diff options
Diffstat (limited to 'kernel/sched/core.c')
| -rw-r--r-- | kernel/sched/core.c | 8096 | 
1 files changed, 8096 insertions, 0 deletions
diff --git a/kernel/sched/core.c b/kernel/sched/core.c new file mode 100644 index 00000000000..bc1638b3344 --- /dev/null +++ b/kernel/sched/core.c @@ -0,0 +1,8096 @@ +/* + *  kernel/sched/core.c + * + *  Kernel scheduler and related syscalls + * + *  Copyright (C) 1991-2002  Linus Torvalds + * + *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and + *		make semaphores SMP safe + *  1998-11-19	Implemented schedule_timeout() and related stuff + *		by Andrea Arcangeli + *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar: + *		hybrid priority-list and round-robin design with + *		an array-switch method of distributing timeslices + *		and per-CPU runqueues.  Cleanups and useful suggestions + *		by Davide Libenzi, preemptible kernel bits by Robert Love. + *  2003-09-03	Interactivity tuning by Con Kolivas. + *  2004-04-02	Scheduler domains code by Nick Piggin + *  2007-04-15  Work begun on replacing all interactivity tuning with a + *              fair scheduling design by Con Kolivas. + *  2007-05-05  Load balancing (smp-nice) and other improvements + *              by Peter Williams + *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith + *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri + *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins, + *              Thomas Gleixner, Mike Kravetz + */ + +#include <linux/mm.h> +#include <linux/module.h> +#include <linux/nmi.h> +#include <linux/init.h> +#include <linux/uaccess.h> +#include <linux/highmem.h> +#include <asm/mmu_context.h> +#include <linux/interrupt.h> +#include <linux/capability.h> +#include <linux/completion.h> +#include <linux/kernel_stat.h> +#include <linux/debug_locks.h> +#include <linux/perf_event.h> +#include <linux/security.h> +#include <linux/notifier.h> +#include <linux/profile.h> +#include <linux/freezer.h> +#include <linux/vmalloc.h> +#include <linux/blkdev.h> +#include <linux/delay.h> +#include <linux/pid_namespace.h> +#include <linux/smp.h> +#include <linux/threads.h> +#include <linux/timer.h> +#include <linux/rcupdate.h> +#include <linux/cpu.h> +#include <linux/cpuset.h> +#include <linux/percpu.h> +#include <linux/proc_fs.h> +#include <linux/seq_file.h> +#include <linux/sysctl.h> +#include <linux/syscalls.h> +#include <linux/times.h> +#include <linux/tsacct_kern.h> +#include <linux/kprobes.h> +#include <linux/delayacct.h> +#include <linux/unistd.h> +#include <linux/pagemap.h> +#include <linux/hrtimer.h> +#include <linux/tick.h> +#include <linux/debugfs.h> +#include <linux/ctype.h> +#include <linux/ftrace.h> +#include <linux/slab.h> +#include <linux/init_task.h> +#include <linux/binfmts.h> +#include <linux/context_tracking.h> +#include <linux/compiler.h> + +#include <asm/switch_to.h> +#include <asm/tlb.h> +#include <asm/irq_regs.h> +#include <asm/mutex.h> +#ifdef CONFIG_PARAVIRT +#include <asm/paravirt.h> +#endif + +#include "sched.h" +#include "../workqueue_internal.h" +#include "../smpboot.h" + +#define CREATE_TRACE_POINTS +#include <trace/events/sched.h> + +#ifdef smp_mb__before_atomic +void __smp_mb__before_atomic(void) +{ +	smp_mb__before_atomic(); +} +EXPORT_SYMBOL(__smp_mb__before_atomic); +#endif + +#ifdef smp_mb__after_atomic +void __smp_mb__after_atomic(void) +{ +	smp_mb__after_atomic(); +} +EXPORT_SYMBOL(__smp_mb__after_atomic); +#endif + +void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) +{ +	unsigned long delta; +	ktime_t soft, hard, now; + +	for (;;) { +		if (hrtimer_active(period_timer)) +			break; + +		now = hrtimer_cb_get_time(period_timer); +		hrtimer_forward(period_timer, now, period); + +		soft = hrtimer_get_softexpires(period_timer); +		hard = hrtimer_get_expires(period_timer); +		delta = ktime_to_ns(ktime_sub(hard, soft)); +		__hrtimer_start_range_ns(period_timer, soft, delta, +					 HRTIMER_MODE_ABS_PINNED, 0); +	} +} + +DEFINE_MUTEX(sched_domains_mutex); +DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); + +static void update_rq_clock_task(struct rq *rq, s64 delta); + +void update_rq_clock(struct rq *rq) +{ +	s64 delta; + +	if (rq->skip_clock_update > 0) +		return; + +	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; +	rq->clock += delta; +	update_rq_clock_task(rq, delta); +} + +/* + * Debugging: various feature bits + */ + +#define SCHED_FEAT(name, enabled)	\ +	(1UL << __SCHED_FEAT_##name) * enabled | + +const_debug unsigned int sysctl_sched_features = +#include "features.h" +	0; + +#undef SCHED_FEAT + +#ifdef CONFIG_SCHED_DEBUG +#define SCHED_FEAT(name, enabled)	\ +	#name , + +static const char * const sched_feat_names[] = { +#include "features.h" +}; + +#undef SCHED_FEAT + +static int sched_feat_show(struct seq_file *m, void *v) +{ +	int i; + +	for (i = 0; i < __SCHED_FEAT_NR; i++) { +		if (!(sysctl_sched_features & (1UL << i))) +			seq_puts(m, "NO_"); +		seq_printf(m, "%s ", sched_feat_names[i]); +	} +	seq_puts(m, "\n"); + +	return 0; +} + +#ifdef HAVE_JUMP_LABEL + +#define jump_label_key__true  STATIC_KEY_INIT_TRUE +#define jump_label_key__false STATIC_KEY_INIT_FALSE + +#define SCHED_FEAT(name, enabled)	\ +	jump_label_key__##enabled , + +struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { +#include "features.h" +}; + +#undef SCHED_FEAT + +static void sched_feat_disable(int i) +{ +	if (static_key_enabled(&sched_feat_keys[i])) +		static_key_slow_dec(&sched_feat_keys[i]); +} + +static void sched_feat_enable(int i) +{ +	if (!static_key_enabled(&sched_feat_keys[i])) +		static_key_slow_inc(&sched_feat_keys[i]); +} +#else +static void sched_feat_disable(int i) { }; +static void sched_feat_enable(int i) { }; +#endif /* HAVE_JUMP_LABEL */ + +static int sched_feat_set(char *cmp) +{ +	int i; +	int neg = 0; + +	if (strncmp(cmp, "NO_", 3) == 0) { +		neg = 1; +		cmp += 3; +	} + +	for (i = 0; i < __SCHED_FEAT_NR; i++) { +		if (strcmp(cmp, sched_feat_names[i]) == 0) { +			if (neg) { +				sysctl_sched_features &= ~(1UL << i); +				sched_feat_disable(i); +			} else { +				sysctl_sched_features |= (1UL << i); +				sched_feat_enable(i); +			} +			break; +		} +	} + +	return i; +} + +static ssize_t +sched_feat_write(struct file *filp, const char __user *ubuf, +		size_t cnt, loff_t *ppos) +{ +	char buf[64]; +	char *cmp; +	int i; + +	if (cnt > 63) +		cnt = 63; + +	if (copy_from_user(&buf, ubuf, cnt)) +		return -EFAULT; + +	buf[cnt] = 0; +	cmp = strstrip(buf); + +	i = sched_feat_set(cmp); +	if (i == __SCHED_FEAT_NR) +		return -EINVAL; + +	*ppos += cnt; + +	return cnt; +} + +static int sched_feat_open(struct inode *inode, struct file *filp) +{ +	return single_open(filp, sched_feat_show, NULL); +} + +static const struct file_operations sched_feat_fops = { +	.open		= sched_feat_open, +	.write		= sched_feat_write, +	.read		= seq_read, +	.llseek		= seq_lseek, +	.release	= single_release, +}; + +static __init int sched_init_debug(void) +{ +	debugfs_create_file("sched_features", 0644, NULL, NULL, +			&sched_feat_fops); + +	return 0; +} +late_initcall(sched_init_debug); +#endif /* CONFIG_SCHED_DEBUG */ + +/* + * Number of tasks to iterate in a single balance run. + * Limited because this is done with IRQs disabled. + */ +const_debug unsigned int sysctl_sched_nr_migrate = 32; + +/* + * period over which we average the RT time consumption, measured + * in ms. + * + * default: 1s + */ +const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; + +/* + * period over which we measure -rt task cpu usage in us. + * default: 1s + */ +unsigned int sysctl_sched_rt_period = 1000000; + +__read_mostly int scheduler_running; + +/* + * part of the period that we allow rt tasks to run in us. + * default: 0.95s + */ +int sysctl_sched_rt_runtime = 950000; + +/* + * __task_rq_lock - lock the rq @p resides on. + */ +static inline struct rq *__task_rq_lock(struct task_struct *p) +	__acquires(rq->lock) +{ +	struct rq *rq; + +	lockdep_assert_held(&p->pi_lock); + +	for (;;) { +		rq = task_rq(p); +		raw_spin_lock(&rq->lock); +		if (likely(rq == task_rq(p))) +			return rq; +		raw_spin_unlock(&rq->lock); +	} +} + +/* + * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. + */ +static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) +	__acquires(p->pi_lock) +	__acquires(rq->lock) +{ +	struct rq *rq; + +	for (;;) { +		raw_spin_lock_irqsave(&p->pi_lock, *flags); +		rq = task_rq(p); +		raw_spin_lock(&rq->lock); +		if (likely(rq == task_rq(p))) +			return rq; +		raw_spin_unlock(&rq->lock); +		raw_spin_unlock_irqrestore(&p->pi_lock, *flags); +	} +} + +static void __task_rq_unlock(struct rq *rq) +	__releases(rq->lock) +{ +	raw_spin_unlock(&rq->lock); +} + +static inline void +task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) +	__releases(rq->lock) +	__releases(p->pi_lock) +{ +	raw_spin_unlock(&rq->lock); +	raw_spin_unlock_irqrestore(&p->pi_lock, *flags); +} + +/* + * this_rq_lock - lock this runqueue and disable interrupts. + */ +static struct rq *this_rq_lock(void) +	__acquires(rq->lock) +{ +	struct rq *rq; + +	local_irq_disable(); +	rq = this_rq(); +	raw_spin_lock(&rq->lock); + +	return rq; +} + +#ifdef CONFIG_SCHED_HRTICK +/* + * Use HR-timers to deliver accurate preemption points. + */ + +static void hrtick_clear(struct rq *rq) +{ +	if (hrtimer_active(&rq->hrtick_timer)) +		hrtimer_cancel(&rq->hrtick_timer); +} + +/* + * High-resolution timer tick. + * Runs from hardirq context with interrupts disabled. + */ +static enum hrtimer_restart hrtick(struct hrtimer *timer) +{ +	struct rq *rq = container_of(timer, struct rq, hrtick_timer); + +	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); + +	raw_spin_lock(&rq->lock); +	update_rq_clock(rq); +	rq->curr->sched_class->task_tick(rq, rq->curr, 1); +	raw_spin_unlock(&rq->lock); + +	return HRTIMER_NORESTART; +} + +#ifdef CONFIG_SMP + +static int __hrtick_restart(struct rq *rq) +{ +	struct hrtimer *timer = &rq->hrtick_timer; +	ktime_t time = hrtimer_get_softexpires(timer); + +	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0); +} + +/* + * called from hardirq (IPI) context + */ +static void __hrtick_start(void *arg) +{ +	struct rq *rq = arg; + +	raw_spin_lock(&rq->lock); +	__hrtick_restart(rq); +	rq->hrtick_csd_pending = 0; +	raw_spin_unlock(&rq->lock); +} + +/* + * Called to set the hrtick timer state. + * + * called with rq->lock held and irqs disabled + */ +void hrtick_start(struct rq *rq, u64 delay) +{ +	struct hrtimer *timer = &rq->hrtick_timer; +	ktime_t time = ktime_add_ns(timer->base->get_time(), delay); + +	hrtimer_set_expires(timer, time); + +	if (rq == this_rq()) { +		__hrtick_restart(rq); +	} else if (!rq->hrtick_csd_pending) { +		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); +		rq->hrtick_csd_pending = 1; +	} +} + +static int +hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) +{ +	int cpu = (int)(long)hcpu; + +	switch (action) { +	case CPU_UP_CANCELED: +	case CPU_UP_CANCELED_FROZEN: +	case CPU_DOWN_PREPARE: +	case CPU_DOWN_PREPARE_FROZEN: +	case CPU_DEAD: +	case CPU_DEAD_FROZEN: +		hrtick_clear(cpu_rq(cpu)); +		return NOTIFY_OK; +	} + +	return NOTIFY_DONE; +} + +static __init void init_hrtick(void) +{ +	hotcpu_notifier(hotplug_hrtick, 0); +} +#else +/* + * Called to set the hrtick timer state. + * + * called with rq->lock held and irqs disabled + */ +void hrtick_start(struct rq *rq, u64 delay) +{ +	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, +			HRTIMER_MODE_REL_PINNED, 0); +} + +static inline void init_hrtick(void) +{ +} +#endif /* CONFIG_SMP */ + +static void init_rq_hrtick(struct rq *rq) +{ +#ifdef CONFIG_SMP +	rq->hrtick_csd_pending = 0; + +	rq->hrtick_csd.flags = 0; +	rq->hrtick_csd.func = __hrtick_start; +	rq->hrtick_csd.info = rq; +#endif + +	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); +	rq->hrtick_timer.function = hrtick; +} +#else	/* CONFIG_SCHED_HRTICK */ +static inline void hrtick_clear(struct rq *rq) +{ +} + +static inline void init_rq_hrtick(struct rq *rq) +{ +} + +static inline void init_hrtick(void) +{ +} +#endif	/* CONFIG_SCHED_HRTICK */ + +/* + * cmpxchg based fetch_or, macro so it works for different integer types + */ +#define fetch_or(ptr, val)						\ +({	typeof(*(ptr)) __old, __val = *(ptr);				\ + 	for (;;) {							\ + 		__old = cmpxchg((ptr), __val, __val | (val));		\ + 		if (__old == __val)					\ + 			break;						\ + 		__val = __old;						\ + 	}								\ + 	__old;								\ +}) + +#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) +/* + * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, + * this avoids any races wrt polling state changes and thereby avoids + * spurious IPIs. + */ +static bool set_nr_and_not_polling(struct task_struct *p) +{ +	struct thread_info *ti = task_thread_info(p); +	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); +} + +/* + * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. + * + * If this returns true, then the idle task promises to call + * sched_ttwu_pending() and reschedule soon. + */ +static bool set_nr_if_polling(struct task_struct *p) +{ +	struct thread_info *ti = task_thread_info(p); +	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags); + +	for (;;) { +		if (!(val & _TIF_POLLING_NRFLAG)) +			return false; +		if (val & _TIF_NEED_RESCHED) +			return true; +		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); +		if (old == val) +			break; +		val = old; +	} +	return true; +} + +#else +static bool set_nr_and_not_polling(struct task_struct *p) +{ +	set_tsk_need_resched(p); +	return true; +} + +#ifdef CONFIG_SMP +static bool set_nr_if_polling(struct task_struct *p) +{ +	return false; +} +#endif +#endif + +/* + * resched_task - mark a task 'to be rescheduled now'. + * + * On UP this means the setting of the need_resched flag, on SMP it + * might also involve a cross-CPU call to trigger the scheduler on + * the target CPU. + */ +void resched_task(struct task_struct *p) +{ +	int cpu; + +	lockdep_assert_held(&task_rq(p)->lock); + +	if (test_tsk_need_resched(p)) +		return; + +	cpu = task_cpu(p); + +	if (cpu == smp_processor_id()) { +		set_tsk_need_resched(p); +		set_preempt_need_resched(); +		return; +	} + +	if (set_nr_and_not_polling(p)) +		smp_send_reschedule(cpu); +	else +		trace_sched_wake_idle_without_ipi(cpu); +} + +void resched_cpu(int cpu) +{ +	struct rq *rq = cpu_rq(cpu); +	unsigned long flags; + +	if (!raw_spin_trylock_irqsave(&rq->lock, flags)) +		return; +	resched_task(cpu_curr(cpu)); +	raw_spin_unlock_irqrestore(&rq->lock, flags); +} + +#ifdef CONFIG_SMP +#ifdef CONFIG_NO_HZ_COMMON +/* + * In the semi idle case, use the nearest busy cpu for migrating timers + * from an idle cpu.  This is good for power-savings. + * + * We don't do similar optimization for completely idle system, as + * selecting an idle cpu will add more delays to the timers than intended + * (as that cpu's timer base may not be uptodate wrt jiffies etc). + */ +int get_nohz_timer_target(int pinned) +{ +	int cpu = smp_processor_id(); +	int i; +	struct sched_domain *sd; + +	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu)) +		return cpu; + +	rcu_read_lock(); +	for_each_domain(cpu, sd) { +		for_each_cpu(i, sched_domain_span(sd)) { +			if (!idle_cpu(i)) { +				cpu = i; +				goto unlock; +			} +		} +	} +unlock: +	rcu_read_unlock(); +	return cpu; +} +/* + * When add_timer_on() enqueues a timer into the timer wheel of an + * idle CPU then this timer might expire before the next timer event + * which is scheduled to wake up that CPU. In case of a completely + * idle system the next event might even be infinite time into the + * future. wake_up_idle_cpu() ensures that the CPU is woken up and + * leaves the inner idle loop so the newly added timer is taken into + * account when the CPU goes back to idle and evaluates the timer + * wheel for the next timer event. + */ +static void wake_up_idle_cpu(int cpu) +{ +	struct rq *rq = cpu_rq(cpu); + +	if (cpu == smp_processor_id()) +		return; + +	if (set_nr_and_not_polling(rq->idle)) +		smp_send_reschedule(cpu); +	else +		trace_sched_wake_idle_without_ipi(cpu); +} + +static bool wake_up_full_nohz_cpu(int cpu) +{ +	if (tick_nohz_full_cpu(cpu)) { +		if (cpu != smp_processor_id() || +		    tick_nohz_tick_stopped()) +			smp_send_reschedule(cpu); +		return true; +	} + +	return false; +} + +void wake_up_nohz_cpu(int cpu) +{ +	if (!wake_up_full_nohz_cpu(cpu)) +		wake_up_idle_cpu(cpu); +} + +static inline bool got_nohz_idle_kick(void) +{ +	int cpu = smp_processor_id(); + +	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) +		return false; + +	if (idle_cpu(cpu) && !need_resched()) +		return true; + +	/* +	 * We can't run Idle Load Balance on this CPU for this time so we +	 * cancel it and clear NOHZ_BALANCE_KICK +	 */ +	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); +	return false; +} + +#else /* CONFIG_NO_HZ_COMMON */ + +static inline bool got_nohz_idle_kick(void) +{ +	return false; +} + +#endif /* CONFIG_NO_HZ_COMMON */ + +#ifdef CONFIG_NO_HZ_FULL +bool sched_can_stop_tick(void) +{ +       struct rq *rq; + +       rq = this_rq(); + +       /* Make sure rq->nr_running update is visible after the IPI */ +       smp_rmb(); + +       /* More than one running task need preemption */ +       if (rq->nr_running > 1) +               return false; + +       return true; +} +#endif /* CONFIG_NO_HZ_FULL */ + +void sched_avg_update(struct rq *rq) +{ +	s64 period = sched_avg_period(); + +	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { +		/* +		 * Inline assembly required to prevent the compiler +		 * optimising this loop into a divmod call. +		 * See __iter_div_u64_rem() for another example of this. +		 */ +		asm("" : "+rm" (rq->age_stamp)); +		rq->age_stamp += period; +		rq->rt_avg /= 2; +	} +} + +#endif /* CONFIG_SMP */ + +#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ +			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) +/* + * Iterate task_group tree rooted at *from, calling @down when first entering a + * node and @up when leaving it for the final time. + * + * Caller must hold rcu_lock or sufficient equivalent. + */ +int walk_tg_tree_from(struct task_group *from, +			     tg_visitor down, tg_visitor up, void *data) +{ +	struct task_group *parent, *child; +	int ret; + +	parent = from; + +down: +	ret = (*down)(parent, data); +	if (ret) +		goto out; +	list_for_each_entry_rcu(child, &parent->children, siblings) { +		parent = child; +		goto down; + +up: +		continue; +	} +	ret = (*up)(parent, data); +	if (ret || parent == from) +		goto out; + +	child = parent; +	parent = parent->parent; +	if (parent) +		goto up; +out: +	return ret; +} + +int tg_nop(struct task_group *tg, void *data) +{ +	return 0; +} +#endif + +static void set_load_weight(struct task_struct *p) +{ +	int prio = p->static_prio - MAX_RT_PRIO; +	struct load_weight *load = &p->se.load; + +	/* +	 * SCHED_IDLE tasks get minimal weight: +	 */ +	if (p->policy == SCHED_IDLE) { +		load->weight = scale_load(WEIGHT_IDLEPRIO); +		load->inv_weight = WMULT_IDLEPRIO; +		return; +	} + +	load->weight = scale_load(prio_to_weight[prio]); +	load->inv_weight = prio_to_wmult[prio]; +} + +static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) +{ +	update_rq_clock(rq); +	sched_info_queued(rq, p); +	p->sched_class->enqueue_task(rq, p, flags); +} + +static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) +{ +	update_rq_clock(rq); +	sched_info_dequeued(rq, p); +	p->sched_class->dequeue_task(rq, p, flags); +} + +void activate_task(struct rq *rq, struct task_struct *p, int flags) +{ +	if (task_contributes_to_load(p)) +		rq->nr_uninterruptible--; + +	enqueue_task(rq, p, flags); +} + +void deactivate_task(struct rq *rq, struct task_struct *p, int flags) +{ +	if (task_contributes_to_load(p)) +		rq->nr_uninterruptible++; + +	dequeue_task(rq, p, flags); +} + +static void update_rq_clock_task(struct rq *rq, s64 delta) +{ +/* + * In theory, the compile should just see 0 here, and optimize out the call + * to sched_rt_avg_update. But I don't trust it... + */ +#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) +	s64 steal = 0, irq_delta = 0; +#endif +#ifdef CONFIG_IRQ_TIME_ACCOUNTING +	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; + +	/* +	 * Since irq_time is only updated on {soft,}irq_exit, we might run into +	 * this case when a previous update_rq_clock() happened inside a +	 * {soft,}irq region. +	 * +	 * When this happens, we stop ->clock_task and only update the +	 * prev_irq_time stamp to account for the part that fit, so that a next +	 * update will consume the rest. This ensures ->clock_task is +	 * monotonic. +	 * +	 * It does however cause some slight miss-attribution of {soft,}irq +	 * time, a more accurate solution would be to update the irq_time using +	 * the current rq->clock timestamp, except that would require using +	 * atomic ops. +	 */ +	if (irq_delta > delta) +		irq_delta = delta; + +	rq->prev_irq_time += irq_delta; +	delta -= irq_delta; +#endif +#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING +	if (static_key_false((¶virt_steal_rq_enabled))) { +		steal = paravirt_steal_clock(cpu_of(rq)); +		steal -= rq->prev_steal_time_rq; + +		if (unlikely(steal > delta)) +			steal = delta; + +		rq->prev_steal_time_rq += steal; +		delta -= steal; +	} +#endif + +	rq->clock_task += delta; + +#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) +	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) +		sched_rt_avg_update(rq, irq_delta + steal); +#endif +} + +void sched_set_stop_task(int cpu, struct task_struct *stop) +{ +	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; +	struct task_struct *old_stop = cpu_rq(cpu)->stop; + +	if (stop) { +		/* +		 * Make it appear like a SCHED_FIFO task, its something +		 * userspace knows about and won't get confused about. +		 * +		 * Also, it will make PI more or less work without too +		 * much confusion -- but then, stop work should not +		 * rely on PI working anyway. +		 */ +		sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); + +		stop->sched_class = &stop_sched_class; +	} + +	cpu_rq(cpu)->stop = stop; + +	if (old_stop) { +		/* +		 * Reset it back to a normal scheduling class so that +		 * it can die in pieces. +		 */ +		old_stop->sched_class = &rt_sched_class; +	} +} + +/* + * __normal_prio - return the priority that is based on the static prio + */ +static inline int __normal_prio(struct task_struct *p) +{ +	return p->static_prio; +} + +/* + * Calculate the expected normal priority: i.e. priority + * without taking RT-inheritance into account. Might be + * boosted by interactivity modifiers. Changes upon fork, + * setprio syscalls, and whenever the interactivity + * estimator recalculates. + */ +static inline int normal_prio(struct task_struct *p) +{ +	int prio; + +	if (task_has_dl_policy(p)) +		prio = MAX_DL_PRIO-1; +	else if (task_has_rt_policy(p)) +		prio = MAX_RT_PRIO-1 - p->rt_priority; +	else +		prio = __normal_prio(p); +	return prio; +} + +/* + * Calculate the current priority, i.e. the priority + * taken into account by the scheduler. This value might + * be boosted by RT tasks, or might be boosted by + * interactivity modifiers. Will be RT if the task got + * RT-boosted. If not then it returns p->normal_prio. + */ +static int effective_prio(struct task_struct *p) +{ +	p->normal_prio = normal_prio(p); +	/* +	 * If we are RT tasks or we were boosted to RT priority, +	 * keep the priority unchanged. Otherwise, update priority +	 * to the normal priority: +	 */ +	if (!rt_prio(p->prio)) +		return p->normal_prio; +	return p->prio; +} + +/** + * task_curr - is this task currently executing on a CPU? + * @p: the task in question. + * + * Return: 1 if the task is currently executing. 0 otherwise. + */ +inline int task_curr(const struct task_struct *p) +{ +	return cpu_curr(task_cpu(p)) == p; +} + +static inline void check_class_changed(struct rq *rq, struct task_struct *p, +				       const struct sched_class *prev_class, +				       int oldprio) +{ +	if (prev_class != p->sched_class) { +		if (prev_class->switched_from) +			prev_class->switched_from(rq, p); +		p->sched_class->switched_to(rq, p); +	} else if (oldprio != p->prio || dl_task(p)) +		p->sched_class->prio_changed(rq, p, oldprio); +} + +void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) +{ +	const struct sched_class *class; + +	if (p->sched_class == rq->curr->sched_class) { +		rq->curr->sched_class->check_preempt_curr(rq, p, flags); +	} else { +		for_each_class(class) { +			if (class == rq->curr->sched_class) +				break; +			if (class == p->sched_class) { +				resched_task(rq->curr); +				break; +			} +		} +	} + +	/* +	 * A queue event has occurred, and we're going to schedule.  In +	 * this case, we can save a useless back to back clock update. +	 */ +	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) +		rq->skip_clock_update = 1; +} + +#ifdef CONFIG_SMP +void set_task_cpu(struct task_struct *p, unsigned int new_cpu) +{ +#ifdef CONFIG_SCHED_DEBUG +	/* +	 * We should never call set_task_cpu() on a blocked task, +	 * ttwu() will sort out the placement. +	 */ +	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && +			!