diff options
Diffstat (limited to 'kernel/sched.c')
| -rw-r--r-- | kernel/sched.c | 9403 | 
1 files changed, 0 insertions, 9403 deletions
diff --git a/kernel/sched.c b/kernel/sched.c deleted file mode 100644 index aa14a56f9d0..00000000000 --- a/kernel/sched.c +++ /dev/null @@ -1,9403 +0,0 @@ -/* - *  kernel/sched.c - * - *  Kernel scheduler and related syscalls - * - *  Copyright (C) 1991-2002  Linus Torvalds - * - *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and - *		make semaphores SMP safe - *  1998-11-19	Implemented schedule_timeout() and related stuff - *		by Andrea Arcangeli - *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar: - *		hybrid priority-list and round-robin design with - *		an array-switch method of distributing timeslices - *		and per-CPU runqueues.  Cleanups and useful suggestions - *		by Davide Libenzi, preemptible kernel bits by Robert Love. - *  2003-09-03	Interactivity tuning by Con Kolivas. - *  2004-04-02	Scheduler domains code by Nick Piggin - *  2007-04-15  Work begun on replacing all interactivity tuning with a - *              fair scheduling design by Con Kolivas. - *  2007-05-05  Load balancing (smp-nice) and other improvements - *              by Peter Williams - *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith - *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri - *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins, - *              Thomas Gleixner, Mike Kravetz - */ - -#include <linux/mm.h> -#include <linux/module.h> -#include <linux/nmi.h> -#include <linux/init.h> -#include <linux/uaccess.h> -#include <linux/highmem.h> -#include <linux/smp_lock.h> -#include <asm/mmu_context.h> -#include <linux/interrupt.h> -#include <linux/capability.h> -#include <linux/completion.h> -#include <linux/kernel_stat.h> -#include <linux/debug_locks.h> -#include <linux/perf_event.h> -#include <linux/security.h> -#include <linux/notifier.h> -#include <linux/profile.h> -#include <linux/freezer.h> -#include <linux/vmalloc.h> -#include <linux/blkdev.h> -#include <linux/delay.h> -#include <linux/pid_namespace.h> -#include <linux/smp.h> -#include <linux/threads.h> -#include <linux/timer.h> -#include <linux/rcupdate.h> -#include <linux/cpu.h> -#include <linux/cpuset.h> -#include <linux/percpu.h> -#include <linux/proc_fs.h> -#include <linux/seq_file.h> -#include <linux/stop_machine.h> -#include <linux/sysctl.h> -#include <linux/syscalls.h> -#include <linux/times.h> -#include <linux/tsacct_kern.h> -#include <linux/kprobes.h> -#include <linux/delayacct.h> -#include <linux/unistd.h> -#include <linux/pagemap.h> -#include <linux/hrtimer.h> -#include <linux/tick.h> -#include <linux/debugfs.h> -#include <linux/ctype.h> -#include <linux/ftrace.h> -#include <linux/slab.h> - -#include <asm/tlb.h> -#include <asm/irq_regs.h> - -#include "sched_cpupri.h" -#include "workqueue_sched.h" - -#define CREATE_TRACE_POINTS -#include <trace/events/sched.h> - -/* - * Convert user-nice values [ -20 ... 0 ... 19 ] - * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], - * and back. - */ -#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20) -#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20) -#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio) - -/* - * 'User priority' is the nice value converted to something we - * can work with better when scaling various scheduler parameters, - * it's a [ 0 ... 39 ] range. - */ -#define USER_PRIO(p)		((p)-MAX_RT_PRIO) -#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio) -#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO)) - -/* - * Helpers for converting nanosecond timing to jiffy resolution - */ -#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) - -#define NICE_0_LOAD		SCHED_LOAD_SCALE -#define NICE_0_SHIFT		SCHED_LOAD_SHIFT - -/* - * These are the 'tuning knobs' of the scheduler: - * - * default timeslice is 100 msecs (used only for SCHED_RR tasks). - * Timeslices get refilled after they expire. - */ -#define DEF_TIMESLICE		(100 * HZ / 1000) - -/* - * single value that denotes runtime == period, ie unlimited time. - */ -#define RUNTIME_INF	((u64)~0ULL) - -static inline int rt_policy(int policy) -{ -	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) -		return 1; -	return 0; -} - -static inline int task_has_rt_policy(struct task_struct *p) -{ -	return rt_policy(p->policy); -} - -/* - * This is the priority-queue data structure of the RT scheduling class: - */ -struct rt_prio_array { -	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ -	struct list_head queue[MAX_RT_PRIO]; -}; - -struct rt_bandwidth { -	/* nests inside the rq lock: */ -	raw_spinlock_t		rt_runtime_lock; -	ktime_t			rt_period; -	u64			rt_runtime; -	struct hrtimer		rt_period_timer; -}; - -static struct rt_bandwidth def_rt_bandwidth; - -static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); - -static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) -{ -	struct rt_bandwidth *rt_b = -		container_of(timer, struct rt_bandwidth, rt_period_timer); -	ktime_t now; -	int overrun; -	int idle = 0; - -	for (;;) { -		now = hrtimer_cb_get_time(timer); -		overrun = hrtimer_forward(timer, now, rt_b->rt_period); - -		if (!overrun) -			break; - -		idle = do_sched_rt_period_timer(rt_b, overrun); -	} - -	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; -} - -static -void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) -{ -	rt_b->rt_period = ns_to_ktime(period); -	rt_b->rt_runtime = runtime; - -	raw_spin_lock_init(&rt_b->rt_runtime_lock); - -	hrtimer_init(&rt_b->rt_period_timer, -			CLOCK_MONOTONIC, HRTIMER_MODE_REL); -	rt_b->rt_period_timer.function = sched_rt_period_timer; -} - -static inline int rt_bandwidth_enabled(void) -{ -	return sysctl_sched_rt_runtime >= 0; -} - -static void start_rt_bandwidth(struct rt_bandwidth *rt_b) -{ -	ktime_t now; - -	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) -		return; - -	if (hrtimer_active(&rt_b->rt_period_timer)) -		return; - -	raw_spin_lock(&rt_b->rt_runtime_lock); -	for (;;) { -		unsigned long delta; -		ktime_t soft, hard; - -		if (hrtimer_active(&rt_b->rt_period_timer)) -			break; - -		now = hrtimer_cb_get_time(&rt_b->rt_period_timer); -		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period); - -		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer); -		hard = hrtimer_get_expires(&rt_b->rt_period_timer); -		delta = ktime_to_ns(ktime_sub(hard, soft)); -		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta, -				HRTIMER_MODE_ABS_PINNED, 0); -	} -	raw_spin_unlock(&rt_b->rt_runtime_lock); -} - -#ifdef CONFIG_RT_GROUP_SCHED -static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) -{ -	hrtimer_cancel(&rt_b->rt_period_timer); -} -#endif - -/* - * sched_domains_mutex serializes calls to arch_init_sched_domains, - * detach_destroy_domains and partition_sched_domains. - */ -static DEFINE_MUTEX(sched_domains_mutex); - -#ifdef CONFIG_CGROUP_SCHED - -#include <linux/cgroup.h> - -struct cfs_rq; - -static LIST_HEAD(task_groups); - -/* task group related information */ -struct task_group { -	struct cgroup_subsys_state css; - -#ifdef CONFIG_FAIR_GROUP_SCHED -	/* schedulable entities of this group on each cpu */ -	struct sched_entity **se; -	/* runqueue "owned" by this group on each cpu */ -	struct cfs_rq **cfs_rq; -	unsigned long shares; -#endif - -#ifdef CONFIG_RT_GROUP_SCHED -	struct sched_rt_entity **rt_se; -	struct rt_rq **rt_rq; - -	struct rt_bandwidth rt_bandwidth; -#endif - -	struct rcu_head rcu; -	struct list_head list; - -	struct task_group *parent; -	struct list_head siblings; -	struct list_head children; -}; - -#define root_task_group init_task_group - -/* task_group_lock serializes add/remove of task groups and also changes to - * a task group's cpu shares. - */ -static DEFINE_SPINLOCK(task_group_lock); - -#ifdef CONFIG_FAIR_GROUP_SCHED - -#ifdef CONFIG_SMP -static int root_task_group_empty(void) -{ -	return list_empty(&root_task_group.children); -} -#endif - -# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD - -/* - * A weight of 0 or 1 can cause arithmetics problems. - * A weight of a cfs_rq is the sum of weights of which entities - * are queued on this cfs_rq, so a weight of a entity should not be - * too large, so as the shares value of a task group. - * (The default weight is 1024 - so there's no practical - *  limitation from this.) - */ -#define MIN_SHARES	2 -#define MAX_SHARES	(1UL << 18) - -static int init_task_group_load = INIT_TASK_GROUP_LOAD; -#endif - -/* Default task group. - *	Every task in system belong to this group at bootup. - */ -struct task_group init_task_group; - -#endif	/* CONFIG_CGROUP_SCHED */ - -/* CFS-related fields in a runqueue */ -struct cfs_rq { -	struct load_weight load; -	unsigned long nr_running; - -	u64 exec_clock; -	u64 min_vruntime; - -	struct rb_root tasks_timeline; -	struct rb_node *rb_leftmost; - -	struct list_head tasks; -	struct list_head *balance_iterator; - -	/* -	 * 'curr' points to currently running entity on this cfs_rq. -	 * It is set to NULL otherwise (i.e when none are currently running). -	 */ -	struct sched_entity *curr, *next, *last; - -	unsigned int nr_spread_over; - -#ifdef CONFIG_FAIR_GROUP_SCHED -	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */ - -	/* -	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in -	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities -	 * (like users, containers etc.) -	 * -	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This -	 * list is used during load balance. -	 */ -	struct list_head leaf_cfs_rq_list; -	struct task_group *tg;	/* group that "owns" this runqueue */ - -#ifdef CONFIG_SMP -	/* -	 * the part of load.weight contributed by tasks -	 */ -	unsigned long task_weight; - -	/* -	 *   h_load = weight * f(tg) -	 * -	 * Where f(tg) is the recursive weight fraction assigned to -	 * this group. -	 */ -	unsigned long h_load; - -	/* -	 * this cpu's part of tg->shares -	 */ -	unsigned long shares; - -	/* -	 * load.weight at the time we set shares -	 */ -	unsigned long rq_weight; -#endif -#endif -}; - -/* Real-Time classes' related field in a runqueue: */ -struct rt_rq { -	struct rt_prio_array active; -	unsigned long rt_nr_running; -#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED -	struct { -		int curr; /* highest queued rt task prio */ -#ifdef CONFIG_SMP -		int next; /* next highest */ -#endif -	} highest_prio; -#endif -#ifdef CONFIG_SMP -	unsigned long rt_nr_migratory; -	unsigned long rt_nr_total; -	int overloaded; -	struct plist_head pushable_tasks; -#endif -	int rt_throttled; -	u64 rt_time; -	u64 rt_runtime; -	/* Nests inside the rq lock: */ -	raw_spinlock_t rt_runtime_lock; - -#ifdef CONFIG_RT_GROUP_SCHED -	unsigned long rt_nr_boosted; - -	struct rq *rq; -	struct list_head leaf_rt_rq_list; -	struct task_group *tg; -#endif -}; - -#ifdef CONFIG_SMP - -/* - * We add the notion of a root-domain which will be used to define per-domain - * variables. Each exclusive cpuset essentially defines an island domain by - * fully partitioning the member cpus from any other cpuset. Whenever a new - * exclusive cpuset is created, we also create and attach a new root-domain - * object. - * - */ -struct root_domain { -	atomic_t refcount; -	cpumask_var_t span; -	cpumask_var_t online; - -	/* -	 * The "RT overload" flag: it gets set if a CPU has more than -	 * one runnable RT task. -	 */ -	cpumask_var_t rto_mask; -	atomic_t rto_count; -	struct cpupri cpupri; -}; - -/* - * By default the system creates a single root-domain with all cpus as - * members (mimicking the global state we have today). - */ -static struct root_domain def_root_domain; - -#endif /* CONFIG_SMP */ - -/* - * This is the main, per-CPU runqueue data structure. - * - * Locking rule: those places that want to lock multiple runqueues - * (such as the load balancing or the thread migration code), lock - * acquire operations must be ordered by ascending &runqueue. - */ -struct rq { -	/* runqueue lock: */ -	raw_spinlock_t lock; - -	/* -	 * nr_running and cpu_load should be in the same cacheline because -	 * remote CPUs use both these fields when doing load calculation. -	 */ -	unsigned long nr_running; -	#define CPU_LOAD_IDX_MAX 5 -	unsigned long cpu_load[CPU_LOAD_IDX_MAX]; -	unsigned long last_load_update_tick; -#ifdef CONFIG_NO_HZ -	u64 nohz_stamp; -	unsigned char nohz_balance_kick; -#endif -	unsigned int skip_clock_update; - -	/* capture load from *all* tasks on this cpu: */ -	struct load_weight load; -	unsigned long nr_load_updates; -	u64 nr_switches; - -	struct cfs_rq cfs; -	struct rt_rq rt; - -#ifdef CONFIG_FAIR_GROUP_SCHED -	/* list of leaf cfs_rq on this cpu: */ -	struct list_head leaf_cfs_rq_list; -#endif -#ifdef CONFIG_RT_GROUP_SCHED -	struct list_head leaf_rt_rq_list; -#endif - -	/* -	 * This is part of a global counter where only the total sum -	 * over all CPUs matters. A task can increase this counter on -	 * one CPU and if it got migrated afterwards it may decrease -	 * it on another CPU. Always updated under the runqueue lock: -	 */ -	unsigned long nr_uninterruptible; - -	struct task_struct *curr, *idle, *stop; -	unsigned long next_balance; -	struct mm_struct *prev_mm; - -	u64 clock; -	u64 clock_task; - -	atomic_t nr_iowait; - -#ifdef CONFIG_SMP -	struct root_domain *rd; -	struct sched_domain *sd; - -	unsigned long cpu_power; - -	unsigned char idle_at_tick; -	/* For active balancing */ -	int post_schedule; -	int active_balance; -	int push_cpu; -	struct cpu_stop_work active_balance_work; -	/* cpu of this runqueue: */ -	int cpu; -	int online; - -	unsigned long avg_load_per_task; - -	u64 rt_avg; -	u64 age_stamp; -	u64 idle_stamp; -	u64 avg_idle; -#endif - -#ifdef CONFIG_IRQ_TIME_ACCOUNTING -	u64 prev_irq_time; -#endif - -	/* calc_load related fields */ -	unsigned long calc_load_update; -	long calc_load_active; - -#ifdef CONFIG_SCHED_HRTICK -#ifdef CONFIG_SMP -	int hrtick_csd_pending; -	struct call_single_data hrtick_csd; -#endif -	struct hrtimer hrtick_timer; -#endif - -#ifdef CONFIG_SCHEDSTATS -	/* latency stats */ -	struct sched_info rq_sched_info; -	unsigned long long rq_cpu_time; -	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ - -	/* sys_sched_yield() stats */ -	unsigned int yld_count; - -	/* schedule() stats */ -	unsigned int sched_switch; -	unsigned int sched_count; -	unsigned int sched_goidle; - -	/* try_to_wake_up() stats */ -	unsigned int ttwu_count; -	unsigned int ttwu_local; - -	/* BKL stats */ -	unsigned int bkl_count; -#endif -}; - -static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); - -static inline -void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) -{ -	rq->curr->sched_class->check_preempt_curr(rq, p, flags); - -	/* -	 * A queue event has occurred, and we're going to schedule.  In -	 * this case, we can save a useless back to back clock update. -	 */ -	if (test_tsk_need_resched(p)) -		rq->skip_clock_update = 1; -} - -static inline int cpu_of(struct rq *rq) -{ -#ifdef CONFIG_SMP -	return rq->cpu; -#else -	return 0; -#endif -} - -#define rcu_dereference_check_sched_domain(p) \ -	rcu_dereference_check((p), \ -			      rcu_read_lock_sched_held() || \ -			      lockdep_is_held(&sched_domains_mutex)) - -/* - * The domain tree (rq->sd) is protected by RCU's quiescent state transition. - * See detach_destroy_domains: synchronize_sched for details. - * - * The domain tree of any CPU may only be accessed from within - * preempt-disabled sections. - */ -#define for_each_domain(cpu, __sd) \ -	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) - -#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu))) -#define this_rq()		(&__get_cpu_var(runqueues)) -#define task_rq(p)		cpu_rq(task_cpu(p)) -#define cpu_curr(cpu)		(cpu_rq(cpu)->curr) -#define raw_rq()		(&__raw_get_cpu_var(runqueues)) - -#ifdef CONFIG_CGROUP_SCHED - -/* - * Return the group to which this tasks belongs. - * - * We use task_subsys_state_check() and extend the RCU verification - * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach() - * holds that lock for each task it moves into the cgroup. Therefore - * by holding that lock, we pin the task to the current cgroup. - */ -static inline struct task_group *task_group(struct task_struct *p) -{ -	struct cgroup_subsys_state *css; - -	css = task_subsys_state_check(p, cpu_cgroup_subsys_id, -			lockdep_is_held(&task_rq(p)->lock)); -	return container_of(css, struct task_group, css); -} - -/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ -static inline void set_task_rq(struct task_struct *p, unsigned int cpu) -{ -#ifdef CONFIG_FAIR_GROUP_SCHED -	p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; -	p->se.parent = task_group(p)->se[cpu]; -#endif - -#ifdef CONFIG_RT_GROUP_SCHED -	p->rt.rt_rq  = task_group(p)->rt_rq[cpu]; -	p->rt.parent = task_group(p)->rt_se[cpu]; -#endif -} - -#else /* CONFIG_CGROUP_SCHED */ - -static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } -static inline struct task_group *task_group(struct task_struct *p) -{ -	return NULL; -} - -#endif /* CONFIG_CGROUP_SCHED */ - -static u64 irq_time_cpu(int cpu); -static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time); - -inline void update_rq_clock(struct rq *rq) -{ -	if (!rq->skip_clock_update) { -		int cpu = cpu_of(rq); -		u64 irq_time; - -		rq->clock = sched_clock_cpu(cpu); -		irq_time = irq_time_cpu(cpu); -		if (rq->clock - irq_time > rq->clock_task) -			rq->clock_task = rq->clock - irq_time; - -		sched_irq_time_avg_update(rq, irq_time); -	} -} - -/* - * Tunables that become constants when CONFIG_SCHED_DEBUG is off: - */ -#ifdef CONFIG_SCHED_DEBUG -# define const_debug __read_mostly -#else -# define const_debug static const -#endif - -/** - * runqueue_is_locked - * @cpu: the processor in question. - * - * Returns true if the current cpu runqueue is locked. - * This interface allows printk to be called with the runqueue lock - * held and know whether or not it is OK to wake up the klogd. - */ -int runqueue_is_locked(int cpu) -{ -	return raw_spin_is_locked(&cpu_rq(cpu)->lock); -} - -/* - * Debugging: various feature bits - */ - -#define SCHED_FEAT(name, enabled)	\ -	__SCHED_FEAT_##name , - -enum { -#include "sched_features.h" -}; - -#undef SCHED_FEAT - -#define SCHED_FEAT(name, enabled)	\ -	(1UL << __SCHED_FEAT_##name) * enabled | - -const_debug unsigned int sysctl_sched_features = -#include "sched_features.h" -	0; - -#undef SCHED_FEAT - -#ifdef CONFIG_SCHED_DEBUG -#define SCHED_FEAT(name, enabled)	\ -	#name , - -static __read_mostly char *sched_feat_names[] = { -#include "sched_features.h" -	NULL -}; - -#undef SCHED_FEAT - -static int sched_feat_show(struct seq_file *m, void *v) -{ -	int i; - -	for (i = 0; sched_feat_names[i]; i++) { -		if (!(sysctl_sched_features & (1UL << i))) -			seq_puts(m, "NO_"); -		seq_printf(m, "%s ", sched_feat_names[i]); -	} -	seq_puts(m, "\n"); - -	return 0; -} - -static ssize_t -sched_feat_write(struct file *filp, const char __user *ubuf, -		size_t cnt, loff_t *ppos) -{ -	char buf[64]; -	char *cmp; -	int neg = 0; -	int i; - -	if (cnt > 63) -		cnt = 63; - -	if (copy_from_user(&buf, ubuf, cnt)) -		return -EFAULT; - -	buf[cnt] = 0; -	cmp = strstrip(buf); - -	if (strncmp(buf, "NO_", 3) == 0) { -		neg = 1; -		cmp += 3; -	} - -	for (i = 0; sched_feat_names[i]; i++) { -		if (strcmp(cmp, sched_feat_names[i]) == 0) { -			if (neg) -				sysctl_sched_features &= ~(1UL << i); -			else -				sysctl_sched_features |= (1UL << i); -			break; -		} -	} - -	if (!sched_feat_names[i]) -		return -EINVAL; - -	*ppos += cnt; - -	return cnt; -} - -static int sched_feat_open(struct inode *inode, struct file *filp) -{ -	return single_open(filp, sched_feat_show, NULL); -} - -static const struct file_operations sched_feat_fops = { -	.open		= sched_feat_open, -	.write		= sched_feat_write, -	.read		= seq_read, -	.llseek		= seq_lseek, -	.release	= single_release, -}; - -static __init int sched_init_debug(void) -{ -	debugfs_create_file("sched_features", 0644, NULL, NULL, -			&sched_feat_fops); - -	return 0; -} -late_initcall(sched_init_debug); - -#endif - -#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) - -/* - * Number of tasks to iterate in a single balance run. - * Limited because this is done with IRQs disabled. - */ -const_debug unsigned int sysctl_sched_nr_migrate = 32; - -/* - * ratelimit for updating the group shares. - * default: 0.25ms - */ -unsigned int sysctl_sched_shares_ratelimit = 250000; -unsigned int normalized_sysctl_sched_shares_ratelimit = 250000; - -/* - * Inject some fuzzyness into changing the per-cpu group shares - * this avoids remote rq-locks at the expense of fairness. - * default: 4 - */ -unsigned int sysctl_sched_shares_thresh = 4; - -/* - * period over which we average the RT time consumption, measured - * in ms. - * - * default: 1s - */ -const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; - -/* - * period over which we measure -rt task cpu usage in us. - * default: 1s - */ -unsigned int sysctl_sched_rt_period = 1000000; - -static __read_mostly int scheduler_running; - -/* - * part of the period that we allow rt tasks to run in us. - * default: 0.95s - */ -int sysctl_sched_rt_runtime = 950000; - -static inline u64 global_rt_period(void) -{ -	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; -} - -static inline u64 global_rt_runtime(void) -{ -	if (sysctl_sched_rt_runtime < 0) -		return RUNTIME_INF; - -	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; -} - -#ifndef prepare_arch_switch -# define prepare_arch_switch(next)	do { } while (0) -#endif -#ifndef finish_arch_switch -# define finish_arch_switch(prev)	do { } while (0) -#endif - -static inline int task_current(struct rq *rq, struct task_struct *p) -{ -	return rq->curr == p; -} - -#ifndef __ARCH_WANT_UNLOCKED_CTXSW -static inline int task_running(struct rq *rq, struct task_struct *p) -{ -	return task_current(rq, p); -} - -static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) -{ -} - -static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) -{ -#ifdef CONFIG_DEBUG_SPINLOCK -	/* this is a valid case when another task releases the spinlock */ -	rq->lock.owner = current; -#endif -	/* -	 * If we are tracking spinlock dependencies then we have to -	 * fix up the runqueue lock - which gets 'carried over' from -	 * prev into current: -	 */ -	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); - -	raw_spin_unlock_irq(&rq->lock); -} - -#else /* __ARCH_WANT_UNLOCKED_CTXSW */ -static inline int task_running(struct rq *rq, struct task_struct *p) -{ -#ifdef CONFIG_SMP -	return p->oncpu; -#else -	return task_current(rq, p); -#endif -} - -static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) -{ -#ifdef CONFIG_SMP -	/* -	 * We can optimise this out completely for !SMP, because the -	 * SMP rebalancing from interrupt is the only thing that cares -	 * here. -	 */ -	next->oncpu = 1; -#endif -#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW -	raw_spin_unlock_irq(&rq->lock); -#else -	raw_spin_unlock(&rq->lock); -#endif -} - -static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) -{ -#ifdef CONFIG_SMP -	/* -	 * After ->oncpu is cleared, the task can be moved to a different CPU. -	 * We must ensure this doesn't happen until the switch is completely -	 * finished. -	 */ -	smp_wmb(); -	prev->oncpu = 0; -#endif -#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW -	local_irq_enable(); -#endif -} -#endif /* __ARCH_WANT_UNLOCKED_CTXSW */ - -/* - * Check whether the task is waking, we use this to synchronize ->cpus_allowed - * against ttwu(). - */ -static inline int task_is_waking(struct task_struct *p) -{ -	return unlikely(p->state == TASK_WAKING); -} - -/* - * __task_rq_lock - lock the runqueue a given task resides on. - * Must be called interrupts disabled. - */ -static inline struct rq *__task_rq_lock(struct task_struct *p) -	__acquires(rq->lock) -{ -	struct rq *rq; - -	for (;;) { -		rq = task_rq(p); -		raw_spin_lock(&rq->lock); -		if (likely(rq == task_rq(p))) -			return rq; -		raw_spin_unlock(&rq->lock); -	} -} - -/* - * task_rq_lock - lock the runqueue a given task resides on and disable - * interrupts. Note the ordering: we can safely lookup the task_rq without - * explicitly disabling preemption. - */ -static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) -	__acquires(rq->lock) -{ -	struct rq *rq; - -	for (;;) { -		local_irq_save(*flags); -		rq = task_rq(p); -		raw_spin_lock(&rq->lock); -		if (likely(rq == task_rq(p))) -			return rq; -		raw_spin_unlock_irqrestore(&rq->lock, *flags); -	} -} - -static void __task_rq_unlock(struct rq *rq) -	__releases(rq->lock) -{ -	raw_spin_unlock(&rq->lock); -} - -static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) -	__releases(rq->lock) -{ -	raw_spin_unlock_irqrestore(&rq->lock, *flags); -} - -/* - * this_rq_lock - lock this runqueue and disable interrupts. - */ -static struct rq *this_rq_lock(void) -	__acquires(rq->lock) -{ -	struct rq *rq; - -	local_irq_disable(); -	rq = this_rq(); -	raw_spin_lock(&rq->lock); - -	return rq; -} - -#ifdef CONFIG_SCHED_HRTICK -/* - * Use HR-timers to deliver accurate preemption points. - * - * Its all a bit involved since we cannot program an hrt while holding the - * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a - * reschedule event. - * - * When we get rescheduled we reprogram the hrtick_timer outside of the - * rq->lock. - */ - -/* - * Use hrtick when: - *  - enabled by features - *  - hrtimer is actually high res - */ -static inline int hrtick_enabled(struct rq *rq) -{ -	if (!sched_feat(HRTICK)) -		return 0; -	if (!cpu_active(cpu_of(rq))) -		return 0; -	return hrtimer_is_hres_active(&rq->hrtick_timer); -} - -static void hrtick_clear(struct rq *rq) -{ -	if (hrtimer_active(&rq->hrtick_timer)) -		hrtimer_cancel(&rq->hrtick_timer); -} - -/* - * High-resolution timer tick. - * Runs from hardirq context with interrupts disabled. - */ -static enum hrtimer_restart hrtick(struct hrtimer *timer) -{ -	struct rq *rq = container_of(timer, struct rq, hrtick_timer); - -	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); - -	raw_spin_lock(&rq->lock); -	update_rq_clock(rq); -	rq->curr->sched_class->task_tick(rq, rq->curr, 1); -	raw_spin_unlock(&rq->lock); - -	return HRTIMER_NORESTART; -} - -#ifdef CONFIG_SMP -/* - * called from hardirq (IPI) context - */ -static void __hrtick_start(void *arg) -{ -	struct rq *rq = arg; - -	raw_spin_lock(&rq->lock); -	hrtimer_restart(&rq->hrtick_timer); -	rq->hrtick_csd_pending = 0; -	raw_spin_unlock(&rq->lock); -} - -/* - * Called to set the hrtick timer state. - * - * called with rq->lock held and irqs disabled - */ -static void hrtick_start(struct rq *rq, u64 delay) -{ -	struct hrtimer *timer = &rq->hrtick_timer; -	ktime_t time = ktime_add_ns(timer->base->get_time(), delay); - -	hrtimer_set_expires(timer, time); - -	if (rq == this_rq()) { -		hrtimer_restart(timer); -	} else if (!rq->hrtick_csd_pending) { -		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); -		rq->hrtick_csd_pending = 1; -	} -} - -static int -hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) -{ -	int cpu = (int)(long)hcpu; - -	switch (action) { -	case CPU_UP_CANCELED: -	case CPU_UP_CANCELED_FROZEN: -	case CPU_DOWN_PREPARE: -	case CPU_DOWN_PREPARE_FROZEN: -	case CPU_DEAD: -	case CPU_DEAD_FROZEN: -		hrtick_clear(cpu_rq(cpu)); -		return NOTIFY_OK; -	} - -	return NOTIFY_DONE; -} - -static __init void init_hrtick(void) -{ -	hotcpu_notifier(hotplug_hrtick, 0); -} -#else -/* - * Called to set the hrtick timer state. - * - * called with rq->lock held and irqs disabled - */ -static void hrtick_start(struct rq *rq, u64 delay) -{ -	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, -			HRTIMER_MODE_REL_PINNED, 0); -} - -static inline void init_hrtick(void) -{ -} -#endif /* CONFIG_SMP */ - -static void init_rq_hrtick(struct rq *rq) -{ -#ifdef CONFIG_SMP -	rq->hrtick_csd_pending = 0; - -	rq->hrtick_csd.flags = 0; -	rq->hrtick_csd.func = __hrtick_start; -	rq->hrtick_csd.info = rq; -#endif - -	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); -	rq->hrtick_timer.function = hrtick; -} -#else	/* CONFIG_SCHED_HRTICK */ -static inline void hrtick_clear(struct rq *rq) -{ -} - -static inline void init_rq_hrtick(struct rq *rq) -{ -} - -static inline void init_hrtick(void) -{ -} -#endif	/* CONFIG_SCHED_HRTICK */ - -/* - * resched_task - mark a task 'to be rescheduled now'. - * - * On UP this means the setting of the need_resched flag, on SMP it - * might also involve a cross-CPU call to trigger the scheduler on - * the target CPU. - */ -#ifdef CONFIG_SMP - -#ifndef tsk_is_polling -#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) -#endif - -static void resched_task(struct task_struct *p) -{ -	int cpu; - -	assert_raw_spin_locked(&task_rq(p)->lock); - -	if (test_tsk_need_resched(p)) -		return; - -	set_tsk_need_resched(p); - -	cpu = task_cpu(p); -	if (cpu == smp_processor_id()) -		return; - -	/* NEED_RESCHED must be visible before we test polling */ -	smp_mb(); -	if (!tsk_is_polling(p)) -		smp_send_reschedule(cpu); -} - -static void resched_cpu(int cpu) -{ -	struct rq *rq = cpu_rq(cpu); -	unsigned long flags; - -	if (!raw_spin_trylock_irqsave(&rq->lock, flags)) -		return; -	resched_task(cpu_curr(cpu)); -	raw_spin_unlock_irqrestore(&rq->lock, flags); -} - -#ifdef CONFIG_NO_HZ -/* - * In the semi idle case, use the nearest busy cpu for migrating timers - * from an idle cpu.  This is good for power-savings. - * - * We don't do similar optimization for completely idle system, as - * selecting an idle cpu will add more delays to the timers than intended - * (as that cpu's timer base may not be uptodate wrt jiffies etc). - */ -int get_nohz_timer_target(void) -{ -	int cpu = smp_processor_id(); -	int i; -	struct sched_domain *sd; - -	for_each_domain(cpu, sd) { -		for_each_cpu(i, sched_domain_span(sd)) -			if (!idle_cpu(i)) -				return i; -	} -	return cpu; -} -/* - * When add_timer_on() enqueues a timer into the timer wheel of an - * idle CPU then this timer might expire before the next timer event - * which is scheduled to wake up that CPU. In case of a completely - * idle system the next event might even be infinite time into the - * future. wake_up_idle_cpu() ensures that the CPU is woken up and - * leaves the inner idle loop so the newly added timer is taken into - * account when the CPU goes back to idle and evaluates the timer - * wheel for the next timer event. - */ -void wake_up_idle_cpu(int cpu) -{ -	struct rq *rq = cpu_rq(cpu); - -	if (cpu == smp_processor_id()) -		return; - -	/* -	 * This is safe, as this function is called with the timer -	 * wheel base lock of (cpu) held. When the CPU is on the way -	 * to idle and has not yet set rq->curr to idle then it will -	 * be serialized on the timer wheel base lock and take the new -	 * timer into account automatically. -	 */ -	if (rq->curr != rq->idle) -		return; - -	/* -	 * We can set TIF_RESCHED on the idle task of the other CPU -	 * lockless. The worst case is that the other CPU runs the -	 * idle task through an additional NOOP schedule() -	 */ -	set_tsk_need_resched(rq->idle); - -	/* NEED_RESCHED must be visible before we test polling */ -	smp_mb(); -	if (!tsk_is_polling(rq->idle)) -		smp_send_reschedule(cpu); -} - -#endif /* CONFIG_NO_HZ */ - -static u64 sched_avg_period(void) -{ -	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; -} - -static void sched_avg_update(struct rq *rq) -{ -	s64 period = sched_avg_period(); - -	while ((s64)(rq->clock - rq->age_stamp) > period) { -		/* -		 * Inline assembly required to prevent the compiler -		 * optimising this loop into a divmod call. -		 * See __iter_div_u64_rem() for another example of this. -		 */ -		asm("" : "+rm" (rq->age_stamp)); -		rq->age_stamp += period; -		rq->rt_avg /= 2; -	} -} - -static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) -{ -	rq->rt_avg += rt_delta; -	sched_avg_update(rq); -} - -#else /* !CONFIG_SMP */ -static void resched_task(struct task_struct *p) -{ -	assert_raw_spin_locked(&task_rq(p)->lock); -	set_tsk_need_resched(p); -} - -static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) -{ -} - -static void sched_avg_update(struct rq *rq) -{ -} -#endif /* CONFIG_SMP */ - -#if BITS_PER_LONG == 32 -# define WMULT_CONST	(~0UL) -#else -# define WMULT_CONST	(1UL << 32) -#endif - -#define WMULT_SHIFT	32 - -/* - * Shift right and round: - */ -#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) - -/* - * delta *= weight / lw - */ -static unsigned long -calc_delta_mine(unsigned long delta_exec, unsigned long weight, -		struct load_weight *lw) -{ -	u64 tmp; - -	if (!lw->inv_weight) { -		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST)) -			lw->inv_weight = 1; -		else -			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2) -				/ (lw->weight+1); -	} - -	tmp = (u64)delta_exec * weight; -	/* -	 * Check whether we'd overflow the 64-bit multiplication: -	 */ -	if (unlikely(tmp > WMULT_CONST)) -		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, -			WMULT_SHIFT/2); -	else -		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); - -	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); -} - -static inline void update_load_add(struct load_weight *lw, unsigned long inc) -{ -	lw->weight += inc; -	lw->inv_weight = 0; -} - -static inline void update_load_sub(struct load_weight *lw, unsigned long dec) -{ -	lw->weight -= dec; -	lw->inv_weight = 0; -} - -/* - * To aid in avoiding the subversion of "niceness" due to uneven distribution - * of tasks with abnormal "nice" values across CPUs the contribution that - * each task makes to its run queue's load is weighted according to its - * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a - * scaled version of the new time slice allocation that they receive on time - * slice expiry etc. - */ - -#define WEIGHT_IDLEPRIO                3 -#define WMULT_IDLEPRIO         1431655765 - -/* - * Nice levels are multiplicative, with a gentle 10% change for every - * nice level changed. I.e. when a CPU-bound task goes from nice 0 to - * nice 1, it will get ~10% less CPU time than another CPU-bound task - * that remained on nice 0. - * - * The "10% effect" is relative and cumulative: from _any_ nice level, - * if you go up 1 level, it's -10% CPU usage, if you go down 1 level - * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. - * If a task goes up by ~10% and another task goes down by ~10% then - * the relative distance between them is ~25%.) - */ -static const int prio_to_weight[40] = { - /* -20 */     88761,     71755,     56483,     46273,     36291, - /* -15 */     29154,     23254,     18705,     14949,     11916, - /* -10 */      9548,      7620,      6100,      4904,      3906, - /*  -5 */      3121,      2501,      1991,      1586,      1277, - /*   0 */      1024,       820,       655,       526,       423, - /*   5 */       335,       272,       215,       172,       137, - /*  10 */       110,        87,        70,        56,        45, - /*  15 */        36,        29,        23,        18,        15, -}; - -/* - * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. - * - * In cases where the weight does not change often, we can use the - * precalculated inverse to speed up arithmetics by turning divisions - * into multiplications: - */ -static const u32 prio_to_wmult[40] = { - /* -20 */     48388,     59856,     76040,     92818,    118348, - /* -15 */    147320,    184698,    229616,    287308,    360437, - /* -10 */    449829,    563644,    704093,    875809,   1099582, - /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326, - /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587, - /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126, - /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717, - /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153, -}; - -/* Time spent by the tasks of the cpu accounting group executing in ... */ -enum cpuacct_stat_index { -	CPUACCT_STAT_USER,	/* ... user mode */ -	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */ - -	CPUACCT_STAT_NSTATS, -}; - -#ifdef CONFIG_CGROUP_CPUACCT -static void cpuacct_charge(struct task_struct *tsk, u64 cputime); -static void cpuacct_update_stats(struct task_struct *tsk, -		enum cpuacct_stat_index idx, cputime_t val); -#else -static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} -static inline void cpuacct_update_stats(struct task_struct *tsk, -		enum cpuacct_stat_index idx, cputime_t val) {} -#endif - -static inline void inc_cpu_load(struct rq *rq, unsigned long load) -{ -	update_load_add(&rq->load, load); -} - -static inline void dec_cpu_load(struct rq *rq, unsigned long load) -{ -	update_load_sub(&rq->load, load); -} - -#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED) -typedef int (*tg_visitor)(struct task_group *, void *); - -/* - * Iterate the full tree, calling @down when first entering a node and @up when - * leaving it for the final time. - */ -static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) -{ -	struct task_group *parent, *child; -	int ret; - -	rcu_read_lock(); -	parent = &root_task_group; -down: -	ret = (*down)(parent, data); -	if (ret) -		goto out_unlock; -	list_for_each_entry_rcu(child, &parent->children, siblings) { -		parent = child; -		goto down; - -up: -		continue; -	} -	ret = (*up)(parent, data); -	if (ret) -		goto out_unlock; - -	child = parent; -	parent = parent->parent; -	if (parent) -		goto up; -out_unlock: -	rcu_read_unlock(); - -	return ret; -} - -static int tg_nop(struct task_group *tg, void *data) -{ -	return 0; -} -#endif - -#ifdef CONFIG_SMP -/* Used instead of source_load when we know the type == 0 */ -static unsigned long weighted_cpuload(const int cpu) -{ -	return cpu_rq(cpu)->load.weight; -} - -/* - * Return a low guess at the load of a migration-source cpu weighted - * according to the scheduling class and "nice" value. - * - * We want to under-estimate the load of migration sources, to - * balance conservatively. - */ -static unsigned long source_load(int cpu, int type) -{ -	struct rq *rq = cpu_rq(cpu); -	unsigned long total = weighted_cpuload(cpu); - -	if (type == 0 || !sched_feat(LB_BIAS)) -		return total; - -	return min(rq->cpu_load[type-1], total); -} - -/* - * Return a high guess at the load of a migration-target cpu weighted - * according to the scheduling class and "nice" value. - */ -static unsigned long target_load(int cpu, int type) -{ -	struct rq *rq = cpu_rq(cpu); -	unsigned long total = weighted_cpuload(cpu); - -	if (type == 0 || !sched_feat(LB_BIAS)) -		return total; - -	return max(rq->cpu_load[type-1], total); -} - -static unsigned long power_of(int cpu) -{ -	return cpu_rq(cpu)->cpu_power; -} - -static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); - -static unsigned long cpu_avg_load_per_task(int cpu) -{ -	struct rq *rq = cpu_rq(cpu); -	unsigned long nr_running = ACCESS_ONCE(rq->nr_running); - -	if (nr_running) -		rq->avg_load_per_task = rq->load.weight / nr_running; -	else -		rq->avg_load_per_task = 0; - -	return rq->avg_load_per_task; -} - -#ifdef CONFIG_FAIR_GROUP_SCHED - -static __read_mostly unsigned long __percpu *update_shares_data; - -static void __set_se_shares(struct sched_entity *se, unsigned long shares); - -/* - * Calculate and set the cpu's group shares. - */ -static void update_group_shares_cpu(struct task_group *tg, int cpu, -				    unsigned long sd_shares, -				    unsigned long sd_rq_weight, -				    unsigned long *usd_rq_weight) -{ -	unsigned long shares, rq_weight; -	int boost = 0; - -	rq_weight = usd_rq_weight[cpu]; -	if (!rq_weight) { -		boost = 1; -		rq_weight = NICE_0_LOAD; -	} - -	/* -	 *             \Sum_j shares_j * rq_weight_i -	 * shares_i =  ----------------------------- -	 *                  \Sum_j rq_weight_j -	 */ -	shares = (sd_shares * rq_weight) / sd_rq_weight; -	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); - -	if (abs(shares - tg->se[cpu]->load.weight) > -			sysctl_sched_shares_thresh) { -		struct rq *rq = cpu_rq(cpu); -		unsigned long flags; - -		raw_spin_lock_irqsave(&rq->lock, flags); -		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight; -		tg->cfs_rq[cpu]->shares = boost ? 0 : shares; -		__set_se_shares(tg->se[cpu], shares); -		raw_spin_unlock_irqrestore(&rq->lock, flags); -	} -} - -/* - * Re-compute the task group their per cpu shares over the given domain. - * This needs to be done in a bottom-up fashion because the rq weight of a - * parent group depends on the shares of its child groups. - */ -static int tg_shares_up(struct task_group *tg, void *data) -{ -	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0; -	unsigned long *usd_rq_weight; -	struct sched_domain *sd = data; -	unsigned long flags; -	int i; - -	if (!tg->se[0]) -		return 0; - -	local_irq_save(flags); -	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id()); - -	for_each_cpu(i, sched_domain_span(sd)) { -		weight = tg->cfs_rq[i]->load.weight; -		usd_rq_weight[i] = weight; - -		rq_weight += weight; -		/* -		 * If there are currently no tasks on the cpu pretend there -		 * is one of average load so that when a new task gets to -		 * run here it will not get delayed by group starvation. -		 */ -		if (!weight) -			weight = NICE_0_LOAD; - -		sum_weight += weight; -		shares += tg->cfs_rq[i]->shares; -	} - -	if (!rq_weight) -		rq_weight = sum_weight; - -	if ((!shares && rq_weight) || shares > tg->shares) -		shares = tg->shares; - -	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE)) -		shares = tg->shares; - -	for_each_cpu(i, sched_domain_span(sd)) -		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight); - -	local_irq_restore(flags); - -	return 0; -} - -/* - * Compute the cpu's hierarchical load factor for each task group. - * This needs to be done in a top-down fashion because the load of a child - * group is a fraction of its parents load. - */ -static int tg_load_down(struct task_group *tg, void *data) -{ -	unsigned long load; -	long cpu = (long)data; - -	if (!tg->parent) { -		load = cpu_rq(cpu)->load.weight; -	} else { -		load = tg->parent->cfs_rq[cpu]->h_load; -		load *= tg->cfs_rq[cpu]->shares; -		load /= tg->parent->cfs_rq[cpu]->load.weight + 1; -	} - -	tg->cfs_rq[cpu]->h_load = load; - -	return 0; -} - -static void update_shares(struct sched_domain *sd) -{ -	s64 elapsed; -	u64 now; - -	if (root_task_group_empty()) -		return; - -	now = local_clock(); -	elapsed = now - sd->last_update; - -	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { -		sd->last_update = now; -		walk_tg_tree(tg_nop, tg_shares_up, sd); -	} -} - -static void update_h_load(long cpu) -{ -	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); -} - -#else - -static inline void update_shares(struct sched_domain *sd) -{ -} - -#endif - -#ifdef CONFIG_PREEMPT - -static void double_rq_lock(struct rq *rq1, struct rq *rq2); - -/* - * fair double_lock_balance: Safely acquires both rq->locks in a fair - * way at the expense of forcing extra atomic operations in all - * invocations.  This assures that the double_lock is acquired using the - * same underlying policy as the spinlock_t on this architecture, which - * reduces latency compared to the unfair variant below.  However, it - * also adds more overhead and therefore may reduce throughput. - */ -static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) -	__releases(this_rq->lock) -	__acquires(busiest->lock) -	__acquires(this_rq->lock) -{ -	raw_spin_unlock(&this_rq->lock); -	double_rq_lock(this_rq, busiest); - -	return 1; -} - -#else -/* - * Unfair double_lock_balance: Optimizes throughput at the expense of - * latency by eliminating extra atomic operations when the locks are - * already in proper order on entry.  This favors lower cpu-ids and will - * grant the double lock to lower cpus over higher ids under contention, - * regardless of entry order into the function. - */ -static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) -	__releases(this_rq->lock) -	__acquires(busiest->lock) -	__acquires(this_rq->lock) -{ -	int ret = 0; - -	if (unlikely(!raw_spin_trylock(&busiest->lock))) { -		if (busiest < this_rq) { -			raw_spin_unlock(&this_rq->lock); -			raw_spin_lock(&busiest->lock); -			raw_spin_lock_nested(&this_rq->lock, -					      SINGLE_DEPTH_NESTING); -			ret = 1; -		} else -			raw_spin_lock_nested(&busiest->lock, -					      SINGLE_DEPTH_NESTING); -	} -	return ret; -} - -#endif /* CONFIG_PREEMPT */ - -/* - * double_lock_balance - lock the busiest runqueue, this_rq is locked already. - */ -static int double_lock_balance(struct rq *this_rq, struct rq *busiest) -{ -	if (unlikely(!irqs_disabled())) { -		/* printk() doesn't work good under rq->lock */ -		raw_spin_unlock(&this_rq->lock); -		BUG_ON(1); -	} - -	return _double_lock_balance(this_rq, busiest); -} - -static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) -	__releases(busiest->lock) -{ -	raw_spin_unlock(&busiest->lock); -	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); -} - -/* - * double_rq_lock - safely lock two runqueues - * - * Note this does not disable interrupts like task_rq_lock, - * you need to do so manually before calling. - */ -static void double_rq_lock(struct rq *rq1, struct rq *rq2) -	__acquires(rq1->lock) -	__acquires(rq2->lock) -{ -	BUG_ON(!irqs_disabled()); -	if (rq1 == rq2) { -		raw_spin_lock(&rq1->lock); -		__acquire(rq2->lock);	/* Fake it out ;) */ -	} else { -		if (rq1 < rq2) { -			raw_spin_lock(&rq1->lock); -			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); -		} else { -			raw_spin_lock(&rq2->lock); -			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); -		} -	} -} - -/* - * double_rq_unlock - safely unlock two runqueues - * - * Note this does not restore interrupts like task_rq_unlock, - * you need to do so manually after calling. - */ -static void double_rq_unlock(struct rq *rq1, struct rq *rq2) -	__releases(rq1->lock) -	__releases(rq2->lock) -{ -	raw_spin_unlock(&rq1->lock); -	if (rq1 != rq2) -		raw_spin_unlock(&rq2->lock); -	else -		__release(rq2->lock); -} - -#endif - -#ifdef CONFIG_FAIR_GROUP_SCHED -static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) -{ -#ifdef CONFIG_SMP -	cfs_rq->shares = shares; -#endif -} -#endif - -static void calc_load_account_idle(struct rq *this_rq); -static void update_sysctl(void); -static int get_update_sysctl_factor(void); -static void update_cpu_load(struct rq *this_rq); - -static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) -{ -	set_task_rq(p, cpu); -#ifdef CONFIG_SMP -	/* -	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be -	 * successfuly executed on another CPU. We must ensure that updates of -	 * per-task data have been completed by this moment. -	 */ -	smp_wmb(); -	task_thread_info(p)->cpu = cpu; -#endif -} - -static const struct sched_class rt_sched_class; - -#define sched_class_highest (&stop_sched_class) -#define for_each_class(class) \ -   for (class = sched_class_highest; class; class = class->next) - -#include "sched_stats.h" - -static void inc_nr_running(struct rq *rq) -{ -	rq->nr_running++; -} - -static void dec_nr_running(struct rq *rq) -{ -	rq->nr_running--; -} - -static void set_load_weight(struct task_struct *p) -{ -	/* -	 * SCHED_IDLE tasks get minimal weight: -	 */ -	if (p->policy == SCHED_IDLE) { -		p->se.load.weight = WEIGHT_IDLEPRIO; -		p->se.load.inv_weight = WMULT_IDLEPRIO; -		return; -	} - -	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO]; -	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; -} - -static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) -{ -	update_rq_clock(rq); -	sched_info_queued(p); -	p->sched_class->enqueue_task(rq, p, flags); -	p->se.on_rq = 1; -} - -static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) -{ -	update_rq_clock(rq); -	sched_info_dequeued(p); -	p->sched_class->dequeue_task(rq, p, flags); -	p->se.on_rq = 0; -} - -/* - * activate_task - move a task to the runqueue. - */ -static void activate_task(struct rq *rq, struct task_struct *p, int flags) -{ -	if (task_contributes_to_load(p)) -		rq->nr_uninterruptible--; - -	enqueue_task(rq, p, flags); -	inc_nr_running(rq); -} - -/* - * deactivate_task - remove a task from the runqueue. - */ -static void deactivate_task(struct rq *rq, struct task_struct *p, int flags) -{ -	if (task_contributes_to_load(p)) -		rq->nr_uninterruptible++; - -	dequeue_task(rq, p, flags); -	dec_nr_running(rq); -} - -#ifdef CONFIG_IRQ_TIME_ACCOUNTING - -/* - * There are no locks covering percpu hardirq/softirq time. - * They are only modified in account_system_vtime, on corresponding CPU - * with interrupts disabled. So, writes are safe. - * They are read and saved off onto struct rq in update_rq_clock(). - * This may result in other CPU reading this CPU's irq time and can - * race with irq/account_system_vtime on this CPU. We would either get old - * or new value (or semi updated value on 32 bit) with a side effect of - * accounting a slice of irq time to wrong task when irq is in progress - * while we read rq->clock. That is a worthy compromise in place of having - * locks on each irq in account_system_time. - */ -static DEFINE_PER_CPU(u64, cpu_hardirq_time); -static DEFINE_PER_CPU(u64, cpu_softirq_time); - -static DEFINE_PER_CPU(u64, irq_start_time); -static int sched_clock_irqtime; - -void enable_sched_clock_irqtime(void) -{ -	sched_clock_irqtime = 1; -} - -void disable_sched_clock_irqtime(void) -{ -	sched_clock_irqtime = 0; -} - -static u64 irq_time_cpu(int cpu) -{ -	if (!sched_clock_irqtime) -		return 0; - -	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); -} - -void account_system_vtime(struct task_struct *curr) -{ -	unsigned long flags; -	int cpu; -	u64 now, delta; - -	if (!sched_clock_irqtime) -		return; - -	local_irq_save(flags); - -	cpu = smp_processor_id(); -	now = sched_clock_cpu(cpu); -	delta = now - per_cpu(irq_start_time, cpu); -	per_cpu(irq_start_time, cpu) = now; -	/* -	 * We do not account for softirq time from ksoftirqd here. -	 * We want to continue accounting softirq time to ksoftirqd thread -	 * in that case, so as not to confuse scheduler with a special task -	 * that do not consume any time, but still wants to run. -	 */ -	if (hardirq_count()) -		per_cpu(cpu_hardirq_time, cpu) += delta; -	else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD)) -		per_cpu(cpu_softirq_time, cpu) += delta; - -	local_irq_restore(flags); -} -EXPORT_SYMBOL_GPL(account_system_vtime); - -static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) -{ -	if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) { -		u64 delta_irq = curr_irq_time - rq->prev_irq_time; -		rq->prev_irq_time = curr_irq_time; -		sched_rt_avg_update(rq, delta_irq); -	} -} - -#else - -static u64 irq_time_cpu(int cpu) -{ -	return 0; -} - -static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { } - -#endif - -#include "sched_idletask.c" -#include "sched_fair.c" -#include "sched_rt.c" -#include "sched_stoptask.c" -#ifdef CONFIG_SCHED_DEBUG -# include "sched_debug.c" -#endif - -void sched_set_stop_task(int cpu, struct task_struct *stop) -{ -	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; -	struct task_struct *old_stop = cpu_rq(cpu)->stop; - -	if (stop) { -		/* -		 * Make it appear like a SCHED_FIFO task, its something -		 * userspace knows about and won't get confused about. -		 * -		 * Also, it will make PI more or less work without too -		 * much confusion -- but then, stop work should not -		 * rely on PI working anyway. -		 */ -		sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); - -		stop->sched_class = &stop_sched_class; -	} - -	cpu_rq(cpu)->stop = stop; - -	if (old_stop) { -		/* -		 * Reset it back to a normal scheduling class so that -		 * it can die in pieces. -		 */ -		old_stop->sched_class = &rt_sched_class; -	} -} - -/* - * __normal_prio - return the priority that is based on the static prio - */ -static inline int __normal_prio(struct task_struct *p) -{ -	return p->static_prio; -} - -/* - * Calculate the expected normal priority: i.e. priority - * without taking RT-inheritance into account. Might be - * boosted by interactivity modifiers. Changes upon fork, - * setprio syscalls, and whenever the interactivity - * estimator recalculates. - */ -static inline int normal_prio(struct task_struct *p) -{ -	int prio; - -	if (task_has_rt_policy(p)) -		prio = MAX_RT_PRIO-1 - p->rt_priority; -	else -		prio = __normal_prio(p); -	return prio; -} - -/* - * Calculate the current priority, i.e. the priority - * taken into account by the scheduler. This value might - * be boosted by RT tasks, or might be boosted by - * interactivity modifiers. Will be RT if the task got - * RT-boosted. If not then it returns p->normal_prio. - */ -static int effective_prio(struct task_struct *p) -{ -	p->normal_prio = normal_prio(p); -	/* -	 * If we are RT tasks or we were boosted to RT priority, -	 * keep the priority unchanged. Otherwise, update priority -	 * to the normal priority: -	 */ -	if (!rt_prio(p->prio)) -		return p->normal_prio; -	return p->prio; -} - -/** - * task_curr - is this task currently executing on a CPU? - * @p: the task in question. - */ -inline int task_curr(const struct task_struct *p) -{ -	return cpu_curr(task_cpu(p)) == p; -} - -static inline void check_class_changed(struct rq *rq, struct task_struct *p, -				       const struct sched_class *prev_class, -				       int oldprio, int running) -{ -	if (prev_class != p->sched_class) { -		if (prev_class->switched_from) -			prev_class->switched_from(rq, p, running); -		p->sched_class->switched_to(rq, p, running); -	} else -		p->sched_class->prio_changed(rq, p, oldprio, running); -} - -#ifdef CONFIG_SMP -/* - * Is this task likely cache-hot: - */ -static int -task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) -{ -	s64 delta; - -	if (p->sched_class != &fair_sched_class) -		return 0; - -	if (unlikely(p->policy == SCHED_IDLE)) -		return 0; - -	/* -	 * Buddy candidates are cache hot: -	 */ -	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && -			(&p->se == cfs_rq_of(&p->se)->next || -			 &p->se == cfs_rq_of(&p->se)->last)) -		return 1; - -	if (sysctl_sched_migration_cost == -1) -		return 1; -	if (sysctl_sched_migration_cost == 0) -		return 0; - -	delta = now - p->se.exec_start; - -	return delta < (s64)sysctl_sched_migration_cost; -} - -void set_task_cpu(struct task_struct *p, unsigned int new_cpu) -{ -#ifdef CONFIG_SCHED_DEBUG -	/* -	 * We should never call set_task_cpu() on a blocked task, -	 * ttwu() will sort out the placement. -	 */ -	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && -			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); -#endif - -	trace_sched_migrate_task(p, new_cpu); - -	if (task_cpu(p) != new_cpu) { -		p->se.nr_migrations++; -		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0); -	} - -	__set_task_cpu(p, new_cpu); -} - -struct migration_arg { -	struct task_struct *task; -	int dest_cpu; -}; - -static int migration_cpu_stop(void *data); - -/* - * The task's runqueue lock must be held. - * Returns true if you have to wait for migration thread. - */ -static bool migrate_task(struct task_struct *p, int dest_cpu) -{ -	struct rq *rq = task_rq(p); - -	/* -	 * If the task is not on a runqueue (and not running), then -	 * the next wake-up will properly place the task. -	 */ -	return p->se.on_rq || task_running(rq, p); -} - -/* - * wait_task_inactive - wait for a thread to unschedule. - * - * If @match_state is nonzero, it's the @p->state value just checked and - * not expected to change.  If it changes, i.e. @p might have woken up, - * then return zero.  When we succeed in waiting for @p to be off its CPU, - * we return a positive number (its total switch count).  If a second call - * a short while later returns the same number, the caller can be sure that - * @p has remained unscheduled the whole time. - * - * The caller must ensure that the task *will* unschedule sometime soon, - * else this function might spin for a *long* time. This function can't - * be called with interrupts off, or it may introduce deadlock with - * smp_call_function() if an IPI is sent by the same process we are - * waiting to become inactive. - */ -unsigned long wait_task_inactive(struct task_struct *p, long match_state) -{ -	unsigned long flags; -	int running, on_rq; -	unsigned long ncsw; -	struct rq *rq; - -	for (;;) { -		/* -		 * We do the initial early heuristics without holding -		 * any task-queue locks at all. We'll only try to get -		 * the runqueue lock when things look like they will -		 * work out! -		 */ -		rq = task_rq(p); - -		/* -		 * If the task is actively running on another CPU -		 * still, just relax and busy-wait without holding -		 * any locks. -		 * -		 * NOTE! Since we don't hold any locks, it's not -		 * even sure that "rq" stays as the right runqueue! -		 * But we don't care, since "task_running()" will -		 * return false if the runqueue has changed and p -		 * is actually now running somewhere else! -		 */ -		while (task_running(rq, p)) { -			if (match_state && unlikely(p->state != match_state)) -				return 0; -			cpu_relax(); -		} - -		/* -		 * Ok, time to look more closely! We need the rq -		 * lock now, to be *sure*. If we're wrong, we'll -		 * just go back and repeat. -		 */ -		rq = task_rq_lock(p, &flags); -		trace_sched_wait_task(p); -		running = task_running(rq, p); -		on_rq = p->se.on_rq; -		ncsw = 0; -		if (!match_state || p->state == match_state) -			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ -		task_rq_unlock(rq, &flags); - -		/* -		 * If it changed from the expected state, bail out now. -		 */ -		if (unlikely(!ncsw)) -			break; - -		/* -		 * Was it really running after all now that we -		 * checked with the proper locks actually held? -		 * -		 * Oops. Go back and try again.. -		 */ -		if (unlikely(running)) { -			cpu_relax(); -			continue; -		} - -		/* -		 * It's not enough that it's not actively running, -		 * it must be off the runqueue _entirely_, and not -		 * preempted! -		 * -		 * So if it was still runnable (but just not actively -		 * running right now), it's preempted, and we should -		 * yield - it could be a while. -		 */ -		if (unlikely(on_rq)) { -			schedule_timeout_uninterruptible(1); -			continue; -		} - -		/* -		 * Ahh, all good. It wasn't running, and it wasn't -		 * runnable, which means that it will never become -		 * running in the future either. We're all done! -		 */ -		break; -	} - -	return ncsw; -} - -/*** - * kick_process - kick a running thread to enter/exit the kernel - * @p: the to-be-kicked thread - * - * Cause a process which is running on another CPU to enter - * kernel-mode, without any delay. (to get signals handled.) - * - * NOTE: this function doesnt have to take the runqueue lock, - * because all it wants to ensure is that the remote task enters - * the kernel. If the IPI races and the task has been migrated - * to another CPU then no harm is done and the purpose has been - * achieved as well. - */ -void kick_process(struct task_struct *p) -{ -	int cpu; - -	preempt_disable(); -	cpu = task_cpu(p); -	if ((cpu != smp_processor_id()) && task_curr(p)) -		smp_send_reschedule(cpu); -	preempt_enable(); -} -EXPORT_SYMBOL_GPL(kick_process); -#endif /* CONFIG_SMP */ - -/** - * task_oncpu_function_call - call a function on the cpu on which a task runs - * @p:		the task to evaluate - * @func:	the function to be called - * @info:	the function call argument - * - * Calls the function @func when the task is currently running. This might - * be on the current CPU, which just calls the function directly - */ -void task_oncpu_function_call(struct task_struct *p, -			      void (*func) (void *info), void *info) -{ -	int cpu; - -	preempt_disable(); -	cpu = task_cpu(p); -	if (task_curr(p)) -		smp_call_function_single(cpu, func, info, 1); -	preempt_enable(); -} - -#ifdef CONFIG_SMP -/* - * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held. - */ -static int select_fallback_rq(int cpu, struct task_struct *p) -{ -	int dest_cpu; -	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); - -	/* Look for allowed, online CPU in same node. */ -	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask) -		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) -			return dest_cpu; - -	/* Any allowed, online CPU? */ -	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask); -	if (dest_cpu < nr_cpu_ids) -		return dest_cpu; - -	/* No more Mr. Nice Guy. */ -	if (unlikely(dest_cpu >= nr_cpu_ids)) { -		dest_cpu = cpuset_cpus_allowed_fallback(p); -		/* -		 * Don't tell them about moving exiting tasks or -		 * kernel threads (both mm NULL), since they never -		 * leave kernel. -		 */ -		if (p->mm && printk_ratelimit()) { -			printk(KERN_INFO "process %d (%s) no " -			       "longer affine to cpu%d\n", -			       task_pid_nr(p), p->comm, cpu); -		} -	} - -	return dest_cpu; -} - -/* - * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable. - */ -static inline -int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags) -{ -	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags); - -	/* -	 * In order not to call set_task_cpu() on a blocking task we need -	 * to rely on ttwu() to place the task on a valid ->cpus_allowed -	 * cpu. -	 * -	 * Since this is common to all placement strategies, this lives here. -	 * -	 * [ this allows ->select_task() to simply return task_cpu(p) and -	 *   not worry about this generic constraint ] -	 */ -	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) || -		     !cpu_online(cpu))) -		cpu = select_fallback_rq(task_cpu(p), p); - -	return cpu; -} - -static void update_avg(u64 *avg, u64 sample) -{ -	s64 diff = sample - *avg; -	*avg += diff >> 3; -} -#endif - -static inline void ttwu_activate(struct task_struct *p, struct rq *rq, -				 bool is_sync, bool is_migrate, bool is_local, -				 unsigned long en_flags) -{ -	schedstat_inc(p, se.statistics.nr_wakeups); -	if (is_sync) -		schedstat_inc(p, se.statistics.nr_wakeups_sync); -	if (is_migrate) -		schedstat_inc(p, se.statistics.nr_wakeups_migrate); -	if (is_local) -		schedstat_inc(p, se.statistics.nr_wakeups_local); -	else -		schedstat_inc(p, se.statistics.nr_wakeups_remote); - -	activate_task(rq, p, en_flags); -} - -static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq, -					int wake_flags, bool success) -{ -	trace_sched_wakeup(p, success); -	check_preempt_curr(rq, p, wake_flags); - -	p->state = TASK_RUNNING; -#ifdef CONFIG_SMP -	if (p->sched_class->task_woken) -		p->sched_class->task_woken(rq, p); - -	if (unlikely(rq->idle_stamp)) { -		u64 delta = rq->clock - rq->idle_stamp; -		u64 max = 2*sysctl_sched_migration_cost; - -		if (delta > max) -			rq->avg_idle = max; -		else -			update_avg(&rq->avg_idle, delta); -		rq->idle_stamp = 0; -	} -#endif -	/* if a worker is waking up, notify workqueue */ -	if ((p->flags & PF_WQ_WORKER) && success) -		wq_worker_waking_up(p, cpu_of(rq)); -} - -/** - * try_to_wake_up - wake up a thread - * @p: the thread to be awakened - * @state: the mask of task states that can be woken - * @wake_flags: wake modifier flags (WF_*) - * - * Put it on the run-queue if it's not already there. The "current" - * thread is always on the run-queue (except when the actual - * re-schedule is in progress), and as such you're allowed to do - * the simpler "current->state = TASK_RUNNING" to mark yourself - * runnable without the overhead of this. - * - * Returns %true if @p was woken up, %false if it was already running - * or @state didn't match @p's state. - */ -static int try_to_wake_up(struct task_struct *p, unsigned int state, -			  int wake_flags) -{ -	int cpu, orig_cpu, this_cpu, success = 0; -	unsigned long flags; -	unsigned long en_flags = ENQUEUE_WAKEUP; -	struct rq *rq; - -	this_cpu = get_cpu(); - -	smp_wmb(); -	rq = task_rq_lock(p, &flags); -	if (!