diff options
Diffstat (limited to 'kernel/hrtimer.c')
| -rw-r--r-- | kernel/hrtimer.c | 903 |
1 files changed, 502 insertions, 401 deletions
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c index 9002958a96e..3ab28993f6e 100644 --- a/kernel/hrtimer.c +++ b/kernel/hrtimer.c @@ -32,7 +32,7 @@ */ #include <linux/cpu.h> -#include <linux/module.h> +#include <linux/export.h> #include <linux/percpu.h> #include <linux/hrtimer.h> #include <linux/notifier.h> @@ -44,92 +44,69 @@ #include <linux/err.h> #include <linux/debugobjects.h> #include <linux/sched.h> +#include <linux/sched/sysctl.h> +#include <linux/sched/rt.h> +#include <linux/sched/deadline.h> #include <linux/timer.h> +#include <linux/freezer.h> #include <asm/uaccess.h> -/** - * ktime_get - get the monotonic time in ktime_t format - * - * returns the time in ktime_t format - */ -ktime_t ktime_get(void) -{ - struct timespec now; - - ktime_get_ts(&now); - - return timespec_to_ktime(now); -} -EXPORT_SYMBOL_GPL(ktime_get); - -/** - * ktime_get_real - get the real (wall-) time in ktime_t format - * - * returns the time in ktime_t format - */ -ktime_t ktime_get_real(void) -{ - struct timespec now; - - getnstimeofday(&now); - - return timespec_to_ktime(now); -} - -EXPORT_SYMBOL_GPL(ktime_get_real); +#include <trace/events/timer.h> /* * The timer bases: * - * Note: If we want to add new timer bases, we have to skip the two - * clock ids captured by the cpu-timers. We do this by holding empty - * entries rather than doing math adjustment of the clock ids. - * This ensures that we capture erroneous accesses to these clock ids - * rather than moving them into the range of valid clock id's. + * There are more clockids then hrtimer bases. Thus, we index + * into the timer bases by the hrtimer_base_type enum. When trying + * to reach a base using a clockid, hrtimer_clockid_to_base() + * is used to convert from clockid to the proper hrtimer_base_type. */ DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = { + .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), .clock_base = { { - .index = CLOCK_REALTIME, + .index = HRTIMER_BASE_MONOTONIC, + .clockid = CLOCK_MONOTONIC, + .get_time = &ktime_get, + .resolution = KTIME_LOW_RES, + }, + { + .index = HRTIMER_BASE_REALTIME, + .clockid = CLOCK_REALTIME, .get_time = &ktime_get_real, .resolution = KTIME_LOW_RES, }, { - .index = CLOCK_MONOTONIC, - .get_time = &ktime_get, + .index = HRTIMER_BASE_BOOTTIME, + .clockid = CLOCK_BOOTTIME, + .get_time = &ktime_get_boottime, + .resolution = KTIME_LOW_RES, + }, + { + .index = HRTIMER_BASE_TAI, + .clockid = CLOCK_TAI, + .get_time = &ktime_get_clocktai, .resolution = KTIME_LOW_RES, }, } }; -/** - * ktime_get_ts - get the monotonic clock in timespec format - * @ts: pointer to timespec variable - * - * The function calculates the monotonic clock from the realtime - * clock and the wall_to_monotonic offset and stores the result - * in normalized timespec format in the variable pointed to by @ts. - */ -void ktime_get_ts(struct timespec *ts) -{ - struct timespec tomono; - unsigned long seq; - - do { - seq = read_seqbegin(&xtime_lock); - getnstimeofday(ts); - tomono = wall_to_monotonic; - - } while (read_seqretry(&xtime_lock, seq)); +static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { + [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, + [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, + [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, + [CLOCK_TAI] = HRTIMER_BASE_TAI, +}; - set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, - ts->tv_nsec + tomono.tv_nsec); +static inline int hrtimer_clockid_to_base(clockid_t clock_id) +{ + return hrtimer_clock_to_base_table[clock_id]; } -EXPORT_SYMBOL_GPL(ktime_get_ts); + /* * Get the coarse grained time at the softirq based on xtime and @@ -137,21 +114,21 @@ EXPORT_SYMBOL_GPL(ktime_get_ts); */ static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base) { - ktime_t xtim, tomono; - struct timespec xts, tom; - unsigned long seq; + ktime_t xtim, mono, boot; + struct timespec xts, tom, slp; + s32 tai_offset; - do { - seq = read_seqbegin(&xtime_lock); - xts = current_kernel_time(); - tom = wall_to_monotonic; - } while (read_seqretry(&xtime_lock, seq)); + get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp); + tai_offset = timekeeping_get_tai_offset(); xtim = timespec_to_ktime(xts); - tomono = timespec_to_ktime(tom); - base->clock_base[CLOCK_REALTIME].softirq_time = xtim; - base->clock_base[CLOCK_MONOTONIC].softirq_time = - ktime_add(xtim, tomono); + mono = ktime_add(xtim, timespec_to_ktime(tom)); + boot = ktime_add(mono, timespec_to_ktime(slp)); + base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim; + base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono; + base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot; + base->clock_base[HRTIMER_BASE_TAI].softirq_time = + ktime_add(xtim, ktime_set(tai_offset, 0)); } /* @@ -181,17 +158,40 @@ struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, for (;;) { base = timer->base; if (likely(base != NULL)) { - spin_lock_irqsave(&base->cpu_base->lock, *flags); + raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); if (likely(base == timer->base)) return base; /* The timer has migrated to another CPU: */ - spin_unlock_irqrestore(&base->cpu_base->lock, *flags); + raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); } cpu_relax(); } } /* + * With HIGHRES=y we do not migrate the timer when it is expiring + * before the next event on the target cpu because we cannot