(task_preempt_count(p) & PREEMPT_ACTIVE)); + +#ifdef CONFIG_LOCKDEP +	/* +	 * The caller should hold either p->pi_lock or rq->lock, when changing +	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. +	 * +	 * sched_move_task() holds both and thus holding either pins the cgroup, +	 * see task_group(). +	 * +	 * Furthermore, all task_rq users should acquire both locks, see +	 * task_rq_lock(). +	 */ +	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || +				      lockdep_is_held(&task_rq(p)->lock))); +#endif +#endif + +	trace_sched_migrate_task(p, new_cpu); + +	if (task_cpu(p) != new_cpu) { +		if (p->sched_class->migrate_task_rq) +			p->sched_class->migrate_task_rq(p, new_cpu); +		p->se.nr_migrations++; +		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); +	} + +	__set_task_cpu(p, new_cpu); +} + +static void __migrate_swap_task(struct task_struct *p, int cpu) +{ +	if (p->on_rq) { +		struct rq *src_rq, *dst_rq; + +		src_rq = task_rq(p); +		dst_rq = cpu_rq(cpu); + +		deactivate_task(src_rq, p, 0); +		set_task_cpu(p, cpu); +		activate_task(dst_rq, p, 0); +		check_preempt_curr(dst_rq, p, 0); +	} else { +		/* +		 * Task isn't running anymore; make it appear like we migrated +		 * it before it went to sleep. This means on wakeup we make the +		 * previous cpu our targer instead of where it really is. +		 */ +		p->wake_cpu = cpu; +	} +} + +struct migration_swap_arg { +	struct task_struct *src_task, *dst_task; +	int src_cpu, dst_cpu; +}; + +static int migrate_swap_stop(void *data) +{ +	struct migration_swap_arg *arg = data; +	struct rq *src_rq, *dst_rq; +	int ret = -EAGAIN; + +	src_rq = cpu_rq(arg->src_cpu); +	dst_rq = cpu_rq(arg->dst_cpu); + +	double_raw_lock(&arg->src_task->pi_lock, +			&arg->dst_task->pi_lock); +	double_rq_lock(src_rq, dst_rq); +	if (task_cpu(arg->dst_task) != arg->dst_cpu) +		goto unlock; + +	if (task_cpu(arg->src_task) != arg->src_cpu) +		goto unlock; + +	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) +		goto unlock; + +	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) +		goto unlock; + +	__migrate_swap_task(arg->src_task, arg->dst_cpu); +	__migrate_swap_task(arg->dst_task, arg->src_cpu); + +	ret = 0; + +unlock: +	double_rq_unlock(src_rq, dst_rq); +	raw_spin_unlock(&arg->dst_task->pi_lock); +	raw_spin_unlock(&arg->src_task->pi_lock); + +	return ret; +} + +/* + * Cross migrate two tasks + */ +int migrate_swap(struct task_struct *cur, struct task_struct *p) +{ +	struct migration_swap_arg arg; +	int ret = -EINVAL; + +	arg = (struct migration_swap_arg){ +		.src_task = cur, +		.src_cpu = task_cpu(cur), +		.dst_task = p, +		.dst_cpu = task_cpu(p), +	}; + +	if (arg.src_cpu == arg.dst_cpu) +		goto out; + +	/* +	 * These three tests are all lockless; this is OK since all of them +	 * will be re-checked with proper locks held further down the line. +	 */ +	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) +		goto out; + +	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) +		goto out; + +	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) +		goto out; + +	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); +	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); + +out: +	return ret; +} + +struct migration_arg { +	struct task_struct *task; +	int dest_cpu; +}; + +static int migration_cpu_stop(void *data); + +/* + * wait_task_inactive - wait for a thread to unschedule. + * + * If @match_state is nonzero, it's the @p->state value just checked and + * not expected to change.  If it changes, i.e. @p might have woken up, + * then return zero.  When we succeed in waiting for @p to be off its CPU, + * we return a positive number (its total switch count).  If a second call + * a short while later returns the same number, the caller can be sure that + * @p has remained unscheduled the whole time. + * + * The caller must ensure that the task *will* unschedule sometime soon, + * else this function might spin for a *long* time. This function can't + * be called with interrupts off, or it may introduce deadlock with + * smp_call_function() if an IPI is sent by the same process we are + * waiting to become inactive. + */ +unsigned long wait_task_inactive(struct task_struct *p, long match_state) +{ +	unsigned long flags; +	int running, on_rq; +	unsigned long ncsw; +	struct rq *rq; + +	for (;;) { +		/* +		 * We do the initial early heuristics without holding +		 * any task-queue locks at all. We'll only try to get +		 * the runqueue lock when things look like they will +		 * work out! +		 */ +		rq = task_rq(p); + +		/* +		 * If the task is actively running on another CPU +		 * still, just relax and busy-wait without holding +		 * any locks. +		 * +		 * NOTE! Since we don't hold any locks, it's not +		 * even sure that "rq" stays as the right runqueue! +		 * But we don't care, since "task_running()" will +		 * return false if the runqueue has changed and p +		 * is actually now running somewhere else! +		 */ +		while (task_running(rq, p)) { +			if (match_state && unlikely(p->state != match_state)) +				return 0; +			cpu_relax(); +		} + +		/* +		 * Ok, time to look more closely! We need the rq +		 * lock now, to be *sure*. If we're wrong, we'll +		 * just go back and repeat. +		 */ +		rq = task_rq_lock(p, &flags); +		trace_sched_wait_task(p); +		running = task_running(rq, p); +		on_rq = p->on_rq; +		ncsw = 0; +		if (!match_state || p->state == match_state) +			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ +		task_rq_unlock(rq, p, &flags); + +		/* +		 * If it changed from the expected state, bail out now. +		 */ +		if (unlikely(!ncsw)) +			break; + +		/* +		 * Was it really running after all now that we +		 * checked with the proper locks actually held? +		 * +		 * Oops. Go back and try again.. +		 */ +		if (unlikely(running)) { +			cpu_relax(); +			continue; +		} + +		/* +		 * It's not enough that it's not actively running, +		 * it must be off the runqueue _entirely_, and not +		 * preempted! +		 * +		 * So if it was still runnable (but just not actively +		 * running right now), it's preempted, and we should +		 * yield - it could be a while. +		 */ +		if (unlikely(on_rq)) { +			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); + +			set_current_state(TASK_UNINTERRUPTIBLE); +			schedule_hrtimeout(&to, HRTIMER_MODE_REL); +			continue; +		} + +		/* +		 * Ahh, all good. It wasn't running, and it wasn't +		 * runnable, which means that it will never become +		 * running in the future either. We're all done! +		 */ +		break; +	} + +	return ncsw; +} + +/*** + * kick_process - kick a running thread to enter/exit the kernel + * @p: the to-be-kicked thread + * + * Cause a process which is running on another CPU to enter + * kernel-mode, without any delay. (to get signals handled.) + * + * NOTE: this function doesn't have to take the runqueue lock, + * because all it wants to ensure is that the remote task enters + * the kernel. If the IPI races and the task has been migrated + * to another CPU then no harm is done and the purpose has been + * achieved as well. + */ +void kick_process(struct task_struct *p) +{ +	int cpu; + +	preempt_disable(); +	cpu = task_cpu(p); +	if ((cpu != smp_processor_id()) && task_curr(p)) +		smp_send_reschedule(cpu); +	preempt_enable(); +} +EXPORT_SYMBOL_GPL(kick_process); +#endif /* CONFIG_SMP */ + +#ifdef CONFIG_SMP +/* + * ->cpus_allowed is protected by both rq->lock and p->pi_lock + */ +static int select_fallback_rq(int cpu, struct task_struct *p) +{ +	int nid = cpu_to_node(cpu); +	const struct cpumask *nodemask = NULL; +	enum { cpuset, possible, fail } state = cpuset; +	int dest_cpu; + +	/* +	 * If the node that the cpu is on has been offlined, cpu_to_node() +	 * will return -1. There is no cpu on the node, and we should +	 * select the cpu on the other node. +	 */ +	if (nid != -1) { +		nodemask = cpumask_of_node(nid); + +		/* Look for allowed, online CPU in same node. */ +		for_each_cpu(dest_cpu, nodemask) { +			if (!cpu_online(dest_cpu)) +				continue; +			if (!cpu_active(dest_cpu)) +				continue; +			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) +				return dest_cpu; +		} +	} + +	for (;;) { +		/* Any allowed, online CPU? */ +		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { +			if (!cpu_online(dest_cpu)) +				continue; +			if (!cpu_active(dest_cpu)) +				continue; +			goto out; +		} + +		switch (state) { +		case cpuset: +			/* No more Mr. Nice Guy. */ +			cpuset_cpus_allowed_fallback(p); +			state = possible; +			break; + +		case possible: +			do_set_cpus_allowed(p, cpu_possible_mask); +			state = fail; +			break; + +		case fail: +			BUG(); +			break; +		} +	} + +out: +	if (state != cpuset) { +		/* +		 * Don't tell them about moving exiting tasks or +		 * kernel threads (both mm NULL), since they never +		 * leave kernel. +		 */ +		if (p->mm && printk_ratelimit()) { +			printk_deferred("process %d (%s) no longer affine to cpu%d\n", +					task_pid_nr(p), p->comm, cpu); +		} +	} + +	return dest_cpu; +} + +/* + * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. + */ +static inline +int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) +{ +	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); + +	/* +	 * In order not to call set_task_cpu() on a blocking task we need +	 * to rely on ttwu() to place the task on a valid ->cpus_allowed +	 * cpu. +	 * +	 * Since this is common to all placement strategies, this lives here. +	 * +	 * [ this allows ->select_task() to simply return task_cpu(p) and +	 *   not worry about this generic constraint ] +	 */ +	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || +		     !cpu_online(cpu))) +		cpu = select_fallback_rq(task_cpu(p), p); + +	return cpu; +} + +static void update_avg(u64 *avg, u64 sample) +{ +	s64 diff = sample - *avg; +	*avg += diff >> 3; +} +#endif + +static void +ttwu_stat(struct task_struct *p, int cpu, int wake_flags) +{ +#ifdef CONFIG_SCHEDSTATS +	struct rq *rq = this_rq(); + +#ifdef CONFIG_SMP +	int this_cpu = smp_processor_id(); + +	if (cpu == this_cpu) { +		schedstat_inc(rq, ttwu_local); +		schedstat_inc(p, se.statistics.nr_wakeups_local); +	} else { +		struct sched_domain *sd; + +		schedstat_inc(p, se.statistics.nr_wakeups_remote); +		rcu_read_lock(); +		for_each_domain(this_cpu, sd) { +			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { +				schedstat_inc(sd, ttwu_wake_remote); +				break; +			} +		} +		rcu_read_unlock(); +	} + +	if (wake_flags & WF_MIGRATED) +		schedstat_inc(p, se.statistics.nr_wakeups_migrate); + +#endif /* CONFIG_SMP */ + +	schedstat_inc(rq, ttwu_count); +	schedstat_inc(p, se.statistics.nr_wakeups); + +	if (wake_flags & WF_SYNC) +		schedstat_inc(p, se.statistics.nr_wakeups_sync); + +#endif /* CONFIG_SCHEDSTATS */ +} + +static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) +{ +	activate_task(rq, p, en_flags); +	p->on_rq = 1; + +	/* if a worker is waking up, notify workqueue */ +	if (p->flags & PF_WQ_WORKER) +		wq_worker_waking_up(p, cpu_of(rq)); +} + +/* + * Mark the task runnable and perform wakeup-preemption. + */ +static void +ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) +{ +	check_preempt_curr(rq, p, wake_flags); +	trace_sched_wakeup(p, true); + +	p->state = TASK_RUNNING; +#ifdef CONFIG_SMP +	if (p->sched_class->task_woken) +		p->sched_class->task_woken(rq, p); + +	if (rq->idle_stamp) { +		u64 delta = rq_clock(rq) - rq->idle_stamp; +		u64 max = 2*rq->max_idle_balance_cost; + +		update_avg(&rq->avg_idle, delta); + +		if (rq->avg_idle > max) +			rq->avg_idle = max; + +		rq->idle_stamp = 0; +	} +#endif +} + +static void +ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) +{ +#ifdef CONFIG_SMP +	if (p->sched_contributes_to_load) +		rq->nr_uninterruptible--; +#endif + +	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); +	ttwu_do_wakeup(rq, p, wake_flags); +} + +/* + * Called in case the task @p isn't fully descheduled from its runqueue, + * in this case we must do a remote wakeup. Its a 'light' wakeup though, + * since all we need to do is flip p->state to TASK_RUNNING, since + * the task is still ->on_rq. + */ +static int ttwu_remote(struct task_struct *p, int wake_flags) +{ +	struct rq *rq; +	int ret = 0; + +	rq = __task_rq_lock(p); +	if (p->on_rq) { +		/* check_preempt_curr() may use rq clock */ +		update_rq_clock(rq); +		ttwu_do_wakeup(rq, p, wake_flags); +		ret = 1; +	} +	__task_rq_unlock(rq); + +	return ret; +} + +#ifdef CONFIG_SMP +void sched_ttwu_pending(void) +{ +	struct rq *rq = this_rq(); +	struct llist_node *llist = llist_del_all(&rq->wake_list); +	struct task_struct *p; +	unsigned long flags; + +	if (!llist) +		return; + +	raw_spin_lock_irqsave(&rq->lock, flags); + +	while (llist) { +		p = llist_entry(llist, struct task_struct, wake_entry); +		llist = llist_next(llist); +		ttwu_do_activate(rq, p, 0); +	} + +	raw_spin_unlock_irqrestore(&rq->lock, flags); +} + +void scheduler_ipi(void) +{ +	/* +	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting +	 * TIF_NEED_RESCHED remotely (for the first time) will also send +	 * this IPI. +	 */ +	preempt_fold_need_resched(); + +	if (llist_empty(&this_rq()->wake_list) +			&& !tick_nohz_full_cpu(smp_processor_id()) +			&& !got_nohz_idle_kick()) +		return; + +	/* +	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since +	 * traditionally all their work was done from the interrupt return +	 * path. Now that we actually do some work, we need to make sure +	 * we do call them. +	 * +	 * Some archs already do call them, luckily irq_enter/exit nest +	 * properly. +	 * +	 * Arguably we should visit all archs and update all handlers, +	 * however a fair share of IPIs are still resched only so this would +	 * somewhat pessimize the simple resched case. +	 */ +	irq_enter(); +	tick_nohz_full_check(); +	sched_ttwu_pending(); + +	/* +	 * Check if someone kicked us for doing the nohz idle load balance. +	 */ +	if (unlikely(got_nohz_idle_kick())) { +		this_rq()->idle_balance = 1; +		raise_softirq_irqoff(SCHED_SOFTIRQ); +	} +	irq_exit(); +} + +static void ttwu_queue_remote(struct task_struct *p, int cpu) +{ +	struct rq *rq = cpu_rq(cpu); + +	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { +		if (!set_nr_if_polling(rq->idle)) +			smp_send_reschedule(cpu); +		else +			trace_sched_wake_idle_without_ipi(cpu); +	} +} + +bool cpus_share_cache(int this_cpu, int that_cpu) +{ +	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); +} +#endif /* CONFIG_SMP */ + +static void ttwu_queue(struct task_struct *p, int cpu) +{ +	struct rq *rq = cpu_rq(cpu); + +#if defined(CONFIG_SMP) +	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { +		sched_clock_cpu(cpu); /* sync clocks x-cpu */ +		ttwu_queue_remote(p, cpu); +		return; +	} +#endif + +	raw_spin_lock(&rq->lock); +	ttwu_do_activate(rq, p, 0); +	raw_spin_unlock(&rq->lock); +} + +/** + * try_to_wake_up - wake up a thread + * @p: the thread to be awakened + * @state: the mask of task states that can be woken + * @wake_flags: wake modifier flags (WF_*) + * + * Put it on the run-queue if it's not already there. The "current" + * thread is always on the run-queue (except when the actual + * re-schedule is in progress), and as such you're allowed to do + * the simpler "current->state = TASK_RUNNING" to mark yourself + * runnable without the overhead of this. + * + * Return: %true if @p was woken up, %false if it was already running. + * or @state didn't match @p's state. + */ +static int +try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) +{ +	unsigned long flags; +	int cpu, success = 0; + +	/* +	 * If we are going to wake up a thread waiting for CONDITION we +	 * need to ensure that CONDITION=1 done by the caller can not be +	 * reordered with p->state check below. This pairs with mb() in +	 * set_current_state() the waiting thread does. +	 */ +	smp_mb__before_spinlock(); +	raw_spin_lock_irqsave(&p->pi_lock, flags); +	if (!(p->state & state)) +		goto out; + +	success = 1; /* we're going to change ->state */ +	cpu = task_cpu(p); + +	if (p->on_rq && ttwu_remote(p, wake_flags)) +		goto stat; + +#ifdef CONFIG_SMP +	/* +	 * If the owning (remote) cpu is still in the middle of schedule() with +	 * this task as prev, wait until its done referencing the task. +	 */ +	while (p->on_cpu) +		cpu_relax(); +	/* +	 * Pairs with the smp_wmb() in finish_lock_switch(). +	 */ +	smp_rmb(); + +	p->sched_contributes_to_load = !!task_contributes_to_load(p); +	p->state = TASK_WAKING; + +	if (p->sched_class->task_waking) +		p->sched_class->task_waking(p); + +	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); +	if (task_cpu(p) != cpu) { +		wake_flags |= WF_MIGRATED; +		set_task_cpu(p, cpu); +	} +#endif /* CONFIG_SMP */ + +	ttwu_queue(p, cpu); +stat: +	ttwu_stat(p, cpu, wake_flags); +out: +	raw_spin_unlock_irqrestore(&p->pi_lock, flags); + +	return success; +} + +/** + * try_to_wake_up_local - try to wake up a local task with rq lock held + * @p: the thread to be awakened + * + * Put @p on the run-queue if it's not already there. The caller must + * ensure that this_rq() is locked, @p is bound to this_rq() and not + * the current task. + */ +static void try_to_wake_up_local(struct task_struct *p) +{ +	struct rq *rq = task_rq(p); + +	if (WARN_ON_ONCE(rq != this_rq()) || +	    WARN_ON_ONCE(p == current)) +		return; + +	lockdep_assert_held(&rq->lock); + +	if (!raw_spin_trylock(&p->pi_lock)) { +		raw_spin_unlock(&rq->lock); +		raw_spin_lock(&p->pi_lock); +		raw_spin_lock(&rq->lock); +	} + +	if (!(p->state & TASK_NORMAL)) +		goto out; + +	if (!p->on_rq) +		ttwu_activate(rq, p, ENQUEUE_WAKEUP); + +	ttwu_do_wakeup(rq, p, 0); +	ttwu_stat(p, smp_processor_id(), 0); +out: +	raw_spin_unlock(&p->pi_lock); +} + +/** + * wake_up_process - Wake up a specific process + * @p: The process to be woken up. + * + * Attempt to wake up the nominated process and move it to the set of runnable + * processes. + * + * Return: 1 if the process was woken up, 0 if it was already running. + * + * It may be assumed that this function implies a write memory barrier before + * changing the task state if and only if any tasks are woken up. + */ +int wake_up_process(struct task_struct *p) +{ +	WARN_ON(task_is_stopped_or_traced(p)); +	return try_to_wake_up(p, TASK_NORMAL, 0); +} +EXPORT_SYMBOL(wake_up_process); + +int wake_up_state(struct task_struct *p, unsigned int state) +{ +	return try_to_wake_up(p, state, 0); +} + +/* + * Perform scheduler related setup for a newly forked process p. + * p is forked by current. + * + * __sched_fork() is basic setup used by init_idle() too: + */ +static void __sched_fork(unsigned long clone_flags, struct task_struct *p) +{ +	p->on_rq			= 0; + +	p->se.on_rq			= 0; +	p->se.exec_start		= 0; +	p->se.sum_exec_runtime		= 0; +	p->se.prev_sum_exec_runtime	= 0; +	p->se.nr_migrations		= 0; +	p->se.vruntime			= 0; +	INIT_LIST_HEAD(&p->se.group_node); + +#ifdef CONFIG_SCHEDSTATS +	memset(&p->se.statistics, 0, sizeof(p->se.statistics)); +#endif + +	RB_CLEAR_NODE(&p->dl.rb_node); +	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); +	p->dl.dl_runtime = p->dl.runtime = 0; +	p->dl.dl_deadline = p->dl.deadline = 0; +	p->dl.dl_period = 0; +	p->dl.flags = 0; + +	INIT_LIST_HEAD(&p->rt.run_list); + +#ifdef CONFIG_PREEMPT_NOTIFIERS +	INIT_HLIST_HEAD(&p->preempt_notifiers); +#endif + +#ifdef CONFIG_NUMA_BALANCING +	if (p->mm && atomic_read(&p->mm->mm_users) == 1) { +		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); +		p->mm->numa_scan_seq = 0; +	} + +	if (clone_flags & CLONE_VM) +		p->numa_preferred_nid = current->numa_preferred_nid; +	else +		p->numa_preferred_nid = -1; + +	p->node_stamp = 0ULL; +	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; +	p->numa_scan_period = sysctl_numa_balancing_scan_delay; +	p->numa_work.next = &p->numa_work; +	p->numa_faults_memory = NULL; +	p->numa_faults_buffer_memory = NULL; +	p->last_task_numa_placement = 0; +	p->last_sum_exec_runtime = 0; + +	INIT_LIST_HEAD(&p->numa_entry); +	p->numa_group = NULL; +#endif /* CONFIG_NUMA_BALANCING */ +} + +#ifdef CONFIG_NUMA_BALANCING +#ifdef CONFIG_SCHED_DEBUG +void set_numabalancing_state(bool enabled) +{ +	if (enabled) +		sched_feat_set("NUMA"); +	else +		sched_feat_set("NO_NUMA"); +} +#else +__read_mostly bool numabalancing_enabled; + +void set_numabalancing_state(bool enabled) +{ +	numabalancing_enabled = enabled; +} +#endif /* CONFIG_SCHED_DEBUG */ + +#ifdef CONFIG_PROC_SYSCTL +int sysctl_numa_balancing(struct ctl_table *table, int write, +			 void __user *buffer, size_t *lenp, loff_t *ppos) +{ +	struct ctl_table t; +	int err; +	int state = numabalancing_enabled; + +	if (write && !capable(CAP_SYS_ADMIN)) +		return -EPERM; + +	t = *table; +	t.data = &state; +	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); +	if (err < 0) +		return err; +	if (write) +		set_numabalancing_state(state); +	return err; +} +#endif +#endif + +/* + * fork()/clone()-time setup: + */ +int sched_fork(unsigned long clone_flags, struct task_struct *p) +{ +	unsigned long flags; +	int cpu = get_cpu(); + +	__sched_fork(clone_flags, p); +	/* +	 * We mark the process as running here. This guarantees that +	 * nobody will actually run it, and a signal or other external +	 * event cannot wake it up and insert it on the runqueue either. +	 */ +	p->state = TASK_RUNNING; + +	/* +	 * Make sure we do not leak PI boosting priority to the child. +	 */ +	p->prio = current->normal_prio; + +	/* +	 * Revert to default priority/policy on fork if requested. +	 */ +	if (unlikely(p->sched_reset_on_fork)) { +		if (task_has_dl_policy(p) || task_has_rt_policy(p)) { +			p->policy = SCHED_NORMAL; +			p->static_prio = NICE_TO_PRIO(0); +			p->rt_priority = 0; +		} else if (PRIO_TO_NICE(p->static_prio) < 0) +			p->static_prio = NICE_TO_PRIO(0); + +		p->prio = p->normal_prio = __normal_prio(p); +		set_load_weight(p); + +		/* +		 * We don't need the reset flag anymore after the fork. It has +		 * fulfilled its duty: +		 */ +		p->sched_reset_on_fork = 0; +	} + +	if (dl_prio(p->prio)) { +		put_cpu(); +		return -EAGAIN; +	} else if (rt_prio(p->prio)) { +		p->sched_class = &rt_sched_class; +	} else { +		p->sched_class = &fair_sched_class; +	} + +	if (p->sched_class->task_fork) +		p->sched_class->task_fork(p); + +	/* +	 * The child is not yet in the pid-hash so no cgroup attach races, +	 * and the cgroup is pinned to this child due to cgroup_fork() +	 * is ran before sched_fork(). +	 * +	 * Silence PROVE_RCU. +	 */ +	raw_spin_lock_irqsave(&p->pi_lock, flags); +	set_task_cpu(p, cpu); +	raw_spin_unlock_irqrestore(&p->pi_lock, flags); + +#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) +	if (likely(sched_info_on())) +		memset(&p->sched_info, 0, sizeof(p->sched_info)); +#endif +#if defined(CONFIG_SMP) +	p->on_cpu = 0; +#endif +	init_task_preempt_count(p); +#ifdef CONFIG_SMP +	plist_node_init(&p->pushable_tasks, MAX_PRIO); +	RB_CLEAR_NODE(&p->pushable_dl_tasks); +#endif + +	put_cpu(); +	return 0; +} + +unsigned long to_ratio(u64 period, u64 runtime) +{ +	if (runtime == RUNTIME_INF) +		return 1ULL << 20; + +	/* +	 * Doing this here saves a lot of checks in all +	 * the calling paths, and returning zero seems +	 * safe for them anyway. +	 */ +	if (period == 0) +		return 0; + +	return div64_u64(runtime << 20, period); +} + +#ifdef CONFIG_SMP +inline struct dl_bw *dl_bw_of(int i) +{ +	return &cpu_rq(i)->rd->dl_bw; +} + +static inline int dl_bw_cpus(int i) +{ +	struct root_domain *rd = cpu_rq(i)->rd; +	int cpus = 0; + +	for_each_cpu_and(i, rd->span, cpu_active_mask) +		cpus++; + +	return cpus; +} +#else +inline struct dl_bw *dl_bw_of(int i) +{ +	return &cpu_rq(i)->dl.dl_bw; +} + +static inline int dl_bw_cpus(int i) +{ +	return 1; +} +#endif + +static inline +void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw) +{ +	dl_b->total_bw -= tsk_bw; +} + +static inline +void __dl_add(struct dl_bw *dl_b, u64 tsk_bw) +{ +	dl_b->total_bw += tsk_bw; +} + +static inline +bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) +{ +	return dl_b->bw != -1 && +	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; +} + +/* + * We must be sure that accepting a new task (or allowing changing the + * parameters of an existing one) is consistent with the bandwidth + * constraints. If yes, this function also accordingly updates the currently + * allocated bandwidth to reflect the new situation. + * + * This function is called while holding p's rq->lock. + */ +static int dl_overflow(struct task_struct *p, int policy, +		       const struct sched_attr *attr) +{ + +	struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); +	u64 period = attr->sched_period ?: attr->sched_deadline; +	u64 runtime = attr->sched_runtime; +	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; +	int cpus, err = -1; + +	if (new_bw == p->dl.dl_bw) +		return 0; + +	/* +	 * Either if a task, enters, leave, or stays -deadline but changes +	 * its parameters, we may need to update accordingly the total +	 * allocated bandwidth of the container. +	 */ +	raw_spin_lock(&dl_b->lock); +	cpus = dl_bw_cpus(task_cpu(p)); +	if (dl_policy(policy) && !task_has_dl_policy(p) && +	    !