diff options
Diffstat (limited to 'kernel/sched/fair.c')
| -rw-r--r-- | kernel/sched/fair.c | 7815 | 
1 files changed, 7815 insertions, 0 deletions
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c new file mode 100644 index 00000000000..fea7d3335e1 --- /dev/null +++ b/kernel/sched/fair.c @@ -0,0 +1,7815 @@ +/* + * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) + * + *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> + * + *  Interactivity improvements by Mike Galbraith + *  (C) 2007 Mike Galbraith <efault@gmx.de> + * + *  Various enhancements by Dmitry Adamushko. + *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> + * + *  Group scheduling enhancements by Srivatsa Vaddagiri + *  Copyright IBM Corporation, 2007 + *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> + * + *  Scaled math optimizations by Thomas Gleixner + *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> + * + *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra + *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> + */ + +#include <linux/latencytop.h> +#include <linux/sched.h> +#include <linux/cpumask.h> +#include <linux/slab.h> +#include <linux/profile.h> +#include <linux/interrupt.h> +#include <linux/mempolicy.h> +#include <linux/migrate.h> +#include <linux/task_work.h> + +#include <trace/events/sched.h> + +#include "sched.h" + +/* + * Targeted preemption latency for CPU-bound tasks: + * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) + * + * NOTE: this latency value is not the same as the concept of + * 'timeslice length' - timeslices in CFS are of variable length + * and have no persistent notion like in traditional, time-slice + * based scheduling concepts. + * + * (to see the precise effective timeslice length of your workload, + *  run vmstat and monitor the context-switches (cs) field) + */ +unsigned int sysctl_sched_latency = 6000000ULL; +unsigned int normalized_sysctl_sched_latency = 6000000ULL; + +/* + * The initial- and re-scaling of tunables is configurable + * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) + * + * Options are: + * SCHED_TUNABLESCALING_NONE - unscaled, always *1 + * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) + * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus + */ +enum sched_tunable_scaling sysctl_sched_tunable_scaling +	= SCHED_TUNABLESCALING_LOG; + +/* + * Minimal preemption granularity for CPU-bound tasks: + * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) + */ +unsigned int sysctl_sched_min_granularity = 750000ULL; +unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; + +/* + * is kept at sysctl_sched_latency / sysctl_sched_min_granularity + */ +static unsigned int sched_nr_latency = 8; + +/* + * After fork, child runs first. If set to 0 (default) then + * parent will (try to) run first. + */ +unsigned int sysctl_sched_child_runs_first __read_mostly; + +/* + * SCHED_OTHER wake-up granularity. + * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) + * + * This option delays the preemption effects of decoupled workloads + * and reduces their over-scheduling. Synchronous workloads will still + * have immediate wakeup/sleep latencies. + */ +unsigned int sysctl_sched_wakeup_granularity = 1000000UL; +unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; + +const_debug unsigned int sysctl_sched_migration_cost = 500000UL; + +/* + * The exponential sliding  window over which load is averaged for shares + * distribution. + * (default: 10msec) + */ +unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; + +#ifdef CONFIG_CFS_BANDWIDTH +/* + * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool + * each time a cfs_rq requests quota. + * + * Note: in the case that the slice exceeds the runtime remaining (either due + * to consumption or the quota being specified to be smaller than the slice) + * we will always only issue the remaining available time. + * + * default: 5 msec, units: microseconds +  */ +unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; +#endif + +static inline void update_load_add(struct load_weight *lw, unsigned long inc) +{ +	lw->weight += inc; +	lw->inv_weight = 0; +} + +static inline void update_load_sub(struct load_weight *lw, unsigned long dec) +{ +	lw->weight -= dec; +	lw->inv_weight = 0; +} + +static inline void update_load_set(struct load_weight *lw, unsigned long w) +{ +	lw->weight = w; +	lw->inv_weight = 0; +} + +/* + * Increase the granularity value when there are more CPUs, + * because with more CPUs the 'effective latency' as visible + * to users decreases. But the relationship is not linear, + * so pick a second-best guess by going with the log2 of the + * number of CPUs. + * + * This idea comes from the SD scheduler of Con Kolivas: + */ +static int get_update_sysctl_factor(void) +{ +	unsigned int cpus = min_t(int, num_online_cpus(), 8); +	unsigned int factor; + +	switch (sysctl_sched_tunable_scaling) { +	case SCHED_TUNABLESCALING_NONE: +		factor = 1; +		break; +	case SCHED_TUNABLESCALING_LINEAR: +		factor = cpus; +		break; +	case SCHED_TUNABLESCALING_LOG: +	default: +		factor = 1 + ilog2(cpus); +		break; +	} + +	return factor; +} + +static void update_sysctl(void) +{ +	unsigned int factor = get_update_sysctl_factor(); + +#define SET_SYSCTL(name) \ +	(sysctl_##name = (factor) * normalized_sysctl_##name) +	SET_SYSCTL(sched_min_granularity); +	SET_SYSCTL(sched_latency); +	SET_SYSCTL(sched_wakeup_granularity); +#undef SET_SYSCTL +} + +void sched_init_granularity(void) +{ +	update_sysctl(); +} + +#define WMULT_CONST	(~0U) +#define WMULT_SHIFT	32 + +static void __update_inv_weight(struct load_weight *lw) +{ +	unsigned long w; + +	if (likely(lw->inv_weight)) +		return; + +	w = scale_load_down(lw->weight); + +	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) +		lw->inv_weight = 1; +	else if (unlikely(!w)) +		lw->inv_weight = WMULT_CONST; +	else +		lw->inv_weight = WMULT_CONST / w; +} + +/* + * delta_exec * weight / lw.weight + *   OR + * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT + * + * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case + * we're guaranteed shift stays positive because inv_weight is guaranteed to + * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. + * + * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus + * weight/lw.weight <= 1, and therefore our shift will also be positive. + */ +static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) +{ +	u64 fact = scale_load_down(weight); +	int shift = WMULT_SHIFT; + +	__update_inv_weight(lw); + +	if (unlikely(fact >> 32)) { +		while (fact >> 32) { +			fact >>= 1; +			shift--; +		} +	} + +	/* hint to use a 32x32->64 mul */ +	fact = (u64)(u32)fact * lw->inv_weight; + +	while (fact >> 32) { +		fact >>= 1; +		shift--; +	} + +	return mul_u64_u32_shr(delta_exec, fact, shift); +} + + +const struct sched_class fair_sched_class; + +/************************************************************** + * CFS operations on generic schedulable entities: + */ + +#ifdef CONFIG_FAIR_GROUP_SCHED + +/* cpu runqueue to which this cfs_rq is attached */ +static inline struct rq *rq_of(struct cfs_rq *cfs_rq) +{ +	return cfs_rq->rq; +} + +/* An entity is a task if it doesn't "own" a runqueue */ +#define entity_is_task(se)	(!se->my_q) + +static inline struct task_struct *task_of(struct sched_entity *se) +{ +#ifdef CONFIG_SCHED_DEBUG +	WARN_ON_ONCE(!entity_is_task(se)); +#endif +	return container_of(se, struct task_struct, se); +} + +/* Walk up scheduling entities hierarchy */ +#define for_each_sched_entity(se) \ +		for (; se; se = se->parent) + +static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) +{ +	return p->se.cfs_rq; +} + +/* runqueue on which this entity is (to be) queued */ +static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) +{ +	return se->cfs_rq; +} + +/* runqueue "owned" by this group */ +static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) +{ +	return grp->my_q; +} + +static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, +				       int force_update); + +static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) +{ +	if (!cfs_rq->on_list) { +		/* +		 * Ensure we either appear before our parent (if already +		 * enqueued) or force our parent to appear after us when it is +		 * enqueued.  The fact that we always enqueue bottom-up +		 * reduces this to two cases. +		 */ +		if (cfs_rq->tg->parent && +		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { +			list_add_rcu(&cfs_rq->leaf_cfs_rq_list, +				&rq_of(cfs_rq)->leaf_cfs_rq_list); +		} else { +			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, +				&rq_of(cfs_rq)->leaf_cfs_rq_list); +		} + +		cfs_rq->on_list = 1; +		/* We should have no load, but we need to update last_decay. */ +		update_cfs_rq_blocked_load(cfs_rq, 0); +	} +} + +static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) +{ +	if (cfs_rq->on_list) { +		list_del_rcu(&cfs_rq->leaf_cfs_rq_list); +		cfs_rq->on_list = 0; +	} +} + +/* Iterate thr' all leaf cfs_rq's on a runqueue */ +#define for_each_leaf_cfs_rq(rq, cfs_rq) \ +	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) + +/* Do the two (enqueued) entities belong to the same group ? */ +static inline struct cfs_rq * +is_same_group(struct sched_entity *se, struct sched_entity *pse) +{ +	if (se->cfs_rq == pse->cfs_rq) +		return se->cfs_rq; + +	return NULL; +} + +static inline struct sched_entity *parent_entity(struct sched_entity *se) +{ +	return se->parent; +} + +static void +find_matching_se(struct sched_entity **se, struct sched_entity **pse) +{ +	int se_depth, pse_depth; + +	/* +	 * preemption test can be made between sibling entities who are in the +	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of +	 * both tasks until we find their ancestors who are siblings of common +	 * parent. +	 */ + +	/* First walk up until both entities are at same depth */ +	se_depth = (*se)->depth; +	pse_depth = (*pse)->depth; + +	while (se_depth > pse_depth) { +		se_depth--; +		*se = parent_entity(*se); +	} + +	while (pse_depth > se_depth) { +		pse_depth--; +		*pse = parent_entity(*pse); +	} + +	while (!is_same_group(*se, *pse)) { +		*se = parent_entity(*se); +		*pse = parent_entity(*pse); +	} +} + +#else	/* !CONFIG_FAIR_GROUP_SCHED */ + +static inline struct task_struct *task_of(struct sched_entity *se) +{ +	return container_of(se, struct task_struct, se); +} + +static inline struct rq *rq_of(struct cfs_rq *cfs_rq) +{ +	return container_of(cfs_rq, struct rq, cfs); +} + +#define entity_is_task(se)	1 + +#define for_each_sched_entity(se) \ +		for (; se; se = NULL) + +static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) +{ +	return &task_rq(p)->cfs; +} + +static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) +{ +	struct task_struct *p = task_of(se); +	struct rq *rq = task_rq(p); + +	return &rq->cfs; +} + +/* runqueue "owned" by this group */ +static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) +{ +	return NULL; +} + +static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) +{ +} + +static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) +{ +} + +#define for_each_leaf_cfs_rq(rq, cfs_rq) \ +		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) + +static inline struct sched_entity *parent_entity(struct sched_entity *se) +{ +	return NULL; +} + +static inline void +find_matching_se(struct sched_entity **se, struct sched_entity **pse) +{ +} + +#endif	/* CONFIG_FAIR_GROUP_SCHED */ + +static __always_inline +void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); + +/************************************************************** + * Scheduling class tree data structure manipulation methods: + */ + +static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) +{ +	s64 delta = (s64)(vruntime - max_vruntime); +	if (delta > 0) +		max_vruntime = vruntime; + +	return max_vruntime; +} + +static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) +{ +	s64 delta = (s64)(vruntime - min_vruntime); +	if (delta < 0) +		min_vruntime = vruntime; + +	return min_vruntime; +} + +static inline int entity_before(struct sched_entity *a, +				struct sched_entity *b) +{ +	return (s64)(a->vruntime - b->vruntime) < 0; +} + +static void update_min_vruntime(struct cfs_rq *cfs_rq) +{ +	u64 vruntime = cfs_rq->min_vruntime; + +	if (cfs_rq->curr) +		vruntime = cfs_rq->curr->vruntime; + +	if (cfs_rq->rb_leftmost) { +		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, +						   struct sched_entity, +						   run_node); + +		if (!cfs_rq->curr) +			vruntime = se->vruntime; +		else +			vruntime = min_vruntime(vruntime, se->vruntime); +	} + +	/* ensure we never gain time by being placed backwards. */ +	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); +#ifndef CONFIG_64BIT +	smp_wmb(); +	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; +#endif +} + +/* + * Enqueue an entity into the rb-tree: + */ +static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; +	struct rb_node *parent = NULL; +	struct sched_entity *entry; +	int leftmost = 1; + +	/* +	 * Find the right place in the rbtree: +	 */ +	while (*link) { +		parent = *link; +		entry = rb_entry(parent, struct sched_entity, run_node); +		/* +		 * We dont care about collisions. Nodes with +		 * the same key stay together. +		 */ +		if (entity_before(se, entry)) { +			link = &parent->rb_left; +		} else { +			link = &parent->rb_right; +			leftmost = 0; +		} +	} + +	/* +	 * Maintain a cache of leftmost tree entries (it is frequently +	 * used): +	 */ +	if (leftmost) +		cfs_rq->rb_leftmost = &se->run_node; + +	rb_link_node(&se->run_node, parent, link); +	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); +} + +static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	if (cfs_rq->rb_leftmost == &se->run_node) { +		struct rb_node *next_node; + +		next_node = rb_next(&se->run_node); +		cfs_rq->rb_leftmost = next_node; +	} + +	rb_erase(&se->run_node, &cfs_rq->tasks_timeline); +} + +struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) +{ +	struct rb_node *left = cfs_rq->rb_leftmost; + +	if (!left) +		return NULL; + +	return rb_entry(left, struct sched_entity, run_node); +} + +static struct sched_entity *__pick_next_entity(struct sched_entity *se) +{ +	struct rb_node *next = rb_next(&se->run_node); + +	if (!next) +		return NULL; + +	return rb_entry(next, struct sched_entity, run_node); +} + +#ifdef CONFIG_SCHED_DEBUG +struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) +{ +	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); + +	if (!last) +		return NULL; + +	return rb_entry(last, struct sched_entity, run_node); +} + +/************************************************************** + * Scheduling class statistics methods: + */ + +int sched_proc_update_handler(struct ctl_table *table, int write, +		void __user *buffer, size_t *lenp, +		loff_t *ppos) +{ +	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); +	int factor = get_update_sysctl_factor(); + +	if (ret || !write) +		return ret; + +	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, +					sysctl_sched_min_granularity); + +#define WRT_SYSCTL(name) \ +	(normalized_sysctl_##name = sysctl_##name / (factor)) +	WRT_SYSCTL(sched_min_granularity); +	WRT_SYSCTL(sched_latency); +	WRT_SYSCTL(sched_wakeup_granularity); +#undef WRT_SYSCTL + +	return 0; +} +#endif + +/* + * delta /= w + */ +static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) +{ +	if (unlikely(se->load.weight != NICE_0_LOAD)) +		delta = __calc_delta(delta, NICE_0_LOAD, &se->load); + +	return delta; +} + +/* + * The idea is to set a period in which each task runs once. + * + * When there are too many tasks (sched_nr_latency) we have to stretch + * this period because otherwise the slices get too small. + * + * p = (nr <= nl) ? l : l*nr/nl + */ +static u64 __sched_period(unsigned long nr_running) +{ +	u64 period = sysctl_sched_latency; +	unsigned long nr_latency = sched_nr_latency; + +	if (unlikely(nr_running > nr_latency)) { +		period = sysctl_sched_min_granularity; +		period *= nr_running; +	} + +	return period; +} + +/* + * We calculate the wall-time slice from the period by taking a part + * proportional to the weight. + * + * s = p*P[w/rw] + */ +static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); + +	for_each_sched_entity(se) { +		struct load_weight *load; +		struct load_weight lw; + +		cfs_rq = cfs_rq_of(se); +		load = &cfs_rq->load; + +		if (unlikely(!se->on_rq)) { +			lw = cfs_rq->load; + +			update_load_add(&lw, se->load.weight); +			load = &lw; +		} +		slice = __calc_delta(slice, se->load.weight, load); +	} +	return slice; +} + +/* + * We calculate the vruntime slice of a to-be-inserted task. + * + * vs = s/w + */ +static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	return calc_delta_fair(sched_slice(cfs_rq, se), se); +} + +#ifdef CONFIG_SMP +static unsigned long task_h_load(struct task_struct *p); + +static inline void __update_task_entity_contrib(struct sched_entity *se); + +/* Give new task start runnable values to heavy its load in infant time */ +void init_task_runnable_average(struct task_struct *p) +{ +	u32 slice; + +	p->se.avg.decay_count = 0; +	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10; +	p->se.avg.runnable_avg_sum = slice; +	p->se.avg.runnable_avg_period = slice; +	__update_task_entity_contrib(&p->se); +} +#else +void init_task_runnable_average(struct task_struct *p) +{ +} +#endif + +/* + * Update the current task's runtime statistics. + */ +static void update_curr(struct cfs_rq *cfs_rq) +{ +	struct sched_entity *curr = cfs_rq->curr; +	u64 now = rq_clock_task(rq_of(cfs_rq)); +	u64 delta_exec; + +	if (unlikely(!curr)) +		return; + +	delta_exec = now - curr->exec_start; +	if (unlikely((s64)delta_exec <= 0)) +		return; + +	curr->exec_start = now; + +	schedstat_set(curr->statistics.exec_max, +		      max(delta_exec, curr->statistics.exec_max)); + +	curr->sum_exec_runtime += delta_exec; +	schedstat_add(cfs_rq, exec_clock, delta_exec); + +	curr->vruntime += calc_delta_fair(delta_exec, curr); +	update_min_vruntime(cfs_rq); + +	if (entity_is_task(curr)) { +		struct task_struct *curtask = task_of(curr); + +		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); +		cpuacct_charge(curtask, delta_exec); +		account_group_exec_runtime(curtask, delta_exec); +	} + +	account_cfs_rq_runtime(cfs_rq, delta_exec); +} + +static inline void +update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq))); +} + +/* + * Task is being enqueued - update stats: + */ +static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	/* +	 * Are we enqueueing a waiting task? (for current tasks +	 * a dequeue/enqueue event is a NOP) +	 */ +	if (se != cfs_rq->curr) +		update_stats_wait_start(cfs_rq, se); +} + +static void +update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, +			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start)); +	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); +	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + +			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); +#ifdef CONFIG_SCHEDSTATS +	if (entity_is_task(se)) { +		trace_sched_stat_wait(task_of(se), +			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); +	} +#endif +	schedstat_set(se->statistics.wait_start, 0); +} + +static inline void +update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	/* +	 * Mark the end of the wait period if dequeueing a +	 * waiting task: +	 */ +	if (se != cfs_rq->curr) +		update_stats_wait_end(cfs_rq, se); +} + +/* + * We are picking a new current task - update its stats: + */ +static inline void +update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	/* +	 * We are starting a new run period: +	 */ +	se->exec_start = rq_clock_task(rq_of(cfs_rq)); +} + +/************************************************** + * Scheduling class queueing methods: + */ + +#ifdef CONFIG_NUMA_BALANCING +/* + * Approximate time to scan a full NUMA task in ms. The task scan period is + * calculated based on the tasks virtual memory size and + * numa_balancing_scan_size. + */ +unsigned int sysctl_numa_balancing_scan_period_min = 1000; +unsigned int sysctl_numa_balancing_scan_period_max = 60000; + +/* Portion of address space to scan in MB */ +unsigned int sysctl_numa_balancing_scan_size = 256; + +/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ +unsigned int sysctl_numa_balancing_scan_delay = 1000; + +static unsigned int task_nr_scan_windows(struct task_struct *p) +{ +	unsigned long rss = 0; +	unsigned long nr_scan_pages; + +	/* +	 * Calculations based on RSS as non-present and empty pages are skipped +	 * by the PTE scanner and NUMA hinting faults should be trapped based +	 * on resident pages +	 */ +	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); +	rss = get_mm_rss(p->mm); +	if (!rss) +		rss = nr_scan_pages; + +	rss = round_up(rss, nr_scan_pages); +	return rss / nr_scan_pages; +} + +/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ +#define MAX_SCAN_WINDOW 2560 + +static unsigned int task_scan_min(struct task_struct *p) +{ +	unsigned int scan, floor; +	unsigned int windows = 1; + +	if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW) +		windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size; +	floor = 1000 / windows; + +	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); +	return max_t(unsigned int, floor, scan); +} + +static unsigned int task_scan_max(struct task_struct *p) +{ +	unsigned int smin = task_scan_min(p); +	unsigned int smax; + +	/* Watch for min being lower than max due to floor calculations */ +	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); +	return max(smin, smax); +} + +static void account_numa_enqueue(struct rq *rq, struct task_struct *p) +{ +	rq->nr_numa_running += (p->numa_preferred_nid != -1); +	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); +} + +static void account_numa_dequeue(struct rq *rq, struct task_struct *p) +{ +	rq->nr_numa_running -= (p->numa_preferred_nid != -1); +	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); +} + +struct numa_group { +	atomic_t refcount; + +	spinlock_t lock; /* nr_tasks, tasks */ +	int nr_tasks; +	pid_t gid; +	struct list_head task_list; + +	struct rcu_head rcu; +	nodemask_t active_nodes; +	unsigned long total_faults; +	/* +	 * Faults_cpu is used to decide whether memory should move +	 * towards the CPU. As a consequence, these stats are weighted +	 * more by CPU use than by memory faults. +	 */ +	unsigned long *faults_cpu; +	unsigned long faults[0]; +}; + +/* Shared or private faults. */ +#define NR_NUMA_HINT_FAULT_TYPES 2 + +/* Memory and CPU locality */ +#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) + +/* Averaged statistics, and temporary buffers. */ +#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) + +pid_t task_numa_group_id(struct task_struct *p) +{ +	return p->numa_group ? p->numa_group->gid : 0; +} + +static inline int task_faults_idx(int nid, int priv) +{ +	return NR_NUMA_HINT_FAULT_TYPES * nid + priv; +} + +static inline unsigned long task_faults(struct task_struct *p, int nid) +{ +	if (!p->numa_faults_memory) +		return 0; + +	return p->numa_faults_memory[task_faults_idx(nid, 0)] + +		p->numa_faults_memory[task_faults_idx(nid, 1)]; +} + +static inline unsigned long group_faults(struct task_struct *p, int nid) +{ +	if (!p->numa_group) +		return 0; + +	return p->numa_group->faults[task_faults_idx(nid, 0)] + +		p->numa_group->faults[task_faults_idx(nid, 1)]; +} + +static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) +{ +	return group->faults_cpu[task_faults_idx(nid, 0)] + +		group->faults_cpu[task_faults_idx(nid, 1)]; +} + +/* + * These return the fraction of accesses done by a particular task, or + * task group, on a particular numa node.  