reprogram + * the target cpu hardware and we would cause it to fire late. + * + * Called with cpu_base->lock of target cpu held. + */ +static int +hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) +{ +#ifdef CONFIG_HIGH_RES_TIMERS + ktime_t expires; + + if (!new_base->cpu_base->hres_active) + return 0; + + expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); + return expires.tv64 <= new_base->cpu_base->expires_next.tv64; +#else + return 0; +#endif +} + +/* * Switch the timer base to the current CPU when possible. */ static inline struct hrtimer_clock_base * @@ -200,24 +200,17 @@ switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, { struct hrtimer_clock_base *new_base; struct hrtimer_cpu_base *new_cpu_base; - int cpu, preferred_cpu = -1; - - cpu = smp_processor_id(); -#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) - if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) { - preferred_cpu = get_nohz_load_balancer(); - if (preferred_cpu >= 0) - cpu = preferred_cpu; - } -#endif + int this_cpu = smp_processor_id(); + int cpu = get_nohz_timer_target(pinned); + int basenum = base->index; again: new_cpu_base = &per_cpu(hrtimer_bases, cpu); - new_base = &new_cpu_base->clock_base[base->index]; + new_base = &new_cpu_base->clock_base[basenum]; if (base != new_base) { /* - * We are trying to schedule the timer on the local CPU. + * We are trying to move timer to new_base. * However we can't change timer's base while it is running, * so we keep it on the same CPU. No hassle vs. reprogramming * the event source in the high resolution case. The softirq @@ -230,43 +223,22 @@ again: /* See the comment in lock_timer_base() */ timer->base = NULL; - spin_unlock(&base->cpu_base->lock); - spin_lock(&new_base->cpu_base->lock); - - /* Optimized away for NOHZ=n SMP=n */ - if (cpu == preferred_cpu) { - /* Calculate clock monotonic expiry time */ -#ifdef CONFIG_HIGH_RES_TIMERS - ktime_t expires = ktime_sub(hrtimer_get_expires(timer), - new_base->offset); -#else - ktime_t expires = hrtimer_get_expires(timer); -#endif - - /* - * Get the next event on target cpu from the - * clock events layer. - * This covers the highres=off nohz=on case as well. - */ - ktime_t next = clockevents_get_next_event(cpu); - - ktime_t delta = ktime_sub(expires, next); - - /* - * We do not migrate the timer when it is expiring - * before the next event on the target cpu because - * we cannot reprogram the target cpu hardware and - * we would cause it to fire late. - */ - if (delta.tv64 < 0) { - cpu = smp_processor_id(); - spin_unlock(&new_base->cpu_base->lock); - spin_lock(&base->cpu_base->lock); - timer->base = base; - goto again; - } + raw_spin_unlock(&base->cpu_base->lock); + raw_spin_lock(&new_base->cpu_base->lock); + + if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) { + cpu = this_cpu; + raw_spin_unlock(&new_base->cpu_base->lock); + raw_spin_lock(&base->cpu_base->lock); + timer->base = base; + goto again; } timer->base = new_base; + } else { + if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) { + cpu = this_cpu; + goto again; + } } return new_base; } @@ -278,7 +250,7 @@ lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) { struct hrtimer_clock_base *base = timer->base; - spin_lock_irqsave(&base->cpu_base->lock, *flags); + raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); return base; } @@ -309,6 +281,10 @@ ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) } else { unsigned long rem = do_div(nsec, NSEC_PER_SEC); + /* Make sure nsec fits into long */ + if (unlikely(nsec > KTIME_SEC_MAX)) + return (ktime_t){ .tv64 = KTIME_MAX }; + tmp = ktime_set((long)nsec, rem); } @@ -386,6 +362,11 @@ EXPORT_SYMBOL_GPL(ktime_add_safe); static struct debug_obj_descr hrtimer_debug_descr; +static void *hrtimer_debug_hint(void *addr) +{ + return ((struct hrtimer *) addr)->function; +} + /* * fixup_init is called when: * - an active object is initialized @@ -445,6 +426,7 @@ static int hrtimer_fixup_free(void *addr, enum debug_obj_state state) static struct debug_obj_descr hrtimer_debug_descr = { .name = "hrtimer", + .debug_hint = hrtimer_debug_hint, .fixup_init = hrtimer_fixup_init, .fixup_activate = hrtimer_fixup_activate, .fixup_free = hrtimer_fixup_free, @@ -479,6 +461,7 @@ void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, debug_object_init_on_stack(timer, &hrtimer_debug_descr); __hrtimer_init(timer, clock_id, mode); } +EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); void destroy_hrtimer_on_stack(struct hrtimer *timer) { @@ -491,6 +474,26 @@ static inline void debug_hrtimer_activate(struct hrtimer *timer) { } static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } #endif +static inline void +debug_init(struct hrtimer *timer, clockid_t clockid, + enum hrtimer_mode mode) +{ + debug_hrtimer_init(timer); + trace_hrtimer_init(timer, clockid, mode); +} + +static inline void debug_activate(struct hrtimer *timer) +{ + debug_hrtimer_activate(timer); + trace_hrtimer_start(timer); +} + +static inline void debug_deactivate(struct hrtimer *timer) +{ + debug_hrtimer_deactivate(timer); + trace_hrtimer_cancel(timer); +} + /* High resolution timer related functions */ #ifdef CONFIG_HIGH_RES_TIMERS @@ -528,7 +531,7 @@ static inline int hrtimer_is_hres_enabled(void) */ static inline int hrtimer_hres_active(void) { - return __get_cpu_var(hrtimer_bases).hres_active; + return __this_cpu_read(hrtimer_bases.hres_active); } /* @@ -536,20 +539,24 @@ static inline int hrtimer_hres_active(void) * next event * Called with interrupts disabled