global load-average calculations + * + * We take a distributed and async approach to calculating the global load-avg + * in order to minimize overhead. + * + * The global load average is an exponentially decaying average of nr_running + + * nr_uninterruptible. + * + * Once every LOAD_FREQ: + * + *   nr_active = 0; + *   for_each_possible_cpu(cpu) + *	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible; + * + *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n) + * + * Due to a number of reasons the above turns in the mess below: + * + *  - for_each_possible_cpu() is prohibitively expensive on machines with + *    serious number of cpus, therefore we need to take a distributed approach + *    to calculating nr_active. + * + *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0 + *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) } + * + *    So assuming nr_active := 0 when we start out -- true per definition, we + *    can simply take per-cpu deltas and fold those into a global accumulate + *    to obtain the same result. See calc_load_fold_active(). + * + *    Furthermore, in order to avoid synchronizing all per-cpu delta folding + *    across the machine, we assume 10 ticks is sufficient time for every + *    cpu to have completed this task. + * + *    This places an upper-bound on the IRQ-off latency of the machine. Then + *    again, being late doesn't loose the delta, just wrecks the sample. + * + *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because + *    this would add another cross-cpu cacheline miss and atomic operation + *    to the wakeup path. Instead we increment on whatever cpu the task ran + *    when it went into uninterruptible state and decrement on whatever cpu + *    did the wakeup. This means that only the sum of nr_uninterruptible over + *    all cpus yields the correct result. + * + *  This covers the NO_HZ=n code, for extra head-aches, see the comment below. + */ + +/* Variables and functions for calc_load */ +atomic_long_t calc_load_tasks; +unsigned long calc_load_update; +unsigned long avenrun[3]; +EXPORT_SYMBOL(avenrun); /* should be removed */ + +/** + * get_avenrun - get the load average array + * @loads:	pointer to dest load array + * @offset:	offset to add + * @shift:	shift count to shift the result left + * + * These values are estimates at best, so no need for locking. + */ +void get_avenrun(unsigned long *loads, unsigned long offset, int shift) +{ +	loads[0] = (avenrun[0] + offset) << shift; +	loads[1] = (avenrun[1] + offset) << shift; +	loads[2] = (avenrun[2] + offset) << shift; +} + +long calc_load_fold_active(struct rq *this_rq) +{ +	long nr_active, delta = 0; + +	nr_active = this_rq->nr_running; +	nr_active += (long) this_rq->nr_uninterruptible; + +	if (nr_active != this_rq->calc_load_active) { +		delta = nr_active - this_rq->calc_load_active; +		this_rq->calc_load_active = nr_active; +	} + +	return delta; +} + +/* + * a1 = a0 * e + a * (1 - e) + */ +static unsigned long +calc_load(unsigned long load, unsigned long exp, unsigned long active) +{ +	load *= exp; +	load += active * (FIXED_1 - exp); +	load += 1UL << (FSHIFT - 1); +	return load >> FSHIFT; +} + +#ifdef CONFIG_NO_HZ_COMMON +/* + * Handle NO_HZ for the global load-average. + * + * Since the above described distributed algorithm to compute the global + * load-average relies on per-cpu sampling from the tick, it is affected by + * NO_HZ. + * + * The basic idea is to fold the nr_active delta into a global idle-delta upon + * entering NO_HZ state such that we can include this as an 'extra' cpu delta + * when we read the global state. + * + * Obviously reality has to ruin such a delightfully simple scheme: + * + *  - When we go NO_HZ idle during the window, we can negate our sample + *    contribution, causing under-accounting. + * + *    We avoid this by keeping two idle-delta counters and flipping them + *    when the window starts, thus separating old and new NO_HZ load. + * + *    The only trick is the slight shift in index flip for read vs write. + * + *        0s            5s            10s           15s + *          +10           +10           +10           +10 + *        |-|-----------|-|-----------|-|-----------|-| + *    r:0 0 1           1 