(p->state & state)) -		goto out; - -	if (p->se.on_rq) -		goto out_running; - -	cpu = task_cpu(p); -	orig_cpu = cpu; - -#ifdef CONFIG_SMP -	if (unlikely(task_running(rq, p))) -		goto out_activate; - -	/* -	 * In order to handle concurrent wakeups and release the rq->lock -	 * we put the task in TASK_WAKING state. -	 * -	 * First fix up the nr_uninterruptible count: -	 */ -	if (task_contributes_to_load(p)) { -		if (likely(cpu_online(orig_cpu))) -			rq->nr_uninterruptible--; -		else -			this_rq()->nr_uninterruptible--; -	} -	p->state = TASK_WAKING; - -	if (p->sched_class->task_waking) { -		p->sched_class->task_waking(rq, p); -		en_flags |= ENQUEUE_WAKING; -	} - -	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags); -	if (cpu != orig_cpu) -		set_task_cpu(p, cpu); -	__task_rq_unlock(rq); - -	rq = cpu_rq(cpu); -	raw_spin_lock(&rq->lock); - -	/* -	 * We migrated the task without holding either rq->lock, however -	 * since the task is not on the task list itself, nobody else -	 * will try and migrate the task, hence the rq should match the -	 * cpu we just moved it to. -	 */ -	WARN_ON(task_cpu(p) != cpu); -	WARN_ON(p->state != TASK_WAKING); - -#ifdef CONFIG_SCHEDSTATS -	schedstat_inc(rq, ttwu_count); -	if (cpu == this_cpu) -		schedstat_inc(rq, ttwu_local); -	else { -		struct sched_domain *sd; -		for_each_domain(this_cpu, sd) { -			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { -				schedstat_inc(sd, ttwu_wake_remote); -				break; -			} -		} -	} -#endif /* CONFIG_SCHEDSTATS */ - -out_activate: -#endif /* CONFIG_SMP */ -	ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu, -		      cpu == this_cpu, en_flags); -	success = 1; -out_running: -	ttwu_post_activation(p, rq, wake_flags, success); -out: -	task_rq_unlock(rq, &flags); -	put_cpu(); - -	return success; -} - -/** - * try_to_wake_up_local - try to wake up a local task with rq lock held - * @p: the thread to be awakened - * - * Put @p on the run-queue if it's not alredy there.  The caller must - * ensure that this_rq() is locked, @p is bound to this_rq() and not - * the current task.  this_rq() stays locked over invocation. - */ -static void try_to_wake_up_local(struct task_struct *p) -{ -	struct rq *rq = task_rq(p); -	bool success = false; - -	BUG_ON(rq != this_rq()); -	BUG_ON(p == current); -	lockdep_assert_held(&rq->lock); - -	if (!(p->state & TASK_NORMAL)) -		return; - -	if (!p->se.on_rq) { -		if (likely(!task_running(rq, p))) { -			schedstat_inc(rq, ttwu_count); -			schedstat_inc(rq, ttwu_local); -		} -		ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP); -		success = true; -	} -	ttwu_post_activation(p, rq, 0, success); -} - -/** - * wake_up_process - Wake up a specific process - * @p: The process to be woken up. - * - * Attempt to wake up the nominated process and move it to the set of runnable - * processes.  Returns 1 if the process was woken up, 0 if it was already - * running. - * - * It may be assumed that this function implies a write memory barrier before - * changing the task state if and only if any tasks are woken up. - */ -int wake_up_process(struct task_struct *p) -{ -	return try_to_wake_up(p, TASK_ALL, 0); -} -EXPORT_SYMBOL(wake_up_process); - -int wake_up_state(struct task_struct *p, unsigned int state) -{ -	return try_to_wake_up(p, state, 0); -} - -/* - * Perform scheduler related setup for a newly forked process p. - * p is forked by current. - * - * __sched_fork() is basic setup used by init_idle() too: - */ -static void __sched_fork(struct task_struct *p) -{ -	p->se.exec_start		= 0; -	p->se.sum_exec_runtime		= 0; -	p->se.prev_sum_exec_runtime	= 0; -	p->se.nr_migrations		= 0; - -#ifdef CONFIG_SCHEDSTATS -	memset(&p->se.statistics, 0, sizeof(p->se.statistics)); -#endif - -	INIT_LIST_HEAD(&p->rt.run_list); -	p->se.on_rq = 0; -	INIT_LIST_HEAD(&p->se.group_node); - -#ifdef CONFIG_PREEMPT_NOTIFIERS -	INIT_HLIST_HEAD(&p->preempt_notifiers); -#endif -} - -/* - * fork()/clone()-time setup: - */ -void sched_fork(struct task_struct *p, int clone_flags) -{ -	int cpu = get_cpu(); - -	__sched_fork(p); -	/* -	 * We mark the process as running here. This guarantees that -	 * nobody will actually run it, and a signal or other external -	 * event cannot wake it up and insert it on the runqueue either. -	 */ -	p->state = TASK_RUNNING; - -	/* -	 * Revert to default priority/policy on fork if requested. -	 */ -	if (unlikely(p->sched_reset_on_fork)) { -		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) { -			p->policy = SCHED_NORMAL; -			p->normal_prio = p->static_prio; -		} - -		if (PRIO_TO_NICE(p->static_prio) < 0) { -			p->static_prio = NICE_TO_PRIO(0); -			p->normal_prio = p->static_prio; -			set_load_weight(p); -		} - -		/* -		 * We don't need the reset flag anymore after the fork. It has -		 * fulfilled its duty: -		 */ -		p->sched_reset_on_fork = 0; -	} - -	/* -	 * Make sure we do not leak PI boosting priority to the child. -	 */ -	p->prio = current->normal_prio; - -	if (!rt_prio(p->prio)) -		p->sched_class = &fair_sched_class; - -	if (p->sched_class->task_fork) -		p->sched_class->task_fork(p); - -	/* -	 * The child is not yet in the pid-hash so no cgroup attach races, -	 * and the cgroup is pinned to this child due to cgroup_fork() -	 * is ran before sched_fork(). -	 * -	 * Silence PROVE_RCU. -	 */ -	rcu_read_lock(); -	set_task_cpu(p, cpu); -	rcu_read_unlock(); - -#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) -	if (likely(sched_info_on())) -		memset(&p->sched_info, 0, sizeof(p->sched_info)); -#endif -#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) -	p->oncpu = 0; -#endif -#ifdef CONFIG_PREEMPT -	/* Want to start with kernel preemption disabled. */ -	task_thread_info(p)->preempt_count = 1; -#endif -	plist_node_init(&p->pushable_tasks, MAX_PRIO); - -	put_cpu(); -} - -/* - * wake_up_new_task - wake up a newly created task for the first time. - * - * This function will do some initial scheduler statistics housekeeping - * that must be done for every newly created context, then puts the task - * on the runqueue and wakes it. - */ -void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) -{ -	unsigned long flags; -	struct rq *rq; -	int cpu __maybe_unused = get_cpu(); - -#ifdef CONFIG_SMP -	rq = task_rq_lock(p, &flags); -	p->state = TASK_WAKING; - -	/* -	 * Fork balancing, do it here and not earlier because: -	 *  - cpus_allowed can change in the fork path -	 *  - any previously selected cpu might disappear through hotplug -	 * -	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock -	 * without people poking at ->cpus_allowed. -	 */ -	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0); -	set_task_cpu(p, cpu); - -	p->state = TASK_RUNNING; -	task_rq_unlock(rq, &flags); -#endif - -	rq = task_rq_lock(p, &flags); -	activate_task(rq, p, 0); -	trace_sched_wakeup_new(p, 1); -	check_preempt_curr(rq, p, WF_FORK); -#ifdef CONFIG_SMP -	if (p->sched_class->task_woken) -		p->sched_class->task_woken(rq, p); -#endif -	task_rq_unlock(rq, &flags); -	put_cpu(); -} - -#ifdef CONFIG_PREEMPT_NOTIFIERS - -/** - * preempt_notifier_register - tell me when current is being preempted & rescheduled - * @notifier: notifier struct to register - */ -void preempt_notifier_register(struct preempt_notifier *notifier) -{ -	hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); -} -EXPORT_SYMBOL_GPL(preempt_notifier_register); - -/** - * preempt_notifier_unregister - no longer interested in preemption notifications - * @notifier: notifier struct to unregister - * - * This is safe to call from within a preemption notifier. - */ -void preempt_notifier_unregister(struct preempt_notifier *notifier) -{ -	hlist_del(¬ifier->link); -} -EXPORT_SYMBOL_GPL(preempt_notifier_unregister); - -static void fire_sched_in_preempt_notifiers(struct task_struct *curr) -{ -	struct preempt_notifier *notifier; -	struct hlist_node *node; - -	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) -		notifier->ops->sched_in(notifier, raw_smp_processor_id()); -} - -static void -fire_sched_out_preempt_notifiers(struct task_struct *curr, -				 struct task_struct *next) -{ -	struct preempt_notifier *notifier; -	struct hlist_node *node; - -	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) -		notifier->ops->sched_out(notifier, next); -} - -#else /* !CONFIG_PREEMPT_NOTIFIERS */ - -static void fire_sched_in_preempt_notifiers(struct task_struct *curr) -{ -} - -static void -fire_sched_out_preempt_notifiers(struct task_struct *curr, -				 struct task_struct *next) -{ -} - -#endif /* CONFIG_PREEMPT_NOTIFIERS */ - -/** - * prepare_task_switch - prepare to switch tasks - * @rq: the runqueue preparing to switch - * @prev: the current task that is being switched out - * @next: the task we are going to switch to. - * - * This is called with the rq lock held and interrupts off. It must - * be paired with a subsequent finish_task_switch after the context - * switch. - * - * prepare_task_switch sets up locking and calls architecture specific - * hooks. - */ -static inline void -prepare_task_switch(struct rq *rq, struct task_struct *prev, -		    struct task_struct *next) -{ -	fire_sched_out_preempt_notifiers(prev, next); -	prepare_lock_switch(rq, next); -	prepare_arch_switch(next); -} - -/** - * finish_task_switch - clean up after a task-switch - * @rq: runqueue associated with task-switch - * @prev: the thread we just switched away from. - * - * finish_task_switch must be called after the context switch, paired - * with a prepare_task_switch call before the context switch. - * finish_task_switch will reconcile locking set up by prepare_task_switch, - * and do any other architecture-specific cleanup actions. - * - * Note that we may have delayed dropping an mm in context_switch(). If - * so, we finish that here outside of the runqueue lock. (Doing it - * with the lock held can cause deadlocks; see schedule() for - * details.) - */ -static void finish_task_switch(struct rq *rq, struct task_struct *prev) -	__releases(rq->lock) -{ -	struct mm_struct *mm = rq->prev_mm; -	long prev_state; - -	rq->prev_mm = NULL; - -	/* -	 * A task struct has one reference for the use as "current". -	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls -	 * schedule one last time. The schedule call will never return, and -	 * the scheduled task must drop that reference. -	 * The test for TASK_DEAD must occur while the runqueue locks are -	 * still held, otherwise prev could be scheduled on another cpu, die -	 * there before we look at prev->state, and then the reference would -	 * be dropped twice. -	 *		Manfred Spraul <manfred@colorfullife.com> -	 */ -	prev_state = prev->state; -	finish_arch_switch(prev); -#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW -	local_irq_disable(); -#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ -	perf_event_task_sched_in(current); -#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW -	local_irq_enable(); -#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ -	finish_lock_switch(rq, prev); - -	fire_sched_in_preempt_notifiers(current); -	if (mm) -		mmdrop(mm); -	if (unlikely(prev_state == TASK_DEAD)) { -		/* -		 * Remove function-return probe instances associated with this -		 * task and put them back on the free list. -		 */ -		kprobe_flush_task(prev); -		put_task_struct(prev); -	} -} - -#ifdef CONFIG_SMP - -/* assumes rq->lock is held */ -static inline void pre_schedule(struct rq *rq, struct task_struct *prev) -{ -	if (prev->sched_class->pre_schedule) -		prev->sched_class->pre_schedule(rq, prev); -} - -/* rq->lock is NOT held, but preemption is disabled */ -static inline void post_schedule(struct rq *rq) -{ -	if (rq->post_schedule) { -		unsigned long flags; - -		raw_spin_lock_irqsave(&rq->lock, flags); -		if (rq->curr->sched_class->post_schedule) -			rq->curr->sched_class->post_schedule(rq); -		raw_spin_unlock_irqrestore(&rq->lock, flags); - -		rq->post_schedule = 0; -	} -} - -#else - -static inline void pre_schedule(struct rq *rq, struct task_struct *p) -{ -} - -static inline void post_schedule(struct rq *rq) -{ -} - -#endif - -/** - * schedule_tail - first thing a freshly forked thread must call. - * @prev: the thread we just switched away from. - */ -asmlinkage void schedule_tail(struct task_struct *prev) -	__releases(rq->lock) -{ -	struct rq *rq = this_rq(); - -	finish_task_switch(rq, prev); - -	/* -	 * FIXME: do we need to worry about rq being invalidated by the -	 * task_switch? -	 */ -	post_schedule(rq); - -#ifdef __ARCH_WANT_UNLOCKED_CTXSW -	/* In this case, finish_task_switch does not reenable preemption */ -	preempt_enable(); -#endif -	if (current->set_child_tid) -		put_user(task_pid_vnr(current), current->set_child_tid); -} - -/* - * context_switch - switch to the new MM and the new - * thread's register state. - */ -static inline void -context_switch(struct rq *rq, struct task_struct *prev, -	       struct task_struct *next) -{ -	struct mm_struct *mm, *oldmm; - -	prepare_task_switch(rq, prev, next); -	trace_sched_switch(prev, next); -	mm = next->mm; -	oldmm = prev->active_mm; -	/* -	 * For paravirt, this is coupled with an exit in switch_to to -	 * combine the page table reload and the switch backend into -	 * one hypercall. -	 */ -	arch_start_context_switch(prev); - -	if (!mm) { -		next->active_mm = oldmm; -		atomic_inc(&oldmm->mm_count); -		enter_lazy_tlb(oldmm, next); -	} else -		switch_mm(oldmm, mm, next); - -	if (!prev->mm) { -		prev->active_mm = NULL; -		rq->prev_mm = oldmm; -	} -	/* -	 * Since the runqueue lock will be released by the next -	 * task (which is an invalid locking op but in the case -	 * of the scheduler it's an obvious special-case), so we -	 * do an early lockdep release here: -	 */ -#ifndef __ARCH_WANT_UNLOCKED_CTXSW -	spin_release(&rq->lock.dep_map, 1, _THIS_IP_); -#endif - -	/* Here we just switch the register state and the stack. */ -	switch_to(prev, next, prev); - -	barrier(); -	/* -	 * this_rq must be evaluated again because prev may have moved -	 * CPUs since it called schedule(), thus the 'rq' on its stack -	 * frame will be invalid. -	 */ -	finish_task_switch(this_rq(), prev); -} - -/* - * nr_running, nr_uninterruptible and nr_context_switches: - * - * externally visible scheduler statistics: current number of runnable - * threads, current number of uninterruptible-sleeping threads, total - * number of context switches performed since bootup. - */ -unsigned long nr_running(void) -{ -	unsigned long i, sum = 0; - -	for_each_online_cpu(i) -		sum += cpu_rq(i)->nr_running; - -	return sum; -} - -unsigned long nr_uninterruptible(void) -{ -	unsigned long i, sum = 0; - -	for_each_possible_cpu(i) -		sum += cpu_rq(i)->nr_uninterruptible; - -	/* -	 * Since we read the counters lockless, it might be slightly -	 * inaccurate. Do not allow it to go below zero though: -	 */ -	if (unlikely((long)sum < 0)) -		sum = 0; - -	return sum; -} - -unsigned long long nr_context_switches(void) -{ -	int i; -	unsigned long long sum = 0; - -	for_each_possible_cpu(i) -		sum += cpu_rq(i)->nr_switches; - -	return sum; -} - -unsigned long nr_iowait(void) -{ -	unsigned long i, sum = 0; - -	for_each_possible_cpu(i) -		sum += atomic_read(&cpu_rq(i)->nr_iowait); - -	return sum; -} - -unsigned long nr_iowait_cpu(int cpu) -{ -	struct rq *this = cpu_rq(cpu); -	return atomic_read(&this->nr_iowait); -} - -unsigned long this_cpu_load(void) -{ -	struct rq *this = this_rq(); -	return this->cpu_load[0]; -} - - -/* Variables and functions for calc_load */ -static atomic_long_t calc_load_tasks; -static unsigned long calc_load_update; -unsigned long avenrun[3]; -EXPORT_SYMBOL(avenrun); - -static long calc_load_fold_active(struct rq *this_rq) -{ -	long nr_active, delta = 0; - -	nr_active = this_rq->nr_running; -	nr_active += (long) this_rq->nr_uninterruptible; - -	if (nr_active != this_rq->calc_load_active) { -		delta = nr_active - this_rq->calc_load_active; -		this_rq->calc_load_active = nr_active; -	} - -	return delta; -} - -#ifdef CONFIG_NO_HZ -/* - * For NO_HZ we delay the active fold to the next LOAD_FREQ update. - * - * When making the ILB scale, we should try to pull this in as well. - */ -static atomic_long_t calc_load_tasks_idle; - -static void calc_load_account_idle(struct rq *this_rq) -{ -	long delta; - -	delta = calc_load_fold_active(this_rq); -	if (delta) -		atomic_long_add(delta, &calc_load_tasks_idle); -} - -static long calc_load_fold_idle(void) -{ -	long delta = 0; - -	/* -	 * Its got a race, we don't care... -	 */ -	if (atomic_long_read(&calc_load_tasks_idle)) -		delta = atomic_long_xchg(&calc_load_tasks_idle, 0); - -	return delta; -} -#else -static void calc_load_account_idle(struct rq *this_rq) -{ -} - -static inline long calc_load_fold_idle(void) -{ -	return 0; -} -#endif - -/** - * get_avenrun - get the load average array - * @loads:	pointer to dest load array - * @offset:	offset to add - * @shift:	shift count to shift the result left - * - * These values are estimates at best, so no need for locking. - */ -void get_avenrun(unsigned long *loads, unsigned long offset, int shift) -{ -	loads[0] = (avenrun[0] + offset) << shift; -	loads[1] = (avenrun[1] + offset) << shift; -	loads[2] = (avenrun[2] + offset) << shift; -} - -static unsigned long -calc_load(unsigned long load, unsigned long exp, unsigned long active) -{ -	load *= exp; -	load += active * (FIXED_1 - exp); -	return load >> FSHIFT; -} - -/* - * calc_load - update the avenrun load estimates 10 ticks after the - * CPUs have updated calc_load_tasks. - */ -void calc_global_load(void) -{ -	unsigned long upd = calc_load_update + 10; -	long active; - -	if (time_before(jiffies, upd)) -		return; - -	active = atomic_long_read(&calc_load_tasks); -	active = active > 0 ? active * FIXED_1 : 0; - -	avenrun[0] = calc_load(avenrun[0], EXP_1, active); -	avenrun[1] = calc_load(avenrun[1], EXP_5, active); -	avenrun[2] = calc_load(avenrun[2], EXP_15, active); - -	calc_load_update += LOAD_FREQ; -} - -/* - * Called from update_cpu_load() to periodically update this CPU's - * active count. - */ -static void calc_load_account_active(struct rq *this_rq) -{ -	long delta; - -	if (time_before(jiffies, this_rq->calc_load_update)) -		return; - -	delta  = calc_load_fold_active(this_rq); -	delta += calc_load_fold_idle(); -	if (delta) -		atomic_long_add(delta, &calc_load_tasks); - -	this_rq->calc_load_update += LOAD_FREQ; -} - -/* - * The exact cpuload at various idx values, calculated at every tick would be - * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load - * - * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called - * on nth tick when cpu may be busy, then we have: - * load = ((2^idx - 1) / 2^idx)^(n-1) * load - * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load - * - * decay_load_missed() below does efficient calculation of - * load = ((2^idx - 1) / 2^idx)^(n-1) * load - * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load - * - * The calculation is approximated on a 128 point scale. - * degrade_zero_ticks is the number of ticks after which load at any - * particular idx is approximated to be zero. - * degrade_factor is a precomputed table, a row for each load idx. - * Each column corresponds to degradation factor for a power of two ticks, - * based on 128 point scale. - * Example: - * row 2, col 3 (=12) says that the degradation at load idx 2 after - * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). - * - * With this power of 2 load factors, we can degrade the load n times - * by looking at 1 bits in n and doing as many mult/shift instead of - * n mult/shifts needed by the exact degradation. - */ -#define DEGRADE_SHIFT		7 -static const unsigned char -		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; -static const unsigned char -		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { -					{0, 0, 0, 0, 0, 0, 0, 0}, -					{64, 32, 8, 0, 0, 0, 0, 0}, -					{96, 72, 40, 12, 1, 0, 0}, -					{112, 98, 75, 43, 15, 1, 0}, -					{120, 112, 98, 76, 45, 16, 2} }; - -/* - * Update cpu_load for any missed ticks, due to tickless idle. The backlog - * would be when CPU is idle and so we just decay the old load without - * adding any new load. - */ -static unsigned long -decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) -{ -	int j = 0; - -	if (!missed_updates) -		return load; - -	if (missed_updates >= degrade_zero_ticks[idx]) -		return 0; - -	if (idx == 1) -		return load >> missed_updates; - -	while (missed_updates) { -		if (missed_updates % 2) -			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; - -		missed_updates >>= 1; -		j++; -	} -	return load; -} - -/* - * Update rq->cpu_load[] statistics. This function is usually called every - * scheduler tick (TICK_NSEC). With tickless idle this will not be called - * every tick. We fix it up based on jiffies. - */ -static void update_cpu_load(struct rq *this_rq) -{ -	unsigned long this_load = this_rq->load.weight; -	unsigned long curr_jiffies = jiffies; -	unsigned long pending_updates; -	int i, scale; - -	this_rq->nr_load_updates++; - -	/* Avoid repeated calls on same jiffy, when moving in and out of idle */ -	if (curr_jiffies == this_rq->last_load_update_tick) -		return; - -	pending_updates = curr_jiffies - this_rq->last_load_update_tick; -	this_rq->last_load_update_tick = curr_jiffies; - -	/* Update our load: */ -	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ -	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { -		unsigned long old_load, new_load; - -		/* scale is effectively 1 << i now, and >> i divides by scale */ - -		old_load = this_rq->cpu_load[i]; -		old_load = decay_load_missed(old_load, pending_updates - 1, i); -		new_load = this_load; -		/* -		 * Round up the averaging division if load is increasing. This -		 * prevents us from getting stuck on 9 if the load is 10, for -		 * example. -		 */ -		if (new_load > old_load) -			new_load += scale - 1; - -		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; -	} - -	sched_avg_update(this_rq); -} - -static void update_cpu_load_active(struct rq *this_rq) -{ -	update_cpu_load(this_rq); - -	calc_load_account_active(this_rq); -} - -#ifdef CONFIG_SMP - -/* - * sched_exec - execve() is a valuable balancing opportunity, because at - * this point the task has the smallest effective memory and cache footprint. - */ -void sched_exec(void) -{ -	struct task_struct *p = current; -	unsigned long flags; -	struct rq *rq; -	int dest_cpu; - -	rq = task_rq_lock(p, &flags); -	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0); -	if (dest_cpu == smp_processor_id()) -		goto unlock; - -	/* -	 * select_task_rq() can race against ->cpus_allowed -	 */ -	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) && -	    likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) { -		struct migration_arg arg = { p, dest_cpu }; - -		task_rq_unlock(rq, &flags); -		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); -		return; -	} -unlock: -	task_rq_unlock(rq, &flags); -} - -#endif - -DEFINE_PER_CPU(struct kernel_stat, kstat); - -EXPORT_PER_CPU_SYMBOL(kstat); - -/* - * Return any ns on the sched_clock that have not yet been accounted in - * @p in case that task is currently running. - * - * Called with task_rq_lock() held on @rq. - */ -static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) -{ -	u64 ns = 0; - -	if (task_current(rq, p)) { -		update_rq_clock(rq); -		ns = rq->clock_task - p->se.exec_start; -		if ((s64)ns < 0) -			ns = 0; -	} - -	return ns; -} - -unsigned long long task_delta_exec(struct task_struct *p) -{ -	unsigned long flags; -	struct rq *rq; -	u64 ns = 0; - -	rq = task_rq_lock(p, &flags); -	ns = do_task_delta_exec(p, rq); -	task_rq_unlock(rq, &flags); - -	return ns; -} - -/* - * Return accounted runtime for the task. - * In case the task is currently running, return the runtime plus current's - * pending runtime that have not been accounted yet. - */ -unsigned long long task_sched_runtime(struct task_struct *p) -{ -	unsigned long flags; -	struct rq *rq; -	u64 ns = 0; - -	rq = task_rq_lock(p, &flags); -	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); -	task_rq_unlock(rq, &flags); - -	return ns; -} - -/* - * Return sum_exec_runtime for the thread group. - * In case the task is currently running, return the sum plus current's - * pending runtime that have not been accounted yet. - * - * Note that the thread group might have other running tasks as well, - * so the return value not includes other pending runtime that other - * running tasks might have. - */ -unsigned long long thread_group_sched_runtime(struct task_struct *p) -{ -	struct task_cputime totals; -	unsigned long flags; -	struct rq *rq; -	u64 ns; - -	rq = task_rq_lock(p, &flags); -	thread_group_cputime(p, &totals); -	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq); -	task_rq_unlock(rq, &flags); - -	return ns; -} - -/* - * Account user cpu time to a process. - * @p: the process that the cpu time gets accounted to - * @cputime: the cpu time spent in user space since the last update - * @cputime_scaled: cputime scaled by cpu frequency - */ -void account_user_time(struct task_struct *p, cputime_t cputime, -		       cputime_t cputime_scaled) -{ -	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; -	cputime64_t tmp; - -	/* Add user time to process. */ -	p->utime = cputime_add(p->utime, cputime); -	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); -	account_group_user_time(p, cputime); - -	/* Add user time to cpustat. */ -	tmp = cputime_to_cputime64(cputime); -	if (TASK_NICE(p) > 0) -		cpustat->nice = cputime64_add(cpustat->nice, tmp); -	else -		cpustat->user = cputime64_add(cpustat->user, tmp); - -	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime); -	/* Account for user time used */ -	acct_update_integrals(p); -} - -/* - * Account guest cpu time to a process. - * @p: the process that the cpu time gets accounted to - * @cputime: the cpu time spent in virtual machine since the last update - * @cputime_scaled: cputime scaled by cpu frequency - */ -static void account_guest_time(struct task_struct *p, cputime_t cputime, -			       cputime_t cputime_scaled) -{ -	cputime64_t tmp; -	