The group weight is given a + * larger multiplier, in order to group tasks together that are almost + * evenly spread out between numa nodes. + */ +static inline unsigned long task_weight(struct task_struct *p, int nid) +{ +	unsigned long total_faults; + +	if (!p->numa_faults_memory) +		return 0; + +	total_faults = p->total_numa_faults; + +	if (!total_faults) +		return 0; + +	return 1000 * task_faults(p, nid) / total_faults; +} + +static inline unsigned long group_weight(struct task_struct *p, int nid) +{ +	if (!p->numa_group || !p->numa_group->total_faults) +		return 0; + +	return 1000 * group_faults(p, nid) / p->numa_group->total_faults; +} + +bool should_numa_migrate_memory(struct task_struct *p, struct page * page, +				int src_nid, int dst_cpu) +{ +	struct numa_group *ng = p->numa_group; +	int dst_nid = cpu_to_node(dst_cpu); +	int last_cpupid, this_cpupid; + +	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); + +	/* +	 * Multi-stage node selection is used in conjunction with a periodic +	 * migration fault to build a temporal task<->page relation. By using +	 * a two-stage filter we remove short/unlikely relations. +	 * +	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate +	 * a task's usage of a particular page (n_p) per total usage of this +	 * page (n_t) (in a given time-span) to a probability. +	 * +	 * Our periodic faults will sample this probability and getting the +	 * same result twice in a row, given these samples are fully +	 * independent, is then given by P(n)^2, provided our sample period +	 * is sufficiently short compared to the usage pattern. +	 * +	 * This quadric squishes small probabilities, making it less likely we +	 * act on an unlikely task<->page relation. +	 */ +	last_cpupid = page_cpupid_xchg_last(page, this_cpupid); +	if (!cpupid_pid_unset(last_cpupid) && +				cpupid_to_nid(last_cpupid) != dst_nid) +		return false; + +	/* Always allow migrate on private faults */ +	if (cpupid_match_pid(p, last_cpupid)) +		return true; + +	/* A shared fault, but p->numa_group has not been set up yet. */ +	if (!ng) +		return true; + +	/* +	 * Do not migrate if the destination is not a node that +	 * is actively used by this numa group. +	 */ +	if (!node_isset(dst_nid, ng->active_nodes)) +		return false; + +	/* +	 * Source is a node that is not actively used by this +	 * numa group, while the destination is. Migrate. +	 */ +	if (!node_isset(src_nid, ng->active_nodes)) +		return true; + +	/* +	 * Both source and destination are nodes in active +	 * use by this numa group. Maximize memory bandwidth +	 * by migrating from more heavily used groups, to less +	 * heavily used ones, spreading the load around. +	 * Use a 1/4 hysteresis to avoid spurious page movement. +	 */ +	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4); +} + +static unsigned long weighted_cpuload(const int cpu); +static unsigned long source_load(int cpu, int type); +static unsigned long target_load(int cpu, int type); +static unsigned long capacity_of(int cpu); +static long effective_load(struct task_group *tg, int cpu, long wl, long wg); + +/* Cached statistics for all CPUs within a node */ +struct numa_stats { +	unsigned long nr_running; +	unsigned long load; + +	/* Total compute capacity of CPUs on a node */ +	unsigned long compute_capacity; + +	/* Approximate capacity in terms of runnable tasks on a node */ +	unsigned long task_capacity; +	int has_free_capacity; +}; + +/* + * XXX borrowed from update_sg_lb_stats + */ +static void update_numa_stats(struct numa_stats *ns, int nid) +{ +	int cpu, cpus = 0; + +	memset(ns, 0, sizeof(*ns)); +	for_each_cpu(cpu, cpumask_of_node(nid)) { +		struct rq *rq = cpu_rq(cpu); + +		ns->nr_running += rq->nr_running; +		ns->load += weighted_cpuload(cpu); +		ns->compute_capacity += capacity_of(cpu); + +		cpus++; +	} + +	/* +	 * If we raced with hotplug and there are no CPUs left in our mask +	 * the @ns structure is NULL'ed and task_numa_compare() will +	 * not find this node attractive. +	 * +	 * We'll either bail at !has_free_capacity, or we'll detect a huge +	 * imbalance and bail there. +	 */ +	if (!cpus) +		return; + +	ns->load = (ns->load * SCHED_CAPACITY_SCALE) / ns->compute_capacity; +	ns->task_capacity = +		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE); +	ns->has_free_capacity = (ns->nr_running < ns->task_capacity); +} + +struct task_numa_env { +	struct task_struct *p; + +	int src_cpu, src_nid; +	int dst_cpu, dst_nid; + +	struct numa_stats src_stats, dst_stats; + +	int imbalance_pct; + +	struct task_struct *best_task; +	long best_imp; +	int best_cpu; +}; + +static void task_numa_assign(struct task_numa_env *env, +			     struct task_struct *p, long imp) +{ +	if (env->best_task) +		put_task_struct(env->best_task); +	if (p) +		get_task_struct(p); + +	env->best_task = p; +	env->best_imp = imp; +	env->best_cpu = env->dst_cpu; +} + +static bool load_too_imbalanced(long orig_src_load, long orig_dst_load, +				long src_load, long dst_load, +				struct task_numa_env *env) +{ +	long imb, old_imb; + +	/* We care about the slope of the imbalance, not the direction. */ +	if (dst_load < src_load) +		swap(dst_load, src_load); + +	/* Is the difference below the threshold? */ +	imb = dst_load * 100 - src_load * env->imbalance_pct; +	if (imb <= 0) +		return false; + +	/* +	 * The imbalance is above the allowed threshold. +	 * Compare it with the old imbalance. +	 */ +	if (orig_dst_load < orig_src_load) +		swap(orig_dst_load, orig_src_load); + +	old_imb = orig_dst_load * 100 - orig_src_load * env->imbalance_pct; + +	/* Would this change make things worse? */ +	return (imb > old_imb); +} + +/* + * This checks if the overall compute and NUMA accesses of the system would + * be improved if the source tasks was migrated to the target dst_cpu taking + * into account that it might be best if task running on the dst_cpu should + * be exchanged with the source task + */ +static void task_numa_compare(struct task_numa_env *env, +			      long taskimp, long groupimp) +{ +	struct rq *src_rq = cpu_rq(env->src_cpu); +	struct rq *dst_rq = cpu_rq(env->dst_cpu); +	struct task_struct *cur; +	long orig_src_load, src_load; +	long orig_dst_load, dst_load; +	long load; +	long imp = (groupimp > 0) ? groupimp : taskimp; + +	rcu_read_lock(); +	cur = ACCESS_ONCE(dst_rq->curr); +	if (cur->pid == 0) /* idle */ +		cur = NULL; + +	/* +	 * "imp" is the fault differential for the source task between the +	 * source and destination node. Calculate the total differential for +	 * the source task and potential destination task. The more negative +	 * the value is, the more rmeote accesses that would be expected to +	 * be incurred if the tasks were swapped. +	 */ +	if (cur) { +		/* Skip this swap candidate if cannot move to the source cpu */ +		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) +			goto unlock; + +		/* +		 * If dst and source tasks are in the same NUMA group, or not +		 * in any group then look only at task weights. +		 */ +		if (cur->numa_group == env->p->numa_group) { +			imp = taskimp + task_weight(cur, env->src_nid) - +			      task_weight(cur, env->dst_nid); +			/* +			 * Add some hysteresis to prevent swapping the +			 * tasks within a group over tiny differences. +			 */ +			if (cur->numa_group) +				imp -= imp/16; +		} else { +			/* +			 * Compare the group weights. If a task is all by +			 * itself (not part of a group), use the task weight +			 * instead. +			 */ +			if (env->p->numa_group) +				imp = groupimp; +			else +				imp = taskimp; + +			if (cur->numa_group) +				imp += group_weight(cur, env->src_nid) - +				       group_weight(cur, env->dst_nid); +			else +				imp += task_weight(cur, env->src_nid) - +				       task_weight(cur, env->dst_nid); +		} +	} + +	if (imp < env->best_imp) +		goto unlock; + +	if (!cur) { +		/* Is there capacity at our destination? */ +		if (env->src_stats.has_free_capacity && +		    !env->dst_stats.has_free_capacity) +			goto unlock; + +		goto balance; +	} + +	/* Balance doesn't matter much if we're running a task per cpu */ +	if (src_rq->nr_running == 1 && dst_rq->nr_running == 1) +		goto assign; + +	/* +	 * In the overloaded case, try and keep the load balanced. +	 */ +balance: +	orig_dst_load = env->dst_stats.load; +	orig_src_load = env->src_stats.load; + +	/* XXX missing capacity terms */ +	load = task_h_load(env->p); +	dst_load = orig_dst_load + load; +	src_load = orig_src_load - load; + +	if (cur) { +		load = task_h_load(cur); +		dst_load -= load; +		src_load += load; +	} + +	if (load_too_imbalanced(orig_src_load, orig_dst_load, +				src_load, dst_load, env)) +		goto unlock; + +assign: +	task_numa_assign(env, cur, imp); +unlock: +	rcu_read_unlock(); +} + +static void task_numa_find_cpu(struct task_numa_env *env, +				long taskimp, long groupimp) +{ +	int cpu; + +	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { +		/* Skip this CPU if the source task cannot migrate */ +		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) +			continue; + +		env->dst_cpu = cpu; +		task_numa_compare(env, taskimp, groupimp); +	} +} + +static int task_numa_migrate(struct task_struct *p) +{ +	struct task_numa_env env = { +		.p = p, + +		.src_cpu = task_cpu(p), +		.src_nid = task_node(p), + +		.imbalance_pct = 112, + +		.best_task = NULL, +		.best_imp = 0, +		.best_cpu = -1 +	}; +	struct sched_domain *sd; +	unsigned long taskweight, groupweight; +	int nid, ret; +	long taskimp, groupimp; + +	/* +	 * Pick the lowest SD_NUMA domain, as that would have the smallest +	 * imbalance and would be the first to start moving tasks about. +	 * +	 * And we want to avoid any moving of tasks about, as that would create +	 * random movement of tasks -- counter the numa conditions we're trying +	 * to satisfy here. +	 */ +	rcu_read_lock(); +	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); +	if (sd) +		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; +	rcu_read_unlock(); + +	/* +	 * Cpusets can break the scheduler domain tree into smaller +	 * balance domains, some of which do not cross NUMA boundaries. +	 * Tasks that are "trapped" in such domains cannot be migrated +	 * elsewhere, so there is no point in (re)trying. +	 */ +	if (unlikely(!sd)) { +		p->numa_preferred_nid = task_node(p); +		return -EINVAL; +	} + +	taskweight = task_weight(p, env.src_nid); +	groupweight = group_weight(p, env.src_nid); +	update_numa_stats(&env.src_stats, env.src_nid); +	env.dst_nid = p->numa_preferred_nid; +	taskimp = task_weight(p, env.dst_nid) - taskweight; +	groupimp = group_weight(p, env.dst_nid) - groupweight; +	update_numa_stats(&env.dst_stats, env.dst_nid); + +	/* If the preferred nid has free capacity, try to use it. */ +	if (env.dst_stats.has_free_capacity) +		task_numa_find_cpu(&env, taskimp, groupimp); + +	/* No space available on the preferred nid. Look elsewhere. */ +	if (env.best_cpu == -1) { +		for_each_online_node(nid) { +			if (nid == env.src_nid || nid == p->numa_preferred_nid) +				continue; + +			/* Only consider nodes where both task and groups benefit */ +			taskimp = task_weight(p, nid) - taskweight; +			groupimp = group_weight(p, nid) - groupweight; +			if (taskimp < 0 && groupimp < 0) +				continue; + +			env.dst_nid = nid; +			update_numa_stats(&env.dst_stats, env.dst_nid); +			task_numa_find_cpu(&env, taskimp, groupimp); +		} +	} + +	/* No better CPU than the current one was found. */ +	if (env.best_cpu == -1) +		return -EAGAIN; + +	/* +	 * If the task is part of a workload that spans multiple NUMA nodes, +	 * and is migrating into one of the workload's active nodes, remember +	 * this node as the task's preferred numa node, so the workload can +	 * settle down. +	 * A task that migrated to a second choice node will be better off +	 * trying for a better one later. Do not set the preferred node here. +	 */ +	if (p->numa_group && node_isset(env.dst_nid, p->numa_group->active_nodes)) +		sched_setnuma(p, env.dst_nid); + +	/* +	 * Reset the scan period if the task is being rescheduled on an +	 * alternative node to recheck if the tasks is now properly placed. +	 */ +	p->numa_scan_period = task_scan_min(p); + +	if (env.best_task == NULL) { +		ret = migrate_task_to(p, env.best_cpu); +		if (ret != 0) +			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); +		return ret; +	} + +	ret = migrate_swap(p, env.best_task); +	if (ret != 0) +		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); +	put_task_struct(env.best_task); +	return ret; +} + +/* Attempt to migrate a task to a CPU on the preferred node. */ +static void numa_migrate_preferred(struct task_struct *p) +{ +	unsigned long interval = HZ; + +	/* This task has no NUMA fault statistics yet */ +	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory)) +		return; + +	/* Periodically retry migrating the task to the preferred node */ +	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); +	p->numa_migrate_retry = jiffies + interval; + +	/* Success if task is already running on preferred CPU */ +	if (task_node(p) == p->numa_preferred_nid) +		return; + +	/* Otherwise, try migrate to a CPU on the preferred node */ +	task_numa_migrate(p); +} + +/* + * Find the nodes on which the workload is actively running. We do this by + * tracking the nodes from which NUMA hinting faults are triggered. This can + * be different from the set of nodes where the workload's memory is currently + * located. + * + * The bitmask is used to make smarter decisions on when to do NUMA page + * migrations, To prevent flip-flopping, and excessive page migrations, nodes + * are added when they cause over 6/16 of the maximum number of faults, but + * only removed when they drop below 3/16. + */ +static void update_numa_active_node_mask(struct numa_group *numa_group) +{ +	unsigned long faults, max_faults = 0; +	int nid; + +	for_each_online_node(nid) { +		faults = group_faults_cpu(numa_group, nid); +		if (faults > max_faults) +			max_faults = faults; +	} + +	for_each_online_node(nid) { +		faults = group_faults_cpu(numa_group, nid); +		if (!node_isset(nid, numa_group->active_nodes)) { +			if (faults > max_faults * 6 / 16) +				node_set(nid, numa_group->active_nodes); +		} else if (faults < max_faults * 3 / 16) +			node_clear(nid, numa_group->active_nodes); +	} +} + +/* + * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS + * increments. The more local the fault statistics are, the higher the scan + * period will be for the next scan window. If local/remote ratio is below + * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the + * scan period will decrease + */ +#define NUMA_PERIOD_SLOTS 10 +#define NUMA_PERIOD_THRESHOLD 3 + +/* + * Increase the scan period (slow down scanning) if the majority of + * our memory is already on our local node, or if the majority of + * the page accesses are shared with other processes. + * Otherwise, decrease the scan period. + */ +static void update_task_scan_period(struct task_struct *p, +			unsigned long shared, unsigned long private) +{ +	unsigned int period_slot; +	int ratio; +	int diff; + +	unsigned long remote = p->numa_faults_locality[0]; +	unsigned long local = p->numa_faults_locality[1]; + +	/* +	 * If there were no record hinting faults then either the task is +	 * completely idle or all activity is areas that are not of interest +	 * to automatic numa balancing. Scan slower +	 */ +	if (local + shared == 0) { +		p->numa_scan_period = min(p->numa_scan_period_max, +			p->numa_scan_period << 1); + +		p->mm->numa_next_scan = jiffies + +			msecs_to_jiffies(p->numa_scan_period); + +		return; +	} + +	/* +	 * Prepare to scale scan period relative to the current period. +	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same +	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) +	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) +	 */ +	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); +	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); +	if (ratio >= NUMA_PERIOD_THRESHOLD) { +		int slot = ratio - NUMA_PERIOD_THRESHOLD; +		if (!slot) +			slot = 1; +		diff = slot * period_slot; +	} else { +		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; + +		/* +		 * Scale scan rate increases based on sharing. There is an +		 * inverse relationship between the degree of sharing and +		 * the adjustment made to the scanning period. Broadly +		 * speaking the intent is that there is little point +		 * scanning faster if shared accesses dominate as it may +		 * simply bounce migrations uselessly +		 */ +		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared)); +		diff = (diff * ratio) / NUMA_PERIOD_SLOTS; +	} + +	p->numa_scan_period = clamp(p->numa_scan_period + diff, +			task_scan_min(p), task_scan_max(p)); +	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); +} + +/* + * Get the fraction of time the task has been running since the last + * NUMA placement cycle. The scheduler keeps similar statistics, but + * decays those on a 32ms period, which is orders of magnitude off + * from the dozens-of-seconds NUMA balancing period. Use the scheduler + * stats only if the task is so new there are no NUMA statistics yet. + */ +static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) +{ +	u64 runtime, delta, now; +	/* Use the start of this time slice to avoid calculations. */ +	now = p->se.exec_start; +	runtime = p->se.sum_exec_runtime; + +	if (p->last_task_numa_placement) { +		delta = runtime - p->last_sum_exec_runtime; +		*period = now - p->last_task_numa_placement; +	} else { +		delta = p->se.avg.runnable_avg_sum; +		*period = p->se.avg.runnable_avg_period; +	} + +	p->last_sum_exec_runtime = runtime; +	p->last_task_numa_placement = now; + +	return delta; +} + +static void task_numa_placement(struct task_struct *p) +{ +	int seq, nid, max_nid = -1, max_group_nid = -1; +	unsigned long max_faults = 0, max_group_faults = 0; +	unsigned long fault_types[2] = { 0, 0 }; +	unsigned long total_faults; +	u64 runtime, period; +	spinlock_t *group_lock = NULL; + +	seq = ACCESS_ONCE(p->mm->numa_scan_seq); +	if (p->numa_scan_seq == seq) +		return; +	p->numa_scan_seq = seq; +	p->numa_scan_period_max = task_scan_max(p); + +	total_faults = p->numa_faults_locality[0] + +		       p->numa_faults_locality[1]; +	runtime = numa_get_avg_runtime(p, &period); + +	/* If the task is part of a group prevent parallel updates to group stats */ +	if (p->numa_group) { +		group_lock = &p->numa_group->lock; +		spin_lock_irq(group_lock); +	} + +	/* Find the node with the highest number of faults */ +	for_each_online_node(nid) { +		unsigned long faults = 0, group_faults = 0; +		int priv, i; + +		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { +			long diff, f_diff, f_weight; + +			i = task_faults_idx(nid, priv); + +			/* Decay existing window, copy faults since last scan */ +			diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2; +			fault_types[priv] += p->numa_faults_buffer_memory[i]; +			p->numa_faults_buffer_memory[i] = 0; + +			/* +			 * Normalize the faults_from, so all tasks in a group +			 * count according to CPU use, instead of by the raw +			 * number of faults. Tasks with little runtime have +			 * little over-all impact on throughput, and thus their +			 * faults are less important. +			 */ +			f_weight = div64_u64(runtime << 16, period + 1); +			f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) / +				   (total_faults + 1); +			f_diff = f_weight - p->numa_faults_cpu[i] / 2; +			p->numa_faults_buffer_cpu[i] = 0; + +			p->numa_faults_memory[i] += diff; +			p->numa_faults_cpu[i] += f_diff; +			faults += p->numa_faults_memory[i]; +			p->total_numa_faults += diff; +			if (p->numa_group) { +				/* safe because we can only change our own group */ +				p->numa_group->faults[i] += diff; +				p->numa_group->faults_cpu[i] += f_diff; +				p->numa_group->total_faults += diff; +				group_faults += p->numa_group->faults[i]; +			} +		} + +		if (faults > max_faults) { +			max_faults = faults; +			max_nid = nid; +		} + +		if (group_faults > max_group_faults) { +			max_group_faults = group_faults; +			max_group_nid = nid; +		} +	} + +	update_task_scan_period(p, fault_types[0], fault_types[1]); + +	if (p->numa_group) { +		update_numa_active_node_mask(p->numa_group); +		/* +		 * If the preferred task and group nids are different, +		 * iterate over the nodes again to find the best place. +		 */ +		if (max_nid != max_group_nid) { +			unsigned long weight, max_weight = 0; + +			for_each_online_node(nid) { +				weight = task_weight(p, nid) + group_weight(p, nid); +				if (weight > max_weight) { +					max_weight = weight; +					max_nid = nid; +				} +			} +		} + +		spin_unlock_irq(group_lock); +	} + +	/* Preferred node as the node with the most faults */ +	if (max_faults && max_nid != p->numa_preferred_nid) { +		/* Update the preferred nid and migrate task if possible */ +		sched_setnuma(p, max_nid); +		numa_migrate_preferred(p); +	} +} + +static inline int get_numa_group(struct numa_group *grp) +{ +	return atomic_inc_not_zero(&grp->refcount); +} + +static inline void put_numa_group(struct numa_group *grp) +{ +	if (atomic_dec_and_test(&grp->refcount)) +		kfree_rcu(grp, rcu); +} + +static void task_numa_group(struct task_struct *p, int cpupid, int flags, +			int *priv) +{ +	struct numa_group *grp, *my_grp; +	struct task_struct *tsk; +	bool join = false; +	int cpu = cpupid_to_cpu(cpupid); +	int i; + +	if (unlikely(!p->numa_group)) { +		unsigned int size = sizeof(struct numa_group) + +				    4*nr_node_ids*sizeof(unsigned long); + +		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); +		if (!grp) +			return; + +		atomic_set(&grp->refcount, 1); +		spin_lock_init(&grp->lock); +		INIT_LIST_HEAD(&grp->task_list); +		grp->gid = p->pid; +		/* Second half of the array tracks nids where faults happen */ +		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * +						nr_node_ids; + +		node_set(task_node(current), grp->active_nodes); + +		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) +			grp->faults[i] = p->numa_faults_memory[i]; + +		grp->total_faults = p->total_numa_faults; + +		list_add(&p->numa_entry, &grp->task_list); +		grp->nr_tasks++; +		rcu_assign_pointer(p->numa_group, grp); +	} + +	rcu_read_lock(); +	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr); + +	if (!cpupid_match_pid(tsk, cpupid)) +		goto no_join; + +	grp = rcu_dereference(tsk->numa_group); +	if (!grp) +		goto no_join; + +	my_grp = p->numa_group; +	if (grp == my_grp) +		goto no_join; + +	/* +	 * Only join the other group if its bigger; if we're the bigger group, +	 * the other task will join us. +	 */ +	if (my_grp->nr_tasks > grp->nr_tasks) +		goto no_join; + +	/* +	 * Tie-break on the grp address. +	 */ +	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) +		goto no_join; + +	/* Always join threads in the same process. */ +	if (tsk->mm == current->mm) +		join = true; + +	/* Simple filter to avoid false positives due to PID collisions */ +	if (flags & TNF_SHARED) +		join = true; + +	/* Update priv based on whether false sharing was detected */ +	*priv = !join; + +	if (join && !get_numa_group(grp)) +		goto no_join; + +	rcu_read_unlock(); + +	if (!join) +		return; + +	BUG_ON(irqs_disabled()); +	double_lock_irq(&my_grp->lock, &grp->lock); + +	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { +		my_grp->faults[i] -= p->numa_faults_memory[i]; +		grp->faults[i] += p->numa_faults_memory[i]; +	} +	my_grp->total_faults -= p->total_numa_faults; +	grp->total_faults += p->total_numa_faults; + +	list_move(&p->numa_entry, &grp->task_list); +	my_grp->nr_tasks--; +	grp->nr_tasks++; + +	spin_unlock(&my_grp->lock); +	spin_unlock_irq(&grp->lock); + +	rcu_assign_pointer(p->numa_group, grp); + +	put_numa_group(my_grp); +	return; + +no_join: +	rcu_read_unlock(); +	return; +} + +void task_numa_free(struct task_struct *p) +{ +	struct numa_group *grp = p->numa_group; +	void *numa_faults = p->numa_faults_memory; +	unsigned long flags; +	int i; + +	if (grp) { +		spin_lock_irqsave(&grp->lock, flags); +		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) +			grp->faults[i] -= p->numa_faults_memory[i]; +		grp->total_faults -= p->total_numa_faults; + +		list_del(&p->numa_entry); +		grp->nr_tasks--; +		spin_unlock_irqrestore(&grp->lock, flags); +		rcu_assign_pointer(p->numa_group, NULL); +		put_numa_group(grp); +	} + +	p->numa_faults_memory = NULL; +	p->numa_faults_buffer_memory = NULL; +	p->numa_faults_cpu= NULL; +	p->numa_faults_buffer_cpu = NULL; +	kfree(numa_faults); +} + +/* + * Got a PROT_NONE fault for a page on @node. + */ +void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) +{ +	struct task_struct *p = current; +	bool migrated = flags & TNF_MIGRATED; +	int cpu_node = task_node(current); +	int local = !!(flags & TNF_FAULT_LOCAL); +	int priv; + +	if (!numabalancing_enabled) +		return; + +	/* for example, ksmd faulting in a user's mm */ +	if (!p->mm) +		return; + +	/* Do not worry about placement if exiting */ +	if (p->state == TASK_DEAD) +		return; + +	/* Allocate buffer to track faults on a per-node basis */ +	if (unlikely(!p->numa_faults_memory)) { +		int size = sizeof(*p->numa_faults_memory) * +			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; + +		p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); +		if (!p->numa_faults_memory) +			return; + +		BUG_ON(p->numa_faults_buffer_memory); +		/* +		 * The averaged statistics, shared & private, memory & cpu, +		 * occupy the first half of the array. The second half of the +		 * array is for current counters, which are averaged into the +		 * first set by task_numa_placement. +		 */ +		p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids); +		p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids); +		p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids); +		p->total_numa_faults = 0; +		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); +	} + +	/* +	 * First accesses are treated as private, otherwise consider accesses +	 * to be private if the accessing pid has not changed +	 */ +	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { +		priv = 1; +	} else { +		priv = cpupid_match_pid(p, last_cpupid); +		if (!priv && !