diff options
Diffstat (limited to 'kernel/cpuset.c')
| -rw-r--r-- | kernel/cpuset.c | 1858 | 
1 files changed, 940 insertions, 918 deletions
diff --git a/kernel/cpuset.c b/kernel/cpuset.c index 4349935c2ad..116a4164720 100644 --- a/kernel/cpuset.c +++ b/kernel/cpuset.c @@ -37,7 +37,7 @@  #include <linux/mempolicy.h>  #include <linux/mm.h>  #include <linux/memory.h> -#include <linux/module.h> +#include <linux/export.h>  #include <linux/mount.h>  #include <linux/namei.h>  #include <linux/pagemap.h> @@ -55,29 +55,13 @@  #include <linux/sort.h>  #include <asm/uaccess.h> -#include <asm/atomic.h> +#include <linux/atomic.h>  #include <linux/mutex.h>  #include <linux/workqueue.h>  #include <linux/cgroup.h> +#include <linux/wait.h> -/* - * Workqueue for cpuset related tasks. - * - * Using kevent workqueue may cause deadlock when memory_migrate - * is set. So we create a separate workqueue thread for cpuset. - */ -static struct workqueue_struct *cpuset_wq; - -/* - * Tracks how many cpusets are currently defined in system. - * When there is only one cpuset (the root cpuset) we can - * short circuit some hooks. - */ -int number_of_cpusets __read_mostly; - -/* Forward declare cgroup structures */ -struct cgroup_subsys cpuset_subsys; -struct cpuset; +struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;  /* See "Frequency meter" comments, below. */ @@ -95,36 +79,65 @@ struct cpuset {  	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */  	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */ -	struct cpuset *parent;		/* my parent */ +	/* +	 * This is old Memory Nodes tasks took on. +	 * +	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. +	 * - A new cpuset's old_mems_allowed is initialized when some +	 *   task is moved into it. +	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change +	 *   cpuset.mems_allowed and have tasks' nodemask updated, and +	 *   then old_mems_allowed is updated to mems_allowed. +	 */ +	nodemask_t old_mems_allowed;  	struct fmeter fmeter;		/* memory_pressure filter */ +	/* +	 * Tasks are being attached to this cpuset.  Used to prevent +	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). +	 */ +	int attach_in_progress; +  	/* partition number for rebuild_sched_domains() */  	int pn;  	/* for custom sched domain */  	int relax_domain_level; - -	/* used for walking a cpuset hierarchy */ -	struct list_head stack_list;  }; -/* Retrieve the cpuset for a cgroup */ -static inline struct cpuset *cgroup_cs(struct cgroup *cont) +static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)  { -	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id), -			    struct cpuset, css); +	return css ? container_of(css, struct cpuset, css) : NULL;  }  /* Retrieve the cpuset for a task */  static inline struct cpuset *task_cs(struct task_struct *task)  { -	return container_of(task_subsys_state(task, cpuset_subsys_id), -			    struct cpuset, css); +	return css_cs(task_css(task, cpuset_cgrp_id)); +} + +static inline struct cpuset *parent_cs(struct cpuset *cs) +{ +	return css_cs(cs->css.parent);  } +#ifdef CONFIG_NUMA +static inline bool task_has_mempolicy(struct task_struct *task) +{ +	return task->mempolicy; +} +#else +static inline bool task_has_mempolicy(struct task_struct *task) +{ +	return false; +} +#endif + +  /* bits in struct cpuset flags field */  typedef enum { +	CS_ONLINE,  	CS_CPU_EXCLUSIVE,  	CS_MEM_EXCLUSIVE,  	CS_MEM_HARDWALL, @@ -135,6 +148,11 @@ typedef enum {  } cpuset_flagbits_t;  /* convenient tests for these bits */ +static inline bool is_cpuset_online(const struct cpuset *cs) +{ +	return test_bit(CS_ONLINE, &cs->flags); +} +  static inline int is_cpu_exclusive(const struct cpuset *cs)  {  	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); @@ -171,27 +189,53 @@ static inline int is_spread_slab(const struct cpuset *cs)  }  static struct cpuset top_cpuset = { -	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), +	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | +		  (1 << CS_MEM_EXCLUSIVE)),  }; +/** + * cpuset_for_each_child - traverse online children of a cpuset + * @child_cs: loop cursor pointing to the current child + * @pos_css: used for iteration + * @parent_cs: target cpuset to walk children of + * + * Walk @child_cs through the online children of @parent_cs.  Must be used + * with RCU read locked. + */ +#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\ +	css_for_each_child((pos_css), &(parent_cs)->css)		\ +		if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) + +/** + * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants + * @des_cs: loop cursor pointing to the current descendant + * @pos_css: used for iteration + * @root_cs: target cpuset to walk ancestor of + * + * Walk @des_cs through the online descendants of @root_cs.  Must be used + * with RCU read locked.  The caller may modify @pos_css by calling + * css_rightmost_descendant() to skip subtree.  @root_cs is included in the + * iteration and the first node to be visited. + */ +#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\ +	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\ +		if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) +  /* - * There are two global mutexes guarding cpuset structures.  The first - * is the main control groups cgroup_mutex, accessed via - * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific - * callback_mutex, below. They can nest.  It is ok to first take - * cgroup_mutex, then nest callback_mutex.  We also require taking - * task_lock() when dereferencing a task's cpuset pointer.  See "The - * task_lock() exception", at the end of this comment. - * - * A task must hold both mutexes to modify cpusets.  If a task - * holds cgroup_mutex, then it blocks others wanting that mutex, - * ensuring that it is the only task able to also acquire callback_mutex - * and be able to modify cpusets.  It can perform various checks on - * the cpuset structure first, knowing nothing will change.  It can - * also allocate memory while just holding cgroup_mutex.  While it is - * performing these checks, various callback routines can briefly - * acquire callback_mutex to query cpusets.  Once it is ready to make - * the changes, it takes callback_mutex, blocking everyone else. + * There are two global mutexes guarding cpuset structures - cpuset_mutex + * and callback_mutex.  The latter may nest inside the former.  We also + * require taking task_lock() when dereferencing a task's cpuset pointer. + * See "The task_lock() exception", at the end of this comment. + * + * A task must hold both mutexes to modify cpusets.  If a task holds + * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it + * is the only task able to also acquire callback_mutex and be able to + * modify cpusets.  It can perform various checks on the cpuset structure + * first, knowing nothing will change.  It can also allocate memory while + * just holding cpuset_mutex.  While it is performing these checks, various + * callback routines can briefly acquire callback_mutex to query cpusets. + * Once it is ready to make the changes, it takes callback_mutex, blocking + * everyone else.   *   * Calls to the kernel memory allocator can not be made while holding   * callback_mutex, as that would risk double tripping on callback_mutex @@ -213,18 +257,16 @@ static struct cpuset top_cpuset = {   * guidelines for accessing subsystem state in kernel/cgroup.c   */ +static DEFINE_MUTEX(cpuset_mutex);  static DEFINE_MUTEX(callback_mutex);  /* - * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist - * buffers.  They are statically allocated to prevent using excess stack - * when calling cpuset_print_task_mems_allowed(). + * CPU / memory hotplug is handled asynchronously.   */ -#define CPUSET_NAME_LEN		(128) -#define	CPUSET_NODELIST_LEN	(256) -static char cpuset_name[CPUSET_NAME_LEN]; -static char cpuset_nodelist[CPUSET_NODELIST_LEN]; -static DEFINE_SPINLOCK(cpuset_buffer_lock); +static void cpuset_hotplug_workfn(struct work_struct *work); +static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); + +static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);  /*   * This is ugly, but preserves the userspace API for existing cpuset @@ -255,59 +297,43 @@ static struct file_system_type cpuset_fs_type = {  /*   * Return in pmask the portion of a cpusets's cpus_allowed that   * are online.  If none are online, walk up the cpuset hierarchy - * until we find one that does have some online cpus.  If we get - * all the way to the top and still haven't found any online cpus, - * return cpu_online_map.  Or if passed a NULL cs from an exit'ing - * task, return cpu_online_map. + * until we find one that does have some online cpus.  The top + * cpuset always has some cpus online.   *   * One way or another, we guarantee to return some non-empty subset - * of cpu_online_map. + * of cpu_online_mask.   *   * Call with callback_mutex held.   */ - -static void guarantee_online_cpus(const struct cpuset *cs, -				  struct cpumask *pmask) +static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)  { -	while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask)) -		cs = cs->parent; -	if (cs) -		cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask); -	else -		cpumask_copy(pmask, cpu_online_mask); -	BUG_ON(!cpumask_intersects(pmask, cpu_online_mask)); +	while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask)) +		cs = parent_cs(cs); +	cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);  }  /*   * Return in *pmask the portion of a cpusets's mems_allowed that   * are online, with memory.  If none are online with memory, walk   * up the cpuset hierarchy until we find one that does have some - * online mems.  If we get all the way to the top and still haven't - * found any online mems, return node_states[N_HIGH_MEMORY]. + * online mems.  The top cpuset always has some mems online.   *   * One way or another, we guarantee to return some non-empty subset - * of node_states[N_HIGH_MEMORY]. + * of node_states[N_MEMORY].   *   * Call with callback_mutex held.   */ - -static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask) +static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)  { -	while (cs && !nodes_intersects(cs->mems_allowed, -					node_states[N_HIGH_MEMORY])) -		cs = cs->parent; -	if (cs) -		nodes_and(*pmask, cs->mems_allowed, -					node_states[N_HIGH_MEMORY]); -	else -		*pmask = node_states[N_HIGH_MEMORY]; -	BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY])); +	while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY])) +		cs = parent_cs(cs); +	nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);  }  /*   * update task's spread flag if cpuset's page/slab spread flag is set   * - * Called with callback_mutex/cgroup_mutex held + * Called with callback_mutex/cpuset_mutex held   */  static void cpuset_update_task_spread_flag(struct cpuset *cs,  					struct task_struct *tsk) @@ -327,7 +353,7 @@ static void cpuset_update_task_spread_flag(struct cpuset *cs,   *   * One cpuset is a subset of another if all its allowed CPUs and   * Memory Nodes are a subset of the other, and its exclusive flags - * are only set if the other's are set.  