__dl_overflow(dl_b, cpus, 0, new_bw)) { +		__dl_add(dl_b, new_bw); +		err = 0; +	} else if (dl_policy(policy) && task_has_dl_policy(p) && +		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { +		__dl_clear(dl_b, p->dl.dl_bw); +		__dl_add(dl_b, new_bw); +		err = 0; +	} else if (!dl_policy(policy) && task_has_dl_policy(p)) { +		__dl_clear(dl_b, p->dl.dl_bw); +		err = 0; +	} +	raw_spin_unlock(&dl_b->lock); + +	return err; +} + +extern void init_dl_bw(struct dl_bw *dl_b); + +/* + * wake_up_new_task - wake up a newly created task for the first time. + * + * This function will do some initial scheduler statistics housekeeping + * that must be done for every newly created context, then puts the task + * on the runqueue and wakes it. + */ +void wake_up_new_task(struct task_struct *p) +{ +	unsigned long flags; +	struct rq *rq; + +	raw_spin_lock_irqsave(&p->pi_lock, flags); +#ifdef CONFIG_SMP +	/* +	 * Fork balancing, do it here and not earlier because: +	 *  - cpus_allowed can change in the fork path +	 *  - any previously selected cpu might disappear through hotplug +	 */ +	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); +#endif + +	/* Initialize new task's runnable average */ +	init_task_runnable_average(p); +	rq = __task_rq_lock(p); +	activate_task(rq, p, 0); +	p->on_rq = 1; +	trace_sched_wakeup_new(p, true); +	check_preempt_curr(rq, p, WF_FORK); +#ifdef CONFIG_SMP +	if (p->sched_class->task_woken) +		p->sched_class->task_woken(rq, p); +#endif +	task_rq_unlock(rq, p, &flags); +} + +#ifdef CONFIG_PREEMPT_NOTIFIERS + +/** + * preempt_notifier_register - tell me when current is being preempted & rescheduled + * @notifier: notifier struct to register + */ +void preempt_notifier_register(struct preempt_notifier *notifier) +{ +	hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); +} +EXPORT_SYMBOL_GPL(preempt_notifier_register); + +/** + * preempt_notifier_unregister - no longer interested in preemption notifications + * @notifier: notifier struct to unregister + * + * This is safe to call from within a preemption notifier. + */ +void preempt_notifier_unregister(struct preempt_notifier *notifier) +{ +	hlist_del(¬ifier->link); +} +EXPORT_SYMBOL_GPL(preempt_notifier_unregister); + +static void fire_sched_in_preempt_notifiers(struct task_struct *curr) +{ +	struct preempt_notifier *notifier; + +	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) +		notifier->ops->sched_in(notifier, raw_smp_processor_id()); +} + +static void +fire_sched_out_preempt_notifiers(struct task_struct *curr, +				 struct task_struct *next) +{ +	struct preempt_notifier *notifier; + +	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) +		notifier->ops->sched_out(notifier, next); +} + +#else /* !CONFIG_PREEMPT_NOTIFIERS */ + +static void fire_sched_in_preempt_notifiers(struct task_struct *curr) +{ +} + +static void +fire_sched_out_preempt_notifiers(struct task_struct *curr, +				 struct task_struct *next) +{ +} + +#endif /* CONFIG_PREEMPT_NOTIFIERS */ + +/** + * prepare_task_switch - prepare to switch tasks + * @rq: the runqueue preparing to switch + * @prev: the current task that is being switched out + * @next: the task we are going to switch to. + * + * This is called with the rq lock held and interrupts off. It must + * be paired with a subsequent finish_task_switch after the context + * switch. + * + * prepare_task_switch sets up locking and calls architecture specific + * hooks. + */ +static inline void +prepare_task_switch(struct rq *rq, struct task_struct *prev, +		    struct task_struct *next) +{ +	trace_sched_switch(prev, next); +	sched_info_switch(rq, prev, next); +	perf_event_task_sched_out(prev, next); +	fire_sched_out_preempt_notifiers(prev, next); +	prepare_lock_switch(rq, next); +	prepare_arch_switch(next); +} + +/** + * finish_task_switch - clean up after a task-switch + * @rq: runqueue associated with task-switch + * @prev: the thread we just switched away from. + * + * finish_task_switch must be called after the context switch, paired + * with a prepare_task_switch call before the context switch. + * finish_task_switch will reconcile locking set up by prepare_task_switch, + * and do any other architecture-specific cleanup actions. + * + * Note that we may have delayed dropping an mm in context_switch(). If + * so, we finish that here outside of the runqueue lock. (Doing it + * with the lock held can cause deadlocks; see schedule() for + * details.) + */ +static void finish_task_switch(struct rq *rq, struct task_struct *prev) +	__releases(rq->lock) +{ +	struct mm_struct *mm = rq->prev_mm; +	long prev_state; + +	rq->prev_mm = NULL; + +	/* +	 * A task struct has one reference for the use as "current". +	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls +	 * schedule one last time. The schedule call will never return, and +	 * the scheduled task must drop that reference. +	 * The test for TASK_DEAD must occur while the runqueue locks are +	 * still held, otherwise prev could be scheduled on another cpu, die +	 * there before we look at prev->state, and then the reference would +	 * be dropped twice. +	 *		Manfred Spraul <manfred@colorfullife.com> +	 */ +	prev_state = prev->state; +	vtime_task_switch(prev); +	finish_arch_switch(prev); +	perf_event_task_sched_in(prev, current); +	finish_lock_switch(rq, prev); +	finish_arch_post_lock_switch(); + +	fire_sched_in_preempt_notifiers(current); +	if (mm) +		mmdrop(mm); +	if (unlikely(prev_state == TASK_DEAD)) { +		if (prev->sched_class->task_dead) +			prev->sched_class->task_dead(prev); + +		/* +		 * Remove function-return probe instances associated with this +		 * task and put them back on the free list. +		 */ +		kprobe_flush_task(prev); +		put_task_struct(prev); +	} + +	tick_nohz_task_switch(current); +} + +#ifdef CONFIG_SMP + +/* rq->lock is NOT held, but preemption is disabled */ +static inline void post_schedule(struct rq *rq) +{ +	if (rq->post_schedule) { +		unsigned long flags; + +		raw_spin_lock_irqsave(&rq->lock, flags); +		if (rq->curr->sched_class->post_schedule) +			rq->curr->sched_class->post_schedule(rq); +		raw_spin_unlock_irqrestore(&rq->lock, flags); + +		rq->post_schedule = 0; +	} +} + +#else + +static inline void post_schedule(struct rq *rq) +{ +} + +#endif + +/** + * schedule_tail - first thing a freshly forked thread must call. + * @prev: the thread we just switched away from. + */ +asmlinkage __visible void schedule_tail(struct task_struct *prev) +	__releases(rq->lock) +{ +	struct rq *rq = this_rq(); + +	finish_task_switch(rq, prev); + +	/* +	 * FIXME: do we need to worry about rq being invalidated by the +	 * task_switch? +	 */ +	post_schedule(rq); + +#ifdef __ARCH_WANT_UNLOCKED_CTXSW +	/* In this case, finish_task_switch does not reenable preemption */ +	preempt_enable(); +#endif +	if (current->set_child_tid) +		put_user(task_pid_vnr(current), current->set_child_tid); +} + +/* + * context_switch - switch to the new MM and the new + * thread's register state. + */ +static inline void +context_switch(struct rq *rq, struct task_struct *prev, +	       struct task_struct *next) +{ +	struct mm_struct *mm, *oldmm; + +	prepare_task_switch(rq, prev, next); + +	mm = next->mm; +	oldmm = prev->active_mm; +	/* +	 * For paravirt, this is coupled with an exit in switch_to to +	 * combine the page table reload and the switch backend into +	 * one hypercall. +	 */ +	arch_start_context_switch(prev); + +	if (!mm) { +		next->active_mm = oldmm; +		atomic_inc(&oldmm->mm_count); +		enter_lazy_tlb(oldmm, next); +	} else +		switch_mm(oldmm, mm, next); + +	if (!prev->mm) { +		prev->active_mm = NULL; +		rq->prev_mm = oldmm; +	} +	/* +	 * Since the runqueue lock will be released by the next +	 * task (which is an invalid locking op but in the case +	 * of the scheduler it's an obvious special-case), so we +	 * do an early lockdep release here: +	 */ +#ifndef __ARCH_WANT_UNLOCKED_CTXSW +	spin_release(&rq->lock.dep_map, 1, _THIS_IP_); +#endif + +	context_tracking_task_switch(prev, next); +	/* Here we just switch the register state and the stack. */ +	switch_to(prev, next, prev); + +	barrier(); +	/* +	 * this_rq must be evaluated again because prev may have moved +	 * CPUs since it called schedule(), thus the 'rq' on its stack +	 * frame will be invalid. +	 */ +	finish_task_switch(this_rq(), prev); +} + +/* + * nr_running and nr_context_switches: + * + * externally visible scheduler statistics: current number of runnable + * threads, total number of context switches performed since bootup. + */ +unsigned long nr_running(void) +{ +	unsigned long i, sum = 0; + +	for_each_online_cpu(i) +		sum += cpu_rq(i)->nr_running; + +	return sum; +} + +unsigned long long nr_context_switches(void) +{ +	int i; +	unsigned long long sum = 0; + +	for_each_possible_cpu(i) +		sum += cpu_rq(i)->nr_switches; + +	return sum; +} + +unsigned long nr_iowait(void) +{ +	unsigned long i, sum = 0; + +	for_each_possible_cpu(i) +		sum += atomic_read(&cpu_rq(i)->nr_iowait); + +	return sum; +} + +unsigned long nr_iowait_cpu(int cpu) +{ +	struct rq *this = cpu_rq(cpu); +	return atomic_read(&this->nr_iowait); +} + +#ifdef CONFIG_SMP + +/* + * sched_exec - execve() is a valuable balancing opportunity, because at + * this point the task has the smallest effective memory and cache footprint. + */ +void sched_exec(void) +{ +	struct task_struct *p = current; +	unsigned long flags; +	int dest_cpu; + +	raw_spin_lock_irqsave(&p->pi_lock, flags); +	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); +	if (dest_cpu == smp_processor_id()) +		goto unlock; + +	if (likely(cpu_active(dest_cpu))) { +		struct migration_arg arg = { p, dest_cpu }; + +		raw_spin_unlock_irqrestore(&p->pi_lock, flags); +		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); +		return; +	} +unlock: +	raw_spin_unlock_irqrestore(&p->pi_lock, flags); +} + +#endif + +DEFINE_PER_CPU(struct kernel_stat, kstat); +DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); + +EXPORT_PER_CPU_SYMBOL(kstat); +EXPORT_PER_CPU_SYMBOL(kernel_cpustat); + +/* + * Return any ns on the sched_clock that have not yet been accounted in + * @p in case that task is currently running. + * + * Called with task_rq_lock() held on @rq. + */ +static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) +{ +	u64 ns = 0; + +	if (task_current(rq, p)) { +		update_rq_clock(rq); +		ns = rq_clock_task(rq) - p->se.exec_start; +		if ((s64)ns < 0) +			ns = 0; +	} + +	return ns; +} + +unsigned long long task_delta_exec(struct task_struct *p) +{ +	unsigned long flags; +	struct rq *rq; +	u64 ns = 0; + +	rq = task_rq_lock(p, &flags); +	ns = do_task_delta_exec(p, rq); +	task_rq_unlock(rq, p, &flags); + +	return ns; +} + +/* + * Return accounted runtime for the task. + * In case the task is currently running, return the runtime plus current's + * pending runtime that have not been accounted yet. + */ +unsigned long long task_sched_runtime(struct task_struct *p) +{ +	unsigned long flags; +	struct rq *rq; +	u64 ns = 0; + +#if defined(CONFIG_64BIT) && defined(CONFIG_SMP) +	/* +	 * 64-bit doesn't need locks to atomically read a 64bit value. +	 * So we have a optimization chance when the task's delta_exec is 0. +	 * Reading ->on_cpu is racy, but this is ok. +	 * +	 * If we race with it leaving cpu, we'll take a lock. So we're correct. +	 * If we race with it entering cpu, unaccounted time is 0. This is +	 * indistinguishable from the read occurring a few cycles earlier. +	 */ +	if (!p->on_cpu) +		return p->se.sum_exec_runtime; +#endif + +	rq = task_rq_lock(p, &flags); +	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); +	task_rq_unlock(rq, p, &flags); + +	return ns; +} + +/* + * This function gets called by the timer code, with HZ frequency. + * We call it with interrupts disabled. + */ +void scheduler_tick(void) +{ +	int cpu = smp_processor_id(); +	struct rq *rq = cpu_rq(cpu); +	struct task_struct *curr = rq->curr; + +	sched_clock_tick(); + +	raw_spin_lock(&rq->lock); +	update_rq_clock(rq); +	curr->sched_class->task_tick(rq, curr, 0); +	update_cpu_load_active(rq); +	raw_spin_unlock(&rq->lock); + +	perf_event_task_tick(); + +#ifdef CONFIG_SMP +	rq->idle_balance = idle_cpu(cpu); +	trigger_load_balance(rq); +#endif +	rq_last_tick_reset(rq); +} + +#ifdef CONFIG_NO_HZ_FULL +/** + * scheduler_tick_max_deferment + * + * Keep at least one tick per second when a single + * active task is running because the scheduler doesn't + * yet completely support full dynticks environment. + * + * This makes sure that uptime, CFS vruntime, load + * balancing, etc... continue to move forward, even + * with a very low granularity. + * + * Return: Maximum deferment in nanoseconds. + */ +u64 scheduler_tick_max_deferment(void) +{ +	struct rq *rq = this_rq(); +	unsigned long next, now = ACCESS_ONCE(jiffies); + +	next = rq->last_sched_tick + HZ; + +	if (time_before_eq(next, now)) +		return 0; + +	return jiffies_to_nsecs(next - now); +} +#endif + +notrace unsigned long get_parent_ip(unsigned long addr) +{ +	if (in_lock_functions(addr)) { +		addr = CALLER_ADDR2; +		if (in_lock_functions(addr)) +			addr = CALLER_ADDR3; +	} +	return addr; +} + +#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ +				defined(CONFIG_PREEMPT_TRACER)) + +void preempt_count_add(int val) +{ +#ifdef CONFIG_DEBUG_PREEMPT +	/* +	 * Underflow? +	 */ +	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) +		return; +#endif +	__preempt_count_add(val); +#ifdef CONFIG_DEBUG_PREEMPT +	/* +	 * Spinlock count overflowing soon? +	 */ +	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= +				PREEMPT_MASK - 10); +#endif +	if (preempt_count() == val) { +		unsigned long ip = get_parent_ip(CALLER_ADDR1); +#ifdef CONFIG_DEBUG_PREEMPT +		current->preempt_disable_ip = ip; +#endif +		trace_preempt_off(CALLER_ADDR0, ip); +	} +} +EXPORT_SYMBOL(preempt_count_add); +NOKPROBE_SYMBOL(preempt_count_add); + +void preempt_count_sub(int val) +{ +#ifdef CONFIG_DEBUG_PREEMPT +	/* +	 * Underflow? +	 */ +	if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) +		return; +	/* +	 * Is the spinlock portion underflowing? +	 */ +	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && +			!(preempt_count() & PREEMPT_MASK))) +		return; +#endif + +	if (preempt_count() == val) +		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); +	__preempt_count_sub(val); +} +EXPORT_SYMBOL(preempt_count_sub); +NOKPROBE_SYMBOL(preempt_count_sub); + +#endif + +/* + * Print scheduling while atomic bug: + */ +static noinline void __schedule_bug(struct task_struct *prev) +{ +	if (oops_in_progress) +		return; + +	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", +		prev->comm, prev->pid, preempt_count()); + +	debug_show_held_locks(prev); +	print_modules(); +	if (irqs_disabled()) +		print_irqtrace_events(prev); +#ifdef CONFIG_DEBUG_PREEMPT +	if (in_atomic_preempt_off()) { +		pr_err("Preemption disabled at:"); +		print_ip_sym(current->preempt_disable_ip); +		pr_cont("\n"); +	} +#endif +	dump_stack(); +	add_taint(TAINT_WARN, LOCKDEP_STILL_OK); +} + +/* + * Various schedule()-time debugging checks and statistics: + */ +static inline void schedule_debug(struct task_struct *prev) +{ +	/* +	 * Test if we are atomic. Since do_exit() needs to call into +	 * schedule() atomically, we ignore that path. Otherwise whine +	 * if we are scheduling when we should not. +	 */ +	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) +		__schedule_bug(prev); +	rcu_sleep_check(); + +	profile_hit(SCHED_PROFILING, __builtin_return_address(0)); + +	schedstat_inc(this_rq(), sched_count); +} + +/* + * Pick up the highest-prio task: + */ +static inline struct task_struct * +pick_next_task(struct rq *rq, struct task_struct *prev) +{ +	const struct sched_class *class = &fair_sched_class; +	struct task_struct *p; + +	/* +	 * Optimization: we know that if all tasks are in +	 * the fair class we can call that function directly: +	 */ +	if (likely(prev->sched_class == class && +		   rq->nr_running == rq->cfs.h_nr_running)) { +		p = fair_sched_class.pick_next_task(rq, prev); +		if (unlikely(p == RETRY_TASK)) +			goto again; + +		/* assumes fair_sched_class->next == idle_sched_class */ +		if (unlikely(!p)) +			p = idle_sched_class.pick_next_task(rq, prev); + +		return p; +	} + +again: +	for_each_class(class) { +		p = class->pick_next_task(rq, prev); +		if (p) { +			if (unlikely(p == RETRY_TASK)) +				goto again; +			return p; +		} +	} + +	BUG(); /* the idle class will always have a runnable task */ +} + +/* + * __schedule() is the main scheduler function. + * + * The main means of driving the scheduler and thus entering this function are: + * + *   1. Explicit blocking: mutex, semaphore, waitqueue, etc. + * + *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return + *      paths. For example, see arch/x86/entry_64.S. + * + *      To drive preemption between tasks, the scheduler sets the flag in timer + *      interrupt handler scheduler_tick(). + * + *   3. Wakeups don't really cause entry into schedule(). They add a + *      task to the run-queue and that's it. + * + *      Now, if the new task added to the run-queue preempts the current + *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets + *      called on the nearest possible occasion: + * + *       - If the kernel is preemptible (CONFIG_PREEMPT=y): + * + *         - in syscall or exception context, at the next outmost + *           preempt_enable(). (this might be as soon as the wake_up()'s + *           spin_unlock()!) + * + *         - in IRQ context, return from interrupt-handler to + *           preemptible context + * + *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set) + *         then at the next: + * + *          - cond_resched() call + *          - explicit schedule() call + *          - return from syscall or exception to user-space + *          - return from interrupt-handler to user-space + */ +static void __sched __schedule(void) +{ +	struct task_struct *prev, *next; +	unsigned long *switch_count; +	struct rq *rq; +	int cpu; + +need_resched: +	preempt_disable(); +	cpu = smp_processor_id(); +	rq = cpu_rq(cpu); +	rcu_note_context_switch(cpu); +	prev = rq->curr; + +	schedule_debug(prev); + +	if (sched_feat(HRTICK)) +		hrtick_clear(rq); + +	/* +	 * Make sure that signal_pending_state()->signal_pending() below +	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) +	 * done by the caller to avoid the race with signal_wake_up(). +	 */ +	smp_mb__before_spinlock(); +	raw_spin_lock_irq(&rq->lock); + +	switch_count = &prev->nivcsw; +	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { +		if (unlikely(signal_pending_state(prev->state, prev))) { +			prev->state = TASK_RUNNING; +		} else { +			deactivate_task(rq, prev, DEQUEUE_SLEEP); +			prev->on_rq = 0; + +			/* +			 * If a worker went to sleep, notify and ask workqueue +			 * whether it wants to wake up a task to maintain +			 * concurrency. +			 */ +			if (prev->flags & PF_WQ_WORKER) { +				struct task_struct *to_wakeup; + +				to_wakeup = wq_worker_sleeping(prev, cpu); +				if (to_wakeup) +					try_to_wake_up_local(to_wakeup); +			} +		} +		switch_count = &prev->nvcsw; +	} + +	if (prev->on_rq || rq->skip_clock_update < 0) +		update_rq_clock(rq); + +	next = pick_next_task(rq, prev); +	clear_tsk_need_resched(prev); +	clear_preempt_need_resched(); +	rq->skip_clock_update = 0; + +	if (likely(prev != next)) { +		rq->nr_switches++; +		rq->curr = next; +		++*switch_count; + +		context_switch(rq, prev, next); /* unlocks the rq */ +		/* +		 * The context switch have flipped the stack from under us +		 * and restored the local variables which were saved when +		 * this task called schedule() in the past. prev == current +		 * is still correct, but it can be moved to another cpu/rq. +		 */ +		cpu = smp_processor_id(); +		rq = cpu_rq(cpu); +	} else +		raw_spin_unlock_irq(&rq->lock); + +	post_schedule(rq); + +	sched_preempt_enable_no_resched(); +	if (need_resched()) +		goto need_resched; +} + +static inline void sched_submit_work(struct task_struct *tsk) +{ +	if (!tsk->state || tsk_is_pi_blocked(tsk)) +		return; +	/* +	 * If we are going to sleep and we have plugged IO queued, +	 * make sure to submit it to avoid deadlocks. +	 */ +	if (blk_needs_flush_plug(tsk)) +		blk_schedule_flush_plug(tsk); +} + +asmlinkage __visible void __sched schedule(void) +{ +	struct task_struct *tsk = current; + +	sched_submit_work(tsk); +	__schedule(); +} +EXPORT_SYMBOL(schedule); + +#ifdef CONFIG_CONTEXT_TRACKING +asmlinkage __visible void __sched schedule_user(void) +{ +	/* +	 * If we come here after a random call to set_need_resched(), +	 * or we have been woken up remotely but the IPI has not yet arrived, +	 * we haven't yet exited the RCU idle mode. Do it here manually until +	 * we find a better solution. +	 */ +	user_exit(); +	schedule(); +	user_enter(); +} +#endif + +/** + * schedule_preempt_disabled - called with preemption disabled + * + * Returns with preemption disabled. Note: preempt_count must be 1 + */ +void __sched schedule_preempt_disabled(void) +{ +	sched_preempt_enable_no_resched(); +	schedule(); +	preempt_disable(); +} + +#ifdef CONFIG_PREEMPT +/* + * this is the entry point to schedule() from in-kernel preemption + * off of preempt_enable. Kernel preemptions off return from interrupt + * occur there and call schedule directly. + */ +asmlinkage __visible void __sched notrace preempt_schedule(void) +{ +	/* +	 * If there is a non-zero preempt_count or interrupts are disabled, +	 * we do not want to preempt the current task. Just return.. +	 */ +	if (likely(!preemptible())) +		return; + +	do { +		__preempt_count_add(PREEMPT_ACTIVE); +		__schedule(); +		__preempt_count_sub(PREEMPT_ACTIVE); + +		/* +		 * Check again in case we missed a preemption opportunity +		 * between schedule and now. +		 */ +		barrier(); +	} while (need_resched()); +} +NOKPROBE_SYMBOL(preempt_schedule); +EXPORT_SYMBOL(preempt_schedule); +#endif /* CONFIG_PREEMPT */ + +/* + * this is the entry point to schedule() from kernel preemption + * off of irq context. + * Note, that this is called and return with irqs disabled. This will + * protect us against recursive calling from irq. + */ +asmlinkage __visible void __sched preempt_schedule_irq(void) +{ +	enum ctx_state prev_state; + +	/* Catch callers which need to be fixed */ +	BUG_ON(preempt_count() || !irqs_disabled()); + +	prev_state = exception_enter(); + +	do { +		__preempt_count_add(PREEMPT_ACTIVE); +		local_irq_enable(); +		__schedule(); +		local_irq_disable(); +		__preempt_count_sub(PREEMPT_ACTIVE); + +		/* +		 * Check again in case we missed a preemption opportunity +		 * between schedule and now. +		 */ +		barrier(); +	} while (need_resched()); + +	exception_exit(prev_state); +} + +int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, +			  void *key) +{ +	return try_to_wake_up(curr->private, mode, wake_flags); +} +EXPORT_SYMBOL(default_wake_function); + +#ifdef CONFIG_RT_MUTEXES + +/* + * rt_mutex_setprio - set the current priority of a task + * @p: task + * @prio: prio value (kernel-internal form) + * + * This function changes the 'effective' priority of a task. It does + * not touch ->normal_prio like __setscheduler(). + * + * Used by the rt_mutex code to implement priority inheritance + * logic. Call site only calls if the priority of the task changed. + */ +void rt_mutex_setprio(struct task_struct *p, int prio) +{ +	int oldprio, on_rq, running, enqueue_flag = 0; +	struct rq *rq; +	const struct sched_class *prev_class; + +	BUG_ON(prio > MAX_PRIO); + +	rq = __task_rq_lock(p); + +	/* +	 * Idle task boosting is a nono in general. There is one +	 * exception, when PREEMPT_RT and NOHZ is active: +	 * +	 * The idle task calls get_next_timer_interrupt() and holds +	 * the timer wheel base->lock on the CPU and another CPU wants +	 * to access the timer (probably to cancel it). We can safely +	 * ignore the boosting request, as the idle CPU runs this code +	 * with interrupts disabled and will complete the lock +	 * protected section without being interrupted. So there is no +	 * real need to boost. +	 */ +	if (unlikely(p == rq->idle)) { +		WARN_ON(p != rq->curr); +		WARN_ON(p->pi_blocked_on); +		goto out_unlock; +	} + +	trace_sched_pi_setprio(p, prio); +	p->pi_top_task = rt_mutex_get_top_task(p); +	oldprio = p->prio; +	prev_class = p->sched_class; +	on_rq = p->on_rq; +	running = task_current(rq, p); +	if (on_rq) +		dequeue_task(rq, p, 0); +	if (running) +		p->sched_class->put_prev_task(rq, p); + +	/* +	 * Boosting condition are: +	 * 1. -rt task is running and holds mutex A +	 *      --> -dl task blocks on mutex A +	 * +	 * 2. -dl task is running and holds mutex A +	 *      --> -dl task blocks on mutex A and could preempt the +	 *          running task +	 */ +	if (dl_prio(prio)) { +		if (!dl_prio(p->normal_prio) || (p->pi_top_task && +			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) { +			p->dl.dl_boosted = 1; +			p->dl.dl_throttled = 0; +			enqueue_flag = ENQUEUE_REPLENISH; +		} else +			p->dl.dl_boosted = 0; +		p->sched_class = &dl_sched_class; +	} else if (rt_prio(prio)) { +		if (dl_prio(oldprio)) +			p->dl.dl_boosted = 0; +		if (oldprio < prio) +			enqueue_flag = ENQUEUE_HEAD; +		p->sched_class = &rt_sched_class; +	} else { +		if (dl_prio(oldprio)) +			p->dl.dl_boosted = 0; +		p->sched_class = &fair_sched_class; +	} + +	p->prio = prio; + +	if (running) +		p->sched_class->set_curr_task(rq); +	if (on_rq) +		enqueue_task(rq, p, enqueue_flag); + +	check_class_changed(rq, p, prev_class, oldprio); +out_unlock: +	__task_rq_unlock(rq); +} +#endif + +void set_user_nice(struct task_struct *p, long nice) +{ +	int old_prio, delta, on_rq; +	unsigned long flags; +	struct rq *rq; + +	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) +		return; +	/* +	 * We have to be careful, if called from sys_setpriority(), +	 * the