and base->lock held */ -static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base) +static void +hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) { int i; struct hrtimer_clock_base *base = cpu_base->clock_base; - ktime_t expires; + ktime_t expires, expires_next; - cpu_base->expires_next.tv64 = KTIME_MAX; + expires_next.tv64 = KTIME_MAX; for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { struct hrtimer *timer; + struct timerqueue_node *next; - if (!base->first) + next = timerqueue_getnext(&base->active); + if (!next) continue; - timer = rb_entry(base->first, struct hrtimer, node); + timer = container_of(next, struct hrtimer, node); + expires = ktime_sub(hrtimer_get_expires(timer), base->offset); /* * clock_was_set() has changed base->offset so the @@ -558,10 +565,32 @@ static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base) */ if (expires.tv64 < 0) expires.tv64 = 0; - if (expires.tv64 < cpu_base->expires_next.tv64) - cpu_base->expires_next = expires; + if (expires.tv64 < expires_next.tv64) + expires_next = expires; } + if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64) + return; + + cpu_base->expires_next.tv64 = expires_next.tv64; + + /* + * If a hang was detected in the last timer interrupt then we + * leave the hang delay active in the hardware. We want the + * system to make progress. That also prevents the following + * scenario: + * T1 expires 50ms from now + * T2 expires 5s from now + * + * T1 is removed, so this code is called and would reprogram + * the hardware to 5s from now. Any hrtimer_start after that + * will not reprogram the hardware due to hang_detected being + * set. So we'd effectivly block all timers until the T2 event + * fires. + */ + if (cpu_base->hang_detected) + return; + if (cpu_base->expires_next.tv64 != KTIME_MAX) tick_program_event(cpu_base->expires_next, 1); } @@ -578,7 +607,7 @@ static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base) static int hrtimer_reprogram(struct hrtimer *timer, struct hrtimer_clock_base *base) { - ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next; + struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); int res; @@ -603,7 +632,16 @@ static int hrtimer_reprogram(struct hrtimer *timer, if (expires.tv64 < 0) return -ETIME; - if (expires.tv64 >= expires_next->tv64) + if (expires.tv64 >= cpu_base->expires_next.tv64) + return 0; + + /* + * If a hang was detected in the last timer interrupt then we + * do not schedule a timer which is earlier than the expiry + * which we enforced in the hang detection. We want the system + * to make progress. + */ + if (cpu_base->hang_detected) return 0; /* @@ -611,72 +649,10 @@ static int hrtimer_reprogram(struct hrtimer *timer, */ res = tick_program_event(expires, 0); if (!IS_ERR_VALUE(res)) - *expires_next = expires; + cpu_base->expires_next = expires; return res; } - -/* - * Retrigger next event is called after clock was set - * - * Called with interrupts disabled via on_each_cpu() - */ -static void retrigger_next_event(void *arg) -{ - struct hrtimer_cpu_base *base; - struct timespec realtime_offset; - unsigned long seq; - - if (!hrtimer_hres_active()) - return; - - do { - seq = read_seqbegin(&xtime_lock); - set_normalized_timespec(&realtime_offset, - -wall_to_monotonic.tv_sec, - -wall_to_monotonic.tv_nsec); - } while (read_seqretry(&xtime_lock, seq)); - - base = &__get_cpu_var(hrtimer_bases); - - /* Adjust CLOCK_REALTIME offset */ - spin_lock(&base->lock); - base->clock_base[CLOCK_REALTIME].offset = - timespec_to_ktime(realtime_offset); - - hrtimer_force_reprogram(base); - spin_unlock(&base->lock); -} - -/* - * Clock realtime was set - * - * Change the offset of the realtime clock vs. the monotonic - * clock. - * - * We might have to reprogram the high resolution timer interrupt. On - * SMP we call the architecture specific code to retrigger _all_ high - * resolution timer interrupts. On UP we just disable interrupts and - * call the high resolution interrupt code. - */ -void clock_was_set(void) -{ - /* Retrigger the CPU local events everywhere */ - on_each_cpu(retrigger_next_event, NULL, 1); -} - -/* - * During resume we might have to reprogram the high resolution timer - * interrupt (on the local CPU): - */ -void hres_timers_resume(void) -{ - WARN_ONCE(!irqs_disabled(), - KERN_INFO "hres_timers_resume() called with IRQs enabled!"); - - retrigger_next_event(NULL); -} - /* * Initialize the high resolution related parts of cpu_base */ @@ -687,35 +663,42 @@ static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) } /* - * Initialize the high resolution related parts of a hrtimer + * When High resolution timers are active, try to reprogram. Note, that in case + * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry + * check happens. The timer gets enqueued into the rbtree. The reprogramming + * and expiry check is done in the hrtimer_interrupt or in the softirq. */ -static inline void hrtimer_init_timer_hres(struct hrtimer *timer) +static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, + struct hrtimer_clock_base *base) { + return base->cpu_base->hres_active && hrtimer_reprogram(timer, base); } +static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) +{ + ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; + ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; + ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; + + return ktime_get_update_offsets(offs_real, offs_boot, offs_tai); +} /* - * When High resolution timers are active, try to reprogram. Note, that