(flags & TNF_NO_GROUP)) +			task_numa_group(p, last_cpupid, flags, &priv); +	} + +	/* +	 * If a workload spans multiple NUMA nodes, a shared fault that +	 * occurs wholly within the set of nodes that the workload is +	 * actively using should be counted as local. This allows the +	 * scan rate to slow down when a workload has settled down. +	 */ +	if (!priv && !local && p->numa_group && +			node_isset(cpu_node, p->numa_group->active_nodes) && +			node_isset(mem_node, p->numa_group->active_nodes)) +		local = 1; + +	task_numa_placement(p); + +	/* +	 * Retry task to preferred node migration periodically, in case it +	 * case it previously failed, or the scheduler moved us. +	 */ +	if (time_after(jiffies, p->numa_migrate_retry)) +		numa_migrate_preferred(p); + +	if (migrated) +		p->numa_pages_migrated += pages; + +	p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages; +	p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages; +	p->numa_faults_locality[local] += pages; +} + +static void reset_ptenuma_scan(struct task_struct *p) +{ +	ACCESS_ONCE(p->mm->numa_scan_seq)++; +	p->mm->numa_scan_offset = 0; +} + +/* + * The expensive part of numa migration is done from task_work context. + * Triggered from task_tick_numa(). + */ +void task_numa_work(struct callback_head *work) +{ +	unsigned long migrate, next_scan, now = jiffies; +	struct task_struct *p = current; +	struct mm_struct *mm = p->mm; +	struct vm_area_struct *vma; +	unsigned long start, end; +	unsigned long nr_pte_updates = 0; +	long pages; + +	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); + +	work->next = work; /* protect against double add */ +	/* +	 * Who cares about NUMA placement when they're dying. +	 * +	 * NOTE: make sure not to dereference p->mm before this check, +	 * exit_task_work() happens _after_ exit_mm() so we could be called +	 * without p->mm even though we still had it when we enqueued this +	 * work. +	 */ +	if (p->flags & PF_EXITING) +		return; + +	if (!mm->numa_next_scan) { +		mm->numa_next_scan = now + +			msecs_to_jiffies(sysctl_numa_balancing_scan_delay); +	} + +	/* +	 * Enforce maximal scan/migration frequency.. +	 */ +	migrate = mm->numa_next_scan; +	if (time_before(now, migrate)) +		return; + +	if (p->numa_scan_period == 0) { +		p->numa_scan_period_max = task_scan_max(p); +		p->numa_scan_period = task_scan_min(p); +	} + +	next_scan = now + msecs_to_jiffies(p->numa_scan_period); +	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) +		return; + +	/* +	 * Delay this task enough that another task of this mm will likely win +	 * the next time around. +	 */ +	p->node_stamp += 2 * TICK_NSEC; + +	start = mm->numa_scan_offset; +	pages = sysctl_numa_balancing_scan_size; +	pages <<= 20 - PAGE_SHIFT; /* MB in pages */ +	if (!pages) +		return; + +	down_read(&mm->mmap_sem); +	vma = find_vma(mm, start); +	if (!vma) { +		reset_ptenuma_scan(p); +		start = 0; +		vma = mm->mmap; +	} +	for (; vma; vma = vma->vm_next) { +		if (!vma_migratable(vma) || !vma_policy_mof(p, vma)) +			continue; + +		/* +		 * Shared library pages mapped by multiple processes are not +		 * migrated as it is expected they are cache replicated. Avoid +		 * hinting faults in read-only file-backed mappings or the vdso +		 * as migrating the pages will be of marginal benefit. +		 */ +		if (!vma->vm_mm || +		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) +			continue; + +		/* +		 * Skip inaccessible VMAs to avoid any confusion between +		 * PROT_NONE and NUMA hinting ptes +		 */ +		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) +			continue; + +		do { +			start = max(start, vma->vm_start); +			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); +			end = min(end, vma->vm_end); +			nr_pte_updates += change_prot_numa(vma, start, end); + +			/* +			 * Scan sysctl_numa_balancing_scan_size but ensure that +			 * at least one PTE is updated so that unused virtual +			 * address space is quickly skipped. +			 */ +			if (nr_pte_updates) +				pages -= (end - start) >> PAGE_SHIFT; + +			start = end; +			if (pages <= 0) +				goto out; + +			cond_resched(); +		} while (end != vma->vm_end); +	} + +out: +	/* +	 * It is possible to reach the end of the VMA list but the last few +	 * VMAs are not guaranteed to the vma_migratable. If they are not, we +	 * would find the !migratable VMA on the next scan but not reset the +	 * scanner to the start so check it now. +	 */ +	if (vma) +		mm->numa_scan_offset = start; +	else +		reset_ptenuma_scan(p); +	up_read(&mm->mmap_sem); +} + +/* + * Drive the periodic memory faults.. + */ +void task_tick_numa(struct rq *rq, struct task_struct *curr) +{ +	struct callback_head *work = &curr->numa_work; +	u64 period, now; + +	/* +	 * We don't care about NUMA placement if we don't have memory. +	 */ +	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) +		return; + +	/* +	 * Using runtime rather than walltime has the dual advantage that +	 * we (mostly) drive the selection from busy threads and that the +	 * task needs to have done some actual work before we bother with +	 * NUMA placement. +	 */ +	now = curr->se.sum_exec_runtime; +	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; + +	if (now - curr->node_stamp > period) { +		if (!curr->node_stamp) +			curr->numa_scan_period = task_scan_min(curr); +		curr->node_stamp += period; + +		if (!time_before(jiffies, curr->mm->numa_next_scan)) { +			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ +			task_work_add(curr, work, true); +		} +	} +} +#else +static void task_tick_numa(struct rq *rq, struct task_struct *curr) +{ +} + +static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) +{ +} + +static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) +{ +} +#endif /* CONFIG_NUMA_BALANCING */ + +static void +account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	update_load_add(&cfs_rq->load, se->load.weight); +	if (!parent_entity(se)) +		update_load_add(&rq_of(cfs_rq)->load, se->load.weight); +#ifdef CONFIG_SMP +	if (entity_is_task(se)) { +		struct rq *rq = rq_of(cfs_rq); + +		account_numa_enqueue(rq, task_of(se)); +		list_add(&se->group_node, &rq->cfs_tasks); +	} +#endif +	cfs_rq->nr_running++; +} + +static void +account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	update_load_sub(&cfs_rq->load, se->load.weight); +	if (!parent_entity(se)) +		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); +	if (entity_is_task(se)) { +		account_numa_dequeue(rq_of(cfs_rq), task_of(se)); +		list_del_init(&se->group_node); +	} +	cfs_rq->nr_running--; +} + +#ifdef CONFIG_FAIR_GROUP_SCHED +# ifdef CONFIG_SMP +static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) +{ +	long tg_weight; + +	/* +	 * Use this CPU's actual weight instead of the last load_contribution +	 * to gain a more accurate current total weight. See +	 * update_cfs_rq_load_contribution(). +	 */ +	tg_weight = atomic_long_read(&tg->load_avg); +	tg_weight -= cfs_rq->tg_load_contrib; +	tg_weight += cfs_rq->load.weight; + +	return tg_weight; +} + +static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) +{ +	long tg_weight, load, shares; + +	tg_weight = calc_tg_weight(tg, cfs_rq); +	load = cfs_rq->load.weight; + +	shares = (tg->shares * load); +	if (tg_weight) +		shares /= tg_weight; + +	if (shares < MIN_SHARES) +		shares = MIN_SHARES; +	if (shares > tg->shares) +		shares = tg->shares; + +	return shares; +} +# else /* CONFIG_SMP */ +static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) +{ +	return tg->shares; +} +# endif /* CONFIG_SMP */ +static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, +			    unsigned long weight) +{ +	if (se->on_rq) { +		/* commit outstanding execution time */ +		if (cfs_rq->curr == se) +			update_curr(cfs_rq); +		account_entity_dequeue(cfs_rq, se); +	} + +	update_load_set(&se->load, weight); + +	if (se->on_rq) +		account_entity_enqueue(cfs_rq, se); +} + +static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); + +static void update_cfs_shares(struct cfs_rq *cfs_rq) +{ +	struct task_group *tg; +	struct sched_entity *se; +	long shares; + +	tg = cfs_rq->tg; +	se = tg->se[cpu_of(rq_of(cfs_rq))]; +	if (!se || throttled_hierarchy(cfs_rq)) +		return; +#ifndef CONFIG_SMP +	if (likely(se->load.weight == tg->shares)) +		return; +#endif +	shares = calc_cfs_shares(cfs_rq, tg); + +	reweight_entity(cfs_rq_of(se), se, shares); +} +#else /* CONFIG_FAIR_GROUP_SCHED */ +static inline void update_cfs_shares(struct cfs_rq *cfs_rq) +{ +} +#endif /* CONFIG_FAIR_GROUP_SCHED */ + +#ifdef CONFIG_SMP +/* + * We choose a half-life close to 1 scheduling period. + * Note: The tables below are dependent on this value. + */ +#define LOAD_AVG_PERIOD 32 +#define LOAD_AVG_MAX 47742 /* maximum possible load avg */ +#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ + +/* Precomputed fixed inverse multiplies for multiplication by y^n */ +static const u32 runnable_avg_yN_inv[] = { +	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, +	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, +	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, +	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, +	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, +	0x85aac367, 0x82cd8698, +}; + +/* + * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent + * over-estimates when re-combining. + */ +static const u32 runnable_avg_yN_sum[] = { +	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, +	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, +	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, +}; + +/* + * Approximate: + *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period) + */ +static __always_inline u64 decay_load(u64 val, u64 n) +{ +	unsigned int local_n; + +	if (!n) +		return val; +	else if (unlikely(n > LOAD_AVG_PERIOD * 63)) +		return 0; + +	/* after bounds checking we can collapse to 32-bit */ +	local_n = n; + +	/* +	 * As y^PERIOD = 1/2, we can combine +	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD) +	 * With a look-up table which covers k^n (n<PERIOD) +	 * +	 * To achieve constant time decay_load. +	 */ +	if (unlikely(local_n >= LOAD_AVG_PERIOD)) { +		val >>= local_n / LOAD_AVG_PERIOD; +		local_n %= LOAD_AVG_PERIOD; +	} + +	val *= runnable_avg_yN_inv[local_n]; +	/* We don't use SRR here since we always want to round down. */ +	return val >> 32; +} + +/* + * For updates fully spanning n periods, the contribution to runnable + * average will be: \Sum 1024*y^n + * + * We can compute this reasonably efficiently by combining: + *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD} + */ +static u32 __compute_runnable_contrib(u64 n) +{ +	u32 contrib = 0; + +	if (likely(n <= LOAD_AVG_PERIOD)) +		return runnable_avg_yN_sum[n]; +	else if (unlikely(n >= LOAD_AVG_MAX_N)) +		return LOAD_AVG_MAX; + +	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ +	do { +		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ +		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; + +		n -= LOAD_AVG_PERIOD; +	} while (n > LOAD_AVG_PERIOD); + +	contrib = decay_load(contrib, n); +	return contrib + runnable_avg_yN_sum[n]; +} + +/* + * We can represent the historical contribution to runnable average as the + * coefficients of a geometric series.  To do this we sub-divide our runnable + * history into segments of approximately 1ms (1024us); label the segment that + * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. + * + * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... + *      p0            p1           p2 + *     (now)       (~1ms ago)  (~2ms ago) + * + * Let u_i denote the fraction of p_i that the entity was runnable. + * + * We then designate the fractions u_i as our co-efficients, yielding the + * following representation of historical load: + *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... + * + * We choose y based on the with of a reasonably scheduling period, fixing: + *   y^32 = 0.5 + * + * This means that the contribution to load ~32ms ago (u_32) will be weighted + * approximately half as much as the contribution to load within the last ms + * (u_0). + * + * When a period "rolls over" and we have new u_0`, multiplying the previous + * sum again by y is sufficient to update: + *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) + *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] + */ +static __always_inline int __update_entity_runnable_avg(u64 now, +							struct sched_avg *sa, +							int runnable) +{ +	u64 delta, periods; +	u32 runnable_contrib; +	int delta_w, decayed = 0; + +	delta = now - sa->last_runnable_update; +	/* +	 * This should only happen when time goes backwards, which it +	 * unfortunately does during sched clock init when we swap over to TSC. +	 */ +	if ((s64)delta < 0) { +		sa->last_runnable_update = now; +		return 0; +	} + +	/* +	 * Use 1024ns as the unit of measurement since it's a reasonable +	 * approximation of 1us and fast to compute. +	 */ +	delta >>= 10; +	if (!delta) +		return 0; +	sa->last_runnable_update = now; + +	/* delta_w is the amount already accumulated against our next period */ +	delta_w = sa->runnable_avg_period % 1024; +	if (delta + delta_w >= 1024) { +		/* period roll-over */ +		decayed = 1; + +		/* +		 * Now that we know we're crossing a period boundary, figure +		 * out how much from delta we need to complete the current +		 * period and accrue it. +		 */ +		delta_w = 1024 - delta_w; +		if (runnable) +			sa->runnable_avg_sum += delta_w; +		sa->runnable_avg_period += delta_w; + +		delta -= delta_w; + +		/* Figure out how many additional periods this update spans */ +		periods = delta / 1024; +		delta %= 1024; + +		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum, +						  periods + 1); +		sa->runnable_avg_period = decay_load(sa->runnable_avg_period, +						     periods + 1); + +		/* Efficiently calculate \sum (1..n_period) 1024*y^i */ +		runnable_contrib = __compute_runnable_contrib(periods); +		if (runnable) +			sa->runnable_avg_sum += runnable_contrib; +		sa->runnable_avg_period += runnable_contrib; +	} + +	/* Remainder of delta accrued against u_0` */ +	if (runnable) +		sa->runnable_avg_sum += delta; +	sa->runnable_avg_period += delta; + +	return decayed; +} + +/* Synchronize an entity's decay with its parenting cfs_rq.*/ +static inline u64 __synchronize_entity_decay(struct sched_entity *se) +{ +	struct cfs_rq *cfs_rq = cfs_rq_of(se); +	u64 decays = atomic64_read(&cfs_rq->decay_counter); + +	decays -= se->avg.decay_count; +	if (!decays) +		return 0; + +	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays); +	se->avg.decay_count = 0; + +	return decays; +} + +#ifdef CONFIG_FAIR_GROUP_SCHED +static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, +						 int force_update) +{ +	struct task_group *tg = cfs_rq->tg; +	long tg_contrib; + +	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg; +	tg_contrib -= cfs_rq->tg_load_contrib; + +	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) { +		atomic_long_add(tg_contrib, &tg->load_avg); +		cfs_rq->tg_load_contrib += tg_contrib; +	} +} + +/* + * Aggregate cfs_rq runnable averages into an equivalent task_group + * representation for computing load contributions. + */ +static inline void __update_tg_runnable_avg(struct sched_avg *sa, +						  struct cfs_rq *cfs_rq) +{ +	struct task_group *tg = cfs_rq->tg; +	long contrib; + +	/* The fraction of a cpu used by this cfs_rq */ +	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT, +			  sa->runnable_avg_period + 1); +	contrib -= cfs_rq->tg_runnable_contrib; + +	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) { +		atomic_add(contrib, &tg->runnable_avg); +		cfs_rq->tg_runnable_contrib += contrib; +	} +} + +static inline void __update_group_entity_contrib(struct sched_entity *se) +{ +	struct cfs_rq *cfs_rq = group_cfs_rq(se); +	struct task_group *tg = cfs_rq->tg; +	int runnable_avg; + +	u64 contrib; + +	contrib = cfs_rq->tg_load_contrib * tg->shares; +	se->avg.load_avg_contrib = div_u64(contrib, +				     atomic_long_read(&tg->load_avg) + 1); + +	/* +	 * For group entities we need to compute a correction term in the case +	 * that they are consuming <1 cpu so that we would contribute the same +	 * load as a task of equal weight. +	 * +	 * Explicitly co-ordinating this measurement would be expensive, but +	 * fortunately the sum of each cpus contribution forms a usable +	 * lower-bound on the true value. +	 * +	 * Consider the aggregate of 2 contributions.  Either they are disjoint +	 * (and the sum represents true value) or they are disjoint and we are +	 * understating by the aggregate of their overlap. +	 * +	 * Extending this to N cpus, for a given overlap, the maximum amount we +	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of +	 * cpus that overlap for this interval and w_i is the interval width. +	 * +	 * On a small machine; the first term is well-bounded which bounds the +	 * total error since w_i is a subset of the period.  Whereas on a +	 * larger machine, while this first term can be larger, if w_i is the +	 * of consequential size guaranteed to see n_i*w_i quickly converge to +	 * our upper bound of 1-cpu. +	 */ +	runnable_avg = atomic_read(&tg->runnable_avg); +	if (runnable_avg < NICE_0_LOAD) { +		se->avg.load_avg_contrib *= runnable_avg; +		se->avg.load_avg_contrib >>= NICE_0_SHIFT; +	} +} + +static inline void update_rq_runnable_avg(struct rq *rq, int runnable) +{ +	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable); +	__update_tg_runnable_avg(&rq->avg, &rq->cfs); +} +#else /* CONFIG_FAIR_GROUP_SCHED */ +static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, +						 int force_update) {} +static inline void __update_tg_runnable_avg(struct sched_avg *sa, +						  struct cfs_rq *cfs_rq) {} +static inline void __update_group_entity_contrib(struct sched_entity *se) {} +static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} +#endif /* CONFIG_FAIR_GROUP_SCHED */ + +static inline void __update_task_entity_contrib(struct sched_entity *se) +{ +	u32 contrib; + +	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ +	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight); +	contrib /= (se->avg.runnable_avg_period + 1); +	se->avg.load_avg_contrib = scale_load(contrib); +} + +/* Compute the current contribution to load_avg by se, return any delta */ +static long __update_entity_load_avg_contrib(struct sched_entity *se) +{ +	long old_contrib = se->avg.load_avg_contrib; + +	if (entity_is_task(se)) { +		__update_task_entity_contrib(se); +	} else { +		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se)); +		__update_group_entity_contrib(se); +	} + +	return se->avg.load_avg_contrib - old_contrib; +} + +static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq, +						 long load_contrib) +{ +	if (likely(load_contrib < cfs_rq->blocked_load_avg)) +		cfs_rq->blocked_load_avg -= load_contrib; +	else +		cfs_rq->blocked_load_avg = 0; +} + +static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); + +/* Update a sched_entity's runnable average */ +static inline void update_entity_load_avg(struct sched_entity *se, +					  int update_cfs_rq) +{ +	struct cfs_rq *cfs_rq = cfs_rq_of(se); +	long contrib_delta; +	u64 now; + +	/* +	 * For a group entity we need to use their owned cfs_rq_clock_task() in +	 * case they are the parent of a throttled hierarchy. +	 */ +	if (entity_is_task(se)) +		now = cfs_rq_clock_task(cfs_rq); +	else +		now = cfs_rq_clock_task(group_cfs_rq(se)); + +	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq)) +		return; + +	contrib_delta = __update_entity_load_avg_contrib(se); + +	if (!update_cfs_rq) +		return; + +	if (se->on_rq) +		cfs_rq->runnable_load_avg += contrib_delta; +	else +		subtract_blocked_load_contrib(cfs_rq, -contrib_delta); +} + +/* + * Decay the load contributed by all blocked children and account this so that + * their contribution may appropriately discounted when they wake up. + */ +static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) +{ +	u64 now = cfs_rq_clock_task(cfs_rq) >> 20; +	u64 decays; + +	decays = now - cfs_rq->last_decay; +	if (!decays && !force_update) +		return; + +	if (atomic_long_read(&cfs_rq->removed_load)) { +		unsigned long removed_load; +		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0); +		subtract_blocked_load_contrib(cfs_rq, removed_load); +	} + +	if (decays) { +		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg, +						      decays); +		atomic64_add(decays, &cfs_rq->decay_counter); +		cfs_rq->last_decay = now; +	} + +	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update); +} + +/* Add the load generated by se into cfs_rq's child load-average */ +static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, +						  struct sched_entity *se, +						  int wakeup) +{ +	/* +	 * We track migrations using entity decay_count <= 0, on a wake-up +	 * migration we use a negative decay count to track the remote decays +	 * accumulated while sleeping. +	 * +	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they +	 * are seen by enqueue_entity_load_avg() as a migration with an already +	 * constructed load_avg_contrib. +	 */ +	if (unlikely(se->avg.decay_count <= 0)) { +		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq)); +		if (se->avg.decay_count) { +			/* +			 * In a wake-up migration we have to approximate the +			 * time sleeping.  This is because we can't synchronize +			 * clock_task between the two cpus, and it is not +			 * guaranteed to be read-safe.  Instead, we can +			 * approximate this using our carried decays, which are +			 * explicitly atomically readable. +			 */ +			se->avg.last_runnable_update -= (-se->avg.decay_count) +							<< 20; +			update_entity_load_avg(se, 0); +			/* Indicate that we're now synchronized and on-rq */ +			se->avg.decay_count = 0; +		} +		wakeup = 0; +	} else { +		__synchronize_entity_decay(se); +	} + +	/* migrated tasks did not contribute to our blocked load */ +	if (wakeup) { +		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); +		update_entity_load_avg(se, 0); +	} + +	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib; +	/* we force update consideration on load-balancer moves */ +	update_cfs_rq_blocked_load(cfs_rq, !wakeup); +} + +/* + * Remove se's load from this cfs_rq child load-average, if the entity is + * transitioning to a blocked state we track its projected decay using + * blocked_load_avg. + */ +static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, +						  struct sched_entity *se, +						  int sleep) +{ +	update_entity_load_avg(se, 1); +	/* we force update consideration on load-balancer moves */ +	update_cfs_rq_blocked_load(cfs_rq, !sleep); + +	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib; +	if (sleep) { +		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; +		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); +	} /* migrations, e.g. sleep=0 leave decay_count == 0 */ +} + +/* + * Update the rq's load with the elapsed running time before entering + * idle. if the last scheduled task is not a CFS task, idle_enter will + * be the only way to update the runnable statistic. + */ +void idle_enter_fair(struct rq *this_rq) +{ +	update_rq_runnable_avg(this_rq, 1); +} + +/* + * Update the rq's load with the elapsed idle time before a task is + * scheduled. if the newly scheduled task is not a CFS task, idle_exit will + * be the only way to update the runnable statistic. + */ +void idle_exit_fair(struct rq *this_rq) +{ +	update_rq_runnable_avg(this_rq, 0); +} + +static int idle_balance(struct rq *this_rq); + +#else /* CONFIG_SMP */ + +static inline void update_entity_load_avg(struct sched_entity *se, +					  int update_cfs_rq) {} +static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} +static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, +					   struct sched_entity *se, +					   int wakeup) {} +static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, +					   struct sched_entity *se, +					   int sleep) {} +static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, +					      int force_update) {} + +static inline int idle_balance(struct rq *rq) +{ +	return 0; +} + +#endif /* CONFIG_SMP */ + +static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +#ifdef CONFIG_SCHEDSTATS +	struct task_struct *tsk = NULL; + +	if (entity_is_task(se)) +		tsk = task_of(se); + +	if (se->statistics.sleep_start) { +		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; + +		if ((s64)delta < 0) +			delta = 0; + +		if (unlikely(delta > se->statistics.sleep_max)) +			se->statistics.sleep_max = delta; + +		se->statistics.sleep_start = 0; +		se->statistics.sum_sleep_runtime += delta; + +		if (tsk) { +			account_scheduler_latency(tsk, delta >> 10, 1); +			trace_sched_stat_sleep(tsk, delta); +		} +	} +	if (se->statistics.block_start) { +		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; + +		if ((s64)delta < 0) +			delta = 0; + +		if (unlikely(delta > se->statistics.block_max)) +			se->statistics.block_max = delta; + +		se->statistics.block_start = 0; +		se->statistics.sum_sleep_runtime += delta; + +		if (tsk) { +			if (tsk->in_iowait) { +				se->statistics.iowait_sum += delta; +				se->statistics.iowait_count++; +				trace_sched_stat_iowait(tsk, delta); +			} + +			trace_sched_stat_blocked(tsk, delta); + +			/* +			 * Blocking time is in units of nanosecs, so shift by +			 * 20 to get a milliseconds-range estimation of the +			 * amount of time that the task spent sleeping: +			 */ +			if (unlikely(prof_on == SLEEP_PROFILING)) { +				profile_hits(SLEEP_PROFILING, +						(void *)get_wchan(tsk), +						delta >> 20); +			} +			account_scheduler_latency(tsk, delta >> 10, 0); +		} +	} +#endif +} + +static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +#ifdef CONFIG_SCHED_DEBUG +	s64 d = se->vruntime - cfs_rq->min_vruntime; + +	if (d < 0) +		d = -d; + +	if (d > 3*sysctl_sched_latency) +		schedstat_inc(cfs_rq, nr_spread_over); +#endif +} + +static void +place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) +{ +	u64 vruntime = cfs_rq->min_vruntime; + +	/* +	 * The 'current' period is already promised to the current tasks, +	 * however the extra weight of the new task will slow them down a +	 * little, place the new task so that it fits in the slot that +	 * stays open at the end. +	 */ +	if (initial && sched_feat(START_DEBIT)) +		vruntime += sched_vslice(cfs_rq, se); + +	/* sleeps up to a single latency don't count. */ +	if (!initial) { +		unsigned long thresh = sysctl_sched_latency; + +		/* +		 * Halve their sleep time's effect, to allow +		 * for a gentler effect of sleepers: +		 */ +		if (sched_feat(GENTLE_FAIR_SLEEPERS)) +			thresh >>= 1; + +		vruntime -= thresh; +	} + +	/* ensure we never gain time by being placed backwards. */ +	se->vruntime = max_vruntime(se->vruntime, vruntime); +} + +static void check_enqueue_throttle(struct cfs_rq *cfs_rq); + +static void +enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) +{ +	/* +	 * Update the normalized vruntime before updating min_vruntime +	 * through calling update_curr(). +	 */ +	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) +		se->vruntime += cfs_rq->min_vruntime; + +	/* +	 * Update run-time statistics of the 'current'. +	 */ +	update_curr(cfs_rq); +	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP); +	account_entity_enqueue(cfs_rq, se); +	update_cfs_shares(cfs_rq); + +	if (flags & ENQUEUE_WAKEUP) { +		place_entity(cfs_rq, se, 0); +		enqueue_sleeper(cfs_rq, se); +	} + +	update_stats_enqueue(cfs_rq, se); +	check_spread(cfs_rq, se); +	if (se != cfs_rq->curr) +		__enqueue_entity(cfs_rq, se); +	se->on_rq = 1; + +	if (cfs_rq->nr_running == 1) { +		list_add_leaf_cfs_rq(cfs_rq); +		check_enqueue_throttle(cfs_rq); +	} +} + +static void __clear_buddies_last(struct sched_entity *se) +{ +	for_each_sched_entity(se) { +		struct cfs_rq *cfs_rq = cfs_rq_of(se); +		if (cfs_rq->last != se) +			break; + +		cfs_rq->last = NULL; +	} +} + +static void __clear_buddies_next(struct sched_entity *se) +{ +	for_each_sched_entity(se) { +		struct cfs_rq *cfs_rq = cfs_rq_of(se); +		if (cfs_rq->next != se) +			break; + +		cfs_rq->next = NULL; +	} +} + +static void __clear_buddies_skip(struct sched_entity *se) +{ +	for_each_sched_entity(se) { +		struct cfs_rq *cfs_rq = cfs_rq_of(se); +		if (cfs_rq->skip != se) +			break; + +		cfs_rq->skip = NULL; +	} +} + +static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	if (cfs_rq->last == se) +		__clear_buddies_last(se); + +	if (cfs_rq->next == se) +		__clear_buddies_next(se); + +	if (cfs_rq->skip == se) +		__clear_buddies_skip(se); +} + +static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); + +static void +dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) +{ +	/* +	 * Update run-time statistics of the 'current'. +	 */ +	update_curr(cfs_rq); +	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP); + +	update_stats_dequeue(cfs_rq, se); +	if (flags & DEQUEUE_SLEEP) { +#ifdef CONFIG_SCHEDSTATS +		if (entity_is_task(se)) { +			struct task_struct *tsk = task_of(se); + +			if (tsk->state & TASK_INTERRUPTIBLE) +				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); +			if (tsk->state & TASK_UNINTERRUPTIBLE) +				se->statistics.block_start = rq_clock(rq_of(cfs_rq)); +		} +#endif +	} + +	clear_buddies(cfs_rq, se); + +	if (se != cfs_rq->curr) +		__dequeue_entity(cfs_rq, se); +	se->on_rq = 0; +	account_entity_dequeue(cfs_rq, se); + +	/* +	 * Normalize the entity after updating the min_vruntime because the +	 * update can refer to the ->curr item and we need to reflect this +	 * movement in our normalized position. +	 */ +	if (!