diff options
Diffstat (limited to 'kernel/cpuset.c')
| -rw-r--r-- | kernel/cpuset.c | 2469 |
1 files changed, 1378 insertions, 1091 deletions
diff --git a/kernel/cpuset.c b/kernel/cpuset.c index 798b3ab054e..116a4164720 100644 --- a/kernel/cpuset.c +++ b/kernel/cpuset.c @@ -14,6 +14,8 @@ * 2003-10-22 Updates by Stephen Hemminger. * 2004 May-July Rework by Paul Jackson. * 2006 Rework by Paul Menage to use generic cgroups + * 2008 Rework of the scheduler domains and CPU hotplug handling + * by Max Krasnyansky * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of the Linux @@ -34,7 +36,8 @@ #include <linux/list.h> #include <linux/mempolicy.h> #include <linux/mm.h> -#include <linux/module.h> +#include <linux/memory.h> +#include <linux/export.h> #include <linux/mount.h> #include <linux/namei.h> #include <linux/pagemap.h> @@ -52,22 +55,13 @@ #include <linux/sort.h> #include <asm/uaccess.h> -#include <asm/atomic.h> +#include <linux/atomic.h> #include <linux/mutex.h> -#include <linux/kfifo.h> #include <linux/workqueue.h> #include <linux/cgroup.h> +#include <linux/wait.h> -/* - * Tracks how many cpusets are currently defined in system. - * When there is only one cpuset (the root cpuset) we can - * short circuit some hooks. - */ -int number_of_cpusets __read_mostly; - -/* Forward declare cgroup structures */ -struct cgroup_subsys cpuset_subsys; -struct cpuset; +struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE; /* See "Frequency meter" comments, below. */ @@ -82,49 +76,68 @@ struct cpuset { struct cgroup_subsys_state css; unsigned long flags; /* "unsigned long" so bitops work */ - cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */ + cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */ nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */ - struct cpuset *parent; /* my parent */ - /* - * Copy of global cpuset_mems_generation as of the most - * recent time this cpuset changed its mems_allowed. + * This is old Memory Nodes tasks took on. + * + * - top_cpuset.old_mems_allowed is initialized to mems_allowed. + * - A new cpuset's old_mems_allowed is initialized when some + * task is moved into it. + * - old_mems_allowed is used in cpuset_migrate_mm() when we change + * cpuset.mems_allowed and have tasks' nodemask updated, and + * then old_mems_allowed is updated to mems_allowed. */ - int mems_generation; + nodemask_t old_mems_allowed; struct fmeter fmeter; /* memory_pressure filter */ + /* + * Tasks are being attached to this cpuset. Used to prevent + * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). + */ + int attach_in_progress; + /* partition number for rebuild_sched_domains() */ int pn; /* for custom sched domain */ int relax_domain_level; - - /* used for walking a cpuset heirarchy */ - struct list_head stack_list; }; -/* Retrieve the cpuset for a cgroup */ -static inline struct cpuset *cgroup_cs(struct cgroup *cont) +static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) { - return container_of(cgroup_subsys_state(cont, cpuset_subsys_id), - struct cpuset, css); + return css ? container_of(css, struct cpuset, css) : NULL; } /* Retrieve the cpuset for a task */ static inline struct cpuset *task_cs(struct task_struct *task) { - return container_of(task_subsys_state(task, cpuset_subsys_id), - struct cpuset, css); + return css_cs(task_css(task, cpuset_cgrp_id)); +} + +static inline struct cpuset *parent_cs(struct cpuset *cs) +{ + return css_cs(cs->css.parent); } -struct cpuset_hotplug_scanner { - struct cgroup_scanner scan; - struct cgroup *to; -}; + +#ifdef CONFIG_NUMA +static inline bool task_has_mempolicy(struct task_struct *task) +{ + return task->mempolicy; +} +#else +static inline bool task_has_mempolicy(struct task_struct *task) +{ + return false; +} +#endif + /* bits in struct cpuset flags field */ typedef enum { + CS_ONLINE, CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE, CS_MEM_HARDWALL, @@ -135,6 +148,11 @@ typedef enum { } cpuset_flagbits_t; /* convenient tests for these bits */ +static inline bool is_cpuset_online(const struct cpuset *cs) +{ + return test_bit(CS_ONLINE, &cs->flags); +} + static inline int is_cpu_exclusive(const struct cpuset *cs) { return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); @@ -170,51 +188,54 @@ static inline int is_spread_slab(const struct cpuset *cs) return test_bit(CS_SPREAD_SLAB, &cs->flags); } -/* - * Increment this integer everytime any cpuset changes its - * mems_allowed value. Users of cpusets can track this generation - * number, and avoid having to lock and reload mems_allowed unless - * the cpuset they're using changes generation. - * - * A single, global generation is needed because cpuset_attach_task() could - * reattach a task to a different cpuset, which must not have its - * generation numbers aliased with those of that tasks previous cpuset. - * - * Generations are needed for mems_allowed because one task cannot - * modify another's memory placement. So we must enable every task, - * on every visit to __alloc_pages(), to efficiently check whether - * its current->cpuset->mems_allowed has changed, requiring an update - * of its current->mems_allowed. - * - * Since writes to cpuset_mems_generation are guarded by the cgroup lock - * there is no need to mark it atomic. - */ -static int cpuset_mems_generation; - static struct cpuset top_cpuset = { - .