in case - * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry - * check happens. The timer gets enqueued into the rbtree. The reprogramming - * and expiry check is done in the hrtimer_interrupt or in the softirq. + * Retrigger next event is called after clock was set + * + * Called with interrupts disabled via on_each_cpu() */ -static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, - struct hrtimer_clock_base *base, - int wakeup) +static void retrigger_next_event(void *arg) { - if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) { - if (wakeup) { - spin_unlock(&base->cpu_base->lock); - raise_softirq_irqoff(HRTIMER_SOFTIRQ); - spin_lock(&base->cpu_base->lock); - } else - __raise_softirq_irqoff(HRTIMER_SOFTIRQ); + struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases); - return 1; - } + if (!hrtimer_hres_active()) + return; - return 0; + raw_spin_lock(&base->lock); + hrtimer_update_base(base); + hrtimer_force_reprogram(base, 0); + raw_spin_unlock(&base->lock); } /* @@ -723,7 +706,7 @@ static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, */ static int hrtimer_switch_to_hres(void) { - int cpu = smp_processor_id(); + int i, cpu = smp_processor_id(); struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu); unsigned long flags; @@ -739,47 +722,113 @@ static int hrtimer_switch_to_hres(void) return 0; } base->hres_active = 1; - base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES; - base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES; + for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) + base->clock_base[i].resolution = KTIME_HIGH_RES; tick_setup_sched_timer(); - /* "Retrigger" the interrupt to get things going */ retrigger_next_event(NULL); local_irq_restore(flags); - printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n", - smp_processor_id()); return 1; } +static void clock_was_set_work(struct work_struct *work) +{ + clock_was_set(); +} + +static DECLARE_WORK(hrtimer_work, clock_was_set_work); + +/* + * Called from timekeeping and resume code to reprogramm the hrtimer + * interrupt device on all cpus. + */ +void clock_was_set_delayed(void) +{ + schedule_work(&hrtimer_work); +} + #else static inline int hrtimer_hres_active(void) { return 0; } static inline int hrtimer_is_hres_enabled(void) { return 0; } static inline int hrtimer_switch_to_hres(void) { return 0; } -static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { } +static inline void +hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, - struct hrtimer_clock_base *base, - int wakeup) + struct hrtimer_clock_base *base) { return 0; } static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } -static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { } +static inline void retrigger_next_event(void *arg) { } #endif /* CONFIG_HIGH_RES_TIMERS */ -#ifdef CONFIG_TIMER_STATS -void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr) +/* + * Clock realtime was set + * + * Change the offset of the realtime clock vs. the monotonic + * clock. + * + * We might have to reprogram the high resolution timer interrupt. On + * SMP we call the architecture specific code to retrigger _all_ high + * resolution timer interrupts. On UP we just disable interrupts and + * call the high resolution interrupt code. + */ +void clock_was_set(void) { +#ifdef CONFIG_HIGH_RES_TIMERS + /* Retrigger the CPU local events everywhere */ + on_each_cpu(retrigger_next_event, NULL, 1); +#endif + timerfd_clock_was_set(); +} + +/* + * During resume we might have to reprogram the high resolution timer + * interrupt on all online CPUs. However, all other CPUs will be + * stopped with IRQs interrupts disabled so the clock_was_set() call + * must be deferred. + */ +void hrtimers_resume(void) +{ + WARN_ONCE(!irqs_disabled(), + KERN_INFO "hrtimers_resume() called with IRQs enabled!"); + + /* Retrigger on the local CPU */ + retrigger_next_event(NULL); + /* And schedule a retrigger for all others */ + clock_was_set_delayed(); +} + +static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer) +{ +#ifdef CONFIG_TIMER_STATS if (timer->start_site) return; - - timer->start_site = addr; + timer->start_site = __builtin_return_address(0); memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); timer->start_pid = current->pid; +#endif } + +static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer) +{ +#ifdef CONFIG_TIMER_STATS + timer->start_site = NULL; #endif +} + +static inline void timer_stats_account_hrtimer(struct hrtimer *timer) +{ +#ifdef CONFIG_TIMER_STATS + if (likely(!timer_stats_active)) + return; + timer_stats_update_stats(timer, timer->start_pid, timer->start_site, + timer->function, timer->start_comm, 0); +#endif +} /* * Counterpart to lock_hrtimer_base above: @@ -787,7 +836,7 @@ void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr) static inline void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) { - spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); + raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); } /** @@ -842,48 +891,18 @@ EXPORT_SYMBOL_GPL(hrtimer_forward); static int enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) { - struct rb_node **link = &base->active.rb_node; - struct rb_node *parent = NULL; - struct hrtimer *entry; - int leftmost = 1; + debug_activate(timer); - debug_hrtimer_activate(timer); - - /* - * Find the right place in the rbtree: - */ - while (*link) { - parent = *link; - entry = rb_entry(parent, struct hrtimer, node); - /* - * We dont care about collisions. Nodes with - * the