task might be in the middle of scheduling on another CPU. +	 */ +	rq = task_rq_lock(p, &flags); +	/* +	 * The RT priorities are set via sched_setscheduler(), but we still +	 * allow the 'normal' nice value to be set - but as expected +	 * it wont have any effect on scheduling until the task is +	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: +	 */ +	if (task_has_dl_policy(p) || task_has_rt_policy(p)) { +		p->static_prio = NICE_TO_PRIO(nice); +		goto out_unlock; +	} +	on_rq = p->on_rq; +	if (on_rq) +		dequeue_task(rq, p, 0); + +	p->static_prio = NICE_TO_PRIO(nice); +	set_load_weight(p); +	old_prio = p->prio; +	p->prio = effective_prio(p); +	delta = p->prio - old_prio; + +	if (on_rq) { +		enqueue_task(rq, p, 0); +		/* +		 * If the task increased its priority or is running and +		 * lowered its priority, then reschedule its CPU: +		 */ +		if (delta < 0 || (delta > 0 && task_running(rq, p))) +			resched_task(rq->curr); +	} +out_unlock: +	task_rq_unlock(rq, p, &flags); +} +EXPORT_SYMBOL(set_user_nice); + +/* + * can_nice - check if a task can reduce its nice value + * @p: task + * @nice: nice value + */ +int can_nice(const struct task_struct *p, const int nice) +{ +	/* convert nice value [19,-20] to rlimit style value [1,40] */ +	int nice_rlim = nice_to_rlimit(nice); + +	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || +		capable(CAP_SYS_NICE)); +} + +#ifdef __ARCH_WANT_SYS_NICE + +/* + * sys_nice - change the priority of the current process. + * @increment: priority increment + * + * sys_setpriority is a more generic, but much slower function that + * does similar things. + */ +SYSCALL_DEFINE1(nice, int, increment) +{ +	long nice, retval; + +	/* +	 * Setpriority might change our priority at the same moment. +	 * We don't have to worry. Conceptually one call occurs first +	 * and we have a single winner. +	 */ +	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); +	nice = task_nice(current) + increment; + +	nice = clamp_val(nice, MIN_NICE, MAX_NICE); +	if (increment < 0 && !can_nice(current, nice)) +		return -EPERM; + +	retval = security_task_setnice(current, nice); +	if (retval) +		return retval; + +	set_user_nice(current, nice); +	return 0; +} + +#endif + +/** + * task_prio - return the priority value of a given task. + * @p: the task in question. + * + * Return: The priority value as seen by users in /proc. + * RT tasks are offset by -200. Normal tasks are centered + * around 0, value goes from -16 to +15. + */ +int task_prio(const struct task_struct *p) +{ +	return p->prio - MAX_RT_PRIO; +} + +/** + * idle_cpu - is a given cpu idle currently? + * @cpu: the processor in question. + * + * Return: 1 if the CPU is currently idle. 0 otherwise. + */ +int idle_cpu(int cpu) +{ +	struct rq *rq = cpu_rq(cpu); + +	if (rq->curr != rq->idle) +		return 0; + +	if (rq->nr_running) +		return 0; + +#ifdef CONFIG_SMP +	if (!llist_empty(&rq->wake_list)) +		return 0; +#endif + +	return 1; +} + +/** + * idle_task - return the idle task for a given cpu. + * @cpu: the processor in question. + * + * Return: The idle task for the cpu @cpu. + */ +struct task_struct *idle_task(int cpu) +{ +	return cpu_rq(cpu)->idle; +} + +/** + * find_process_by_pid - find a process with a matching PID value. + * @pid: the pid in question. + * + * The task of @pid, if found. %NULL otherwise. + */ +static struct task_struct *find_process_by_pid(pid_t pid) +{ +	return pid ? find_task_by_vpid(pid) : current; +} + +/* + * This function initializes the sched_dl_entity of a newly becoming + * SCHED_DEADLINE task. + * + * Only the static values are considered here, the actual runtime and the + * absolute deadline will be properly calculated when the task is enqueued + * for the first time with its new policy. + */ +static void +__setparam_dl(struct task_struct *p, const struct sched_attr *attr) +{ +	struct sched_dl_entity *dl_se = &p->dl; + +	init_dl_task_timer(dl_se); +	dl_se->dl_runtime = attr->sched_runtime; +	dl_se->dl_deadline = attr->sched_deadline; +	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; +	dl_se->flags = attr->sched_flags; +	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); +	dl_se->dl_throttled = 0; +	dl_se->dl_new = 1; +	dl_se->dl_yielded = 0; +} + +static void __setscheduler_params(struct task_struct *p, +		const struct sched_attr *attr) +{ +	int policy = attr->sched_policy; + +	if (policy == -1) /* setparam */ +		policy = p->policy; + +	p->policy = policy; + +	if (dl_policy(policy)) +		__setparam_dl(p, attr); +	else if (fair_policy(policy)) +		p->static_prio = NICE_TO_PRIO(attr->sched_nice); + +	/* +	 * __sched_setscheduler() ensures attr->sched_priority == 0 when +	 * !rt_policy. Always setting this ensures that things like +	 * getparam()/getattr() don't report silly values for !rt tasks. +	 */ +	p->rt_priority = attr->sched_priority; +	p->normal_prio = normal_prio(p); +	set_load_weight(p); +} + +/* Actually do priority change: must hold pi & rq lock. */ +static void __setscheduler(struct rq *rq, struct task_struct *p, +			   const struct sched_attr *attr) +{ +	__setscheduler_params(p, attr); + +	/* +	 * If we get here, there was no pi waiters boosting the +	 * task. It is safe to use the normal prio. +	 */ +	p->prio = normal_prio(p); + +	if (dl_prio(p->prio)) +		p->sched_class = &dl_sched_class; +	else if (rt_prio(p->prio)) +		p->sched_class = &rt_sched_class; +	else +		p->sched_class = &fair_sched_class; +} + +static void +__getparam_dl(struct task_struct *p, struct sched_attr *attr) +{ +	struct sched_dl_entity *dl_se = &p->dl; + +	attr->sched_priority = p->rt_priority; +	attr->sched_runtime = dl_se->dl_runtime; +	attr->sched_deadline = dl_se->dl_deadline; +	attr->sched_period = dl_se->dl_period; +	attr->sched_flags = dl_se->flags; +} + +/* + * This function validates the new parameters of a -deadline task. + * We ask for the deadline not being zero, and greater or equal + * than the runtime, as well as the period of being zero or + * greater than deadline. Furthermore, we have to be sure that + * user parameters are above the internal resolution of 1us (we + * check sched_runtime only since it is always the smaller one) and + * below 2^63 ns (we have to check both sched_deadline and + * sched_period, as the latter can be zero). + */ +static bool +__checkparam_dl(const struct sched_attr *attr) +{ +	/* deadline != 0 */ +	if (attr->sched_deadline == 0) +		return false; + +	/* +	 * Since we truncate DL_SCALE bits, make sure we're at least +	 * that big. +	 */ +	if (attr->sched_runtime < (1ULL << DL_SCALE)) +		return false; + +	/* +	 * Since we use the MSB for wrap-around and sign issues, make +	 * sure it's not set (mind that period can be equal to zero). +	 */ +	if (attr->sched_deadline & (1ULL << 63) || +	    attr->sched_period & (1ULL << 63)) +		return false; + +	/* runtime <= deadline <= period (if period != 0) */ +	if ((attr->sched_period != 0 && +	     attr->sched_period < attr->sched_deadline) || +	    attr->sched_deadline < attr->sched_runtime) +		return false; + +	return true; +} + +/* + * check the target process has a UID that matches the current process's + */ +static bool check_same_owner(struct task_struct *p) +{ +	const struct cred *cred = current_cred(), *pcred; +	bool match; + +	rcu_read_lock(); +	pcred = __task_cred(p); +	match = (uid_eq(cred->euid, pcred->euid) || +		 uid_eq(cred->euid, pcred->uid)); +	rcu_read_unlock(); +	return match; +} + +static int __sched_setscheduler(struct task_struct *p, +				const struct sched_attr *attr, +				bool user) +{ +	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : +		      MAX_RT_PRIO - 1 - attr->sched_priority; +	int retval, oldprio, oldpolicy = -1, on_rq, running; +	int policy = attr->sched_policy; +	unsigned long flags; +	const struct sched_class *prev_class; +	struct rq *rq; +	int reset_on_fork; + +	/* may grab non-irq protected spin_locks */ +	BUG_ON(in_interrupt()); +recheck: +	/* double check policy once rq lock held */ +	if (policy < 0) { +		reset_on_fork = p->sched_reset_on_fork; +		policy = oldpolicy = p->policy; +	} else { +		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); + +		if (policy != SCHED_DEADLINE && +				policy != SCHED_FIFO && policy != SCHED_RR && +				policy != SCHED_NORMAL && policy != SCHED_BATCH && +				policy != SCHED_IDLE) +			return -EINVAL; +	} + +	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) +		return -EINVAL; + +	/* +	 * Valid priorities for SCHED_FIFO and SCHED_RR are +	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, +	 * SCHED_BATCH and SCHED_IDLE is 0. +	 */ +	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || +	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) +		return -EINVAL; +	if ((dl_policy(policy) && !__checkparam_dl(attr)) || +	    (rt_policy(policy) != (attr->sched_priority != 0))) +		return -EINVAL; + +	/* +	 * Allow unprivileged RT tasks to decrease priority: +	 */ +	if (user && !capable(CAP_SYS_NICE)) { +		if (fair_policy(policy)) { +			if (attr->sched_nice < task_nice(p) && +			    !can_nice(p, attr->sched_nice)) +				return -EPERM; +		} + +		if (rt_policy(policy)) { +			unsigned long rlim_rtprio = +					task_rlimit(p, RLIMIT_RTPRIO); + +			/* can't set/change the rt policy */ +			if (policy != p->policy && !rlim_rtprio) +				return -EPERM; + +			/* can't increase priority */ +			if (attr->sched_priority > p->rt_priority && +			    attr->sched_priority > rlim_rtprio) +				return -EPERM; +		} + +		 /* +		  * Can't set/change SCHED_DEADLINE policy at all for now +		  * (safest behavior); in the future we would like to allow +		  * unprivileged DL tasks to increase their relative deadline +		  * or reduce their runtime (both ways reducing utilization) +		  */ +		if (dl_policy(policy)) +			return -EPERM; + +		/* +		 * Treat SCHED_IDLE as nice 20. Only allow a switch to +		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. +		 */ +		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { +			if (!can_nice(p, task_nice(p))) +				return -EPERM; +		} + +		/* can't change other user's priorities */ +		if (!check_same_owner(p)) +			return -EPERM; + +		/* Normal users shall not reset the sched_reset_on_fork flag */ +		if (p->sched_reset_on_fork && !reset_on_fork) +			return -EPERM; +	} + +	if (user) { +		retval = security_task_setscheduler(p); +		if (retval) +			return retval; +	} + +	/* +	 * make sure no PI-waiters arrive (or leave) while we are +	 * changing the priority of the task: +	 * +	 * To be able to change p->policy safely, the appropriate +	 * runqueue lock must be held. +	 */ +	rq = task_rq_lock(p, &flags); + +	/* +	 * Changing the policy of the stop threads its a very bad idea +	 */ +	if (p == rq->stop) { +		task_rq_unlock(rq, p, &flags); +		return -EINVAL; +	} + +	/* +	 * If not changing anything there's no need to proceed further, +	 * but store a possible modification of reset_on_fork. +	 */ +	if (unlikely(policy == p->policy)) { +		if (fair_policy(policy) && attr->sched_nice != task_nice(p)) +			goto change; +		if (rt_policy(policy) && attr->sched_priority != p->rt_priority) +			goto change; +		if (dl_policy(policy)) +			goto change; + +		p->sched_reset_on_fork = reset_on_fork; +		task_rq_unlock(rq, p, &flags); +		return 0; +	} +change: + +	if (user) { +#ifdef CONFIG_RT_GROUP_SCHED +		/* +		 * Do not allow realtime tasks into groups that have no runtime +		 * assigned. +		 */ +		if (rt_bandwidth_enabled() && rt_policy(policy) && +				task_group(p)->rt_bandwidth.rt_runtime == 0 && +				!task_group_is_autogroup(task_group(p))) { +			task_rq_unlock(rq, p, &flags); +			return -EPERM; +		} +#endif +#ifdef CONFIG_SMP +		if (dl_bandwidth_enabled() && dl_policy(policy)) { +			cpumask_t *span = rq->rd->span; + +			/* +			 * Don't allow tasks with an affinity mask smaller than +			 * the entire root_domain to become SCHED_DEADLINE. We +			 * will also fail if there's no bandwidth available. +			 */ +			if (!cpumask_subset(span, &p->cpus_allowed) || +			    rq->rd->dl_bw.bw == 0) { +				task_rq_unlock(rq, p, &flags); +				return -EPERM; +			} +		} +#endif +	} + +	/* recheck policy now with rq lock held */ +	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { +		policy = oldpolicy = -1; +		task_rq_unlock(rq, p, &flags); +		goto recheck; +	} + +	/* +	 * If setscheduling to SCHED_DEADLINE (or changing the parameters +	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth +	 * is available. +	 */ +	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { +		task_rq_unlock(rq, p, &flags); +		return -EBUSY; +	} + +	p->sched_reset_on_fork = reset_on_fork; +	oldprio = p->prio; + +	/* +	 * Special case for priority boosted tasks. +	 * +	 * If the new priority is lower or equal (user space view) +	 * than the current (boosted) priority, we just store the new +	 * normal parameters and do not touch the scheduler class and +	 * the runqueue. This will be done when the task deboost +	 * itself. +	 */ +	if (rt_mutex_check_prio(p, newprio)) { +		__setscheduler_params(p, attr); +		task_rq_unlock(rq, p, &flags); +		return 0; +	} + +	on_rq = p->on_rq; +	running = task_current(rq, p); +	if (on_rq) +		dequeue_task(rq, p, 0); +	if (running) +		p->sched_class->put_prev_task(rq, p); + +	prev_class = p->sched_class; +	__setscheduler(rq, p, attr); + +	if (running) +		p->sched_class->set_curr_task(rq); +	if (on_rq) { +		/* +		 * We enqueue to tail when the priority of a task is +		 * increased (user space view). +		 */ +		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0); +	} + +	check_class_changed(rq, p, prev_class, oldprio); +	task_rq_unlock(rq, p, &flags); + +	rt_mutex_adjust_pi(p); + +	return 0; +} + +static int _sched_setscheduler(struct task_struct *p, int policy, +			       const struct sched_param *param, bool check) +{ +	struct sched_attr attr = { +		.sched_policy   = policy, +		.sched_priority = param->sched_priority, +		.sched_nice	= PRIO_TO_NICE(p->static_prio), +	}; + +	/* +	 * Fixup the legacy SCHED_RESET_ON_FORK hack +	 */ +	if (policy & SCHED_RESET_ON_FORK) { +		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; +		policy &= ~SCHED_RESET_ON_FORK; +		attr.sched_policy = policy; +	} + +	return __sched_setscheduler(p, &attr, check); +} +/** + * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. + * @p: the task in question. + * @policy: new policy. + * @param: structure containing the new RT priority. + * + * Return: 0 on success. An error code otherwise. + * + * NOTE that the task may be already dead. + */ +int sched_setscheduler(struct task_struct *p, int policy, +		       const struct sched_param *param) +{ +	return _sched_setscheduler(p, policy, param, true); +} +EXPORT_SYMBOL_GPL(sched_setscheduler); + +int sched_setattr(struct task_struct *p, const struct sched_attr *attr) +{ +	return __sched_setscheduler(p, attr, true); +} +EXPORT_SYMBOL_GPL(sched_setattr); + +/** + * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. + * @p: the task in question. + * @policy: new policy. + * @param: structure containing the new RT priority. + * + * Just like sched_setscheduler, only don't bother checking if the + * current context has permission.  For example, this is needed in + * stop_machine(): we create temporary high priority worker threads, + * but our caller might not have that capability. + * + * Return: 0 on success. An error code otherwise. + */ +int sched_setscheduler_nocheck(struct task_struct *p, int policy, +			       const struct sched_param *param) +{ +	return _sched_setscheduler(p, policy, param, false); +} + +static int +do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) +{ +	struct sched_param lparam; +	struct task_struct *p; +	int retval; + +	if (!param || pid < 0) +		return -EINVAL; +	if (copy_from_user(&lparam, param, sizeof(struct sched_param))) +		return -EFAULT; + +	rcu_read_lock(); +	retval = -ESRCH; +	p = find_process_by_pid(pid); +	if (p != NULL) +		retval = sched_setscheduler(p, policy, &lparam); +	rcu_read_unlock(); + +	return retval; +} + +/* + * Mimics kernel/events/core.c perf_copy_attr(). + */ +static int sched_copy_attr(struct sched_attr __user *uattr, +			   struct sched_attr *attr) +{ +	u32 size; +	int ret; + +	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) +		return -EFAULT; + +	/* +	 * zero the full structure, so that a short copy will be nice. +	 */ +	memset(attr, 0, sizeof(*attr)); + +	ret = get_user(size, &uattr->size); +	if (ret) +		return ret; + +	if (size > PAGE_SIZE)	/* silly large */ +		goto err_size; + +	if (!size)		/* abi compat */ +		size = SCHED_ATTR_SIZE_VER0; + +	if (size < SCHED_ATTR_SIZE_VER0) +		goto err_size; + +	/* +	 * If we're handed a bigger struct than we know of, +	 * ensure all the unknown bits are 0 - i.e. new +	 * user-space does not rely on any kernel feature +	 * extensions we dont know about yet. +	 */ +	if (size > sizeof(*attr)) { +		unsigned char __user *addr; +		unsigned char __user *end; +		unsigned char val; + +		addr = (void __user *)uattr + sizeof(*attr); +		end  = (void __user *)uattr + size; + +		for (; addr < end; addr++) { +			ret = get_user(val, addr); +			if (ret) +				return ret; +			if (val) +				goto err_size; +		} +		size = sizeof(*attr); +	} + +	ret = copy_from_user(attr, uattr, size); +	if (ret) +		return -EFAULT; + +	/* +	 * XXX: do we want to be lenient like existing syscalls; or do we want +	 * to be strict and return an error on out-of-bounds values? +	 */ +	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); + +	return 0; + +err_size: +	put_user(sizeof(*attr), &uattr->size); +	return -E2BIG; +} + +/** + * sys_sched_setscheduler - set/change the scheduler policy and RT priority + * @pid: the pid in question. + * @policy: new policy. + * @param: structure containing the new RT priority. + * + * Return: 0 on success. An error code otherwise. + */ +SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, +		struct sched_param __user *, param) +{ +	/* negative values for policy are not valid */ +	if (policy < 0) +		return -EINVAL; + +	return do_sched_setscheduler(pid, policy, param); +} + +/** + * sys_sched_setparam - set/change the RT priority of a thread + * @pid: the pid in question. + * @param: structure containing the new RT priority. + * + * Return: 0 on success. An error code otherwise. + */ +SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) +{ +	return do_sched_setscheduler(pid, -1, param); +} + +/** + * sys_sched_setattr - same as above, but with extended sched_attr + * @pid: the pid in question. + * @uattr: structure containing the extended parameters. + * @flags: for future extension. + */ +SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, +			       unsigned int, flags) +{ +	struct sched_attr attr; +	struct task_struct *p; +	int retval; + +	if (!uattr || pid < 0 || flags) +		return -EINVAL; + +	retval = sched_copy_attr(uattr, &attr); +	if (retval) +		return retval; + +	if ((int)attr.sched_policy < 0) +		return -EINVAL; + +	rcu_read_lock(); +	retval = -ESRCH; +	p = find_process_by_pid(pid); +	if (p != NULL) +		retval = sched_setattr(p, &attr); +	rcu_read_unlock(); + +	return retval; +} + +/** + * sys_sched_getscheduler - get the policy (scheduling class) of a thread + * @pid: the pid in question. + * + * Return: On success, the policy of the thread. Otherwise, a negative error + * code. + */ +SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) +{ +	struct task_struct *p; +	int retval; + +	if (pid < 0) +		return -EINVAL; + +	retval = -ESRCH; +	rcu_read_lock(); +	p = find_process_by_pid(pid); +	if (p) { +		retval = security_task_getscheduler(p); +		if (!retval) +			retval = p->policy +				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); +	} +	rcu_read_unlock(); +	return retval; +} + +/** + * sys_sched_getparam - get the RT priority of a thread + * @pid: the pid in question. + * @param: structure containing the RT priority. + * + * Return: On success, 0 and the RT priority is in @param. Otherwise, an error + * code. + */ +SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) +{ +	struct sched_param lp = { .sched_priority = 0 }; +	struct task_struct *p; +	int retval; + +	if (!param || pid < 0) +		return -EINVAL; + +	rcu_read_lock(); +	p = find_process_by_pid(pid); +	retval = -ESRCH; +	if (!p) +		goto out_unlock; + +	retval = security_task_getscheduler(p); +	if (retval) +		goto out_unlock; + +	if (task_has_rt_policy(p)) +		lp.sched_priority = p->rt_priority; +	rcu_read_unlock(); + +	/* +	 * This one might sleep, we cannot do it with a spinlock held ... +	 */ +	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; + +	return retval; + +out_unlock: +	rcu_read_unlock(); +	return retval; +} + +static int sched_read_attr(struct sched_attr __user *uattr, +			   struct sched_attr *attr, +			   unsigned int usize) +{ +	int ret; + +	if (!access_ok(VERIFY_WRITE, uattr, usize)) +		return -EFAULT; + +	/* +	 * If we're handed a smaller struct than we know of, +	 * ensure all the unknown bits are 0 - i.e. old +	 * user-space does not get uncomplete information. +	 */ +	if (usize < sizeof(*attr)) { +		unsigned char *addr; +		unsigned char *end; + +		addr = (void *)attr + usize; +		end  = (void *)attr + sizeof(*attr); + +		for (; addr < end; addr++) { +			if (*addr) +				return -EFBIG; +		} + +		attr->size = usize; +	} + +	ret = copy_to_user(uattr, attr, attr->size); +	if (ret) +		return -EFAULT; + +	return 0; +} + +/** + * sys_sched_getattr - similar to sched_getparam, but with sched_attr + * @pid: the pid in question. + * @uattr: structure containing the extended parameters. + * @size: sizeof(attr) for fwd/bwd comp. + * @flags: for future extension. + */ +SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, +		unsigned int, size, unsigned int, flags) +{ +	struct sched_attr attr = { +		.size = sizeof(struct sched_attr), +	}; +	struct task_struct *p; +	int retval; + +	if (!uattr || pid < 0 || size > PAGE_SIZE || +	    size < SCHED_ATTR_SIZE_VER0 || flags) +		return -EINVAL; + +	rcu_read_lock(); +	p = find_process_by_pid(pid); +	retval = -ESRCH; +	if (!p) +		goto out_unlock; + +	retval = security_task_getscheduler(p); +	if (retval) +		goto out_unlock; + +	attr.sched_policy = p->policy; +	if (p->sched_reset_on_fork) +		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; +	if (task_has_dl_policy(p)) +		__getparam_dl(p, &attr); +	else if (task_has_rt_policy(p)) +		attr.sched_priority = p->rt_priority; +	else +		attr.sched_nice = task_nice(p); + +	rcu_read_unlock(); + +	retval = sched_read_attr(uattr, &attr, size); +	return retval; + +out_unlock: +	rcu_read_unlock(); +	return retval; +} + +long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) +{ +	cpumask_var_t cpus_allowed, new_mask; +	struct task_struct *p; +	int retval; + +	rcu_read_lock(); + +	p = find_process_by_pid(pid); +	if (!p) { +		rcu_read_unlock(); +		return -ESRCH; +	} + +	/* Prevent p going away */ +	get_task_struct(p); +	rcu_read_unlock(); + +	if (p->flags & PF_NO_SETAFFINITY) { +		retval = -EINVAL; +		goto out_put_task; +	} +	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { +		retval = -ENOMEM; +		goto out_put_task; +	} +	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { +		retval = -ENOMEM; +		goto out_free_cpus_allowed; +	} +	retval = -EPERM; +	if (!check_same_owner(p)) { +		rcu_read_lock(); +		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { +			rcu_read_unlock(); +			goto out_unlock; +		} +		rcu_read_unlock(); +	} + +	retval = security_task_setscheduler(p); +	if (retval) +		goto out_unlock; + + +	cpuset_cpus_allowed(p, cpus_allowed); +	cpumask_and(new_mask, in_mask, cpus_allowed); + +	/* +	 * Since bandwidth control happens on root_domain basis, +	 * if admission test is enabled, we only admit -deadline +	 * tasks allowed to run on all the CPUs in the task's +	 * root_domain. +	 */ +#ifdef CONFIG_SMP +	if (task_has_dl_policy(p)) { +		const struct cpumask *span = task_rq(p)->rd->span; + +		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) { +			retval = -EBUSY; +			goto out_unlock; +		} +	} +#endif +again: +	retval = set_cpus_allowed_ptr(p, new_mask); + +	if (!retval) { +		cpuset_cpus_allowed(p, cpus_allowed); +		if (!cpumask_subset(new_mask, cpus_allowed)) { +			/* +			 * We must have raced with a concurrent cpuset +			 * update. Just reset the cpus_allowed to the +			 * cpuset's cpus_allowed +			 */ +			cpumask_copy(new_mask, cpus_allowed); +			goto again; +		} +	} +out_unlock: +	free_cpumask_var(new_mask); +out_free_cpus_allowed: +	free_cpumask_var(cpus_allowed); +out_put_task: +	put_task_struct(p); +	return retval; +} + +static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, +			     struct cpumask *new_mask) +{ +	if (len < cpumask_size()) +		cpumask_clear(new_mask); +	else if (len > cpumask_size()) +		len = cpumask_size(); + +	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; +} + +/** + * sys_sched_setaffinity - set the cpu affinity of a process + * @pid: pid of the process + * @len: length in bytes of the bitmask pointed to by user_mask_ptr + * @user_mask_ptr: user-space pointer to the new cpu mask + * + * Return: 0 on success. An error code otherwise. + */ +SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, +		unsigned long __user *, user_mask_ptr) +{ +	cpumask_var_t new_mask; +	int retval; + +	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) +		return -ENOMEM; + +	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); +	