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; - -	tmp = cputime_to_cputime64(cputime); - -	/* Add guest time to process. */ -	p->utime = cputime_add(p->utime, cputime); -	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); -	account_group_user_time(p, cputime); -	p->gtime = cputime_add(p->gtime, cputime); - -	/* Add guest time to cpustat. */ -	if (TASK_NICE(p) > 0) { -		cpustat->nice = cputime64_add(cpustat->nice, tmp); -		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp); -	} else { -		cpustat->user = cputime64_add(cpustat->user, tmp); -		cpustat->guest = cputime64_add(cpustat->guest, tmp); -	} -} - -/* - * Account system cpu time to a process. - * @p: the process that the cpu time gets accounted to - * @hardirq_offset: the offset to subtract from hardirq_count() - * @cputime: the cpu time spent in kernel space since the last update - * @cputime_scaled: cputime scaled by cpu frequency - */ -void account_system_time(struct task_struct *p, int hardirq_offset, -			 cputime_t cputime, cputime_t cputime_scaled) -{ -	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; -	cputime64_t tmp; - -	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { -		account_guest_time(p, cputime, cputime_scaled); -		return; -	} - -	/* Add system time to process. */ -	p->stime = cputime_add(p->stime, cputime); -	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled); -	account_group_system_time(p, cputime); - -	/* Add system time to cpustat. */ -	tmp = cputime_to_cputime64(cputime); -	if (hardirq_count() - hardirq_offset) -		cpustat->irq = cputime64_add(cpustat->irq, tmp); -	else if (in_serving_softirq()) -		cpustat->softirq = cputime64_add(cpustat->softirq, tmp); -	else -		cpustat->system = cputime64_add(cpustat->system, tmp); - -	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime); - -	/* Account for system time used */ -	acct_update_integrals(p); -} - -/* - * Account for involuntary wait time. - * @steal: the cpu time spent in involuntary wait - */ -void account_steal_time(cputime_t cputime) -{ -	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; -	cputime64_t cputime64 = cputime_to_cputime64(cputime); - -	cpustat->steal = cputime64_add(cpustat->steal, cputime64); -} - -/* - * Account for idle time. - * @cputime: the cpu time spent in idle wait - */ -void account_idle_time(cputime_t cputime) -{ -	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; -	cputime64_t cputime64 = cputime_to_cputime64(cputime); -	struct rq *rq = this_rq(); - -	if (atomic_read(&rq->nr_iowait) > 0) -		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64); -	else -		cpustat->idle = cputime64_add(cpustat->idle, cputime64); -} - -#ifndef CONFIG_VIRT_CPU_ACCOUNTING - -/* - * Account a single tick of cpu time. - * @p: the process that the cpu time gets accounted to - * @user_tick: indicates if the tick is a user or a system tick - */ -void account_process_tick(struct task_struct *p, int user_tick) -{ -	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); -	struct rq *rq = this_rq(); - -	if (user_tick) -		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); -	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) -		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, -				    one_jiffy_scaled); -	else -		account_idle_time(cputime_one_jiffy); -} - -/* - * Account multiple ticks of steal time. - * @p: the process from which the cpu time has been stolen - * @ticks: number of stolen ticks - */ -void account_steal_ticks(unsigned long ticks) -{ -	account_steal_time(jiffies_to_cputime(ticks)); -} - -/* - * Account multiple ticks of idle time. - * @ticks: number of stolen ticks - */ -void account_idle_ticks(unsigned long ticks) -{ -	account_idle_time(jiffies_to_cputime(ticks)); -} - -#endif - -/* - * Use precise platform statistics if available: - */ -#ifdef CONFIG_VIRT_CPU_ACCOUNTING -void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) -{ -	*ut = p->utime; -	*st = p->stime; -} - -void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) -{ -	struct task_cputime cputime; - -	thread_group_cputime(p, &cputime); - -	*ut = cputime.utime; -	*st = cputime.stime; -} -#else - -#ifndef nsecs_to_cputime -# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs) -#endif - -void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) -{ -	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime); - -	/* -	 * Use CFS's precise accounting: -	 */ -	rtime = nsecs_to_cputime(p->se.sum_exec_runtime); - -	if (total) { -		u64 temp = rtime; - -		temp *= utime; -		do_div(temp, total); -		utime = (cputime_t)temp; -	} else -		utime = rtime; - -	/* -	 * Compare with previous values, to keep monotonicity: -	 */ -	p->prev_utime = max(p->prev_utime, utime); -	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime)); - -	*ut = p->prev_utime; -	*st = p->prev_stime; -} - -/* - * Must be called with siglock held. - */ -void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) -{ -	struct signal_struct *sig = p->signal; -	struct task_cputime cputime; -	cputime_t rtime, utime, total; - -	thread_group_cputime(p, &cputime); - -	total = cputime_add(cputime.utime, cputime.stime); -	rtime = nsecs_to_cputime(cputime.sum_exec_runtime); - -	if (total) { -		u64 temp = rtime; - -		temp *= cputime.utime; -		do_div(temp, total); -		utime = (cputime_t)temp; -	} else -		utime = rtime; - -	sig->prev_utime = max(sig->prev_utime, utime); -	sig->prev_stime = max(sig->prev_stime, -			      cputime_sub(rtime, sig->prev_utime)); - -	*ut = sig->prev_utime; -	*st = sig->prev_stime; -} -#endif - -/* - * This function gets called by the timer code, with HZ frequency. - * We call it with interrupts disabled. - * - * It also gets called by the fork code, when changing the parent's - * timeslices. - */ -void scheduler_tick(void) -{ -	int cpu = smp_processor_id(); -	struct rq *rq = cpu_rq(cpu); -	struct task_struct *curr = rq->curr; - -	sched_clock_tick(); - -	raw_spin_lock(&rq->lock); -	update_rq_clock(rq); -	update_cpu_load_active(rq); -	curr->sched_class->task_tick(rq, curr, 0); -	raw_spin_unlock(&rq->lock); - -	perf_event_task_tick(); - -#ifdef CONFIG_SMP -	rq->idle_at_tick = idle_cpu(cpu); -	trigger_load_balance(rq, cpu); -#endif -} - -notrace unsigned long get_parent_ip(unsigned long addr) -{ -	if (in_lock_functions(addr)) { -		addr = CALLER_ADDR2; -		if (in_lock_functions(addr)) -			addr = CALLER_ADDR3; -	} -	return addr; -} - -#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ -				defined(CONFIG_PREEMPT_TRACER)) - -void __kprobes add_preempt_count(int val) -{ -#ifdef CONFIG_DEBUG_PREEMPT -	/* -	 * Underflow? -	 */ -	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) -		return; -#endif -	preempt_count() += val; -#ifdef CONFIG_DEBUG_PREEMPT -	/* -	 * Spinlock count overflowing soon? -	 */ -	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= -				PREEMPT_MASK - 10); -#endif -	if (preempt_count() == val) -		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); -} -EXPORT_SYMBOL(add_preempt_count); - -void __kprobes sub_preempt_count(int val) -{ -#ifdef CONFIG_DEBUG_PREEMPT -	/* -	 * Underflow? -	 */ -	if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) -		return; -	/* -	 * Is the spinlock portion underflowing? -	 */ -	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && -			!(preempt_count() & PREEMPT_MASK))) -		return; -#endif - -	if (preempt_count() == val) -		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); -	preempt_count() -= val; -} -EXPORT_SYMBOL(sub_preempt_count); - -#endif - -/* - * Print scheduling while atomic bug: - */ -static noinline void __schedule_bug(struct task_struct *prev) -{ -	struct pt_regs *regs = get_irq_regs(); - -	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", -		prev->comm, prev->pid, preempt_count()); - -	debug_show_held_locks(prev); -	print_modules(); -	if (irqs_disabled()) -		print_irqtrace_events(prev); - -	if (regs) -		show_regs(regs); -	else -		dump_stack(); -} - -/* - * Various schedule()-time debugging checks and statistics: - */ -static inline void schedule_debug(struct task_struct *prev) -{ -	/* -	 * Test if we are atomic. Since do_exit() needs to call into -	 * schedule() atomically, we ignore that path for now. -	 * Otherwise, whine if we are scheduling when we should not be. -	 */ -	if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) -		__schedule_bug(prev); - -	profile_hit(SCHED_PROFILING, __builtin_return_address(0)); - -	schedstat_inc(this_rq(), sched_count); -#ifdef CONFIG_SCHEDSTATS -	if (unlikely(prev->lock_depth >= 0)) { -		schedstat_inc(this_rq(), bkl_count); -		schedstat_inc(prev, sched_info.bkl_count); -	} -#endif -} - -static void put_prev_task(struct rq *rq, struct task_struct *prev) -{ -	if (prev->se.on_rq) -		update_rq_clock(rq); -	rq->skip_clock_update = 0; -	prev->sched_class->put_prev_task(rq, prev); -} - -/* - * Pick up the highest-prio task: - */ -static inline struct task_struct * -pick_next_task(struct rq *rq) -{ -	const struct sched_class *class; -	struct task_struct *p; - -	/* -	 * Optimization: we know that if all tasks are in -	 * the fair class we can call that function directly: -	 */ -	if (likely(rq->nr_running == rq->cfs.nr_running)) { -		p = fair_sched_class.pick_next_task(rq); -		if (likely(p)) -			return p; -	} - -	for_each_class(class) { -		p = class->pick_next_task(rq); -		if (p) -			return p; -	} - -	BUG(); /* the idle class will always have a runnable task */ -} - -/* - * schedule() is the main scheduler function. - */ -asmlinkage void __sched schedule(void) -{ -	struct task_struct *prev, *next; -	unsigned long *switch_count; -	struct rq *rq; -	int cpu; - -need_resched: -	preempt_disable(); -	cpu = smp_processor_id(); -	rq = cpu_rq(cpu); -	rcu_note_context_switch(cpu); -	prev = rq->curr; - -	release_kernel_lock(prev); -need_resched_nonpreemptible: - -	schedule_debug(prev); - -	if (sched_feat(HRTICK)) -		hrtick_clear(rq); - -	raw_spin_lock_irq(&rq->lock); -	clear_tsk_need_resched(prev); - -	switch_count = &prev->nivcsw; -	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { -		if (unlikely(signal_pending_state(prev->state, prev))) { -			prev->state = TASK_RUNNING; -		} else { -			/* -			 * If a worker is going to sleep, notify and -			 * ask workqueue whether it wants to wake up a -			 * task to maintain concurrency.  If so, wake -			 * up the task. -			 */ -			if (prev->flags & PF_WQ_WORKER) { -				struct task_struct *to_wakeup; - -				to_wakeup = wq_worker_sleeping(prev, cpu); -				if (to_wakeup) -					try_to_wake_up_local(to_wakeup); -			} -			deactivate_task(rq, prev, DEQUEUE_SLEEP); -		} -		switch_count = &prev->nvcsw; -	} - -	pre_schedule(rq, prev); - -	if (unlikely(!rq->nr_running)) -		idle_balance(cpu, rq); - -	put_prev_task(rq, prev); -	next = pick_next_task(rq); - -	if (likely(prev != next)) { -		sched_info_switch(prev, next); -		perf_event_task_sched_out(prev, next); - -		rq->nr_switches++; -		rq->curr = next; -		++*switch_count; - -		context_switch(rq, prev, next); /* unlocks the rq */ -		/* -		 * The context switch have flipped the stack from under us -		 * and restored the local variables which were saved when -		 * this task called schedule() in the past. prev == current -		 * is still correct, but it can be moved to another cpu/rq. -		 */ -		cpu = smp_processor_id(); -		rq = cpu_rq(cpu); -	} else -		raw_spin_unlock_irq(&rq->lock); - -	post_schedule(rq); - -	if (unlikely(reacquire_kernel_lock(prev))) -		goto need_resched_nonpreemptible; - -	preempt_enable_no_resched(); -	if (need_resched()) -		goto need_resched; -} -EXPORT_SYMBOL(schedule); - -#ifdef CONFIG_MUTEX_SPIN_ON_OWNER -/* - * Look out! "owner" is an entirely speculative pointer - * access and not reliable. - */ -int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner) -{ -	unsigned int cpu; -	struct rq *rq; - -	if (!sched_feat(OWNER_SPIN)) -		return 0; - -#ifdef CONFIG_DEBUG_PAGEALLOC -	/* -	 * Need to access the cpu field knowing that -	 * DEBUG_PAGEALLOC could have unmapped it if -	 * the mutex owner just released it and exited. -	 */ -	if (probe_kernel_address(&owner->cpu, cpu)) -		return 0; -#else -	cpu = owner->cpu; -#endif - -	/* -	 * Even if the access succeeded (likely case), -	 * the cpu field may no longer be valid. -	 */ -	if (cpu >= nr_cpumask_bits) -		return 0; - -	/* -	 * We need to validate that we can do a -	 * get_cpu() and that we have the percpu area. -	 */ -	if (!cpu_online(cpu)) -		return 0; - -	rq = cpu_rq(cpu); - -	for (;;) { -		/* -		 * Owner changed, break to re-assess state. -		 */ -		if (lock->owner != owner) { -			/* -			 * If the lock has switched to a different owner, -			 * we likely have heavy contention. Return 0 to quit -			 * optimistic spinning and not contend further: -			 */ -			if (lock->owner) -				return 0; -			break; -		} - -		/* -		 * Is that owner really running on that cpu? -		 */ -		if (task_thread_info(rq->curr) != owner || need_resched()) -			return 0; - -		cpu_relax(); -	} - -	return 1; -} -#endif - -#ifdef CONFIG_PREEMPT -/* - * this is the entry point to schedule() from in-kernel preemption - * off of preempt_enable. Kernel preemptions off return from interrupt - * occur there and call schedule directly. - */ -asmlinkage void __sched notrace preempt_schedule(void) -{ -	struct thread_info *ti = current_thread_info(); - -	/* -	 * If there is a non-zero preempt_count or interrupts are disabled, -	 * we do not want to preempt the current task. Just return.. -	 */ -	if (likely(ti->preempt_count || irqs_disabled())) -		return; - -	do { -		add_preempt_count_notrace(PREEMPT_ACTIVE); -		schedule(); -		sub_preempt_count_notrace(PREEMPT_ACTIVE); - -		/* -		 * Check again in case we missed a preemption opportunity -		 * between schedule and now. -		 */ -		barrier(); -	} while (need_resched()); -} -EXPORT_SYMBOL(preempt_schedule); - -/* - * this is the entry point to schedule() from kernel preemption - * off of irq context. - * Note, that this is called and return with irqs disabled. This will - * protect us against recursive calling from irq. - */ -asmlinkage void __sched preempt_schedule_irq(void) -{ -	struct thread_info *ti = current_thread_info(); - -	/* Catch callers which need to be fixed */ -	BUG_ON(ti->preempt_count || !irqs_disabled()); - -	do { -		add_preempt_count(PREEMPT_ACTIVE); -		local_irq_enable(); -		schedule(); -		local_irq_disable(); -		sub_preempt_count(PREEMPT_ACTIVE); - -		/* -		 * Check again in case we missed a preemption opportunity -		 * between schedule and now. -		 */ -		barrier(); -	} while (need_resched()); -} - -#endif /* CONFIG_PREEMPT */ - -int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, -			  void *key) -{ -	return try_to_wake_up(curr->private, mode, wake_flags); -} -EXPORT_SYMBOL(default_wake_function); - -/* - * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just - * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve - * number) then we wake all the non-exclusive tasks and one exclusive task. - * - * There are circumstances in which we can try to wake a task which has already - * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns - * zero in this (rare) case, and we handle it by continuing to scan the queue. - */ -static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, -			int nr_exclusive, int wake_flags, void *key) -{ -	wait_queue_t *curr, *next; - -	list_for_each_entry_safe(curr, next, &q->task_list, task_list) { -		unsigned flags = curr->flags; - -		if (curr->func(curr, mode, wake_flags, key) && -				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) -			break; -	} -} - -/** - * __wake_up - wake up threads blocked on a waitqueue. - * @q: the waitqueue - * @mode: which threads - * @nr_exclusive: how many wake-one or wake-many threads to wake up - * @key: is directly passed to the wakeup function - * - * It may be assumed that this function implies a write memory barrier before - * changing the task state if and only if any tasks are woken up. - */ -void __wake_up(wait_queue_head_t *q, unsigned int mode, -			int nr_exclusive, void *key) -{ -	unsigned long flags; - -	spin_lock_irqsave(&q->lock, flags); -	__wake_up_common(q, mode, nr_exclusive, 0, key); -	spin_unlock_irqrestore(&q->lock, flags); -} -EXPORT_SYMBOL(__wake_up); - -/* - * Same as __wake_up but called with the spinlock in wait_queue_head_t held. - */ -void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) -{ -	__wake_up_common(q, mode, 1, 0, NULL); -} -EXPORT_SYMBOL_GPL(__wake_up_locked); - -void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) -{ -	__wake_up_common(q, mode, 1, 0, key); -} - -/** - * __wake_up_sync_key - wake up threads blocked on a waitqueue. - * @q: the waitqueue - * @mode: which threads - * @nr_exclusive: how many wake-one or wake-many threads to wake up - * @key: opaque value to be passed to wakeup targets - * - * The sync wakeup differs that the waker knows that it will schedule - * away soon, so while the target thread will be woken up, it will not - * be migrated to another CPU - ie. the two threads are 'synchronized' - * with each other. This can prevent needless bouncing between CPUs. - * - * On UP it can prevent extra preemption. - * - * It may be assumed that this function implies a write memory barrier before - * changing the task state if and only if any tasks are woken up. - */ -void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, -			int nr_exclusive, void *key) -{ -	unsigned long flags; -	int wake_flags = WF_SYNC; - -	if (unlikely(!q)) -		return; - -	if (unlikely(!nr_exclusive)) -		wake_flags = 0; - -	spin_lock_irqsave(&q->lock, flags); -	__wake_up_common(q, mode, nr_exclusive, wake_flags, key); -	spin_unlock_irqrestore(&q->lock, flags); -} -EXPORT_SYMBOL_GPL(__wake_up_sync_key); - -/* - * __wake_up_sync - see __wake_up_sync_key() - */ -void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) -{ -	__wake_up_sync_key(q, mode, nr_exclusive, NULL); -} -EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */ - -/** - * complete: - signals a single thread waiting on this completion - * @x:  holds the state of this particular completion - * - * This will wake up a single thread waiting on this completion. Threads will be - * awakened in the same order in which they were queued. - * - * See also complete_all(), wait_for_completion() and related routines. - * - * It may be assumed that this function implies a write memory barrier before - * changing the task state if and only if any tasks are woken up. - */ -void complete(struct completion *x) -{ -	unsigned long flags; - -	spin_lock_irqsave(&x->wait.lock, flags); -	x->done++; -	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); -	spin_unlock_irqrestore(&x->wait.lock, flags); -} -EXPORT_SYMBOL(complete); - -/** - * complete_all: - signals all threads waiting on this completion - * @x:  holds the state of this particular completion - * - * This will wake up all threads waiting on this particular completion event. - * - * It may be assumed that this function implies a write memory barrier before - * changing the task state if and only if any tasks are woken up. - */ -void complete_all(struct completion *x) -{ -	unsigned long flags; - -	spin_lock_irqsave(&x->wait.lock, flags); -	x->done += UINT_MAX/2; -	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); -	spin_unlock_irqrestore(&x->wait.lock, flags); -} -EXPORT_SYMBOL(complete_all); - -static inline long __sched -do_wait_for_common(struct completion *x, long timeout, int state) -{ -	if (!x->done) { -		DECLARE_WAITQUEUE(wait, current); - -		__add_wait_queue_tail_exclusive(&x->wait, &wait); -		do { -			if (signal_pending_state(state, current)) { -				timeout = -ERESTARTSYS; -				break; -			} -			__set_current_state(state); -			spin_unlock_irq(&x->wait.lock); -			timeout = schedule_timeout(timeout); -			spin_lock_irq(&x->wait.lock); -		} while (!x->done && timeout); -		__remove_wait_queue(&x->wait, &wait); -		if (!x->done) -			return timeout; -	} -	x->done--; -	return timeout ?: 1; -} - -static long __sched -wait_for_common(struct completion *x, long timeout, int state) -{ -	might_sleep(); - -	spin_lock_irq(&x->wait.lock); -	timeout = do_wait_for_common(x, timeout, state); -	spin_unlock_irq(&x->wait.lock); -	return timeout; -} - -/** - * wait_for_completion: - waits for completion of a task - * @x:  holds the state of this particular completion - * - * This waits to be signaled for completion of a specific task. It is NOT - * interruptible and there is no timeout. - * - * See also similar routines (i.e. wait_for_completion_timeout()) with timeout - * and interrupt capability. Also see complete(). - */ -void __sched wait_for_completion(struct completion *x) -{ -	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); -} -EXPORT_SYMBOL(wait_for_completion); - -/** - * wait_for_completion_timeout: - waits for completion of a task (w/timeout) - * @x:  holds the state of this particular completion - * @timeout:  timeout value in jiffies - * - * This waits for either a completion of a specific task to be signaled or for a - * specified timeout to expire. The timeout is in jiffies. It is not - * interruptible. - */ -unsigned long __sched -wait_for_completion_timeout(struct completion *x, unsigned long timeout) -{ -	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); -} -EXPORT_SYMBOL(wait_for_completion_timeout); - -/** - * wait_for_completion_interruptible: - waits for completion of a task (w/intr) - * @x:  holds the state of this particular completion - * - * This waits for completion of a specific task to be signaled. It is - * interruptible. - */ -int __sched wait_for_completion_interruptible(struct completion *x) -{ -	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); -	if (t == -ERESTARTSYS) -		return t; -	return 0; -} -EXPORT_SYMBOL(wait_for_completion_interruptible); - -/** - * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) - * @x:  holds the state of this particular completion - * @timeout:  timeout value in jiffies - * - * This waits for either a completion of a specific task to be signaled or for a - * specified timeout to expire. It is interruptible. The timeout is in jiffies. - */ -unsigned long __sched -wait_for_completion_interruptible_timeout(struct completion *x, -					  unsigned long timeout) -{ -	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); -} -EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); - -/** - * wait_for_completion_killable: - waits for completion of a task (killable) - * @x:  holds the state of this particular completion - * - * This waits to be signaled for completion of a specific task. It can be - * interrupted by a kill signal. - */ -int __sched wait_for_completion_killable(struct completion *x) -{ -	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); -	if (t == -ERESTARTSYS) -		return t; -	return 0; -} -EXPORT_SYMBOL(wait_for_completion_killable); - -/** - * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) - * @x:  holds the state of this particular completion - * @timeout:  timeout value in jiffies - * - * This waits for either a completion of a specific task to be - * signaled or for a specified timeout to expire. It can be - * interrupted by a kill signal. The timeout is in jiffies. - */ -unsigned long __sched -wait_for_completion_killable_timeout(struct completion *x, -				     unsigned long timeout) -{ -	return wait_for_common(x, timeout, TASK_KILLABLE); -} -EXPORT_SYMBOL(wait_for_completion_killable_timeout); - -/** - *	try_wait_for_completion - try to decrement a completion without blocking - *	@x:	completion structure - * - *	Returns: 0 if a decrement cannot be done without blocking - *		 1 if a decrement succeeded. - * - *	If a completion is being used as a counting completion, - *	attempt to decrement the counter without blocking. This - *	enables us to avoid waiting if the resource the completion - *	is protecting is not available. - */ -bool try_wait_for_completion(struct completion *x) -{ -	unsigned long flags; -	int ret = 1; - -	spin_lock_irqsave(&x->wait.lock, flags); -	if (!x->done) -		ret = 0; -	else -		x->done--; -	spin_unlock_irqrestore(&x->wait.lock, flags); -	return ret; -} -EXPORT_SYMBOL(try_wait_for_completion); - -/** - *	completion_done - Test to see if a completion has any waiters - *	@x:	completion structure - * - *	Returns: 0 if there are waiters (wait_for_completion() in progress) - *		 1 if there are no waiters. - * - */ -bool completion_done(struct completion *x) -{ -	unsigned long flags; -	int ret = 1; - -	spin_lock_irqsave(&x->wait.lock, flags); -	if (!x->done) -		ret = 0; -	spin_unlock_irqrestore(&x->wait.lock, flags); -	return ret; -} -EXPORT_SYMBOL(completion_done); - -static long __sched -sleep_on_common(wait_queue_head_t *q, int state, long timeout) -{ -	unsigned long flags; -	wait_queue_t wait; - -	init_waitqueue_entry(&wait, current); - -	__set_current_state(state); - -	spin_lock_irqsave(&q->lock, flags); -	__add_wait_queue(q, &wait); -	spin_unlock(&q->lock); -	timeout = schedule_timeout(timeout); -	spin_lock_irq(&q->lock); -	__remove_wait_queue(q, &wait); -	spin_unlock_irqrestore(&q->lock, flags); - -	return timeout; -} - -void __sched interruptible_sleep_on(wait_queue_head_t *q) -{ -	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); -} -EXPORT_SYMBOL(interruptible_sleep_on); - -long __sched -interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) -{ -	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); -} -EXPORT_SYMBOL(interruptible_sleep_on_timeout); - -void __sched sleep_on(wait_queue_head_t *q) -{ -	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); -} -EXPORT_SYMBOL(sleep_on); - -long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) -{ -	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); -} -EXPORT_SYMBOL(sleep_on_timeout); - -#ifdef CONFIG_RT_MUTEXES - -/* - * rt_mutex_setprio - set the current priority of a task - * @p: task - * @prio: prio value (kernel-internal form) - * - * This function changes the 'effective' priority of a task. It does - * not touch ->normal_prio like __setscheduler(). - * - * Used by the rt_mutex code to implement priority inheritance logic. - */ -void rt_mutex_setprio(struct task_struct *p, int prio) -{ -	unsigned long flags; -	int oldprio, on_rq, running; -	struct rq *rq; -	const struct sched_class *prev_class; - -	BUG_ON(prio < 0 || prio > MAX_PRIO); - -	rq = task_rq_lock(p, &flags); - -	trace_sched_pi_setprio(p, prio); -	oldprio = p->prio; -	prev_class = p->sched_class; -	on_rq = p->se.on_rq; -	running = task_current(rq, p); -	if (on_rq) -		dequeue_task(rq, p, 0); -	if (running) -		p->sched_class->put_prev_task(rq, p); - -	if (rt_prio(prio)) -		p->sched_class = &rt_sched_class; -	else -		p->sched_class = &fair_sched_class; - -	p->prio = prio; - -	if (running) -		p->sched_class->set_curr_task(rq); -	if (on_rq) { -		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); - -		check_class_changed(rq, p, prev_class, oldprio, running); -	} -	task_rq_unlock(rq, &flags); -} - -#endif - -void set_user_nice(struct task_struct *p, long nice) -{ -	int old_prio, delta, on_rq; -	unsigned long flags; -	struct rq *rq; - -	if (TASK_NICE(p) == nice || nice < -20 || nice > 19) -		return; -	/* -	 * We have to be careful, if called from sys_setpriority(), -	 * the task might be in the middle of scheduling on another CPU. -	 */ -	rq = task_rq_lock(p, &flags); -	/* -	 * The RT priorities are set via sched_setscheduler(), but we still -	 * allow the 'normal' nice value to be set - but as expected -	 * it wont have any effect on scheduling until the task is -	 * SCHED_FIFO/SCHED_RR: -	 */ -	if (task_has_rt_policy(p)) { -		p->static_prio = NICE_TO_PRIO(nice); -		goto out_unlock; -	} -	on_rq = p->se.on_rq; -	if (on_rq) -		dequeue_task(rq, p, 0); - -	p->static_prio = NICE_TO_PRIO(nice); -	set_load_weight(p); -	old_prio = p->prio; -	p->prio = effective_prio(p); -	delta = p->prio - old_prio; - -	if (on_rq) { -		enqueue_task(rq, p, 0); -		/* -		 * If the task increased its priority or is running and -		 * lowered its priority, then reschedule its CPU: -		 */ -		if (delta < 0 || (delta > 0 && task_running(rq, p))) -			resched_task(rq->curr); -	} -out_unlock: -	task_rq_unlock(rq, &flags); -} -EXPORT_SYMBOL(set_user_nice); - -/* - * can_nice - check if a task can reduce its nice value - * @p: task - * @nice: nice value - */ -int can_nice(const struct task_struct *p, const int nice) -{ -	/* convert nice value [19,-20] to rlimit style value [1,40] */ -	int nice_rlim = 20 - nice; - -	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || -		capable(CAP_SYS_NICE)); -} - -#ifdef __ARCH_WANT_SYS_NICE - -/* - * sys_nice - change the priority of the current process. - * @increment: priority increment - * - * sys_setpriority is a more generic, but much slower function that - * does similar things. - */ -SYSCALL_DEFINE1(nice, int, increment) -{ -	long nice, retval; - -	/* -	 * Setpriority might change our priority at the same moment. -	 * We don't have to worry. Conceptually one call occurs first -	 * and we have a single winner. -	 */ -	if (increment < -40) -		increment = -40; -	if (increment > 40) -		increment = 40; - -	nice = TASK_NICE(current) + increment; -	if (nice < -20) -		nice = -20; -	if (nice > 19) -		nice = 19; - -	if (increment < 0 && !can_nice(current, nice)) -		return -EPERM; - -	retval = security_task_setnice(current, nice); -	if (retval) -		return retval; - -	set_user_nice(current, nice); -	return 0; -} - -#endif - -/** - * task_prio - return the priority value of a given task. - * @p: the task in question. - * - * This is the priority value as seen by users in /proc. - * RT tasks are offset by -200. Normal tasks are centered - * around 0, value goes from -16 to +15. - */ -int task_prio(const struct task_struct *p) -{ -	return p->prio - MAX_RT_PRIO; -} - -/** - * task_nice - return the nice value of a given task. - * @p: the task in question. - */ -int task_nice(const