same expiry time stay together. - */ - if (hrtimer_get_expires_tv64(timer) < - hrtimer_get_expires_tv64(entry)) { - link = &(*link)->rb_left; - } else { - link = &(*link)->rb_right; - leftmost = 0; - } - } - - /* - * Insert the timer to the rbtree and check whether it - * replaces the first pending timer - */ - if (leftmost) - base->first = &timer->node; + timerqueue_add(&base->active, &timer->node); + base->cpu_base->active_bases |= 1 << base->index; - rb_link_node(&timer->node, parent, link); - rb_insert_color(&timer->node, &base->active); /* * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the * state of a possibly running callback. */ timer->state |= HRTIMER_STATE_ENQUEUED; - return leftmost; + return (&timer->node == base->active.next); } /* @@ -900,19 +919,28 @@ static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, unsigned long newstate, int reprogram) { - if (timer->state & HRTIMER_STATE_ENQUEUED) { - /* - * Remove the timer from the rbtree and replace the - * first entry pointer if necessary. - */ - if (base->first == &timer->node) { - base->first = rb_next(&timer->node); - /* Reprogram the clock event device. if enabled */ - if (reprogram && hrtimer_hres_active()) - hrtimer_force_reprogram(base->cpu_base); + struct timerqueue_node *next_timer; + if (!(timer->state & HRTIMER_STATE_ENQUEUED)) + goto out; + + next_timer = timerqueue_getnext(&base->active); + timerqueue_del(&base->active, &timer->node); + if (&timer->node == next_timer) { +#ifdef CONFIG_HIGH_RES_TIMERS + /* Reprogram the clock event device. if enabled */ + if (reprogram && hrtimer_hres_active()) { + ktime_t expires; + + expires = ktime_sub(hrtimer_get_expires(timer), + base->offset); + if (base->cpu_base->expires_next.tv64 == expires.tv64) + hrtimer_force_reprogram(base->cpu_base, 1); } - rb_erase(&timer->node, &base->active); +#endif } + if (!timerqueue_getnext(&base->active)) + base->cpu_base->active_bases &= ~(1 << base->index); +out: timer->state = newstate; } @@ -923,6 +951,7 @@ static inline int remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) { if (hrtimer_is_queued(timer)) { + unsigned long state; int reprogram; /* @@ -933,11 +962,16 @@ remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) * reprogramming happens in the interrupt handler. This is a * rare case and less expensive than a smp call. */ - debug_hrtimer_deactivate(timer); + debug_deactivate(timer); timer_stats_hrtimer_clear_start_info(timer); reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); - __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, - reprogram); + /* + * We must preserve the CALLBACK state flag here, + * otherwise we could move the timer base in + * switch_hrtimer_base. + */ + state = timer->state & HRTIMER_STATE_CALLBACK; + __remove_hrtimer(timer, base, state, reprogram); return 1; } return 0; @@ -956,11 +990,8 @@ int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, /* Remove an active timer from the queue: */ ret = remove_hrtimer(timer, base); - /* Switch the timer base, if necessary: */ - new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); - if (mode & HRTIMER_MODE_REL) { - tim = ktime_add_safe(tim, new_base->get_time()); + tim = ktime_add_safe(tim, base->get_time()); /* * CONFIG_TIME_LOW_RES is a temporary way for architectures * to signal that they simply return xtime in @@ -975,6 +1006,9 @@ int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, hrtimer_set_expires_range_ns(timer, tim, delta_ns); + /* Switch the timer base, if necessary: */ + new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); + timer_stats_hrtimer_set_start_info(timer); leftmost = enqueue_hrtimer(timer, new_base); @@ -985,20 +1019,35 @@ int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, * * XXX send_remote_softirq() ? */ - if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)) - hrtimer_enqueue_reprogram(timer, new_base, wakeup); + if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases) + && hrtimer_enqueue_reprogram(timer, new_base)) { + if (wakeup) { + /* + * We need to drop cpu_base->lock to avoid a + * lock ordering issue vs. rq->lock. + */ + raw_spin_unlock(&new_base->cpu_base->lock); + raise_softirq_irqoff(HRTIMER_SOFTIRQ); + local_irq_restore(flags); + return ret; + } else { + __raise_softirq_irqoff(HRTIMER_SOFTIRQ); + } + } unlock_hrtimer_base(timer, &flags); return ret; } +EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns); /** * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU * @timer: the timer to be added * @tim: expiry time * @delta_ns: "slack" range for the timer - * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) + * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or + * relative (HRTIMER_MODE_REL) * * Returns: * 0 on success @@ -1015,7 +1064,8 @@ EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); * hrtimer_start - (re)start an hrtimer on the current CPU * @timer: the timer to be added * @tim: expiry time - * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) + * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or + * relative (HRTIMER_MODE_REL) * * Returns: * 0 on success @@ -1083,11 +1133,10 @@ EXPORT_SYMBOL_GPL(hrtimer_cancel); */ ktime_t hrtimer_get_remaining(const struct hrtimer *timer) { - struct hrtimer_clock_base *base; unsigned long flags; ktime_t rem; - base = lock_hrtimer_base(timer, &flags); + lock_hrtimer_base(timer, &flags); rem = hrtimer_expires_remaining(timer); unlock_hrtimer_base(timer, &flags); @@ -1095,7 +1144,7 @@ ktime_t hrtimer_get_remaining(const struct