if (retval == 0) +		retval = sched_setaffinity(pid, new_mask); +	free_cpumask_var(new_mask); +	return retval; +} + +long sched_getaffinity(pid_t pid, struct cpumask *mask) +{ +	struct task_struct *p; +	unsigned long flags; +	int retval; + +	rcu_read_lock(); + +	retval = -ESRCH; +	p = find_process_by_pid(pid); +	if (!p) +		goto out_unlock; + +	retval = security_task_getscheduler(p); +	if (retval) +		goto out_unlock; + +	raw_spin_lock_irqsave(&p->pi_lock, flags); +	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); +	raw_spin_unlock_irqrestore(&p->pi_lock, flags); + +out_unlock: +	rcu_read_unlock(); + +	return retval; +} + +/** + * sys_sched_getaffinity - get the cpu affinity of a process + * @pid: pid of the process + * @len: length in bytes of the bitmask pointed to by user_mask_ptr + * @user_mask_ptr: user-space pointer to hold the current cpu mask + * + * Return: 0 on success. An error code otherwise. + */ +SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, +		unsigned long __user *, user_mask_ptr) +{ +	int ret; +	cpumask_var_t mask; + +	if ((len * BITS_PER_BYTE) < nr_cpu_ids) +		return -EINVAL; +	if (len & (sizeof(unsigned long)-1)) +		return -EINVAL; + +	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) +		return -ENOMEM; + +	ret = sched_getaffinity(pid, mask); +	if (ret == 0) { +		size_t retlen = min_t(size_t, len, cpumask_size()); + +		if (copy_to_user(user_mask_ptr, mask, retlen)) +			ret = -EFAULT; +		else +			ret = retlen; +	} +	free_cpumask_var(mask); + +	return ret; +} + +/** + * sys_sched_yield - yield the current processor to other threads. + * + * This function yields the current CPU to other tasks. If there are no + * other threads running on this CPU then this function will return. + * + * Return: 0. + */ +SYSCALL_DEFINE0(sched_yield) +{ +	struct rq *rq = this_rq_lock(); + +	schedstat_inc(rq, yld_count); +	current->sched_class->yield_task(rq); + +	/* +	 * Since we are going to call schedule() anyway, there's +	 * no need to preempt or enable interrupts: +	 */ +	__release(rq->lock); +	spin_release(&rq->lock.dep_map, 1, _THIS_IP_); +	do_raw_spin_unlock(&rq->lock); +	sched_preempt_enable_no_resched(); + +	schedule(); + +	return 0; +} + +static void __cond_resched(void) +{ +	__preempt_count_add(PREEMPT_ACTIVE); +	__schedule(); +	__preempt_count_sub(PREEMPT_ACTIVE); +} + +int __sched _cond_resched(void) +{ +	if (should_resched()) { +		__cond_resched(); +		return 1; +	} +	return 0; +} +EXPORT_SYMBOL(_cond_resched); + +/* + * __cond_resched_lock() - if a reschedule is pending, drop the given lock, + * call schedule, and on return reacquire the lock. + * + * This works OK both with and without CONFIG_PREEMPT. We do strange low-level + * operations here to prevent schedule() from being called twice (once via + * spin_unlock(), once by hand). + */ +int __cond_resched_lock(spinlock_t *lock) +{ +	int resched = should_resched(); +	int ret = 0; + +	lockdep_assert_held(lock); + +	if (spin_needbreak(lock) || resched) { +		spin_unlock(lock); +		if (resched) +			__cond_resched(); +		else +			cpu_relax(); +		ret = 1; +		spin_lock(lock); +	} +	return ret; +} +EXPORT_SYMBOL(__cond_resched_lock); + +int __sched __cond_resched_softirq(void) +{ +	BUG_ON(!in_softirq()); + +	if (should_resched()) { +		local_bh_enable(); +		__cond_resched(); +		local_bh_disable(); +		return 1; +	} +	return 0; +} +EXPORT_SYMBOL(__cond_resched_softirq); + +/** + * yield - yield the current processor to other threads. + * + * Do not ever use this function, there's a 99% chance you're doing it wrong. + * + * The scheduler is at all times free to pick the calling task as the most + * eligible task to run, if removing the yield() call from your code breaks + * it, its already broken. + * + * Typical broken usage is: + * + * while (!event) + * 	yield(); + * + * where one assumes that yield() will let 'the other' process run that will + * make event true. If the current task is a SCHED_FIFO task that will never + * happen. Never use yield() as a progress guarantee!! + * + * If you want to use yield() to wait for something, use wait_event(). + * If you want to use yield() to be 'nice' for others, use cond_resched(). + * If you still want to use yield(), do not! + */ +void __sched yield(void) +{ +	set_current_state(TASK_RUNNING); +	sys_sched_yield(); +} +EXPORT_SYMBOL(yield); + +/** + * yield_to - yield the current processor to another thread in + * your thread group, or accelerate that thread toward the + * processor it's on. + * @p: target task + * @preempt: whether task preemption is allowed or not + * + * It's the caller's job to ensure that the target task struct + * can't go away on us before we can do any checks. + * + * Return: + *	true (>0) if we indeed boosted the target task. + *	false (0) if we failed to boost the target. + *	-ESRCH if there's no task to yield to. + */ +int __sched yield_to(struct task_struct *p, bool preempt) +{ +	struct task_struct *curr = current; +	struct rq *rq, *p_rq; +	unsigned long flags; +	int yielded = 0; + +	local_irq_save(flags); +	rq = this_rq(); + +again: +	p_rq = task_rq(p); +	/* +	 * If we're the only runnable task on the rq and target rq also +	 * has only one task, there's absolutely no point in yielding. +	 */ +	if (rq->nr_running == 1 && p_rq->nr_running == 1) { +		yielded = -ESRCH; +		goto out_irq; +	} + +	double_rq_lock(rq, p_rq); +	if (task_rq(p) != p_rq) { +		double_rq_unlock(rq, p_rq); +		goto again; +	} + +	if (!curr->sched_class->yield_to_task) +		goto out_unlock; + +	if (curr->sched_class != p->sched_class) +		goto out_unlock; + +	if (task_running(p_rq, p) || p->state) +		goto out_unlock; + +	yielded = curr->sched_class->yield_to_task(rq, p, preempt); +	if (yielded) { +		schedstat_inc(rq, yld_count); +		/* +		 * Make p's CPU reschedule; pick_next_entity takes care of +		 * fairness. +		 */ +		if (preempt && rq != p_rq) +			resched_task(p_rq->curr); +	} + +out_unlock: +	double_rq_unlock(rq, p_rq); +out_irq: +	local_irq_restore(flags); + +	if (yielded > 0) +		schedule(); + +	return yielded; +} +EXPORT_SYMBOL_GPL(yield_to); + +/* + * This task is about to go to sleep on IO. Increment rq->nr_iowait so + * that process accounting knows that this is a task in IO wait state. + */ +void __sched io_schedule(void) +{ +	struct rq *rq = raw_rq(); + +	delayacct_blkio_start(); +	atomic_inc(&rq->nr_iowait); +	blk_flush_plug(current); +	current->in_iowait = 1; +	schedule(); +	current->in_iowait = 0; +	atomic_dec(&rq->nr_iowait); +	delayacct_blkio_end(); +} +EXPORT_SYMBOL(io_schedule); + +long __sched io_schedule_timeout(long timeout) +{ +	struct rq *rq = raw_rq(); +	long ret; + +	delayacct_blkio_start(); +	atomic_inc(&rq->nr_iowait); +	blk_flush_plug(current); +	current->in_iowait = 1; +	ret = schedule_timeout(timeout); +	current->in_iowait = 0; +	atomic_dec(&rq->nr_iowait); +	delayacct_blkio_end(); +	return ret; +} + +/** + * sys_sched_get_priority_max - return maximum RT priority. + * @policy: scheduling class. + * + * Return: On success, this syscall returns the maximum + * rt_priority that can be used by a given scheduling class. + * On failure, a negative error code is returned. + */ +SYSCALL_DEFINE1(sched_get_priority_max, int, policy) +{ +	int ret = -EINVAL; + +	switch (policy) { +	case SCHED_FIFO: +	case SCHED_RR: +		ret = MAX_USER_RT_PRIO-1; +		break; +	case SCHED_DEADLINE: +	case SCHED_NORMAL: +	case SCHED_BATCH: +	case SCHED_IDLE: +		ret = 0; +		break; +	} +	return ret; +} + +/** + * sys_sched_get_priority_min - return minimum RT priority. + * @policy: scheduling class. + * + * Return: On success, this syscall returns the minimum + * rt_priority that can be used by a given scheduling class. + * On failure, a negative error code is returned. + */ +SYSCALL_DEFINE1(sched_get_priority_min, int, policy) +{ +	int ret = -EINVAL; + +	switch (policy) { +	case SCHED_FIFO: +	case SCHED_RR: +		ret = 1; +		break; +	case SCHED_DEADLINE: +	case SCHED_NORMAL: +	case SCHED_BATCH: +	case SCHED_IDLE: +		ret = 0; +	} +	return ret; +} + +/** + * sys_sched_rr_get_interval - return the default timeslice of a process. + * @pid: pid of the process. + * @interval: userspace pointer to the timeslice value. + * + * this syscall writes the default timeslice value of a given process + * into the user-space timespec buffer. A value of '0' means infinity. + * + * Return: On success, 0 and the timeslice is in @interval. Otherwise, + * an error code. + */ +SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, +		struct timespec __user *, interval) +{ +	struct task_struct *p; +	unsigned int time_slice; +	unsigned long flags; +	struct rq *rq; +	int retval; +	struct timespec t; + +	if (pid < 0) +		return -EINVAL; + +	retval = -ESRCH; +	rcu_read_lock(); +	p = find_process_by_pid(pid); +	if (!p) +		goto out_unlock; + +	retval = security_task_getscheduler(p); +	if (retval) +		goto out_unlock; + +	rq = task_rq_lock(p, &flags); +	time_slice = 0; +	if (p->sched_class->get_rr_interval) +		time_slice = p->sched_class->get_rr_interval(rq, p); +	task_rq_unlock(rq, p, &flags); + +	rcu_read_unlock(); +	jiffies_to_timespec(time_slice, &t); +	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; +	return retval; + +out_unlock: +	rcu_read_unlock(); +	return retval; +} + +static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; + +void sched_show_task(struct task_struct *p) +{ +	unsigned long free = 0; +	int ppid; +	unsigned state; + +	state = p->state ? __ffs(p->state) + 1 : 0; +	printk(KERN_INFO "%-15.15s %c", p->comm, +		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); +#if BITS_PER_LONG == 32 +	if (state == TASK_RUNNING) +		printk(KERN_CONT " running  "); +	else +		printk(KERN_CONT " %08lx ", thread_saved_pc(p)); +#else +	if (state == TASK_RUNNING) +		printk(KERN_CONT "  running task    "); +	else +		printk(KERN_CONT " %016lx ", thread_saved_pc(p)); +#endif +#ifdef CONFIG_DEBUG_STACK_USAGE +	free = stack_not_used(p); +#endif +	rcu_read_lock(); +	ppid = task_pid_nr(rcu_dereference(p->real_parent)); +	rcu_read_unlock(); +	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, +		task_pid_nr(p), ppid, +		(unsigned long)task_thread_info(p)->flags); + +	print_worker_info(KERN_INFO, p); +	show_stack(p, NULL); +} + +void show_state_filter(unsigned long state_filter) +{ +	struct task_struct *g, *p; + +#if BITS_PER_LONG == 32 +	printk(KERN_INFO +		"  task                PC stack   pid father\n"); +#else +	printk(KERN_INFO +		"  task                        PC stack   pid father\n"); +#endif +	rcu_read_lock(); +	do_each_thread(g, p) { +		/* +		 * reset the NMI-timeout, listing all files on a slow +		 * console might take a lot of time: +		 */ +		touch_nmi_watchdog(); +		if (!state_filter || (p->state & state_filter)) +			sched_show_task(p); +	} while_each_thread(g, p); + +	touch_all_softlockup_watchdogs(); + +#ifdef CONFIG_SCHED_DEBUG +	sysrq_sched_debug_show(); +#endif +	rcu_read_unlock(); +	/* +	 * Only show locks if all tasks are dumped: +	 */ +	if (!state_filter) +		debug_show_all_locks(); +} + +void init_idle_bootup_task(struct task_struct *idle) +{ +	idle->sched_class = &idle_sched_class; +} + +/** + * init_idle - set up an idle thread for a given CPU + * @idle: task in question + * @cpu: cpu the idle task belongs to + * + * NOTE: this function does not set the idle thread's NEED_RESCHED + * flag, to make booting more robust. + */ +void init_idle(struct task_struct *idle, int cpu) +{ +	struct rq *rq = cpu_rq(cpu); +	unsigned long flags; + +	raw_spin_lock_irqsave(&rq->lock, flags); + +	__sched_fork(0, idle); +	idle->state = TASK_RUNNING; +	idle->se.exec_start = sched_clock(); + +	do_set_cpus_allowed(idle, cpumask_of(cpu)); +	/* +	 * We're having a chicken and egg problem, even though we are +	 * holding rq->lock, the cpu isn't yet set to this cpu so the +	 * lockdep check in task_group() will fail. +	 * +	 * Similar case to sched_fork(). / Alternatively we could +	 * use task_rq_lock() here and obtain the other rq->lock. +	 * +	 * Silence PROVE_RCU +	 */ +	rcu_read_lock(); +	__set_task_cpu(idle, cpu); +	rcu_read_unlock(); + +	rq->curr = rq->idle = idle; +	idle->on_rq = 1; +#if defined(CONFIG_SMP) +	idle->on_cpu = 1; +#endif +	raw_spin_unlock_irqrestore(&rq->lock, flags); + +	/* Set the preempt count _outside_ the spinlocks! */ +	init_idle_preempt_count(idle, cpu); + +	/* +	 * The idle tasks have their own, simple scheduling class: +	 */ +	idle->sched_class = &idle_sched_class; +	ftrace_graph_init_idle_task(idle, cpu); +	vtime_init_idle(idle, cpu); +#if defined(CONFIG_SMP) +	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); +#endif +} + +#ifdef CONFIG_SMP +void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) +{ +	if (p->sched_class && p->sched_class->set_cpus_allowed) +		p->sched_class->set_cpus_allowed(p, new_mask); + +	cpumask_copy(&p->cpus_allowed, new_mask); +	p->nr_cpus_allowed = cpumask_weight(new_mask); +} + +/* + * This is how migration works: + * + * 1) we invoke migration_cpu_stop() on the target CPU using + *    stop_one_cpu(). + * 2) stopper starts to run (implicitly forcing the migrated thread + *    off the CPU) + * 3) it checks whether the migrated task is still in the wrong runqueue. + * 4) if it's in the wrong runqueue then the migration thread removes + *    it and puts it into the right queue. + * 5) stopper completes and stop_one_cpu() returns and the migration + *    is done. + */ + +/* + * Change a given task's CPU affinity. Migrate the thread to a + * proper CPU and schedule it away if the CPU it's executing on + * is removed from the allowed bitmask. + * + * NOTE: the caller must have a valid reference to the task, the + * task must not exit() & deallocate itself prematurely. The + * call is not atomic; no spinlocks may be held. + */ +int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) +{ +	unsigned long flags; +	struct rq *rq; +	unsigned int dest_cpu; +	int ret = 0; + +	rq = task_rq_lock(p, &flags); + +	if (cpumask_equal(&p->cpus_allowed, new_mask)) +		goto out; + +	if (!cpumask_intersects(new_mask, cpu_active_mask)) { +		ret = -EINVAL; +		goto out; +	} + +	do_set_cpus_allowed(p, new_mask); + +	/* Can the task run on the task's current CPU? If so, we're done */ +	if (cpumask_test_cpu(task_cpu(p), new_mask)) +		goto out; + +	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); +	if (p->on_rq) { +		struct migration_arg arg = { p, dest_cpu }; +		/* Need help from migration thread: drop lock and wait. */ +		task_rq_unlock(rq, p, &flags); +		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); +		tlb_migrate_finish(p->mm); +		return 0; +	} +out: +	task_rq_unlock(rq, p, &flags); + +	return ret; +} +EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); + +/* + * Move (not current) task off this cpu, onto dest cpu. We're doing + * this because either it can't run here any more (set_cpus_allowed() + * away from this CPU, or CPU going down), or because we're + * attempting to rebalance this task on exec (sched_exec). + * + * So we race with normal scheduler movements, but that's OK, as long + * as the task is no longer on this CPU. + * + * Returns non-zero if task was successfully migrated. + */ +static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) +{ +	struct rq *rq_dest, *rq_src; +	int ret = 0; + +	if (unlikely(!cpu_active(dest_cpu))) +		return ret; + +	rq_src = cpu_rq(src_cpu); +	rq_dest = cpu_rq(dest_cpu); + +	raw_spin_lock(&p->pi_lock); +	double_rq_lock(rq_src, rq_dest); +	/* Already moved. */ +	if (task_cpu(p) != src_cpu) +		goto done; +	/* Affinity changed (again). */ +	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) +		goto fail; + +	/* +	 * If we're not on a rq, the next wake-up will ensure we're +	 * placed properly. +	 */ +	if (p->on_rq) { +		dequeue_task(rq_src, p, 0); +		set_task_cpu(p, dest_cpu); +		enqueue_task(rq_dest, p, 0); +		check_preempt_curr(rq_dest, p, 0); +	} +done: +	ret = 1; +fail: +	double_rq_unlock(rq_src, rq_dest); +	raw_spin_unlock(&p->pi_lock); +	return ret; +} + +#ifdef CONFIG_NUMA_BALANCING +/* Migrate current task p to target_cpu */ +int migrate_task_to(struct task_struct *p, int target_cpu) +{ +	struct migration_arg arg = { p, target_cpu }; +	int curr_cpu = task_cpu(p); + +	if (curr_cpu == target_cpu) +		return 0; + +	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) +		return -EINVAL; + +	/* TODO: This is not properly updating schedstats */ + +	trace_sched_move_numa(p, curr_cpu, target_cpu); +	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); +} + +/* + * Requeue a task on a given node and accurately track the number of NUMA + * tasks on the runqueues + */ +void sched_setnuma(struct task_struct *p, int nid) +{ +	struct rq *rq; +	unsigned long flags; +	bool on_rq, running; + +	rq = task_rq_lock(p, &flags); +	on_rq = p->on_rq; +	running = task_current(rq, p); + +	if (on_rq) +		dequeue_task(rq, p, 0); +	if (running) +		p->sched_class->put_prev_task(rq, p); + +	p->numa_preferred_nid = nid; + +	if (running) +		p->sched_class->set_curr_task(rq); +	if (on_rq) +		enqueue_task(rq, p, 0); +	task_rq_unlock(rq, p, &flags); +} +#endif + +/* + * migration_cpu_stop - this will be executed by a highprio stopper thread + * and performs thread migration by bumping thread off CPU then + * 'pushing' onto another runqueue. + */ +static int migration_cpu_stop(void *data) +{ +	struct migration_arg *arg = data; + +	/* +	 * The original target cpu might have gone down and we might +	 * be on another cpu but it doesn't matter. +	 */ +	local_irq_disable(); +	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); +	local_irq_enable(); +	return 0; +} + +#ifdef CONFIG_HOTPLUG_CPU + +/* + * Ensures that the idle task is using init_mm right before its cpu goes + * offline. + */ +void idle_task_exit(void) +{ +	struct mm_struct *mm = current->active_mm; + +	BUG_ON(cpu_online(smp_processor_id())); + +	if (mm != &init_mm) { +		switch_mm(mm, &init_mm, current); +		finish_arch_post_lock_switch(); +	} +	mmdrop(mm); +} + +/* + * Since this CPU is going 'away' for a while, fold any nr_active delta + * we might have. Assumes we're called after migrate_tasks() so that the + * nr_active count is stable. + * + * Also see the comment "Global load-average calculations". + */ +static void calc_load_migrate(struct rq *rq) +{ +	long delta = calc_load_fold_active(rq); +	if (delta) +		atomic_long_add(delta, &calc_load_tasks); +} + +static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) +{ +} + +static const struct sched_class fake_sched_class = { +	.put_prev_task = put_prev_task_fake, +}; + +static struct task_struct fake_task = { +	/* +	 * Avoid pull_{rt,dl}_task() +	 */ +	.prio = MAX_PRIO + 1, +	.sched_class = &fake_sched_class, +}; + +/* + * Migrate all tasks from the rq, sleeping tasks will be migrated by + * try_to_wake_up()->select_task_rq(). + * + * Called with rq->lock held even though we'er in stop_machine() and + * there's no concurrency possible, we hold the required locks anyway + * because of lock validation efforts. + */ +static void migrate_tasks(unsigned int dead_cpu) +{ +	struct rq *rq = cpu_rq(dead_cpu); +	struct task_struct *next, *stop = rq->stop; +	int dest_cpu; + +	/* +	 * Fudge the rq selection such that the below task selection loop +	 * doesn't get stuck on the currently eligible stop task. +	 * +	 * We're currently inside stop_machine() and the rq is either stuck +	 * in the stop_machine_cpu_stop() loop, or we're executing this code, +	 * either way we should never end up calling schedule() until we're +	 * done here. +	 */ +	rq->stop = NULL; + +	/* +	 * put_prev_task() and pick_next_task() sched +	 * class method both need to have an up-to-date +	 * value of rq->clock[_task] +	 */ +	update_rq_clock(rq); + +	for ( ; ; ) { +		/* +		 * There's this thread running, bail when that's the only +		 * remaining thread. +		 */ +		if (rq->nr_running == 1) +			break; + +		next = pick_next_task(rq, &fake_task); +		BUG_ON(!next); +		next->sched_class->put_prev_task(rq, next); + +		/* Find suitable destination for @next, with force if needed. */ +		dest_cpu = select_fallback_rq(dead_cpu, next); +		raw_spin_unlock(&rq->lock); + +		__migrate_task(next, dead_cpu, dest_cpu); + +		raw_spin_lock(&rq->lock); +	} + +	rq->stop = stop; +} + +#endif /* CONFIG_HOTPLUG_CPU */ + +#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) + +static struct ctl_table sd_ctl_dir[] = { +	{ +		.procname	= "sched_domain", +		.mode		= 0555, +	}, +	{} +}; + +static struct ctl_table sd_ctl_root[] = { +	{ +		.procname	= "kernel", +		.mode		= 0555, +		.child		= sd_ctl_dir, +	}, +	{} +}; + +static struct ctl_table *sd_alloc_ctl_entry(int n) +{ +	struct ctl_table *entry = +		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); + +	return entry; +} + +static void sd_free_ctl_entry(struct ctl_table **tablep) +{ +	struct ctl_table *entry; + +	/* +	 * In the intermediate directories, both the child directory and +	 * procname are dynamically allocated and could fail but the mode +	 * will always be set. In the lowest directory the names are +	 * static strings and all have proc handlers. +	 */ +	for (entry = *tablep; entry->mode; entry++) { +		if (entry->child) +			sd_free_ctl_entry(&entry->child); +		if (entry->proc_handler == NULL) +			kfree(entry->procname); +	} + +	kfree(*tablep); +	*tablep = NULL; +} + +static int min_load_idx = 0; +static int max_load_idx = CPU_LOAD_IDX_MAX-1; + +static void +set_table_entry(struct ctl_table *entry, +		const char *procname, void *data, int maxlen, +		umode_t mode, proc_handler *proc_handler, +		bool load_idx) +{ +	entry->procname = procname; +	entry->data = data; +	entry->maxlen = maxlen; +	entry->mode = mode; +	entry->proc_handler = proc_handler; + +	if (load_idx) { +		entry->extra1 = &min_load_idx; +		entry->extra2 = &max_load_idx; +	} +} + +static struct ctl_table * +sd_alloc_ctl_domain_table(struct sched_domain *sd) +{ +	struct ctl_table *table = sd_alloc_ctl_entry(14); + +	if (table == NULL) +		return NULL; + +	set_table_entry(&table[0], "min_interval", &sd->min_interval, +		sizeof(long), 0644, proc_doulongvec_minmax, false); +	set_table_entry(&table[1], "max_interval", &sd->max_interval, +		sizeof(long), 0644, proc_doulongvec_minmax, false); +	set_table_entry(&table[2], "busy_idx", &sd->busy_idx, +		sizeof(int), 0644, proc_dointvec_minmax, true); +	set_table_entry(&table[3], "idle_idx", &sd->idle_idx, +		sizeof(int), 0644, proc_dointvec_minmax, true); +	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, +		sizeof(int), 0644, proc_dointvec_minmax, true); +	set_table_entry(&table[5], "wake_idx", &sd->wake_idx, +		sizeof(int), 0644, proc_dointvec_minmax, true); +	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, +		sizeof(int), 0644, proc_dointvec_minmax, true); +	set_table_entry(&table[7], "busy_factor", &sd->busy_factor, +		sizeof(int), 0644, proc_dointvec_minmax, false); +	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, +		sizeof(int), 0644, proc_dointvec_minmax, false); +	set_table_entry(&table[9], "cache_nice_tries", +		&sd->cache_nice_tries, +		sizeof(int), 0644, proc_dointvec_minmax, false); +	set_table_entry(&table[10], "flags", &sd->flags, +		sizeof(int), 0644, proc_dointvec_minmax, false); +	set_table_entry(&table[11], "max_newidle_lb_cost", +		&sd->max_newidle_lb_cost, +		sizeof(long), 0644, proc_doulongvec_minmax, false); +	set_table_entry(&table[12], "name", sd->name, +		CORENAME_MAX_SIZE, 0444, proc_dostring, false); +	/* &table[13] is terminator */ + +	return table; +} + +static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) +{ +	struct ctl_table *entry, *table; +	struct sched_domain *sd; +	int domain_num = 0, i; +	char buf[32]; + +	for_each_domain(cpu, sd) +		domain_num++; +	entry = table = sd_alloc_ctl_entry(domain_num + 1); +	if (table == NULL) +		return NULL; + +	i = 0; +	for_each_domain(cpu, sd) { +		snprintf(buf, 32, "domain%d", i); +		entry->procname = kstrdup(buf, GFP_KERNEL); +		entry->mode = 0555; +		entry->child = sd_alloc_ctl_domain_table(sd); +		entry++; +		i++; +	} +	return table; +} + +static struct ctl_table_header *sd_sysctl_header; +static void register_sched_domain_sysctl(void) +{ +	int i, cpu_num = num_possible_cpus(); +	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); +	char buf[32]; + +	WARN_ON(sd_ctl_dir[0].child); +	sd_ctl_dir[0].child = entry; + +	if (entry == NULL) +		return; + +	for_each_possible_cpu(i) { +		snprintf(buf, 32, "cpu%d", i); +		entry->procname = kstrdup(buf, GFP_KERNEL); +		entry->mode = 0555; +		entry->child = sd_alloc_ctl_cpu_table(i); +		entry++; +	} + +	WARN_ON(sd_sysctl_header); +	sd_sysctl_header = register_sysctl_table(sd_ctl_root); +} + +/* may be called multiple times per register */ +static void unregister_sched_domain_sysctl(void) +{ +	if (sd_sysctl_header) +		unregister_sysctl_table(sd_sysctl_header); +	sd_sysctl_header = NULL; +	if (sd_ctl_dir[0].child) +		sd_free_ctl_entry(&sd_ctl_dir[0].child); +} +#else +static void register_sched_domain_sysctl(void) +{ +} +static void unregister_sched_domain_sysctl(void) +{ +} +#endif + +static void set_rq_online(struct rq *rq) +{ +	if (!rq->online) { +		const struct sched_class *class; + +		cpumask_set_cpu(rq->cpu, rq->rd->online); +		rq->online = 1; + +		for_each_class(class) { +			if (class->rq_online) +				class->rq_online(rq); +		} +	} +} + +static void set_rq_offline(struct rq *rq) +{ +	if (rq->online) { +		const struct sched_class *class; + +		for_each_class(class) { +			if (class->rq_offline) +				class->rq_offline(rq); +		} + +		cpumask_clear_cpu(rq->cpu, rq->rd->online); +		rq->online = 0; +	} +} + +/* + * migration_call - callback that gets triggered when a CPU is added. + * Here we can start up the necessary migration thread for the new CPU. + */ +static int +migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) +{ +	int cpu = (long)hcpu; +	unsigned long flags; +	struct rq *rq = cpu_rq(cpu); + +	switch (action & ~CPU_TASKS_FROZEN) { + +	case CPU_UP_PREPARE: +		rq->calc_load_update = calc_load_update; +		break; + +	case CPU_ONLINE: +		/* Update our root-domain */ +		raw_spin_lock_irqsave(&rq->lock, flags); +		if (rq->rd) { +			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); + +			set_rq_online(rq); +		} +		raw_spin_unlock_irqrestore(&rq->lock, flags); +		break; + +#ifdef CONFIG_HOTPLUG_CPU +	case CPU_DYING: +		sched_ttwu_pending(); +		/* Update our root-domain */ +		raw_spin_lock_irqsave(&rq->lock, flags); +		if (rq->rd) { +			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); +			set_rq_offline(rq); +		} +		migrate_tasks(cpu); +		BUG_ON(rq->nr_running != 1); /* the migration thread */ +		raw_spin_unlock_irqrestore(&rq->lock, flags); +		break; + +	case CPU_DEAD: +		calc_load_migrate(rq); +		break; +#endif +	} + +	update_max_interval(); + +	return NOTIFY_OK; +} + +/* + * Register at high priority so that task migration (migrate_all_tasks) + * happens before everything else.  