struct task_struct *p) -{ -	return TASK_NICE(p); -} -EXPORT_SYMBOL(task_nice); - -/** - * idle_cpu - is a given cpu idle currently? - * @cpu: the processor in question. - */ -int idle_cpu(int cpu) -{ -	return cpu_curr(cpu) == cpu_rq(cpu)->idle; -} - -/** - * idle_task - return the idle task for a given cpu. - * @cpu: the processor in question. - */ -struct task_struct *idle_task(int cpu) -{ -	return cpu_rq(cpu)->idle; -} - -/** - * find_process_by_pid - find a process with a matching PID value. - * @pid: the pid in question. - */ -static struct task_struct *find_process_by_pid(pid_t pid) -{ -	return pid ? find_task_by_vpid(pid) : current; -} - -/* Actually do priority change: must hold rq lock. */ -static void -__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) -{ -	BUG_ON(p->se.on_rq); - -	p->policy = policy; -	p->rt_priority = prio; -	p->normal_prio = normal_prio(p); -	/* we are holding p->pi_lock already */ -	p->prio = rt_mutex_getprio(p); -	if (rt_prio(p->prio)) -		p->sched_class = &rt_sched_class; -	else -		p->sched_class = &fair_sched_class; -	set_load_weight(p); -} - -/* - * check the target process has a UID that matches the current process's - */ -static bool check_same_owner(struct task_struct *p) -{ -	const struct cred *cred = current_cred(), *pcred; -	bool match; - -	rcu_read_lock(); -	pcred = __task_cred(p); -	match = (cred->euid == pcred->euid || -		 cred->euid == pcred->uid); -	rcu_read_unlock(); -	return match; -} - -static int __sched_setscheduler(struct task_struct *p, int policy, -				struct sched_param *param, bool user) -{ -	int retval, oldprio, oldpolicy = -1, on_rq, running; -	unsigned long flags; -	const struct sched_class *prev_class; -	struct rq *rq; -	int reset_on_fork; - -	/* may grab non-irq protected spin_locks */ -	BUG_ON(in_interrupt()); -recheck: -	/* double check policy once rq lock held */ -	if (policy < 0) { -		reset_on_fork = p->sched_reset_on_fork; -		policy = oldpolicy = p->policy; -	} else { -		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); -		policy &= ~SCHED_RESET_ON_FORK; - -		if (policy != SCHED_FIFO && policy != SCHED_RR && -				policy != SCHED_NORMAL && policy != SCHED_BATCH && -				policy != SCHED_IDLE) -			return -EINVAL; -	} - -	/* -	 * Valid priorities for SCHED_FIFO and SCHED_RR are -	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, -	 * SCHED_BATCH and SCHED_IDLE is 0. -	 */ -	if (param->sched_priority < 0 || -	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || -	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) -		return -EINVAL; -	if (rt_policy(policy) != (param->sched_priority != 0)) -		return -EINVAL; - -	/* -	 * Allow unprivileged RT tasks to decrease priority: -	 */ -	if (user && !capable(CAP_SYS_NICE)) { -		if (rt_policy(policy)) { -			unsigned long rlim_rtprio = -					task_rlimit(p, RLIMIT_RTPRIO); - -			/* can't set/change the rt policy */ -			if (policy != p->policy && !rlim_rtprio) -				return -EPERM; - -			/* can't increase priority */ -			if (param->sched_priority > p->rt_priority && -			    param->sched_priority > rlim_rtprio) -				return -EPERM; -		} -		/* -		 * Like positive nice levels, dont allow tasks to -		 * move out of SCHED_IDLE either: -		 */ -		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) -			return -EPERM; - -		/* can't change other user's priorities */ -		if (!check_same_owner(p)) -			return -EPERM; - -		/* Normal users shall not reset the sched_reset_on_fork flag */ -		if (p->sched_reset_on_fork && !reset_on_fork) -			return -EPERM; -	} - -	if (user) { -		retval = security_task_setscheduler(p); -		if (retval) -			return retval; -	} - -	/* -	 * make sure no PI-waiters arrive (or leave) while we are -	 * changing the priority of the task: -	 */ -	raw_spin_lock_irqsave(&p->pi_lock, flags); -	/* -	 * To be able to change p->policy safely, the apropriate -	 * runqueue lock must be held. -	 */ -	rq = __task_rq_lock(p); - -	/* -	 * Changing the policy of the stop threads its a very bad idea -	 */ -	if (p == rq->stop) { -		__task_rq_unlock(rq); -		raw_spin_unlock_irqrestore(&p->pi_lock, flags); -		return -EINVAL; -	} - -#ifdef CONFIG_RT_GROUP_SCHED -	if (user) { -		/* -		 * Do not allow realtime tasks into groups that have no runtime -		 * assigned. -		 */ -		if (rt_bandwidth_enabled() && rt_policy(policy) && -				task_group(p)->rt_bandwidth.rt_runtime == 0) { -			__task_rq_unlock(rq); -			raw_spin_unlock_irqrestore(&p->pi_lock, flags); -			return -EPERM; -		} -	} -#endif - -	/* recheck policy now with rq lock held */ -	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { -		policy = oldpolicy = -1; -		__task_rq_unlock(rq); -		raw_spin_unlock_irqrestore(&p->pi_lock, flags); -		goto recheck; -	} -	on_rq = p->se.on_rq; -	running = task_current(rq, p); -	if (on_rq) -		deactivate_task(rq, p, 0); -	if (running) -		p->sched_class->put_prev_task(rq, p); - -	p->sched_reset_on_fork = reset_on_fork; - -	oldprio = p->prio; -	prev_class = p->sched_class; -	__setscheduler(rq, p, policy, param->sched_priority); - -	if (running) -		p->sched_class->set_curr_task(rq); -	if (on_rq) { -		activate_task(rq, p, 0); - -		check_class_changed(rq, p, prev_class, oldprio, running); -	} -	__task_rq_unlock(rq); -	raw_spin_unlock_irqrestore(&p->pi_lock, flags); - -	rt_mutex_adjust_pi(p); - -	return 0; -} - -/** - * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. - * @p: the task in question. - * @policy: new policy. - * @param: structure containing the new RT priority. - * - * NOTE that the task may be already dead. - */ -int sched_setscheduler(struct task_struct *p, int policy, -		       struct sched_param *param) -{ -	return __sched_setscheduler(p, policy, param, true); -} -EXPORT_SYMBOL_GPL(sched_setscheduler); - -/** - * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. - * @p: the task in question. - * @policy: new policy. - * @param: structure containing the new RT priority. - * - * Just like sched_setscheduler, only don't bother checking if the - * current context has permission.  For example, this is needed in - * stop_machine(): we create temporary high priority worker threads, - * but our caller might not have that capability. - */ -int sched_setscheduler_nocheck(struct task_struct *p, int policy, -			       struct sched_param *param) -{ -	return __sched_setscheduler(p, policy, param, false); -} - -static int -do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) -{ -	struct sched_param lparam; -	struct task_struct *p; -	int retval; - -	if (!param || pid < 0) -		return -EINVAL; -	if (copy_from_user(&lparam, param, sizeof(struct sched_param))) -		return -EFAULT; - -	rcu_read_lock(); -	retval = -ESRCH; -	p = find_process_by_pid(pid); -	if (p != NULL) -		retval = sched_setscheduler(p, policy, &lparam); -	rcu_read_unlock(); - -	return retval; -} - -/** - * sys_sched_setscheduler - set/change the scheduler policy and RT priority - * @pid: the pid in question. - * @policy: new policy. - * @param: structure containing the new RT priority. - */ -SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, -		struct sched_param __user *, param) -{ -	/* negative values for policy are not valid */ -	if (policy < 0) -		return -EINVAL; - -	return do_sched_setscheduler(pid, policy, param); -} - -/** - * sys_sched_setparam - set/change the RT priority of a thread - * @pid: the pid in question. - * @param: structure containing the new RT priority. - */ -SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) -{ -	return do_sched_setscheduler(pid, -1, param); -} - -/** - * sys_sched_getscheduler - get the policy (scheduling class) of a thread - * @pid: the pid in question. - */ -SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) -{ -	struct task_struct *p; -	int retval; - -	if (pid < 0) -		return -EINVAL; - -	retval = -ESRCH; -	rcu_read_lock(); -	p = find_process_by_pid(pid); -	if (p) { -		retval = security_task_getscheduler(p); -		if (!retval) -			retval = p->policy -				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); -	} -	rcu_read_unlock(); -	return retval; -} - -/** - * sys_sched_getparam - get the RT priority of a thread - * @pid: the pid in question. - * @param: structure containing the RT priority. - */ -SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) -{ -	struct sched_param lp; -	struct task_struct *p; -	int retval; - -	if (!param || pid < 0) -		return -EINVAL; - -	rcu_read_lock(); -	p = find_process_by_pid(pid); -	retval = -ESRCH; -	if (!p) -		goto out_unlock; - -	retval = security_task_getscheduler(p); -	if (retval) -		goto out_unlock; - -	lp.sched_priority = p->rt_priority; -	rcu_read_unlock(); - -	/* -	 * This one might sleep, we cannot do it with a spinlock held ... -	 */ -	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; - -	return retval; - -out_unlock: -	rcu_read_unlock(); -	return retval; -} - -long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) -{ -	cpumask_var_t cpus_allowed, new_mask; -	struct task_struct *p; -	int retval; - -	get_online_cpus(); -	rcu_read_lock(); - -	p = find_process_by_pid(pid); -	if (!p) { -		rcu_read_unlock(); -		put_online_cpus(); -		return -ESRCH; -	} - -	/* Prevent p going away */ -	get_task_struct(p); -	rcu_read_unlock(); - -	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { -		retval = -ENOMEM; -		goto out_put_task; -	} -	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { -		retval = -ENOMEM; -		goto out_free_cpus_allowed; -	} -	retval = -EPERM; -	if (!check_same_owner(p) && !capable(CAP_SYS_NICE)) -		goto out_unlock; - -	retval = security_task_setscheduler(p); -	if (retval) -		goto out_unlock; - -	cpuset_cpus_allowed(p, cpus_allowed); -	cpumask_and(new_mask, in_mask, cpus_allowed); -again: -	retval = set_cpus_allowed_ptr(p, new_mask); - -	if (!retval) { -		cpuset_cpus_allowed(p, cpus_allowed); -		if (!cpumask_subset(new_mask, cpus_allowed)) { -			/* -			 * We must have raced with a concurrent cpuset -			 * update. Just reset the cpus_allowed to the -			 * cpuset's cpus_allowed -			 */ -			cpumask_copy(new_mask, cpus_allowed); -			goto again; -		} -	} -out_unlock: -	free_cpumask_var(new_mask); -out_free_cpus_allowed: -	free_cpumask_var(cpus_allowed); -out_put_task: -	put_task_struct(p); -	put_online_cpus(); -	return retval; -} - -static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, -			     struct cpumask *new_mask) -{ -	if (len < cpumask_size()) -		cpumask_clear(new_mask); -	else if (len > cpumask_size()) -		len = cpumask_size(); - -	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; -} - -/** - * sys_sched_setaffinity - set the cpu affinity of a process - * @pid: pid of the process - * @len: length in bytes of the bitmask pointed to by user_mask_ptr - * @user_mask_ptr: user-space pointer to the new cpu mask - */ -SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, -		unsigned long __user *, user_mask_ptr) -{ -	cpumask_var_t new_mask; -	int retval; - -	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) -		return -ENOMEM; - -	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); -	if (retval == 0) -		retval = sched_setaffinity(pid, new_mask); -	free_cpumask_var(new_mask); -	return retval; -} - -long sched_getaffinity(pid_t pid, struct cpumask *mask) -{ -	struct task_struct *p; -	unsigned long flags; -	struct rq *rq; -	int retval; - -	get_online_cpus(); -	rcu_read_lock(); - -	retval = -ESRCH; -	p = find_process_by_pid(pid); -	if (!p) -		goto out_unlock; - -	retval = security_task_getscheduler(p); -	if (retval) -		goto out_unlock; - -	rq = task_rq_lock(p, &flags); -	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); -	task_rq_unlock(rq, &flags); - -out_unlock: -	rcu_read_unlock(); -	put_online_cpus(); - -	return retval; -} - -/** - * sys_sched_getaffinity - get the cpu affinity of a process - * @pid: pid of the process - * @len: length in bytes of the bitmask pointed to by user_mask_ptr - * @user_mask_ptr: user-space pointer to hold the current cpu mask - */ -SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, -		unsigned long __user *, user_mask_ptr) -{ -	int ret; -	cpumask_var_t mask; - -	if ((len * BITS_PER_BYTE) < nr_cpu_ids) -		return -EINVAL; -	if (len & (sizeof(unsigned long)-1)) -		return -EINVAL; - -	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) -		return -ENOMEM; - -	ret = sched_getaffinity(pid, mask); -	if (ret == 0) { -		size_t retlen = min_t(size_t, len, cpumask_size()); - -		if (copy_to_user(user_mask_ptr, mask, retlen)) -			ret = -EFAULT; -		else -			ret = retlen; -	} -	free_cpumask_var(mask); - -	return ret; -} - -/** - * sys_sched_yield - yield the current processor to other threads. - * - * This function yields the current CPU to other tasks. If there are no - * other threads running on this CPU then this function will return. - */ -SYSCALL_DEFINE0(sched_yield) -{ -	struct rq *rq = this_rq_lock(); - -	schedstat_inc(rq, yld_count); -	current->sched_class->yield_task(rq); - -	/* -	 * Since we are going to call schedule() anyway, there's -	 * no need to preempt or enable interrupts: -	 */ -	__release(rq->lock); -	spin_release(&rq->lock.dep_map, 1, _THIS_IP_); -	do_raw_spin_unlock(&rq->lock); -	preempt_enable_no_resched(); - -	schedule(); - -	return 0; -} - -static inline int should_resched(void) -{ -	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); -} - -static void __cond_resched(void) -{ -	add_preempt_count(PREEMPT_ACTIVE); -	schedule(); -	sub_preempt_count(PREEMPT_ACTIVE); -} - -int __sched _cond_resched(void) -{ -	if (should_resched()) { -		__cond_resched(); -		return 1; -	} -	return 0; -} -EXPORT_SYMBOL(_cond_resched); - -/* - * __cond_resched_lock() - if a reschedule is pending, drop the given lock, - * call schedule, and on return reacquire the lock. - * - * This works OK both with and without CONFIG_PREEMPT. We do strange low-level - * operations here to prevent schedule() from being called twice (once via - * spin_unlock(), once by hand). - */ -int __cond_resched_lock(spinlock_t *lock) -{ -	int resched = should_resched(); -	int ret = 0; - -	lockdep_assert_held(lock); - -	if (spin_needbreak(lock) || resched) { -		spin_unlock(lock); -		if (resched) -			__cond_resched(); -		else -			cpu_relax(); -		ret = 1; -		spin_lock(lock); -	} -	return ret; -} -EXPORT_SYMBOL(__cond_resched_lock); - -int __sched __cond_resched_softirq(void) -{ -	BUG_ON(!in_softirq()); - -	if (should_resched()) { -		local_bh_enable(); -		__cond_resched(); -		local_bh_disable(); -		return 1; -	} -	return 0; -} -EXPORT_SYMBOL(__cond_resched_softirq); - -/** - * yield - yield the current processor to other threads. - * - * This is a shortcut for kernel-space yielding - it marks the - * thread runnable and calls sys_sched_yield(). - */ -void __sched yield(void) -{ -	set_current_state(TASK_RUNNING); -	sys_sched_yield(); -} -EXPORT_SYMBOL(yield); - -/* - * This task is about to go to sleep on IO. Increment rq->nr_iowait so - * that process accounting knows that this is a task in IO wait state. - */ -void __sched io_schedule(void) -{ -	struct rq *rq = raw_rq(); - -	delayacct_blkio_start(); -	atomic_inc(&rq->nr_iowait); -	current->in_iowait = 1; -	schedule(); -	current->in_iowait = 0; -	atomic_dec(&rq->nr_iowait); -	delayacct_blkio_end(); -} -EXPORT_SYMBOL(io_schedule); - -long __sched io_schedule_timeout(long timeout) -{ -	struct rq *rq = raw_rq(); -	long ret; - -	delayacct_blkio_start(); -	atomic_inc(&rq->nr_iowait); -	current->in_iowait = 1; -	ret = schedule_timeout(timeout); -	current->in_iowait = 0; -	atomic_dec(&rq->nr_iowait); -	delayacct_blkio_end(); -	return ret; -} - -/** - * sys_sched_get_priority_max - return maximum RT priority. - * @policy: scheduling class. - * - * this syscall returns the maximum rt_priority that can be used - * by a given scheduling class. - */ -SYSCALL_DEFINE1(sched_get_priority_max, int, policy) -{ -	int ret = -EINVAL; - -	switch (policy) { -	case SCHED_FIFO: -	case SCHED_RR: -		ret = MAX_USER_RT_PRIO-1; -		break; -	case SCHED_NORMAL: -	case SCHED_BATCH: -	case SCHED_IDLE: -		ret = 0; -		break; -	} -	return ret; -} - -/** - * sys_sched_get_priority_min - return minimum RT priority. - * @policy: scheduling class. - * - * this syscall returns the minimum rt_priority that can be used - * by a given scheduling class. - */ -SYSCALL_DEFINE1(sched_get_priority_min, int, policy) -{ -	int ret = -EINVAL; - -	switch (policy) { -	case SCHED_FIFO: -	case SCHED_RR: -		ret = 1; -		break; -	case SCHED_NORMAL: -	case SCHED_BATCH: -	case SCHED_IDLE: -		ret = 0; -	} -	return ret; -} - -/** - * sys_sched_rr_get_interval - return the default timeslice of a process. - * @pid: pid of the process. - * @interval: userspace pointer to the timeslice value. - * - * this syscall writes the default timeslice value of a given process - * into the user-space timespec buffer. A value of '0' means infinity. - */ -SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, -		struct timespec __user *, interval) -{ -	struct task_struct *p; -	unsigned int time_slice; -	unsigned long flags; -	struct rq *rq; -	int retval; -	struct timespec t; - -	if (pid < 0) -		return -EINVAL; - -	retval = -ESRCH; -	rcu_read_lock(); -	p = find_process_by_pid(pid); -	if (!p) -		goto out_unlock; - -	retval = security_task_getscheduler(p); -	if (retval) -		goto out_unlock; - -	rq = task_rq_lock(p, &flags); -	time_slice = p->sched_class->get_rr_interval(rq, p); -	task_rq_unlock(rq, &flags); - -	rcu_read_unlock(); -	jiffies_to_timespec(time_slice, &t); -	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; -	return retval; - -out_unlock: -	rcu_read_unlock(); -	return retval; -} - -static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; - -void sched_show_task(struct task_struct *p) -{ -	unsigned long free = 0; -	unsigned state; - -	state = p->state ? __ffs(p->state) + 1 : 0; -	printk(KERN_INFO "%-13.13s %c", p->comm, -		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); -#if BITS_PER_LONG == 32 -	if (state == TASK_RUNNING) -		printk(KERN_CONT " running  "); -	else -		printk(KERN_CONT " %08lx ", thread_saved_pc(p)); -#else -	if (state == TASK_RUNNING) -		printk(KERN_CONT "  running task    "); -	else -		printk(KERN_CONT " %016lx ", thread_saved_pc(p)); -#endif -#ifdef CONFIG_DEBUG_STACK_USAGE -	free = stack_not_used(p); -#endif -	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, -		task_pid_nr(p), task_pid_nr(p->real_parent), -		(unsigned long)task_thread_info(p)->flags); - -	show_stack(p, NULL); -} - -void show_state_filter(unsigned long state_filter) -{ -	struct task_struct *g, *p; - -#if BITS_PER_LONG == 32 -	printk(KERN_INFO -		"  task                PC stack   pid father\n"); -#else -	printk(KERN_INFO -		"  task                        PC stack   pid father\n"); -#endif -	read_lock(&tasklist_lock); -	do_each_thread(g, p) { -		/* -		 * reset the NMI-timeout, listing all files on a slow -		 * console might take alot of time: -		 */ -		touch_nmi_watchdog(); -		if (!state_filter || (p->state & state_filter)) -			sched_show_task(p); -	} while_each_thread(g, p); - -	touch_all_softlockup_watchdogs(); - -#ifdef CONFIG_SCHED_DEBUG -	sysrq_sched_debug_show(); -#endif -	read_unlock(&tasklist_lock); -	/* -	 * Only show locks if all tasks are dumped: -	 */ -	if (!state_filter) -		debug_show_all_locks(); -} - -void __cpuinit init_idle_bootup_task(struct task_struct *idle) -{ -	idle->sched_class = &idle_sched_class; -} - -/** - * init_idle - set up an idle thread for a given CPU - * @idle: task in question - * @cpu: cpu the idle task belongs to - * - * NOTE: this function does not set the idle thread's NEED_RESCHED - * flag, to make booting more robust. - */ -void __cpuinit init_idle(struct task_struct *idle, int cpu) -{ -	struct rq *rq = cpu_rq(cpu); -	unsigned long flags; - -	raw_spin_lock_irqsave(&rq->lock, flags); - -	__sched_fork(idle); -	idle->state = TASK_RUNNING; -	idle->se.exec_start = sched_clock(); - -	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); -	/* -	 * We're having a chicken and egg problem, even though we are -	 * holding rq->lock, the cpu isn't yet set to this cpu so the -	 * lockdep check in task_group() will fail. -	 * -	 * Similar case to sched_fork(). / Alternatively we could -	 * use task_rq_lock() here and obtain the other rq->lock. -	 * -	 * Silence PROVE_RCU -	 */ -	rcu_read_lock(); -	__set_task_cpu(idle, cpu); -	rcu_read_unlock(); - -	rq->curr = rq->idle = idle; -#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) -	idle->oncpu = 1; -#endif -	raw_spin_unlock_irqrestore(&rq->lock, flags); - -	/* Set the preempt count _outside_ the spinlocks! */ -#if defined(CONFIG_PREEMPT) -	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); -#else -	task_thread_info(idle)->preempt_count = 0; -#endif -	/* -	 * The idle tasks have their own, simple scheduling class: -	 */ -	idle->sched_class = &idle_sched_class; -	ftrace_graph_init_task(idle); -} - -/* - * In a system that switches off the HZ timer nohz_cpu_mask - * indicates which cpus entered this state. This is used - * in the rcu update to wait only for active cpus. For system - * which do not switch off the HZ timer nohz_cpu_mask should - * always be CPU_BITS_NONE. - */ -cpumask_var_t nohz_cpu_mask; - -/* - * Increase the granularity value when there are more CPUs, - * because with more CPUs the 'effective latency' as visible - * to users decreases. But the relationship is not linear, - * so pick a second-best guess by going with the log2 of the - * number of CPUs. - * - * This idea comes from the SD scheduler of Con Kolivas: - */ -static int get_update_sysctl_factor(void) -{ -	unsigned int cpus = min_t(int, num_online_cpus(), 8); -	unsigned int factor; - -	switch (sysctl_sched_tunable_scaling) { -	case SCHED_TUNABLESCALING_NONE: -		factor = 1; -		break; -	case SCHED_TUNABLESCALING_LINEAR: -		factor = cpus; -		break; -	case SCHED_TUNABLESCALING_LOG: -	default: -		factor = 1 + ilog2(cpus); -		break; -	} - -	return factor; -} - -static void update_sysctl(void) -{ -	unsigned int factor = get_update_sysctl_factor(); - -#define SET_SYSCTL(name) \ -	(sysctl_##name = (factor) * normalized_sysctl_##name) -	SET_SYSCTL(sched_min_granularity); -	SET_SYSCTL(sched_latency); -	SET_SYSCTL(sched_wakeup_granularity); -	SET_SYSCTL(sched_shares_ratelimit); -#undef SET_SYSCTL -} - -static inline void sched_init_granularity(void) -{ -	update_sysctl(); -} - -#ifdef CONFIG_SMP -/* - * This is how migration works: - * - * 1) we invoke migration_cpu_stop() on the target CPU using - *    stop_one_cpu(). - * 2) stopper starts to run (implicitly forcing the migrated thread - *    off the CPU) - * 3) it checks whether the migrated task is still in the wrong runqueue. - * 4) if it's in the wrong runqueue then the migration thread removes - *    it and puts it into the right queue. - * 5) stopper completes and stop_one_cpu() returns and the migration - *    is done. - */ - -/* - * Change a given task's CPU affinity. Migrate the thread to a - * proper CPU and schedule it away if the CPU it's executing on - * is removed from the allowed bitmask. - * - * NOTE: the caller must have a valid reference to the task, the - * task must not exit() & deallocate itself prematurely. The - * call is not atomic; no spinlocks may be held. - */ -int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) -{ -	unsigned long flags; -	struct rq *rq; -	unsigned int dest_cpu; -	int ret = 0; - -	/* -	 * Serialize against TASK_WAKING so that ttwu() and wunt() can -	 * drop the rq->lock and still rely on ->cpus_allowed. -	 */ -again: -	while (task_is_waking(p)) -		cpu_relax(); -	rq = task_rq_lock(p, &flags); -	if (task_is_waking(p)) { -		task_rq_unlock(rq, &flags); -		goto again; -	} - -	if (!cpumask_intersects(new_mask, cpu_active_mask)) { -		ret = -EINVAL; -		goto out; -	} - -	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && -		     !cpumask_equal(&p->cpus_allowed, new_mask))) { -		ret = -EINVAL; -		goto out; -	} - -	if (p->sched_class->set_cpus_allowed) -		p->sched_class->set_cpus_allowed(p, new_mask); -	else { -		cpumask_copy(&p->cpus_allowed, new_mask); -		p->rt.nr_cpus_allowed = cpumask_weight(new_mask); -	} - -	/* Can the task run on the task's current CPU? If so, we're done */ -	if (cpumask_test_cpu(task_cpu(p), new_mask)) -		goto out; - -	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); -	if (migrate_task(p, dest_cpu)) { -		struct migration_arg arg = { p, dest_cpu }; -		/* Need help from migration thread: drop lock and wait. */ -		task_rq_unlock(rq, &flags); -		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); -		tlb_migrate_finish(p->mm); -		return 0; -	} -out: -	task_rq_unlock(rq, &flags); - -	return ret; -} -EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); - -/* - * Move (not current) task off this cpu, onto dest cpu. We're doing - * this because either it can't run here any more (set_cpus_allowed() - * away from this CPU, or CPU going down), or because we're - * attempting to rebalance this task on exec (sched_exec). - * - * So we race with normal scheduler movements, but that's OK, as long - * as the task is no longer on this CPU. - * - * Returns non-zero if task was successfully migrated. - */ -static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) -{ -	struct rq *rq_dest, *rq_src; -	int ret = 0; - -	if (unlikely(!cpu_active(dest_cpu))) -		return ret; - -	rq_src = cpu_rq(src_cpu); -	rq_dest = cpu_rq(dest_cpu); - -	double_rq_lock(rq_src, rq_dest); -	/* Already moved. */ -	if (task_cpu(p) != src_cpu) -		goto done; -	/* Affinity changed (again). */ -	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) -		goto fail; - -	/* -	 * If we're not on a rq, the next wake-up will ensure we're -	 * placed properly. -	 */ -	if (p->se.on_rq) { -		deactivate_task(rq_src, p, 0); -		set_task_cpu(p, dest_cpu); -		activate_task(rq_dest, p, 0); -		check_preempt_curr(rq_dest, p, 0); -	} -done: -	ret = 1; -fail: -	double_rq_unlock(rq_src, rq_dest); -	return ret; -} - -/* - * migration_cpu_stop - this will be executed by a highprio stopper thread - * and performs thread migration by bumping thread off CPU then - * 'pushing' onto another runqueue. - */ -static int migration_cpu_stop(void *data) -{ -	struct migration_arg *arg = data; - -	/* -	 * The original target cpu might have gone down and we might -	 * be on another cpu but it doesn't matter. -	 */ -	local_irq_disable(); -	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); -	local_irq_enable(); -	return 0; -} - -#ifdef CONFIG_HOTPLUG_CPU -/* - * Figure out where task on dead CPU should go, use force if necessary. - */ -void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) -{ -	struct rq *rq = cpu_rq(dead_cpu); -	int needs_cpu, uninitialized_var(dest_cpu); -	unsigned long flags; - -	local_irq_save(flags); - -	raw_spin_lock(&rq->lock); -	needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING); -	if (needs_cpu) -		dest_cpu = select_fallback_rq(dead_cpu, p); -	raw_spin_unlock(&rq->lock); -	/* -	 * It can only fail if we race with set_cpus_allowed(), -	 * in the racer should migrate the task anyway. -	 */ -	if (needs_cpu) -		__migrate_task(p, dead_cpu, dest_cpu); -	local_irq_restore(flags); -} - -/* - * While a dead CPU has no uninterruptible tasks queued at this point, - * it might still have a nonzero ->nr_uninterruptible counter, because - * for performance reasons the counter is not stricly tracking tasks to - * their home CPUs. So we just add the counter to another CPU's counter, - * to keep the global sum constant after CPU-down: - */ -static void migrate_nr_uninterruptible(struct rq *rq_src) -{ -	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); -	unsigned long flags; - -	local_irq_save(flags); -	double_rq_lock(rq_src, rq_dest); -	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; -	rq_src->nr_uninterruptible = 0; -	double_rq_unlock(rq_src, rq_dest); -	local_irq_restore(flags); -} - -/* Run through task list and migrate tasks from the dead cpu. */ -static void migrate_live_tasks(int src_cpu) -{ -	struct task_struct *p, *t; - -	read_lock(&tasklist_lock); - -	do_each_thread(t, p) { -		if (p == current) -			continue; - -		if (task_cpu(p) == src_cpu) -			move_task_off_dead_cpu(src_cpu, p); -	} while_each_thread(t, p); - -	read_unlock(&tasklist_lock); -} - -/* - * Schedules idle task to be the next runnable task on current CPU. - * It does so by boosting its priority to highest possible. - * Used by CPU offline code. - */ -void sched_idle_next(void) -{ -	int this_cpu = smp_processor_id(); -	struct rq *rq = cpu_rq(this_cpu); -	struct task_struct *p = rq->idle; -	unsigned long flags; - -	/* cpu has to be offline */ -	BUG_ON(cpu_online(this_cpu)); - -	/* -	 * Strictly not necessary since rest of the CPUs are stopped by now -	 * and interrupts disabled on the current cpu. -	 */ -	raw_spin_lock_irqsave(&rq->lock, flags); - -	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); - -	activate_task(rq, p, 0); - -	raw_spin_unlock_irqrestore(&rq->lock, flags); -} - -/* - * Ensures that the idle task is using init_mm right before its cpu goes - * offline. - */ -void idle_task_exit(void) -{ -	struct mm_struct *mm = current->active_mm; - -	BUG_ON(cpu_online(smp_processor_id())); - -	if (mm != &init_mm) -		switch_mm(mm, &init_mm, current); -	mmdrop(mm); -} - -/* called under rq->lock with disabled interrupts */ -static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) -{ -	struct rq *rq = cpu_rq(dead_cpu); - -	/* Must be exiting, otherwise would be on tasklist. */ -	BUG_ON(!p->exit_state); - -	/* Cannot have done final schedule yet: would have vanished. */ -	BUG_ON(p->state == TASK_DEAD); - -	get_task_struct(p); - -	/* -	 * Drop lock around migration; if someone else moves it, -	 * that's OK. No task can be added to this CPU, so iteration is -	 * fine. -	 */ -	raw_spin_unlock_irq(&rq->lock); -	move_task_off_dead_cpu(dead_cpu, p); -	raw_spin_lock_irq(&rq->lock); - -	put_task_struct(p); -} - -/* release_task() removes task from tasklist, so we won't find dead tasks. */ -static void