(flags & DEQUEUE_SLEEP)) +		se->vruntime -= cfs_rq->min_vruntime; + +	/* return excess runtime on last dequeue */ +	return_cfs_rq_runtime(cfs_rq); + +	update_min_vruntime(cfs_rq); +	update_cfs_shares(cfs_rq); +} + +/* + * Preempt the current task with a newly woken task if needed: + */ +static void +check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) +{ +	unsigned long ideal_runtime, delta_exec; +	struct sched_entity *se; +	s64 delta; + +	ideal_runtime = sched_slice(cfs_rq, curr); +	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; +	if (delta_exec > ideal_runtime) { +		resched_task(rq_of(cfs_rq)->curr); +		/* +		 * The current task ran long enough, ensure it doesn't get +		 * re-elected due to buddy favours. +		 */ +		clear_buddies(cfs_rq, curr); +		return; +	} + +	/* +	 * Ensure that a task that missed wakeup preemption by a +	 * narrow margin doesn't have to wait for a full slice. +	 * This also mitigates buddy induced latencies under load. +	 */ +	if (delta_exec < sysctl_sched_min_granularity) +		return; + +	se = __pick_first_entity(cfs_rq); +	delta = curr->vruntime - se->vruntime; + +	if (delta < 0) +		return; + +	if (delta > ideal_runtime) +		resched_task(rq_of(cfs_rq)->curr); +} + +static void +set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	/* 'current' is not kept within the tree. */ +	if (se->on_rq) { +		/* +		 * Any task has to be enqueued before it get to execute on +		 * a CPU. So account for the time it spent waiting on the +		 * runqueue. +		 */ +		update_stats_wait_end(cfs_rq, se); +		__dequeue_entity(cfs_rq, se); +	} + +	update_stats_curr_start(cfs_rq, se); +	cfs_rq->curr = se; +#ifdef CONFIG_SCHEDSTATS +	/* +	 * Track our maximum slice length, if the CPU's load is at +	 * least twice that of our own weight (i.e. dont track it +	 * when there are only lesser-weight tasks around): +	 */ +	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { +		se->statistics.slice_max = max(se->statistics.slice_max, +			se->sum_exec_runtime - se->prev_sum_exec_runtime); +	} +#endif +	se->prev_sum_exec_runtime = se->sum_exec_runtime; +} + +static int +wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); + +/* + * Pick the next process, keeping these things in mind, in this order: + * 1) keep things fair between processes/task groups + * 2) pick the "next" process, since someone really wants that to run + * 3) pick the "last" process, for cache locality + * 4) do not run the "skip" process, if something else is available + */ +static struct sched_entity * +pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) +{ +	struct sched_entity *left = __pick_first_entity(cfs_rq); +	struct sched_entity *se; + +	/* +	 * If curr is set we have to see if its left of the leftmost entity +	 * still in the tree, provided there was anything in the tree at all. +	 */ +	if (!left || (curr && entity_before(curr, left))) +		left = curr; + +	se = left; /* ideally we run the leftmost entity */ + +	/* +	 * Avoid running the skip buddy, if running something else can +	 * be done without getting too unfair. +	 */ +	if (cfs_rq->skip == se) { +		struct sched_entity *second; + +		if (se == curr) { +			second = __pick_first_entity(cfs_rq); +		} else { +			second = __pick_next_entity(se); +			if (!second || (curr && entity_before(curr, second))) +				second = curr; +		} + +		if (second && wakeup_preempt_entity(second, left) < 1) +			se = second; +	} + +	/* +	 * Prefer last buddy, try to return the CPU to a preempted task. +	 */ +	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) +		se = cfs_rq->last; + +	/* +	 * Someone really wants this to run. If it's not unfair, run it. +	 */ +	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) +		se = cfs_rq->next; + +	clear_buddies(cfs_rq, se); + +	return se; +} + +static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); + +static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) +{ +	/* +	 * If still on the runqueue then deactivate_task() +	 * was not called and update_curr() has to be done: +	 */ +	if (prev->on_rq) +		update_curr(cfs_rq); + +	/* throttle cfs_rqs exceeding runtime */ +	check_cfs_rq_runtime(cfs_rq); + +	check_spread(cfs_rq, prev); +	if (prev->on_rq) { +		update_stats_wait_start(cfs_rq, prev); +		/* Put 'current' back into the tree. */ +		__enqueue_entity(cfs_rq, prev); +		/* in !on_rq case, update occurred at dequeue */ +		update_entity_load_avg(prev, 1); +	} +	cfs_rq->curr = NULL; +} + +static void +entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) +{ +	/* +	 * Update run-time statistics of the 'current'. +	 */ +	update_curr(cfs_rq); + +	/* +	 * Ensure that runnable average is periodically updated. +	 */ +	update_entity_load_avg(curr, 1); +	update_cfs_rq_blocked_load(cfs_rq, 1); +	update_cfs_shares(cfs_rq); + +#ifdef CONFIG_SCHED_HRTICK +	/* +	 * queued ticks are scheduled to match the slice, so don't bother +	 * validating it and just reschedule. +	 */ +	if (queued) { +		resched_task(rq_of(cfs_rq)->curr); +		return; +	} +	/* +	 * don't let the period tick interfere with the hrtick preemption +	 */ +	if (!sched_feat(DOUBLE_TICK) && +			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) +		return; +#endif + +	if (cfs_rq->nr_running > 1) +		check_preempt_tick(cfs_rq, curr); +} + + +/************************************************** + * CFS bandwidth control machinery + */ + +#ifdef CONFIG_CFS_BANDWIDTH + +#ifdef HAVE_JUMP_LABEL +static struct static_key __cfs_bandwidth_used; + +static inline bool cfs_bandwidth_used(void) +{ +	return static_key_false(&__cfs_bandwidth_used); +} + +void cfs_bandwidth_usage_inc(void) +{ +	static_key_slow_inc(&__cfs_bandwidth_used); +} + +void cfs_bandwidth_usage_dec(void) +{ +	static_key_slow_dec(&__cfs_bandwidth_used); +} +#else /* HAVE_JUMP_LABEL */ +static bool cfs_bandwidth_used(void) +{ +	return true; +} + +void cfs_bandwidth_usage_inc(void) {} +void cfs_bandwidth_usage_dec(void) {} +#endif /* HAVE_JUMP_LABEL */ + +/* + * default period for cfs group bandwidth. + * default: 0.1s, units: nanoseconds + */ +static inline u64 default_cfs_period(void) +{ +	return 100000000ULL; +} + +static inline u64 sched_cfs_bandwidth_slice(void) +{ +	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; +} + +/* + * Replenish runtime according to assigned quota and update expiration time. + * We use sched_clock_cpu directly instead of rq->clock to avoid adding + * additional synchronization around rq->lock. + * + * requires cfs_b->lock + */ +void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) +{ +	u64 now; + +	if (cfs_b->quota == RUNTIME_INF) +		return; + +	now = sched_clock_cpu(smp_processor_id()); +	cfs_b->runtime = cfs_b->quota; +	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); +} + +static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) +{ +	return &tg->cfs_bandwidth; +} + +/* rq->task_clock normalized against any time this cfs_rq has spent throttled */ +static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) +{ +	if (unlikely(cfs_rq->throttle_count)) +		return cfs_rq->throttled_clock_task; + +	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; +} + +/* returns 0 on failure to allocate runtime */ +static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) +{ +	struct task_group *tg = cfs_rq->tg; +	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); +	u64 amount = 0, min_amount, expires; + +	/* note: this is a positive sum as runtime_remaining <= 0 */ +	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; + +	raw_spin_lock(&cfs_b->lock); +	if (cfs_b->quota == RUNTIME_INF) +		amount = min_amount; +	else { +		/* +		 * If the bandwidth pool has become inactive, then at least one +		 * period must have elapsed since the last consumption. +		 * Refresh the global state and ensure bandwidth timer becomes +		 * active. +		 */ +		if (!cfs_b->timer_active) { +			__refill_cfs_bandwidth_runtime(cfs_b); +			__start_cfs_bandwidth(cfs_b, false); +		} + +		if (cfs_b->runtime > 0) { +			amount = min(cfs_b->runtime, min_amount); +			cfs_b->runtime -= amount; +			cfs_b->idle = 0; +		} +	} +	expires = cfs_b->runtime_expires; +	raw_spin_unlock(&cfs_b->lock); + +	cfs_rq->runtime_remaining += amount; +	/* +	 * we may have advanced our local expiration to account for allowed +	 * spread between our sched_clock and the one on which runtime was +	 * issued. +	 */ +	if ((s64)(expires - cfs_rq->runtime_expires) > 0) +		cfs_rq->runtime_expires = expires; + +	return cfs_rq->runtime_remaining > 0; +} + +/* + * Note: This depends on the synchronization provided by sched_clock and the + * fact that rq->clock snapshots this value. + */ +static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) +{ +	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); + +	/* if the deadline is ahead of our clock, nothing to do */ +	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) +		return; + +	if (cfs_rq->runtime_remaining < 0) +		return; + +	/* +	 * If the local deadline has passed we have to consider the +	 * possibility that our sched_clock is 'fast' and the global deadline +	 * has not truly expired. +	 * +	 * Fortunately we can check determine whether this the case by checking +	 * whether the global deadline has advanced. It is valid to compare +	 * cfs_b->runtime_expires without any locks since we only care about +	 * exact equality, so a partial write will still work. +	 */ + +	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { +		/* extend local deadline, drift is bounded above by 2 ticks */ +		cfs_rq->runtime_expires += TICK_NSEC; +	} else { +		/* global deadline is ahead, expiration has passed */ +		cfs_rq->runtime_remaining = 0; +	} +} + +static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) +{ +	/* dock delta_exec before expiring quota (as it could span periods) */ +	cfs_rq->runtime_remaining -= delta_exec; +	expire_cfs_rq_runtime(cfs_rq); + +	if (likely(cfs_rq->runtime_remaining > 0)) +		return; + +	/* +	 * if we're unable to extend our runtime we resched so that the active +	 * hierarchy can be throttled +	 */ +	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) +		resched_task(rq_of(cfs_rq)->curr); +} + +static __always_inline +void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) +{ +	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) +		return; + +	__account_cfs_rq_runtime(cfs_rq, delta_exec); +} + +static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) +{ +	return cfs_bandwidth_used() && cfs_rq->throttled; +} + +/* check whether cfs_rq, or any parent, is throttled */ +static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) +{ +	return cfs_bandwidth_used() && cfs_rq->throttle_count; +} + +/* + * Ensure that neither of the group entities corresponding to src_cpu or + * dest_cpu are members of a throttled hierarchy when performing group + * load-balance operations. + */ +static inline int throttled_lb_pair(struct task_group *tg, +				    int src_cpu, int dest_cpu) +{ +	struct cfs_rq *src_cfs_rq, *dest_cfs_rq; + +	src_cfs_rq = tg->cfs_rq[src_cpu]; +	dest_cfs_rq = tg->cfs_rq[dest_cpu]; + +	return throttled_hierarchy(src_cfs_rq) || +	       throttled_hierarchy(dest_cfs_rq); +} + +/* updated child weight may affect parent so we have to do this bottom up */ +static int tg_unthrottle_up(struct task_group *tg, void *data) +{ +	struct rq *rq = data; +	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; + +	cfs_rq->throttle_count--; +#ifdef CONFIG_SMP +	if (!cfs_rq->throttle_count) { +		/* adjust cfs_rq_clock_task() */ +		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - +					     cfs_rq->throttled_clock_task; +	} +#endif + +	return 0; +} + +static int tg_throttle_down(struct task_group *tg, void *data) +{ +	struct rq *rq = data; +	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; + +	/* group is entering throttled state, stop time */ +	if (!cfs_rq->throttle_count) +		cfs_rq->throttled_clock_task = rq_clock_task(rq); +	cfs_rq->throttle_count++; + +	return 0; +} + +static void throttle_cfs_rq(struct cfs_rq *cfs_rq) +{ +	struct rq *rq = rq_of(cfs_rq); +	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); +	struct sched_entity *se; +	long task_delta, dequeue = 1; + +	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; + +	/* freeze hierarchy runnable averages while throttled */ +	rcu_read_lock(); +	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); +	rcu_read_unlock(); + +	task_delta = cfs_rq->h_nr_running; +	for_each_sched_entity(se) { +		struct cfs_rq *qcfs_rq = cfs_rq_of(se); +		/* throttled entity or throttle-on-deactivate */ +		if (!se->on_rq) +			break; + +		if (dequeue) +			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); +		qcfs_rq->h_nr_running -= task_delta; + +		if (qcfs_rq->load.weight) +			dequeue = 0; +	} + +	if (!se) +		sub_nr_running(rq, task_delta); + +	cfs_rq->throttled = 1; +	cfs_rq->throttled_clock = rq_clock(rq); +	raw_spin_lock(&cfs_b->lock); +	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); +	if (!cfs_b->timer_active) +		__start_cfs_bandwidth(cfs_b, false); +	raw_spin_unlock(&cfs_b->lock); +} + +void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) +{ +	struct rq *rq = rq_of(cfs_rq); +	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); +	struct sched_entity *se; +	int enqueue = 1; +	long task_delta; + +	se = cfs_rq->tg->se[cpu_of(rq)]; + +	cfs_rq->throttled = 0; + +	update_rq_clock(rq); + +	raw_spin_lock(&cfs_b->lock); +	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; +	list_del_rcu(&cfs_rq->throttled_list); +	raw_spin_unlock(&cfs_b->lock); + +	/* update hierarchical throttle state */ +	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); + +	if (!cfs_rq->load.weight) +		return; + +	task_delta = cfs_rq->h_nr_running; +	for_each_sched_entity(se) { +		if (se->on_rq) +			enqueue = 0; + +		cfs_rq = cfs_rq_of(se); +		if (enqueue) +			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); +		cfs_rq->h_nr_running += task_delta; + +		if (cfs_rq_throttled(cfs_rq)) +			break; +	} + +	if (!se) +		add_nr_running(rq, task_delta); + +	/* determine whether we need to wake up potentially idle cpu */ +	if (rq->curr == rq->idle && rq->cfs.nr_running) +		resched_task(rq->curr); +} + +static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, +		u64 remaining, u64 expires) +{ +	struct cfs_rq *cfs_rq; +	u64 runtime = remaining; + +	rcu_read_lock(); +	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, +				throttled_list) { +		struct rq *rq = rq_of(cfs_rq); + +		raw_spin_lock(&rq->lock); +		if (!cfs_rq_throttled(cfs_rq)) +			goto next; + +		runtime = -cfs_rq->runtime_remaining + 1; +		if (runtime > remaining) +			runtime = remaining; +		remaining -= runtime; + +		cfs_rq->runtime_remaining += runtime; +		cfs_rq->runtime_expires = expires; + +		/* we check whether we're throttled above */ +		if (cfs_rq->runtime_remaining > 0) +			unthrottle_cfs_rq(cfs_rq); + +next: +		raw_spin_unlock(&rq->lock); + +		if (!remaining) +			break; +	} +	rcu_read_unlock(); + +	return remaining; +} + +/* + * Responsible for refilling a task_group's bandwidth and unthrottling its + * cfs_rqs as appropriate. If there has been no activity within the last + * period the timer is deactivated until scheduling resumes; cfs_b->idle is + * used to track this state. + */ +static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) +{ +	u64 runtime, runtime_expires; +	int throttled; + +	/* no need to continue the timer with no bandwidth constraint */ +	if (cfs_b->quota == RUNTIME_INF) +		goto out_deactivate; + +	throttled = !list_empty(&cfs_b->throttled_cfs_rq); +	cfs_b->nr_periods += overrun; + +	/* +	 * idle depends on !throttled (for the case of a large deficit), and if +	 * we're going inactive then everything else can be deferred +	 */ +	if (cfs_b->idle && !throttled) +		goto out_deactivate; + +	/* +	 * if we have relooped after returning idle once, we need to update our +	 * status as actually running, so that other cpus doing +	 * __start_cfs_bandwidth will stop trying to cancel us. +	 */ +	cfs_b->timer_active = 1; + +	__refill_cfs_bandwidth_runtime(cfs_b); + +	if (!throttled) { +		/* mark as potentially idle for the upcoming period */ +		cfs_b->idle = 1; +		return 0; +	} + +	/* account preceding periods in which throttling occurred */ +	cfs_b->nr_throttled += overrun; + +	/* +	 * There are throttled entities so we must first use the new bandwidth +	 * to unthrottle them before making it generally available.  This +	 * ensures that all existing debts will be paid before a new cfs_rq is +	 * allowed to run. +	 */ +	runtime = cfs_b->runtime; +	runtime_expires = cfs_b->runtime_expires; +	cfs_b->runtime = 0; + +	/* +	 * This check is repeated as we are holding onto the new bandwidth +	 * while we unthrottle.  This can potentially race with an unthrottled +	 * group trying to acquire new bandwidth from the global pool. +	 */ +	while (throttled && runtime > 0) { +		raw_spin_unlock(&cfs_b->lock); +		/* we can't nest cfs_b->lock while distributing bandwidth */ +		runtime = distribute_cfs_runtime(cfs_b, runtime, +						 runtime_expires); +		raw_spin_lock(&cfs_b->lock); + +		throttled = !list_empty(&cfs_b->throttled_cfs_rq); +	} + +	/* return (any) remaining runtime */ +	cfs_b->runtime = runtime; +	/* +	 * While we are ensured activity in the period following an +	 * unthrottle, this also covers the case in which the new bandwidth is +	 * insufficient to cover the existing bandwidth deficit.  (Forcing the +	 * timer to remain active while there are any throttled entities.) +	 */ +	cfs_b->idle = 0; + +	return 0; + +out_deactivate: +	cfs_b->timer_active = 0; +	return 1; +} + +/* a cfs_rq won't donate quota below this amount */ +static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; +/* minimum remaining period time to redistribute slack quota */ +static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; +/* how long we wait to gather additional slack before distributing */ +static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; + +/* + * Are we near the end of the current quota period? + * + * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the + * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of + * migrate_hrtimers, base is never cleared, so we are fine. + */ +static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) +{ +	struct hrtimer *refresh_timer = &cfs_b->period_timer; +	u64 remaining; + +	/* if the call-back is running a quota refresh is already occurring */ +	if (hrtimer_callback_running(refresh_timer)) +		return 1; + +	/* is a quota refresh about to occur? */ +	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); +	if (remaining < min_expire) +		return 1; + +	return 0; +} + +static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) +{ +	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; + +	/* if there's a quota refresh soon don't bother with slack */ +	if (runtime_refresh_within(cfs_b, min_left)) +		return; + +	start_bandwidth_timer(&cfs_b->slack_timer, +				ns_to_ktime(cfs_bandwidth_slack_period)); +} + +/* we know any runtime found here is valid as update_curr() precedes return */ +static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) +{ +	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); +	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; + +	if (slack_runtime <= 0) +		return; + +	raw_spin_lock(&cfs_b->lock); +	if (cfs_b->quota != RUNTIME_INF && +	    cfs_rq->runtime_expires == cfs_b->runtime_expires) { +		cfs_b->runtime += slack_runtime; + +		/* we are under rq->lock, defer unthrottling using a timer */ +		if (cfs_b->runtime > sched_cfs_bandwidth_slice() && +		    !list_empty(&cfs_b->throttled_cfs_rq)) +			start_cfs_slack_bandwidth(cfs_b); +	} +	raw_spin_unlock(&cfs_b->lock); + +	/* even if it's not valid for return we don't want to try again */ +	cfs_rq->runtime_remaining -= slack_runtime; +} + +static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) +{ +	if (!cfs_bandwidth_used()) +		return; + +	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) +		return; + +	__return_cfs_rq_runtime(cfs_rq); +} + +/* + * This is done with a timer (instead of inline with bandwidth return) since + * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. + */ +static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) +{ +	u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); +	u64 expires; + +	/* confirm we're still not at a refresh boundary */ +	raw_spin_lock(&cfs_b->lock); +	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { +		raw_spin_unlock(&cfs_b->lock); +		return; +	} + +	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) { +		runtime = cfs_b->runtime; +		cfs_b->runtime = 0; +	} +	expires = cfs_b->runtime_expires; +	raw_spin_unlock(&cfs_b->lock); + +	if (!runtime) +		return; + +	runtime = distribute_cfs_runtime(cfs_b, runtime, expires); + +	raw_spin_lock(&cfs_b->lock); +	if (expires == cfs_b->runtime_expires) +		cfs_b->runtime = runtime; +	raw_spin_unlock(&cfs_b->lock); +} + +/* + * When a group wakes up we want to make sure that its quota is not already + * expired/exceeded, otherwise it may be allowed to steal additional ticks of + * runtime as update_curr() throttling can not not trigger until it's on-rq. + */ +static void check_enqueue_throttle(struct cfs_rq *cfs_rq) +{ +	if (!cfs_bandwidth_used()) +		return; + +	/* an active group must be handled by the update_curr()->put() path */ +	if (!cfs_rq->runtime_enabled || cfs_rq->curr) +		return; + +	/* ensure the group is not already throttled */ +	if (cfs_rq_throttled(cfs_rq)) +		return; + +	/* update runtime allocation */ +	account_cfs_rq_runtime(cfs_rq, 0); +	if (cfs_rq->runtime_remaining <= 0) +		throttle_cfs_rq(cfs_rq); +} + +/* conditionally throttle active cfs_rq's from put_prev_entity() */ +static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) +{ +	if (!cfs_bandwidth_used()) +		return false; + +	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) +		return false; + +	/* +	 * it's possible for a throttled entity to be forced into a running +	 * state (e.g. set_curr_task), in this case we're finished. +	 */ +	if (cfs_rq_throttled(cfs_rq)) +		return true; + +	throttle_cfs_rq(cfs_rq); +	return true; +} + +static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) +{ +	struct cfs_bandwidth *cfs_b = +		container_of(timer, struct cfs_bandwidth, slack_timer); +	do_sched_cfs_slack_timer(cfs_b); + +	return HRTIMER_NORESTART; +} + +static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) +{ +	struct cfs_bandwidth *cfs_b = +		container_of(timer, struct cfs_bandwidth, period_timer); +	ktime_t now; +	int overrun; +	int idle = 0; + +	raw_spin_lock(&cfs_b->lock); +	for (;;) { +		now = hrtimer_cb_get_time(timer); +		overrun = hrtimer_forward(timer, now, cfs_b->period); + +		if (!overrun) +			break; + +		idle = do_sched_cfs_period_timer(cfs_b, overrun); +	} +	raw_spin_unlock(&cfs_b->lock); + +	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; +} + +void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) +{ +	raw_spin_lock_init(&cfs_b->lock); +	cfs_b->runtime = 0; +	cfs_b->quota = RUNTIME_INF; +	cfs_b->period = ns_to_ktime(default_cfs_period()); + +	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); +	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); +	cfs_b->period_timer.function = sched_cfs_period_timer; +	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); +	cfs_b->slack_timer.function = sched_cfs_slack_timer; +} + +static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) +{ +	cfs_rq->runtime_enabled = 0; +	INIT_LIST_HEAD(&cfs_rq->throttled_list); +} + +/* requires cfs_b->lock, may release to reprogram timer */ +void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force) +{ +	/* +	 * The timer may be active because we're trying to set a new bandwidth +	 * period or because we're racing with the tear-down path +	 * (timer_active==0 becomes visible before the hrtimer call-back +	 * terminates).  