0           0 1           1 0 + *    w:0 1 1           0 0           1 1           0 0 + * + *    This ensures we'll fold the old idle contribution in this window while + *    accumlating the new one. + * + *  - When we wake up from NO_HZ idle during the window, we push up our + *    contribution, since we effectively move our sample point to a known + *    busy state. + * + *    This is solved by pushing the window forward, and thus skipping the + *    sample, for this cpu (effectively using the idle-delta for this cpu which + *    was in effect at the time the window opened). This also solves the issue + *    of having to deal with a cpu having been in NOHZ idle for multiple + *    LOAD_FREQ intervals. + * + * When making the ILB scale, we should try to pull this in as well. + */ +static atomic_long_t calc_load_idle[2]; +static int calc_load_idx; + +static inline int calc_load_write_idx(void) +{ +	int idx = calc_load_idx; + +	/* +	 * See calc_global_nohz(), if we observe the new index, we also +	 * need to observe the new update time. +	 */ +	smp_rmb(); + +	/* +	 * If the folding window started, make sure we start writing in the +	 * next idle-delta. +	 */ +	if (!time_before(jiffies, calc_load_update)) +		idx++; + +	return idx & 1; +} + +static inline int calc_load_read_idx(void) +{ +	return calc_load_idx & 1; +} + +void calc_load_enter_idle(void) +{ +	struct rq *this_rq = this_rq(); +	long delta; + +	/* +	 * We're going into NOHZ mode, if there's any pending delta, fold it +	 * into the pending idle delta. +	 */ +	delta = calc_load_fold_active(this_rq); +	if (delta) { +		int idx = calc_load_write_idx(); +		atomic_long_add(delta, &calc_load_idle[idx]); +	} +} + +void calc_load_exit_idle(void) +{ +	struct rq *this_rq = this_rq(); + +	/* +	 * If we're still before the sample window, we're done. +	 */ +	if (time_before(jiffies, this_rq->calc_load_update)) +		return; + +	/* +	 * We woke inside or after the sample window, this means we're already +	 * accounted through the nohz accounting, so skip the entire deal and +	 * sync up for the next window. +	 */ +	this_rq->calc_load_update = calc_load_update; +	if (time_before(jiffies, this_rq->calc_load_update + 10)) +		this_rq->calc_load_update += LOAD_FREQ; +} + +static long calc_load_fold_idle(void) +{ +	int idx = calc_load_read_idx(); +	long delta = 0; + +	if (atomic_long_read(&calc_load_idle[idx])) +		delta = atomic_long_xchg(&calc_load_idle[idx], 0); + +	return delta; +} + +/** + * fixed_power_int - compute: x^n, in O(log n) time + * + * @x:         base of the power + * @frac_bits: fractional bits of @x + * @n:         power to raise @x to. + * + * By exploiting the relation between the definition of the natural power + * function: x^n := x*x*...*x (x multiplied by itself for n times), and + * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, + * (where: n_i \elem {0, 1}, the binary vector representing n), + * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is + * of course trivially computable in O(log_2 n), the length of our binary + * vector. + */ +static unsigned long +fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) +{ +	unsigned long result = 1UL << frac_bits; + +	if (n) for (;;) { +		if (n & 1) { +			result *= x; +			result += 1UL << (frac_bits - 1); +			result >>= frac_bits; +		} +		n >>= 1; +		if (!n) +			break; +		x *= x; +		x += 1UL << (frac_bits - 1); +		x >>= frac_bits; +	} + +	return result; +} + +/* + * a1 = a0 * e + a * (1 - e) + * + * a2 = a1 * e + a * (1 - e) + *    = (a0 * e + a * (1 - e)) * e + a * (1 - e) + *    = a0 * e^2 + a * (1 - e) * (1 + e) + * + * a3 = a2 * e + a * (1 - e) + *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) + *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2) + * + *  ... + * + * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] + *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) + *    = a0 * e^n + a * (1 - e^n) + * + * [1] application of the geometric series: + * + *              n         1 - x^(n+1) + *     S_n := \Sum x^i = ------------- + *             i=0          1 - x + */ +static unsigned long +calc_load_n(unsigned long load, unsigned long exp, +	    unsigned long active, unsigned int n) +{ + +	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); +} + +/* + * NO_HZ can leave us missing all per-cpu ticks calling + * calc_load_account_active(), but since an idle CPU folds its delta into + * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold + * in the pending idle delta if our idle period crossed a load cycle boundary. + * + * Once we've updated the global active value, we need to apply the exponential + * weights adjusted to the number of cycles missed. + */ +static void calc_global_nohz(void) +{ +	long delta, active, n; + +	if (!time_before(jiffies, calc_load_update + 10)) { +		/* +		 * Catch-up, fold however many we are behind still +		 */ +		delta = jiffies - calc_load_update - 10; +		n = 1 + (delta / LOAD_FREQ); + +		active = atomic_long_read(&calc_load_tasks); +		active = active > 0 ? active * FIXED_1 : 0; + +		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); +		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); +		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); + +		calc_load_update += n * LOAD_FREQ; +	} + +	/* +	 * Flip the idle index... +	 * +	 * Make sure we first write the new time then flip the index, so that +	 * calc_load_write_idx() will see the new time when it reads the new +	 * index, this avoids a double flip messing things up. +	 */ +	smp_wmb(); +	calc_load_idx++; +} +#else /* !CONFIG_NO_HZ_COMMON */ + +static inline long calc_load_fold_idle(void) { return 0; } +static inline void calc_global_nohz(void) { } + +#endif /* CONFIG_NO_HZ_COMMON */ + +/* + * calc_load - update the avenrun load estimates 10 ticks after the + * CPUs have updated calc_load_tasks. + */ +void calc_global_load(unsigned long ticks) +{ +	long active, delta; + +	if (time_before(jiffies, calc_load_update + 10)) +		return; + +	/* +	 * Fold the 'old' idle-delta to include all NO_HZ cpus. +	 */ +	delta = calc_load_fold_idle(); +	if (delta) +		atomic_long_add(delta, &calc_load_tasks); + +	active = atomic_long_read(&calc_load_tasks); +	active = active > 0 ? active * FIXED_1 : 0; + +	avenrun[0] = calc_load(avenrun[0], EXP_1, active); +	avenrun[1] = calc_load(avenrun[1], EXP_5, active); +	avenrun[2] = calc_load(avenrun[2], EXP_15, active); + +	calc_load_update += LOAD_FREQ; + +	/* +	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk. +	 */ +	calc_global_nohz(); +} + +/* + * Called from update_cpu_load() to periodically update this CPU's + * active count. + */ +static void calc_load_account_active(struct rq *this_rq) +{ +	long delta; + +	if (time_before(jiffies, this_rq->calc_load_update)) +		return; + +	delta  = calc_load_fold_active(this_rq); +	if (delta) +		atomic_long_add(delta, &calc_load_tasks); + +	this_rq->calc_load_update += LOAD_FREQ; +} + +/* + * End of global load-average stuff + */ + +/* + * The exact cpuload at various idx values, calculated at every tick would be + * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load + * + * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called + * on nth tick when cpu may be busy, then we have: + * load = ((2^idx - 1) / 2^idx)^(n-1) * load + * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load + * + * decay_load_missed() below does efficient calculation of + * load = ((2^idx - 1) / 2^idx)^(n-1) * load + * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load + * + * The calculation is approximated on a 128 point scale. + * degrade_zero_ticks is the number of ticks after which load at any + * particular idx is approximated to be zero. + * degrade_factor is a precomputed table, a row for each load idx. + * Each column corresponds to degradation factor for a power of two ticks, + * based on 128 point scale. + * Example: + * row 2, col 3 (=12) says that the degradation at load idx 2 after + * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). + * + * With this power of 2 load factors, we can degrade the load n times + * by looking at 1 bits in n and doing as many mult/shift instead of + * n mult/shifts needed by the exact degradation. + */ +#define DEGRADE_SHIFT		7 +static const unsigned char +		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; +static const unsigned char +		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { +					{0, 0, 0, 0, 0, 0, 0, 0}, +					{64, 32, 8, 0, 0, 0, 0, 0}, +					{96, 72, 40, 12, 1, 