migrate_dead_tasks(unsigned int dead_cpu) -{ -	struct rq *rq = cpu_rq(dead_cpu); -	struct task_struct *next; - -	for ( ; ; ) { -		if (!rq->nr_running) -			break; -		next = pick_next_task(rq); -		if (!next) -			break; -		next->sched_class->put_prev_task(rq, next); -		migrate_dead(dead_cpu, next); - -	} -} - -/* - * remove the tasks which were accounted by rq from calc_load_tasks. - */ -static void calc_global_load_remove(struct rq *rq) -{ -	atomic_long_sub(rq->calc_load_active, &calc_load_tasks); -	rq->calc_load_active = 0; -} -#endif /* CONFIG_HOTPLUG_CPU */ - -#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) - -static struct ctl_table sd_ctl_dir[] = { -	{ -		.procname	= "sched_domain", -		.mode		= 0555, -	}, -	{} -}; - -static struct ctl_table sd_ctl_root[] = { -	{ -		.procname	= "kernel", -		.mode		= 0555, -		.child		= sd_ctl_dir, -	}, -	{} -}; - -static struct ctl_table *sd_alloc_ctl_entry(int n) -{ -	struct ctl_table *entry = -		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); - -	return entry; -} - -static void sd_free_ctl_entry(struct ctl_table **tablep) -{ -	struct ctl_table *entry; - -	/* -	 * In the intermediate directories, both the child directory and -	 * procname are dynamically allocated and could fail but the mode -	 * will always be set. In the lowest directory the names are -	 * static strings and all have proc handlers. -	 */ -	for (entry = *tablep; entry->mode; entry++) { -		if (entry->child) -			sd_free_ctl_entry(&entry->child); -		if (entry->proc_handler == NULL) -			kfree(entry->procname); -	} - -	kfree(*tablep); -	*tablep = NULL; -} - -static void -set_table_entry(struct ctl_table *entry, -		const char *procname, void *data, int maxlen, -		mode_t mode, proc_handler *proc_handler) -{ -	entry->procname = procname; -	entry->data = data; -	entry->maxlen = maxlen; -	entry->mode = mode; -	entry->proc_handler = proc_handler; -} - -static struct ctl_table * -sd_alloc_ctl_domain_table(struct sched_domain *sd) -{ -	struct ctl_table *table = sd_alloc_ctl_entry(13); - -	if (table == NULL) -		return NULL; - -	set_table_entry(&table[0], "min_interval", &sd->min_interval, -		sizeof(long), 0644, proc_doulongvec_minmax); -	set_table_entry(&table[1], "max_interval", &sd->max_interval, -		sizeof(long), 0644, proc_doulongvec_minmax); -	set_table_entry(&table[2], "busy_idx", &sd->busy_idx, -		sizeof(int), 0644, proc_dointvec_minmax); -	set_table_entry(&table[3], "idle_idx", &sd->idle_idx, -		sizeof(int), 0644, proc_dointvec_minmax); -	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, -		sizeof(int), 0644, proc_dointvec_minmax); -	set_table_entry(&table[5], "wake_idx", &sd->wake_idx, -		sizeof(int), 0644, proc_dointvec_minmax); -	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, -		sizeof(int), 0644, proc_dointvec_minmax); -	set_table_entry(&table[7], "busy_factor", &sd->busy_factor, -		sizeof(int), 0644, proc_dointvec_minmax); -	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, -		sizeof(int), 0644, proc_dointvec_minmax); -	set_table_entry(&table[9], "cache_nice_tries", -		&sd->cache_nice_tries, -		sizeof(int), 0644, proc_dointvec_minmax); -	set_table_entry(&table[10], "flags", &sd->flags, -		sizeof(int), 0644, proc_dointvec_minmax); -	set_table_entry(&table[11], "name", sd->name, -		CORENAME_MAX_SIZE, 0444, proc_dostring); -	/* &table[12] is terminator */ - -	return table; -} - -static ctl_table *sd_alloc_ctl_cpu_table(int cpu) -{ -	struct ctl_table *entry, *table; -	struct sched_domain *sd; -	int domain_num = 0, i; -	char buf[32]; - -	for_each_domain(cpu, sd) -		domain_num++; -	entry = table = sd_alloc_ctl_entry(domain_num + 1); -	if (table == NULL) -		return NULL; - -	i = 0; -	for_each_domain(cpu, sd) { -		snprintf(buf, 32, "domain%d", i); -		entry->procname = kstrdup(buf, GFP_KERNEL); -		entry->mode = 0555; -		entry->child = sd_alloc_ctl_domain_table(sd); -		entry++; -		i++; -	} -	return table; -} - -static struct ctl_table_header *sd_sysctl_header; -static void register_sched_domain_sysctl(void) -{ -	int i, cpu_num = num_possible_cpus(); -	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); -	char buf[32]; - -	WARN_ON(sd_ctl_dir[0].child); -	sd_ctl_dir[0].child = entry; - -	if (entry == NULL) -		return; - -	for_each_possible_cpu(i) { -		snprintf(buf, 32, "cpu%d", i); -		entry->procname = kstrdup(buf, GFP_KERNEL); -		entry->mode = 0555; -		entry->child = sd_alloc_ctl_cpu_table(i); -		entry++; -	} - -	WARN_ON(sd_sysctl_header); -	sd_sysctl_header = register_sysctl_table(sd_ctl_root); -} - -/* may be called multiple times per register */ -static void unregister_sched_domain_sysctl(void) -{ -	if (sd_sysctl_header) -		unregister_sysctl_table(sd_sysctl_header); -	sd_sysctl_header = NULL; -	if (sd_ctl_dir[0].child) -		sd_free_ctl_entry(&sd_ctl_dir[0].child); -} -#else -static void register_sched_domain_sysctl(void) -{ -} -static void unregister_sched_domain_sysctl(void) -{ -} -#endif - -static void set_rq_online(struct rq *rq) -{ -	if (!rq->online) { -		const struct sched_class *class; - -		cpumask_set_cpu(rq->cpu, rq->rd->online); -		rq->online = 1; - -		for_each_class(class) { -			if (class->rq_online) -				class->rq_online(rq); -		} -	} -} - -static void set_rq_offline(struct rq *rq) -{ -	if (rq->online) { -		const struct sched_class *class; - -		for_each_class(class) { -			if (class->rq_offline) -				class->rq_offline(rq); -		} - -		cpumask_clear_cpu(rq->cpu, rq->rd->online); -		rq->online = 0; -	} -} - -/* - * migration_call - callback that gets triggered when a CPU is added. - * Here we can start up the necessary migration thread for the new CPU. - */ -static int __cpuinit -migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) -{ -	int cpu = (long)hcpu; -	unsigned long flags; -	struct rq *rq = cpu_rq(cpu); - -	switch (action) { - -	case CPU_UP_PREPARE: -	case CPU_UP_PREPARE_FROZEN: -		rq->calc_load_update = calc_load_update; -		break; - -	case CPU_ONLINE: -	case CPU_ONLINE_FROZEN: -		/* Update our root-domain */ -		raw_spin_lock_irqsave(&rq->lock, flags); -		if (rq->rd) { -			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); - -			set_rq_online(rq); -		} -		raw_spin_unlock_irqrestore(&rq->lock, flags); -		break; - -#ifdef CONFIG_HOTPLUG_CPU -	case CPU_DEAD: -	case CPU_DEAD_FROZEN: -		migrate_live_tasks(cpu); -		/* Idle task back to normal (off runqueue, low prio) */ -		raw_spin_lock_irq(&rq->lock); -		deactivate_task(rq, rq->idle, 0); -		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0); -		rq->idle->sched_class = &idle_sched_class; -		migrate_dead_tasks(cpu); -		raw_spin_unlock_irq(&rq->lock); -		migrate_nr_uninterruptible(rq); -		BUG_ON(rq->nr_running != 0); -		calc_global_load_remove(rq); -		break; - -	case CPU_DYING: -	case CPU_DYING_FROZEN: -		/* Update our root-domain */ -		raw_spin_lock_irqsave(&rq->lock, flags); -		if (rq->rd) { -			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); -			set_rq_offline(rq); -		} -		raw_spin_unlock_irqrestore(&rq->lock, flags); -		break; -#endif -	} -	return NOTIFY_OK; -} - -/* - * Register at high priority so that task migration (migrate_all_tasks) - * happens before everything else.  This has to be lower priority than - * the notifier in the perf_event subsystem, though. - */ -static struct notifier_block __cpuinitdata migration_notifier = { -	.notifier_call = migration_call, -	.priority = CPU_PRI_MIGRATION, -}; - -static int __cpuinit sched_cpu_active(struct notifier_block *nfb, -				      unsigned long action, void *hcpu) -{ -	switch (action & ~CPU_TASKS_FROZEN) { -	case CPU_ONLINE: -	case CPU_DOWN_FAILED: -		set_cpu_active((long)hcpu, true); -		return NOTIFY_OK; -	default: -		return NOTIFY_DONE; -	} -} - -static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, -					unsigned long action, void *hcpu) -{ -	switch (action & ~CPU_TASKS_FROZEN) { -	case CPU_DOWN_PREPARE: -		set_cpu_active((long)hcpu, false); -		return NOTIFY_OK; -	default: -		return NOTIFY_DONE; -	} -} - -static int __init migration_init(void) -{ -	void *cpu = (void *)(long)smp_processor_id(); -	int err; - -	/* Initialize migration for the boot CPU */ -	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); -	BUG_ON(err == NOTIFY_BAD); -	migration_call(&migration_notifier, CPU_ONLINE, cpu); -	register_cpu_notifier(&migration_notifier); - -	/* Register cpu active notifiers */ -	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); -	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); - -	return 0; -} -early_initcall(migration_init); -#endif - -#ifdef CONFIG_SMP - -#ifdef CONFIG_SCHED_DEBUG - -static __read_mostly int sched_domain_debug_enabled; - -static int __init sched_domain_debug_setup(char *str) -{ -	sched_domain_debug_enabled = 1; - -	return 0; -} -early_param("sched_debug", sched_domain_debug_setup); - -static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, -				  struct cpumask *groupmask) -{ -	struct sched_group *group = sd->groups; -	char str[256]; - -	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); -	cpumask_clear(groupmask); - -	printk(KERN_DEBUG "%*s domain %d: ", level, "", level); - -	if (!(sd->flags & SD_LOAD_BALANCE)) { -		printk("does not load-balance\n"); -		if (sd->parent) -			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" -					" has parent"); -		return -1; -	} - -	printk(KERN_CONT "span %s level %s\n", str, sd->name); - -	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { -		printk(KERN_ERR "ERROR: domain->span does not contain " -				"CPU%d\n", cpu); -	} -	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { -		printk(KERN_ERR "ERROR: domain->groups does not contain" -				" CPU%d\n", cpu); -	} - -	printk(KERN_DEBUG "%*s groups:", level + 1, ""); -	do { -		if (!group) { -			printk("\n"); -			printk(KERN_ERR "ERROR: group is NULL\n"); -			break; -		} - -		if (!group->cpu_power) { -			printk(KERN_CONT "\n"); -			printk(KERN_ERR "ERROR: domain->cpu_power not " -					"set\n"); -			break; -		} - -		if (!cpumask_weight(sched_group_cpus(group))) { -			printk(KERN_CONT "\n"); -			printk(KERN_ERR "ERROR: empty group\n"); -			break; -		} - -		if (cpumask_intersects(groupmask, sched_group_cpus(group))) { -			printk(KERN_CONT "\n"); -			printk(KERN_ERR "ERROR: repeated CPUs\n"); -			break; -		} - -		cpumask_or(groupmask, groupmask, sched_group_cpus(group)); - -		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); - -		printk(KERN_CONT " %s", str); -		if (group->cpu_power != SCHED_LOAD_SCALE) { -			printk(KERN_CONT " (cpu_power = %d)", -				group->cpu_power); -		} - -		group = group->next; -	} while (group != sd->groups); -	printk(KERN_CONT "\n"); - -	if (!cpumask_equal(sched_domain_span(sd), groupmask)) -		printk(KERN_ERR "ERROR: groups don't span domain->span\n"); - -	if (sd->parent && -	    !cpumask_subset(groupmask, sched_domain_span(sd->parent))) -		printk(KERN_ERR "ERROR: parent span is not a superset " -			"of domain->span\n"); -	return 0; -} - -static void sched_domain_debug(struct sched_domain *sd, int cpu) -{ -	cpumask_var_t groupmask; -	int level = 0; - -	if (!sched_domain_debug_enabled) -		return; - -	if (!sd) { -		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); -		return; -	} - -	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); - -	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) { -		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); -		return; -	} - -	for (;;) { -		if (sched_domain_debug_one(sd, cpu, level, groupmask)) -			break; -		level++; -		sd = sd->parent; -		if (!sd) -			break; -	} -	free_cpumask_var(groupmask); -} -#else /* !CONFIG_SCHED_DEBUG */ -# define sched_domain_debug(sd, cpu) do { } while (0) -#endif /* CONFIG_SCHED_DEBUG */ - -static int sd_degenerate(struct sched_domain *sd) -{ -	if (cpumask_weight(sched_domain_span(sd)) == 1) -		return 1; - -	/* Following flags need at least 2 groups */ -	if (sd->flags & (SD_LOAD_BALANCE | -			 SD_BALANCE_NEWIDLE | -			 SD_BALANCE_FORK | -			 SD_BALANCE_EXEC | -			 SD_SHARE_CPUPOWER | -			 SD_SHARE_PKG_RESOURCES)) { -		if (sd->groups != sd->groups->next) -			return 0; -	} - -	/* Following flags don't use groups */ -	if (sd->flags & (SD_WAKE_AFFINE)) -		return 0; - -	return 1; -} - -static int -sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) -{ -	unsigned long cflags = sd->flags, pflags = parent->flags; - -	if (sd_degenerate(parent)) -		return 1; - -	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) -		return 0; - -	/* Flags needing groups don't count if only 1 group in parent */ -	if (parent->groups == parent->groups->next) { -		pflags &= ~(SD_LOAD_BALANCE | -				SD_BALANCE_NEWIDLE | -				SD_BALANCE_FORK | -				SD_BALANCE_EXEC | -				SD_SHARE_CPUPOWER | -				SD_SHARE_PKG_RESOURCES); -		if (nr_node_ids == 1) -			pflags &= ~SD_SERIALIZE; -	} -	if (~cflags & pflags) -		return 0; - -	return 1; -} - -static void free_rootdomain(struct root_domain *rd) -{ -	synchronize_sched(); - -	cpupri_cleanup(&rd->cpupri); - -	free_cpumask_var(rd->rto_mask); -	free_cpumask_var(rd->online); -	free_cpumask_var(rd->span); -	kfree(rd); -} - -static void rq_attach_root(struct rq *rq, struct root_domain *rd) -{ -	struct root_domain *old_rd = NULL; -	unsigned long flags; - -	raw_spin_lock_irqsave(&rq->lock, flags); - -	if (rq->rd) { -		old_rd = rq->rd; - -		if (cpumask_test_cpu(rq->cpu, old_rd->online)) -			set_rq_offline(rq); - -		cpumask_clear_cpu(rq->cpu, old_rd->span); - -		/* -		 * If we dont want to free the old_rt yet then -		 * set old_rd to NULL to skip the freeing later -		 * in this function: -		 */ -		if (!atomic_dec_and_test(&old_rd->refcount)) -			old_rd = NULL; -	} - -	atomic_inc(&rd->refcount); -	rq->rd = rd; - -	cpumask_set_cpu(rq->cpu, rd->span); -	if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) -		set_rq_online(rq); - -	raw_spin_unlock_irqrestore(&rq->lock, flags); - -	if (old_rd) -		free_rootdomain(old_rd); -} - -static int init_rootdomain(struct root_domain *rd) -{ -	memset(rd, 0, sizeof(*rd)); - -	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) -		goto out; -	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) -		goto free_span; -	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) -		goto free_online; - -	if (cpupri_init(&rd->cpupri) != 0) -		goto free_rto_mask; -	return 0; - -free_rto_mask: -	free_cpumask_var(rd->rto_mask); -free_online: -	free_cpumask_var(rd->online); -free_span: -	free_cpumask_var(rd->span); -out: -	return -ENOMEM; -} - -static void init_defrootdomain(void) -{ -	init_rootdomain(&def_root_domain); - -	atomic_set(&def_root_domain.refcount, 1); -} - -static struct root_domain *alloc_rootdomain(void) -{ -	struct root_domain *rd; - -	rd = kmalloc(sizeof(*rd), GFP_KERNEL); -	if (!rd) -		return NULL; - -	if (init_rootdomain(rd) != 0) { -		kfree(rd); -		return NULL; -	} - -	return rd; -} - -/* - * Attach the domain 'sd' to 'cpu' as its base domain. Callers must - * hold the hotplug lock. - */ -static void -cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) -{ -	struct rq *rq = cpu_rq(cpu); -	struct sched_domain *tmp; - -	for (tmp = sd; tmp; tmp = tmp->parent) -		tmp->span_weight = cpumask_weight(sched_domain_span(tmp)); - -	/* Remove the sched domains which do not contribute to scheduling. */ -	for (tmp = sd; tmp; ) { -		struct sched_domain *parent = tmp->parent; -		if (!parent) -			break; - -		if (sd_parent_degenerate(tmp, parent)) { -			tmp->parent = parent->parent; -			if (parent->parent) -				parent->parent->child = tmp; -		} else -			tmp = tmp->parent; -	} - -	if (sd && sd_degenerate(sd)) { -		sd = sd->parent; -		if (sd) -			sd->child = NULL; -	} - -	sched_domain_debug(sd, cpu); - -	rq_attach_root(rq, rd); -	rcu_assign_pointer(rq->sd, sd); -} - -/* cpus with isolated domains */ -static cpumask_var_t cpu_isolated_map; - -/* Setup the mask of cpus configured for isolated domains */ -static int __init isolated_cpu_setup(char *str) -{ -	alloc_bootmem_cpumask_var(&cpu_isolated_map); -	cpulist_parse(str, cpu_isolated_map); -	return 1; -} - -__setup("isolcpus=", isolated_cpu_setup); - -/* - * init_sched_build_groups takes the cpumask we wish to span, and a pointer - * to a function which identifies what group(along with sched group) a CPU - * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids - * (due to the fact that we keep track of groups covered with a struct cpumask). - * - * init_sched_build_groups will build a circular linked list of the groups - * covered by the given span, and will set each group's ->cpumask correctly, - * and ->cpu_power to 0. - */ -static void -init_sched_build_groups(const struct cpumask *span, -			const struct cpumask *cpu_map, -			int (*group_fn)(int cpu, const struct cpumask *cpu_map, -					struct sched_group **sg, -					struct cpumask *tmpmask), -			struct cpumask *covered, struct cpumask *tmpmask) -{ -	struct sched_group *first = NULL, *last = NULL; -	int i; - -	cpumask_clear(covered); - -	for_each_cpu(i, span) { -		struct sched_group *sg; -		int group = group_fn(i, cpu_map, &sg, tmpmask); -		int j; - -		if (cpumask_test_cpu(i, covered)) -			continue; - -		cpumask_clear(sched_group_cpus(sg)); -		sg->cpu_power = 0; - -		for_each_cpu(j, span) { -			if (group_fn(j, cpu_map, NULL, tmpmask) != group) -				continue; - -			cpumask_set_cpu(j, covered); -			cpumask_set_cpu(j, sched_group_cpus(sg)); -		} -		if (!first) -			first = sg; -		if (last) -			last->next = sg; -		last = sg; -	} -	last->next = first; -} - -#define SD_NODES_PER_DOMAIN 16 - -#ifdef CONFIG_NUMA - -/** - * find_next_best_node - find the next node to include in a sched_domain - * @node: node whose sched_domain we're building - * @used_nodes: nodes already in the sched_domain - * - * Find the next node to include in a given scheduling domain. Simply - * finds the closest node not already in the @used_nodes map. - * - * Should use nodemask_t. - */ -static int find_next_best_node(int node, nodemask_t *used_nodes) -{ -	int i, n, val, min_val, best_node = 0; - -	min_val = INT_MAX; - -	for (i = 0; i < nr_node_ids; i++) { -		/* Start at @node */ -		n = (node + i) % nr_node_ids; - -		if (!nr_cpus_node(n)) -			continue; - -		/* Skip already used nodes */ -		if (node_isset(n, *used_nodes)) -			continue; - -		/* Simple min distance search */ -		val = node_distance(node, n); - -		if (val < min_val) { -			min_val = val; -			best_node = n; -		} -	} - -	node_set(best_node, *used_nodes); -	return best_node; -} - -/** - * sched_domain_node_span - get a cpumask for a node's sched_domain - * @node: node whose cpumask we're constructing - * @span: resulting cpumask - * - * Given a node, construct a good cpumask for its sched_domain to span. It - * should be one that prevents unnecessary balancing, but also spreads tasks - * out optimally. - */ -static void sched_domain_node_span(int node, struct cpumask *span) -{ -	nodemask_t used_nodes; -	int i; - -	cpumask_clear(span); -	nodes_clear(used_nodes); - -	cpumask_or(span, span, cpumask_of_node(node)); -	node_set(node, used_nodes); - -	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { -		int next_node = find_next_best_node(node, &used_nodes); - -		cpumask_or(span, span, cpumask_of_node(next_node)); -	} -} -#endif /* CONFIG_NUMA */ - -int sched_smt_power_savings = 0, sched_mc_power_savings = 0; - -/* - * The cpus mask in sched_group and sched_domain hangs off the end. - * - * ( See the the comments in include/linux/sched.h:struct sched_group - *   and struct sched_domain. ) - */ -struct static_sched_group { -	struct sched_group sg; -	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS); -}; - -struct static_sched_domain { -	struct sched_domain sd; -	DECLARE_BITMAP(span, CONFIG_NR_CPUS); -}; - -struct s_data { -#ifdef CONFIG_NUMA -	int			sd_allnodes; -	cpumask_var_t		domainspan; -	cpumask_var_t		covered; -	cpumask_var_t		notcovered; -#endif -	cpumask_var_t		nodemask; -	cpumask_var_t		this_sibling_map; -	cpumask_var_t		this_core_map; -	cpumask_var_t		this_book_map; -	cpumask_var_t		send_covered; -	cpumask_var_t		tmpmask; -	struct sched_group	**sched_group_nodes; -	struct root_domain	*rd; -}; - -enum s_alloc { -	sa_sched_groups = 0, -	sa_rootdomain, -	sa_tmpmask, -	sa_send_covered, -	sa_this_book_map, -	sa_this_core_map, -	sa_this_sibling_map, -	sa_nodemask, -	sa_sched_group_nodes, -#ifdef CONFIG_NUMA -	sa_notcovered, -	sa_covered, -	sa_domainspan, -#endif -	sa_none, -}; - -/* - * SMT sched-domains: - */ -#ifdef CONFIG_SCHED_SMT -static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); -static DEFINE_PER_CPU(struct static_sched_group, sched_groups); - -static int -cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, -		 struct sched_group **sg, struct cpumask *unused) -{ -	if (sg) -		*sg = &per_cpu(sched_groups, cpu).sg; -	return cpu; -} -#endif /* CONFIG_SCHED_SMT */ - -/* - * multi-core sched-domains: - */ -#ifdef CONFIG_SCHED_MC -static DEFINE_PER_CPU(struct static_sched_domain, core_domains); -static DEFINE_PER_CPU(struct static_sched_group, sched_group_core); - -static int -cpu_to_core_group(int cpu, const struct cpumask *cpu_map, -		  struct sched_group **sg, struct cpumask *mask) -{ -	int group; -#ifdef CONFIG_SCHED_SMT -	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); -	group = cpumask_first(mask); -#else -	group = cpu; -#endif -	if (sg) -		*sg = &per_cpu(sched_group_core, group).sg; -	return group; -} -#endif /* CONFIG_SCHED_MC */ - -/* - * book sched-domains: - */ -#ifdef CONFIG_SCHED_BOOK -static DEFINE_PER_CPU(struct static_sched_domain, book_domains); -static DEFINE_PER_CPU(struct static_sched_group, sched_group_book); - -static int -cpu_to_book_group(int cpu, const struct cpumask *cpu_map, -		  struct sched_group **sg, struct cpumask *mask) -{ -	int group = cpu; -#ifdef CONFIG_SCHED_MC -	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map); -	group = cpumask_first(mask); -#elif defined(CONFIG_SCHED_SMT) -	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); -	group = cpumask_first(mask); -#endif -	if (sg) -		*sg = &per_cpu(sched_group_book, group).sg; -	return group; -} -#endif /* CONFIG_SCHED_BOOK */ - -static DEFINE_PER_CPU(struct static_sched_domain, phys_domains); -static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys); - -static int -cpu_to_phys_group(int cpu, const struct cpumask *cpu_map, -		  struct sched_group **sg, struct cpumask *mask) -{ -	int group; -#ifdef CONFIG_SCHED_BOOK -	cpumask_and(mask, cpu_book_mask(cpu), cpu_map); -	group = cpumask_first(mask); -#elif defined(CONFIG_SCHED_MC) -	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map); -	group = cpumask_first(mask); -#elif defined(CONFIG_SCHED_SMT) -	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); -	group = cpumask_first(mask); -#else -	group = cpu; -#endif -	if (sg) -		*sg = &per_cpu(sched_group_phys, group).sg; -	return group; -} - -#ifdef CONFIG_NUMA -/* - * The init_sched_build_groups can't handle what we want to do with node - * groups, so roll our own. Now each node has its own list of groups which - * gets dynamically allocated. - */ -static DEFINE_PER_CPU(struct static_sched_domain, node_domains); -static struct sched_group ***sched_group_nodes_bycpu; - -static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains); -static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes); - -static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map, -				 struct sched_group **sg, -				 struct cpumask *nodemask) -{ -	int group; - -	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map); -	group = cpumask_first(nodemask); - -	if (sg) -		*sg = &per_cpu(sched_group_allnodes, group).sg; -	return group; -} - -static void init_numa_sched_groups_power(struct sched_group *group_head) -{ -	struct sched_group *sg = group_head; -	int j; - -	if (!sg) -		return; -	do { -		for_each_cpu(j, sched_group_cpus(sg)) { -			struct sched_domain *sd; - -			sd = &per_cpu(phys_domains, j).sd; -			if (j != group_first_cpu(sd->groups)) { -				/* -				 * Only add "power" once for each -				 * physical package. -				 */ -				continue; -			} - -			sg->cpu_power += sd->groups->cpu_power; -		} -		sg = sg->next; -	} while (sg != group_head); -} - -static int build_numa_sched_groups(struct s_data *d, -				   const struct cpumask *cpu_map, int num) -{ -	struct sched_domain *sd; -	struct sched_group *sg, *prev; -	int n, j; - -	cpumask_clear(d->covered); -	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map); -	if (cpumask_empty(d->nodemask)) { -		d->sched_group_nodes[num] = NULL; -		goto out; -	} - -	sched_domain_node_span(num, d->domainspan); -	cpumask_and(d->domainspan, d->domainspan, cpu_map); - -	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), -			  GFP_KERNEL, num); -	if (!sg) { -		printk(KERN_WARNING "Can not alloc domain group for node %d\n", -		       num); -		return -ENOMEM; -	} -	d->sched_group_nodes[num] = sg; - -	for_each_cpu(j, d->nodemask) { -		sd = &per_cpu(node_domains, j).sd; -		sd->groups = sg; -	} - -	sg->cpu_power = 0; -	cpumask_copy(sched_group_cpus(sg), d->nodemask); -	sg->next = sg; -	cpumask_or(d->covered, d->covered, d->nodemask); - -	prev = sg; -	for (j = 0; j < nr_node_ids; j++) { -		n = (num + j) % nr_node_ids; -		cpumask_complement(d->notcovered, d->covered); -		cpumask_and(d->tmpmask, d->notcovered, cpu_map); -		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan); -		if (cpumask_empty(d->tmpmask)) -			break; -		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n)); -		if (cpumask_empty(d->tmpmask)) -			continue; -		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), -				  GFP_KERNEL, num); -		if (!sg) { -			printk(KERN_WARNING -			       "Can not alloc domain group for node %d\n", j); -			return -ENOMEM; -		} -		sg->cpu_power = 0; -		cpumask_copy(sched_group_cpus(sg), d->tmpmask); -		sg->next = prev->next; -		cpumask_or(d->covered, d->covered, d->tmpmask); -		prev->next = sg; -		prev = sg; -	} -out: -	return 0; -} -#endif /* CONFIG_NUMA */ - -#ifdef CONFIG_NUMA -/* Free memory allocated for various sched_group structures */ -static void free_sched_groups(const struct cpumask *cpu_map, -			      struct cpumask *nodemask) -{ -	int cpu, i; - -	for_each_cpu(cpu, cpu_map) { -		struct sched_group **sched_group_nodes -			= sched_group_nodes_bycpu[cpu]; - -		if (!sched_group_nodes) -			continue; - -		for (i = 0; i < nr_node_ids; i++) { -			struct sched_group *oldsg, *sg = sched_group_nodes[i]; - -			cpumask_and(nodemask, cpumask_of_node(i), cpu_map); -			if (cpumask_empty(nodemask)) -				continue; - -			if (sg == NULL) -				continue; -			sg = sg->next; -next_sg: -			oldsg = sg; -			sg = sg->next; -			kfree(oldsg); -			if (oldsg != sched_group_nodes[i]) -				goto next_sg; -		} -		kfree(sched_group_nodes); -		sched_group_nodes_bycpu[cpu] = NULL; -	} -} -#else /* !CONFIG_NUMA */ -static void free_sched_groups(const struct cpumask *cpu_map, -			      struct cpumask *nodemask) -{ -} -#endif /* CONFIG_NUMA */ - -/* - * Initialize sched groups cpu_power. - * - * cpu_power indicates the capacity of sched group, which is used while - * distributing the load between different sched groups in a sched domain. - * Typically cpu_power for all the groups in a sched domain will be same unless - * there are asymmetries in the topology. If there are asymmetries, group - * having more cpu_power will pickup more load compared to the group having - * less cpu_power. - */ -static void init_sched_groups_power(int cpu, struct sched_domain *sd) -{ -	struct sched_domain *child; -	struct sched_group *group; -	long power; -	int weight; - -	WARN_ON(!sd || !sd->groups); - -	if (cpu != group_first_cpu(sd->groups)) -		return; - -	child = sd->child; - -	sd->groups->cpu_power = 0; - -	if (!child) { -		power = SCHED_LOAD_SCALE; -		weight = cpumask_weight(sched_domain_span(sd)); -		/* -		 * SMT siblings share the power of a single core. -		 * Usually multiple threads get a better yield out of -		 * that one core than a single thread would have, -		 * reflect that in sd->smt_gain. -		 */ -		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { -			power *= sd->smt_gain; -			power /= weight; -			power >>= SCHED_LOAD_SHIFT; -		} -		sd->groups->cpu_power += power; -		return; -	} - -	/* -	 * Add cpu_power of each child group to this groups cpu_power. -	 */ -	group = child->groups; -	do { -		sd->groups->cpu_power += group->cpu_power; -		group = group->next; -	} while (group != child->groups); -} - -/* - * Initializers for schedule domains - * Non-inlined to reduce accumulated stack pressure in build_sched_domains() - */ - -#ifdef CONFIG_SCHED_DEBUG -# define SD_INIT_NAME(sd, type)		sd->name = #type -#else -# define SD_INIT_NAME(sd, type)		do { } while (0) -#endif - -#define	SD_INIT(sd, type)	sd_init_##type(sd) - -#define SD_INIT_FUNC(type)	\ -static noinline void sd_init_##type(struct sched_domain *sd)	\ -{								\ -	memset(sd, 0, sizeof(*sd));				\ -	*sd = SD_##type##_INIT;					\ -	sd->level = SD_LV_##type;				\ -	SD_INIT_NAME(sd, type);					\ -} - -SD_INIT_FUNC(CPU) -#ifdef CONFIG_NUMA - SD_INIT_FUNC(ALLNODES) - SD_INIT_FUNC(NODE) -#endif -#ifdef CONFIG_SCHED_SMT - SD_INIT_FUNC(SIBLING) -#endif -#ifdef CONFIG_SCHED_MC - SD_INIT_FUNC(MC) -#endif -#ifdef CONFIG_SCHED_BOOK - SD_INIT_FUNC(BOOK) -#endif - -static int default_relax_domain_level = -1; - -static int __init setup_relax_domain_level(char *str) -{ -	unsigned long val; - -	val = simple_strtoul(str, NULL, 0); -	if (val < SD_LV_MAX) -		default_relax_domain_level = val; - -	return 1; -} -__setup("relax_domain_level=", setup_relax_domain_level); - -static void set_domain_attribute(struct sched_domain *sd, -				 struct sched_domain_attr *attr) -{ -	int request; - -	if (!attr || attr->relax_domain_level < 0) { -		if (default_relax_domain_level < 0) -			return; -		else -			request = default_relax_domain_level; -	} else -		request = attr->relax_domain_level; -	if (request < sd->level) { -		/* turn off idle balance on this domain */ -		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); -	} else { -		/* turn on idle balance on