hrtimer *timer) } EXPORT_SYMBOL_GPL(hrtimer_get_remaining); -#ifdef CONFIG_NO_HZ +#ifdef CONFIG_NO_HZ_COMMON /** * hrtimer_get_next_event - get the time until next expiry event * @@ -1110,16 +1159,18 @@ ktime_t hrtimer_get_next_event(void) unsigned long flags; int i; - spin_lock_irqsave(&cpu_base->lock, flags); + raw_spin_lock_irqsave(&cpu_base->lock, flags); if (!hrtimer_hres_active()) { for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { struct hrtimer *timer; + struct timerqueue_node *next; - if (!base->first) + next = timerqueue_getnext(&base->active); + if (!next) continue; - timer = rb_entry(base->first, struct hrtimer, node); + timer = container_of(next, struct hrtimer, node); delta.tv64 = hrtimer_get_expires_tv64(timer); delta = ktime_sub(delta, base->get_time()); if (delta.tv64 < mindelta.tv64) @@ -1127,7 +1178,7 @@ ktime_t hrtimer_get_next_event(void) } } - spin_unlock_irqrestore(&cpu_base->lock, flags); + raw_spin_unlock_irqrestore(&cpu_base->lock, flags); if (mindelta.tv64 < 0) mindelta.tv64 = 0; @@ -1139,6 +1190,7 @@ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, enum hrtimer_mode mode) { struct hrtimer_cpu_base *cpu_base; + int base; memset(timer, 0, sizeof(struct hrtimer)); @@ -1147,9 +1199,9 @@ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) clock_id = CLOCK_MONOTONIC; - timer->base = &cpu_base->clock_base[clock_id]; - INIT_LIST_HEAD(&timer->cb_entry); - hrtimer_init_timer_hres(timer); + base = hrtimer_clockid_to_base(clock_id); + timer->base = &cpu_base->clock_base[base]; + timerqueue_init(&timer->node); #ifdef CONFIG_TIMER_STATS timer->start_site = NULL; @@ -1167,7 +1219,7 @@ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, enum hrtimer_mode mode) { - debug_hrtimer_init(timer); + debug_init(timer, clock_id, mode); __hrtimer_init(timer, clock_id, mode); } EXPORT_SYMBOL_GPL(hrtimer_init); @@ -1183,15 +1235,16 @@ EXPORT_SYMBOL_GPL(hrtimer_init); int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) { struct hrtimer_cpu_base *cpu_base; + int base = hrtimer_clockid_to_base(which_clock); cpu_base = &__raw_get_cpu_var(hrtimer_bases); - *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution); + *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution); return 0; } EXPORT_SYMBOL_GPL(hrtimer_get_res); -static void __run_hrtimer(struct hrtimer *timer) +static void __run_hrtimer(struct hrtimer *timer, ktime_t *now) { struct hrtimer_clock_base *base = timer->base; struct hrtimer_cpu_base *cpu_base = base->cpu_base; @@ -1200,7 +1253,7 @@ static void __run_hrtimer(struct hrtimer *timer) WARN_ON(!irqs_disabled()); - debug_hrtimer_deactivate(timer); + debug_deactivate(timer); __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); timer_stats_account_hrtimer(timer); fn = timer->function; @@ -1210,9 +1263,11 @@ static void __run_hrtimer(struct hrtimer *timer) * they get migrated to another cpu, therefore its safe to unlock * the timer base. */ - spin_unlock(&cpu_base->lock); + raw_spin_unlock(&cpu_base->lock); + trace_hrtimer_expire_entry(timer, now); restart = fn(timer); - spin_lock(&cpu_base->lock); + trace_hrtimer_expire_exit(timer); + raw_spin_lock(&cpu_base->lock); /* * Note: We clear the CALLBACK bit after enqueue_hrtimer and @@ -1223,34 +1278,14 @@ static void __run_hrtimer(struct hrtimer *timer) BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); enqueue_hrtimer(timer, base); } + + WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK)); + timer->state &= ~HRTIMER_STATE_CALLBACK; } #ifdef CONFIG_HIGH_RES_TIMERS -static int force_clock_reprogram; - -/* - * After 5 iteration's attempts, we consider that hrtimer_interrupt() - * is hanging, which could happen with something that slows the interrupt - * such as the tracing. Then we force the clock reprogramming for each future - * hrtimer interrupts to avoid infinite loops and use the min_delta_ns - * threshold that we will overwrite. - * The next tick event will be scheduled to 3 times we currently spend on - * hrtimer_interrupt(). This gives a good compromise, the cpus will spend - * 1/4 of their time to process the hrtimer interrupts. This is enough to - * let it running without serious starvation. - */ - -static inline void -hrtimer_interrupt_hanging(struct clock_event_device *dev, - ktime_t try_time) -{ - force_clock_reprogram = 1; - dev->min_delta_ns = (unsigned long)try_time.tv64 * 3; - printk(KERN_WARNING "hrtimer: interrupt too slow, " - "forcing clock min delta to %lu ns\n", dev->min_delta_ns); -} /* * High resolution timer interrupt * Called with interrupts disabled @@ -1258,38 +1293,41 @@ hrtimer_interrupt_hanging(struct clock_event_device *dev, void hrtimer_interrupt(struct clock_event_device *dev) { struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); - struct hrtimer_clock_base *base; - ktime_t expires_next, now; - int nr_retries = 0; - int i; + ktime_t expires_next, now, entry_time, delta; + int i, retries = 0; BUG_ON(!cpu_base->hres_active); cpu_base->nr_events++; dev->next_event.tv64 = KTIME_MAX; - retry: - /* 5 retries is enough to notice a hang */ - if (!(++nr_retries % 5)) - hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now)); - - now = ktime_get(); - + raw_spin_lock(&cpu_base->lock); + entry_time = now = hrtimer_update_base(cpu_base); +retry: expires_next.tv64 = KTIME_MAX; - - base = cpu_base->clock_base; + /* + * We set expires_next to KTIME_MAX here with cpu_base->lock + * held to prevent that a timer is enqueued in our queue via + * the migration code. This does not affect enqueueing of + * timers which run their callback and need to be requeued on + * this CPU. + */ + cpu_base->expires_next.tv64 = KTIME_MAX; for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { + struct hrtimer_clock_base *base; + struct timerqueue_node *node; ktime_t basenow; - struct rb_node *node; - spin_lock(&cpu_base->lock); + if (!