This has to be lower priority than + * the notifier in the perf_event subsystem, though. + */ +static struct notifier_block migration_notifier = { +	.notifier_call = migration_call, +	.priority = CPU_PRI_MIGRATION, +}; + +static void __cpuinit set_cpu_rq_start_time(void) +{ +	int cpu = smp_processor_id(); +	struct rq *rq = cpu_rq(cpu); +	rq->age_stamp = sched_clock_cpu(cpu); +} + +static int sched_cpu_active(struct notifier_block *nfb, +				      unsigned long action, void *hcpu) +{ +	switch (action & ~CPU_TASKS_FROZEN) { +	case CPU_STARTING: +		set_cpu_rq_start_time(); +		return NOTIFY_OK; +	case CPU_DOWN_FAILED: +		set_cpu_active((long)hcpu, true); +		return NOTIFY_OK; +	default: +		return NOTIFY_DONE; +	} +} + +static int sched_cpu_inactive(struct notifier_block *nfb, +					unsigned long action, void *hcpu) +{ +	unsigned long flags; +	long cpu = (long)hcpu; + +	switch (action & ~CPU_TASKS_FROZEN) { +	case CPU_DOWN_PREPARE: +		set_cpu_active(cpu, false); + +		/* explicitly allow suspend */ +		if (!(action & CPU_TASKS_FROZEN)) { +			struct dl_bw *dl_b = dl_bw_of(cpu); +			bool overflow; +			int cpus; + +			raw_spin_lock_irqsave(&dl_b->lock, flags); +			cpus = dl_bw_cpus(cpu); +			overflow = __dl_overflow(dl_b, cpus, 0, 0); +			raw_spin_unlock_irqrestore(&dl_b->lock, flags); + +			if (overflow) +				return notifier_from_errno(-EBUSY); +		} +		return NOTIFY_OK; +	} + +	return NOTIFY_DONE; +} + +static int __init migration_init(void) +{ +	void *cpu = (void *)(long)smp_processor_id(); +	int err; + +	/* Initialize migration for the boot CPU */ +	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); +	BUG_ON(err == NOTIFY_BAD); +	migration_call(&migration_notifier, CPU_ONLINE, cpu); +	register_cpu_notifier(&migration_notifier); + +	/* Register cpu active notifiers */ +	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); +	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); + +	return 0; +} +early_initcall(migration_init); +#endif + +#ifdef CONFIG_SMP + +static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ + +#ifdef CONFIG_SCHED_DEBUG + +static __read_mostly int sched_debug_enabled; + +static int __init sched_debug_setup(char *str) +{ +	sched_debug_enabled = 1; + +	return 0; +} +early_param("sched_debug", sched_debug_setup); + +static inline bool sched_debug(void) +{ +	return sched_debug_enabled; +} + +static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, +				  struct cpumask *groupmask) +{ +	struct sched_group *group = sd->groups; +	char str[256]; + +	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); +	cpumask_clear(groupmask); + +	printk(KERN_DEBUG "%*s domain %d: ", level, "", level); + +	if (!(sd->flags & SD_LOAD_BALANCE)) { +		printk("does not load-balance\n"); +		if (sd->parent) +			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" +					" has parent"); +		return -1; +	} + +	printk(KERN_CONT "span %s level %s\n", str, sd->name); + +	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { +		printk(KERN_ERR "ERROR: domain->span does not contain " +				"CPU%d\n", cpu); +	} +	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { +		printk(KERN_ERR "ERROR: domain->groups does not contain" +				" CPU%d\n", cpu); +	} + +	printk(KERN_DEBUG "%*s groups:", level + 1, ""); +	do { +		if (!group) { +			printk("\n"); +			printk(KERN_ERR "ERROR: group is NULL\n"); +			break; +		} + +		/* +		 * Even though we initialize ->capacity to something semi-sane, +		 * we leave capacity_orig unset. This allows us to detect if +		 * domain iteration is still funny without causing /0 traps. +		 */ +		if (!group->sgc->capacity_orig) { +			printk(KERN_CONT "\n"); +			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n"); +			break; +		} + +		if (!cpumask_weight(sched_group_cpus(group))) { +			printk(KERN_CONT "\n"); +			printk(KERN_ERR "ERROR: empty group\n"); +			break; +		} + +		if (!(sd->flags & SD_OVERLAP) && +		    cpumask_intersects(groupmask, sched_group_cpus(group))) { +			printk(KERN_CONT "\n"); +			printk(KERN_ERR "ERROR: repeated CPUs\n"); +			break; +		} + +		cpumask_or(groupmask, groupmask, sched_group_cpus(group)); + +		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); + +		printk(KERN_CONT " %s", str); +		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { +			printk(KERN_CONT " (cpu_capacity = %d)", +				group->sgc->capacity); +		} + +		group = group->next; +	} while (group != sd->groups); +	printk(KERN_CONT "\n"); + +	if (!cpumask_equal(sched_domain_span(sd), groupmask)) +		printk(KERN_ERR "ERROR: groups don't span domain->span\n"); + +	if (sd->parent && +	    !cpumask_subset(groupmask, sched_domain_span(sd->parent))) +		printk(KERN_ERR "ERROR: parent span is not a superset " +			"of domain->span\n"); +	return 0; +} + +static void sched_domain_debug(struct sched_domain *sd, int cpu) +{ +	int level = 0; + +	if (!sched_debug_enabled) +		return; + +	if (!sd) { +		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); +		return; +	} + +	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); + +	for (;;) { +		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) +			break; +		level++; +		sd = sd->parent; +		if (!sd) +			break; +	} +} +#else /* !CONFIG_SCHED_DEBUG */ +# define sched_domain_debug(sd, cpu) do { } while (0) +static inline bool sched_debug(void) +{ +	return false; +} +#endif /* CONFIG_SCHED_DEBUG */ + +static int sd_degenerate(struct sched_domain *sd) +{ +	if (cpumask_weight(sched_domain_span(sd)) == 1) +		return 1; + +	/* Following flags need at least 2 groups */ +	if (sd->flags & (SD_LOAD_BALANCE | +			 SD_BALANCE_NEWIDLE | +			 SD_BALANCE_FORK | +			 SD_BALANCE_EXEC | +			 SD_SHARE_CPUCAPACITY | +			 SD_SHARE_PKG_RESOURCES | +			 SD_SHARE_POWERDOMAIN)) { +		if (sd->groups != sd->groups->next) +			return 0; +	} + +	/* Following flags don't use groups */ +	if (sd->flags & (SD_WAKE_AFFINE)) +		return 0; + +	return 1; +} + +static int +sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) +{ +	unsigned long cflags = sd->flags, pflags = parent->flags; + +	if (sd_degenerate(parent)) +		return 1; + +	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) +		return 0; + +	/* Flags needing groups don't count if only 1 group in parent */ +	if (parent->groups == parent->groups->next) { +		pflags &= ~(SD_LOAD_BALANCE | +				SD_BALANCE_NEWIDLE | +				SD_BALANCE_FORK | +				SD_BALANCE_EXEC | +				SD_SHARE_CPUCAPACITY | +				SD_SHARE_PKG_RESOURCES | +				SD_PREFER_SIBLING | +				SD_SHARE_POWERDOMAIN); +		if (nr_node_ids == 1) +			pflags &= ~SD_SERIALIZE; +	} +	if (~cflags & pflags) +		return 0; + +	return 1; +} + +static void free_rootdomain(struct rcu_head *rcu) +{ +	struct root_domain *rd = container_of(rcu, struct root_domain, rcu); + +	cpupri_cleanup(&rd->cpupri); +	cpudl_cleanup(&rd->cpudl); +	free_cpumask_var(rd->dlo_mask); +	free_cpumask_var(rd->rto_mask); +	free_cpumask_var(rd->online); +	free_cpumask_var(rd->span); +	kfree(rd); +} + +static void rq_attach_root(struct rq *rq, struct root_domain *rd) +{ +	struct root_domain *old_rd = NULL; +	unsigned long flags; + +	raw_spin_lock_irqsave(&rq->lock, flags); + +	if (rq->rd) { +		old_rd = rq->rd; + +		if (cpumask_test_cpu(rq->cpu, old_rd->online)) +			set_rq_offline(rq); + +		cpumask_clear_cpu(rq->cpu, old_rd->span); + +		/* +		 * If we dont want to free the old_rd yet then +		 * set old_rd to NULL to skip the freeing later +		 * in this function: +		 */ +		if (!atomic_dec_and_test(&old_rd->refcount)) +			old_rd = NULL; +	} + +	atomic_inc(&rd->refcount); +	rq->rd = rd; + +	cpumask_set_cpu(rq->cpu, rd->span); +	if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) +		set_rq_online(rq); + +	raw_spin_unlock_irqrestore(&rq->lock, flags); + +	if (old_rd) +		call_rcu_sched(&old_rd->rcu, free_rootdomain); +} + +static int init_rootdomain(struct root_domain *rd) +{ +	memset(rd, 0, sizeof(*rd)); + +	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) +		goto out; +	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) +		goto free_span; +	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) +		goto free_online; +	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) +		goto free_dlo_mask; + +	init_dl_bw(&rd->dl_bw); +	if (cpudl_init(&rd->cpudl) != 0) +		goto free_dlo_mask; + +	if (cpupri_init(&rd->cpupri) != 0) +		goto free_rto_mask; +	return 0; + +free_rto_mask: +	free_cpumask_var(rd->rto_mask); +free_dlo_mask: +	free_cpumask_var(rd->dlo_mask); +free_online: +	free_cpumask_var(rd->online); +free_span: +	free_cpumask_var(rd->span); +out: +	return -ENOMEM; +} + +/* + * By default the system creates a single root-domain with all cpus as + * members (mimicking the global state we have today). + */ +struct root_domain def_root_domain; + +static void init_defrootdomain(void) +{ +	init_rootdomain(&def_root_domain); + +	atomic_set(&def_root_domain.refcount, 1); +} + +static struct root_domain *alloc_rootdomain(void) +{ +	struct root_domain *rd; + +	rd = kmalloc(sizeof(*rd), GFP_KERNEL); +	if (!rd) +		return NULL; + +	if (init_rootdomain(rd) != 0) { +		kfree(rd); +		return NULL; +	} + +	return rd; +} + +static void free_sched_groups(struct sched_group *sg, int free_sgc) +{ +	struct sched_group *tmp, *first; + +	if (!sg) +		return; + +	first = sg; +	do { +		tmp = sg->next; + +		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) +			kfree(sg->sgc); + +		kfree(sg); +		sg = tmp; +	} while (sg != first); +} + +static void free_sched_domain(struct rcu_head *rcu) +{ +	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); + +	/* +	 * If its an overlapping domain it has private groups, iterate and +	 * nuke them all. +	 */ +	if (sd->flags & SD_OVERLAP) { +		free_sched_groups(sd->groups, 1); +	} else if (atomic_dec_and_test(&sd->groups->ref)) { +		kfree(sd->groups->sgc); +		kfree(sd->groups); +	} +	kfree(sd); +} + +static void destroy_sched_domain(struct sched_domain *sd, int cpu) +{ +	call_rcu(&sd->rcu, free_sched_domain); +} + +static void destroy_sched_domains(struct sched_domain *sd, int cpu) +{ +	for (; sd; sd = sd->parent) +		destroy_sched_domain(sd, cpu); +} + +/* + * Keep a special pointer to the highest sched_domain that has + * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this + * allows us to avoid some pointer chasing select_idle_sibling(). + * + * Also keep a unique ID per domain (we use the first cpu number in + * the cpumask of the domain), this allows us to quickly tell if + * two cpus are in the same cache domain, see cpus_share_cache(). + */ +DEFINE_PER_CPU(struct sched_domain *, sd_llc); +DEFINE_PER_CPU(int, sd_llc_size); +DEFINE_PER_CPU(int, sd_llc_id); +DEFINE_PER_CPU(struct sched_domain *, sd_numa); +DEFINE_PER_CPU(struct sched_domain *, sd_busy); +DEFINE_PER_CPU(struct sched_domain *, sd_asym); + +static void update_top_cache_domain(int cpu) +{ +	struct sched_domain *sd; +	struct sched_domain *busy_sd = NULL; +	int id = cpu; +	int size = 1; + +	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); +	if (sd) { +		id = cpumask_first(sched_domain_span(sd)); +		size = cpumask_weight(sched_domain_span(sd)); +		busy_sd = sd->parent; /* sd_busy */ +	} +	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); + +	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); +	per_cpu(sd_llc_size, cpu) = size; +	per_cpu(sd_llc_id, cpu) = id; + +	sd = lowest_flag_domain(cpu, SD_NUMA); +	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); + +	sd = highest_flag_domain(cpu, SD_ASYM_PACKING); +	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); +} + +/* + * Attach the domain 'sd' to 'cpu' as its base domain. Callers must + * hold the hotplug lock. + */ +static void +cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) +{ +	struct rq *rq = cpu_rq(cpu); +	struct sched_domain *tmp; + +	/* Remove the sched domains which do not contribute to scheduling. */ +	for (tmp = sd; tmp; ) { +		struct sched_domain *parent = tmp->parent; +		if (!parent) +			break; + +		if (sd_parent_degenerate(tmp, parent)) { +			tmp->parent = parent->parent; +			if (parent->parent) +				parent->parent->child = tmp; +			/* +			 * Transfer SD_PREFER_SIBLING down in case of a +			 * degenerate parent; the spans match for this +			 * so the property transfers. +			 */ +			if (parent->flags & SD_PREFER_SIBLING) +				tmp->flags |= SD_PREFER_SIBLING; +			destroy_sched_domain(parent, cpu); +		} else +			tmp = tmp->parent; +	} + +	if (sd && sd_degenerate(sd)) { +		tmp = sd; +		sd = sd->parent; +		destroy_sched_domain(tmp, cpu); +		if (sd) +			sd->child = NULL; +	} + +	sched_domain_debug(sd, cpu); + +	rq_attach_root(rq, rd); +	tmp = rq->sd; +	rcu_assign_pointer(rq->sd, sd); +	destroy_sched_domains(tmp, cpu); + +	update_top_cache_domain(cpu); +} + +/* cpus with isolated domains */ +static cpumask_var_t cpu_isolated_map; + +/* Setup the mask of cpus configured for isolated domains */ +static int __init isolated_cpu_setup(char *str) +{ +	alloc_bootmem_cpumask_var(&cpu_isolated_map); +	cpulist_parse(str, cpu_isolated_map); +	return 1; +} + +__setup("isolcpus=", isolated_cpu_setup); + +struct s_data { +	struct sched_domain ** __percpu sd; +	struct root_domain	*rd; +}; + +enum s_alloc { +	sa_rootdomain, +	sa_sd, +	sa_sd_storage, +	sa_none, +}; + +/* + * Build an iteration mask that can exclude certain CPUs from the upwards + * domain traversal. + * + * Asymmetric node setups can result in situations where the domain tree is of + * unequal depth, make sure to skip domains that already cover the entire + * range. + * + * In that case build_sched_domains() will have terminated the iteration early + * and our sibling sd spans will be empty. Domains should always include the + * cpu they're built on, so check that. + * + */ +static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) +{ +	const struct cpumask *span = sched_domain_span(sd); +	struct sd_data *sdd = sd->private; +	struct sched_domain *sibling; +	int i; + +	for_each_cpu(i, span) { +		sibling = *per_cpu_ptr(sdd->sd, i); +		if (!cpumask_test_cpu(i, sched_domain_span(sibling))) +			continue; + +		cpumask_set_cpu(i, sched_group_mask(sg)); +	} +} + +/* + * Return the canonical balance cpu for this group, this is the first cpu + * of this group that's also in the iteration mask. + */ +int group_balance_cpu(struct sched_group *sg) +{ +	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); +} + +static int +build_overlap_sched_groups(struct sched_domain *sd, int cpu) +{ +	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; +	const struct cpumask *span = sched_domain_span(sd); +	struct cpumask *covered = sched_domains_tmpmask; +	struct sd_data *sdd = sd->private; +	struct sched_domain *child; +	int i; + +	cpumask_clear(covered); + +	for_each_cpu(i, span) { +		struct cpumask *sg_span; + +		if (cpumask_test_cpu(i, covered)) +			continue; + +		child = *per_cpu_ptr(sdd->sd, i); + +		/* See the comment near build_group_mask(). */ +		if (!cpumask_test_cpu(i, sched_domain_span(child))) +			continue; + +		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), +				GFP_KERNEL, cpu_to_node(cpu)); + +		if (!sg) +			goto fail; + +		sg_span = sched_group_cpus(sg); +		if (child->child) { +			child = child->child; +			cpumask_copy(sg_span, sched_domain_span(child)); +		} else +			cpumask_set_cpu(i, sg_span); + +		cpumask_or(covered, covered, sg_span); + +		sg->sgc = *per_cpu_ptr(sdd->sgc, i); +		if (atomic_inc_return(&sg->sgc->ref) == 1) +			build_group_mask(sd, sg); + +		/* +		 * Initialize sgc->capacity such that even if we mess up the +		 * domains and no possible iteration will get us here, we won't +		 * die on a /0 trap. +		 */ +		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); +		sg->sgc->capacity_orig = sg->sgc->capacity; + +		/* +		 * Make sure the first group of this domain contains the +		 * canonical balance cpu. Otherwise the sched_domain iteration +		 * breaks. See update_sg_lb_stats(). +		 */ +		if ((!groups && cpumask_test_cpu(cpu, sg_span)) || +		    group_balance_cpu(sg) == cpu) +			groups = sg; + +		if (!first) +			first = sg; +		if (last) +			last->next = sg; +		last = sg; +		last->next = first; +	} +	sd->groups = groups; + +	return 0; + +fail: +	free_sched_groups(first, 0); + +	return -ENOMEM; +} + +static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) +{ +	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); +	struct sched_domain *child = sd->child; + +	if (child) +		cpu = cpumask_first(sched_domain_span(child)); + +	if (sg) { +		*sg = *per_cpu_ptr(sdd->sg, cpu); +		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); +		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ +	} + +	return cpu; +} + +/* + * build_sched_groups will build a circular linked list of the groups + * covered by the given span, and will set each group's ->cpumask correctly, + * and ->cpu_capacity to 0. + * + * Assumes the sched_domain tree is fully constructed + */ +static int +build_sched_groups(struct sched_domain *sd, int cpu) +{ +	struct sched_group *first = NULL, *last = NULL; +	struct sd_data *sdd = sd->private; +	const struct cpumask *span = sched_domain_span(sd); +	struct cpumask *covered; +	int i; + +	get_group(cpu, sdd, &sd->groups); +	atomic_inc(&sd->groups->ref); + +	if (cpu != cpumask_first(span)) +		return 0; + +	lockdep_assert_held(&sched_domains_mutex); +	covered = sched_domains_tmpmask; + +	cpumask_clear(covered); + +	for_each_cpu(i, span) { +		struct sched_group *sg; +		int group, j; + +		if (cpumask_test_cpu(i, covered)) +			continue; + +		group = get_group(i, sdd, &sg); +		cpumask_setall(sched_group_mask(sg)); + +		for_each_cpu(j, span) { +			if (get_group(j, sdd, NULL) != group) +				continue; + +			cpumask_set_cpu(j, covered); +			cpumask_set_cpu(j, sched_group_cpus(sg)); +		} + +		if (!first) +			first = sg; +		if (last) +			last->next = sg; +		last = sg; +	} +	last->next = first; + +	return 0; +} + +/* + * Initialize sched groups cpu_capacity. + * + * cpu_capacity indicates the capacity of sched group, which is used while + * distributing the load between different sched groups in a sched domain. + * Typically cpu_capacity for all the groups in a sched domain will be same + * unless there are asymmetries in the topology. If there are asymmetries, + * group having more cpu_capacity will pickup more load compared to the + * group having less cpu_capacity. + */ +static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) +{ +	struct sched_group *sg = sd->groups; + +	WARN_ON(!sg); + +	do { +		sg->group_weight = cpumask_weight(sched_group_cpus(sg)); +		sg = sg->next; +	} while (sg != sd->groups); + +	if (cpu != group_balance_cpu(sg)) +		return; + +	update_group_capacity(sd, cpu); +	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); +} + +/* + * Initializers for schedule domains + * Non-inlined to reduce accumulated stack pressure in build_sched_domains() + */ + +static int default_relax_domain_level = -1; +int sched_domain_level_max; + +static int __init setup_relax_domain_level(char *str) +{ +	if (kstrtoint(str, 0, &default_relax_domain_level)) +		pr_warn("Unable to set relax_domain_level\n"); + +	return 1; +} +__setup("relax_domain_level=", setup_relax_domain_level); + +static void set_domain_attribute(struct sched_domain *sd, +				 struct sched_domain_attr *attr) +{ +	int request; + +	if (!attr || attr->relax_domain_level < 0) { +		if (default_relax_domain_level < 0) +			return; +		else +			request = default_relax_domain_level; +	} else +		request = attr->relax_domain_level; +	if (request < sd->level) { +		/* turn off idle balance on this domain */ +		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); +	} else { +		/* turn on idle balance on this domain */ +		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); +	} +} + +static void __sdt_free(const struct cpumask *cpu_map); +static int __sdt_alloc(const struct cpumask *cpu_map); + +static void __free_domain_allocs(struct s_data *d, enum s_alloc what, +				 const struct cpumask *cpu_map) +{ +	switch (what) { +	case sa_rootdomain: +		if (!atomic_read(&d->rd->refcount)) +			free_rootdomain(&d->rd->rcu); /* fall through */ +	case sa_sd: +		free_percpu(d->sd); /* fall through */ +	case sa_sd_storage: +		__sdt_free(cpu_map); /* fall through */ +	case sa_none: +		break; +	} +} + +static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, +						   const struct cpumask *cpu_map) +{ +	memset(d, 0, sizeof(*d)); + +	if (__sdt_alloc(cpu_map)) +		return sa_sd_storage; +	d->sd = alloc_percpu(struct sched_domain *); +	if (!d->sd) +		return sa_sd_storage; +	d->rd = alloc_rootdomain(); +	if (!d->rd) +		return sa_sd; +	return sa_rootdomain; +} + +/* + * NULL the sd_data elements we've used to build the sched_domain and + * sched_group structure so that the subsequent __free_domain_allocs() + * will not free the data we're using. + */ +static void claim_allocations(int cpu, struct sched_domain *sd) +{ +	struct sd_data *sdd = sd->private; + +	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); +	*per_cpu_ptr(sdd->sd, cpu) = NULL; + +	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) +		*per_cpu_ptr(sdd->sg, cpu) = NULL; + +	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) +		*per_cpu_ptr(sdd->sgc, cpu) = NULL; +} + +#ifdef CONFIG_NUMA +static int sched_domains_numa_levels; +static int *sched_domains_numa_distance; +static struct cpumask ***sched_domains_numa_masks; +static int sched_domains_curr_level; +#endif + +/* + * SD_flags allowed in topology descriptions. + * + * SD_SHARE_CPUCAPACITY      - describes SMT topologies + * SD_SHARE_PKG_RESOURCES - describes shared caches + * SD_NUMA                - describes NUMA topologies + * SD_SHARE_POWERDOMAIN   - describes shared power domain + * + * Odd one out: + * SD_ASYM_PACKING        - describes SMT quirks + */ +#define TOPOLOGY_SD_FLAGS		\ +	(SD_SHARE_CPUCAPACITY |		\ +	 SD_SHARE_PKG_RESOURCES |	\ +	 SD_NUMA |			\ +	 SD_ASYM_PACKING |		\ +	 SD_SHARE_POWERDOMAIN) + +static struct sched_domain * +sd_init(struct sched_domain_topology_level *tl, int cpu) +{ +	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); +	int sd_weight, sd_flags = 0; + +#ifdef CONFIG_NUMA +	/* +	 * Ugly hack to pass state to sd_numa_mask()... +	 */ +	sched_domains_curr_level = tl->numa_level; +#endif + +	sd_weight = cpumask_weight(tl->mask(cpu)); + +	if (tl->sd_flags) +		sd_flags = (*tl->sd_flags)(); +	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, +			"wrong sd_flags in topology description\n")) +		sd_flags &= ~TOPOLOGY_SD_FLAGS; + +	*sd = (struct sched_domain){ +		.min_interval		= sd_weight, +		.max_interval		= 2*sd_weight, +		.busy_factor		= 32, +		.imbalance_pct		= 125, + +		.cache_nice_tries	= 0, +		.busy_idx		= 0, +		.idle_idx		= 0, +		.newidle_idx		= 0, +		.wake_idx		= 0, +		.forkexec_idx		= 0, + +		.flags			= 1*SD_LOAD_BALANCE +					| 1*SD_BALANCE_NEWIDLE +					| 1*SD_BALANCE_EXEC +					| 1*SD_BALANCE_FORK +					| 0*SD_BALANCE_WAKE +					| 1*SD_WAKE_AFFINE +					| 0*SD_SHARE_CPUCAPACITY +					| 0*SD_SHARE_PKG_RESOURCES +					| 0*SD_SERIALIZE +					| 0*SD_PREFER_SIBLING +					| 0*SD_NUMA +					| sd_flags +					, + +		.last_balance		= jiffies, +		.balance_interval	= sd_weight, +		.smt_gain		= 0, +		.max_newidle_lb_cost	= 0, +		.next_decay_max_lb_cost	= jiffies, +#ifdef CONFIG_SCHED_DEBUG +		.name			= tl->name, +#endif +	}; + +	/* +	 * Convert topological properties into behaviour. +	 */ + +	if (sd->flags & SD_SHARE_CPUCAPACITY) { +		sd->imbalance_pct = 110; +		sd->smt_gain = 1178; /* ~15% */ + +	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) { +		sd->imbalance_pct = 117; +		sd->cache_nice_tries = 1; +		sd->busy_idx = 2; + +#ifdef CONFIG_NUMA +	} else if (sd->flags & SD_NUMA) { +		sd->cache_nice_tries = 2; +		sd->busy_idx = 3; +		sd->idle_idx = 2; + +		sd->flags |= SD_SERIALIZE; +		