In either case we ensure that it's re-programmed +	 */ +	while (unlikely(hrtimer_active(&cfs_b->period_timer)) && +	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) { +		/* bounce the lock to allow do_sched_cfs_period_timer to run */ +		raw_spin_unlock(&cfs_b->lock); +		cpu_relax(); +		raw_spin_lock(&cfs_b->lock); +		/* if someone else restarted the timer then we're done */ +		if (!force && cfs_b->timer_active) +			return; +	} + +	cfs_b->timer_active = 1; +	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); +} + +static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) +{ +	hrtimer_cancel(&cfs_b->period_timer); +	hrtimer_cancel(&cfs_b->slack_timer); +} + +static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) +{ +	struct cfs_rq *cfs_rq; + +	for_each_leaf_cfs_rq(rq, cfs_rq) { +		if (!cfs_rq->runtime_enabled) +			continue; + +		/* +		 * clock_task is not advancing so we just need to make sure +		 * there's some valid quota amount +		 */ +		cfs_rq->runtime_remaining = 1; +		if (cfs_rq_throttled(cfs_rq)) +			unthrottle_cfs_rq(cfs_rq); +	} +} + +#else /* CONFIG_CFS_BANDWIDTH */ +static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) +{ +	return rq_clock_task(rq_of(cfs_rq)); +} + +static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} +static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } +static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} +static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} + +static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) +{ +	return 0; +} + +static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) +{ +	return 0; +} + +static inline int throttled_lb_pair(struct task_group *tg, +				    int src_cpu, int dest_cpu) +{ +	return 0; +} + +void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} + +#ifdef CONFIG_FAIR_GROUP_SCHED +static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} +#endif + +static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) +{ +	return NULL; +} +static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} +static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} + +#endif /* CONFIG_CFS_BANDWIDTH */ + +/************************************************** + * CFS operations on tasks: + */ + +#ifdef CONFIG_SCHED_HRTICK +static void hrtick_start_fair(struct rq *rq, struct task_struct *p) +{ +	struct sched_entity *se = &p->se; +	struct cfs_rq *cfs_rq = cfs_rq_of(se); + +	WARN_ON(task_rq(p) != rq); + +	if (cfs_rq->nr_running > 1) { +		u64 slice = sched_slice(cfs_rq, se); +		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; +		s64 delta = slice - ran; + +		if (delta < 0) { +			if (rq->curr == p) +				resched_task(p); +			return; +		} + +		/* +		 * Don't schedule slices shorter than 10000ns, that just +		 * doesn't make sense. Rely on vruntime for fairness. +		 */ +		if (rq->curr != p) +			delta = max_t(s64, 10000LL, delta); + +		hrtick_start(rq, delta); +	} +} + +/* + * called from enqueue/dequeue and updates the hrtick when the + * current task is from our class and nr_running is low enough + * to matter. + */ +static void hrtick_update(struct rq *rq) +{ +	struct task_struct *curr = rq->curr; + +	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) +		return; + +	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) +		hrtick_start_fair(rq, curr); +} +#else /* !CONFIG_SCHED_HRTICK */ +static inline void +hrtick_start_fair(struct rq *rq, struct task_struct *p) +{ +} + +static inline void hrtick_update(struct rq *rq) +{ +} +#endif + +/* + * The enqueue_task method is called before nr_running is + * increased. Here we update the fair scheduling stats and + * then put the task into the rbtree: + */ +static void +enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) +{ +	struct cfs_rq *cfs_rq; +	struct sched_entity *se = &p->se; + +	for_each_sched_entity(se) { +		if (se->on_rq) +			break; +		cfs_rq = cfs_rq_of(se); +		enqueue_entity(cfs_rq, se, flags); + +		/* +		 * end evaluation on encountering a throttled cfs_rq +		 * +		 * note: in the case of encountering a throttled cfs_rq we will +		 * post the final h_nr_running increment below. +		*/ +		if (cfs_rq_throttled(cfs_rq)) +			break; +		cfs_rq->h_nr_running++; + +		flags = ENQUEUE_WAKEUP; +	} + +	for_each_sched_entity(se) { +		cfs_rq = cfs_rq_of(se); +		cfs_rq->h_nr_running++; + +		if (cfs_rq_throttled(cfs_rq)) +			break; + +		update_cfs_shares(cfs_rq); +		update_entity_load_avg(se, 1); +	} + +	if (!se) { +		update_rq_runnable_avg(rq, rq->nr_running); +		add_nr_running(rq, 1); +	} +	hrtick_update(rq); +} + +static void set_next_buddy(struct sched_entity *se); + +/* + * The dequeue_task method is called before nr_running is + * decreased. We remove the task from the rbtree and + * update the fair scheduling stats: + */ +static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) +{ +	struct cfs_rq *cfs_rq; +	struct sched_entity *se = &p->se; +	int task_sleep = flags & DEQUEUE_SLEEP; + +	for_each_sched_entity(se) { +		cfs_rq = cfs_rq_of(se); +		dequeue_entity(cfs_rq, se, flags); + +		/* +		 * end evaluation on encountering a throttled cfs_rq +		 * +		 * note: in the case of encountering a throttled cfs_rq we will +		 * post the final h_nr_running decrement below. +		*/ +		if (cfs_rq_throttled(cfs_rq)) +			break; +		cfs_rq->h_nr_running--; + +		/* Don't dequeue parent if it has other entities besides us */ +		if (cfs_rq->load.weight) { +			/* +			 * Bias pick_next to pick a task from this cfs_rq, as +			 * p is sleeping when it is within its sched_slice. +			 */ +			if (task_sleep && parent_entity(se)) +				set_next_buddy(parent_entity(se)); + +			/* avoid re-evaluating load for this entity */ +			se = parent_entity(se); +			break; +		} +		flags |= DEQUEUE_SLEEP; +	} + +	for_each_sched_entity(se) { +		cfs_rq = cfs_rq_of(se); +		cfs_rq->h_nr_running--; + +		if (cfs_rq_throttled(cfs_rq)) +			break; + +		update_cfs_shares(cfs_rq); +		update_entity_load_avg(se, 1); +	} + +	if (!se) { +		sub_nr_running(rq, 1); +		update_rq_runnable_avg(rq, 1); +	} +	hrtick_update(rq); +} + +#ifdef CONFIG_SMP +/* Used instead of source_load when we know the type == 0 */ +static unsigned long weighted_cpuload(const int cpu) +{ +	return cpu_rq(cpu)->cfs.runnable_load_avg; +} + +/* + * Return a low guess at the load of a migration-source cpu weighted + * according to the scheduling class and "nice" value. + * + * We want to under-estimate the load of migration sources, to + * balance conservatively. + */ +static unsigned long source_load(int cpu, int type) +{ +	struct rq *rq = cpu_rq(cpu); +	unsigned long total = weighted_cpuload(cpu); + +	if (type == 0 || !sched_feat(LB_BIAS)) +		return total; + +	return min(rq->cpu_load[type-1], total); +} + +/* + * Return a high guess at the load of a migration-target cpu weighted + * according to the scheduling class and "nice" value. + */ +static unsigned long target_load(int cpu, int type) +{ +	struct rq *rq = cpu_rq(cpu); +	unsigned long total = weighted_cpuload(cpu); + +	if (type == 0 || !sched_feat(LB_BIAS)) +		return total; + +	return max(rq->cpu_load[type-1], total); +} + +static unsigned long capacity_of(int cpu) +{ +	return cpu_rq(cpu)->cpu_capacity; +} + +static unsigned long cpu_avg_load_per_task(int cpu) +{ +	struct rq *rq = cpu_rq(cpu); +	unsigned long nr_running = ACCESS_ONCE(rq->nr_running); +	unsigned long load_avg = rq->cfs.runnable_load_avg; + +	if (nr_running) +		return load_avg / nr_running; + +	return 0; +} + +static void record_wakee(struct task_struct *p) +{ +	/* +	 * Rough decay (wiping) for cost saving, don't worry +	 * about the boundary, really active task won't care +	 * about the loss. +	 */ +	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { +		current->wakee_flips >>= 1; +		current->wakee_flip_decay_ts = jiffies; +	} + +	if (current->last_wakee != p) { +		current->last_wakee = p; +		current->wakee_flips++; +	} +} + +static void task_waking_fair(struct task_struct *p) +{ +	struct sched_entity *se = &p->se; +	struct cfs_rq *cfs_rq = cfs_rq_of(se); +	u64 min_vruntime; + +#ifndef CONFIG_64BIT +	u64 min_vruntime_copy; + +	do { +		min_vruntime_copy = cfs_rq->min_vruntime_copy; +		smp_rmb(); +		min_vruntime = cfs_rq->min_vruntime; +	} while (min_vruntime != min_vruntime_copy); +#else +	min_vruntime = cfs_rq->min_vruntime; +#endif + +	se->vruntime -= min_vruntime; +	record_wakee(p); +} + +#ifdef CONFIG_FAIR_GROUP_SCHED +/* + * effective_load() calculates the load change as seen from the root_task_group + * + * Adding load to a group doesn't make a group heavier, but can cause movement + * of group shares between cpus. Assuming the shares were perfectly aligned one + * can calculate the shift in shares. + * + * Calculate the effective load difference if @wl is added (subtracted) to @tg + * on this @cpu and results in a total addition (subtraction) of @wg to the + * total group weight. + * + * Given a runqueue weight distribution (rw_i) we can compute a shares + * distribution (s_i) using: + * + *   s_i = rw_i / \Sum rw_j						(1) + * + * Suppose we have 4 CPUs and our @tg is a direct child of the root group and + * has 7 equal weight tasks, distributed as below (rw_i), with the resulting + * shares distribution (s_i): + * + *   rw_i = {   2,   4,   1,   0 } + *   s_i  = { 2/7, 4/7, 1/7,   0 } + * + * As per wake_affine() we're interested in the load of two CPUs (the CPU the + * task used to run on and the CPU the waker is running on), we need to + * compute the effect of waking a task on either CPU and, in case of a sync + * wakeup, compute the effect of the current task going to sleep. + * + * So for a change of @wl to the local @cpu with an overall group weight change + * of @wl we can compute the new shares distribution (s'_i) using: + * + *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2) + * + * Suppose we're interested in CPUs 0 and 1, and want to compute the load + * differences in waking a task to CPU 0. The additional task changes the + * weight and shares distributions like: + * + *   rw'_i = {   3,   4,   1,   0 } + *   s'_i  = { 3/8, 4/8, 1/8,   0 } + * + * We can then compute the difference in effective weight by using: + * + *   dw_i = S * (s'_i - s_i)						(3) + * + * Where 'S' is the group weight as seen by its parent. + * + * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) + * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - + * 4/7) times the weight of the group. + */ +static long effective_load(struct task_group *tg, int cpu, long wl, long wg) +{ +	struct sched_entity *se = tg->se[cpu]; + +	if (!tg->parent)	/* the trivial, non-cgroup case */ +		return wl; + +	for_each_sched_entity(se) { +		long w, W; + +		tg = se->my_q->tg; + +		/* +		 * W = @wg + \Sum rw_j +		 */ +		W = wg + calc_tg_weight(tg, se->my_q); + +		/* +		 * w = rw_i + @wl +		 */ +		w = se->my_q->load.weight + wl; + +		/* +		 * wl = S * s'_i; see (2) +		 */ +		if (W > 0 && w < W) +			wl = (w * tg->shares) / W; +		else +			wl = tg->shares; + +		/* +		 * Per the above, wl is the new se->load.weight value; since +		 * those are clipped to [MIN_SHARES, ...) do so now. See +		 * calc_cfs_shares(). +		 */ +		if (wl < MIN_SHARES) +			wl = MIN_SHARES; + +		/* +		 * wl = dw_i = S * (s'_i - s_i); see (3) +		 */ +		wl -= se->load.weight; + +		/* +		 * Recursively apply this logic to all parent groups to compute +		 * the final effective load change on the root group. Since +		 * only the @tg group gets extra weight, all parent groups can +		 * only redistribute existing shares. @wl is the shift in shares +		 * resulting from this level per the above. +		 */ +		wg = 0; +	} + +	return wl; +} +#else + +static long effective_load(struct task_group *tg, int cpu, long wl, long wg) +{ +	return wl; +} + +#endif + +static int wake_wide(struct task_struct *p) +{ +	int factor = this_cpu_read(sd_llc_size); + +	/* +	 * Yeah, it's the switching-frequency, could means many wakee or +	 * rapidly switch, use factor here will just help to automatically +	 * adjust the loose-degree, so bigger node will lead to more pull. +	 */ +	if (p->wakee_flips > factor) { +		/* +		 * wakee is somewhat hot, it needs certain amount of cpu +		 * resource, so if waker is far more hot, prefer to leave +		 * it alone. +		 */ +		if (current->wakee_flips > (factor * p->wakee_flips)) +			return 1; +	} + +	return 0; +} + +static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) +{ +	s64 this_load, load; +	int idx, this_cpu, prev_cpu; +	unsigned long tl_per_task; +	struct task_group *tg; +	unsigned long weight; +	int balanced; + +	/* +	 * If we wake multiple tasks be careful to not bounce +	 * ourselves around too much. +	 */ +	if (wake_wide(p)) +		return 0; + +	idx	  = sd->wake_idx; +	this_cpu  = smp_processor_id(); +	prev_cpu  = task_cpu(p); +	load	  = source_load(prev_cpu, idx); +	this_load = target_load(this_cpu, idx); + +	/* +	 * If sync wakeup then subtract the (maximum possible) +	 * effect of the currently running task from the load +	 * of the current CPU: +	 */ +	if (sync) { +		tg = task_group(current); +		weight = current->se.load.weight; + +		this_load += effective_load(tg, this_cpu, -weight, -weight); +		load += effective_load(tg, prev_cpu, 0, -weight); +	} + +	tg = task_group(p); +	weight = p->se.load.weight; + +	/* +	 * In low-load situations, where prev_cpu is idle and this_cpu is idle +	 * due to the sync cause above having dropped this_load to 0, we'll +	 * always have an imbalance, but there's really nothing you can do +	 * about that, so that's good too. +	 * +	 * Otherwise check if either cpus are near enough in load to allow this +	 * task to be woken on this_cpu. +	 */ +	if (this_load > 0) { +		s64 this_eff_load, prev_eff_load; + +		this_eff_load = 100; +		this_eff_load *= capacity_of(prev_cpu); +		this_eff_load *= this_load + +			effective_load(tg, this_cpu, weight, weight); + +		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; +		prev_eff_load *= capacity_of(this_cpu); +		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); + +		balanced = this_eff_load <= prev_eff_load; +	} else +		balanced = true; + +	/* +	 * If the currently running task will sleep within +	 * a reasonable amount of time then attract this newly +	 * woken task: +	 */ +	if (sync && balanced) +		return 1; + +	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); +	tl_per_task = cpu_avg_load_per_task(this_cpu); + +	if (balanced || +	    (this_load <= load && +	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) { +		/* +		 * This domain has SD_WAKE_AFFINE and +		 * p is cache cold in this domain, and +		 * there is no bad imbalance. +		 */ +		schedstat_inc(sd, ttwu_move_affine); +		schedstat_inc(p, se.statistics.nr_wakeups_affine); + +		return 1; +	} +	return 0; +} + +/* + * find_idlest_group finds and returns the least busy CPU group within the + * domain. + */ +static struct sched_group * +find_idlest_group(struct sched_domain *sd, struct task_struct *p, +		  int this_cpu, int sd_flag) +{ +	struct sched_group *idlest = NULL, *group = sd->groups; +	unsigned long min_load = ULONG_MAX, this_load = 0; +	int load_idx = sd->forkexec_idx; +	int imbalance = 100 + (sd->imbalance_pct-100)/2; + +	if (sd_flag & SD_BALANCE_WAKE) +		load_idx = sd->wake_idx; + +	do { +		unsigned long load, avg_load; +		int local_group; +		int i; + +		/* Skip over this group if it has no CPUs allowed */ +		if (!cpumask_intersects(sched_group_cpus(group), +					tsk_cpus_allowed(p))) +			continue; + +		local_group = cpumask_test_cpu(this_cpu, +					       sched_group_cpus(group)); + +		/* Tally up the load of all CPUs in the group */ +		avg_load = 0; + +		for_each_cpu(i, sched_group_cpus(group)) { +			/* Bias balancing toward cpus of our domain */ +			if (local_group) +				load = source_load(i, load_idx); +			else +				load = target_load(i, load_idx); + +			avg_load += load; +		} + +		/* Adjust by relative CPU capacity of the group */ +		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity; + +		if (local_group) { +			this_load = avg_load; +		} else if (avg_load < min_load) { +			min_load = avg_load; +			idlest = group; +		} +	} while (group = group->next, group != sd->groups); + +	if (!idlest || 100*this_load < imbalance*min_load) +		return NULL; +	return idlest; +} + +/* + * find_idlest_cpu - find the idlest cpu among the cpus in group. + */ +static int +find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) +{ +	unsigned long load, min_load = ULONG_MAX; +	int idlest = -1; +	int i; + +	/* Traverse only the allowed CPUs */ +	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { +		load = weighted_cpuload(i); + +		if (load < min_load || (load == min_load && i == this_cpu)) { +			min_load = load; +			idlest = i; +		} +	} + +	return idlest; +} + +/* + * Try and locate an idle CPU in the sched_domain. + */ +static int select_idle_sibling(struct task_struct *p, int target) +{ +	struct sched_domain *sd; +	struct sched_group *sg; +	int i = task_cpu(p); + +	if (idle_cpu(target)) +		return target; + +	/* +	 * If the prevous cpu is cache affine and idle, don't be stupid. +	 */ +	if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) +		return i; + +	/* +	 * Otherwise, iterate the domains and find an elegible idle cpu. +	 */ +	sd = rcu_dereference(per_cpu(sd_llc, target)); +	for_each_lower_domain(sd) { +		sg = sd->groups; +		do { +			if (!cpumask_intersects(sched_group_cpus(sg), +						tsk_cpus_allowed(p))) +				goto next; + +			for_each_cpu(i, sched_group_cpus(sg)) { +				if (i == target || !idle_cpu(i)) +					goto next; +			} + +			target = cpumask_first_and(sched_group_cpus(sg), +					tsk_cpus_allowed(p)); +			goto done; +next: +			sg = sg->next; +		} while (sg != sd->groups); +	} +done: +	return target; +} + +/* + * select_task_rq_fair: Select target runqueue for the waking task in domains + * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, + * SD_BALANCE_FORK, or SD_BALANCE_EXEC. + * + * Balances load by selecting the idlest cpu in the idlest group, or under + * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. + * + * Returns the target cpu number. + * + * preempt must be disabled. + */ +static int +select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) +{ +	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; +	int cpu = smp_processor_id(); +	int new_cpu = cpu; +	int want_affine = 0; +	int sync = wake_flags & WF_SYNC; + +	if (p->nr_cpus_allowed == 1) +		return prev_cpu; + +	if (sd_flag & SD_BALANCE_WAKE) { +		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) +			want_affine = 1; +		new_cpu = prev_cpu; +	} + +	rcu_read_lock(); +	for_each_domain(cpu, tmp) { +		if (!(tmp->flags & SD_LOAD_BALANCE)) +			continue; + +		/* +		 * If both cpu and prev_cpu are part of this domain, +		 * cpu is a valid SD_WAKE_AFFINE target. +		 */ +		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && +		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { +			affine_sd = tmp; +			break; +		} + +		if (tmp->flags & sd_flag) +			sd = tmp; +	} + +	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync)) +		prev_cpu = cpu; + +	if (sd_flag & SD_BALANCE_WAKE) { +		new_cpu = select_idle_sibling(p, prev_cpu); +		goto unlock; +	} + +	while (sd) { +		struct sched_group *group; +		int weight; + +		if (!(sd->flags & sd_flag)) { +			sd = sd->child; +			continue; +		} + +		group = find_idlest_group(sd, p, cpu, sd_flag); +		if (!group) { +			sd = sd->child; +			continue; +		} + +		new_cpu = find_idlest_cpu(group, p, cpu); +		if (new_cpu == -1 || new_cpu == cpu) { +			/* Now try balancing at a lower domain level of cpu */ +			sd = sd->child; +			continue; +		} + +		/* Now try balancing at a lower domain level of new_cpu */ +		cpu = new_cpu; +		weight = sd->span_weight; +		sd = NULL; +		for_each_domain(cpu, tmp) { +			if (weight <= tmp->span_weight) +				break; +			if (tmp->flags & sd_flag) +				sd = tmp; +		} +		/* while loop will break here if sd == NULL */ +	} +unlock: +	rcu_read_unlock(); + +	return new_cpu; +} + +/* + * Called immediately before a task is migrated to a new cpu; task_cpu(p) and + * cfs_rq_of(p) references at time of call are still valid and identify the + * previous cpu.  However, the caller only guarantees p->pi_lock is held; no + * other assumptions, including the state of rq->lock, should be made. + */ +static void +migrate_task_rq_fair(struct task_struct *p, int next_cpu) +{ +	struct sched_entity *se = &p->se; +	struct cfs_rq *cfs_rq = cfs_rq_of(se); + +	/* +	 * Load tracking: accumulate removed load so that it can be processed +	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute +	 * to blocked load iff they have a positive decay-count.  It can never +	 * be negative here since on-rq tasks have decay-count == 0. +	 */ +	if (se->avg.decay_count) { +		se->avg.decay_count = -__synchronize_entity_decay(se); +		atomic_long_add(se->avg.load_avg_contrib, +						&cfs_rq->removed_load); +	} + +	/* We have migrated, no longer consider this task hot */ +	se->exec_start = 0; +} +#endif /* CONFIG_SMP */ + +static unsigned long +wakeup_gran(struct sched_entity *curr, struct sched_entity *se) +{ +	unsigned long gran = sysctl_sched_wakeup_granularity; + +	/* +	 * Since its curr running now, convert the gran from real-time +	 * to virtual-time in his units. +	 * +	 * By using 'se' instead of 'curr' we penalize light tasks, so +	 * they get preempted easier. That is, if 'se' < 'curr' then +	 * the resulting gran will be larger, therefore penalizing the +	 * lighter, if otoh 'se' > 'curr' then the resulting gran will +	 * be smaller, again penalizing the lighter task. +	 * +	 * This is especially important for buddies when the leftmost +	 * task is higher priority than the buddy. +	 */ +	return calc_delta_fair(gran, se); +} + +/* + * Should 'se' preempt 'curr'. + * + *             |s1 + *        |s2 + *   |s3 + *         g + *      |<--->|c + * + *  w(c, s1) = -1 + *  w(c, s2) =  0 + *  w(c, s3) =  1 + * + */ +static int +wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) +{ +	s64 gran, vdiff = curr->vruntime - se->vruntime; + +	if (vdiff <= 0) +		return -1; + +	gran = wakeup_gran(curr, se); +	if (vdiff > gran) +		return 1; + +	return 0; +} + +static void set_last_buddy(struct sched_entity *se) +{ +	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) +		return; + +	for_each_sched_entity(se) +		cfs_rq_of(se)->last = se; +} + +static void set_next_buddy(struct sched_entity *se) +{ +	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) +		return; + +	for_each_sched_entity(se) +		cfs_rq_of(se)->next = se; +} + +static void set_skip_buddy(struct sched_entity *se) +{ +	for_each_sched_entity(se) +		cfs_rq_of(se)->skip = se; +} + +/* + * Preempt the current task with a newly woken task if needed: + */ +static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) +{ +	struct task_struct *curr = rq->curr; +	struct sched_entity *se = &curr->se, *pse = &p->se; +	struct cfs_rq *cfs_rq = task_cfs_rq(curr); +	int scale = cfs_rq->nr_running >= sched_nr_latency; +	int next_buddy_marked = 0; + +	if (unlikely(se == pse)) +		return; + +	/* +	 * This is possible from callers such as move_task(), in which we +	 * unconditionally check_prempt_curr() after an enqueue (which may have +	 * lead to a throttle).  This both saves work and prevents false +	 * next-buddy nomination below. +	 */ +	if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) +		return; + +	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { +		set_next_buddy(pse); +		next_buddy_marked = 1; +	} + +	/* +	 * We can come here with TIF_NEED_RESCHED already set from new task +	 * wake up path. +	 * +	 * Note: this also catches the edge-case of curr being in a throttled +	 * group (e.g. via set_curr_task), since update_curr() (in the +	 * enqueue of curr) will have resulted in resched being set.  This +	 * prevents us from potentially nominating it as a false LAST_BUDDY +	 * below. +	 */ +	if (test_tsk_need_resched(curr)) +		return; + +	/* Idle tasks are by definition preempted by non-idle tasks. */ +	if (unlikely(curr->policy == SCHED_IDLE) && +	    likely(p->policy != SCHED_IDLE)) +		goto preempt; + +	/* +	 * Batch and idle tasks do not preempt non-idle tasks (their preemption +	 * is driven by the tick): +	 */ +	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) +		return; + +	find_matching_se(&se, &pse); +	update_curr(cfs_rq_of(se)); +	BUG_ON(!pse); +	if (wakeup_preempt_entity(se, pse) == 1) { +		/* +		 * Bias pick_next to pick the sched entity that is +		 * triggering this preemption. +		 */ +		if (!next_buddy_marked) +			set_next_buddy(pse); +		goto preempt; +	} + +	return; + +preempt: +	resched_task(curr); +	/* +	 * Only set the backward buddy when the current task is still +	 * on the rq. This can happen when a wakeup gets interleaved +	 * with schedule on the ->pre_schedule() or idle_balance() +	 * point, either of which can * drop the rq lock. +	 * +	 * Also, during early boot the idle thread is in the fair class, +	 * for obvious reasons its a bad idea to schedule back to it. +	 */ +	if (unlikely(!se->on_rq || curr == rq->idle)) +		return; + +	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) +		set_last_buddy(se); +} + +static struct task_struct * +pick_next_task_fair(struct rq *rq, struct task_struct *prev) +{ +	struct cfs_rq *cfs_rq = &rq->cfs; +	struct sched_entity *se; +	struct task_struct *p; +	int new_tasks; + +again: +#ifdef CONFIG_FAIR_GROUP_SCHED +	if (!cfs_rq->nr_running) +		goto idle; + +	if (prev->sched_class != &fair_sched_class) +		goto simple; + +	/* +	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather +	 * likely that a next task is from the same cgroup as the current. +	 * +	 * Therefore attempt to avoid putting and setting the entire cgroup +	 * hierarchy, only change the part that actually changes. +	 */ + +	do { +		struct sched_entity *curr = cfs_rq->curr; + +		/* +		 * Since we got here without doing put_prev_entity() we also +		 * have to consider cfs_rq->curr. If it is still a runnable +		 * entity, update_curr() will update its vruntime, otherwise +		 * forget we've ever seen it. +		 */ +		if (curr && curr->on_rq) +			update_curr(cfs_rq); +		else +			curr = NULL; + +		/* +		 * This call to check_cfs_rq_runtime() will do the throttle and +		 * dequeue its entity in the parent(s). Therefore the 'simple' +		 * nr_running test will indeed be correct. +		 */ +		if (unlikely(check_cfs_rq_runtime(cfs_rq))) +			goto simple; + +		se = pick_next_entity(cfs_rq, curr); +		cfs_rq = group_cfs_rq(se); +	} while (cfs_rq); + +	p = task_of(se); + +	/* +	 * Since we haven't yet done put_prev_entity and if the selected task +	 * is a different task than we started out with, try and touch the +	 * least amount of cfs_rqs. +	 */ +	if (prev != p) { +		struct sched_entity *pse = &prev->se; + +		while (!