(cpu_base->active_bases & (1 << i))) + continue; + base = cpu_base->clock_base + i; basenow = ktime_add(now, base->offset); - while ((node = base->first)) { + while ((node = timerqueue_getnext(&base->active))) { struct hrtimer *timer; - timer = rb_entry(node, struct hrtimer, node); + timer = container_of(node, struct hrtimer, node); /* * The immediate goal for using the softexpires is @@ -1309,24 +1347,72 @@ void hrtimer_interrupt(struct clock_event_device *dev) expires = ktime_sub(hrtimer_get_expires(timer), base->offset); + if (expires.tv64 < 0) + expires.tv64 = KTIME_MAX; if (expires.tv64 < expires_next.tv64) expires_next = expires; break; } - __run_hrtimer(timer); + __run_hrtimer(timer, &basenow); } - spin_unlock(&cpu_base->lock); - base++; } + /* + * Store the new expiry value so the migration code can verify + * against it. + */ cpu_base->expires_next = expires_next; + raw_spin_unlock(&cpu_base->lock); /* Reprogramming necessary ? */ - if (expires_next.tv64 != KTIME_MAX) { - if (tick_program_event(expires_next, force_clock_reprogram)) - goto retry; + if (expires_next.tv64 == KTIME_MAX || + !tick_program_event(expires_next, 0)) { + cpu_base->hang_detected = 0; + return; } + + /* + * The next timer was already expired due to: + * - tracing + * - long lasting callbacks + * - being scheduled away when running in a VM + * + * We need to prevent that we loop forever in the hrtimer + * interrupt routine. We give it 3 attempts to avoid + * overreacting on some spurious event. + * + * Acquire base lock for updating the offsets and retrieving + * the current time. + */ + raw_spin_lock(&cpu_base->lock); + now = hrtimer_update_base(cpu_base); + cpu_base->nr_retries++; + if (++retries < 3) + goto retry; + /* + * Give the system a chance to do something else than looping + * here. We stored the entry time, so we know exactly how long + * we spent here. We schedule the next event this amount of + * time away. + */ + cpu_base->nr_hangs++; + cpu_base->hang_detected = 1; + raw_spin_unlock(&cpu_base->lock); + delta = ktime_sub(now, entry_time); + if (delta.tv64 > cpu_base->max_hang_time.tv64) + cpu_base->max_hang_time = delta; + /* + * Limit it to a sensible value as we enforce a longer + * delay. Give the CPU at least 100ms to catch up. + */ + if (delta.tv64 > 100 * NSEC_PER_MSEC) + expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); + else + expires_next = ktime_add(now, delta); + tick_program_event(expires_next, 1); + printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", + ktime_to_ns(delta)); } /* @@ -1403,7 +1489,7 @@ void hrtimer_run_pending(void) */ void hrtimer_run_queues(void) { - struct rb_node *node; + struct timerqueue_node *node; struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); struct hrtimer_clock_base *base; int index, gettime = 1; @@ -1413,8 +1499,7 @@ void hrtimer_run_queues(void) for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) { base = &cpu_base->clock_base[index]; - - if (!base->first) + if (!timerqueue_getnext(&base->active)) continue; if (gettime) { @@ -1422,19 +1507,19 @@ void hrtimer_run_queues(void) gettime = 0; } - spin_lock(&cpu_base->lock); + raw_spin_lock(&cpu_base->lock); - while ((node = base->first)) { + while ((node = timerqueue_getnext(&base->active))) { struct hrtimer *timer; - timer = rb_entry(node, struct hrtimer, node); + timer = container_of(node, struct hrtimer, node); if (base->softirq_time.tv64 <= hrtimer_get_expires_tv64(timer)) break; - __run_hrtimer(timer); + __run_hrtimer(timer, &base->softirq_time); } - spin_unlock(&cpu_base->lock); + raw_spin_unlock(&cpu_base->lock); } } @@ -1459,6 +1544,7 @@ void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) sl->timer.function = hrtimer_wakeup; sl->task = task; } +EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) { @@ -1471,7 +1557,7 @@ static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mod t->task = NULL; if (likely(t->task)) - schedule(); + freezable_schedule(); hrtimer_cancel(&t->timer); mode = HRTIMER_MODE_ABS; @@ -1505,7 +1591,7 @@ long __sched hrtimer_nanosleep_restart(struct restart_block *restart) struct timespec __user *rmtp; int ret = 0; - hrtimer_init_on_stack(&t.timer, restart->nanosleep.index, + hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, HRTIMER_MODE_ABS); hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); @@ -1535,7 +1621,7 @@ long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, unsigned long slack; slack = current->timer_slack_ns; - if (rt_task(current)) + if (dl_task(current) || rt_task(current)) slack = 0; hrtimer_init_on_stack(&t.timer, clockid, mode); @@ -1557,7 +1643,7 @@ long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, restart = ¤t_thread_info()->restart_block; restart->fn = hrtimer_nanosleep_restart; - restart->nanosleep.index = t.timer.base->index; + restart->nanosleep.clockid = t.timer.base->clockid; restart->nanosleep.rmtp = rmtp; restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); @@ -1584,15 +1670,15 @@ SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, /* * Functions related to boot-time initialization: */ -static void __cpuinit init_hrtimers_cpu(int cpu) +static void init_hrtimers_cpu(int