Call holding cgroup_mutex. + * are only set if the other's are set.  Call holding cpuset_mutex.   */  static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) @@ -342,7 +368,7 @@ static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)   * alloc_trial_cpuset - allocate a trial cpuset   * @cs: the cpuset that the trial cpuset duplicates   */ -static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs) +static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)  {  	struct cpuset *trial; @@ -376,7 +402,7 @@ static void free_trial_cpuset(struct cpuset *trial)   * If we replaced the flag and mask values of the current cpuset   * (cur) with those values in the trial cpuset (trial), would   * our various subset and exclusive rules still be valid?  Presumes - * cgroup_mutex held. + * cpuset_mutex held.   *   * 'cur' is the address of an actual, in-use cpuset.  Operations   * such as list traversal that depend on the actual address of the @@ -389,52 +415,66 @@ static void free_trial_cpuset(struct cpuset *trial)   * Return 0 if valid, -errno if not.   */ -static int validate_change(const struct cpuset *cur, const struct cpuset *trial) +static int validate_change(struct cpuset *cur, struct cpuset *trial)  { -	struct cgroup *cont; +	struct cgroup_subsys_state *css;  	struct cpuset *c, *par; +	int ret; + +	rcu_read_lock();  	/* Each of our child cpusets must be a subset of us */ -	list_for_each_entry(cont, &cur->css.cgroup->children, sibling) { -		if (!is_cpuset_subset(cgroup_cs(cont), trial)) -			return -EBUSY; -	} +	ret = -EBUSY; +	cpuset_for_each_child(c, css, cur) +		if (!is_cpuset_subset(c, trial)) +			goto out;  	/* Remaining checks don't apply to root cpuset */ +	ret = 0;  	if (cur == &top_cpuset) -		return 0; +		goto out; -	par = cur->parent; +	par = parent_cs(cur);  	/* We must be a subset of our parent cpuset */ +	ret = -EACCES;  	if (!is_cpuset_subset(trial, par)) -		return -EACCES; +		goto out;  	/*  	 * If either I or some sibling (!= me) is exclusive, we can't  	 * overlap  	 */ -	list_for_each_entry(cont, &par->css.cgroup->children, sibling) { -		c = cgroup_cs(cont); +	ret = -EINVAL; +	cpuset_for_each_child(c, css, par) {  		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&  		    c != cur &&  		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) -			return -EINVAL; +			goto out;  		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&  		    c != cur &&  		    nodes_intersects(trial->mems_allowed, c->mems_allowed)) -			return -EINVAL; +			goto out;  	} -	/* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */ -	if (cgroup_task_count(cur->css.cgroup)) { -		if (cpumask_empty(trial->cpus_allowed) || -		    nodes_empty(trial->mems_allowed)) { -			return -ENOSPC; -		} +	/* +	 * Cpusets with tasks - existing or newly being attached - can't +	 * be changed to have empty cpus_allowed or mems_allowed. +	 */ +	ret = -ENOSPC; +	if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) { +		if (!cpumask_empty(cur->cpus_allowed) && +		    cpumask_empty(trial->cpus_allowed)) +			goto out; +		if (!nodes_empty(cur->mems_allowed) && +		    nodes_empty(trial->mems_allowed)) +			goto out;  	} -	return 0; +	ret = 0; +out: +	rcu_read_unlock(); +	return ret;  }  #ifdef CONFIG_SMP @@ -455,31 +495,27 @@ update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)  	return;  } -static void -update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c) +static void update_domain_attr_tree(struct sched_domain_attr *dattr, +				    struct cpuset *root_cs)  { -	LIST_HEAD(q); +	struct cpuset *cp; +	struct cgroup_subsys_state *pos_css; -	list_add(&c->stack_list, &q); -	while (!list_empty(&q)) { -		struct cpuset *cp; -		struct cgroup *cont; -		struct cpuset *child; - -		cp = list_first_entry(&q, struct cpuset, stack_list); -		list_del(q.next); +	rcu_read_lock(); +	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { +		if (cp == root_cs) +			continue; -		if (cpumask_empty(cp->cpus_allowed)) +		/* skip the whole subtree if @cp doesn't have any CPU */ +		if (cpumask_empty(cp->cpus_allowed)) { +			pos_css = css_rightmost_descendant(pos_css);  			continue; +		}  		if (is_sched_load_balance(cp))  			update_domain_attr(dattr, cp); - -		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { -			child = cgroup_cs(cont); -			list_add_tail(&child->stack_list, &q); -		}  	} +	rcu_read_unlock();  }  /* @@ -488,7 +524,7 @@ update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)   * This function builds a partial partition of the systems CPUs   * A 'partial partition' is a set of non-overlapping subsets whose   * union is a subset of that set. - * The output of this function needs to be passed to kernel/sched.c + * The output of this function needs to be passed to kernel/sched/core.c   * partition_sched_domains() routine, which will rebuild the scheduler's   * load balancing domains (sched domains) as specified by that partial   * partition. @@ -501,7 +537,7 @@ update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)   * domains when operating in the severe memory shortage situations   * that could cause allocation failures below.   * - * Must be called with cgroup_lock held. + * Must be called with cpuset_mutex held.   *   * The three key local variables below are:   *    q  - a linked-list queue of cpuset pointers, used to implement a @@ -517,7 +553,7 @@ update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)   *	   is a subset of one of these domains, while there are as   *	   many such domains as possible, each as small as possible.   * doms  - Conversion of 'csa' to an array of cpumasks, for passing to - *	   the kernel/sched.c routine partition_sched_domains() in a + *	   the kernel/sched/core.c routine partition_sched_domains() in a   *	   convenient format, that can be easily compared to the prior   *	   value to determine what partition elements (sched domains)   *	   were changed (added or removed.) @@ -539,7 +575,6 @@ update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)  static int generate_sched_domains(cpumask_var_t **domains,  			struct sched_domain_attr **attributes)  { -	LIST_HEAD(q);		/* queue of cpusets to be scanned */  	struct cpuset *cp;	/* scans q */  	struct cpuset **csa;	/* array of all cpuset ptrs */  	int csn;		/* how many cpuset ptrs in csa so far */ @@ -548,6 +583,7 @@ static int generate_sched_domains(cpumask_var_t **domains,  	struct sched_domain_attr *dattr;  /* attributes for custom domains */  	int ndoms = 0;		/* number of sched domains in result */  	int nslot;		/* next empty doms[] struct cpumask slot */ +	struct cgroup_subsys_state *pos_css;  	doms = NULL;  	dattr = NULL; @@ -570,38 +606,34 @@ static int generate_sched_domains(cpumask_var_t **domains,  		goto done;  	} -	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL); +	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);  	if (!csa)  		goto done;  	csn = 0; -	list_add(&top_cpuset.stack_list, &q); -	while (!list_empty(&q)) { -		struct cgroup *cont; -		struct cpuset *child;   /* scans child cpusets of cp */ - -		cp = list_first_entry(&q, struct cpuset, stack_list); -		list_del(q.next); - -		if (cpumask_empty(cp->cpus_allowed)) +	rcu_read_lock(); +	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { +		if (cp == &top_cpuset)  			continue; -  		/* -		 * All child cpusets contain a subset of the parent's cpus, so -		 * just skip them, and then we call update_domain_attr_tree() -		 * to calc relax_domain_level of the corresponding sched -		 * domain. +		 * Continue traversing beyond @cp iff @cp has some CPUs and +		 * isn't load balancing.  The former is obvious.  The +		 * latter: All child cpusets contain a subset of the +		 * parent's cpus, so just skip them, and then we call +		 * update_domain_attr_tree() to calc relax_domain_level of +		 * the corresponding sched domain.  		 */ -		if (is_sched_load_balance(cp)) { -			csa[csn++] = cp; +		if (!cpumask_empty(cp->cpus_allowed) && +		    !is_sched_load_balance(cp))  			continue; -		} -		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { -			child = cgroup_cs(cont); -			list_add_tail(&child->stack_list, &q); -		} -  	} +		if (is_sched_load_balance(cp)) +			csa[csn++] = cp; + +		/* skip @cp's subtree */ +		pos_css = css_rightmost_descendant(pos_css); +	} +	rcu_read_unlock();  	for (i = 0; i < csn; i++)  		csa[i]->pn = i; @@ -659,11 +691,8 @@ restart:  		if (nslot == ndoms) {  			static int warnings = 10;  			if (warnings) { -				printk(KERN_WARNING -				 "rebuild_sched_domains confused:" -				  " nslot %d, ndoms %d, csn %d, i %d," -				  " apn %d\n", -				  nslot, ndoms, csn, i, apn); +				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", +					nslot, ndoms, csn, i, apn);  				warnings--;  			}  			continue; @@ -706,155 +735,163 @@ done:  /*   * Rebuild scheduler domains.   * - * Call with neither cgroup_mutex held nor within get_online_cpus(). - * Takes both cgroup_mutex and get_online_cpus(). + * If the flag 'sched_load_balance' of any cpuset with non-empty + * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset + * which has that flag enabled, or if any cpuset with a non-empty + * 'cpus' is removed, then call this routine to rebuild the + * scheduler's dynamic sched domains.   * - * Cannot be directly called from cpuset code handling changes - * to the cpuset pseudo-filesystem, because it cannot be called - * from code that already holds cgroup_mutex. + * Call with cpuset_mutex held.  Takes get_online_cpus().   */ -static void do_rebuild_sched_domains(struct work_struct *unused) +static void rebuild_sched_domains_locked(void)  {  	struct sched_domain_attr *attr;  	cpumask_var_t *doms;  	int ndoms; +	lockdep_assert_held(&cpuset_mutex);  	get_online_cpus(); +	/* +	 * We have raced with CPU hotplug. Don't do anything to avoid +	 * passing doms with offlined cpu to partition_sched_domains(). +	 * Anyways, hotplug work item will rebuild sched domains. +	 */ +	if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask)) +		goto out; +  	/* Generate domain masks and attrs */ -	cgroup_lock();  	ndoms = generate_sched_domains(&doms, &attr); -	cgroup_unlock();  	/* Have scheduler rebuild the domains */  	partition_sched_domains(ndoms, doms, attr); - +out:  	put_online_cpus();  }  #else /* !CONFIG_SMP */ -static void do_rebuild_sched_domains(struct work_struct *unused) +static void rebuild_sched_domains_locked(void)  {  } +#endif /* CONFIG_SMP */ -static int generate_sched_domains(cpumask_var_t **domains, -			struct sched_domain_attr **attributes) +void rebuild_sched_domains(void)  { -	*domains = NULL; -	return 1; +	mutex_lock(&cpuset_mutex); +	rebuild_sched_domains_locked(); +	mutex_unlock(&cpuset_mutex);  } -#endif /* CONFIG_SMP */ - -static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);  /* - * Rebuild scheduler domains, asynchronously via workqueue. + * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus + * @cs: the cpuset in interest   * - * If the flag 'sched_load_balance' of any cpuset with non-empty - * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset - * which has that flag enabled, or if any cpuset with a non-empty - * 'cpus' is removed, then call this routine to rebuild the - * scheduler's dynamic sched domains. - * - * The rebuild_sched_domains() and partition_sched_domains() - * routines must nest cgroup_lock() inside get_online_cpus(), - * but such cpuset changes as these must nest that locking the - * other way, holding cgroup_lock() for much of the code. + * A cpuset's effective cpumask is the cpumask of the nearest ancestor + * with non-empty cpus. We use effective cpumask whenever: + * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask + *   if the cpuset they reside in has no cpus) + * - we want to retrieve task_cs(tsk)'s cpus_allowed.   * - * So in order to avoid an ABBA deadlock, the cpuset code handling - * these user changes delegates the actual sched domain rebuilding - * to a separate workqueue thread, which ends up processing the - * above do_rebuild_sched_domains() function. + * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an + * exception. See comments there.   */ -static void async_rebuild_sched_domains(void) +static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)  { -	queue_work(cpuset_wq, &rebuild_sched_domains_work); +	while (cpumask_empty(cs->cpus_allowed)) +		cs = parent_cs(cs); +	return cs;  }  /* - * Accomplishes the same scheduler domain rebuild as the above - * async_rebuild_sched_domains(), however it directly calls the - * rebuild routine synchronously rather than calling it via an - * asynchronous work thread. + * effective_nodemask_cpuset - return nearest ancestor with non-empty mems + * @cs: the cpuset in interest   * - * This can only be called from code that is not holding - * cgroup_mutex (not nested in a cgroup_lock() call.) - */ -void rebuild_sched_domains(void) -{ -	do_rebuild_sched_domains(NULL); -} - -/** - * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's - * @tsk: task to test - * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner - * - * Call with cgroup_mutex held.  May take callback_mutex during call. - * Called for each task in a cgroup by cgroup_scan_tasks(). - * Return nonzero if this tasks's cpus_allowed mask should be changed (in other - * words, if its mask is not equal to its cpuset's mask). + * A cpuset's effective nodemask is the nodemask of the nearest ancestor + * with non-empty memss. We use effective nodemask whenever: + * - we update tasks' mems_allowed. (they take on the ancestor's nodemask + *   if the cpuset they reside in has no mems) + * - we want to retrieve task_cs(tsk)'s mems_allowed. + * + * Called with cpuset_mutex held.   */ -static int cpuset_test_cpumask(struct task_struct *tsk, -			       struct cgroup_scanner *scan) +static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)  { -	return !cpumask_equal(&tsk->cpus_allowed, -			(cgroup_cs(scan->cg))->cpus_allowed); +	while (nodes_empty(cs->mems_allowed)) +		cs = parent_cs(cs); +	return cs;  }  /** - * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's - * @tsk: task to test - * @scan: struct cgroup_scanner containing the cgroup of the task - * - * Called by cgroup_scan_tasks() for each task in a cgroup whose - * cpus_allowed mask needs to be changed. + * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. + * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed   * - * We don't need to re-check for the cgroup/cpuset membership, since we're - * holding cgroup_lock() at this point. + * Iterate through each task of @cs updating its cpus_allowed to the + * effective cpuset's.  As this function is called with cpuset_mutex held, + * cpuset membership stays stable.   */ -static void cpuset_change_cpumask(struct task_struct *tsk, -				  struct cgroup_scanner *scan) +static void update_tasks_cpumask(struct cpuset *cs)  { -	set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed)); +	struct cpuset *cpus_cs = effective_cpumask_cpuset(cs); +	struct css_task_iter it; +	struct task_struct *task; + +	css_task_iter_start(&cs->css, &it); +	while ((task = css_task_iter_next(&it))) +		set_cpus_allowed_ptr(task, cpus_cs->cpus_allowed); +	css_task_iter_end(&it);  } -/** - * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. - * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed - * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() - * - * Called with cgroup_mutex held +/* + * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy. + * @root_cs: the root cpuset of the hierarchy + * @update_root: update root cpuset or not?   * - * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, - * calling callback functions for each. + * This will update cpumasks of tasks in @root_cs and all other empty cpusets + * which take on cpumask of @root_cs.   * - * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 - * if @heap != NULL. + * Called with cpuset_mutex held   */ -static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap) +static void update_tasks_cpumask_hier(struct cpuset *root_cs, bool update_root)  { -	struct cgroup_scanner scan; +	struct cpuset *cp; +	struct cgroup_subsys_state *pos_css; -	scan.cg = cs->css.cgroup; -	scan.test_task = cpuset_test_cpumask; -	scan.process_task = cpuset_change_cpumask; -	scan.heap = heap; -	cgroup_scan_tasks(&scan); +	rcu_read_lock(); +	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { +		if (cp == root_cs) { +			if (!update_root) +				continue; +		} else { +			/* skip the whole subtree if @cp have some CPU */ +			if (!cpumask_empty(cp->cpus_allowed)) { +				pos_css = css_rightmost_descendant(pos_css); +				continue; +			} +		} +		if (!css_tryget_online(&cp->css)) +			continue; +		rcu_read_unlock(); + +		update_tasks_cpumask(cp); + +		rcu_read_lock(); +		css_put(&cp->css); +	} +	rcu_read_unlock();  }  /**   * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it   * @cs: the cpuset to consider + * @trialcs: trial cpuset   * @buf: buffer of cpu numbers written to this cpuset   */  static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,  			  const char *buf)  { -	struct ptr_heap heap;  	int retval;  	int is_load_balanced; -	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */ +	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */  	if (cs == &top_cpuset)  		return -EACCES; @@ -874,16 +911,13 @@ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,  		if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))  			return -EINVAL;  	} -	retval = validate_change(cs, trialcs); -	if (retval < 0) -		return retval;  	/* Nothing to do if the cpus didn't change */  	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))  		return 0; -	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); -	if (retval) +	retval = validate_change(cs, trialcs); +	if (retval < 0)  		return retval;  	is_load_balanced = is_sched_load_balance(trialcs); @@ -892,16 +926,10 @@ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,  	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);  	mutex_unlock(&callback_mutex); -	/* -	 * Scan tasks in the cpuset, and update the cpumasks of any -	 * that need an update. -	 */ -	update_tasks_cpumask(cs, &heap); - -	heap_free(&heap); +	update_tasks_cpumask_hier(cs, true);  	if (is_load_balanced) -		async_rebuild_sched_domains(); +		rebuild_sched_domains_locked();  	return 0;  } @@ -913,12 +941,6 @@ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,   *    Temporarilly set tasks mems_allowed to target nodes of migration,   *    so that the migration code can allocate pages on these nodes.   * - *    Call holding cgroup_mutex, so current's cpuset won't change - *    during this call, as manage_mutex holds off any cpuset_attach() - *    calls.  Therefore we don't need to take task_lock around the - *    call to guarantee_online_mems(), as we know no one is changing - *    our task's cpuset. - *   *    While the mm_struct we are migrating is typically from some   *    other task, the task_struct mems_allowed that we are hacking   *    is for our current task, which must allocate new pages for that @@ -929,12 +951,16 @@ static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,  							const nodemask_t *to)  {  	struct task_struct *tsk = current; +	struct cpuset *mems_cs;  	tsk->mems_allowed = *to;  	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL); -	guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed); +	rcu_read_lock(); +	mems_cs = effective_nodemask_cpuset(task_cs(tsk)); +	guarantee_online_mems(mems_cs, &tsk->mems_allowed); +	rcu_read_unlock();  }  /* @@ -949,7 +975,8 @@ static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,  static void cpuset_change_task_nodemask(struct task_struct *tsk,  					nodemask_t *newmems)  { -repeat: +	bool need_loop; +  	/*  	 * Allow tasks that have access to memory reserves because they have  	 * been OOM killed to get memory anywhere. @@ -960,83 +987,32 @@ repeat:  		return;  	task_lock(tsk); -	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); -	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1); - -  	/* -	 * ensure checking ->mems_allowed_change_disable after setting all new -	 * allowed nodes. -	 * -	 * the read-side task can see an nodemask with new allowed nodes and -	 * old allowed nodes. and if it allocates page when cpuset clears newly -	 * disallowed ones continuous, it can see the new allowed bits. -	 * -	 * And if setting all new allowed nodes is after the checking, setting -	 * all new allowed nodes and clearing newly disallowed ones will be done -	 * continuous, and the read-side task may find no node to alloc page. +	 * Determine if a loop is necessary if another thread is doing +	 * read_mems_allowed_begin().  If at least one node remains unchanged and +	 * tsk does not have a mempolicy, then an empty nodemask will not be +	 * possible when mems_allowed is larger than a word.  	 */ -	smp_mb(); +	need_loop = task_has_mempolicy(tsk) || +			!nodes_intersects(*newmems, tsk->mems_allowed); -	/* -	 * Allocation of memory is very fast, we needn't sleep when waiting -	 * for the read-side. -	 */ -	while (ACCESS_ONCE(tsk->mems_allowed_change_disable)) { -		task_unlock(tsk); -		if (!task_curr(tsk)) -			yield(); -		goto repeat; +	if (need_loop) { +		local_irq_disable(); +		write_seqcount_begin(&tsk->mems_allowed_seq);  	} -	/* -	 * ensure checking ->mems_allowed_change_disable before clearing all new -	 * disallowed nodes. -	 * -	 * if clearing newly disallowed bits before the checking, the read-side -	 * task may find no node to alloc page. -	 */ -	smp_mb(); +	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); +	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);  	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);  	tsk->mems_allowed = *newmems; -	task_unlock(tsk); -} - -/* - * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy - * of it to cpuset's new mems_allowed, and migrate pages to new nodes if - * memory_migrate flag is set. Called with cgroup_mutex held. - */ -static void cpuset_change_nodemask(struct task_struct *p, -				   struct cgroup_scanner *scan) -{ -	struct mm_struct *mm; -	struct cpuset *cs; -	int migrate; -	const nodemask_t *oldmem = scan->data; -	NODEMASK_ALLOC(nodemask_t, newmems, GFP_KERNEL); -	if (!newmems) -		return; - -	cs = cgroup_cs(scan->cg); -	guarantee_online_mems(cs, newmems); - -	cpuset_change_task_nodemask(p, newmems); - -	NODEMASK_FREE(newmems); - -	mm = get_task_mm(p); -	if (!mm) -		return; - -	migrate = is_memory_migrate(cs); +	if (need_loop) { +		write_seqcount_end(&tsk->mems_allowed_seq); +		local_irq_enable(); +	} -	mpol_rebind_mm(mm, &cs->mems_allowed); -	if (migrate) -		cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed); -	mmput(mm); +	task_unlock(tsk);  }  static void *cpuset_being_rebound; @@ -1044,43 +1020,102 @@ static void *cpuset_being_rebound;  /**   * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.   * @cs: the cpuset in which each task's mems_allowed mask needs to be changed - * @oldmem: old mems_allowed of cpuset cs - * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()   * - * Called with cgroup_mutex held - * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 - * if @heap != NULL. + * Iterate through each task of @cs updating its mems_allowed to the + * effective cpuset's.  As this function is called with cpuset_mutex held, + * cpuset membership stays stable.   */ -static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem, -				 struct ptr_heap *heap) +static void update_tasks_nodemask(struct cpuset *cs)  { -	struct cgroup_scanner scan; +	static nodemask_t newmems;	/* protected by cpuset_mutex */ +	struct cpuset *mems_cs = effective_nodemask_cpuset(cs); +	struct css_task_iter it; +	struct task_struct *task;  	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */ -	scan.cg = cs->css.cgroup; -	scan.test_task = NULL; -	scan.process_task = cpuset_change_nodemask; -	scan.heap = heap; -	scan.data = (nodemask_t *)oldmem; +	guarantee_online_mems(mems_cs, &newmems);  	/*  	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't  	 * take while holding tasklist_lock.  Forks can happen - the  	 * mpol_dup() cpuset_being_rebound check will catch such forks,  	 * and rebind their vma mempolicies too.  Because we still hold -	 * the global cgroup_mutex, we know that no other rebind effort +	 * the global cpuset_mutex, we know that no other rebind effort  	 * will be contending for the global variable cpuset_being_rebound.  	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()  	 * is idempotent.  Also migrate pages in each mm to new nodes.  	 */ -	cgroup_scan_tasks(&scan); +	css_task_iter_start(&cs->css, &it); +	while ((task = css_task_iter_next(&it))) { +		struct mm_struct *mm; +		bool migrate; + +		cpuset_change_task_nodemask(task, &newmems); + +		mm = get_task_mm(task); +		if (!mm) +			continue; + +		migrate = is_memory_migrate(cs); + +		mpol_rebind_mm(mm, &cs->mems_allowed); +		if (migrate) +			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); +		mmput(mm); +	} +	css_task_iter_end(&it); + +	/* +	 * All the tasks' nodemasks have been updated, update +	 * cs->old_mems_allowed. +	 */ +	cs->old_mems_allowed = newmems;  	/* We're done rebinding vmas to this cpuset's new mems_allowed. */  	cpuset_being_rebound = NULL;  }  /* + * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy. + * @cs: the root cpuset of the hierarchy + * @update_root: update the root cpuset or not? + * + * This will update nodemasks of tasks in @root_cs and all other empty cpusets + * which take on nodemask of @root_cs. + * + * Called with cpuset_mutex held + */ +static void update_tasks_nodemask_hier(struct cpuset *root_cs, bool update_root) +{ +	struct cpuset *cp; +	struct cgroup_subsys_state *pos_css; + +	rcu_read_lock(); +	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { +		if (cp == root_cs) { +			if (!update_root) +				continue; +		} else { +			/* skip the whole subtree if @cp have some CPU */ +			if (!nodes_empty(cp->mems_allowed)) { +				pos_css = css_rightmost_descendant(pos_css); +				continue; +			} +		} +		if (!css_tryget_online(&cp->css)) +			continue; +		rcu_read_unlock(); + +		update_tasks_nodemask(cp); + +		rcu_read_lock(); +		css_put(&cp->css); +	} +	rcu_read_unlock(); +} + +/*   * Handle user request to change the 'mems' memory placement   * of a cpuset.  Needs to validate the request, update the   * cpusets mems_allowed, and for each task in the cpuset, @@ -1088,7 +1123,7 @@ static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,   * mempolicies and if the cpuset is marked 'memory_migrate',   * migrate the tasks pages to the new memory.   * - * Call with cgroup_mutex held.  May take callback_mutex during call. + * Call with cpuset_mutex held.  May take callback_mutex during call.   * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,   * lock each such tasks mm->mmap_sem, scan its vma's and rebind   * their mempolicies to the cpusets new mems_allowed. @@ -1096,15 +1131,10 @@ static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,  static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,  			   const char *buf)  { -	NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);  	int retval; -	struct ptr_heap heap; - -	if (!oldmem) -		return -ENOMEM;  	/* -	 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY]; +	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];  	 * it's read-only  	 */  	if (cs == &top_cpuset) { @@ -1126,13 +1156,13 @@ static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,  			goto done;  		if (!nodes_subset(trialcs->mems_allowed, -				node_states[N_HIGH_MEMORY])) { +				node_states[N_MEMORY])) {  			retval =  -EINVAL;  			goto done;  		}  	} -	*oldmem = cs->mems_allowed; -	if (nodes_equal(*oldmem, trialcs->mems_allowed)) { + +	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {  		retval = 0;		/* Too easy - nothing to do */  		goto done;  	} @@ -1140,31 +1170,30 @@ static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,  	if (retval < 0)  		goto done; -	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); -	if (retval < 0) -		goto done; -  	mutex_lock(&callback_mutex);  	cs->mems_allowed = trialcs->mems_allowed;  	mutex_unlock(&callback_mutex); -	update_tasks_nodemask(cs, oldmem, &heap); - -	heap_free(&heap); +	update_tasks_nodemask_hier(cs, true);  done: -	NODEMASK_FREE(oldmem);  	return retval;  }  int current_cpuset_is_being_rebound(void)  { -	return task_cs(current) == cpuset_being_rebound; +	int ret; + +	rcu_read_lock(); +	ret = task_cs(current) == cpuset_being_rebound; +	rcu_read_unlock(); + +	return ret;  }  static int update_relax_domain_level(struct cpuset *cs, s64 val)  {  #ifdef CONFIG_SMP -	if (val < -1 || val >= SD_LV_MAX) +	if (val < -1 || val >= sched_domain_level_max)  		return -EINVAL;  #endif @@ -1172,50 +1201,29 @@ static int update_relax_domain_level(struct cpuset *cs, s64 val)  		cs->relax_domain_level = val;  		if (!cpumask_empty(cs->cpus_allowed) &&  		    is_sched_load_balance(cs)) -			async_rebuild_sched_domains(); +			rebuild_sched_domains_locked();  	}  	return 0;  } -/* - * cpuset_change_flag - make a task's spread flags the same as its cpuset's - * @tsk: task to be updated - * @scan: struct cgroup_scanner containing the cgroup of the task - * - * Called by cgroup_scan_tasks() for each task in a cgroup. - * - * We don't need to re-check for the cgroup/cpuset membership, since we're - * holding cgroup_lock() at this point. - */ -static void cpuset_change_flag(struct task_struct *tsk, -				struct cgroup_scanner *scan) -{ -	cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk); -} - -/* +/**   * update_tasks_flags - update the spread flags of tasks in the cpuset.   * @cs: the cpuset in which each task's spread flags needs to be changed - * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()   * - * Called with cgroup_mutex held - * - * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, - * calling callback functions for each. - * - * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 - * if @heap != NULL. + * Iterate through each task of @cs updating its spread flags.  As this + * function is called with cpuset_mutex held, cpuset membership stays + * stable.   */ -static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap) +static void update_tasks_flags(struct cpuset *cs)  { -	struct cgroup_scanner scan; +	struct css_task_iter it; +	struct task_struct *task; -	scan.cg = cs->css.cgroup; -	scan.test_task = NULL; -	scan.process_task = cpuset_change_flag; -	scan.heap = heap; -	cgroup_scan_tasks(&scan); +	css_task_iter_start(&cs->css, &it); +	while ((task = css_task_iter_next(&it))) +		cpuset_update_task_spread_flag(cs, task); +	css_task_iter_end(&it);  }  /* @@ -1224,7 +1232,7 @@ static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)   * cs:		the cpuset to update   * turning_on: 	whether the flag is being set or cleared   * - * Call with cgroup_mutex held. + * Call with cpuset_mutex held.   */  static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, @@ -1233,7 +1241,6 @@ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,  	struct cpuset *trialcs;  	int balance_flag_changed;  	int spread_flag_changed; -	struct ptr_heap heap;  	int err;  	trialcs = alloc_trial_cpuset(cs); @@ -1249,10 +1256,6 @@ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,  	if (err < 0)  		goto out; -	err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); -	if (err < 0) -		goto out; -  	balance_flag_changed = (is_sched_load_balance(cs) !