this domain */ -		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); -	} -} - -static void __free_domain_allocs(struct s_data *d, enum s_alloc what, -				 const struct cpumask *cpu_map) -{ -	switch (what) { -	case sa_sched_groups: -		free_sched_groups(cpu_map, d->tmpmask); /* fall through */ -		d->sched_group_nodes = NULL; -	case sa_rootdomain: -		free_rootdomain(d->rd); /* fall through */ -	case sa_tmpmask: -		free_cpumask_var(d->tmpmask); /* fall through */ -	case sa_send_covered: -		free_cpumask_var(d->send_covered); /* fall through */ -	case sa_this_book_map: -		free_cpumask_var(d->this_book_map); /* fall through */ -	case sa_this_core_map: -		free_cpumask_var(d->this_core_map); /* fall through */ -	case sa_this_sibling_map: -		free_cpumask_var(d->this_sibling_map); /* fall through */ -	case sa_nodemask: -		free_cpumask_var(d->nodemask); /* fall through */ -	case sa_sched_group_nodes: -#ifdef CONFIG_NUMA -		kfree(d->sched_group_nodes); /* fall through */ -	case sa_notcovered: -		free_cpumask_var(d->notcovered); /* fall through */ -	case sa_covered: -		free_cpumask_var(d->covered); /* fall through */ -	case sa_domainspan: -		free_cpumask_var(d->domainspan); /* fall through */ -#endif -	case sa_none: -		break; -	} -} - -static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, -						   const struct cpumask *cpu_map) -{ -#ifdef CONFIG_NUMA -	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL)) -		return sa_none; -	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL)) -		return sa_domainspan; -	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL)) -		return sa_covered; -	/* Allocate the per-node list of sched groups */ -	d->sched_group_nodes = kcalloc(nr_node_ids, -				      sizeof(struct sched_group *), GFP_KERNEL); -	if (!d->sched_group_nodes) { -		printk(KERN_WARNING "Can not alloc sched group node list\n"); -		return sa_notcovered; -	} -	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes; -#endif -	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL)) -		return sa_sched_group_nodes; -	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL)) -		return sa_nodemask; -	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL)) -		return sa_this_sibling_map; -	if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL)) -		return sa_this_core_map; -	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL)) -		return sa_this_book_map; -	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL)) -		return sa_send_covered; -	d->rd = alloc_rootdomain(); -	if (!d->rd) { -		printk(KERN_WARNING "Cannot alloc root domain\n"); -		return sa_tmpmask; -	} -	return sa_rootdomain; -} - -static struct sched_domain *__build_numa_sched_domains(struct s_data *d, -	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i) -{ -	struct sched_domain *sd = NULL; -#ifdef CONFIG_NUMA -	struct sched_domain *parent; - -	d->sd_allnodes = 0; -	if (cpumask_weight(cpu_map) > -	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) { -		sd = &per_cpu(allnodes_domains, i).sd; -		SD_INIT(sd, ALLNODES); -		set_domain_attribute(sd, attr); -		cpumask_copy(sched_domain_span(sd), cpu_map); -		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask); -		d->sd_allnodes = 1; -	} -	parent = sd; - -	sd = &per_cpu(node_domains, i).sd; -	SD_INIT(sd, NODE); -	set_domain_attribute(sd, attr); -	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); -	sd->parent = parent; -	if (parent) -		parent->child = sd; -	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map); -#endif -	return sd; -} - -static struct sched_domain *__build_cpu_sched_domain(struct s_data *d, -	const struct cpumask *cpu_map, struct sched_domain_attr *attr, -	struct sched_domain *parent, int i) -{ -	struct sched_domain *sd; -	sd = &per_cpu(phys_domains, i).sd; -	SD_INIT(sd, CPU); -	set_domain_attribute(sd, attr); -	cpumask_copy(sched_domain_span(sd), d->nodemask); -	sd->parent = parent; -	if (parent) -		parent->child = sd; -	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask); -	return sd; -} - -static struct sched_domain *__build_book_sched_domain(struct s_data *d, -	const struct cpumask *cpu_map, struct sched_domain_attr *attr, -	struct sched_domain *parent, int i) -{ -	struct sched_domain *sd = parent; -#ifdef CONFIG_SCHED_BOOK -	sd = &per_cpu(book_domains, i).sd; -	SD_INIT(sd, BOOK); -	set_domain_attribute(sd, attr); -	cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i)); -	sd->parent = parent; -	parent->child = sd; -	cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask); -#endif -	return sd; -} - -static struct sched_domain *__build_mc_sched_domain(struct s_data *d, -	const struct cpumask *cpu_map, struct sched_domain_attr *attr, -	struct sched_domain *parent, int i) -{ -	struct sched_domain *sd = parent; -#ifdef CONFIG_SCHED_MC -	sd = &per_cpu(core_domains, i).sd; -	SD_INIT(sd, MC); -	set_domain_attribute(sd, attr); -	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i)); -	sd->parent = parent; -	parent->child = sd; -	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask); -#endif -	return sd; -} - -static struct sched_domain *__build_smt_sched_domain(struct s_data *d, -	const struct cpumask *cpu_map, struct sched_domain_attr *attr, -	struct sched_domain *parent, int i) -{ -	struct sched_domain *sd = parent; -#ifdef CONFIG_SCHED_SMT -	sd = &per_cpu(cpu_domains, i).sd; -	SD_INIT(sd, SIBLING); -	set_domain_attribute(sd, attr); -	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i)); -	sd->parent = parent; -	parent->child = sd; -	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask); -#endif -	return sd; -} - -static void build_sched_groups(struct s_data *d, enum sched_domain_level l, -			       const struct cpumask *cpu_map, int cpu) -{ -	switch (l) { -#ifdef CONFIG_SCHED_SMT -	case SD_LV_SIBLING: /* set up CPU (sibling) groups */ -		cpumask_and(d->this_sibling_map, cpu_map, -			    topology_thread_cpumask(cpu)); -		if (cpu == cpumask_first(d->this_sibling_map)) -			init_sched_build_groups(d->this_sibling_map, cpu_map, -						&cpu_to_cpu_group, -						d->send_covered, d->tmpmask); -		break; -#endif -#ifdef CONFIG_SCHED_MC -	case SD_LV_MC: /* set up multi-core groups */ -		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu)); -		if (cpu == cpumask_first(d->this_core_map)) -			init_sched_build_groups(d->this_core_map, cpu_map, -						&cpu_to_core_group, -						d->send_covered, d->tmpmask); -		break; -#endif -#ifdef CONFIG_SCHED_BOOK -	case SD_LV_BOOK: /* set up book groups */ -		cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu)); -		if (cpu == cpumask_first(d->this_book_map)) -			init_sched_build_groups(d->this_book_map, cpu_map, -						&cpu_to_book_group, -						d->send_covered, d->tmpmask); -		break; -#endif -	case SD_LV_CPU: /* set up physical groups */ -		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map); -		if (!cpumask_empty(d->nodemask)) -			init_sched_build_groups(d->nodemask, cpu_map, -						&cpu_to_phys_group, -						d->send_covered, d->tmpmask); -		break; -#ifdef CONFIG_NUMA -	case SD_LV_ALLNODES: -		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group, -					d->send_covered, d->tmpmask); -		break; -#endif -	default: -		break; -	} -} - -/* - * Build sched domains for a given set of cpus and attach the sched domains - * to the individual cpus - */ -static int __build_sched_domains(const struct cpumask *cpu_map, -				 struct sched_domain_attr *attr) -{ -	enum s_alloc alloc_state = sa_none; -	struct s_data d; -	struct sched_domain *sd; -	int i; -#ifdef CONFIG_NUMA -	d.sd_allnodes = 0; -#endif - -	alloc_state = __visit_domain_allocation_hell(&d, cpu_map); -	if (alloc_state != sa_rootdomain) -		goto error; -	alloc_state = sa_sched_groups; - -	/* -	 * Set up domains for cpus specified by the cpu_map. -	 */ -	for_each_cpu(i, cpu_map) { -		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)), -			    cpu_map); - -		sd = __build_numa_sched_domains(&d, cpu_map, attr, i); -		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i); -		sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i); -		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i); -		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i); -	} - -	for_each_cpu(i, cpu_map) { -		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i); -		build_sched_groups(&d, SD_LV_BOOK, cpu_map, i); -		build_sched_groups(&d, SD_LV_MC, cpu_map, i); -	} - -	/* Set up physical groups */ -	for (i = 0; i < nr_node_ids; i++) -		build_sched_groups(&d, SD_LV_CPU, cpu_map, i); - -#ifdef CONFIG_NUMA -	/* Set up node groups */ -	if (d.sd_allnodes) -		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0); - -	for (i = 0; i < nr_node_ids; i++) -		if (build_numa_sched_groups(&d, cpu_map, i)) -			goto error; -#endif - -	/* Calculate CPU power for physical packages and nodes */ -#ifdef CONFIG_SCHED_SMT -	for_each_cpu(i, cpu_map) { -		sd = &per_cpu(cpu_domains, i).sd; -		init_sched_groups_power(i, sd); -	} -#endif -#ifdef CONFIG_SCHED_MC -	for_each_cpu(i, cpu_map) { -		sd = &per_cpu(core_domains, i).sd; -		init_sched_groups_power(i, sd); -	} -#endif -#ifdef CONFIG_SCHED_BOOK -	for_each_cpu(i, cpu_map) { -		sd = &per_cpu(book_domains, i).sd; -		init_sched_groups_power(i, sd); -	} -#endif - -	for_each_cpu(i, cpu_map) { -		sd = &per_cpu(phys_domains, i).sd; -		init_sched_groups_power(i, sd); -	} - -#ifdef CONFIG_NUMA -	for (i = 0; i < nr_node_ids; i++) -		init_numa_sched_groups_power(d.sched_group_nodes[i]); - -	if (d.sd_allnodes) { -		struct sched_group *sg; - -		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, -								d.tmpmask); -		init_numa_sched_groups_power(sg); -	} -#endif - -	/* Attach the domains */ -	for_each_cpu(i, cpu_map) { -#ifdef CONFIG_SCHED_SMT -		sd = &per_cpu(cpu_domains, i).sd; -#elif defined(CONFIG_SCHED_MC) -		sd = &per_cpu(core_domains, i).sd; -#elif defined(CONFIG_SCHED_BOOK) -		sd = &per_cpu(book_domains, i).sd; -#else -		sd = &per_cpu(phys_domains, i).sd; -#endif -		cpu_attach_domain(sd, d.rd, i); -	} - -	d.sched_group_nodes = NULL; /* don't free this we still need it */ -	__free_domain_allocs(&d, sa_tmpmask, cpu_map); -	return 0; - -error: -	__free_domain_allocs(&d, alloc_state, cpu_map); -	return -ENOMEM; -} - -static int build_sched_domains(const struct cpumask *cpu_map) -{ -	return __build_sched_domains(cpu_map, NULL); -} - -static cpumask_var_t *doms_cur;	/* current sched domains */ -static int ndoms_cur;		/* number of sched domains in 'doms_cur' */ -static struct sched_domain_attr *dattr_cur; -				/* attribues of custom domains in 'doms_cur' */ - -/* - * Special case: If a kmalloc of a doms_cur partition (array of - * cpumask) fails, then fallback to a single sched domain, - * as determined by the single cpumask fallback_doms. - */ -static cpumask_var_t fallback_doms; - -/* - * arch_update_cpu_topology lets virtualized architectures update the - * cpu core maps. It is supposed to return 1 if the topology changed - * or 0 if it stayed the same. - */ -int __attribute__((weak)) arch_update_cpu_topology(void) -{ -	return 0; -} - -cpumask_var_t *alloc_sched_domains(unsigned int ndoms) -{ -	int i; -	cpumask_var_t *doms; - -	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); -	if (!doms) -		return NULL; -	for (i = 0; i < ndoms; i++) { -		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { -			free_sched_domains(doms, i); -			return NULL; -		} -	} -	return doms; -} - -void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) -{ -	unsigned int i; -	for (i = 0; i < ndoms; i++) -		free_cpumask_var(doms[i]); -	kfree(doms); -} - -/* - * Set up scheduler domains and groups. Callers must hold the hotplug lock. - * For now this just excludes isolated cpus, but could be used to - * exclude other special cases in the future. - */ -static int arch_init_sched_domains(const struct cpumask *cpu_map) -{ -	int err; - -	arch_update_cpu_topology(); -	ndoms_cur = 1; -	doms_cur = alloc_sched_domains(ndoms_cur); -	if (!doms_cur) -		doms_cur = &fallback_doms; -	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); -	dattr_cur = NULL; -	err = build_sched_domains(doms_cur[0]); -	register_sched_domain_sysctl(); - -	return err; -} - -static void arch_destroy_sched_domains(const struct cpumask *cpu_map, -				       struct cpumask *tmpmask) -{ -	free_sched_groups(cpu_map, tmpmask); -} - -/* - * Detach sched domains from a group of cpus specified in cpu_map - * These cpus will now be attached to the NULL domain - */ -static void detach_destroy_domains(const struct cpumask *cpu_map) -{ -	/* Save because hotplug lock held. */ -	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS); -	int i; - -	for_each_cpu(i, cpu_map) -		cpu_attach_domain(NULL, &def_root_domain, i); -	synchronize_sched(); -	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask)); -} - -/* handle null as "default" */ -static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, -			struct sched_domain_attr *new, int idx_new) -{ -	struct sched_domain_attr tmp; - -	/* fast path */ -	if (!new && !cur) -		return 1; - -	tmp = SD_ATTR_INIT; -	return !memcmp(cur ? (cur + idx_cur) : &tmp, -			new ? (new + idx_new) : &tmp, -			sizeof(struct sched_domain_attr)); -} - -/* - * Partition sched domains as specified by the 'ndoms_new' - * cpumasks in the array doms_new[] of cpumasks. This compares - * doms_new[] to the current sched domain partitioning, doms_cur[]. - * It destroys each deleted domain and builds each new domain. - * - * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. - * The masks don't intersect (don't overlap.) We should setup one - * sched domain for each mask. CPUs not in any of the cpumasks will - * not be load balanced. If the same cpumask appears both in the - * current 'doms_cur' domains and in the new 'doms_new', we can leave - * it as it is. - * - * The passed in 'doms_new' should be allocated using - * alloc_sched_domains.  This routine takes ownership of it and will - * free_sched_domains it when done with it. If the caller failed the - * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, - * and partition_sched_domains() will fallback to the single partition - * 'fallback_doms', it also forces the domains to be rebuilt. - * - * If doms_new == NULL it will be replaced with cpu_online_mask. - * ndoms_new == 0 is a special case for destroying existing domains, - * and it will not create the default domain. - * - * Call with hotplug lock held - */ -void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], -			     struct sched_domain_attr *dattr_new) -{ -	int i, j, n; -	int new_topology; - -	mutex_lock(&sched_domains_mutex); - -	/* always unregister in case we don't destroy any domains */ -	unregister_sched_domain_sysctl(); - -	/* Let architecture update cpu core mappings. */ -	new_topology = arch_update_cpu_topology(); - -	n = doms_new ? ndoms_new : 0; - -	/* Destroy deleted domains */ -	for (i = 0; i < ndoms_cur; i++) { -		for (j = 0; j < n && !new_topology; j++) { -			if (cpumask_equal(doms_cur[i], doms_new[j]) -			    && dattrs_equal(dattr_cur, i, dattr_new, j)) -				goto match1; -		} -		/* no match - a current sched domain not in new doms_new[] */ -		detach_destroy_domains(doms_cur[i]); -match1: -		; -	} - -	if (doms_new == NULL) { -		ndoms_cur = 0; -		doms_new = &fallback_doms; -		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); -		WARN_ON_ONCE(dattr_new); -	} - -	/* Build new domains */ -	for (i = 0; i < ndoms_new; i++) { -		for (j = 0; j < ndoms_cur && !new_topology; j++) { -			if (cpumask_equal(doms_new[i], doms_cur[j]) -			    && dattrs_equal(dattr_new, i, dattr_cur, j)) -				goto match2; -		} -		/* no match - add a new doms_new */ -		__build_sched_domains(doms_new[i], -					dattr_new ? dattr_new + i : NULL); -match2: -		; -	} - -	/* Remember the new sched domains */ -	if (doms_cur != &fallback_doms) -		free_sched_domains(doms_cur, ndoms_cur); -	kfree(dattr_cur);	/* kfree(NULL) is safe */ -	doms_cur = doms_new; -	dattr_cur = dattr_new; -	ndoms_cur = ndoms_new; - -	register_sched_domain_sysctl(); - -	mutex_unlock(&sched_domains_mutex); -} - -#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) -static void arch_reinit_sched_domains(void) -{ -	get_online_cpus(); - -	/* Destroy domains first to force the rebuild */ -	partition_sched_domains(0, NULL, NULL); - -	rebuild_sched_domains(); -	put_online_cpus(); -} - -static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) -{ -	unsigned int level = 0; - -	if (sscanf(buf, "%u", &level) != 1) -		return -EINVAL; - -	/* -	 * level is always be positive so don't check for -	 * level < POWERSAVINGS_BALANCE_NONE which is 0 -	 * What happens on 0 or 1 byte write, -	 * need to check for count as well? -	 */ - -	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) -		return -EINVAL; - -	if (smt) -		sched_smt_power_savings = level; -	else -		sched_mc_power_savings = level; - -	arch_reinit_sched_domains(); - -	return count; -} - -#ifdef CONFIG_SCHED_MC -static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, -					   struct sysdev_class_attribute *attr, -					   char *page) -{ -	return sprintf(page, "%u\n", sched_mc_power_savings); -} -static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, -					    struct sysdev_class_attribute *attr, -					    const char *buf, size_t count) -{ -	return sched_power_savings_store(buf, count, 0); -} -static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, -			 sched_mc_power_savings_show, -			 sched_mc_power_savings_store); -#endif - -#ifdef CONFIG_SCHED_SMT -static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, -					    struct sysdev_class_attribute *attr, -					    char *page) -{ -	return sprintf(page, "%u\n", sched_smt_power_savings); -} -static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, -					     struct sysdev_class_attribute *attr, -					     const char *buf, size_t count) -{ -	return sched_power_savings_store(buf, count, 1); -} -static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, -		   sched_smt_power_savings_show, -		   sched_smt_power_savings_store); -#endif - -int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) -{ -	int err = 0; - -#ifdef CONFIG_SCHED_SMT -	if (smt_capable()) -		err = sysfs_create_file(&cls->kset.kobj, -					&attr_sched_smt_power_savings.attr); -#endif -#ifdef CONFIG_SCHED_MC -	if (!err && mc_capable()) -		err = sysfs_create_file(&cls->kset.kobj, -					&attr_sched_mc_power_savings.attr); -#endif -	return err; -} -#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ - -/* - * Update cpusets according to cpu_active mask.  If cpusets are - * disabled, cpuset_update_active_cpus() becomes a simple wrapper - * around partition_sched_domains(). - */ -static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, -			     void *hcpu) -{ -	switch (action & ~CPU_TASKS_FROZEN) { -	case CPU_ONLINE: -	case CPU_DOWN_FAILED: -		cpuset_update_active_cpus(); -		return NOTIFY_OK; -	default: -		return NOTIFY_DONE; -	} -} - -static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, -			       void *hcpu) -{ -	switch (action & ~CPU_TASKS_FROZEN) { -	case CPU_DOWN_PREPARE: -		cpuset_update_active_cpus(); -		return NOTIFY_OK; -	default: -		return NOTIFY_DONE; -	} -} - -static int update_runtime(struct notifier_block *nfb, -				unsigned long action, void *hcpu) -{ -	int cpu = (int)(long)hcpu; - -	switch (action) { -	case CPU_DOWN_PREPARE: -	case CPU_DOWN_PREPARE_FROZEN: -		disable_runtime(cpu_rq(cpu)); -		return NOTIFY_OK; - -	case CPU_DOWN_FAILED: -	case CPU_DOWN_FAILED_FROZEN: -	case CPU_ONLINE: -	case CPU_ONLINE_FROZEN: -		enable_runtime(cpu_rq(cpu)); -		return NOTIFY_OK; - -	default: -		return NOTIFY_DONE; -	} -} - -void __init sched_init_smp(void) -{ -	cpumask_var_t non_isolated_cpus; - -	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); -	alloc_cpumask_var(&fallback_doms, GFP_KERNEL); - -#if defined(CONFIG_NUMA) -	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), -								GFP_KERNEL); -	BUG_ON(sched_group_nodes_bycpu == NULL); -#endif -	get_online_cpus(); -	mutex_lock(&sched_domains_mutex); -	arch_init_sched_domains(cpu_active_mask); -	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); -	if (cpumask_empty(non_isolated_cpus)) -		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); -	mutex_unlock(&sched_domains_mutex); -	put_online_cpus(); - -	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); -	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); - -	/* RT runtime code needs to handle some hotplug events */ -	hotcpu_notifier(update_runtime, 0); - -	init_hrtick(); - -	/* Move init over to a non-isolated CPU */ -	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) -		BUG(); -	sched_init_granularity(); -	free_cpumask_var(non_isolated_cpus); - -	init_sched_rt_class(); -} -#else -void __init sched_init_smp(void) -{ -	sched_init_granularity(); -} -#endif /* CONFIG_SMP */ - -const_debug unsigned int sysctl_timer_migration = 1; - -int in_sched_functions(unsigned long addr) -{ -	return in_lock_functions(addr) || -		(addr >= (unsigned long)__sched_text_start -		&& addr < (unsigned long)__sched_text_end); -} - -static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq) -{ -	cfs_rq->tasks_timeline = RB_ROOT; -	INIT_LIST_HEAD(&cfs_rq->tasks); -#ifdef CONFIG_FAIR_GROUP_SCHED -	cfs_rq->rq = rq; -#endif -	cfs_rq->min_vruntime = (u64)(-(1LL << 20)); -} - -static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) -{ -	struct rt_prio_array *array; -	int i; - -	array = &rt_rq->active; -	for (i = 0; i < MAX_RT_PRIO; i++) { -		INIT_LIST_HEAD(array->queue + i); -		__clear_bit(i, array->bitmap); -	} -	/* delimiter for bitsearch: */ -	__set_bit(MAX_RT_PRIO, array->bitmap); - -#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED -	rt_rq->highest_prio.curr = MAX_RT_PRIO; -#ifdef CONFIG_SMP -	rt_rq->highest_prio.next = MAX_RT_PRIO; -#endif -#endif -#ifdef CONFIG_SMP -	rt_rq->rt_nr_migratory = 0; -	rt_rq->overloaded = 0; -	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock); -#endif - -	rt_rq->rt_time = 0; -	rt_rq->rt_throttled = 0; -	rt_rq->rt_runtime = 0; -	raw_spin_lock_init(&rt_rq->rt_runtime_lock); - -#ifdef CONFIG_RT_GROUP_SCHED -	rt_rq->rt_nr_boosted = 0; -	rt_rq->rq = rq; -#endif -} - -#ifdef CONFIG_FAIR_GROUP_SCHED -static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, -				struct sched_entity *se, int cpu, int add, -				struct sched_entity *parent) -{ -	struct rq *rq = cpu_rq(cpu); -	tg->cfs_rq[cpu] = cfs_rq; -	init_cfs_rq(cfs_rq, rq); -	cfs_rq->tg = tg; -	if (add) -		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); - -	tg->se[cpu] = se; -	/* se could be NULL for init_task_group */ -	if (!se) -		return; - -	if (!parent) -		se->cfs_rq = &rq->cfs; -	else -		se->cfs_rq = parent->my_q; - -	se->my_q = cfs_rq; -	se->load.weight = tg->shares; -	se->load.inv_weight = 0; -	se->parent = parent; -} -#endif - -#ifdef CONFIG_RT_GROUP_SCHED -static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, -		struct sched_rt_entity *rt_se, int cpu, int add, -		struct sched_rt_entity *parent) -{ -	struct rq *rq = cpu_rq(cpu); - -	tg->rt_rq[cpu] = rt_rq; -	init_rt_rq(rt_rq, rq); -	rt_rq->tg = tg; -	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; -	if (add) -		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); - -	tg->rt_se[cpu] = rt_se; -	if (!rt_se) -		return; - -	if (!parent) -		rt_se->rt_rq = &rq->rt; -	else -		rt_se->rt_rq = parent->my_q; - -	rt_se->my_q = rt_rq; -	rt_se->parent = parent; -	INIT_LIST_HEAD(&rt_se->run_list); -} -#endif - -void __init sched_init(void) -{ -	int i, j; -	unsigned long alloc_size = 0, ptr; - -#ifdef CONFIG_FAIR_GROUP_SCHED -	alloc_size += 2 * nr_cpu_ids * sizeof(void **); -#endif -#ifdef CONFIG_RT_GROUP_SCHED -	alloc_size += 2 * nr_cpu_ids * sizeof(void **); -#endif -#ifdef CONFIG_CPUMASK_OFFSTACK -	alloc_size += num_possible_cpus() * cpumask_size(); -#endif -	if (alloc_size) { -		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); - -#ifdef CONFIG_FAIR_GROUP_SCHED -		init_task_group.se = (struct sched_entity **)ptr; -		ptr += nr_cpu_ids * sizeof(void **); - -		init_task_group.cfs_rq = (struct cfs_rq **)ptr; -		ptr += nr_cpu_ids * sizeof(void **); - -#endif /* CONFIG_FAIR_GROUP_SCHED */ -#ifdef CONFIG_RT_GROUP_SCHED -		init_task_group.rt_se = (struct sched_rt_entity **)ptr; -		ptr += nr_cpu_ids * sizeof(void **); - -		init_task_group.rt_rq = (struct rt_rq **)ptr; -		ptr += nr_cpu_ids * sizeof(void **); - -#endif /* CONFIG_RT_GROUP_SCHED */ -#ifdef CONFIG_CPUMASK_OFFSTACK -		for_each_possible_cpu(i) { -			per_cpu(load_balance_tmpmask, i) = (void *)ptr; -			ptr += cpumask_size(); -		} -#endif /* CONFIG_CPUMASK_OFFSTACK */ -	} - -#ifdef CONFIG_SMP -	init_defrootdomain(); -#endif - -	init_rt_bandwidth(&def_rt_bandwidth, -			global_rt_period(), global_rt_runtime()); - -#ifdef CONFIG_RT_GROUP_SCHED -	init_rt_bandwidth(&init_task_group.rt_bandwidth, -			global_rt_period(), global_rt_runtime()); -#endif /* CONFIG_RT_GROUP_SCHED */ - -#ifdef CONFIG_CGROUP_SCHED -	list_add(&init_task_group.list, &task_groups); -	INIT_LIST_HEAD(&init_task_group.children); - -#endif /* CONFIG_CGROUP_SCHED */ - -#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP -	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long), -					    __alignof__(unsigned long)); -#endif -	for_each_possible_cpu(i) { -		struct rq *rq; - -		rq = cpu_rq(i); -		raw_spin_lock_init(&rq->lock); -		rq->nr_running = 0; -		rq->calc_load_active = 0; -		rq->calc_load_update = jiffies + LOAD_FREQ; -		init_cfs_rq(&rq->cfs, rq); -		init_rt_rq(&rq->rt, rq); -#ifdef CONFIG_FAIR_GROUP_SCHED -		init_task_group.shares = init_task_group_load; -		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); -#ifdef CONFIG_CGROUP_SCHED -		/* -		 * How much cpu bandwidth does init_task_group get? -		 * -		 * In case of task-groups formed thr' the cgroup filesystem, it -		 * gets 100% of the cpu resources in the system. This overall -		 * system cpu resource is divided among the tasks of -		 * init_task_group and its child task-groups in a fair manner, -		 * based on each entity's (task or task-group's) weight -		 * (se->load.weight). -		 * -		 * In other words, if init_task_group has 10 tasks of weight -		 * 1024) and two child groups A0 and A1 (of weight 1024 each), -		 * then A0's share of the cpu resource is: -		 * -		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% -		 * -		 * We achieve this by letting init_task_group's tasks sit -		 * directly in rq->cfs (i.e init_task_group->se[] = NULL). -		 */ -		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); -#endif -#endif /* CONFIG_FAIR_GROUP_SCHED */ - -		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; -#ifdef CONFIG_RT_GROUP_SCHED -		INIT_LIST_HEAD(&rq->leaf_rt_rq_list); -#ifdef CONFIG_CGROUP_SCHED -		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); -#endif -#endif - -		for (j = 0; j < CPU_LOAD_IDX_MAX; j++) -			rq->cpu_load[j] = 0; - -		rq->last_load_update_tick = jiffies; - -#ifdef CONFIG_SMP -		rq->sd = NULL; -		rq->rd = NULL; -		rq->cpu_power = SCHED_LOAD_SCALE; -		rq->post_schedule = 0; -		rq->active_balance = 0; -		rq->next_balance = jiffies; -		rq->push_cpu = 0; -		rq->cpu = i; -		rq->online = 0; -		rq->idle_stamp = 0; -		rq->avg_idle = 2*sysctl_sched_migration_cost; -		rq_attach_root(rq, &def_root_domain); -#ifdef CONFIG_NO_HZ -		rq->nohz_balance_kick = 0; -		init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i)); -#endif -#endif -		init_rq_hrtick(rq); -		atomic_set(&rq->nr_iowait, 0); -	} - -	set_load_weight(&init_task); - -#ifdef CONFIG_PREEMPT_NOTIFIERS -	INIT_HLIST_HEAD(&init_task.preempt_notifiers); -#endif - -#ifdef CONFIG_SMP -	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); -#endif - -#ifdef CONFIG_RT_MUTEXES -	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock); -#endif - -	/* -	 * The boot idle thread does lazy MMU switching as well: -	 */ -	atomic_inc(&init_mm.mm_count); -	enter_lazy_tlb(&init_mm, current); - -	/* -	 * Make us the idle thread. Technically, schedule() should not be -	 * called from this thread, however somewhere below it might be, -	 * but because we are the idle thread, we just pick up running again -	 * when this runqueue becomes "idle". -	 */ -	init_idle(current, smp_processor_id()); - -	calc_load_update = jiffies + LOAD_FREQ; - -	/* -	 * During early bootup we pretend to be a normal task: -	 */ -	current->sched_class = &fair_sched_class; - -	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */ -	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT); -#ifdef CONFIG_SMP -#ifdef CONFIG_NO_HZ -	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); -	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT); -	atomic_set(&nohz.load_balancer, nr_cpu_ids); -	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids); -	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids); -#endif -	/* May be allocated at isolcpus cmdline parse time */ -	if (cpu_isolated_map == NULL) -		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); -#endif /* SMP */ - -	perf_event_init(); - -	scheduler_running = 1; -} - -#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP -static inline int preempt_count_equals(int preempt_offset) -{ -	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); - -	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); -} - -void __might_sleep(const char *file, int line, int preempt_offset) -{ -#ifdef in_atomic -	static unsigned long prev_jiffy;	/* ratelimiting */ - -	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || -	    system_state != SYSTEM_RUNNING || oops_in_progress) -		return; -	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) -		return; -	prev_jiffy = jiffies; - -	printk(KERN_ERR -		"BUG: sleeping function called from invalid context at %s:%d\n", -			file, line); -	printk(KERN_ERR -		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", -			in_atomic(), irqs_disabled(), -			current->pid, current->comm); - -	