cpu) { struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); int i; - spin_lock_init(&cpu_base->lock); - - for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) + for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { cpu_base->clock_base[i].cpu_base = cpu_base; + timerqueue_init_head(&cpu_base->clock_base[i].active); + } hrtimer_init_hres(cpu_base); } @@ -1603,12 +1689,12 @@ static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, struct hrtimer_clock_base *new_base) { struct hrtimer *timer; - struct rb_node *node; + struct timerqueue_node *node; - while ((node = rb_first(&old_base->active))) { - timer = rb_entry(node, struct hrtimer, node); + while ((node = timerqueue_getnext(&old_base->active))) { + timer = container_of(node, struct hrtimer, node); BUG_ON(hrtimer_callback_running(timer)); - debug_hrtimer_deactivate(timer); + debug_deactivate(timer); /* * Mark it as STATE_MIGRATE not INACTIVE otherwise the @@ -1647,16 +1733,16 @@ static void migrate_hrtimers(int scpu) * The caller is globally serialized and nobody else * takes two locks at once, deadlock is not possible. */ - spin_lock(&new_base->lock); - spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); + raw_spin_lock(&new_base->lock); + raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { migrate_hrtimer_list(&old_base->clock_base[i], &new_base->clock_base[i]); } - spin_unlock(&old_base->lock); - spin_unlock(&new_base->lock); + raw_spin_unlock(&old_base->lock); + raw_spin_unlock(&new_base->lock); /* Check, if we got expired work to do */ __hrtimer_peek_ahead_timers(); @@ -1665,7 +1751,7 @@ static void migrate_hrtimers(int scpu) #endif /* CONFIG_HOTPLUG_CPU */ -static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self, +static int hrtimer_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { int scpu = (long)hcpu; @@ -1698,7 +1784,7 @@ static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self, return NOTIFY_OK; } -static struct notifier_block __cpuinitdata hrtimers_nb = { +static struct notifier_block hrtimers_nb = { .notifier_call = hrtimer_cpu_notify, }; @@ -1713,35 +1799,15 @@ void __init hrtimers_init(void) } /** - * schedule_hrtimeout_range - sleep until timeout + * schedule_hrtimeout_range_clock - sleep until timeout * @expires: timeout value (ktime_t) * @delta: slack in expires timeout (ktime_t) * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL - * - * Make the current task sleep until the given expiry time has - * elapsed. The routine will return immediately unless - * the current task state has been set (see set_current_state()). - * - * The @delta argument gives the kernel the freedom to schedule the - * actual wakeup to a time that is both power and performance friendly. - * The kernel give the normal best effort behavior for "@expires+@delta", - * but may decide to fire the timer earlier, but no earlier than @expires. - * - * You can set the task state as follows - - * - * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to - * pass before the routine returns. - * - * %TASK_INTERRUPTIBLE - the routine may return early if a signal is - * delivered to the current task. - * - * The current task state is guaranteed to be TASK_RUNNING when this - * routine returns. - * - * Returns 0 when the timer has expired otherwise -EINTR + * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME */ -int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, - const enum hrtimer_mode mode) +int __sched +schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta, + const enum hrtimer_mode mode, int clock) { struct hrtimer_sleeper t; @@ -1755,7 +1821,7 @@ int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, } /* - * A NULL parameter means "inifinte" + * A NULL parameter means "infinite" */ if (!expires) { schedule(); @@ -1763,7 +1829,7 @@ int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, return -EINTR; } - hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode); + hrtimer_init_on_stack(&t.timer, clock, mode); hrtimer_set_expires_range_ns(&t.timer, *expires, delta); hrtimer_init_sleeper(&t, current); @@ -1782,6 +1848,41 @@ int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, return !t.task ? 0 : -EINTR; } + +/** + * schedule_hrtimeout_range - sleep until timeout + * @expires: timeout value (ktime_t) + * @delta: slack in expires timeout (ktime_t) + * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL + * + * Make the current task sleep until the given expiry time has + * elapsed. The routine will return immediately unless + * the current task state has been set (see set_current_state()). + * + * The @delta argument gives the kernel the freedom to schedule the + * actual wakeup to a time that is both power and performance friendly. + * The kernel give the normal best effort behavior for "@expires+@delta", + * but may decide to fire the timer earlier, but no earlier than @expires. + * + * You can set the task state as follows - + * + * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to + * pass before the routine returns. + * + * %TASK_INTERRUPTIBLE - the routine may return early if a signal is + * delivered to the current task. + * + * The current task state is guaranteed to be TASK_RUNNING when this + * routine returns. + * + * Returns 0 when the timer has expired otherwise -EINTR + */ +int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, + const enum hrtimer_mode mode) +{ + return schedule_hrtimeout_range_clock(expires, delta, mode, + CLOCK_MONOTONIC); +} EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); /** |