(cfs_rq = is_same_group(se, pse))) { +			int se_depth = se->depth; +			int pse_depth = pse->depth; + +			if (se_depth <= pse_depth) { +				put_prev_entity(cfs_rq_of(pse), pse); +				pse = parent_entity(pse); +			} +			if (se_depth >= pse_depth) { +				set_next_entity(cfs_rq_of(se), se); +				se = parent_entity(se); +			} +		} + +		put_prev_entity(cfs_rq, pse); +		set_next_entity(cfs_rq, se); +	} + +	if (hrtick_enabled(rq)) +		hrtick_start_fair(rq, p); + +	return p; +simple: +	cfs_rq = &rq->cfs; +#endif + +	if (!cfs_rq->nr_running) +		goto idle; + +	put_prev_task(rq, prev); + +	do { +		se = pick_next_entity(cfs_rq, NULL); +		set_next_entity(cfs_rq, se); +		cfs_rq = group_cfs_rq(se); +	} while (cfs_rq); + +	p = task_of(se); + +	if (hrtick_enabled(rq)) +		hrtick_start_fair(rq, p); + +	return p; + +idle: +	new_tasks = idle_balance(rq); +	/* +	 * Because idle_balance() releases (and re-acquires) rq->lock, it is +	 * possible for any higher priority task to appear. In that case we +	 * must re-start the pick_next_entity() loop. +	 */ +	if (new_tasks < 0) +		return RETRY_TASK; + +	if (new_tasks > 0) +		goto again; + +	return NULL; +} + +/* + * Account for a descheduled task: + */ +static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) +{ +	struct sched_entity *se = &prev->se; +	struct cfs_rq *cfs_rq; + +	for_each_sched_entity(se) { +		cfs_rq = cfs_rq_of(se); +		put_prev_entity(cfs_rq, se); +	} +} + +/* + * sched_yield() is very simple + * + * The magic of dealing with the ->skip buddy is in pick_next_entity. + */ +static void yield_task_fair(struct rq *rq) +{ +	struct task_struct *curr = rq->curr; +	struct cfs_rq *cfs_rq = task_cfs_rq(curr); +	struct sched_entity *se = &curr->se; + +	/* +	 * Are we the only task in the tree? +	 */ +	if (unlikely(rq->nr_running == 1)) +		return; + +	clear_buddies(cfs_rq, se); + +	if (curr->policy != SCHED_BATCH) { +		update_rq_clock(rq); +		/* +		 * Update run-time statistics of the 'current'. +		 */ +		update_curr(cfs_rq); +		/* +		 * Tell update_rq_clock() that we've just updated, +		 * so we don't do microscopic update in schedule() +		 * and double the fastpath cost. +		 */ +		 rq->skip_clock_update = 1; +	} + +	set_skip_buddy(se); +} + +static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) +{ +	struct sched_entity *se = &p->se; + +	/* throttled hierarchies are not runnable */ +	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) +		return false; + +	/* Tell the scheduler that we'd really like pse to run next. */ +	set_next_buddy(se); + +	yield_task_fair(rq); + +	return true; +} + +#ifdef CONFIG_SMP +/************************************************** + * Fair scheduling class load-balancing methods. + * + * BASICS + * + * The purpose of load-balancing is to achieve the same basic fairness the + * per-cpu scheduler provides, namely provide a proportional amount of compute + * time to each task. This is expressed in the following equation: + * + *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1) + * + * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight + * W_i,0 is defined as: + * + *   W_i,0 = \Sum_j w_i,j                                             (2) + * + * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight + * is derived from the nice value as per prio_to_weight[]. + * + * The weight average is an exponential decay average of the instantaneous + * weight: + * + *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3) + * + * C_i is the compute capacity of cpu i, typically it is the + * fraction of 'recent' time available for SCHED_OTHER task execution. But it + * can also include other factors [XXX]. + * + * To achieve this balance we define a measure of imbalance which follows + * directly from (1): + * + *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4) + * + * We them move tasks around to minimize the imbalance. In the continuous + * function space it is obvious this converges, in the discrete case we get + * a few fun cases generally called infeasible weight scenarios. + * + * [XXX expand on: + *     - infeasible weights; + *     - local vs global optima in the discrete case. ] + * + * + * SCHED DOMAINS + * + * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) + * for all i,j solution, we create a tree of cpus that follows the hardware + * topology where each level pairs two lower groups (or better). This results + * in O(log n) layers. Furthermore we reduce the number of cpus going up the + * tree to only the first of the previous level and we decrease the frequency + * of load-balance at each level inv. proportional to the number of cpus in + * the groups. + * + * This yields: + * + *     log_2 n     1     n + *   \Sum       { --- * --- * 2^i } = O(n)                            (5) + *     i = 0      2^i   2^i + *                               `- size of each group + *         |         |     `- number of cpus doing load-balance + *         |         `- freq + *         `- sum over all levels + * + * Coupled with a limit on how many tasks we can migrate every balance pass, + * this makes (5) the runtime complexity of the balancer. + * + * An important property here is that each CPU is still (indirectly) connected + * to every other cpu in at most O(log n) steps: + * + * The adjacency matrix of the resulting graph is given by: + * + *             log_2 n      + *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6) + *             k = 0 + * + * And you'll find that: + * + *   A^(log_2 n)_i,j != 0  for all i,j                                (7) + * + * Showing there's indeed a path between every cpu in at most O(log n) steps. + * The task movement gives a factor of O(m), giving a convergence complexity + * of: + * + *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8) + * + * + * WORK CONSERVING + * + * In order to avoid CPUs going idle while there's still work to do, new idle + * balancing is more aggressive and has the newly idle cpu iterate up the domain + * tree itself instead of relying on other CPUs to bring it work. + * + * This adds some complexity to both (5) and (8) but it reduces the total idle + * time. + * + * [XXX more?] + * + * + * CGROUPS + * + * Cgroups make a horror show out of (2), instead of a simple sum we get: + * + *                                s_k,i + *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9) + *                                 S_k + * + * Where + * + *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10) + * + * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. + * + * The big problem is S_k, its a global sum needed to compute a local (W_i) + * property. + * + * [XXX write more on how we solve this.. _after_ merging pjt's patches that + *      rewrite all of this once again.] + */  + +static unsigned long __read_mostly max_load_balance_interval = HZ/10; + +enum fbq_type { regular, remote, all }; + +#define LBF_ALL_PINNED	0x01 +#define LBF_NEED_BREAK	0x02 +#define LBF_DST_PINNED  0x04 +#define LBF_SOME_PINNED	0x08 + +struct lb_env { +	struct sched_domain	*sd; + +	struct rq		*src_rq; +	int			src_cpu; + +	int			dst_cpu; +	struct rq		*dst_rq; + +	struct cpumask		*dst_grpmask; +	int			new_dst_cpu; +	enum cpu_idle_type	idle; +	long			imbalance; +	/* The set of CPUs under consideration for load-balancing */ +	struct cpumask		*cpus; + +	unsigned int		flags; + +	unsigned int		loop; +	unsigned int		loop_break; +	unsigned int		loop_max; + +	enum fbq_type		fbq_type; +}; + +/* + * move_task - move a task from one runqueue to another runqueue. + * Both runqueues must be locked. + */ +static void move_task(struct task_struct *p, struct lb_env *env) +{ +	deactivate_task(env->src_rq, p, 0); +	set_task_cpu(p, env->dst_cpu); +	activate_task(env->dst_rq, p, 0); +	check_preempt_curr(env->dst_rq, p, 0); +} + +/* + * Is this task likely cache-hot: + */ +static int +task_hot(struct task_struct *p, u64 now) +{ +	s64 delta; + +	if (p->sched_class != &fair_sched_class) +		return 0; + +	if (unlikely(p->policy == SCHED_IDLE)) +		return 0; + +	/* +	 * Buddy candidates are cache hot: +	 */ +	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && +			(&p->se == cfs_rq_of(&p->se)->next || +			 &p->se == cfs_rq_of(&p->se)->last)) +		return 1; + +	if (sysctl_sched_migration_cost == -1) +		return 1; +	if (sysctl_sched_migration_cost == 0) +		return 0; + +	delta = now - p->se.exec_start; + +	return delta < (s64)sysctl_sched_migration_cost; +} + +#ifdef CONFIG_NUMA_BALANCING +/* Returns true if the destination node has incurred more faults */ +static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env) +{ +	struct numa_group *numa_group = rcu_dereference(p->numa_group); +	int src_nid, dst_nid; + +	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory || +	    !(env->sd->flags & SD_NUMA)) { +		return false; +	} + +	src_nid = cpu_to_node(env->src_cpu); +	dst_nid = cpu_to_node(env->dst_cpu); + +	if (src_nid == dst_nid) +		return false; + +	if (numa_group) { +		/* Task is already in the group's interleave set. */ +		if (node_isset(src_nid, numa_group->active_nodes)) +			return false; + +		/* Task is moving into the group's interleave set. */ +		if (node_isset(dst_nid, numa_group->active_nodes)) +			return true; + +		return group_faults(p, dst_nid) > group_faults(p, src_nid); +	} + +	/* Encourage migration to the preferred node. */ +	if (dst_nid == p->numa_preferred_nid) +		return true; + +	return task_faults(p, dst_nid) > task_faults(p, src_nid); +} + + +static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env) +{ +	struct numa_group *numa_group = rcu_dereference(p->numa_group); +	int src_nid, dst_nid; + +	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER)) +		return false; + +	if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA)) +		return false; + +	src_nid = cpu_to_node(env->src_cpu); +	dst_nid = cpu_to_node(env->dst_cpu); + +	if (src_nid == dst_nid) +		return false; + +	if (numa_group) { +		/* Task is moving within/into the group's interleave set. */ +		if (node_isset(dst_nid, numa_group->active_nodes)) +			return false; + +		/* Task is moving out of the group's interleave set. */ +		if (node_isset(src_nid, numa_group->active_nodes)) +			return true; + +		return group_faults(p, dst_nid) < group_faults(p, src_nid); +	} + +	/* Migrating away from the preferred node is always bad. */ +	if (src_nid == p->numa_preferred_nid) +		return true; + +	return task_faults(p, dst_nid) < task_faults(p, src_nid); +} + +#else +static inline bool migrate_improves_locality(struct task_struct *p, +					     struct lb_env *env) +{ +	return false; +} + +static inline bool migrate_degrades_locality(struct task_struct *p, +					     struct lb_env *env) +{ +	return false; +} +#endif + +/* + * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? + */ +static +int can_migrate_task(struct task_struct *p, struct lb_env *env) +{ +	int tsk_cache_hot = 0; +	/* +	 * We do not migrate tasks that are: +	 * 1) throttled_lb_pair, or +	 * 2) cannot be migrated to this CPU due to cpus_allowed, or +	 * 3) running (obviously), or +	 * 4) are cache-hot on their current CPU. +	 */ +	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) +		return 0; + +	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { +		int cpu; + +		schedstat_inc(p, se.statistics.nr_failed_migrations_affine); + +		env->flags |= LBF_SOME_PINNED; + +		/* +		 * Remember if this task can be migrated to any other cpu in +		 * our sched_group. We may want to revisit it if we couldn't +		 * meet load balance goals by pulling other tasks on src_cpu. +		 * +		 * Also avoid computing new_dst_cpu if we have already computed +		 * one in current iteration. +		 */ +		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) +			return 0; + +		/* Prevent to re-select dst_cpu via env's cpus */ +		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { +			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { +				env->flags |= LBF_DST_PINNED; +				env->new_dst_cpu = cpu; +				break; +			} +		} + +		return 0; +	} + +	/* Record that we found atleast one task that could run on dst_cpu */ +	env->flags &= ~LBF_ALL_PINNED; + +	if (task_running(env->src_rq, p)) { +		schedstat_inc(p, se.statistics.nr_failed_migrations_running); +		return 0; +	} + +	/* +	 * Aggressive migration if: +	 * 1) destination numa is preferred +	 * 2) task is cache cold, or +	 * 3) too many balance attempts have failed. +	 */ +	tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq)); +	if (!tsk_cache_hot) +		tsk_cache_hot = migrate_degrades_locality(p, env); + +	if (migrate_improves_locality(p, env)) { +#ifdef CONFIG_SCHEDSTATS +		if (tsk_cache_hot) { +			schedstat_inc(env->sd, lb_hot_gained[env->idle]); +			schedstat_inc(p, se.statistics.nr_forced_migrations); +		} +#endif +		return 1; +	} + +	if (!tsk_cache_hot || +		env->sd->nr_balance_failed > env->sd->cache_nice_tries) { + +		if (tsk_cache_hot) { +			schedstat_inc(env->sd, lb_hot_gained[env->idle]); +			schedstat_inc(p, se.statistics.nr_forced_migrations); +		} + +		return 1; +	} + +	schedstat_inc(p, se.statistics.nr_failed_migrations_hot); +	return 0; +} + +/* + * move_one_task tries to move exactly one task from busiest to this_rq, as + * part of active balancing operations within "domain". + * Returns 1 if successful and 0 otherwise. + * + * Called with both runqueues locked. + */ +static int move_one_task(struct lb_env *env) +{ +	struct task_struct *p, *n; + +	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { +		if (!can_migrate_task(p, env)) +			continue; + +		move_task(p, env); +		/* +		 * Right now, this is only the second place move_task() +		 * is called, so we can safely collect move_task() +		 * stats here rather than inside move_task(). +		 */ +		schedstat_inc(env->sd, lb_gained[env->idle]); +		return 1; +	} +	return 0; +} + +static const unsigned int sched_nr_migrate_break = 32; + +/* + * move_tasks tries to move up to imbalance weighted load from busiest to + * this_rq, as part of a balancing operation within domain "sd". + * Returns 1 if successful and 0 otherwise. + * + * Called with both runqueues locked. + */ +static int move_tasks(struct lb_env *env) +{ +	struct list_head *tasks = &env->src_rq->cfs_tasks; +	struct task_struct *p; +	unsigned long load; +	int pulled = 0; + +	if (env->imbalance <= 0) +		return 0; + +	while (!list_empty(tasks)) { +		p = list_first_entry(tasks, struct task_struct, se.group_node); + +		env->loop++; +		/* We've more or less seen every task there is, call it quits */ +		if (env->loop > env->loop_max) +			break; + +		/* take a breather every nr_migrate tasks */ +		if (env->loop > env->loop_break) { +			env->loop_break += sched_nr_migrate_break; +			env->flags |= LBF_NEED_BREAK; +			break; +		} + +		if (!can_migrate_task(p, env)) +			goto next; + +		load = task_h_load(p); + +		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) +			goto next; + +		if ((load / 2) > env->imbalance) +			goto next; + +		move_task(p, env); +		pulled++; +		env->imbalance -= load; + +#ifdef CONFIG_PREEMPT +		/* +		 * NEWIDLE balancing is a source of latency, so preemptible +		 * kernels will stop after the first task is pulled to minimize +		 * the critical section. +		 */ +		if (env->idle == CPU_NEWLY_IDLE) +			break; +#endif + +		/* +		 * We only want to steal up to the prescribed amount of +		 * weighted load. +		 */ +		if (env->imbalance <= 0) +			break; + +		continue; +next: +		list_move_tail(&p->se.group_node, tasks); +	} + +	/* +	 * Right now, this is one of only two places move_task() is called, +	 * so we can safely collect move_task() stats here rather than +	 * inside move_task(). +	 */ +	schedstat_add(env->sd, lb_gained[env->idle], pulled); + +	return pulled; +} + +#ifdef CONFIG_FAIR_GROUP_SCHED +/* + * update tg->load_weight by folding this cpu's load_avg + */ +static void __update_blocked_averages_cpu(struct task_group *tg, int cpu) +{ +	struct sched_entity *se = tg->se[cpu]; +	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; + +	/* throttled entities do not contribute to load */ +	if (throttled_hierarchy(cfs_rq)) +		return; + +	update_cfs_rq_blocked_load(cfs_rq, 1); + +	if (se) { +		update_entity_load_avg(se, 1); +		/* +		 * We pivot on our runnable average having decayed to zero for +		 * list removal.  This generally implies that all our children +		 * have also been removed (modulo rounding error or bandwidth +		 * control); however, such cases are rare and we can fix these +		 * at enqueue. +		 * +		 * TODO: fix up out-of-order children on enqueue. +		 */ +		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running) +			list_del_leaf_cfs_rq(cfs_rq); +	} else { +		struct rq *rq = rq_of(cfs_rq); +		update_rq_runnable_avg(rq, rq->nr_running); +	} +} + +static void update_blocked_averages(int cpu) +{ +	struct rq *rq = cpu_rq(cpu); +	struct cfs_rq *cfs_rq; +	unsigned long flags; + +	raw_spin_lock_irqsave(&rq->lock, flags); +	update_rq_clock(rq); +	/* +	 * Iterates the task_group tree in a bottom up fashion, see +	 * list_add_leaf_cfs_rq() for details. +	 */ +	for_each_leaf_cfs_rq(rq, cfs_rq) { +		/* +		 * Note: We may want to consider periodically releasing +		 * rq->lock about these updates so that creating many task +		 * groups does not result in continually extending hold time. +		 */ +		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu); +	} + +	raw_spin_unlock_irqrestore(&rq->lock, flags); +} + +/* + * Compute the hierarchical load factor for cfs_rq and all its ascendants. + * This needs to be done in a top-down fashion because the load of a child + * group is a fraction of its parents load. + */ +static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) +{ +	struct rq *rq = rq_of(cfs_rq); +	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; +	unsigned long now = jiffies; +	unsigned long load; + +	if (cfs_rq->last_h_load_update == now) +		return; + +	cfs_rq->h_load_next = NULL; +	for_each_sched_entity(se) { +		cfs_rq = cfs_rq_of(se); +		cfs_rq->h_load_next = se; +		if (cfs_rq->last_h_load_update == now) +			break; +	} + +	if (!se) { +		cfs_rq->h_load = cfs_rq->runnable_load_avg; +		cfs_rq->last_h_load_update = now; +	} + +	while ((se = cfs_rq->h_load_next) != NULL) { +		load = cfs_rq->h_load; +		load = div64_ul(load * se->avg.load_avg_contrib, +				cfs_rq->runnable_load_avg + 1); +		cfs_rq = group_cfs_rq(se); +		cfs_rq->h_load = load; +		cfs_rq->last_h_load_update = now; +	} +} + +static unsigned long task_h_load(struct task_struct *p) +{ +	struct cfs_rq *cfs_rq = task_cfs_rq(p); + +	update_cfs_rq_h_load(cfs_rq); +	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load, +			cfs_rq->runnable_load_avg + 1); +} +#else +static inline void update_blocked_averages(int cpu) +{ +} + +static unsigned long task_h_load(struct task_struct *p) +{ +	return p->se.avg.load_avg_contrib; +} +#endif + +/********** Helpers for find_busiest_group ************************/ +/* + * sg_lb_stats - stats of a sched_group required for load_balancing + */ +struct sg_lb_stats { +	unsigned long avg_load; /*Avg load across the CPUs of the group */ +	unsigned long group_load; /* Total load over the CPUs of the group */ +	unsigned long sum_weighted_load; /* Weighted load of group's tasks */ +	unsigned long load_per_task; +	unsigned long group_capacity; +	unsigned int sum_nr_running; /* Nr tasks running in the group */ +	unsigned int group_capacity_factor; +	unsigned int idle_cpus; +	unsigned int group_weight; +	int group_imb; /* Is there an imbalance in the group ? */ +	int group_has_free_capacity; +#ifdef CONFIG_NUMA_BALANCING +	unsigned int nr_numa_running; +	unsigned int nr_preferred_running; +#endif +}; + +/* + * sd_lb_stats - Structure to store the statistics of a sched_domain + *		 during load balancing. + */ +struct sd_lb_stats { +	struct sched_group *busiest;	/* Busiest group in this sd */ +	struct sched_group *local;	/* Local group in this sd */ +	unsigned long total_load;	/* Total load of all groups in sd */ +	unsigned long total_capacity;	/* Total capacity of all groups in sd */ +	unsigned long avg_load;	/* Average load across all groups in sd */ + +	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ +	struct sg_lb_stats local_stat;	/* Statistics of the local group */ +}; + +static inline void init_sd_lb_stats(struct sd_lb_stats *sds) +{ +	/* +	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing +	 * local_stat because update_sg_lb_stats() does a full clear/assignment. +	 * We must however clear busiest_stat::avg_load because +	 * update_sd_pick_busiest() reads this before assignment. +	 */ +	*sds = (struct sd_lb_stats){ +		.busiest = NULL, +		.local = NULL, +		.total_load = 0UL, +		.total_capacity = 0UL, +		.busiest_stat = { +			.avg_load = 0UL, +		}, +	}; +} + +/** + * get_sd_load_idx - Obtain the load index for a given sched domain. + * @sd: The sched_domain whose load_idx is to be obtained. + * @idle: The idle status of the CPU for whose sd load_idx is obtained. + * + * Return: The load index. + */ +static inline int get_sd_load_idx(struct sched_domain *sd, +					enum cpu_idle_type idle) +{ +	int load_idx; + +	switch (idle) { +	case CPU_NOT_IDLE: +		load_idx = sd->busy_idx; +		break; + +	case CPU_NEWLY_IDLE: +		load_idx = sd->newidle_idx; +		break; +	default: +		load_idx = sd->idle_idx; +		break; +	} + +	return load_idx; +} + +static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu) +{ +	return SCHED_CAPACITY_SCALE; +} + +unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu) +{ +	return default_scale_capacity(sd, cpu); +} + +static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu) +{ +	unsigned long weight = sd->span_weight; +	unsigned long smt_gain = sd->smt_gain; + +	smt_gain /= weight; + +	return smt_gain; +} + +unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu) +{ +	return default_scale_smt_capacity(sd, cpu); +} + +static unsigned long scale_rt_capacity(int cpu) +{ +	struct rq *rq = cpu_rq(cpu); +	u64 total, available, age_stamp, avg; +	s64 delta; + +	/* +	 * Since we're reading these variables without serialization make sure +	 * we read them once before doing sanity checks on them. +	 */ +	age_stamp = ACCESS_ONCE(rq->age_stamp); +	avg = ACCESS_ONCE(rq->rt_avg); + +	delta = rq_clock(rq) - age_stamp; +	if (unlikely(delta < 0)) +		delta = 0; + +	total = sched_avg_period() + delta; + +	if (unlikely(total < avg)) { +		/* Ensures that capacity won't end up being negative */ +		available = 0; +	} else { +		available = total - avg; +	} + +	if (unlikely((s64)total < SCHED_CAPACITY_SCALE)) +		total = SCHED_CAPACITY_SCALE; + +	total >>= SCHED_CAPACITY_SHIFT; + +	return div_u64(available, total); +} + +static void update_cpu_capacity(struct sched_domain *sd, int cpu) +{ +	unsigned long weight = sd->span_weight; +	unsigned long capacity = SCHED_CAPACITY_SCALE; +	struct sched_group *sdg = sd->groups; + +	if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) { +		if (sched_feat(ARCH_CAPACITY)) +			capacity *= arch_scale_smt_capacity(sd, cpu); +		else +			capacity *= default_scale_smt_capacity(sd, cpu); + +		capacity >>= SCHED_CAPACITY_SHIFT; +	} + +	sdg->sgc->capacity_orig = capacity; + +	if (sched_feat(ARCH_CAPACITY)) +		capacity *= arch_scale_freq_capacity(sd, cpu); +	else +		capacity *= default_scale_capacity(sd, cpu); + +	capacity >>= SCHED_CAPACITY_SHIFT; + +	capacity *= scale_rt_capacity(cpu); +	capacity >>= SCHED_CAPACITY_SHIFT; + +	if (!capacity) +		capacity = 1; + +	cpu_rq(cpu)->cpu_capacity = capacity; +	sdg->sgc->capacity = capacity; +} + +void update_group_capacity(struct sched_domain *sd, int cpu) +{ +	struct sched_domain *child = sd->child; +	struct sched_group *group, *sdg = sd->groups; +	unsigned long capacity, capacity_orig; +	unsigned long interval; + +	interval = msecs_to_jiffies(sd->balance_interval); +	interval = clamp(interval, 1UL, max_load_balance_interval); +	sdg->sgc->next_update = jiffies + interval; + +	if (!child) { +		update_cpu_capacity(sd, cpu); +		return; +	} + +	capacity_orig = capacity = 0; + +	if (child->flags & SD_OVERLAP) { +		/* +		 * SD_OVERLAP domains cannot assume that child groups +		 * span the current group. +		 */ + +		for_each_cpu(cpu, sched_group_cpus(sdg)) { +			struct sched_group_capacity *sgc; +			struct rq *rq = cpu_rq(cpu); + +			/* +			 * build_sched_domains() -> init_sched_groups_capacity() +			 * gets here before we've attached the domains to the +			 * runqueues. +			 * +			 * Use capacity_of(), which is set irrespective of domains +			 * in update_cpu_capacity(). +			 * +			 * This avoids capacity/capacity_orig from being 0 and +			 * causing divide-by-zero issues on boot. +			 * +			 * Runtime updates will correct capacity_orig. +			 */ +			if (unlikely(!rq->sd)) { +				capacity_orig += capacity_of(cpu); +				capacity += capacity_of(cpu); +				continue; +			} + +			sgc = rq->sd->groups->sgc; +			capacity_orig += sgc->capacity_orig; +			capacity += sgc->capacity; +		} +	} else  { +		/* +		 * !SD_OVERLAP domains can assume that child groups +		 * span the current group. +		 */  + +		group = child->groups; +		do { +			capacity_orig += group->sgc->capacity_orig; +			capacity += group->sgc->capacity; +			group = group->next; +		} while (group != child->groups); +	} + +	sdg->sgc->capacity_orig = capacity_orig; +	sdg->sgc->capacity = capacity; +} + +/* + * Try and fix up capacity for tiny siblings, this is needed when + * things like SD_ASYM_PACKING need f_b_g to select another sibling + * which on its own isn't powerful enough. + * + * See update_sd_pick_busiest() and check_asym_packing(). + */ +static inline int +fix_small_capacity(struct sched_domain *sd, struct sched_group *group) +{ +	/* +	 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE +	 */ +	if (!