0, 0}, +					{112, 98, 75, 43, 15, 1, 0}, +					{120, 112, 98, 76, 45, 16, 2} }; + +/* + * Update cpu_load for any missed ticks, due to tickless idle. The backlog + * would be when CPU is idle and so we just decay the old load without + * adding any new load. + */ +static unsigned long +decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) +{ +	int j = 0; + +	if (!missed_updates) +		return load; + +	if (missed_updates >= degrade_zero_ticks[idx]) +		return 0; + +	if (idx == 1) +		return load >> missed_updates; + +	while (missed_updates) { +		if (missed_updates % 2) +			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; + +		missed_updates >>= 1; +		j++; +	} +	return load; +} + +/* + * Update rq->cpu_load[] statistics. This function is usually called every + * scheduler tick (TICK_NSEC). With tickless idle this will not be called + * every tick. We fix it up based on jiffies. + */ +static void __update_cpu_load(struct rq *this_rq, unsigned long this_load, +			      unsigned long pending_updates) +{ +	int i, scale; + +	this_rq->nr_load_updates++; + +	/* Update our load: */ +	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ +	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { +		unsigned long old_load, new_load; + +		/* scale is effectively 1 << i now, and >> i divides by scale */ + +		old_load = this_rq->cpu_load[i]; +		old_load = decay_load_missed(old_load, pending_updates - 1, i); +		new_load = this_load; +		/* +		 * Round up the averaging division if load is increasing. This +		 * prevents us from getting stuck on 9 if the load is 10, for +		 * example. +		 */ +		if (new_load > old_load) +			new_load += scale - 1; + +		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; +	} + +	sched_avg_update(this_rq); +} + +#ifdef CONFIG_SMP +static inline unsigned long get_rq_runnable_load(struct rq *rq) +{ +	return rq->cfs.runnable_load_avg; +} +#else +static inline unsigned long get_rq_runnable_load(struct rq *rq) +{ +	return rq->load.weight; +} +#endif + +#ifdef CONFIG_NO_HZ_COMMON +/* + * There is no sane way to deal with nohz on smp when using jiffies because the + * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading + * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. + * + * Therefore we cannot use the delta approach from the regular tick since that + * would seriously skew the load calculation. However we'll make do for those + * updates happening while idle (nohz_idle_balance) or coming out of idle + * (tick_nohz_idle_exit). + * + * This means we might still be one tick off for nohz periods. + */ + +/* + * Called from nohz_idle_balance() to update the load ratings before doing the + * idle balance. + */ +void update_idle_cpu_load(struct rq *this_rq) +{ +	unsigned long curr_jiffies = ACCESS_ONCE(jiffies); +	unsigned long load = get_rq_runnable_load(this_rq); +	unsigned long pending_updates; + +	/* +	 * bail if there's load or we're actually up-to-date. +	 */ +	if (load || curr_jiffies == this_rq->last_load_update_tick) +		return; + +	pending_updates = curr_jiffies - this_rq->last_load_update_tick; +	this_rq->last_load_update_tick = curr_jiffies; + +	__update_cpu_load(this_rq, load, pending_updates); +} + +/* + * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed. + */ +void update_cpu_load_nohz(void) +{ +	struct rq *this_rq = this_rq(); +	unsigned long curr_jiffies = ACCESS_ONCE(jiffies); +	unsigned long pending_updates; + +	if (curr_jiffies == this_rq->last_load_update_tick) +		return; + +	raw_spin_lock(&this_rq->lock); +	pending_updates = curr_jiffies - this_rq->last_load_update_tick; +	if (pending_updates) { +		this_rq->last_load_update_tick = curr_jiffies; +		/* +		 * We were idle, this means load 0, the current load might be +		 * !0 due to remote wakeups and the sort. +		 */ +		__update_cpu_load(this_rq, 0, pending_updates); +	} +	raw_spin_unlock(&this_rq->lock); +} +#endif /* CONFIG_NO_HZ */ + +/* + * Called from scheduler_tick() + */ +void update_cpu_load_active(struct rq *this_rq) +{ +	unsigned long load = get_rq_runnable_load(this_rq); +	/* +	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz(). +	 */ +	this_rq->last_load_update_tick = jiffies; +	__update_cpu_load(this_rq, load, 1); + +	calc_load_account_active(this_rq); +} | 