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { +			sd->flags &= ~(SD_BALANCE_EXEC | +				       SD_BALANCE_FORK | +				       SD_WAKE_AFFINE); +		} + +#endif +	} else { +		sd->flags |= SD_PREFER_SIBLING; +		sd->cache_nice_tries = 1; +		sd->busy_idx = 2; +		sd->idle_idx = 1; +	} + +	sd->private = &tl->data; + +	return sd; +} + +/* + * Topology list, bottom-up. + */ +static struct sched_domain_topology_level default_topology[] = { +#ifdef CONFIG_SCHED_SMT +	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, +#endif +#ifdef CONFIG_SCHED_MC +	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, +#endif +	{ cpu_cpu_mask, SD_INIT_NAME(DIE) }, +	{ NULL, }, +}; + +struct sched_domain_topology_level *sched_domain_topology = default_topology; + +#define for_each_sd_topology(tl)			\ +	for (tl = sched_domain_topology; tl->mask; tl++) + +void set_sched_topology(struct sched_domain_topology_level *tl) +{ +	sched_domain_topology = tl; +} + +#ifdef CONFIG_NUMA + +static const struct cpumask *sd_numa_mask(int cpu) +{ +	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; +} + +static void sched_numa_warn(const char *str) +{ +	static int done = false; +	int i,j; + +	if (done) +		return; + +	done = true; + +	printk(KERN_WARNING "ERROR: %s\n\n", str); + +	for (i = 0; i < nr_node_ids; i++) { +		printk(KERN_WARNING "  "); +		for (j = 0; j < nr_node_ids; j++) +			printk(KERN_CONT "%02d ", node_distance(i,j)); +		printk(KERN_CONT "\n"); +	} +	printk(KERN_WARNING "\n"); +} + +static bool find_numa_distance(int distance) +{ +	int i; + +	if (distance == node_distance(0, 0)) +		return true; + +	for (i = 0; i < sched_domains_numa_levels; i++) { +		if (sched_domains_numa_distance[i] == distance) +			return true; +	} + +	return false; +} + +static void sched_init_numa(void) +{ +	int next_distance, curr_distance = node_distance(0, 0); +	struct sched_domain_topology_level *tl; +	int level = 0; +	int i, j, k; + +	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); +	if (!sched_domains_numa_distance) +		return; + +	/* +	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the +	 * unique distances in the node_distance() table. +	 * +	 * Assumes node_distance(0,j) includes all distances in +	 * node_distance(i,j) in order to avoid cubic time. +	 */ +	next_distance = curr_distance; +	for (i = 0; i < nr_node_ids; i++) { +		for (j = 0; j < nr_node_ids; j++) { +			for (k = 0; k < nr_node_ids; k++) { +				int distance = node_distance(i, k); + +				if (distance > curr_distance && +				    (distance < next_distance || +				     next_distance == curr_distance)) +					next_distance = distance; + +				/* +				 * While not a strong assumption it would be nice to know +				 * about cases where if node A is connected to B, B is not +				 * equally connected to A. +				 */ +				if (sched_debug() && node_distance(k, i) != distance) +					sched_numa_warn("Node-distance not symmetric"); + +				if (sched_debug() && i && !find_numa_distance(distance)) +					sched_numa_warn("Node-0 not representative"); +			} +			if (next_distance != curr_distance) { +				sched_domains_numa_distance[level++] = next_distance; +				sched_domains_numa_levels = level; +				curr_distance = next_distance; +			} else break; +		} + +		/* +		 * In case of sched_debug() we verify the above assumption. +		 */ +		if (!sched_debug()) +			break; +	} +	/* +	 * 'level' contains the number of unique distances, excluding the +	 * identity distance node_distance(i,i). +	 * +	 * The sched_domains_numa_distance[] array includes the actual distance +	 * numbers. +	 */ + +	/* +	 * Here, we should temporarily reset sched_domains_numa_levels to 0. +	 * If it fails to allocate memory for array sched_domains_numa_masks[][], +	 * the array will contain less then 'level' members. This could be +	 * dangerous when we use it to iterate array sched_domains_numa_masks[][] +	 * in other functions. +	 * +	 * We reset it to 'level' at the end of this function. +	 */ +	sched_domains_numa_levels = 0; + +	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); +	if (!sched_domains_numa_masks) +		return; + +	/* +	 * Now for each level, construct a mask per node which contains all +	 * cpus of nodes that are that many hops away from us. +	 */ +	for (i = 0; i < level; i++) { +		sched_domains_numa_masks[i] = +			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); +		if (!sched_domains_numa_masks[i]) +			return; + +		for (j = 0; j < nr_node_ids; j++) { +			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); +			if (!mask) +				return; + +			sched_domains_numa_masks[i][j] = mask; + +			for (k = 0; k < nr_node_ids; k++) { +				if (node_distance(j, k) > sched_domains_numa_distance[i]) +					continue; + +				cpumask_or(mask, mask, cpumask_of_node(k)); +			} +		} +	} + +	/* Compute default topology size */ +	for (i = 0; sched_domain_topology[i].mask; i++); + +	tl = kzalloc((i + level + 1) * +			sizeof(struct sched_domain_topology_level), GFP_KERNEL); +	if (!tl) +		return; + +	/* +	 * Copy the default topology bits.. +	 */ +	for (i = 0; sched_domain_topology[i].mask; i++) +		tl[i] = sched_domain_topology[i]; + +	/* +	 * .. and append 'j' levels of NUMA goodness. +	 */ +	for (j = 0; j < level; i++, j++) { +		tl[i] = (struct sched_domain_topology_level){ +			.mask = sd_numa_mask, +			.sd_flags = cpu_numa_flags, +			.flags = SDTL_OVERLAP, +			.numa_level = j, +			SD_INIT_NAME(NUMA) +		}; +	} + +	sched_domain_topology = tl; + +	sched_domains_numa_levels = level; +} + +static void sched_domains_numa_masks_set(int cpu) +{ +	int i, j; +	int node = cpu_to_node(cpu); + +	for (i = 0; i < sched_domains_numa_levels; i++) { +		for (j = 0; j < nr_node_ids; j++) { +			if (node_distance(j, node) <= sched_domains_numa_distance[i]) +				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); +		} +	} +} + +static void sched_domains_numa_masks_clear(int cpu) +{ +	int i, j; +	for (i = 0; i < sched_domains_numa_levels; i++) { +		for (j = 0; j < nr_node_ids; j++) +			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); +	} +} + +/* + * Update sched_domains_numa_masks[level][node] array when new cpus + * are onlined. + */ +static int sched_domains_numa_masks_update(struct notifier_block *nfb, +					   unsigned long action, +					   void *hcpu) +{ +	int cpu = (long)hcpu; + +	switch (action & ~CPU_TASKS_FROZEN) { +	case CPU_ONLINE: +		sched_domains_numa_masks_set(cpu); +		break; + +	case CPU_DEAD: +		sched_domains_numa_masks_clear(cpu); +		break; + +	default: +		return NOTIFY_DONE; +	} + +	return NOTIFY_OK; +} +#else +static inline void sched_init_numa(void) +{ +} + +static int sched_domains_numa_masks_update(struct notifier_block *nfb, +					   unsigned long action, +					   void *hcpu) +{ +	return 0; +} +#endif /* CONFIG_NUMA */ + +static int __sdt_alloc(const struct cpumask *cpu_map) +{ +	struct sched_domain_topology_level *tl; +	int j; + +	for_each_sd_topology(tl) { +		struct sd_data *sdd = &tl->data; + +		sdd->sd = alloc_percpu(struct sched_domain *); +		if (!sdd->sd) +			return -ENOMEM; + +		sdd->sg = alloc_percpu(struct sched_group *); +		if (!sdd->sg) +			return -ENOMEM; + +		sdd->sgc = alloc_percpu(struct sched_group_capacity *); +		if (!sdd->sgc) +			return -ENOMEM; + +		for_each_cpu(j, cpu_map) { +			struct sched_domain *sd; +			struct sched_group *sg; +			struct sched_group_capacity *sgc; + +		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), +					GFP_KERNEL, cpu_to_node(j)); +			if (!sd) +				return -ENOMEM; + +			*per_cpu_ptr(sdd->sd, j) = sd; + +			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), +					GFP_KERNEL, cpu_to_node(j)); +			if (!sg) +				return -ENOMEM; + +			sg->next = sg; + +			*per_cpu_ptr(sdd->sg, j) = sg; + +			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), +					GFP_KERNEL, cpu_to_node(j)); +			if (!sgc) +				return -ENOMEM; + +			*per_cpu_ptr(sdd->sgc, j) = sgc; +		} +	} + +	return 0; +} + +static void __sdt_free(const struct cpumask *cpu_map) +{ +	struct sched_domain_topology_level *tl; +	int j; + +	for_each_sd_topology(tl) { +		struct sd_data *sdd = &tl->data; + +		for_each_cpu(j, cpu_map) { +			struct sched_domain *sd; + +			if (sdd->sd) { +				sd = *per_cpu_ptr(sdd->sd, j); +				if (sd && (sd->flags & SD_OVERLAP)) +					free_sched_groups(sd->groups, 0); +				kfree(*per_cpu_ptr(sdd->sd, j)); +			} + +			if (sdd->sg) +				kfree(*per_cpu_ptr(sdd->sg, j)); +			if (sdd->sgc) +				kfree(*per_cpu_ptr(sdd->sgc, j)); +		} +		free_percpu(sdd->sd); +		sdd->sd = NULL; +		free_percpu(sdd->sg); +		sdd->sg = NULL; +		free_percpu(sdd->sgc); +		sdd->sgc = NULL; +	} +} + +struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, +		const struct cpumask *cpu_map, struct sched_domain_attr *attr, +		struct sched_domain *child, int cpu) +{ +	struct sched_domain *sd = sd_init(tl, cpu); +	if (!sd) +		return child; + +	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); +	if (child) { +		sd->level = child->level + 1; +		sched_domain_level_max = max(sched_domain_level_max, sd->level); +		child->parent = sd; +		sd->child = child; +	} +	set_domain_attribute(sd, attr); + +	return sd; +} + +/* + * Build sched domains for a given set of cpus and attach the sched domains + * to the individual cpus + */ +static int build_sched_domains(const struct cpumask *cpu_map, +			       struct sched_domain_attr *attr) +{ +	enum s_alloc alloc_state; +	struct sched_domain *sd; +	struct s_data d; +	int i, ret = -ENOMEM; + +	alloc_state = __visit_domain_allocation_hell(&d, cpu_map); +	if (alloc_state != sa_rootdomain) +		goto error; + +	/* Set up domains for cpus specified by the cpu_map. */ +	for_each_cpu(i, cpu_map) { +		struct sched_domain_topology_level *tl; + +		sd = NULL; +		for_each_sd_topology(tl) { +			sd = build_sched_domain(tl, cpu_map, attr, sd, i); +			if (tl == sched_domain_topology) +				*per_cpu_ptr(d.sd, i) = sd; +			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) +				sd->flags |= SD_OVERLAP; +			if (cpumask_equal(cpu_map, sched_domain_span(sd))) +				break; +		} +	} + +	/* Build the groups for the domains */ +	for_each_cpu(i, cpu_map) { +		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { +			sd->span_weight = cpumask_weight(sched_domain_span(sd)); +			if (sd->flags & SD_OVERLAP) { +				if (build_overlap_sched_groups(sd, i)) +					goto error; +			} else { +				if (build_sched_groups(sd, i)) +					goto error; +			} +		} +	} + +	/* Calculate CPU capacity for physical packages and nodes */ +	for (i = nr_cpumask_bits-1; i >= 0; i--) { +		if (!cpumask_test_cpu(i, cpu_map)) +			continue; + +		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { +			claim_allocations(i, sd); +			init_sched_groups_capacity(i, sd); +		} +	} + +	/* Attach the domains */ +	rcu_read_lock(); +	for_each_cpu(i, cpu_map) { +		sd = *per_cpu_ptr(d.sd, i); +		cpu_attach_domain(sd, d.rd, i); +	} +	rcu_read_unlock(); + +	ret = 0; +error: +	__free_domain_allocs(&d, alloc_state, cpu_map); +	return ret; +} + +static cpumask_var_t *doms_cur;	/* current sched domains */ +static int ndoms_cur;		/* number of sched domains in 'doms_cur' */ +static struct sched_domain_attr *dattr_cur; +				/* attribues of custom domains in 'doms_cur' */ + +/* + * Special case: If a kmalloc of a doms_cur partition (array of + * cpumask) fails, then fallback to a single sched domain, + * as determined by the single cpumask fallback_doms. + */ +static cpumask_var_t fallback_doms; + +/* + * arch_update_cpu_topology lets virtualized architectures update the + * cpu core maps. It is supposed to return 1 if the topology changed + * or 0 if it stayed the same. + */ +int __weak arch_update_cpu_topology(void) +{ +	return 0; +} + +cpumask_var_t *alloc_sched_domains(unsigned int ndoms) +{ +	int i; +	cpumask_var_t *doms; + +	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); +	if (!doms) +		return NULL; +	for (i = 0; i < ndoms; i++) { +		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { +			free_sched_domains(doms, i); +			return NULL; +		} +	} +	return doms; +} + +void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) +{ +	unsigned int i; +	for (i = 0; i < ndoms; i++) +		free_cpumask_var(doms[i]); +	kfree(doms); +} + +/* + * Set up scheduler domains and groups. Callers must hold the hotplug lock. + * For now this just excludes isolated cpus, but could be used to + * exclude other special cases in the future. + */ +static int init_sched_domains(const struct cpumask *cpu_map) +{ +	int err; + +	arch_update_cpu_topology(); +	ndoms_cur = 1; +	doms_cur = alloc_sched_domains(ndoms_cur); +	if (!doms_cur) +		doms_cur = &fallback_doms; +	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); +	err = build_sched_domains(doms_cur[0], NULL); +	register_sched_domain_sysctl(); + +	return err; +} + +/* + * Detach sched domains from a group of cpus specified in cpu_map + * These cpus will now be attached to the NULL domain + */ +static void detach_destroy_domains(const struct cpumask *cpu_map) +{ +	int i; + +	rcu_read_lock(); +	for_each_cpu(i, cpu_map) +		cpu_attach_domain(NULL, &def_root_domain, i); +	rcu_read_unlock(); +} + +/* handle null as "default" */ +static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, +			struct sched_domain_attr *new, int idx_new) +{ +	struct sched_domain_attr tmp; + +	/* fast path */ +	if (!new && !cur) +		return 1; + +	tmp = SD_ATTR_INIT; +	return !memcmp(cur ? (cur + idx_cur) : &tmp, +			new ? (new + idx_new) : &tmp, +			sizeof(struct sched_domain_attr)); +} + +/* + * Partition sched domains as specified by the 'ndoms_new' + * cpumasks in the array doms_new[] of cpumasks. This compares + * doms_new[] to the current sched domain partitioning, doms_cur[]. + * It destroys each deleted domain and builds each new domain. + * + * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. + * The masks don't intersect (don't overlap.) We should setup one + * sched domain for each mask. CPUs not in any of the cpumasks will + * not be load balanced. If the same cpumask appears both in the + * current 'doms_cur' domains and in the new 'doms_new', we can leave + * it as it is. + * + * The passed in 'doms_new' should be allocated using + * alloc_sched_domains.  This routine takes ownership of it and will + * free_sched_domains it when done with it. If the caller failed the + * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, + * and partition_sched_domains() will fallback to the single partition + * 'fallback_doms', it also forces the domains to be rebuilt. + * + * If doms_new == NULL it will be replaced with cpu_online_mask. + * ndoms_new == 0 is a special case for destroying existing domains, + * and it will not create the default domain. + * + * Call with hotplug lock held + */ +void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], +			     struct sched_domain_attr *dattr_new) +{ +	int i, j, n; +	int new_topology; + +	mutex_lock(&sched_domains_mutex); + +	/* always unregister in case we don't destroy any domains */ +	unregister_sched_domain_sysctl(); + +	/* Let architecture update cpu core mappings. */ +	new_topology = arch_update_cpu_topology(); + +	n = doms_new ? ndoms_new : 0; + +	/* Destroy deleted domains */ +	for (i = 0; i < ndoms_cur; i++) { +		for (j = 0; j < n && !new_topology; j++) { +			if (cpumask_equal(doms_cur[i], doms_new[j]) +			    && dattrs_equal(dattr_cur, i, dattr_new, j)) +				goto match1; +		} +		/* no match - a current sched domain not in new doms_new[] */ +		detach_destroy_domains(doms_cur[i]); +match1: +		; +	} + +	n = ndoms_cur; +	if (doms_new == NULL) { +		n = 0; +		doms_new = &fallback_doms; +		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); +		WARN_ON_ONCE(dattr_new); +	} + +	/* Build new domains */ +	for (i = 0; i < ndoms_new; i++) { +		for (j = 0; j < n && !new_topology; j++) { +			if (cpumask_equal(doms_new[i], doms_cur[j]) +			    && dattrs_equal(dattr_new, i, dattr_cur, j)) +				goto match2; +		} +		/* no match - add a new doms_new */ +		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); +match2: +		; +	} + +	/* Remember the new sched domains */ +	if (doms_cur != &fallback_doms) +		free_sched_domains(doms_cur, ndoms_cur); +	kfree(dattr_cur);	/* kfree(NULL) is safe */ +	doms_cur = doms_new; +	dattr_cur = dattr_new; +	ndoms_cur = ndoms_new; + +	register_sched_domain_sysctl(); + +	mutex_unlock(&sched_domains_mutex); +} + +static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */ + +/* + * Update cpusets according to cpu_active mask.  If cpusets are + * disabled, cpuset_update_active_cpus() becomes a simple wrapper + * around partition_sched_domains(). + * + * If we come here as part of a suspend/resume, don't touch cpusets because we + * want to restore it back to its original state upon resume anyway. + */ +static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, +			     void *hcpu) +{ +	switch (action) { +	case CPU_ONLINE_FROZEN: +	case CPU_DOWN_FAILED_FROZEN: + +		/* +		 * num_cpus_frozen tracks how many CPUs are involved in suspend +		 * resume sequence. As long as this is not the last online +		 * operation in the resume sequence, just build a single sched +		 * domain, ignoring cpusets. +		 */ +		num_cpus_frozen--; +		if (likely(num_cpus_frozen)) { +			partition_sched_domains(1, NULL, NULL); +			break; +		} + +		/* +		 * This is the last CPU online operation. So fall through and +		 * restore the original sched domains by considering the +		 * cpuset configurations. +		 */ + +	case CPU_ONLINE: +	case CPU_DOWN_FAILED: +		cpuset_update_active_cpus(true); +		break; +	default: +		return NOTIFY_DONE; +	} +	return NOTIFY_OK; +} + +static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, +			       void *hcpu) +{ +	switch (action) { +	case CPU_DOWN_PREPARE: +		cpuset_update_active_cpus(false); +		break; +	case CPU_DOWN_PREPARE_FROZEN: +		num_cpus_frozen++; +		partition_sched_domains(1, NULL, NULL); +		break; +	default: +		return NOTIFY_DONE; +	} +	return NOTIFY_OK; +} + +void __init sched_init_smp(void) +{ +	cpumask_var_t non_isolated_cpus; + +	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); +	alloc_cpumask_var(&fallback_doms, GFP_KERNEL); + +	sched_init_numa(); + +	/* +	 * There's no userspace yet to cause hotplug operations; hence all the +	 * cpu masks are stable and all blatant races in the below code cannot +	 * happen. +	 */ +	mutex_lock(&sched_domains_mutex); +	init_sched_domains(cpu_active_mask); +	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); +	if (cpumask_empty(non_isolated_cpus)) +		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); +	mutex_unlock(&sched_domains_mutex); + +	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); +	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); +	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); + +	init_hrtick(); + +	/* Move init over to a non-isolated CPU */ +	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) +		BUG(); +	sched_init_granularity(); +	free_cpumask_var(non_isolated_cpus); + +	init_sched_rt_class(); +	init_sched_dl_class(); +} +#else +void __init sched_init_smp(void) +{ +	sched_init_granularity(); +} +#endif /* CONFIG_SMP */ + +const_debug unsigned int sysctl_timer_migration = 1; + +int in_sched_functions(unsigned long addr) +{ +	return in_lock_functions(addr) || +		(addr >= (unsigned long)__sched_text_start +		&& addr < (unsigned long)__sched_text_end); +} + +#ifdef CONFIG_CGROUP_SCHED +/* + * Default task group. + * Every task in system belongs to this group at bootup. + */ +struct task_group root_task_group; +LIST_HEAD(task_groups); +#endif + +DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); + +void __init sched_init(void) +{ +	int i, j; +	unsigned long alloc_size = 0, ptr; + +#ifdef CONFIG_FAIR_GROUP_SCHED +	alloc_size += 2 * nr_cpu_ids * sizeof(void **); +#endif +#ifdef CONFIG_RT_GROUP_SCHED +	alloc_size += 2 * nr_cpu_ids * sizeof(void **); +#endif +#ifdef CONFIG_CPUMASK_OFFSTACK +	alloc_size += num_possible_cpus() * cpumask_size(); +#endif +	if (alloc_size) { +		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); + +#ifdef CONFIG_FAIR_GROUP_SCHED +		root_task_group.se = (struct sched_entity **)ptr; +		ptr += nr_cpu_ids * sizeof(void **); + +		root_task_group.cfs_rq = (struct cfs_rq **)ptr; +		ptr += nr_cpu_ids * sizeof(void **); + +#endif /* CONFIG_FAIR_GROUP_SCHED */ +#ifdef CONFIG_RT_GROUP_SCHED +		root_task_group.rt_se = (struct sched_rt_entity **)ptr; +		ptr += nr_cpu_ids * sizeof(void **); + +		root_task_group.rt_rq = (struct rt_rq **)ptr; +		ptr += nr_cpu_ids * sizeof(void **); + +#endif /* CONFIG_RT_GROUP_SCHED */ +#ifdef CONFIG_CPUMASK_OFFSTACK +		for_each_possible_cpu(i) { +			per_cpu(load_balance_mask, i) = (void *)ptr; +			ptr += cpumask_size(); +		} +#endif /* CONFIG_CPUMASK_OFFSTACK */ +	} + +	init_rt_bandwidth(&def_rt_bandwidth, +			global_rt_period(), global_rt_runtime()); +	init_dl_bandwidth(&def_dl_bandwidth, +			global_rt_period(), global_rt_runtime()); + +#ifdef CONFIG_SMP +	init_defrootdomain(); +#endif + +#ifdef CONFIG_RT_GROUP_SCHED +	init_rt_bandwidth(&root_task_group.rt_bandwidth, +			global_rt_period(), global_rt_runtime()); +#endif /* CONFIG_RT_GROUP_SCHED */ + +#ifdef CONFIG_CGROUP_SCHED +	list_add(&root_task_group.list, &task_groups); +	INIT_LIST_HEAD(&root_task_group.children); +	INIT_LIST_HEAD(&root_task_group.siblings); +	autogroup_init(&init_task); + +#endif /* CONFIG_CGROUP_SCHED */ + +	for_each_possible_cpu(i) { +		struct rq *rq; + +		rq = cpu_rq(i); +		raw_spin_lock_init(&rq->lock); +		rq->nr_running = 0; +		rq->calc_load_active = 0; +		rq->calc_load_update = jiffies + LOAD_FREQ; +		init_cfs_rq(&rq->cfs); +		init_rt_rq(&rq->rt, rq); +		init_dl_rq(&rq->dl, rq); +#ifdef CONFIG_FAIR_GROUP_SCHED +		root_task_group.shares = ROOT_TASK_GROUP_LOAD; +		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); +		/* +		 * How much cpu bandwidth does root_task_group get? +		 * +		 * In case of task-groups formed thr' the cgroup filesystem, it +		 * gets 100% of the cpu resources in the system. This overall +		 * system cpu resource is divided among the tasks of +		 * root_task_group and its child task-groups in a fair manner, +		 * based on each entity's (task or task-group's) weight +		 * (se->load.weight). +		 * +		 * In other words, if root_task_group has 10 tasks of weight +		 * 1024) and two child groups A0 and A1 (of weight 1024 each), +		 * then A0's share of the cpu resource is: +		 * +		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% +		 * +		 * We achieve this by letting root_task_group's tasks sit +		 * directly in rq->cfs (i.e root_task_group->se[] = NULL). +		 */ +		init_cfs_bandwidth(&root_task_group.cfs_bandwidth); +		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); +#endif /* CONFIG_FAIR_GROUP_SCHED */ + +		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; +#ifdef CONFIG_RT_GROUP_SCHED +		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); +#endif + +		for (j = 0; j < CPU_LOAD_IDX_MAX; j++) +			rq->cpu_load[j] = 0; + +		rq->last_load_update_tick = jiffies; + +#ifdef CONFIG_SMP +		rq->sd = NULL; +		rq->rd = NULL; +		rq->cpu_capacity = SCHED_CAPACITY_SCALE; +		rq->post_schedule = 0; +		rq->active_balance = 0; +		rq->next_balance = jiffies; +		rq->push_cpu = 0; +		rq->cpu = i; +		rq->online = 0; +		rq->idle_stamp = 0; +		rq->avg_idle = 2*sysctl_sched_migration_cost; +		rq->max_idle_balance_cost = sysctl_sched_migration_cost; + +		INIT_LIST_HEAD(&rq->cfs_tasks); + +		rq_attach_root(rq, &def_root_domain); +#ifdef CONFIG_NO_HZ_COMMON +		rq->nohz_flags = 0; +#endif +#ifdef CONFIG_NO_HZ_FULL +		rq->last_sched_tick = 0; +#endif +#endif +		init_rq_hrtick(rq); +		atomic_set(&rq->nr_iowait, 0); +	} + +	set_load_weight(&init_task); + +#ifdef CONFIG_PREEMPT_NOTIFIERS +	INIT_HLIST_HEAD(&init_task.preempt_notifiers); +#endif + +	/* +	 * The boot idle thread does lazy MMU switching as well: +	 */ +	atomic_inc(&init_mm.mm_count); +	enter_lazy_tlb(&init_mm, current); + +	/* +	 * Make us the idle thread. Technically, schedule() should not be +	 * called from this thread, however somewhere below it might be, +	 * but because we are the idle thread, we just pick up running again +	 * when this runqueue becomes "idle". +	 */ +	init_idle(current, smp_processor_id()); + +	calc_load_update = jiffies + LOAD_FREQ; + +	/* +	 * During early bootup we pretend to be a normal task: +	 */ +	current->sched_class = &fair_sched_class; + +#ifdef CONFIG_SMP +	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); +	/* May be allocated at isolcpus cmdline parse time */ +	if (cpu_isolated_map == NULL) +		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); +	idle_thread_set_boot_cpu(); +	set_cpu_rq_start_time(); +#endif +	init_sched_fair_class(); + +	scheduler_running = 1; +} + +#ifdef CONFIG_DEBUG_ATOMIC_SLEEP +static inline int preempt_count_equals(int preempt_offset) +{ +	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); + +	return (nested == preempt_offset); +} + +void __might_sleep(const char *file, int line, int preempt_offset) +{ +	static unsigned long prev_jiffy;	/* ratelimiting */ + +	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ +	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && +	     !is_idle_task(current)) || +	    system_state != SYSTEM_RUNNING || oops_in_progress) +		return; +	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) +		return; +	prev_jiffy = jiffies; + +	printk(KERN_ERR +		"BUG: sleeping function called from invalid context at %s:%d\n", +			file, line); +	printk(KERN_ERR +		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", +			in_atomic(), irqs_disabled(), +			current->pid, current->comm); + +	debug_show_held_locks(current); +	if (irqs_disabled()) +		print_irqtrace_events(current); +#ifdef CONFIG_DEBUG_PREEMPT +	if (!preempt_count_equals(preempt_offset)) { +		pr_err("Preemption disabled at:"); +		print_ip_sym(current->preempt_disable_ip); +		pr_cont("\n"); +	} +#endif +	dump_stack(); +} +EXPORT_SYMBOL(__might_sleep); +#endif + +#ifdef CONFIG_MAGIC_SYSRQ +static void normalize_task(struct rq *rq, struct task_struct *p) +{ +	const struct sched_class *prev_class = p->sched_class; +	struct sched_attr attr = { +		.sched_policy = SCHED_NORMAL, +	}; +	int old_prio = p->prio; +	int on_rq; + +	on_rq = p->on_rq; +	if (on_rq) +		dequeue_task(rq, p, 0); +	__setscheduler(rq, p, &attr); +	if (on_rq) { +		enqueue_task(rq, p, 0); +		resched_task(rq->curr); +	} + +	check_class_changed(rq, p, prev_class, old_prio); +} + +void normalize_rt_tasks(void) +{ +	struct task_struct *g, *p; +	unsigned long flags; +	struct rq *rq; + +	read_lock_irqsave(&tasklist_lock, flags); +	do_each_thread(g, p) { +		/* +		 * Only normalize user tasks: +		 */ +		if (!p->mm) +			continue; + +		p->se.exec_start		= 0; +#ifdef CONFIG_SCHEDSTATS +		p->se.statistics.wait_start	= 0; +		p->se.statistics.sleep_start	= 0; +		p->se.statistics.block_start	= 0; +#endif + +		if (!dl_task(p) && !rt_task(p)) { +			/* +			 * Renice negative nice level userspace +			 * tasks back to 0: +			 */ +			if (task_nice(p) < 0 && p->mm) +				set_user_nice(p, 0); +			continue; +		} + +		raw_spin_lock(&p->pi_lock); +		rq = __task_rq_lock(p); + +		normalize_task(rq, p); + +		__task_rq_unlock(rq); +		raw_spin_unlock(&p->pi_lock); +	} while_each_thread(g, p); + +	read_unlock_irqrestore(&tasklist_lock, flags); +} + +#endif /* CONFIG_MAGIC_SYSRQ */ + +#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) +/* + * These functions are only useful for the IA64 MCA handling, or kdb. + * + * They can only be called when the whole system has been + * stopped - every CPU needs to be quiescent, and no scheduling + * activity can take place. Using them for anything else would + * be a serious bug, and as a result, they aren't even visible + * under any other configuration. + */ + +/** + * curr_task - return the current task for a given cpu. + * @cpu: the processor in question. + * + * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! + * + * Return: The current task for @cpu. + */ +struct task_struct *curr_task(int cpu) +{ +	return cpu_curr(cpu); +} + +#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ + +#ifdef CONFIG_IA64 +/** + * set_curr_task - set the current task for a given cpu. + * @cpu: the processor in question. + * @p: the task pointer to set. + * + * Description: This function must only be used when non-maskable interrupts + * are serviced on a separate stack. It allows the architecture to switch the + * notion of the current task on a cpu in a non-blocking manner. This function + * must be called with all CPU's synchronized, and interrupts disabled, the + * and caller must save the original value of the current task (see + * curr_task() above) and restore that value before reenabling interrupts and + * re-starting the system. + * + * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! + */ +void set_curr_task(int cpu, struct task_struct *p) +{ +	cpu_curr(cpu) = p; +} + +#endif + +#ifdef CONFIG_CGROUP_SCHED +/* task_group_lock serializes the addition/removal of task groups */ +static DEFINE_SPINLOCK(task_group_lock); + +static void free_sched_group(struct task_group *tg) +{ +	free_fair_sched_group(tg); +	free_rt_sched_group(tg); +	autogroup_free(tg); +	kfree(tg); +} + +/* allocate runqueue etc for a new task group */ +struct task_group *sched_create_group(struct task_group *parent) +{ +	struct task_group *tg; + +	tg = kzalloc(sizeof(*tg), GFP_KERNEL); +	if (!tg) +		return ERR_PTR(-ENOMEM); + +	if (!alloc_fair_sched_group(tg, parent)) +		goto err; + +	if (!alloc_rt_sched_group(tg, parent)) +		goto err; + +	return tg; + +err: +	free_sched_group(tg); +	return ERR_PTR(-ENOMEM); +} + +void sched_online_group(struct task_group *tg, struct task_group *parent) +{ +	unsigned long flags; + +	spin_lock_irqsave(&task_group_lock, flags); +	list_add_rcu(&tg->list, &task_groups); + +	WARN_ON(!parent); /* root should already exist */ + +	tg->parent = parent; +	INIT_LIST_HEAD(&tg->children); +	list_add_rcu(&tg->siblings, &parent->children); +	spin_unlock_irqrestore(&task_group_lock, flags); +} + +/* rcu callback to free various structures associated with a task group */ +static void free_sched_group_rcu(struct rcu_head *rhp) +{ +	/* now it should be safe to free those cfs_rqs */ +	free_sched_group(container_of(rhp, struct task_group, rcu)); +} + +/* Destroy runqueue etc associated with a task group */ +void sched_destroy_group(struct task_group *tg) +{ +	/* wait for possible concurrent references to cfs_rqs complete */ +	call_rcu(&tg->rcu, free_sched_group_rcu); +} + +void sched_offline_group(struct task_group *tg) +{ +	unsigned long flags; +	int i; + +	/* end participation in shares distribution */ +	for_each_possible_cpu(i) +		unregister_fair_sched_group(tg, i); + +	spin_lock_irqsave(&task_group_lock, flags); +	list_del_rcu(&tg->list); +	list_del_rcu(&tg->siblings); +	spin_unlock_irqrestore(&task_group_lock, flags); +} + +/* change task's runqueue when it moves between groups. + *	The caller of this function should have put the task in its new group + *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to + *	reflect its new group. + */ +void sched_move_task(struct task_struct *tsk) +{ +	struct task_group *tg; +	int on_rq, running; +	unsigned long flags; +	struct rq *rq; + +	rq = task_rq_lock(tsk, &flags); + +	running = task_current(rq, tsk); +	on_rq = tsk->on_rq; + +	if (on_rq) +		dequeue_task(rq, tsk, 0); +	if (unlikely(running)) +		tsk->sched_class->put_prev_task(rq, tsk); + +	tg = container_of(task_css_check(tsk, cpu_cgrp_id, +				lockdep_is_held(&tsk->sighand->siglock)), +			  struct task_group, css); +	tg = autogroup_task_group(tsk, tg); +	tsk->sched_task_group = tg; + +#ifdef CONFIG_FAIR_GROUP_SCHED +	if (tsk->sched_class->task_move_group) +		tsk->sched_class->task_move_group(tsk, on_rq); +	else +#endif +		set_task_rq(tsk, task_cpu(tsk)); + +	if (unlikely(running)) +		tsk->sched_class->set_curr_task(rq); +	if (on_rq) +		enqueue_task(rq, tsk, 0); + +	task_rq_unlock(rq, tsk, &flags); +} +#endif /* CONFIG_CGROUP_SCHED */ + +#ifdef CONFIG_RT_GROUP_SCHED +/* + * Ensure that the real time constraints are schedulable. + */ +static DEFINE_MUTEX(rt_constraints_mutex); + +/* Must be called with tasklist_lock held */ +static inline int tg_has_rt_tasks(struct task_group *tg) +{ +	struct task_struct *g, *p; + +	do_each_thread(g, p) { +		if (rt_task(p) && task_rq(p)->rt.tg == tg) +			return 1; +	} while_each_thread(g, p); + +	return 0; +} + +struct rt_schedulable_data { +	struct task_group *tg; +	u64 rt_period; +	u64 rt_runtime; +}; + +static int tg_rt_schedulable(struct task_group *tg, void *data) +{ +	struct rt_schedulable_data *d = data; +	struct task_group *child; +	unsigned long total, sum = 0; +	u64 period, runtime; + +	period = ktime_to_ns(tg->rt_bandwidth.rt_period); +	runtime = tg->rt_bandwidth.rt_runtime; + +	if (tg == d->tg) { +		period = d->rt_period; +		runtime = d->rt_runtime; +	} + +	/* +	 * Cannot have more runtime than the period. +	 */ +	if (runtime > period && runtime != RUNTIME_INF) +		return -EINVAL; + +	/* +	 * Ensure we don't starve existing RT tasks. +	 */ +	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) +		return -EBUSY; + +	total = to_ratio(period, runtime); + +	/* +	 * Nobody can have more than the global setting allows. +	 */ +	if (total > to_ratio(global_rt_period(), global_rt_runtime())) +		return -EINVAL; + +	/* +	 * The sum of our children's runtime should not exceed our own. +	 */ +	list_for_each_entry_rcu(child, &tg->children, siblings) { +		period = ktime_to_ns(child->rt_bandwidth.rt_period); +		runtime = child->rt_bandwidth.rt_runtime; + +		if (child == d->tg) { +			period = d->rt_period; +			runtime = d->rt_runtime; +		} + +		sum += to_ratio(period, runtime); +	} + +	if (sum > total) +		return -EINVAL; + +	return 0; +} + +static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) +{ +	int ret; + +	struct rt_schedulable_data data = { +		.tg = tg, +		.rt_period = period, +		.rt_runtime = runtime, +	}; + +	rcu_read_lock(); +	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); +	rcu_read_unlock(); + +	return ret; +} + +static int tg_set_rt_bandwidth(struct task_group *tg, +		u64 rt_period, u64 rt_runtime) +{ +	int i, err = 0; + +	mutex_lock(&rt_constraints_mutex); +	read_lock(&tasklist_lock); +	err = __rt_schedulable(tg, rt_period, rt_runtime); +	if (err) +		goto unlock; + +	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); +	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); +	tg->rt_bandwidth.rt_runtime = rt_runtime; + +	for_each_possible_cpu(i) { +		struct rt_rq *rt_rq = tg->rt_rq[i]; + +		raw_spin_lock(&rt_rq->rt_runtime_lock); +		rt_rq->rt_runtime = rt_runtime; +		raw_spin_unlock(&rt_rq->rt_runtime_lock); +	} +	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); +unlock: +	read_unlock(&tasklist_lock); +	mutex_unlock(&rt_constraints_mutex); + +	return err; +} + +static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) +{ +	u64 rt_runtime, rt_period; + +	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); +	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; +	if (rt_runtime_us < 0) +		rt_runtime = RUNTIME_INF; + +	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); +} + +static long sched_group_rt_runtime(struct task_group *tg) +{ +	u64 rt_runtime_us; + +	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) +		return -1; + +	rt_runtime_us = tg->rt_bandwidth.rt_runtime; +	do_div(rt_runtime_us, NSEC_PER_USEC); +	return rt_runtime_us; +} + +static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) +{ +	u64 rt_runtime, rt_period; + +	rt_period = (u64)rt_period_us * NSEC_PER_USEC; +	rt_runtime = tg->rt_bandwidth.rt_runtime; + +	if (rt_period == 0) +		return -EINVAL; + +	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); +} + +static long sched_group_rt_period(struct task_group *tg) +{ +	u64 rt_period_us; + +	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); +	do_div(rt_period_us, NSEC_PER_USEC); +	return rt_period_us; +} +#endif /* CONFIG_RT_GROUP_SCHED */ + +#ifdef CONFIG_RT_GROUP_SCHED +static int sched_rt_global_constraints(void) +{ +	int ret = 0; + +	mutex_lock(&rt_constraints_mutex); +	read_lock(&tasklist_lock); +	ret = __rt_schedulable(NULL, 0, 0); +	read_unlock(&tasklist_lock); +	mutex_unlock(&rt_constraints_mutex); + +	return ret; +} + +static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) +{ +	/* Don't accept realtime tasks when there is no way for them to run */ +	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) +		return 0; + +	return 1; +} + +#else /* !CONFIG_RT_GROUP_SCHED */ +static int sched_rt_global_constraints(void) +{ +	unsigned long flags; +	int i, ret = 0; + +	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); +	for_each_possible_cpu(i) { +		struct rt_rq *rt_rq = &cpu_rq(i)->rt; + +		raw_spin_lock(&rt_rq->rt_runtime_lock); +		rt_rq->rt_runtime = global_rt_runtime(); +		raw_spin_unlock(&rt_rq->rt_runtime_lock); +	} +	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); + +	return ret; +} +#endif /* CONFIG_RT_GROUP_SCHED */ + +static int sched_dl_global_constraints(void) +{ +	u64 runtime = global_rt_runtime(); +	u64 period = global_rt_period(); +	u64 new_bw = to_ratio(period, runtime); +	int cpu, ret = 0; +	unsigned long flags; + +	/* +	 * Here we want to check the bandwidth not being set to some +	 * value smaller than the currently allocated bandwidth in +	 * any of the root_domains. +	 * +	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than +	 * cycling on root_domains... Discussion on different/better +	 * solutions is welcome! +	 */ +	for_each_possible_cpu(cpu) { +		struct dl_bw *dl_b = dl_bw_of(cpu); + +		raw_spin_lock_irqsave(&dl_b->lock, flags); +		if (new_bw < dl_b->total_bw) +			ret = -EBUSY; +		raw_spin_unlock_irqrestore(&dl_b->lock, flags); + +		if (ret) +			break; +	} + +	return ret; +} + +static void sched_dl_do_global(void) +{ +	u64 new_bw = -1; +	int cpu; +	unsigned long flags; + +	def_dl_bandwidth.dl_period = global_rt_period(); +	def_dl_bandwidth.dl_runtime = global_rt_runtime(); + +	if (global_rt_runtime() != RUNTIME_INF) +		new_bw = to_ratio(global_rt_period(), global_rt_runtime()); + +	/* +	 * FIXME: As above... +	 */ +	for_each_possible_cpu(cpu) { +		struct dl_bw *dl_b = dl_bw_of(cpu); + +		raw_spin_lock_irqsave(&dl_b->lock, flags); +		dl_b->bw = new_bw; +		raw_spin_unlock_irqrestore(&dl_b->lock, flags); +	} +} + +static int sched_rt_global_validate(void) +{ +	if (sysctl_sched_rt_period <= 0) +		return -EINVAL; + +	if ((sysctl_sched_rt_runtime != RUNTIME_INF) && +		(sysctl_sched_rt_runtime > sysctl_sched_rt_period)) +		return -EINVAL; + +	return 0; +} + +static void sched_rt_do_global(void) +{ +	def_rt_bandwidth.rt_runtime = global_rt_runtime(); +	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); +} + +int sched_rt_handler(struct ctl_table *table, int write, +		void __user *buffer, size_t *lenp, +		loff_t *ppos) +{ +	int old_period, old_runtime; +	static DEFINE_MUTEX(mutex); +	int ret; + +	mutex_lock(&mutex); +	old_period = sysctl_sched_rt_period; +	old_runtime = sysctl_sched_rt_runtime; + +	ret = proc_dointvec(table, write, buffer, lenp, ppos); + +	if (!ret && write) { +		ret = sched_rt_global_validate(); +		if (ret) +			goto undo; + +		ret = sched_rt_global_constraints(); +		if (ret) +			goto undo; + +		ret = sched_dl_global_constraints(); +		if (ret) +			goto undo; + +		sched_rt_do_global(); +		sched_dl_do_global(); +	} +	if (0) { +undo: +		sysctl_sched_rt_period = old_period; +		sysctl_sched_rt_runtime = old_runtime; +	} +	mutex_unlock(&mutex); + +	return ret; +} + +int sched_rr_handler(struct ctl_table *table, int write, +		void __user *buffer, size_t *lenp, +		loff_t *ppos) +{ +	int ret; +	static DEFINE_MUTEX(mutex); + +	mutex_lock(&mutex); +	ret = proc_dointvec(table, write, buffer, lenp, ppos); +	/* make sure that internally we keep jiffies */ +	/* also, writing zero resets timeslice to default */ +	if (!ret && write) { +		sched_rr_timeslice = sched_rr_timeslice <= 0 ? +			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); +	} +	mutex_unlock(&mutex); +	return ret; +} + +#ifdef CONFIG_CGROUP_SCHED + +static inline struct task_group *css_tg(struct cgroup_subsys_state *css) +{ +	return css ? container_of(css, struct task_group, css) : NULL; +} + +static struct cgroup_subsys_state * +cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) +{ +	struct task_group *parent = css_tg(parent_css); +	struct task_group *tg; + +	if (!parent) { +		/* This is early initialization for the top cgroup */ +		return &root_task_group.css; +	} + +	tg = sched_create_group(parent); +	if (IS_ERR(tg)) +		return ERR_PTR(-ENOMEM); + +	return &tg->css; +} + +static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) +{ +	struct task_group *tg = css_tg(css); +	struct task_group *parent = css_tg(css->parent); + +	if (parent) +		sched_online_group(tg, parent); +	return 0; +} + +static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) +{ +	struct task_group *tg = css_tg(css); + +	sched_destroy_group(tg); +} + +static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) +{ +	struct task_group *tg = css_tg(css); + +	sched_offline_group(tg); +} + +static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, +				 struct cgroup_taskset *tset) +{ +	struct task_struct *task; + +	cgroup_taskset_for_each(task, tset) { +#ifdef CONFIG_RT_GROUP_SCHED +		if (!sched_rt_can_attach(css_tg(css), task)) +			return -EINVAL; +#else +		/* We don't support RT-tasks being in separate groups */ +		if (task->sched_class != &fair_sched_class) +			return -EINVAL; +#endif +	} +	return 0; +} + +static void cpu_cgroup_attach(struct cgroup_subsys_state *css, +			      struct cgroup_taskset *tset) +{ +	struct task_struct *task; + +	cgroup_taskset_for_each(task, tset) +		sched_move_task(task); +} + +static void cpu_cgroup_exit(struct cgroup_subsys_state *css, +			    struct cgroup_subsys_state *old_css, +			    struct task_struct *task) +{ +	/* +	 * cgroup_exit() is called in the copy_process() failure path. +	 * Ignore this case since the task hasn't ran yet, this avoids +	 * trying to poke a half freed task state from generic code. +	 */ +	if (!(task->flags & PF_EXITING)) +		return; + +	sched_move_task(task); +} + +#ifdef CONFIG_FAIR_GROUP_SCHED +static int cpu_shares_write_u64(struct cgroup_subsys_state *css, +				struct cftype *cftype, u64 shareval) +{ +	return sched_group_set_shares(css_tg(css), scale_load(shareval)); +} + +static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, +			       struct cftype *cft) +{ +	struct task_group *tg = css_tg(css); + +	return (u64) scale_load_down(tg->shares); +} + +#ifdef CONFIG_CFS_BANDWIDTH +static DEFINE_MUTEX(cfs_constraints_mutex); + +const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ +const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ + +static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); + +static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) +{ +	int i, ret = 0, runtime_enabled, runtime_was_enabled; +	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; + +	if (tg == &root_task_group) +		return -EINVAL; + +	/* +	 * Ensure we have at some amount of bandwidth every period.  This is +	 * to prevent reaching a state of large arrears when throttled via +	 * entity_tick() resulting in prolonged exit starvation. +	 */ +	if (quota < min_cfs_quota_period || period < min_cfs_quota_period) +		return -EINVAL; + +	/* +	 * Likewise, bound things on the otherside by preventing insane quota +	 * periods.  This also allows us to normalize in computing quota +	 * feasibility. +	 */ +	if (period > max_cfs_quota_period) +		return -EINVAL; + +	mutex_lock(&cfs_constraints_mutex); +	ret = __cfs_schedulable(tg, period, quota); +	if (ret) +		goto out_unlock; + +	runtime_enabled = quota != RUNTIME_INF; +	runtime_was_enabled = cfs_b->quota != RUNTIME_INF; +	/* +	 * If we need to toggle cfs_bandwidth_used, off->on must occur +	 * before making related changes, and on->off must occur afterwards +	 */ +	if (runtime_enabled && !runtime_was_enabled) +		cfs_bandwidth_usage_inc(); +	raw_spin_lock_irq(&cfs_b->lock); +	cfs_b->period = ns_to_ktime(period); +	cfs_b->quota = quota; + +	__refill_cfs_bandwidth_runtime(cfs_b); +	/* restart the period timer (if active) to handle new period expiry */ +	if (runtime_enabled && cfs_b->timer_active) { +		/* force a reprogram */ +		__start_cfs_bandwidth(cfs_b, true); +	} +	raw_spin_unlock_irq(&cfs_b->lock); + +	for_each_possible_cpu(i) { +		struct cfs_rq *cfs_rq = tg->cfs_rq[i]; +		struct rq *rq = cfs_rq->rq; + +		raw_spin_lock_irq(&rq->lock); +		cfs_rq->runtime_enabled = runtime_enabled; +		cfs_rq->runtime_remaining = 0; + +		if (cfs_rq->throttled) +			unthrottle_cfs_rq(cfs_rq); +		raw_spin_unlock_irq(&rq->lock); +	} +	if (runtime_was_enabled && !runtime_enabled) +		cfs_bandwidth_usage_dec(); +out_unlock: +	mutex_unlock(&cfs_constraints_mutex); + +	return ret; +} + +int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) +{ +	u64 quota, period; + +	period = ktime_to_ns(tg->cfs_bandwidth.period); +	if (cfs_quota_us < 0) +		quota = RUNTIME_INF; +	else +		quota = (u64)cfs_quota_us * NSEC_PER_USEC; + +	return tg_set_cfs_bandwidth(tg, period, quota); +} + +long tg_get_cfs_quota(struct task_group *tg) +{ +	u64 quota_us; + +	if (tg->cfs_bandwidth.quota == RUNTIME_INF) +		return -1; + +	quota_us = tg->cfs_bandwidth.quota; +	do_div(quota_us, NSEC_PER_USEC); + +	return quota_us; +} + +int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) +{ +	u64 quota, period; + +	period = (u64)cfs_period_us * NSEC_PER_USEC; +	quota = tg->cfs_bandwidth.quota; + +	return tg_set_cfs_bandwidth(tg, period, quota); +} + +long tg_get_cfs_period(struct task_group *tg) +{ +	u64 cfs_period_us; + +	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); +	do_div(cfs_period_us, NSEC_PER_USEC); + +	return cfs_period_us; +} + +static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, +				  struct cftype *cft) +{ +	return tg_get_cfs_quota(css_tg(css)); +} + +static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, +				   struct cftype *cftype, s64 cfs_quota_us) +{ +	return tg_set_cfs_quota(css_tg(css), cfs_quota_us); +} + +static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, +				   struct cftype *cft) +{ +	return tg_get_cfs_period(css_tg(css)); +} + +static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, +				    struct cftype *cftype, u64 cfs_period_us) +{ +	return tg_set_cfs_period(css_tg(css), cfs_period_us); +} + +struct cfs_schedulable_data { +	struct task_group *tg; +	u64 period, quota; +}; + +/* + * normalize group quota/period to be quota/max_period + * note: units are usecs + */ +static u64 normalize_cfs_quota(struct task_group *tg, +			       struct cfs_schedulable_data *d) +{ +	u64 quota, period; + +	if (tg == d->tg) { +		period = d->period; +		quota = d->quota; +	} else { +		period = tg_get_cfs_period(tg); +		quota = tg_get_cfs_quota(tg); +	} + +	/* note: these should typically be equivalent */ +	if (quota == RUNTIME_INF || quota == -1) +		return RUNTIME_INF; + +	return to_ratio(period, quota); +} + +static int tg_cfs_schedulable_down(struct task_group *tg, void *data) +{ +	struct cfs_schedulable_data *d = data; +	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; +	s64 quota = 0, parent_quota = -1; + +	if (!tg->parent) { +		quota = RUNTIME_INF; +	} else { +		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; + +		quota = normalize_cfs_quota(tg, d); +		parent_quota = parent_b->hierarchal_quota; + +		/* +		 * ensure max(child_quota) <= parent_quota, inherit when no +		 * limit is set +		 */ +		if (quota == RUNTIME_INF) +			quota = parent_quota; +		else if (parent_quota != RUNTIME_INF && quota > parent_quota) +			return -EINVAL; +	} +	cfs_b->hierarchal_quota = quota; + +	return 0; +} + +static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) +{ +	int ret; +	struct cfs_schedulable_data data = { +		.tg = tg, +		.period = period, +		.quota = quota, +	}; + +	if (quota != RUNTIME_INF) { +		do_div(data.period, NSEC_PER_USEC); +		do_div(data.quota, NSEC_PER_USEC); +	} + +	rcu_read_lock(); +	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); +	rcu_read_unlock(); + +	return ret; +} + +static int cpu_stats_show(struct seq_file *sf, void *v) +{ +	struct task_group *tg = css_tg(seq_css(sf)); +	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; + +	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); +	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); +	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); + +	return 0; +} +#endif /* CONFIG_CFS_BANDWIDTH */ +#endif /* CONFIG_FAIR_GROUP_SCHED */ + +#ifdef CONFIG_RT_GROUP_SCHED +static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, +				struct cftype *cft, s64 val) +{ +	return sched_group_set_rt_runtime(css_tg(css), val); +} + +static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, +			       struct cftype *cft) +{ +	return sched_group_rt_runtime(css_tg(css)); +} + +static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, +				    struct cftype *cftype, u64 rt_period_us) +{ +	return sched_group_set_rt_period(css_tg(css), rt_period_us); +} + +static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, +				   struct cftype *cft) +{ +	return sched_group_rt_period(css_tg(css)); +} +#endif /* CONFIG_RT_GROUP_SCHED */ + +static struct cftype cpu_files[] = { +#ifdef CONFIG_FAIR_GROUP_SCHED +	{ +		.name = "shares", +		.read_u64 = cpu_shares_read_u64, +		.write_u64 = cpu_shares_write_u64, +	}, +#endif +#ifdef CONFIG_CFS_BANDWIDTH +	{ +		.name = "cfs_quota_us", +		.read_s64 = cpu_cfs_quota_read_s64, +		.write_s64 = cpu_cfs_quota_write_s64, +	}, +	{ +		.name = "cfs_period_us", +		.read_u64 = cpu_cfs_period_read_u64, +		.write_u64 = cpu_cfs_period_write_u64, +	}, +	{ +		.name = "stat", +		.seq_show = cpu_stats_show, +	}, +#endif +#ifdef CONFIG_RT_GROUP_SCHED +	{ +		.name = "rt_runtime_us", +		.read_s64 = cpu_rt_runtime_read, +		.write_s64 = cpu_rt_runtime_write, +	}, +	{ +		.name = "rt_period_us", +		.read_u64 = cpu_rt_period_read_uint, +		.write_u64 = cpu_rt_period_write_uint, +	}, +#endif +	{ }	/* terminate */ +}; + +struct cgroup_subsys cpu_cgrp_subsys = { +	.css_alloc	= cpu_cgroup_css_alloc, +	.css_free	= cpu_cgroup_css_free, +	.css_online	= cpu_cgroup_css_online, +	.css_offline	= cpu_cgroup_css_offline, +	.can_attach	= cpu_cgroup_can_attach, +	.attach		= cpu_cgroup_attach, +	.exit		= cpu_cgroup_exit, +	.base_cftypes	= cpu_files, +	.early_init	= 1, +}; + +#endif	/* CONFIG_CGROUP_SCHED */ + +void dump_cpu_task(int cpu) +{ +	pr_info("Task dump for CPU %d:\n", cpu); +	sched_show_task(cpu_curr(cpu)); +}  | 