(sd->flags & SD_SHARE_CPUCAPACITY)) +		return 0; + +	/* +	 * If ~90% of the cpu_capacity is still there, we're good. +	 */ +	if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29) +		return 1; + +	return 0; +} + +/* + * Group imbalance indicates (and tries to solve) the problem where balancing + * groups is inadequate due to tsk_cpus_allowed() constraints. + * + * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a + * cpumask covering 1 cpu of the first group and 3 cpus of the second group. + * Something like: + * + * 	{ 0 1 2 3 } { 4 5 6 7 } + * 	        *     * * * + * + * If we were to balance group-wise we'd place two tasks in the first group and + * two tasks in the second group. Clearly this is undesired as it will overload + * cpu 3 and leave one of the cpus in the second group unused. + * + * The current solution to this issue is detecting the skew in the first group + * by noticing the lower domain failed to reach balance and had difficulty + * moving tasks due to affinity constraints. + * + * When this is so detected; this group becomes a candidate for busiest; see + * update_sd_pick_busiest(). And calculate_imbalance() and + * find_busiest_group() avoid some of the usual balance conditions to allow it + * to create an effective group imbalance. + * + * This is a somewhat tricky proposition since the next run might not find the + * group imbalance and decide the groups need to be balanced again. A most + * subtle and fragile situation. + */ + +static inline int sg_imbalanced(struct sched_group *group) +{ +	return group->sgc->imbalance; +} + +/* + * Compute the group capacity factor. + * + * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by + * first dividing out the smt factor and computing the actual number of cores + * and limit unit capacity with that. + */ +static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group) +{ +	unsigned int capacity_factor, smt, cpus; +	unsigned int capacity, capacity_orig; + +	capacity = group->sgc->capacity; +	capacity_orig = group->sgc->capacity_orig; +	cpus = group->group_weight; + +	/* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */ +	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig); +	capacity_factor = cpus / smt; /* cores */ + +	capacity_factor = min_t(unsigned, +		capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE)); +	if (!capacity_factor) +		capacity_factor = fix_small_capacity(env->sd, group); + +	return capacity_factor; +} + +/** + * update_sg_lb_stats - Update sched_group's statistics for load balancing. + * @env: The load balancing environment. + * @group: sched_group whose statistics are to be updated. + * @load_idx: Load index of sched_domain of this_cpu for load calc. + * @local_group: Does group contain this_cpu. + * @sgs: variable to hold the statistics for this group. + */ +static inline void update_sg_lb_stats(struct lb_env *env, +			struct sched_group *group, int load_idx, +			int local_group, struct sg_lb_stats *sgs) +{ +	unsigned long load; +	int i; + +	memset(sgs, 0, sizeof(*sgs)); + +	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { +		struct rq *rq = cpu_rq(i); + +		/* Bias balancing toward cpus of our domain */ +		if (local_group) +			load = target_load(i, load_idx); +		else +			load = source_load(i, load_idx); + +		sgs->group_load += load; +		sgs->sum_nr_running += rq->nr_running; +#ifdef CONFIG_NUMA_BALANCING +		sgs->nr_numa_running += rq->nr_numa_running; +		sgs->nr_preferred_running += rq->nr_preferred_running; +#endif +		sgs->sum_weighted_load += weighted_cpuload(i); +		if (idle_cpu(i)) +			sgs->idle_cpus++; +	} + +	/* Adjust by relative CPU capacity of the group */ +	sgs->group_capacity = group->sgc->capacity; +	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; + +	if (sgs->sum_nr_running) +		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; + +	sgs->group_weight = group->group_weight; + +	sgs->group_imb = sg_imbalanced(group); +	sgs->group_capacity_factor = sg_capacity_factor(env, group); + +	if (sgs->group_capacity_factor > sgs->sum_nr_running) +		sgs->group_has_free_capacity = 1; +} + +/** + * update_sd_pick_busiest - return 1 on busiest group + * @env: The load balancing environment. + * @sds: sched_domain statistics + * @sg: sched_group candidate to be checked for being the busiest + * @sgs: sched_group statistics + * + * Determine if @sg is a busier group than the previously selected + * busiest group. + * + * Return: %true if @sg is a busier group than the previously selected + * busiest group. %false otherwise. + */ +static bool update_sd_pick_busiest(struct lb_env *env, +				   struct sd_lb_stats *sds, +				   struct sched_group *sg, +				   struct sg_lb_stats *sgs) +{ +	if (sgs->avg_load <= sds->busiest_stat.avg_load) +		return false; + +	if (sgs->sum_nr_running > sgs->group_capacity_factor) +		return true; + +	if (sgs->group_imb) +		return true; + +	/* +	 * ASYM_PACKING needs to move all the work to the lowest +	 * numbered CPUs in the group, therefore mark all groups +	 * higher than ourself as busy. +	 */ +	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && +	    env->dst_cpu < group_first_cpu(sg)) { +		if (!sds->busiest) +			return true; + +		if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) +			return true; +	} + +	return false; +} + +#ifdef CONFIG_NUMA_BALANCING +static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) +{ +	if (sgs->sum_nr_running > sgs->nr_numa_running) +		return regular; +	if (sgs->sum_nr_running > sgs->nr_preferred_running) +		return remote; +	return all; +} + +static inline enum fbq_type fbq_classify_rq(struct rq *rq) +{ +	if (rq->nr_running > rq->nr_numa_running) +		return regular; +	if (rq->nr_running > rq->nr_preferred_running) +		return remote; +	return all; +} +#else +static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) +{ +	return all; +} + +static inline enum fbq_type fbq_classify_rq(struct rq *rq) +{ +	return regular; +} +#endif /* CONFIG_NUMA_BALANCING */ + +/** + * update_sd_lb_stats - Update sched_domain's statistics for load balancing. + * @env: The load balancing environment. + * @sds: variable to hold the statistics for this sched_domain. + */ +static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) +{ +	struct sched_domain *child = env->sd->child; +	struct sched_group *sg = env->sd->groups; +	struct sg_lb_stats tmp_sgs; +	int load_idx, prefer_sibling = 0; + +	if (child && child->flags & SD_PREFER_SIBLING) +		prefer_sibling = 1; + +	load_idx = get_sd_load_idx(env->sd, env->idle); + +	do { +		struct sg_lb_stats *sgs = &tmp_sgs; +		int local_group; + +		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); +		if (local_group) { +			sds->local = sg; +			sgs = &sds->local_stat; + +			if (env->idle != CPU_NEWLY_IDLE || +			    time_after_eq(jiffies, sg->sgc->next_update)) +				update_group_capacity(env->sd, env->dst_cpu); +		} + +		update_sg_lb_stats(env, sg, load_idx, local_group, sgs); + +		if (local_group) +			goto next_group; + +		/* +		 * In case the child domain prefers tasks go to siblings +		 * first, lower the sg capacity factor to one so that we'll try +		 * and move all the excess tasks away. We lower the capacity +		 * of a group only if the local group has the capacity to fit +		 * these excess tasks, i.e. nr_running < group_capacity_factor. The +		 * extra check prevents the case where you always pull from the +		 * heaviest group when it is already under-utilized (possible +		 * with a large weight task outweighs the tasks on the system). +		 */ +		if (prefer_sibling && sds->local && +		    sds->local_stat.group_has_free_capacity) +			sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U); + +		if (update_sd_pick_busiest(env, sds, sg, sgs)) { +			sds->busiest = sg; +			sds->busiest_stat = *sgs; +		} + +next_group: +		/* Now, start updating sd_lb_stats */ +		sds->total_load += sgs->group_load; +		sds->total_capacity += sgs->group_capacity; + +		sg = sg->next; +	} while (sg != env->sd->groups); + +	if (env->sd->flags & SD_NUMA) +		env->fbq_type = fbq_classify_group(&sds->busiest_stat); +} + +/** + * check_asym_packing - Check to see if the group is packed into the + *			sched doman. + * + * This is primarily intended to used at the sibling level.  Some + * cores like POWER7 prefer to use lower numbered SMT threads.  In the + * case of POWER7, it can move to lower SMT modes only when higher + * threads are idle.  When in lower SMT modes, the threads will + * perform better since they share less core resources.  Hence when we + * have idle threads, we want them to be the higher ones. + * + * This packing function is run on idle threads.  It checks to see if + * the busiest CPU in this domain (core in the P7 case) has a higher + * CPU number than the packing function is being run on.  Here we are + * assuming lower CPU number will be equivalent to lower a SMT thread + * number. + * + * Return: 1 when packing is required and a task should be moved to + * this CPU.  The amount of the imbalance is returned in *imbalance. + * + * @env: The load balancing environment. + * @sds: Statistics of the sched_domain which is to be packed + */ +static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) +{ +	int busiest_cpu; + +	if (!(env->sd->flags & SD_ASYM_PACKING)) +		return 0; + +	if (!sds->busiest) +		return 0; + +	busiest_cpu = group_first_cpu(sds->busiest); +	if (env->dst_cpu > busiest_cpu) +		return 0; + +	env->imbalance = DIV_ROUND_CLOSEST( +		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, +		SCHED_CAPACITY_SCALE); + +	return 1; +} + +/** + * fix_small_imbalance - Calculate the minor imbalance that exists + *			amongst the groups of a sched_domain, during + *			load balancing. + * @env: The load balancing environment. + * @sds: Statistics of the sched_domain whose imbalance is to be calculated. + */ +static inline +void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) +{ +	unsigned long tmp, capa_now = 0, capa_move = 0; +	unsigned int imbn = 2; +	unsigned long scaled_busy_load_per_task; +	struct sg_lb_stats *local, *busiest; + +	local = &sds->local_stat; +	busiest = &sds->busiest_stat; + +	if (!local->sum_nr_running) +		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); +	else if (busiest->load_per_task > local->load_per_task) +		imbn = 1; + +	scaled_busy_load_per_task = +		(busiest->load_per_task * SCHED_CAPACITY_SCALE) / +		busiest->group_capacity; + +	if (busiest->avg_load + scaled_busy_load_per_task >= +	    local->avg_load + (scaled_busy_load_per_task * imbn)) { +		env->imbalance = busiest->load_per_task; +		return; +	} + +	/* +	 * OK, we don't have enough imbalance to justify moving tasks, +	 * however we may be able to increase total CPU capacity used by +	 * moving them. +	 */ + +	capa_now += busiest->group_capacity * +			min(busiest->load_per_task, busiest->avg_load); +	capa_now += local->group_capacity * +			min(local->load_per_task, local->avg_load); +	capa_now /= SCHED_CAPACITY_SCALE; + +	/* Amount of load we'd subtract */ +	if (busiest->avg_load > scaled_busy_load_per_task) { +		capa_move += busiest->group_capacity * +			    min(busiest->load_per_task, +				busiest->avg_load - scaled_busy_load_per_task); +	} + +	/* Amount of load we'd add */ +	if (busiest->avg_load * busiest->group_capacity < +	    busiest->load_per_task * SCHED_CAPACITY_SCALE) { +		tmp = (busiest->avg_load * busiest->group_capacity) / +		      local->group_capacity; +	} else { +		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / +		      local->group_capacity; +	} +	capa_move += local->group_capacity * +		    min(local->load_per_task, local->avg_load + tmp); +	capa_move /= SCHED_CAPACITY_SCALE; + +	/* Move if we gain throughput */ +	if (capa_move > capa_now) +		env->imbalance = busiest->load_per_task; +} + +/** + * calculate_imbalance - Calculate the amount of imbalance present within the + *			 groups of a given sched_domain during load balance. + * @env: load balance environment + * @sds: statistics of the sched_domain whose imbalance is to be calculated. + */ +static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) +{ +	unsigned long max_pull, load_above_capacity = ~0UL; +	struct sg_lb_stats *local, *busiest; + +	local = &sds->local_stat; +	busiest = &sds->busiest_stat; + +	if (busiest->group_imb) { +		/* +		 * In the group_imb case we cannot rely on group-wide averages +		 * to ensure cpu-load equilibrium, look at wider averages. XXX +		 */ +		busiest->load_per_task = +			min(busiest->load_per_task, sds->avg_load); +	} + +	/* +	 * In the presence of smp nice balancing, certain scenarios can have +	 * max load less than avg load(as we skip the groups at or below +	 * its cpu_capacity, while calculating max_load..) +	 */ +	if (busiest->avg_load <= sds->avg_load || +	    local->avg_load >= sds->avg_load) { +		env->imbalance = 0; +		return fix_small_imbalance(env, sds); +	} + +	if (!busiest->group_imb) { +		/* +		 * Don't want to pull so many tasks that a group would go idle. +		 * Except of course for the group_imb case, since then we might +		 * have to drop below capacity to reach cpu-load equilibrium. +		 */ +		load_above_capacity = +			(busiest->sum_nr_running - busiest->group_capacity_factor); + +		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE); +		load_above_capacity /= busiest->group_capacity; +	} + +	/* +	 * We're trying to get all the cpus to the average_load, so we don't +	 * want to push ourselves above the average load, nor do we wish to +	 * reduce the max loaded cpu below the average load. At the same time, +	 * we also don't want to reduce the group load below the group capacity +	 * (so that we can implement power-savings policies etc). Thus we look +	 * for the minimum possible imbalance. +	 */ +	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); + +	/* How much load to actually move to equalise the imbalance */ +	env->imbalance = min( +		max_pull * busiest->group_capacity, +		(sds->avg_load - local->avg_load) * local->group_capacity +	) / SCHED_CAPACITY_SCALE; + +	/* +	 * if *imbalance is less than the average load per runnable task +	 * there is no guarantee that any tasks will be moved so we'll have +	 * a think about bumping its value to force at least one task to be +	 * moved +	 */ +	if (env->imbalance < busiest->load_per_task) +		return fix_small_imbalance(env, sds); +} + +/******* find_busiest_group() helpers end here *********************/ + +/** + * find_busiest_group - Returns the busiest group within the sched_domain + * if there is an imbalance. If there isn't an imbalance, and + * the user has opted for power-savings, it returns a group whose + * CPUs can be put to idle by rebalancing those tasks elsewhere, if + * such a group exists. + * + * Also calculates the amount of weighted load which should be moved + * to restore balance. + * + * @env: The load balancing environment. + * + * Return:	- The busiest group if imbalance exists. + *		- If no imbalance and user has opted for power-savings balance, + *		   return the least loaded group whose CPUs can be + *		   put to idle by rebalancing its tasks onto our group. + */ +static struct sched_group *find_busiest_group(struct lb_env *env) +{ +	struct sg_lb_stats *local, *busiest; +	struct sd_lb_stats sds; + +	init_sd_lb_stats(&sds); + +	/* +	 * Compute the various statistics relavent for load balancing at +	 * this level. +	 */ +	update_sd_lb_stats(env, &sds); +	local = &sds.local_stat; +	busiest = &sds.busiest_stat; + +	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && +	    check_asym_packing(env, &sds)) +		return sds.busiest; + +	/* There is no busy sibling group to pull tasks from */ +	if (!sds.busiest || busiest->sum_nr_running == 0) +		goto out_balanced; + +	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) +						/ sds.total_capacity; + +	/* +	 * If the busiest group is imbalanced the below checks don't +	 * work because they assume all things are equal, which typically +	 * isn't true due to cpus_allowed constraints and the like. +	 */ +	if (busiest->group_imb) +		goto force_balance; + +	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ +	if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity && +	    !busiest->group_has_free_capacity) +		goto force_balance; + +	/* +	 * If the local group is more busy than the selected busiest group +	 * don't try and pull any tasks. +	 */ +	if (local->avg_load >= busiest->avg_load) +		goto out_balanced; + +	/* +	 * Don't pull any tasks if this group is already above the domain +	 * average load. +	 */ +	if (local->avg_load >= sds.avg_load) +		goto out_balanced; + +	if (env->idle == CPU_IDLE) { +		/* +		 * This cpu is idle. If the busiest group load doesn't +		 * have more tasks than the number of available cpu's and +		 * there is no imbalance between this and busiest group +		 * wrt to idle cpu's, it is balanced. +		 */ +		if ((local->idle_cpus < busiest->idle_cpus) && +		    busiest->sum_nr_running <= busiest->group_weight) +			goto out_balanced; +	} else { +		/* +		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use +		 * imbalance_pct to be conservative. +		 */ +		if (100 * busiest->avg_load <= +				env->sd->imbalance_pct * local->avg_load) +			goto out_balanced; +	} + +force_balance: +	/* Looks like there is an imbalance. Compute it */ +	calculate_imbalance(env, &sds); +	return sds.busiest; + +out_balanced: +	env->imbalance = 0; +	return NULL; +} + +/* + * find_busiest_queue - find the busiest runqueue among the cpus in group. + */ +static struct rq *find_busiest_queue(struct lb_env *env, +				     struct sched_group *group) +{ +	struct rq *busiest = NULL, *rq; +	unsigned long busiest_load = 0, busiest_capacity = 1; +	int i; + +	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { +		unsigned long capacity, capacity_factor, wl; +		enum fbq_type rt; + +		rq = cpu_rq(i); +		rt = fbq_classify_rq(rq); + +		/* +		 * We classify groups/runqueues into three groups: +		 *  - regular: there are !numa tasks +		 *  - remote:  there are numa tasks that run on the 'wrong' node +		 *  - all:     there is no distinction +		 * +		 * In order to avoid migrating ideally placed numa tasks, +		 * ignore those when there's better options. +		 * +		 * If we ignore the actual busiest queue to migrate another +		 * task, the next balance pass can still reduce the busiest +		 * queue by moving tasks around inside the node. +		 * +		 * If we cannot move enough load due to this classification +		 * the next pass will adjust the group classification and +		 * allow migration of more tasks. +		 * +		 * Both cases only affect the total convergence complexity. +		 */ +		if (rt > env->fbq_type) +			continue; + +		capacity = capacity_of(i); +		capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE); +		if (!capacity_factor) +			capacity_factor = fix_small_capacity(env->sd, group); + +		wl = weighted_cpuload(i); + +		/* +		 * When comparing with imbalance, use weighted_cpuload() +		 * which is not scaled with the cpu capacity. +		 */ +		if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance) +			continue; + +		/* +		 * For the load comparisons with the other cpu's, consider +		 * the weighted_cpuload() scaled with the cpu capacity, so +		 * that the load can be moved away from the cpu that is +		 * potentially running at a lower capacity. +		 * +		 * Thus we're looking for max(wl_i / capacity_i), crosswise +		 * multiplication to rid ourselves of the division works out +		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is +		 * our previous maximum. +		 */ +		if (wl * busiest_capacity > busiest_load * capacity) { +			busiest_load = wl; +			busiest_capacity = capacity; +			busiest = rq; +		} +	} + +	return busiest; +} + +/* + * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but + * so long as it is large enough. + */ +#define MAX_PINNED_INTERVAL	512 + +/* Working cpumask for load_balance and load_balance_newidle. */ +DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); + +static int need_active_balance(struct lb_env *env) +{ +	struct sched_domain *sd = env->sd; + +	if (env->idle == CPU_NEWLY_IDLE) { + +		/* +		 * ASYM_PACKING needs to force migrate tasks from busy but +		 * higher numbered CPUs in order to pack all tasks in the +		 * lowest numbered CPUs. +		 */ +		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) +			return 1; +	} + +	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); +} + +static int active_load_balance_cpu_stop(void *data); + +static int should_we_balance(struct lb_env *env) +{ +	struct sched_group *sg = env->sd->groups; +	struct cpumask *sg_cpus, *sg_mask; +	int cpu, balance_cpu = -1; + +	/* +	 * In the newly idle case, we will allow all the cpu's +	 * to do the newly idle load balance. +	 */ +	if (env->idle == CPU_NEWLY_IDLE) +		return 1; + +	sg_cpus = sched_group_cpus(sg); +	sg_mask = sched_group_mask(sg); +	/* Try to find first idle cpu */ +	for_each_cpu_and(cpu, sg_cpus, env->cpus) { +		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) +			continue; + +		balance_cpu = cpu; +		break; +	} + +	if (balance_cpu == -1) +		balance_cpu = group_balance_cpu(sg); + +	/* +	 * First idle cpu or the first cpu(busiest) in this sched group +	 * is eligible for doing load balancing at this and above domains. +	 */ +	return balance_cpu == env->dst_cpu; +} + +/* + * Check this_cpu to ensure it is balanced within domain. Attempt to move + * tasks if there is an imbalance. + */ +static int load_balance(int this_cpu, struct rq *this_rq, +			struct sched_domain *sd, enum cpu_idle_type idle, +			int *continue_balancing) +{ +	int ld_moved, cur_ld_moved, active_balance = 0; +	struct sched_domain *sd_parent = sd->parent; +	struct sched_group *group; +	struct rq *busiest; +	unsigned long flags; +	struct cpumask *cpus = __get_cpu_var(load_balance_mask); + +	struct lb_env env = { +		.sd		= sd, +		.dst_cpu	= this_cpu, +		.dst_rq		= this_rq, +		.dst_grpmask    = sched_group_cpus(sd->groups), +		.idle		= idle, +		.loop_break	= sched_nr_migrate_break, +		.cpus		= cpus, +		.fbq_type	= all, +	}; + +	/* +	 * For NEWLY_IDLE load_balancing, we don't need to consider +	 * other cpus in our group +	 */ +	if (idle == CPU_NEWLY_IDLE) +		env.dst_grpmask = NULL; + +	cpumask_copy(cpus, cpu_active_mask); + +	schedstat_inc(sd, lb_count[idle]); + +redo: +	if (!should_we_balance(&env)) { +		*continue_balancing = 0; +		goto out_balanced; +	} + +	group = find_busiest_group(&env); +	if (!group) { +		schedstat_inc(sd, lb_nobusyg[idle]); +		goto out_balanced; +	} + +	busiest = find_busiest_queue(&env, group); +	if (!busiest) { +		schedstat_inc(sd, lb_nobusyq[idle]); +		goto out_balanced; +	} + +	BUG_ON(busiest == env.dst_rq); + +	schedstat_add(sd, lb_imbalance[idle], env.imbalance); + +	ld_moved = 0; +	if (busiest->nr_running > 1) { +		/* +		 * Attempt to move tasks. If find_busiest_group has found +		 * an imbalance but busiest->nr_running <= 1, the group is +		 * still unbalanced. ld_moved simply stays zero, so it is +		 * correctly treated as an imbalance. +		 */ +		env.flags |= LBF_ALL_PINNED; +		env.src_cpu   = busiest->cpu; +		env.src_rq    = busiest; +		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running); + +more_balance: +		local_irq_save(flags); +		double_rq_lock(env.dst_rq, busiest); + +		/* +		 * cur_ld_moved - load moved in current iteration +		 * ld_moved     - cumulative load moved across iterations +		 */ +		cur_ld_moved = move_tasks(&env); +		ld_moved += cur_ld_moved; +		double_rq_unlock(env.dst_rq, busiest); +		local_irq_restore(flags); + +		/* +		 * some other cpu did the load balance for us. +		 */ +		if (cur_ld_moved && env.dst_cpu != smp_processor_id()) +			resched_cpu(env.dst_cpu); + +		if (env.flags & LBF_NEED_BREAK) { +			env.flags &= ~LBF_NEED_BREAK; +			goto more_balance; +		} + +		/* +		 * Revisit (affine) tasks on src_cpu that couldn't be moved to +		 * us and move them to an alternate dst_cpu in our sched_group +		 * where they can run. The upper limit on how many times we +		 * iterate on same src_cpu is dependent on number of cpus in our +		 * sched_group. +		 * +		 * This changes load balance semantics a bit on who can move +		 * load to a given_cpu. In addition to the given_cpu itself +		 * (or a ilb_cpu acting on its behalf where given_cpu is +		 * nohz-idle), we now have balance_cpu in a position to move +		 * load to given_cpu. In rare situations, this may cause +		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding +		 * _independently_ and at _same_ time to move some load to +		 * given_cpu) causing exceess load to be moved to given_cpu. +		 * This however should not happen so much in practice and +		 * moreover subsequent load balance cycles should correct the +		 * excess load moved. +		 */ +		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { + +			/* Prevent to re-select dst_cpu via env's cpus */ +			cpumask_clear_cpu(env.dst_cpu, env.cpus); + +			env.dst_rq	 = cpu_rq(env.new_dst_cpu); +			env.dst_cpu	 = env.new_dst_cpu; +			env.flags	&= ~LBF_DST_PINNED; +			env.loop	 = 0; +			env.loop_break	 = sched_nr_migrate_break; + +			/* +			 * Go back to "more_balance" rather than "redo" since we +			 * need to continue with same src_cpu. +			 */ +			goto more_balance; +		} + +		/* +		 * We failed to reach balance because of affinity. +		 */ +		if (sd_parent) { +			int *group_imbalance = &sd_parent->groups->sgc->imbalance; + +			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) { +				*group_imbalance = 1; +			} else if (*group_imbalance) +				*group_imbalance = 0; +		} + +		/* All tasks on this runqueue were pinned by CPU affinity */ +		if (unlikely(env.flags & LBF_ALL_PINNED)) { +			cpumask_clear_cpu(cpu_of(busiest), cpus); +			if (!cpumask_empty(cpus)) { +				env.loop = 0; +				env.loop_break = sched_nr_migrate_break; +				goto redo; +			} +			goto out_balanced; +		} +	} + +	if (!ld_moved) { +		schedstat_inc(sd, lb_failed[idle]); +		/* +		 * Increment the failure counter only on periodic balance. +		 * We do not want newidle balance, which can be very +		 * frequent, pollute the failure counter causing +		 * excessive cache_hot migrations and active balances. +		 */ +		if (idle != CPU_NEWLY_IDLE) +			sd->nr_balance_failed++; + +		if (need_active_balance(&env)) { +			raw_spin_lock_irqsave(&busiest->lock, flags); + +			/* don't kick the active_load_balance_cpu_stop, +			 * if the curr task on busiest cpu can't be +			 * moved to this_cpu +			 */ +			if (!cpumask_test_cpu(this_cpu, +					tsk_cpus_allowed(busiest->curr))) { +				raw_spin_unlock_irqrestore(&busiest->lock, +							    flags); +				env.flags |= LBF_ALL_PINNED; +				goto out_one_pinned; +			} + +			/* +			 * ->active_balance synchronizes accesses to +			 * ->active_balance_work.  Once set, it's cleared +			 * only after active load balance is finished. +			 */ +			if (!busiest->active_balance) { +				busiest->active_balance = 1; +				busiest->push_cpu = this_cpu; +				active_balance = 1; +			} +			raw_spin_unlock_irqrestore(&busiest->lock, flags); + +			if (active_balance) { +				stop_one_cpu_nowait(cpu_of(busiest), +					active_load_balance_cpu_stop, busiest, +					&busiest->active_balance_work); +			} + +			/* +			 * We've kicked active balancing, reset the failure +			 * counter. +			 */ +			sd->nr_balance_failed = sd->cache_nice_tries+1; +		} +	} else +		sd->nr_balance_failed = 0; + +	if (likely(!active_balance)) { +		/* We were unbalanced, so reset the balancing interval */ +		sd->balance_interval = sd->min_interval; +	} else { +		/* +		 * If we've begun active balancing, start to back off. This +		 * case may not be covered by the all_pinned logic if there +		 * is only 1 task on the busy runqueue (because we don't call +		 * move_tasks). +		 */ +		if (sd->balance_interval < sd->max_interval) +			sd->balance_interval *= 2; +	} + +	goto out; + +out_balanced: +	schedstat_inc(sd, lb_balanced[idle]); + +	sd->nr_balance_failed = 0; + +out_one_pinned: +	/* tune up the balancing interval */ +	if (((env.flags & LBF_ALL_PINNED) && +			sd->balance_interval < MAX_PINNED_INTERVAL) || +			(sd->balance_interval < sd->max_interval)) +		sd->balance_interval *= 2; + +	ld_moved = 0; +out: +	return ld_moved; +} + +static inline unsigned long +get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) +{ +	unsigned long interval = sd->balance_interval; + +	if (cpu_busy) +		interval *= sd->busy_factor; + +	/* scale ms to jiffies */ +	interval = msecs_to_jiffies(interval); +	interval = clamp(interval, 1UL, max_load_balance_interval); + +	return interval; +} + +static inline void +update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance) +{ +	unsigned long interval, next; + +	interval = get_sd_balance_interval(sd, cpu_busy); +	next = sd->last_balance + interval; + +	if (time_after(*next_balance, next)) +		*next_balance = next; +} + +/* + * idle_balance is called by schedule() if this_cpu is about to become + * idle. Attempts to pull tasks from other CPUs. + */ +static int idle_balance(struct rq *this_rq) +{ +	unsigned long next_balance = jiffies + HZ; +	int this_cpu = this_rq->cpu; +	struct sched_domain *sd; +	int pulled_task = 0; +	u64 curr_cost = 0; + +	idle_enter_fair(this_rq); + +	/* +	 * We must set idle_stamp _before_ calling idle_balance(), such that we +	 * measure the duration of idle_balance() as idle time. +	 */ +	this_rq->idle_stamp = rq_clock(this_rq); + +	if (this_rq->avg_idle < sysctl_sched_migration_cost) { +		rcu_read_lock(); +		sd = rcu_dereference_check_sched_domain(this_rq->sd); +		if (sd) +			update_next_balance(sd, 0, &next_balance); +		rcu_read_unlock(); + +		goto out; +	} + +	/* +	 * Drop the rq->lock, but keep IRQ/preempt disabled. +	 */ +	raw_spin_unlock(&this_rq->lock); + +	update_blocked_averages(this_cpu); +	rcu_read_lock(); +	for_each_domain(this_cpu, sd) { +		int continue_balancing = 1; +		u64 t0, domain_cost; + +		if (!