debug_show_held_locks(current); -	if (irqs_disabled()) -		print_irqtrace_events(current); -	dump_stack(); -#endif -} -EXPORT_SYMBOL(__might_sleep); -#endif - -#ifdef CONFIG_MAGIC_SYSRQ -static void normalize_task(struct rq *rq, struct task_struct *p) -{ -	int on_rq; - -	on_rq = p->se.on_rq; -	if (on_rq) -		deactivate_task(rq, p, 0); -	__setscheduler(rq, p, SCHED_NORMAL, 0); -	if (on_rq) { -		activate_task(rq, p, 0); -		resched_task(rq->curr); -	} -} - -void normalize_rt_tasks(void) -{ -	struct task_struct *g, *p; -	unsigned long flags; -	struct rq *rq; - -	read_lock_irqsave(&tasklist_lock, flags); -	do_each_thread(g, p) { -		/* -		 * Only normalize user tasks: -		 */ -		if (!p->mm) -			continue; - -		p->se.exec_start		= 0; -#ifdef CONFIG_SCHEDSTATS -		p->se.statistics.wait_start	= 0; -		p->se.statistics.sleep_start	= 0; -		p->se.statistics.block_start	= 0; -#endif - -		if (!rt_task(p)) { -			/* -			 * Renice negative nice level userspace -			 * tasks back to 0: -			 */ -			if (TASK_NICE(p) < 0 && p->mm) -				set_user_nice(p, 0); -			continue; -		} - -		raw_spin_lock(&p->pi_lock); -		rq = __task_rq_lock(p); - -		normalize_task(rq, p); - -		__task_rq_unlock(rq); -		raw_spin_unlock(&p->pi_lock); -	} while_each_thread(g, p); - -	read_unlock_irqrestore(&tasklist_lock, flags); -} - -#endif /* CONFIG_MAGIC_SYSRQ */ - -#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) -/* - * These functions are only useful for the IA64 MCA handling, or kdb. - * - * They can only be called when the whole system has been - * stopped - every CPU needs to be quiescent, and no scheduling - * activity can take place. Using them for anything else would - * be a serious bug, and as a result, they aren't even visible - * under any other configuration. - */ - -/** - * curr_task - return the current task for a given cpu. - * @cpu: the processor in question. - * - * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! - */ -struct task_struct *curr_task(int cpu) -{ -	return cpu_curr(cpu); -} - -#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ - -#ifdef CONFIG_IA64 -/** - * set_curr_task - set the current task for a given cpu. - * @cpu: the processor in question. - * @p: the task pointer to set. - * - * Description: This function must only be used when non-maskable interrupts - * are serviced on a separate stack. It allows the architecture to switch the - * notion of the current task on a cpu in a non-blocking manner. This function - * must be called with all CPU's synchronized, and interrupts disabled, the - * and caller must save the original value of the current task (see - * curr_task() above) and restore that value before reenabling interrupts and - * re-starting the system. - * - * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! - */ -void set_curr_task(int cpu, struct task_struct *p) -{ -	cpu_curr(cpu) = p; -} - -#endif - -#ifdef CONFIG_FAIR_GROUP_SCHED -static void free_fair_sched_group(struct task_group *tg) -{ -	int i; - -	for_each_possible_cpu(i) { -		if (tg->cfs_rq) -			kfree(tg->cfs_rq[i]); -		if (tg->se) -			kfree(tg->se[i]); -	} - -	kfree(tg->cfs_rq); -	kfree(tg->se); -} - -static -int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) -{ -	struct cfs_rq *cfs_rq; -	struct sched_entity *se; -	struct rq *rq; -	int i; - -	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); -	if (!tg->cfs_rq) -		goto err; -	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); -	if (!tg->se) -		goto err; - -	tg->shares = NICE_0_LOAD; - -	for_each_possible_cpu(i) { -		rq = cpu_rq(i); - -		cfs_rq = kzalloc_node(sizeof(struct cfs_rq), -				      GFP_KERNEL, cpu_to_node(i)); -		if (!cfs_rq) -			goto err; - -		se = kzalloc_node(sizeof(struct sched_entity), -				  GFP_KERNEL, cpu_to_node(i)); -		if (!se) -			goto err_free_rq; - -		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); -	} - -	return 1; - -err_free_rq: -	kfree(cfs_rq); -err: -	return 0; -} - -static inline void register_fair_sched_group(struct task_group *tg, int cpu) -{ -	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list, -			&cpu_rq(cpu)->leaf_cfs_rq_list); -} - -static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) -{ -	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list); -} -#else /* !CONFG_FAIR_GROUP_SCHED */ -static inline void free_fair_sched_group(struct task_group *tg) -{ -} - -static inline -int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) -{ -	return 1; -} - -static inline void register_fair_sched_group(struct task_group *tg, int cpu) -{ -} - -static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) -{ -} -#endif /* CONFIG_FAIR_GROUP_SCHED */ - -#ifdef CONFIG_RT_GROUP_SCHED -static void free_rt_sched_group(struct task_group *tg) -{ -	int i; - -	destroy_rt_bandwidth(&tg->rt_bandwidth); - -	for_each_possible_cpu(i) { -		if (tg->rt_rq) -			kfree(tg->rt_rq[i]); -		if (tg->rt_se) -			kfree(tg->rt_se[i]); -	} - -	kfree(tg->rt_rq); -	kfree(tg->rt_se); -} - -static -int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) -{ -	struct rt_rq *rt_rq; -	struct sched_rt_entity *rt_se; -	struct rq *rq; -	int i; - -	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); -	if (!tg->rt_rq) -		goto err; -	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); -	if (!tg->rt_se) -		goto err; - -	init_rt_bandwidth(&tg->rt_bandwidth, -			ktime_to_ns(def_rt_bandwidth.rt_period), 0); - -	for_each_possible_cpu(i) { -		rq = cpu_rq(i); - -		rt_rq = kzalloc_node(sizeof(struct rt_rq), -				     GFP_KERNEL, cpu_to_node(i)); -		if (!rt_rq) -			goto err; - -		rt_se = kzalloc_node(sizeof(struct sched_rt_entity), -				     GFP_KERNEL, cpu_to_node(i)); -		if (!rt_se) -			goto err_free_rq; - -		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); -	} - -	return 1; - -err_free_rq: -	kfree(rt_rq); -err: -	return 0; -} - -static inline void register_rt_sched_group(struct task_group *tg, int cpu) -{ -	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list, -			&cpu_rq(cpu)->leaf_rt_rq_list); -} - -static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) -{ -	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list); -} -#else /* !CONFIG_RT_GROUP_SCHED */ -static inline void free_rt_sched_group(struct task_group *tg) -{ -} - -static inline -int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) -{ -	return 1; -} - -static inline void register_rt_sched_group(struct task_group *tg, int cpu) -{ -} - -static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) -{ -} -#endif /* CONFIG_RT_GROUP_SCHED */ - -#ifdef CONFIG_CGROUP_SCHED -static void free_sched_group(struct task_group *tg) -{ -	free_fair_sched_group(tg); -	free_rt_sched_group(tg); -	kfree(tg); -} - -/* allocate runqueue etc for a new task group */ -struct task_group *sched_create_group(struct task_group *parent) -{ -	struct task_group *tg; -	unsigned long flags; -	int i; - -	tg = kzalloc(sizeof(*tg), GFP_KERNEL); -	if (!tg) -		return ERR_PTR(-ENOMEM); - -	if (!alloc_fair_sched_group(tg, parent)) -		goto err; - -	if (!alloc_rt_sched_group(tg, parent)) -		goto err; - -	spin_lock_irqsave(&task_group_lock, flags); -	for_each_possible_cpu(i) { -		register_fair_sched_group(tg, i); -		register_rt_sched_group(tg, i); -	} -	list_add_rcu(&tg->list, &task_groups); - -	WARN_ON(!parent); /* root should already exist */ - -	tg->parent = parent; -	INIT_LIST_HEAD(&tg->children); -	list_add_rcu(&tg->siblings, &parent->children); -	spin_unlock_irqrestore(&task_group_lock, flags); - -	return tg; - -err: -	free_sched_group(tg); -	return ERR_PTR(-ENOMEM); -} - -/* rcu callback to free various structures associated with a task group */ -static void free_sched_group_rcu(struct rcu_head *rhp) -{ -	/* now it should be safe to free those cfs_rqs */ -	free_sched_group(container_of(rhp, struct task_group, rcu)); -} - -/* Destroy runqueue etc associated with a task group */ -void sched_destroy_group(struct task_group *tg) -{ -	unsigned long flags; -	int i; - -	spin_lock_irqsave(&task_group_lock, flags); -	for_each_possible_cpu(i) { -		unregister_fair_sched_group(tg, i); -		unregister_rt_sched_group(tg, i); -	} -	list_del_rcu(&tg->list); -	list_del_rcu(&tg->siblings); -	spin_unlock_irqrestore(&task_group_lock, flags); - -	/* wait for possible concurrent references to cfs_rqs complete */ -	call_rcu(&tg->rcu, free_sched_group_rcu); -} - -/* change task's runqueue when it moves between groups. - *	The caller of this function should have put the task in its new group - *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to - *	reflect its new group. - */ -void sched_move_task(struct task_struct *tsk) -{ -	int on_rq, running; -	unsigned long flags; -	struct rq *rq; - -	rq = task_rq_lock(tsk, &flags); - -	running = task_current(rq, tsk); -	on_rq = tsk->se.on_rq; - -	if (on_rq) -		dequeue_task(rq, tsk, 0); -	if (unlikely(running)) -		tsk->sched_class->put_prev_task(rq, tsk); - -#ifdef CONFIG_FAIR_GROUP_SCHED -	if (tsk->sched_class->task_move_group) -		tsk->sched_class->task_move_group(tsk, on_rq); -	else -#endif -		set_task_rq(tsk, task_cpu(tsk)); - -	if (unlikely(running)) -		tsk->sched_class->set_curr_task(rq); -	if (on_rq) -		enqueue_task(rq, tsk, 0); - -	task_rq_unlock(rq, &flags); -} -#endif /* CONFIG_CGROUP_SCHED */ - -#ifdef CONFIG_FAIR_GROUP_SCHED -static void __set_se_shares(struct sched_entity *se, unsigned long shares) -{ -	struct cfs_rq *cfs_rq = se->cfs_rq; -	int on_rq; - -	on_rq = se->on_rq; -	if (on_rq) -		dequeue_entity(cfs_rq, se, 0); - -	se->load.weight = shares; -	se->load.inv_weight = 0; - -	if (on_rq) -		enqueue_entity(cfs_rq, se, 0); -} - -static void set_se_shares(struct sched_entity *se, unsigned long shares) -{ -	struct cfs_rq *cfs_rq = se->cfs_rq; -	struct rq *rq = cfs_rq->rq; -	unsigned long flags; - -	raw_spin_lock_irqsave(&rq->lock, flags); -	__set_se_shares(se, shares); -	raw_spin_unlock_irqrestore(&rq->lock, flags); -} - -static DEFINE_MUTEX(shares_mutex); - -int sched_group_set_shares(struct task_group *tg, unsigned long shares) -{ -	int i; -	unsigned long flags; - -	/* -	 * We can't change the weight of the root cgroup. -	 */ -	if (!tg->se[0]) -		return -EINVAL; - -	if (shares < MIN_SHARES) -		shares = MIN_SHARES; -	else if (shares > MAX_SHARES) -		shares = MAX_SHARES; - -	mutex_lock(&shares_mutex); -	if (tg->shares == shares) -		goto done; - -	spin_lock_irqsave(&task_group_lock, flags); -	for_each_possible_cpu(i) -		unregister_fair_sched_group(tg, i); -	list_del_rcu(&tg->siblings); -	spin_unlock_irqrestore(&task_group_lock, flags); - -	/* wait for any ongoing reference to this group to finish */ -	synchronize_sched(); - -	/* -	 * Now we are free to modify the group's share on each cpu -	 * w/o tripping rebalance_share or load_balance_fair. -	 */ -	tg->shares = shares; -	for_each_possible_cpu(i) { -		/* -		 * force a rebalance -		 */ -		cfs_rq_set_shares(tg->cfs_rq[i], 0); -		set_se_shares(tg->se[i], shares); -	} - -	/* -	 * Enable load balance activity on this group, by inserting it back on -	 * each cpu's rq->leaf_cfs_rq_list. -	 */ -	spin_lock_irqsave(&task_group_lock, flags); -	for_each_possible_cpu(i) -		register_fair_sched_group(tg, i); -	list_add_rcu(&tg->siblings, &tg->parent->children); -	spin_unlock_irqrestore(&task_group_lock, flags); -done: -	mutex_unlock(&shares_mutex); -	return 0; -} - -unsigned long sched_group_shares(struct task_group *tg) -{ -	return tg->shares; -} -#endif - -#ifdef CONFIG_RT_GROUP_SCHED -/* - * Ensure that the real time constraints are schedulable. - */ -static DEFINE_MUTEX(rt_constraints_mutex); - -static unsigned long to_ratio(u64 period, u64 runtime) -{ -	if (runtime == RUNTIME_INF) -		return 1ULL << 20; - -	return div64_u64(runtime << 20, period); -} - -/* Must be called with tasklist_lock held */ -static inline int tg_has_rt_tasks(struct task_group *tg) -{ -	struct task_struct *g, *p; - -	do_each_thread(g, p) { -		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) -			return 1; -	} while_each_thread(g, p); - -	return 0; -} - -struct rt_schedulable_data { -	struct task_group *tg; -	u64 rt_period; -	u64 rt_runtime; -}; - -static int tg_schedulable(struct task_group *tg, void *data) -{ -	struct rt_schedulable_data *d = data; -	struct task_group *child; -	unsigned long total, sum = 0; -	u64 period, runtime; - -	period = ktime_to_ns(tg->rt_bandwidth.rt_period); -	runtime = tg->rt_bandwidth.rt_runtime; - -	if (tg == d->tg) { -		period = d->rt_period; -		runtime = d->rt_runtime; -	} - -	/* -	 * Cannot have more runtime than the period. -	 */ -	if (runtime > period && runtime != RUNTIME_INF) -		return -EINVAL; - -	/* -	 * Ensure we don't starve existing RT tasks. -	 */ -	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) -		return -EBUSY; - -	total = to_ratio(period, runtime); - -	/* -	 * Nobody can have more than the global setting allows. -	 */ -	if (total > to_ratio(global_rt_period(), global_rt_runtime())) -		return -EINVAL; - -	/* -	 * The sum of our children's runtime should not exceed our own. -	 */ -	list_for_each_entry_rcu(child, &tg->children, siblings) { -		period = ktime_to_ns(child->rt_bandwidth.rt_period); -		runtime = child->rt_bandwidth.rt_runtime; - -		if (child == d->tg) { -			period = d->rt_period; -			runtime = d->rt_runtime; -		} - -		sum += to_ratio(period, runtime); -	} - -	if (sum > total) -		return -EINVAL; - -	return 0; -} - -static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) -{ -	struct rt_schedulable_data data = { -		.tg = tg, -		.rt_period = period, -		.rt_runtime = runtime, -	}; - -	return walk_tg_tree(tg_schedulable, tg_nop, &data); -} - -static int tg_set_bandwidth(struct task_group *tg, -		u64 rt_period, u64 rt_runtime) -{ -	int i, err = 0; - -	mutex_lock(&rt_constraints_mutex); -	read_lock(&tasklist_lock); -	err = __rt_schedulable(tg, rt_period, rt_runtime); -	if (err) -		goto unlock; - -	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); -	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); -	tg->rt_bandwidth.rt_runtime = rt_runtime; - -	for_each_possible_cpu(i) { -		struct rt_rq *rt_rq = tg->rt_rq[i]; - -		raw_spin_lock(&rt_rq->rt_runtime_lock); -		rt_rq->rt_runtime = rt_runtime; -		raw_spin_unlock(&rt_rq->rt_runtime_lock); -	} -	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); -unlock: -	read_unlock(&tasklist_lock); -	mutex_unlock(&rt_constraints_mutex); - -	return err; -} - -int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) -{ -	u64 rt_runtime, rt_period; - -	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); -	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; -	if (rt_runtime_us < 0) -		rt_runtime = RUNTIME_INF; - -	return tg_set_bandwidth(tg, rt_period, rt_runtime); -} - -long sched_group_rt_runtime(struct task_group *tg) -{ -	u64 rt_runtime_us; - -	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) -		return -1; - -	rt_runtime_us = tg->rt_bandwidth.rt_runtime; -	do_div(rt_runtime_us, NSEC_PER_USEC); -	return rt_runtime_us; -} - -int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) -{ -	u64 rt_runtime, rt_period; - -	rt_period = (u64)rt_period_us * NSEC_PER_USEC; -	rt_runtime = tg->rt_bandwidth.rt_runtime; - -	if (rt_period == 0) -		return -EINVAL; - -	return tg_set_bandwidth(tg, rt_period, rt_runtime); -} - -long sched_group_rt_period(struct task_group *tg) -{ -	u64 rt_period_us; - -	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); -	do_div(rt_period_us, NSEC_PER_USEC); -	return rt_period_us; -} - -static int sched_rt_global_constraints(void) -{ -	u64 runtime, period; -	int ret = 0; - -	if (sysctl_sched_rt_period <= 0) -		return -EINVAL; - -	runtime = global_rt_runtime(); -	period = global_rt_period(); - -	/* -	 * Sanity check on the sysctl variables. -	 */ -	if (runtime > period && runtime != RUNTIME_INF) -		return -EINVAL; - -	mutex_lock(&rt_constraints_mutex); -	read_lock(&tasklist_lock); -	ret = __rt_schedulable(NULL, 0, 0); -	read_unlock(&tasklist_lock); -	mutex_unlock(&rt_constraints_mutex); - -	return ret; -} - -int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) -{ -	/* Don't accept realtime tasks when there is no way for them to run */ -	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) -		return 0; - -	return 1; -} - -#else /* !CONFIG_RT_GROUP_SCHED */ -static int sched_rt_global_constraints(void) -{ -	unsigned long flags; -	int i; - -	if (sysctl_sched_rt_period <= 0) -		return -EINVAL; - -	/* -	 * There's always some RT tasks in the root group -	 * -- migration, kstopmachine etc.. -	 */ -	if (sysctl_sched_rt_runtime == 0) -		return -EBUSY; - -	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); -	for_each_possible_cpu(i) { -		struct rt_rq *rt_rq = &cpu_rq(i)->rt; - -		raw_spin_lock(&rt_rq->rt_runtime_lock); -		rt_rq->rt_runtime = global_rt_runtime(); -		raw_spin_unlock(&rt_rq->rt_runtime_lock); -	} -	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); - -	return 0; -} -#endif /* CONFIG_RT_GROUP_SCHED */ - -int sched_rt_handler(struct ctl_table *table, int write, -		void __user *buffer, size_t *lenp, -		loff_t *ppos) -{ -	int ret; -	int old_period, old_runtime; -	static DEFINE_MUTEX(mutex); - -	mutex_lock(&mutex); -	old_period = sysctl_sched_rt_period; -	old_runtime = sysctl_sched_rt_runtime; - -	ret = proc_dointvec(table, write, buffer, lenp, ppos); - -	if (!ret && write) { -		ret = sched_rt_global_constraints(); -		if (ret) { -			sysctl_sched_rt_period = old_period; -			sysctl_sched_rt_runtime = old_runtime; -		} else { -			def_rt_bandwidth.rt_runtime = global_rt_runtime(); -			def_rt_bandwidth.rt_period = -				ns_to_ktime(global_rt_period()); -		} -	} -	mutex_unlock(&mutex); - -	return ret; -} - -#ifdef CONFIG_CGROUP_SCHED - -/* return corresponding task_group object of a cgroup */ -static inline struct task_group *cgroup_tg(struct cgroup *cgrp) -{ -	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), -			    struct task_group, css); -} - -static struct cgroup_subsys_state * -cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) -{ -	struct task_group *tg, *parent; - -	if (!cgrp->parent) { -		/* This is early initialization for the top cgroup */ -		return &init_task_group.css; -	} - -	parent = cgroup_tg(cgrp->parent); -	tg = sched_create_group(parent); -	if (IS_ERR(tg)) -		return ERR_PTR(-ENOMEM); - -	return &tg->css; -} - -static void -cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) -{ -	struct task_group *tg = cgroup_tg(cgrp); - -	sched_destroy_group(tg); -} - -static int -cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk) -{ -#ifdef CONFIG_RT_GROUP_SCHED -	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) -		return -EINVAL; -#else -	/* We don't support RT-tasks being in separate groups */ -	if (tsk->sched_class != &fair_sched_class) -		return -EINVAL; -#endif -	return 0; -} - -static int -cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, -		      struct task_struct *tsk, bool threadgroup) -{ -	int retval = cpu_cgroup_can_attach_task(cgrp, tsk); -	if (retval) -		return retval; -	if (threadgroup) { -		struct task_struct *c; -		rcu_read_lock(); -		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { -			retval = cpu_cgroup_can_attach_task(cgrp, c); -			if (retval) { -				rcu_read_unlock(); -				return retval; -			} -		} -		rcu_read_unlock(); -	} -	return 0; -} - -static void -cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, -		  struct cgroup *old_cont, struct task_struct *tsk, -		  bool threadgroup) -{ -	sched_move_task(tsk); -	if (threadgroup) { -		struct task_struct *c; -		rcu_read_lock(); -		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { -			sched_move_task(c); -		} -		rcu_read_unlock(); -	} -} - -#ifdef CONFIG_FAIR_GROUP_SCHED -static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, -				u64 shareval) -{ -	return sched_group_set_shares(cgroup_tg(cgrp), shareval); -} - -static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) -{ -	struct task_group *tg = cgroup_tg(cgrp); - -	return (u64) tg->shares; -} -#endif /* CONFIG_FAIR_GROUP_SCHED */ - -#ifdef CONFIG_RT_GROUP_SCHED -static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, -				s64 val) -{ -	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); -} - -static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) -{ -	return sched_group_rt_runtime(cgroup_tg(cgrp)); -} - -static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, -		u64 rt_period_us) -{ -	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); -} - -static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) -{ -	return sched_group_rt_period(cgroup_tg(cgrp)); -} -#endif /* CONFIG_RT_GROUP_SCHED */ - -static struct cftype cpu_files[] = { -#ifdef CONFIG_FAIR_GROUP_SCHED -	{ -		.name = "shares", -		.read_u64 = cpu_shares_read_u64, -		.write_u64 = cpu_shares_write_u64, -	}, -#endif -#ifdef CONFIG_RT_GROUP_SCHED -	{ -		.name = "rt_runtime_us", -		.read_s64 = cpu_rt_runtime_read, -		.write_s64 = cpu_rt_runtime_write, -	}, -	{ -		.name = "rt_period_us", -		.read_u64 = cpu_rt_period_read_uint, -		.write_u64 = cpu_rt_period_write_uint, -	}, -#endif -}; - -static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) -{ -	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); -} - -struct cgroup_subsys cpu_cgroup_subsys = { -	.name		= "cpu", -	.create		= cpu_cgroup_create, -	.destroy	= cpu_cgroup_destroy, -	.can_attach	= cpu_cgroup_can_attach, -	.attach		= cpu_cgroup_attach, -	.populate	= cpu_cgroup_populate, -	.subsys_id	= cpu_cgroup_subsys_id, -	.early_init	= 1, -}; - -#endif	/* CONFIG_CGROUP_SCHED */ - -#ifdef CONFIG_CGROUP_CPUACCT - -/* - * CPU accounting code for task groups. - * - * Based on the work by Paul Menage (menage@google.com) and Balbir Singh - * (balbir@in.ibm.com). - */ - -/* track cpu usage of a group of tasks and its child groups */ -struct cpuacct { -	struct cgroup_subsys_state css; -	/* cpuusage holds pointer to a u64-type object on every cpu */ -	u64 __percpu *cpuusage; -	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; -	struct cpuacct *parent; -}; - -struct cgroup_subsys cpuacct_subsys; - -/* return cpu accounting group corresponding to this container */ -static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) -{ -	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), -			    struct cpuacct, css); -} - -/* return cpu accounting group to which this task belongs */ -static inline struct cpuacct *task_ca(struct task_struct *tsk) -{ -	return container_of(task_subsys_state(tsk, cpuacct_subsys_id), -			    struct cpuacct, css); -} - -/* create a new cpu accounting group */ -static struct cgroup_subsys_state *cpuacct_create( -	struct cgroup_subsys *ss, struct cgroup *cgrp) -{ -	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL); -	int i; - -	if (!ca) -		goto out; - -	ca->cpuusage = alloc_percpu(u64); -	if (!ca->cpuusage) -		goto out_free_ca; - -	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) -		if (percpu_counter_init(&ca->cpustat[i], 0)) -			goto out_free_counters; - -	if (cgrp->parent) -		ca->parent = cgroup_ca(cgrp->parent); - -	return &ca->css; - -out_free_counters: -	while (--i >= 0) -		percpu_counter_destroy(&ca->cpustat[i]); -	free_percpu(ca->cpuusage); -out_free_ca: -	kfree(ca); -out: -	return ERR_PTR(-ENOMEM); -} - -/* destroy an existing cpu accounting group */ -static void -cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) -{ -	struct cpuacct *ca = cgroup_ca(cgrp); -	int i; - -	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) -		percpu_counter_destroy(&ca->cpustat[i]); -	free_percpu(ca->cpuusage); -	kfree(ca); -} - -static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) -{ -	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); -	u64 data; - -#ifndef CONFIG_64BIT -	/* -	 * Take rq->lock to make 64-bit read safe on 32-bit platforms. -	 */ -	raw_spin_lock_irq(&cpu_rq(cpu)->lock); -	data = *cpuusage; -	raw_spin_unlock_irq(&cpu_rq(cpu)->lock); -#else -	data = *cpuusage; -#endif - -	return data; -} - -static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) -{ -	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); - -#ifndef CONFIG_64BIT -	/* -	 * Take rq->lock to make 64-bit write safe on 32-bit platforms. -	 */ -	raw_spin_lock_irq(&cpu_rq(cpu)->lock); -	*cpuusage = val; -	raw_spin_unlock_irq(&cpu_rq(cpu)->lock); -#else -	*cpuusage = val; -#endif -} - -/* return total cpu usage (in nanoseconds) of a group */ -static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) -{ -	struct cpuacct *ca = cgroup_ca(cgrp); -	u64 totalcpuusage = 0; -	int i; - -	for_each_present_cpu(i) -		totalcpuusage += cpuacct_cpuusage_read(ca, i); - -	return totalcpuusage; -} - -static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, -								u64 reset) -{ -	struct cpuacct *ca = cgroup_ca(cgrp); -	int err = 0; -	int i; - -	if (reset) { -		err = -EINVAL; -		goto out; -	} - -	for_each_present_cpu(i) -		cpuacct_cpuusage_write(ca, i, 0); - -out: -	return err; -} - -static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, -				   struct seq_file *m) -{ -	struct cpuacct *ca = cgroup_ca(cgroup); -	u64 percpu; -	int i; - -	for_each_present_cpu(i) { -		percpu = cpuacct_cpuusage_read(ca, i); -		seq_printf(m, "%llu ", (unsigned long long) percpu); -	} -	seq_printf(m, "\n"); -	return 0; -} - -static const char *cpuacct_stat_desc[] = { -	[CPUACCT_STAT_USER] = "user", -	[CPUACCT_STAT_SYSTEM] = "system", -}; - -static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, -		struct cgroup_map_cb *cb) -{ -	struct cpuacct *ca = cgroup_ca(cgrp); -	int i; - -	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) { -		s64 val = percpu_counter_read(&ca->cpustat[i]); -		val = cputime64_to_clock_t(val); -		cb->fill(cb, cpuacct_stat_desc[i], val); -	} -	return 0; -} - -static struct cftype files[] = { -	{ -		.name = "usage", -		.read_u64 = cpuusage_read, -		.write_u64 = cpuusage_write, -	}, -	{ -		.name = "usage_percpu", -		.read_seq_string = cpuacct_percpu_seq_read, -	}, -	{ -		.name = "stat", -		.read_map = cpuacct_stats_show, -	}, -}; - -static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) -{ -	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); -} - -/* - * charge this task's execution time to its accounting group. - * - * called with rq->lock held. - */ -static void cpuacct_charge(struct task_struct *tsk, u64 cputime) -{ -	struct cpuacct *ca; -	int cpu; - -	if (unlikely(!cpuacct_subsys.active)) -		return; - -	cpu = task_cpu(tsk); - -	rcu_read_lock(); - -	ca = task_ca(tsk); - -	for (; ca; ca = ca->parent) { -		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); -		*cpuusage += cputime; -	} - -	rcu_read_unlock(); -} - -/* - * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large - * in cputime_t units. As a result, cpuacct_update_stats calls - * percpu_counter_add with values large enough to always overflow the - * per cpu batch limit causing bad SMP scalability. - * - * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we - * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled - * and enabled. We cap it at INT_MAX which is the largest allowed batch value. - */ -#ifdef CONFIG_SMP -#define CPUACCT_BATCH	\ -	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX) -#else -#define CPUACCT_BATCH	0 -#endif - -/* - * Charge the system/user time to the task's accounting group. - */ -static void cpuacct_update_stats(struct task_struct *tsk, -		enum cpuacct_stat_index idx, cputime_t val) -{ -	struct cpuacct *ca; -	int batch = CPUACCT_BATCH; - -	if (unlikely(!cpuacct_subsys.active)) -		return; - -	rcu_read_lock(); -	ca = task_ca(tsk); - -	do { -		__percpu_counter_add(&ca->cpustat[idx], val, batch); -		ca = ca->parent; -	} while (ca); -	rcu_read_unlock(); -} - -struct cgroup_subsys cpuacct_subsys = { -	.name = "cpuacct", -	.create = cpuacct_create, -	.destroy = cpuacct_destroy, -	.populate = cpuacct_populate, -	.subsys_id = cpuacct_subsys_id, -}; -#endif	/* CONFIG_CGROUP_CPUACCT */ - -#ifndef CONFIG_SMP - -void synchronize_sched_expedited(void) -{ -	barrier(); -} -EXPORT_SYMBOL_GPL(synchronize_sched_expedited); - -#else /* #ifndef CONFIG_SMP */ - -static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0); - -static int synchronize_sched_expedited_cpu_stop(void *data) -{ -	/* -	 * There must be a full memory barrier on each affected CPU -	 * between the time that try_stop_cpus() is called and the -	 * time that it returns. -	 * -	 * In the current initial implementation of cpu_stop, the -	 * above condition is already met when the control reaches -	 * this point and the following smp_mb() is not strictly -	 * necessary.  Do smp_mb() anyway for documentation and -	 * robustness against future implementation changes. -	 */ -	smp_mb(); /* See above comment block. */ -	return 0; -} - -/* - * Wait for an rcu-sched grace period to elapse, but use "big hammer" - * approach to force grace period to end quickly.  This consumes - * significant time on all CPUs, and is thus not recommended for - * any sort of common-case code. - * - * Note that it is illegal to call this function while holding any - * lock that is acquired by a CPU-hotplug notifier.  Failing to - * observe this restriction will result in deadlock. - */ -void synchronize_sched_expedited(void) -{ -	int snap, trycount = 0; - -	smp_mb();  /* ensure prior mod happens before capturing snap. */ -	snap = atomic_read(&synchronize_sched_expedited_count) + 1; -	get_online_cpus(); -	while (try_stop_cpus(cpu_online_mask, -			     synchronize_sched_expedited_cpu_stop, -			     NULL) == -EAGAIN) { -		put_online_cpus(); -		if (trycount++ < 10) -			udelay(trycount * num_online_cpus()); -		else { -			synchronize_sched(); -			return; -		} -		if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) { -			smp_mb(); /* ensure test happens before caller kfree */ -			return; -		} -		get_online_cpus(); -	} -	atomic_inc(&synchronize_sched_expedited_count); -	smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */ -	put_online_cpus(); -} -EXPORT_SYMBOL_GPL(synchronize_sched_expedited); - -#endif /* #else #ifndef CONFIG_SMP */  | 