=  				is_sched_load_balance(trialcs)); @@ -1264,11 +1267,10 @@ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,  	mutex_unlock(&callback_mutex);  	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) -		async_rebuild_sched_domains(); +		rebuild_sched_domains_locked();  	if (spread_flag_changed) -		update_tasks_flags(cs, &heap); -	heap_free(&heap); +		update_tasks_flags(cs);  out:  	free_trial_cpuset(trialcs);  	return err; @@ -1372,110 +1374,140 @@ static int fmeter_getrate(struct fmeter *fmp)  	return val;  } -/* Protected by cgroup_lock */ -static cpumask_var_t cpus_attach; +static struct cpuset *cpuset_attach_old_cs; -/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ -static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont, -			     struct task_struct *tsk, bool threadgroup) +/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ +static int cpuset_can_attach(struct cgroup_subsys_state *css, +			     struct cgroup_taskset *tset)  { +	struct cpuset *cs = css_cs(css); +	struct task_struct *task;  	int ret; -	struct cpuset *cs = cgroup_cs(cont); -	if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) -		return -ENOSPC; +	/* used later by cpuset_attach() */ +	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset)); + +	mutex_lock(&cpuset_mutex);  	/* -	 * Kthreads bound to specific cpus cannot be moved to a new cpuset; we -	 * cannot change their cpu affinity and isolating such threads by their -	 * set of allowed nodes is unnecessary.  Thus, cpusets are not -	 * applicable for such threads.  This prevents checking for success of -	 * set_cpus_allowed_ptr() on all attached tasks before cpus_allowed may -	 * be changed. +	 * We allow to move tasks into an empty cpuset if sane_behavior +	 * flag is set.  	 */ -	if (tsk->flags & PF_THREAD_BOUND) -		return -EINVAL; - -	ret = security_task_setscheduler(tsk); -	if (ret) -		return ret; -	if (threadgroup) { -		struct task_struct *c; +	ret = -ENOSPC; +	if (!cgroup_sane_behavior(css->cgroup) && +	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) +		goto out_unlock; -		rcu_read_lock(); -		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { -			ret = security_task_setscheduler(c); -			if (ret) { -				rcu_read_unlock(); -				return ret; -			} -		} -		rcu_read_unlock(); +	cgroup_taskset_for_each(task, tset) { +		/* +		 * Kthreads which disallow setaffinity shouldn't be moved +		 * to a new cpuset; we don't want to change their cpu +		 * affinity and isolating such threads by their set of +		 * allowed nodes is unnecessary.  Thus, cpusets are not +		 * applicable for such threads.  This prevents checking for +		 * success of set_cpus_allowed_ptr() on all attached tasks +		 * before cpus_allowed may be changed. +		 */ +		ret = -EINVAL; +		if (task->flags & PF_NO_SETAFFINITY) +			goto out_unlock; +		ret = security_task_setscheduler(task); +		if (ret) +			goto out_unlock;  	} -	return 0; -} -static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to, -			       struct cpuset *cs) -{ -	int err;  	/* -	 * can_attach beforehand should guarantee that this doesn't fail. -	 * TODO: have a better way to handle failure here +	 * Mark attach is in progress.  This makes validate_change() fail +	 * changes which zero cpus/mems_allowed.  	 */ -	err = set_cpus_allowed_ptr(tsk, cpus_attach); -	WARN_ON_ONCE(err); - -	cpuset_change_task_nodemask(tsk, to); -	cpuset_update_task_spread_flag(cs, tsk); +	cs->attach_in_progress++; +	ret = 0; +out_unlock: +	mutex_unlock(&cpuset_mutex); +	return ret; +} +static void cpuset_cancel_attach(struct cgroup_subsys_state *css, +				 struct cgroup_taskset *tset) +{ +	mutex_lock(&cpuset_mutex); +	css_cs(css)->attach_in_progress--; +	mutex_unlock(&cpuset_mutex);  } -static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont, -			  struct cgroup *oldcont, struct task_struct *tsk, -			  bool threadgroup) +/* + * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach() + * but we can't allocate it dynamically there.  Define it global and + * allocate from cpuset_init(). + */ +static cpumask_var_t cpus_attach; + +static void cpuset_attach(struct cgroup_subsys_state *css, +			  struct cgroup_taskset *tset)  { +	/* static buf protected by cpuset_mutex */ +	static nodemask_t cpuset_attach_nodemask_to;  	struct mm_struct *mm; -	struct cpuset *cs = cgroup_cs(cont); -	struct cpuset *oldcs = cgroup_cs(oldcont); -	NODEMASK_ALLOC(nodemask_t, from, GFP_KERNEL); -	NODEMASK_ALLOC(nodemask_t, to, GFP_KERNEL); +	struct task_struct *task; +	struct task_struct *leader = cgroup_taskset_first(tset); +	struct cpuset *cs = css_cs(css); +	struct cpuset *oldcs = cpuset_attach_old_cs; +	struct cpuset *cpus_cs = effective_cpumask_cpuset(cs); +	struct cpuset *mems_cs = effective_nodemask_cpuset(cs); -	if (from == NULL || to == NULL) -		goto alloc_fail; +	mutex_lock(&cpuset_mutex); -	if (cs == &top_cpuset) { +	/* prepare for attach */ +	if (cs == &top_cpuset)  		cpumask_copy(cpus_attach, cpu_possible_mask); -	} else { -		guarantee_online_cpus(cs, cpus_attach); -	} -	guarantee_online_mems(cs, to); +	else +		guarantee_online_cpus(cpus_cs, cpus_attach); -	/* do per-task migration stuff possibly for each in the threadgroup */ -	cpuset_attach_task(tsk, to, cs); -	if (threadgroup) { -		struct task_struct *c; -		rcu_read_lock(); -		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { -			cpuset_attach_task(c, to, cs); -		} -		rcu_read_unlock(); +	guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to); + +	cgroup_taskset_for_each(task, tset) { +		/* +		 * can_attach beforehand should guarantee that this doesn't +		 * fail.  TODO: have a better way to handle failure here +		 */ +		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); + +		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); +		cpuset_update_task_spread_flag(cs, task);  	} -	/* change mm; only needs to be done once even if threadgroup */ -	*from = oldcs->mems_allowed; -	*to = cs->mems_allowed; -	mm = get_task_mm(tsk); +	/* +	 * Change mm, possibly for multiple threads in a threadgroup. This is +	 * expensive and may sleep. +	 */ +	cpuset_attach_nodemask_to = cs->mems_allowed; +	mm = get_task_mm(leader);  	if (mm) { -		mpol_rebind_mm(mm, to); -		if (is_memory_migrate(cs)) -			cpuset_migrate_mm(mm, from, to); +		struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs); + +		mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); + +		/* +		 * old_mems_allowed is the same with mems_allowed here, except +		 * if this task is being moved automatically due to hotplug. +		 * In that case @mems_allowed has been updated and is empty, +		 * so @old_mems_allowed is the right nodesets that we migrate +		 * mm from. +		 */ +		if (is_memory_migrate(cs)) { +			cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed, +					  &cpuset_attach_nodemask_to); +		}  		mmput(mm);  	} -alloc_fail: -	NODEMASK_FREE(from); -	NODEMASK_FREE(to); +	cs->old_mems_allowed = cpuset_attach_nodemask_to; + +	cs->attach_in_progress--; +	if (!cs->attach_in_progress) +		wake_up(&cpuset_attach_wq); + +	mutex_unlock(&cpuset_mutex);  }  /* The various types of files and directories in a cpuset file system */ @@ -1495,14 +1527,18 @@ typedef enum {  	FILE_SPREAD_SLAB,  } cpuset_filetype_t; -static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val) +static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, +			    u64 val)  { -	int retval = 0; -	struct cpuset *cs = cgroup_cs(cgrp); +	struct cpuset *cs = css_cs(css);  	cpuset_filetype_t type = cft->private; +	int retval = 0; -	if (!cgroup_lock_live_group(cgrp)) -		return -ENODEV; +	mutex_lock(&cpuset_mutex); +	if (!is_cpuset_online(cs)) { +		retval = -ENODEV; +		goto out_unlock; +	}  	switch (type) {  	case FILE_CPU_EXCLUSIVE: @@ -1536,18 +1572,21 @@ static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)  		retval = -EINVAL;  		break;  	} -	cgroup_unlock(); +out_unlock: +	mutex_unlock(&cpuset_mutex);  	return retval;  } -static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val) +static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, +			    s64 val)  { -	int retval = 0; -	struct cpuset *cs = cgroup_cs(cgrp); +	struct cpuset *cs = css_cs(css);  	cpuset_filetype_t type = cft->private; +	int retval = -ENODEV; -	if (!cgroup_lock_live_group(cgrp)) -		return -ENODEV; +	mutex_lock(&cpuset_mutex); +	if (!is_cpuset_online(cs)) +		goto out_unlock;  	switch (type) {  	case FILE_SCHED_RELAX_DOMAIN_LEVEL: @@ -1557,28 +1596,57 @@ static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)  		retval = -EINVAL;  		break;  	} -	cgroup_unlock(); +out_unlock: +	mutex_unlock(&cpuset_mutex);  	return retval;  }  /*   * Common handling for a write to a "cpus" or "mems" file.   */ -static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft, -				const char *buf) +static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, +				    char *buf, size_t nbytes, loff_t off)  { -	int retval = 0; -	struct cpuset *cs = cgroup_cs(cgrp); +	struct cpuset *cs = css_cs(of_css(of));  	struct cpuset *trialcs; +	int retval = -ENODEV; -	if (!cgroup_lock_live_group(cgrp)) -		return -ENODEV; +	buf = strstrip(buf); + +	/* +	 * CPU or memory hotunplug may leave @cs w/o any execution +	 * resources, in which case the hotplug code asynchronously updates +	 * configuration and transfers all tasks to the nearest ancestor +	 * which can execute. +	 * +	 * As writes to "cpus" or "mems" may restore @cs's execution +	 * resources, wait for the previously scheduled operations before +	 * proceeding, so that we don't end up keep removing tasks added +	 * after execution capability is restored. +	 * +	 * cpuset_hotplug_work calls back into cgroup core via +	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs +	 * operation like this one can lead to a deadlock through kernfs +	 * active_ref protection.  Let's break the protection.  Losing the +	 * protection is okay as we check whether @cs is online after +	 * grabbing cpuset_mutex anyway.  This only happens on the legacy +	 * hierarchies. +	 */ +	css_get(&cs->css); +	kernfs_break_active_protection(of->kn); +	flush_work(&cpuset_hotplug_work); + +	mutex_lock(&cpuset_mutex); +	if (!is_cpuset_online(cs)) +		goto out_unlock;  	trialcs = alloc_trial_cpuset(cs); -	if (!trialcs) -		return -ENOMEM; +	if (!trialcs) { +		retval = -ENOMEM; +		goto out_unlock; +	} -	switch (cft->private) { +	switch (of_cft(of)->private) {  	case FILE_CPULIST:  		retval = update_cpumask(cs, trialcs, buf);  		break; @@ -1591,8 +1659,11 @@ static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,  	}  	free_trial_cpuset(trialcs); -	cgroup_unlock(); -	return retval; +out_unlock: +	mutex_unlock(&cpuset_mutex); +	kernfs_unbreak_active_protection(of->kn); +	css_put(&cs->css); +	return retval ?: nbytes;  }  /* @@ -1602,80 +1673,46 @@ static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,   * used, list of ranges of sequential numbers, is variable length,   * and since these maps can change value dynamically, one could read   * gibberish by doing partial reads while a list was changing. - * A single large read to a buffer that crosses a page boundary is - * ok, because the result being copied to user land is not recomputed - * across a page fault.   */ - -static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs) +static int cpuset_common_seq_show(struct seq_file *sf, void *v)  { -	int ret; +	struct cpuset *cs = css_cs(seq_css(sf)); +	cpuset_filetype_t type = seq_cft(sf)->private; +	ssize_t count; +	char *buf, *s; +	int ret = 0; -	mutex_lock(&callback_mutex); -	ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed); -	mutex_unlock(&callback_mutex); - -	return ret; -} - -static int cpuset_sprintf_memlist(char *page, struct cpuset *cs) -{ -	NODEMASK_ALLOC(nodemask_t, mask, GFP_KERNEL); -	int retval; - -	if (mask == NULL) -		return -ENOMEM; +	count = seq_get_buf(sf, &buf); +	s = buf;  	mutex_lock(&callback_mutex); -	*mask = cs->mems_allowed; -	mutex_unlock(&callback_mutex); - -	retval = nodelist_scnprintf(page, PAGE_SIZE, *mask); - -	NODEMASK_FREE(mask); - -	return retval; -} - -static ssize_t cpuset_common_file_read(struct cgroup *cont, -				       struct cftype *cft, -				       struct file *file, -				       char __user *buf, -				       size_t nbytes, loff_t *ppos) -{ -	struct cpuset *cs = cgroup_cs(cont); -	cpuset_filetype_t type = cft->private; -	char *page; -	ssize_t retval = 0; -	char *s; - -	if (!(page = (char *)__get_free_page(GFP_TEMPORARY))) -		return -ENOMEM; - -	s = page;  	switch (type) {  	case FILE_CPULIST: -		s += cpuset_sprintf_cpulist(s, cs); +		s += cpulist_scnprintf(s, count, cs->cpus_allowed);  		break;  	case FILE_MEMLIST: -		s += cpuset_sprintf_memlist(s, cs); +		s += nodelist_scnprintf(s, count, cs->mems_allowed);  		break;  	default: -		retval = -EINVAL; -		goto out; +		ret = -EINVAL; +		goto out_unlock;  	} -	*s++ = '\n'; -	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page); -out: -	free_page((unsigned long)page); -	return retval; +	if (s < buf + count - 1) { +		*s++ = '\n'; +		seq_commit(sf, s - buf); +	} else { +		seq_commit(sf, -1); +	} +out_unlock: +	mutex_unlock(&callback_mutex); +	return ret;  } -static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft) +static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)  { -	struct cpuset *cs = cgroup_cs(cont); +	struct cpuset *cs = css_cs(css);  	cpuset_filetype_t type = cft->private;  	switch (type) {  	case FILE_CPU_EXCLUSIVE: @@ -1704,9 +1741,9 @@ static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)  	return 0;  } -static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft) +static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)  { -	struct cpuset *cs = cgroup_cs(cont); +	struct cpuset *cs = css_cs(css);  	cpuset_filetype_t type = cft->private;  	switch (type) {  	case FILE_SCHED_RELAX_DOMAIN_LEVEL: @@ -1727,16 +1764,16 @@ static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)  static struct cftype files[] = {  	{  		.name = "cpus", -		.read = cpuset_common_file_read, -		.write_string = cpuset_write_resmask, +		.seq_show = cpuset_common_seq_show, +		.write = cpuset_write_resmask,  		.max_write_len = (100U + 6 * NR_CPUS),  		.private = FILE_CPULIST,  	},  	{  		.name = "mems", -		.read = cpuset_common_file_read, -		.write_string = cpuset_write_resmask, +		.seq_show = cpuset_common_seq_show, +		.write = cpuset_write_resmask,  		.max_write_len = (100U + 6 * MAX_NUMNODES),  		.private = FILE_MEMLIST,  	}, @@ -1804,84 +1841,32 @@ static struct cftype files[] = {  		.write_u64 = cpuset_write_u64,  		.private = FILE_SPREAD_SLAB,  	}, -}; - -static struct cftype cft_memory_pressure_enabled = { -	.name = "memory_pressure_enabled", -	.read_u64 = cpuset_read_u64, -	.write_u64 = cpuset_write_u64, -	.private = FILE_MEMORY_PRESSURE_ENABLED, -}; -static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont) -{ -	int err; - -	err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files)); -	if (err) -		return err; -	/* memory_pressure_enabled is in root cpuset only */ -	if (!cont->parent) -		err = cgroup_add_file(cont, ss, -				      &cft_memory_pressure_enabled); -	return err; -} - -/* - * post_clone() is called at the end of cgroup_clone(). - * 'cgroup' was just created automatically as a result of - * a cgroup_clone(), and the current task is about to - * be moved into 'cgroup'. - * - * Currently we refuse to set up the cgroup - thereby - * refusing the task to be entered, and as a result refusing - * the sys_unshare() or clone() which initiated it - if any - * sibling cpusets have exclusive cpus or mem. - * - * If this becomes a problem for some users who wish to - * allow that scenario, then cpuset_post_clone() could be - * changed to grant parent->cpus_allowed-sibling_cpus_exclusive - * (and likewise for mems) to the new cgroup. Called with cgroup_mutex - * held. - */ -static void cpuset_post_clone(struct cgroup_subsys *ss, -			      struct cgroup *cgroup) -{ -	struct cgroup *parent, *child; -	struct cpuset *cs, *parent_cs; - -	parent = cgroup->parent; -	list_for_each_entry(child, &parent->children, sibling) { -		cs = cgroup_cs(child); -		if (is_mem_exclusive(cs) || is_cpu_exclusive(cs)) -			return; -	} -	cs = cgroup_cs(cgroup); -	parent_cs = cgroup_cs(parent); +	{ +		.name = "memory_pressure_enabled", +		.flags = CFTYPE_ONLY_ON_ROOT, +		.read_u64 = cpuset_read_u64, +		.write_u64 = cpuset_write_u64, +		.private = FILE_MEMORY_PRESSURE_ENABLED, +	}, -	cs->mems_allowed = parent_cs->mems_allowed; -	cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed); -	return; -} +	{ }	/* terminate */ +};  /* - *	cpuset_create - create a cpuset - *	ss:	cpuset cgroup subsystem - *	cont:	control group that the new cpuset will be part of + *	cpuset_css_alloc - allocate a cpuset css + *	cgrp:	control group that the new cpuset will be part of   */ -static struct cgroup_subsys_state *cpuset_create( -	struct cgroup_subsys *ss, -	struct cgroup *cont) +static struct cgroup_subsys_state * +cpuset_css_alloc(struct cgroup_subsys_state *parent_css)  {  	struct cpuset *cs; -	struct cpuset *parent; -	if (!cont->parent) { +	if (!parent_css)  		return &top_cpuset.css; -	} -	parent = cgroup_cs(cont->parent); -	cs = kmalloc(sizeof(*cs), GFP_KERNEL); + +	cs = kzalloc(sizeof(*cs), GFP_KERNEL);  	if (!cs)  		return ERR_PTR(-ENOMEM);  	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) { @@ -1889,49 +1874,107 @@ static struct cgroup_subsys_state *cpuset_create(  		return ERR_PTR(-ENOMEM);  	} -	cs->flags = 0; -	if (is_spread_page(parent)) -		set_bit(CS_SPREAD_PAGE, &cs->flags); -	if (is_spread_slab(parent)) -		set_bit(CS_SPREAD_SLAB, &cs->flags);  	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);  	cpumask_clear(cs->cpus_allowed);  	nodes_clear(cs->mems_allowed);  	fmeter_init(&cs->fmeter);  	cs->relax_domain_level = -1; -	cs->parent = parent; -	number_of_cpusets++; -	return &cs->css ; +	return &cs->css; +} + +static int cpuset_css_online(struct cgroup_subsys_state *css) +{ +	struct cpuset *cs = css_cs(css); +	struct cpuset *parent = parent_cs(cs); +	struct cpuset *tmp_cs; +	struct cgroup_subsys_state *pos_css; + +	if (!parent) +		return 0; + +	mutex_lock(&cpuset_mutex); + +	set_bit(CS_ONLINE, &cs->flags); +	if (is_spread_page(parent)) +		set_bit(CS_SPREAD_PAGE, &cs->flags); +	if (is_spread_slab(parent)) +		set_bit(CS_SPREAD_SLAB, &cs->flags); + +	cpuset_inc(); + +	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) +		goto out_unlock; + +	/* +	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is +	 * set.  This flag handling is implemented in cgroup core for +	 * histrical reasons - the flag may be specified during mount. +	 * +	 * Currently, if any sibling cpusets have exclusive cpus or mem, we +	 * refuse to clone the configuration - thereby refusing the task to +	 * be entered, and as a result refusing the sys_unshare() or +	 * clone() which initiated it.  If this becomes a problem for some +	 * users who wish to allow that scenario, then this could be +	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive +	 * (and likewise for mems) to the new cgroup. +	 */ +	rcu_read_lock(); +	cpuset_for_each_child(tmp_cs, pos_css, parent) { +		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { +			rcu_read_unlock(); +			goto out_unlock; +		} +	} +	rcu_read_unlock(); + +	mutex_lock(&callback_mutex); +	cs->mems_allowed = parent->mems_allowed; +	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); +	mutex_unlock(&callback_mutex); +out_unlock: +	mutex_unlock(&cpuset_mutex); +	return 0;  }  /*   * If the cpuset being removed has its flag 'sched_load_balance'   * enabled, then simulate turning sched_load_balance off, which - * will call async_rebuild_sched_domains(). + * will call rebuild_sched_domains_locked().   */ -static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont) +static void cpuset_css_offline(struct cgroup_subsys_state *css)  { -	struct cpuset *cs = cgroup_cs(cont); +	struct cpuset *cs = css_cs(css); + +	mutex_lock(&cpuset_mutex);  	if (is_sched_load_balance(cs))  		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); -	number_of_cpusets--; +	cpuset_dec(); +	clear_bit(CS_ONLINE, &cs->flags); + +	mutex_unlock(&cpuset_mutex); +} + +static void cpuset_css_free(struct cgroup_subsys_state *css) +{ +	struct cpuset *cs = css_cs(css); +  	free_cpumask_var(cs->cpus_allowed);  	kfree(cs);  } -struct cgroup_subsys cpuset_subsys = { -	.name = "cpuset", -	.create = cpuset_create, -	.destroy = cpuset_destroy, +struct cgroup_subsys cpuset_cgrp_subsys = { +	.css_alloc = cpuset_css_alloc, +	.css_online = cpuset_css_online, +	.css_offline = cpuset_css_offline, +	.css_free = cpuset_css_free,  	.can_attach = cpuset_can_attach, +	.cancel_attach = cpuset_cancel_attach,  	.attach = cpuset_attach, -	.populate = cpuset_populate, -	.post_clone = cpuset_post_clone, -	.subsys_id = cpuset_subsys_id, +	.base_cftypes = files,  	.early_init = 1,  }; @@ -1962,234 +2005,230 @@ int __init cpuset_init(void)  	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))  		BUG(); -	number_of_cpusets = 1;  	return 0;  } -/** - * cpuset_do_move_task - move a given task to another cpuset - * @tsk: pointer to task_struct the task to move - * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner - * - * Called by cgroup_scan_tasks() for each task in a cgroup. - * Return nonzero to stop the walk through the tasks. +/* + * If CPU and/or memory hotplug handlers, below, unplug any CPUs + * or memory nodes, we need to walk over the cpuset hierarchy, + * removing that CPU or node from all cpusets.  If this removes the + * last CPU or node from a cpuset, then move the tasks in the empty + * cpuset to its next-highest non-empty parent.   */ -static void cpuset_do_move_task(struct task_struct *tsk, -				struct cgroup_scanner *scan) +static void remove_tasks_in_empty_cpuset(struct cpuset *cs)  { -	struct cgroup *new_cgroup = scan->data; +	struct cpuset *parent; + +	/* +	 * Find its next-highest non-empty parent, (top cpuset +	 * has online cpus, so can't be empty). +	 */ +	parent = parent_cs(cs); +	while (cpumask_empty(parent->cpus_allowed) || +			nodes_empty(parent->mems_allowed)) +		parent = parent_cs(parent); -	cgroup_attach_task(new_cgroup, tsk); +	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { +		pr_err("cpuset: failed to transfer tasks out of empty cpuset "); +		pr_cont_cgroup_name(cs->css.cgroup); +		pr_cont("\n"); +	}  }  /** - * move_member_tasks_to_cpuset - move tasks from one cpuset to another - * @from: cpuset in which the tasks currently reside - * @to: cpuset to which the tasks will be moved - * - * Called with cgroup_mutex held - * callback_mutex must not be held, as cpuset_attach() will take it. + * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug + * @cs: cpuset in interest   * - * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, - * calling callback functions for each. + * Compare @cs's cpu and mem masks against top_cpuset and if some have gone + * offline, update @cs accordingly.  If @cs ends up with no CPU or memory, + * all its tasks are moved to the nearest ancestor with both resources.   */ -static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to) +static void cpuset_hotplug_update_tasks(struct cpuset *cs)  { -	struct cgroup_scanner scan; +	static cpumask_t off_cpus; +	static nodemask_t off_mems; +	bool is_empty; +	bool sane = cgroup_sane_behavior(cs->css.cgroup); -	scan.cg = from->css.cgroup; -	scan.test_task = NULL; /* select all tasks in cgroup */ -	scan.process_task = cpuset_do_move_task; -	scan.heap = NULL; -	scan.data = to->css.cgroup; +retry: +	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); -	if (cgroup_scan_tasks(&scan)) -		printk(KERN_ERR "move_member_tasks_to_cpuset: " -				"cgroup_scan_tasks failed\n"); -} +	mutex_lock(&cpuset_mutex); -/* - * If CPU and/or memory hotplug handlers, below, unplug any CPUs - * or memory nodes, we need to walk over the cpuset hierarchy, - * removing that CPU or node from all cpusets.  If this removes the - * last CPU or node from a cpuset, then move the tasks in the empty - * cpuset to its next-highest non-empty parent. - * - * Called with cgroup_mutex held - * callback_mutex must not be held, as cpuset_attach() will take it. - */ -static void remove_tasks_in_empty_cpuset(struct cpuset *cs) -{ -	struct cpuset *parent; +	/* +	 * We have raced with task attaching. We wait until attaching +	 * is finished, so we won't attach a task to an empty cpuset. +	 */ +	if (cs->attach_in_progress) { +		mutex_unlock(&cpuset_mutex); +		goto retry; +	} + +	cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed); +	nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed); + +	mutex_lock(&callback_mutex); +	cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus); +	mutex_unlock(&callback_mutex);  	/* -	 * The cgroup's css_sets list is in use if there are tasks -	 * in the cpuset; the list is empty if there are none; -	 * the cs->css.refcnt seems always 0. +	 * If sane_behavior flag is set, we need to update tasks' cpumask +	 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't +	 * call update_tasks_cpumask() if the cpuset becomes empty, as +	 * the tasks in it will be migrated to an ancestor.  	 */ -	if (list_empty(&cs->css.cgroup->css_sets)) -		return; +	if ((sane && cpumask_empty(cs->cpus_allowed)) || +	    (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed))) +		update_tasks_cpumask(cs); + +	mutex_lock(&callback_mutex); +	nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems); +	mutex_unlock(&callback_mutex);  	/* -	 * Find its next-highest non-empty parent, (top cpuset -	 * has online cpus, so can't be empty). +	 * If sane_behavior flag is set, we need to update tasks' nodemask +	 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't +	 * call update_tasks_nodemask() if the cpuset becomes empty, as +	 * the tasks in it will be migratd to an ancestor.  	 */ -	parent = cs->parent; -	while (cpumask_empty(parent->cpus_allowed) || -			nodes_empty(parent->mems_allowed)) -		parent = parent->parent; +	if ((sane && nodes_empty(cs->mems_allowed)) || +	    (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed))) +		update_tasks_nodemask(cs); -	move_member_tasks_to_cpuset(cs, parent); +	is_empty = cpumask_empty(cs->cpus_allowed) || +		nodes_empty(cs->mems_allowed); + +	mutex_unlock(&cpuset_mutex); + +	/* +	 * If sane_behavior flag is set, we'll keep tasks in empty cpusets. +	 * +	 * Otherwise move tasks to the nearest ancestor with execution +	 * resources.  This is full cgroup operation which will +	 * also call back into cpuset.  Should be done outside any lock. +	 */ +	if (!sane && is_empty) +		remove_tasks_in_empty_cpuset(cs);  } -/* - * Walk the specified cpuset subtree and look for empty cpusets. - * The tasks of such cpuset must be moved to a parent cpuset. +/** + * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset   * - * Called with cgroup_mutex held.  We take callback_mutex to modify - * cpus_allowed and mems_allowed. + * This function is called after either CPU or memory configuration has + * changed and updates cpuset accordingly.  The top_cpuset is always + * synchronized to cpu_active_mask and N_MEMORY, which is necessary in + * order to make cpusets transparent (of no affect) on systems that are + * actively using CPU hotplug but making no active use of cpusets.   * - * This walk processes the tree from top to bottom, completing one layer - * before dropping down to the next.  It always processes a node before - * any of its children. + * Non-root cpusets are only affected by offlining.  If any CPUs or memory + * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on + * all descendants.   * - * For now, since we lack memory hot unplug, we'll never see a cpuset - * that has tasks along with an empty 'mems'.  But if we did see such - * a cpuset, we'd handle it just like we do if its 'cpus' was empty. + * Note that CPU offlining during suspend is ignored.  We don't modify + * cpusets across suspend/resume cycles at all.   */ -static void scan_for_empty_cpusets(struct cpuset *root) +static void cpuset_hotplug_workfn(struct work_struct *work)  { -	LIST_HEAD(queue); -	struct cpuset *cp;	/* scans cpusets being updated */ -	struct cpuset *child;	/* scans child cpusets of cp */ -	struct cgroup *cont; -	NODEMASK_ALLOC(nodemask_t, oldmems, GFP_KERNEL); +	static cpumask_t new_cpus; +	static nodemask_t new_mems; +	bool cpus_updated, mems_updated; -	if (oldmems == NULL) -		return; +	mutex_lock(&cpuset_mutex); -	list_add_tail((struct list_head *)&root->stack_list, &queue); +	/* fetch the available cpus/mems and find out which changed how */ +	cpumask_copy(&new_cpus, cpu_active_mask); +	new_mems = node_states[N_MEMORY]; -	while (!list_empty(&queue)) { -		cp = list_first_entry(&queue, struct cpuset, stack_list); -		list_del(queue.next); -		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { -			child = cgroup_cs(cont); -			list_add_tail(&child->stack_list, &queue); -		} +	cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus); +	mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems); -		/* Continue past cpusets with all cpus, mems online */ -		if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) && -		    nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY])) -			continue; - -		*oldmems = cp->mems_allowed; +	/* synchronize cpus_allowed to cpu_active_mask */ +	if (cpus_updated) { +		mutex_lock(&callback_mutex); +		cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); +		mutex_unlock(&callback_mutex); +		/* we don't mess with cpumasks of tasks in top_cpuset */ +	} -		/* Remove offline cpus and mems from this cpuset. */ +	/* synchronize mems_allowed to N_MEMORY */ +	if (mems_updated) {  		mutex_lock(&callback_mutex); -		cpumask_and(cp->cpus_allowed, cp->cpus_allowed, -			    cpu_active_mask); -		nodes_and(cp->mems_allowed, cp->mems_allowed, -						node_states[N_HIGH_MEMORY]); +		top_cpuset.mems_allowed = new_mems;  		mutex_unlock(&callback_mutex); +		update_tasks_nodemask(&top_cpuset); +	} + +	mutex_unlock(&cpuset_mutex); + +	/* if cpus or mems changed, we need to propagate to descendants */ +	if (cpus_updated || mems_updated) { +		struct cpuset *cs; +		struct cgroup_subsys_state *pos_css; -		/* Move tasks from the empty cpuset to a parent */ -		if (cpumask_empty(cp->cpus_allowed) || -		     nodes_empty(cp->mems_allowed)) -			remove_tasks_in_empty_cpuset(cp); -		else { -			update_tasks_cpumask(cp, NULL); -			update_tasks_nodemask(cp, oldmems, NULL); +		rcu_read_lock(); +		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { +			if (cs == &top_cpuset || !css_tryget_online(&cs->css)) +				continue; +			rcu_read_unlock(); + +			cpuset_hotplug_update_tasks(cs); + +			rcu_read_lock(); +			css_put(&cs->css);  		} +		rcu_read_unlock();  	} -	NODEMASK_FREE(oldmems); + +	/* rebuild sched domains if cpus_allowed has changed */ +	if (cpus_updated) +		rebuild_sched_domains();  } -/* - * The top_cpuset tracks what CPUs and Memory Nodes are online, - * period.  This is necessary in order to make cpusets transparent - * (of no affect) on systems that are actively using CPU hotplug - * but making no active use of cpusets. - * - * This routine ensures that top_cpuset.cpus_allowed tracks - * cpu_active_mask on each CPU hotplug (cpuhp) event. - * - * Called within get_online_cpus().  Needs to call cgroup_lock() - * before calling generate_sched_domains(). - */ -void cpuset_update_active_cpus(void) +void cpuset_update_active_cpus(bool cpu_online)  { -	struct sched_domain_attr *attr; -	cpumask_var_t *doms; -	int ndoms; - -	cgroup_lock(); -	mutex_lock(&callback_mutex); -	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); -	mutex_unlock(&callback_mutex); -	scan_for_empty_cpusets(&top_cpuset); -	ndoms = generate_sched_domains(&doms, &attr); -	cgroup_unlock(); - -	/* Have scheduler rebuild the domains */ -	partition_sched_domains(ndoms, doms, attr); +	/* +	 * We're inside cpu hotplug critical region which usually nests +	 * inside cgroup synchronization.  Bounce actual hotplug processing +	 * to a work item to avoid reverse locking order. +	 * +	 * We still need to do partition_sched_domains() synchronously; +	 * otherwise, the scheduler will get confused and put tasks to the +	 * dead CPU.  Fall back to the default single domain. +	 * cpuset_hotplug_workfn() will rebuild it as necessary. +	 */ +	partition_sched_domains(1, NULL, NULL); +	schedule_work(&cpuset_hotplug_work);  } -#ifdef CONFIG_MEMORY_HOTPLUG  /* - * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY]. - * Call this routine anytime after node_states[N_HIGH_MEMORY] changes. - * See also the previous routine cpuset_track_online_cpus(). + * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. + * Call this routine anytime after node_states[N_MEMORY] changes. + * See cpuset_update_active_cpus() for CPU hotplug handling.   */  static int cpuset_track_online_nodes(struct notifier_block *self,  				unsigned long action, void *arg)  { -	NODEMASK_ALLOC(nodemask_t, oldmems, GFP_KERNEL); - -	if (oldmems == NULL) -		return NOTIFY_DONE; - -	cgroup_lock(); -	switch (action) { -	case MEM_ONLINE: -		*oldmems = top_cpuset.mems_allowed; -		mutex_lock(&callback_mutex); -		top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; -		mutex_unlock(&callback_mutex); -		update_tasks_nodemask(&top_cpuset, oldmems, NULL); -		break; -	case MEM_OFFLINE: -		/* -		 * needn't update top_cpuset.mems_allowed explicitly because -		 * scan_for_empty_cpusets() will update it. -		 */ -		scan_for_empty_cpusets(&top_cpuset); -		break; -	default: -		break; -	} -	cgroup_unlock(); - -	NODEMASK_FREE(oldmems); +	schedule_work(&cpuset_hotplug_work);  	return NOTIFY_OK;  } -#endif + +static struct notifier_block cpuset_track_online_nodes_nb = { +	.notifier_call = cpuset_track_online_nodes, +	.priority = 10,		/* ??! */ +};  /**   * cpuset_init_smp - initialize cpus_allowed   *   * Description: Finish top cpuset after cpu, node maps are initialized - **/ - + */  void __init cpuset_init_smp(void)  {  	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); -	top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; +	top_cpuset.mems_allowed = node_states[N_MEMORY]; +	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; -	hotplug_memory_notifier(cpuset_track_online_nodes, 10); - -	cpuset_wq = create_singlethread_workqueue("cpuset"); -	BUG_ON(!cpuset_wq); +	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);  }  /** @@ -2199,28 +2238,29 @@ void __init cpuset_init_smp(void)   *   * Description: Returns the cpumask_var_t cpus_allowed of the cpuset   * attached to the specified @tsk.  Guaranteed to return some non-empty - * subset of cpu_online_map, even if this means going outside the + * subset of cpu_online_mask, even if this means going outside the   * tasks cpuset.   **/  void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)  { +	struct cpuset *cpus_cs; +  	mutex_lock(&callback_mutex); -	task_lock(tsk); -	guarantee_online_cpus(task_cs(tsk), pmask); -	task_unlock(tsk); +	rcu_read_lock(); +	cpus_cs = effective_cpumask_cpuset(task_cs(tsk)); +	guarantee_online_cpus(cpus_cs, pmask); +	rcu_read_unlock();  	mutex_unlock(&callback_mutex);  } -int cpuset_cpus_allowed_fallback(struct task_struct *tsk) +void cpuset_cpus_allowed_fallback(struct task_struct *tsk)  { -	const struct cpuset *cs; -	int cpu; +	struct cpuset *cpus_cs;  	rcu_read_lock(); -	cs = task_cs(tsk); -	if (cs) -		cpumask_copy(&tsk->cpus_allowed, cs->cpus_allowed); +	cpus_cs = effective_cpumask_cpuset(task_cs(tsk)); +	do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);  	rcu_read_unlock();  	/* @@ -2236,22 +2276,10 @@ int cpuset_cpus_allowed_fallback(struct task_struct *tsk)  	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary  	 * set any mask even if it is not right from task_cs() pov,  	 * the pending set_cpus_allowed_ptr() will fix things. +	 * +	 * select_fallback_rq() will fix things ups and set cpu_possible_mask +	 * if required.  	 */ - -	cpu = cpumask_any_and(&tsk->cpus_allowed, cpu_active_mask); -	if (cpu >= nr_cpu_ids) { -		/* -		 * Either tsk->cpus_allowed is wrong (see above) or it -		 * is actually empty. The latter case is only possible -		 * if we are racing with remove_tasks_in_empty_cpuset(). -		 * Like above we can temporary set any mask and rely on -		 * set_cpus_allowed_ptr() as synchronization point. -		 */ -		cpumask_copy(&tsk->cpus_allowed, cpu_possible_mask); -		cpu = cpumask_any(cpu_active_mask); -	} - -	return cpu;  }  void cpuset_init_current_mems_allowed(void) @@ -2265,18 +2293,20 @@ void cpuset_init_current_mems_allowed(void)   *   * Description: Returns the nodemask_t mems_allowed of the cpuset   * attached to the specified @tsk.  Guaranteed to return some non-empty - * subset of node_states[N_HIGH_MEMORY], even if this means going outside the + * subset of node_states[N_MEMORY], even if this means going outside the   * tasks cpuset.   **/  nodemask_t cpuset_mems_allowed(struct task_struct *tsk)  { +	struct cpuset *mems_cs;  	nodemask_t mask;  	mutex_lock(&callback_mutex); -	task_lock(tsk); -	guarantee_online_mems(task_cs(tsk), &mask); -	task_unlock(tsk); +	rcu_read_lock(); +	mems_cs = effective_nodemask_cpuset(task_cs(tsk)); +	guarantee_online_mems(mems_cs, &mask); +	rcu_read_unlock();  	mutex_unlock(&callback_mutex);  	return mask; @@ -2299,10 +2329,10 @@ int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)   * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall   * (an unusual configuration), then returns the root cpuset.   */ -static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs) +static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)  { -	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent) -		cs = cs->parent; +	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) +		cs = parent_cs(cs);  	return cs;  } @@ -2369,7 +2399,7 @@ static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)   */  int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)  { -	const struct cpuset *cs;	/* current cpuset ancestors */ +	struct cpuset *cs;		/* current cpuset ancestors */  	int allowed;			/* is allocation in zone z allowed? */  	if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) @@ -2392,11 +2422,11 @@ int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)  	/* Not hardwall and node outside mems_allowed: scan up cpusets */  	mutex_lock(&callback_mutex); -	task_lock(current); +	rcu_read_lock();  	cs = nearest_hardwall_ancestor(task_cs(current)); -	task_unlock(current); -  	allowed = node_isset(node, cs->mems_allowed); +	rcu_read_unlock(); +  	mutex_unlock(&callback_mutex);  	return allowed;  } @@ -2440,17 +2470,6 @@ int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)  }  /** - * cpuset_unlock - release lock on cpuset changes - * - * Undo the lock taken in a previous cpuset_lock() call. - */ - -void cpuset_unlock(void) -{ -	mutex_unlock(&callback_mutex); -} - -/**   * cpuset_mem_spread_node() - On which node to begin search for a file page   * cpuset_slab_spread_node() - On which node to begin search for a slab page   * @@ -2490,11 +2509,19 @@ static int cpuset_spread_node(int *rotor)  int cpuset_mem_spread_node(void)  { +	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) +		current->cpuset_mem_spread_rotor = +			node_random(¤t->mems_allowed); +  	return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);  }  int cpuset_slab_spread_node(void)  { +	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) +		current->cpuset_slab_spread_rotor = +			node_random(¤t->mems_allowed); +  	return cpuset_spread_node(¤t->cpuset_slab_spread_rotor);  } @@ -2517,26 +2544,33 @@ int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,  	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);  } +#define CPUSET_NODELIST_LEN	(256) +  /**   * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed - * @task: pointer to task_struct of some task. + * @tsk: pointer to task_struct of some task.   *   * Description: Prints @task's name, cpuset name, and cached copy of its - * mems_allowed to the kernel log.  Must hold task_lock(task) to allow - * dereferencing task_cs(task). + * mems_allowed to the kernel log.   */  void cpuset_print_task_mems_allowed(struct task_struct *tsk)  { -	struct dentry *dentry; +	 /* Statically allocated to prevent using excess stack. */ +	static char cpuset_nodelist[CPUSET_NODELIST_LEN]; +	static DEFINE_SPINLOCK(cpuset_buffer_lock); +	struct cgroup *cgrp; -	dentry = task_cs(tsk)->css.cgroup->dentry;  	spin_lock(&cpuset_buffer_lock); -	snprintf(cpuset_name, CPUSET_NAME_LEN, -		 dentry ? (const char *)dentry->d_name.name : "/"); +	rcu_read_lock(); + +	cgrp = task_cs(tsk)->css.cgroup;  	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,  			   tsk->mems_allowed); -	printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n", -	       tsk->comm, cpuset_name, cpuset_nodelist); +	pr_info("%s cpuset=", tsk->comm); +	pr_cont_cgroup_name(cgrp); +	pr_cont(" mems_allowed=%s\n", cpuset_nodelist); + +	rcu_read_unlock();  	spin_unlock(&cpuset_buffer_lock);  } @@ -2568,9 +2602,9 @@ int cpuset_memory_pressure_enabled __read_mostly;  void __cpuset_memory_pressure_bump(void)  { -	task_lock(current); +	rcu_read_lock();  	fmeter_markevent(&task_cs(current)->fmeter); -	task_unlock(current); +	rcu_read_unlock();  }  #ifdef CONFIG_PROC_PID_CPUSET @@ -2580,19 +2614,19 @@ void __cpuset_memory_pressure_bump(void)   *  - Used for /proc/<pid>/cpuset.   *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it   *    doesn't really matter if tsk->cpuset changes after we read it, - *    and we take cgroup_mutex, keeping cpuset_attach() from changing it + *    and we take cpuset_mutex, keeping cpuset_attach() from changing it   *    anyway.   */ -static int proc_cpuset_show(struct seq_file *m, void *unused_v) +int proc_cpuset_show(struct seq_file *m, void *unused_v)  {  	struct pid *pid;  	struct task_struct *tsk; -	char *buf; +	char *buf, *p;  	struct cgroup_subsys_state *css;  	int retval;  	retval = -ENOMEM; -	buf = kmalloc(PAGE_SIZE, GFP_KERNEL); +	buf = kmalloc(PATH_MAX, GFP_KERNEL);  	if (!buf)  		goto out; @@ -2602,44 +2636,32 @@ static int proc_cpuset_show(struct seq_file *m, void *unused_v)  	if (!tsk)  		goto out_free; -	retval = -EINVAL; -	cgroup_lock(); -	css = task_subsys_state(tsk, cpuset_subsys_id); -	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE); -	if (retval < 0) -		goto out_unlock; -	seq_puts(m, buf); +	retval = -ENAMETOOLONG; +	rcu_read_lock(); +	css = task_css(tsk, cpuset_cgrp_id); +	p = cgroup_path(css->cgroup, buf, PATH_MAX); +	rcu_read_unlock(); +	if (!p) +		goto out_put_task; +	seq_puts(m, p);  	seq_putc(m, '\n'); -out_unlock: -	cgroup_unlock(); +	retval = 0; +out_put_task:  	put_task_struct(tsk);  out_free:  	kfree(buf);  out:  	return retval;  } - -static int cpuset_open(struct inode *inode, struct file *file) -{ -	struct pid *pid = PROC_I(inode)->pid; -	return single_open(file, proc_cpuset_show, pid); -} - -const struct file_operations proc_cpuset_operations = { -	.open		= cpuset_open, -	.read		= seq_read, -	.llseek		= seq_lseek, -	.release	= single_release, -};  #endif /* CONFIG_PROC_PID_CPUSET */  /* Display task mems_allowed in /proc/<pid>/status file. */  void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)  { -	seq_printf(m, "Mems_allowed:\t"); +	seq_puts(m, "Mems_allowed:\t");  	seq_nodemask(m, &task->mems_allowed); -	seq_printf(m, "\n"); -	seq_printf(m, "Mems_allowed_list:\t"); +	seq_puts(m, "\n"); +	seq_puts(m, "Mems_allowed_list:\t");  	seq_nodemask_list(m, &task->mems_allowed); -	seq_printf(m, "\n"); +	seq_puts(m, "\n");  }  | 