(sd->flags & SD_LOAD_BALANCE)) +			continue; + +		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { +			update_next_balance(sd, 0, &next_balance); +			break; +		} + +		if (sd->flags & SD_BALANCE_NEWIDLE) { +			t0 = sched_clock_cpu(this_cpu); + +			pulled_task = load_balance(this_cpu, this_rq, +						   sd, CPU_NEWLY_IDLE, +						   &continue_balancing); + +			domain_cost = sched_clock_cpu(this_cpu) - t0; +			if (domain_cost > sd->max_newidle_lb_cost) +				sd->max_newidle_lb_cost = domain_cost; + +			curr_cost += domain_cost; +		} + +		update_next_balance(sd, 0, &next_balance); + +		/* +		 * Stop searching for tasks to pull if there are +		 * now runnable tasks on this rq. +		 */ +		if (pulled_task || this_rq->nr_running > 0) +			break; +	} +	rcu_read_unlock(); + +	raw_spin_lock(&this_rq->lock); + +	if (curr_cost > this_rq->max_idle_balance_cost) +		this_rq->max_idle_balance_cost = curr_cost; + +	/* +	 * While browsing the domains, we released the rq lock, a task could +	 * have been enqueued in the meantime. Since we're not going idle, +	 * pretend we pulled a task. +	 */ +	if (this_rq->cfs.h_nr_running && !pulled_task) +		pulled_task = 1; + +out: +	/* Move the next balance forward */ +	if (time_after(this_rq->next_balance, next_balance)) +		this_rq->next_balance = next_balance; + +	/* Is there a task of a high priority class? */ +	if (this_rq->nr_running != this_rq->cfs.h_nr_running) +		pulled_task = -1; + +	if (pulled_task) { +		idle_exit_fair(this_rq); +		this_rq->idle_stamp = 0; +	} + +	return pulled_task; +} + +/* + * active_load_balance_cpu_stop is run by cpu stopper. It pushes + * running tasks off the busiest CPU onto idle CPUs. It requires at + * least 1 task to be running on each physical CPU where possible, and + * avoids physical / logical imbalances. + */ +static int active_load_balance_cpu_stop(void *data) +{ +	struct rq *busiest_rq = data; +	int busiest_cpu = cpu_of(busiest_rq); +	int target_cpu = busiest_rq->push_cpu; +	struct rq *target_rq = cpu_rq(target_cpu); +	struct sched_domain *sd; + +	raw_spin_lock_irq(&busiest_rq->lock); + +	/* make sure the requested cpu hasn't gone down in the meantime */ +	if (unlikely(busiest_cpu != smp_processor_id() || +		     !busiest_rq->active_balance)) +		goto out_unlock; + +	/* Is there any task to move? */ +	if (busiest_rq->nr_running <= 1) +		goto out_unlock; + +	/* +	 * This condition is "impossible", if it occurs +	 * we need to fix it. Originally reported by +	 * Bjorn Helgaas on a 128-cpu setup. +	 */ +	BUG_ON(busiest_rq == target_rq); + +	/* move a task from busiest_rq to target_rq */ +	double_lock_balance(busiest_rq, target_rq); + +	/* Search for an sd spanning us and the target CPU. */ +	rcu_read_lock(); +	for_each_domain(target_cpu, sd) { +		if ((sd->flags & SD_LOAD_BALANCE) && +		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) +				break; +	} + +	if (likely(sd)) { +		struct lb_env env = { +			.sd		= sd, +			.dst_cpu	= target_cpu, +			.dst_rq		= target_rq, +			.src_cpu	= busiest_rq->cpu, +			.src_rq		= busiest_rq, +			.idle		= CPU_IDLE, +		}; + +		schedstat_inc(sd, alb_count); + +		if (move_one_task(&env)) +			schedstat_inc(sd, alb_pushed); +		else +			schedstat_inc(sd, alb_failed); +	} +	rcu_read_unlock(); +	double_unlock_balance(busiest_rq, target_rq); +out_unlock: +	busiest_rq->active_balance = 0; +	raw_spin_unlock_irq(&busiest_rq->lock); +	return 0; +} + +static inline int on_null_domain(struct rq *rq) +{ +	return unlikely(!rcu_dereference_sched(rq->sd)); +} + +#ifdef CONFIG_NO_HZ_COMMON +/* + * idle load balancing details + * - When one of the busy CPUs notice that there may be an idle rebalancing + *   needed, they will kick the idle load balancer, which then does idle + *   load balancing for all the idle CPUs. + */ +static struct { +	cpumask_var_t idle_cpus_mask; +	atomic_t nr_cpus; +	unsigned long next_balance;     /* in jiffy units */ +} nohz ____cacheline_aligned; + +static inline int find_new_ilb(void) +{ +	int ilb = cpumask_first(nohz.idle_cpus_mask); + +	if (ilb < nr_cpu_ids && idle_cpu(ilb)) +		return ilb; + +	return nr_cpu_ids; +} + +/* + * Kick a CPU to do the nohz balancing, if it is time for it. We pick the + * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle + * CPU (if there is one). + */ +static void nohz_balancer_kick(void) +{ +	int ilb_cpu; + +	nohz.next_balance++; + +	ilb_cpu = find_new_ilb(); + +	if (ilb_cpu >= nr_cpu_ids) +		return; + +	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) +		return; +	/* +	 * Use smp_send_reschedule() instead of resched_cpu(). +	 * This way we generate a sched IPI on the target cpu which +	 * is idle. And the softirq performing nohz idle load balance +	 * will be run before returning from the IPI. +	 */ +	smp_send_reschedule(ilb_cpu); +	return; +} + +static inline void nohz_balance_exit_idle(int cpu) +{ +	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { +		/* +		 * Completely isolated CPUs don't ever set, so we must test. +		 */ +		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { +			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); +			atomic_dec(&nohz.nr_cpus); +		} +		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); +	} +} + +static inline void set_cpu_sd_state_busy(void) +{ +	struct sched_domain *sd; +	int cpu = smp_processor_id(); + +	rcu_read_lock(); +	sd = rcu_dereference(per_cpu(sd_busy, cpu)); + +	if (!sd || !sd->nohz_idle) +		goto unlock; +	sd->nohz_idle = 0; + +	atomic_inc(&sd->groups->sgc->nr_busy_cpus); +unlock: +	rcu_read_unlock(); +} + +void set_cpu_sd_state_idle(void) +{ +	struct sched_domain *sd; +	int cpu = smp_processor_id(); + +	rcu_read_lock(); +	sd = rcu_dereference(per_cpu(sd_busy, cpu)); + +	if (!sd || sd->nohz_idle) +		goto unlock; +	sd->nohz_idle = 1; + +	atomic_dec(&sd->groups->sgc->nr_busy_cpus); +unlock: +	rcu_read_unlock(); +} + +/* + * This routine will record that the cpu is going idle with tick stopped. + * This info will be used in performing idle load balancing in the future. + */ +void nohz_balance_enter_idle(int cpu) +{ +	/* +	 * If this cpu is going down, then nothing needs to be done. +	 */ +	if (!cpu_active(cpu)) +		return; + +	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) +		return; + +	/* +	 * If we're a completely isolated CPU, we don't play. +	 */ +	if (on_null_domain(cpu_rq(cpu))) +		return; + +	cpumask_set_cpu(cpu, nohz.idle_cpus_mask); +	atomic_inc(&nohz.nr_cpus); +	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); +} + +static int sched_ilb_notifier(struct notifier_block *nfb, +					unsigned long action, void *hcpu) +{ +	switch (action & ~CPU_TASKS_FROZEN) { +	case CPU_DYING: +		nohz_balance_exit_idle(smp_processor_id()); +		return NOTIFY_OK; +	default: +		return NOTIFY_DONE; +	} +} +#endif + +static DEFINE_SPINLOCK(balancing); + +/* + * Scale the max load_balance interval with the number of CPUs in the system. + * This trades load-balance latency on larger machines for less cross talk. + */ +void update_max_interval(void) +{ +	max_load_balance_interval = HZ*num_online_cpus()/10; +} + +/* + * It checks each scheduling domain to see if it is due to be balanced, + * and initiates a balancing operation if so. + * + * Balancing parameters are set up in init_sched_domains. + */ +static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) +{ +	int continue_balancing = 1; +	int cpu = rq->cpu; +	unsigned long interval; +	struct sched_domain *sd; +	/* Earliest time when we have to do rebalance again */ +	unsigned long next_balance = jiffies + 60*HZ; +	int update_next_balance = 0; +	int need_serialize, need_decay = 0; +	u64 max_cost = 0; + +	update_blocked_averages(cpu); + +	rcu_read_lock(); +	for_each_domain(cpu, sd) { +		/* +		 * Decay the newidle max times here because this is a regular +		 * visit to all the domains. Decay ~1% per second. +		 */ +		if (time_after(jiffies, sd->next_decay_max_lb_cost)) { +			sd->max_newidle_lb_cost = +				(sd->max_newidle_lb_cost * 253) / 256; +			sd->next_decay_max_lb_cost = jiffies + HZ; +			need_decay = 1; +		} +		max_cost += sd->max_newidle_lb_cost; + +		if (!(sd->flags & SD_LOAD_BALANCE)) +			continue; + +		/* +		 * Stop the load balance at this level. There is another +		 * CPU in our sched group which is doing load balancing more +		 * actively. +		 */ +		if (!continue_balancing) { +			if (need_decay) +				continue; +			break; +		} + +		interval = get_sd_balance_interval(sd, idle != CPU_IDLE); + +		need_serialize = sd->flags & SD_SERIALIZE; +		if (need_serialize) { +			if (!spin_trylock(&balancing)) +				goto out; +		} + +		if (time_after_eq(jiffies, sd->last_balance + interval)) { +			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { +				/* +				 * The LBF_DST_PINNED logic could have changed +				 * env->dst_cpu, so we can't know our idle +				 * state even if we migrated tasks. Update it. +				 */ +				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; +			} +			sd->last_balance = jiffies; +			interval = get_sd_balance_interval(sd, idle != CPU_IDLE); +		} +		if (need_serialize) +			spin_unlock(&balancing); +out: +		if (time_after(next_balance, sd->last_balance + interval)) { +			next_balance = sd->last_balance + interval; +			update_next_balance = 1; +		} +	} +	if (need_decay) { +		/* +		 * Ensure the rq-wide value also decays but keep it at a +		 * reasonable floor to avoid funnies with rq->avg_idle. +		 */ +		rq->max_idle_balance_cost = +			max((u64)sysctl_sched_migration_cost, max_cost); +	} +	rcu_read_unlock(); + +	/* +	 * next_balance will be updated only when there is a need. +	 * When the cpu is attached to null domain for ex, it will not be +	 * updated. +	 */ +	if (likely(update_next_balance)) +		rq->next_balance = next_balance; +} + +#ifdef CONFIG_NO_HZ_COMMON +/* + * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the + * rebalancing for all the cpus for whom scheduler ticks are stopped. + */ +static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) +{ +	int this_cpu = this_rq->cpu; +	struct rq *rq; +	int balance_cpu; + +	if (idle != CPU_IDLE || +	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) +		goto end; + +	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { +		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) +			continue; + +		/* +		 * If this cpu gets work to do, stop the load balancing +		 * work being done for other cpus. Next load +		 * balancing owner will pick it up. +		 */ +		if (need_resched()) +			break; + +		rq = cpu_rq(balance_cpu); + +		/* +		 * If time for next balance is due, +		 * do the balance. +		 */ +		if (time_after_eq(jiffies, rq->next_balance)) { +			raw_spin_lock_irq(&rq->lock); +			update_rq_clock(rq); +			update_idle_cpu_load(rq); +			raw_spin_unlock_irq(&rq->lock); +			rebalance_domains(rq, CPU_IDLE); +		} + +		if (time_after(this_rq->next_balance, rq->next_balance)) +			this_rq->next_balance = rq->next_balance; +	} +	nohz.next_balance = this_rq->next_balance; +end: +	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); +} + +/* + * Current heuristic for kicking the idle load balancer in the presence + * of an idle cpu is the system. + *   - This rq has more than one task. + *   - At any scheduler domain level, this cpu's scheduler group has multiple + *     busy cpu's exceeding the group's capacity. + *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler + *     domain span are idle. + */ +static inline int nohz_kick_needed(struct rq *rq) +{ +	unsigned long now = jiffies; +	struct sched_domain *sd; +	struct sched_group_capacity *sgc; +	int nr_busy, cpu = rq->cpu; + +	if (unlikely(rq->idle_balance)) +		return 0; + +       /* +	* We may be recently in ticked or tickless idle mode. At the first +	* busy tick after returning from idle, we will update the busy stats. +	*/ +	set_cpu_sd_state_busy(); +	nohz_balance_exit_idle(cpu); + +	/* +	 * None are in tickless mode and hence no need for NOHZ idle load +	 * balancing. +	 */ +	if (likely(!atomic_read(&nohz.nr_cpus))) +		return 0; + +	if (time_before(now, nohz.next_balance)) +		return 0; + +	if (rq->nr_running >= 2) +		goto need_kick; + +	rcu_read_lock(); +	sd = rcu_dereference(per_cpu(sd_busy, cpu)); + +	if (sd) { +		sgc = sd->groups->sgc; +		nr_busy = atomic_read(&sgc->nr_busy_cpus); + +		if (nr_busy > 1) +			goto need_kick_unlock; +	} + +	sd = rcu_dereference(per_cpu(sd_asym, cpu)); + +	if (sd && (cpumask_first_and(nohz.idle_cpus_mask, +				  sched_domain_span(sd)) < cpu)) +		goto need_kick_unlock; + +	rcu_read_unlock(); +	return 0; + +need_kick_unlock: +	rcu_read_unlock(); +need_kick: +	return 1; +} +#else +static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } +#endif + +/* + * run_rebalance_domains is triggered when needed from the scheduler tick. + * Also triggered for nohz idle balancing (with nohz_balancing_kick set). + */ +static void run_rebalance_domains(struct softirq_action *h) +{ +	struct rq *this_rq = this_rq(); +	enum cpu_idle_type idle = this_rq->idle_balance ? +						CPU_IDLE : CPU_NOT_IDLE; + +	rebalance_domains(this_rq, idle); + +	/* +	 * If this cpu has a pending nohz_balance_kick, then do the +	 * balancing on behalf of the other idle cpus whose ticks are +	 * stopped. +	 */ +	nohz_idle_balance(this_rq, idle); +} + +/* + * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. + */ +void trigger_load_balance(struct rq *rq) +{ +	/* Don't need to rebalance while attached to NULL domain */ +	if (unlikely(on_null_domain(rq))) +		return; + +	if (time_after_eq(jiffies, rq->next_balance)) +		raise_softirq(SCHED_SOFTIRQ); +#ifdef CONFIG_NO_HZ_COMMON +	if (nohz_kick_needed(rq)) +		nohz_balancer_kick(); +#endif +} + +static void rq_online_fair(struct rq *rq) +{ +	update_sysctl(); +} + +static void rq_offline_fair(struct rq *rq) +{ +	update_sysctl(); + +	/* Ensure any throttled groups are reachable by pick_next_task */ +	unthrottle_offline_cfs_rqs(rq); +} + +#endif /* CONFIG_SMP */ + +/* + * scheduler tick hitting a task of our scheduling class: + */ +static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) +{ +	struct cfs_rq *cfs_rq; +	struct sched_entity *se = &curr->se; + +	for_each_sched_entity(se) { +		cfs_rq = cfs_rq_of(se); +		entity_tick(cfs_rq, se, queued); +	} + +	if (numabalancing_enabled) +		task_tick_numa(rq, curr); + +	update_rq_runnable_avg(rq, 1); +} + +/* + * called on fork with the child task as argument from the parent's context + *  - child not yet on the tasklist + *  - preemption disabled + */ +static void task_fork_fair(struct task_struct *p) +{ +	struct cfs_rq *cfs_rq; +	struct sched_entity *se = &p->se, *curr; +	int this_cpu = smp_processor_id(); +	struct rq *rq = this_rq(); +	unsigned long flags; + +	raw_spin_lock_irqsave(&rq->lock, flags); + +	update_rq_clock(rq); + +	cfs_rq = task_cfs_rq(current); +	curr = cfs_rq->curr; + +	/* +	 * Not only the cpu but also the task_group of the parent might have +	 * been changed after parent->se.parent,cfs_rq were copied to +	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those +	 * of child point to valid ones. +	 */ +	rcu_read_lock(); +	__set_task_cpu(p, this_cpu); +	rcu_read_unlock(); + +	update_curr(cfs_rq); + +	if (curr) +		se->vruntime = curr->vruntime; +	place_entity(cfs_rq, se, 1); + +	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { +		/* +		 * Upon rescheduling, sched_class::put_prev_task() will place +		 * 'current' within the tree based on its new key value. +		 */ +		swap(curr->vruntime, se->vruntime); +		resched_task(rq->curr); +	} + +	se->vruntime -= cfs_rq->min_vruntime; + +	raw_spin_unlock_irqrestore(&rq->lock, flags); +} + +/* + * Priority of the task has changed. Check to see if we preempt + * the current task. + */ +static void +prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) +{ +	if (!p->se.on_rq) +		return; + +	/* +	 * Reschedule if we are currently running on this runqueue and +	 * our priority decreased, or if we are not currently running on +	 * this runqueue and our priority is higher than the current's +	 */ +	if (rq->curr == p) { +		if (p->prio > oldprio) +			resched_task(rq->curr); +	} else +		check_preempt_curr(rq, p, 0); +} + +static void switched_from_fair(struct rq *rq, struct task_struct *p) +{ +	struct sched_entity *se = &p->se; +	struct cfs_rq *cfs_rq = cfs_rq_of(se); + +	/* +	 * Ensure the task's vruntime is normalized, so that when it's +	 * switched back to the fair class the enqueue_entity(.flags=0) will +	 * do the right thing. +	 * +	 * If it's on_rq, then the dequeue_entity(.flags=0) will already +	 * have normalized the vruntime, if it's !on_rq, then only when +	 * the task is sleeping will it still have non-normalized vruntime. +	 */ +	if (!p->on_rq && p->state != TASK_RUNNING) { +		/* +		 * Fix up our vruntime so that the current sleep doesn't +		 * cause 'unlimited' sleep bonus. +		 */ +		place_entity(cfs_rq, se, 0); +		se->vruntime -= cfs_rq->min_vruntime; +	} + +#ifdef CONFIG_SMP +	/* +	* Remove our load from contribution when we leave sched_fair +	* and ensure we don't carry in an old decay_count if we +	* switch back. +	*/ +	if (se->avg.decay_count) { +		__synchronize_entity_decay(se); +		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); +	} +#endif +} + +/* + * We switched to the sched_fair class. + */ +static void switched_to_fair(struct rq *rq, struct task_struct *p) +{ +	struct sched_entity *se = &p->se; +#ifdef CONFIG_FAIR_GROUP_SCHED +	/* +	 * Since the real-depth could have been changed (only FAIR +	 * class maintain depth value), reset depth properly. +	 */ +	se->depth = se->parent ? se->parent->depth + 1 : 0; +#endif +	if (!se->on_rq) +		return; + +	/* +	 * We were most likely switched from sched_rt, so +	 * kick off the schedule if running, otherwise just see +	 * if we can still preempt the current task. +	 */ +	if (rq->curr == p) +		resched_task(rq->curr); +	else +		check_preempt_curr(rq, p, 0); +} + +/* Account for a task changing its policy or group. + * + * This routine is mostly called to set cfs_rq->curr field when a task + * migrates between groups/classes. + */ +static void set_curr_task_fair(struct rq *rq) +{ +	struct sched_entity *se = &rq->curr->se; + +	for_each_sched_entity(se) { +		struct cfs_rq *cfs_rq = cfs_rq_of(se); + +		set_next_entity(cfs_rq, se); +		/* ensure bandwidth has been allocated on our new cfs_rq */ +		account_cfs_rq_runtime(cfs_rq, 0); +	} +} + +void init_cfs_rq(struct cfs_rq *cfs_rq) +{ +	cfs_rq->tasks_timeline = RB_ROOT; +	cfs_rq->min_vruntime = (u64)(-(1LL << 20)); +#ifndef CONFIG_64BIT +	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; +#endif +#ifdef CONFIG_SMP +	atomic64_set(&cfs_rq->decay_counter, 1); +	atomic_long_set(&cfs_rq->removed_load, 0); +#endif +} + +#ifdef CONFIG_FAIR_GROUP_SCHED +static void task_move_group_fair(struct task_struct *p, int on_rq) +{ +	struct sched_entity *se = &p->se; +	struct cfs_rq *cfs_rq; + +	/* +	 * If the task was not on the rq at the time of this cgroup movement +	 * it must have been asleep, sleeping tasks keep their ->vruntime +	 * absolute on their old rq until wakeup (needed for the fair sleeper +	 * bonus in place_entity()). +	 * +	 * If it was on the rq, we've just 'preempted' it, which does convert +	 * ->vruntime to a relative base. +	 * +	 * Make sure both cases convert their relative position when migrating +	 * to another cgroup's rq. This does somewhat interfere with the +	 * fair sleeper stuff for the first placement, but who cares. +	 */ +	/* +	 * When !on_rq, vruntime of the task has usually NOT been normalized. +	 * But there are some cases where it has already been normalized: +	 * +	 * - Moving a forked child which is waiting for being woken up by +	 *   wake_up_new_task(). +	 * - Moving a task which has been woken up by try_to_wake_up() and +	 *   waiting for actually being woken up by sched_ttwu_pending(). +	 * +	 * To prevent boost or penalty in the new cfs_rq caused by delta +	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. +	 */ +	if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING)) +		on_rq = 1; + +	if (!on_rq) +		se->vruntime -= cfs_rq_of(se)->min_vruntime; +	set_task_rq(p, task_cpu(p)); +	se->depth = se->parent ? se->parent->depth + 1 : 0; +	if (!on_rq) { +		cfs_rq = cfs_rq_of(se); +		se->vruntime += cfs_rq->min_vruntime; +#ifdef CONFIG_SMP +		/* +		 * migrate_task_rq_fair() will have removed our previous +		 * contribution, but we must synchronize for ongoing future +		 * decay. +		 */ +		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); +		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; +#endif +	} +} + +void free_fair_sched_group(struct task_group *tg) +{ +	int i; + +	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); + +	for_each_possible_cpu(i) { +		if (tg->cfs_rq) +			kfree(tg->cfs_rq[i]); +		if (tg->se) +			kfree(tg->se[i]); +	} + +	kfree(tg->cfs_rq); +	kfree(tg->se); +} + +int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) +{ +	struct cfs_rq *cfs_rq; +	struct sched_entity *se; +	int i; + +	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); +	if (!tg->cfs_rq) +		goto err; +	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); +	if (!tg->se) +		goto err; + +	tg->shares = NICE_0_LOAD; + +	init_cfs_bandwidth(tg_cfs_bandwidth(tg)); + +	for_each_possible_cpu(i) { +		cfs_rq = kzalloc_node(sizeof(struct cfs_rq), +				      GFP_KERNEL, cpu_to_node(i)); +		if (!cfs_rq) +			goto err; + +		se = kzalloc_node(sizeof(struct sched_entity), +				  GFP_KERNEL, cpu_to_node(i)); +		if (!se) +			goto err_free_rq; + +		init_cfs_rq(cfs_rq); +		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); +	} + +	return 1; + +err_free_rq: +	kfree(cfs_rq); +err: +	return 0; +} + +void unregister_fair_sched_group(struct task_group *tg, int cpu) +{ +	struct rq *rq = cpu_rq(cpu); +	unsigned long flags; + +	/* +	* Only empty task groups can be destroyed; so we can speculatively +	* check on_list without danger of it being re-added. +	*/ +	if (!tg->cfs_rq[cpu]->on_list) +		return; + +	raw_spin_lock_irqsave(&rq->lock, flags); +	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); +	raw_spin_unlock_irqrestore(&rq->lock, flags); +} + +void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, +			struct sched_entity *se, int cpu, +			struct sched_entity *parent) +{ +	struct rq *rq = cpu_rq(cpu); + +	cfs_rq->tg = tg; +	cfs_rq->rq = rq; +	init_cfs_rq_runtime(cfs_rq); + +	tg->cfs_rq[cpu] = cfs_rq; +	tg->se[cpu] = se; + +	/* se could be NULL for root_task_group */ +	if (!se) +		return; + +	if (!parent) { +		se->cfs_rq = &rq->cfs; +		se->depth = 0; +	} else { +		se->cfs_rq = parent->my_q; +		se->depth = parent->depth + 1; +	} + +	se->my_q = cfs_rq; +	/* guarantee group entities always have weight */ +	update_load_set(&se->load, NICE_0_LOAD); +	se->parent = parent; +} + +static DEFINE_MUTEX(shares_mutex); + +int sched_group_set_shares(struct task_group *tg, unsigned long shares) +{ +	int i; +	unsigned long flags; + +	/* +	 * We can't change the weight of the root cgroup. +	 */ +	if (!tg->se[0]) +		return -EINVAL; + +	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); + +	mutex_lock(&shares_mutex); +	if (tg->shares == shares) +		goto done; + +	tg->shares = shares; +	for_each_possible_cpu(i) { +		struct rq *rq = cpu_rq(i); +		struct sched_entity *se; + +		se = tg->se[i]; +		/* Propagate contribution to hierarchy */ +		raw_spin_lock_irqsave(&rq->lock, flags); + +		/* Possible calls to update_curr() need rq clock */ +		update_rq_clock(rq); +		for_each_sched_entity(se) +			update_cfs_shares(group_cfs_rq(se)); +		raw_spin_unlock_irqrestore(&rq->lock, flags); +	} + +done: +	mutex_unlock(&shares_mutex); +	return 0; +} +#else /* CONFIG_FAIR_GROUP_SCHED */ + +void free_fair_sched_group(struct task_group *tg) { } + +int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) +{ +	return 1; +} + +void unregister_fair_sched_group(struct task_group *tg, int cpu) { } + +#endif /* CONFIG_FAIR_GROUP_SCHED */ + + +static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) +{ +	struct sched_entity *se = &task->se; +	unsigned int rr_interval = 0; + +	/* +	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise +	 * idle runqueue: +	 */ +	if (rq->cfs.load.weight) +		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); + +	return rr_interval; +} + +/* + * All the scheduling class methods: + */ +const struct sched_class fair_sched_class = { +	.next			= &idle_sched_class, +	.enqueue_task		= enqueue_task_fair, +	.dequeue_task		= dequeue_task_fair, +	.yield_task		= yield_task_fair, +	.yield_to_task		= yield_to_task_fair, + +	.check_preempt_curr	= check_preempt_wakeup, + +	.pick_next_task		= pick_next_task_fair, +	.put_prev_task		= put_prev_task_fair, + +#ifdef CONFIG_SMP +	.select_task_rq		= select_task_rq_fair, +	.migrate_task_rq	= migrate_task_rq_fair, + +	.rq_online		= rq_online_fair, +	.rq_offline		= rq_offline_fair, + +	.task_waking		= task_waking_fair, +#endif + +	.set_curr_task          = set_curr_task_fair, +	.task_tick		= task_tick_fair, +	.task_fork		= task_fork_fair, + +	.prio_changed		= prio_changed_fair, +	.switched_from		= switched_from_fair, +	.switched_to		= switched_to_fair, + +	.get_rr_interval	= get_rr_interval_fair, + +#ifdef CONFIG_FAIR_GROUP_SCHED +	.task_move_group	= task_move_group_fair, +#endif +}; + +#ifdef CONFIG_SCHED_DEBUG +void print_cfs_stats(struct seq_file *m, int cpu) +{ +	struct cfs_rq *cfs_rq; + +	rcu_read_lock(); +	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) +		print_cfs_rq(m, cpu, cfs_rq); +	rcu_read_unlock(); +} +#endif + +__init void init_sched_fair_class(void) +{ +#ifdef CONFIG_SMP +	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); + +#ifdef CONFIG_NO_HZ_COMMON +	nohz.next_balance = jiffies; +	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); +	cpu_notifier(sched_ilb_notifier, 0); +#endif +#endif /* SMP */ + +}  | 