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), - .cpus_allowed = CPU_MASK_ALL, - .mems_allowed = NODE_MASK_ALL, + .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | + (1 << CS_MEM_EXCLUSIVE)), }; +/** + * cpuset_for_each_child - traverse online children of a cpuset + * @child_cs: loop cursor pointing to the current child + * @pos_css: used for iteration + * @parent_cs: target cpuset to walk children of + * + * Walk @child_cs through the online children of @parent_cs. Must be used + * with RCU read locked. + */ +#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ + css_for_each_child((pos_css), &(parent_cs)->css) \ + if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) + +/** + * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants + * @des_cs: loop cursor pointing to the current descendant + * @pos_css: used for iteration + * @root_cs: target cpuset to walk ancestor of + * + * Walk @des_cs through the online descendants of @root_cs. Must be used + * with RCU read locked. The caller may modify @pos_css by calling + * css_rightmost_descendant() to skip subtree. @root_cs is included in the + * iteration and the first node to be visited. + */ +#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ + css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ + if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) + /* - * There are two global mutexes guarding cpuset structures. The first - * is the main control groups cgroup_mutex, accessed via - * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific - * callback_mutex, below. They can nest. It is ok to first take - * cgroup_mutex, then nest callback_mutex. We also require taking - * task_lock() when dereferencing a task's cpuset pointer. See "The - * task_lock() exception", at the end of this comment. - * - * A task must hold both mutexes to modify cpusets. If a task - * holds cgroup_mutex, then it blocks others wanting that mutex, - * ensuring that it is the only task able to also acquire callback_mutex - * and be able to modify cpusets. It can perform various checks on - * the cpuset structure first, knowing nothing will change. It can - * also allocate memory while just holding cgroup_mutex. While it is - * performing these checks, various callback routines can briefly - * acquire callback_mutex to query cpusets. Once it is ready to make - * the changes, it takes callback_mutex, blocking everyone else. + * There are two global mutexes guarding cpuset structures - cpuset_mutex + * and callback_mutex. The latter may nest inside the former. We also + * require taking task_lock() when dereferencing a task's cpuset pointer. + * See "The task_lock() exception", at the end of this comment. + * + * A task must hold both mutexes to modify cpusets. If a task holds + * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it + * is the only task able to also acquire callback_mutex and be able to + * modify cpusets. It can perform various checks on the cpuset structure + * first, knowing nothing will change. It can also allocate memory while + * just holding cpuset_mutex. While it is performing these checks, various + * callback routines can briefly acquire callback_mutex to query cpusets. + * Once it is ready to make the changes, it takes callback_mutex, blocking + * everyone else. * * Calls to the kernel memory allocator can not be made while holding * callback_mutex, as that would risk double tripping on callback_mutex @@ -224,12 +245,9 @@ static struct cpuset top_cpuset = { * If a task is only holding callback_mutex, then it has read-only * access to cpusets. * - * The task_struct fields mems_allowed and mems_generation may only - * be accessed in the context of that task, so require no locks. - * - * The cpuset_common_file_write handler for operations that modify - * the cpuset hierarchy holds cgroup_mutex across the entire operation, - * single threading all such cpuset modifications across the system. + * Now, the task_struct fields mems_allowed and mempolicy may be changed + * by other task, we use alloc_lock in the task_struct fields to protect + * them. * * The cpuset_common_file_read() handlers only hold callback_mutex across * small pieces of code, such as when reading out possibly multi-word @@ -239,23 +257,33 @@ static struct cpuset top_cpuset = { * guidelines for accessing subsystem state in kernel/cgroup.c */ +static DEFINE_MUTEX(cpuset_mutex); static DEFINE_MUTEX(callback_mutex); -/* This is ugly, but preserves the userspace API for existing cpuset +/* + * CPU / memory hotplug is handled asynchronously. + */ +static void cpuset_hotplug_workfn(struct work_struct *work); +static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); + +static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); + +/* + * This is ugly, but preserves the userspace API for existing cpuset * users. If someone tries to mount the "cpuset" filesystem, we - * silently switch it to mount "cgroup" instead */ -static int cpuset_get_sb(struct file_system_type *fs_type, - int flags, const char *unused_dev_name, - void *data, struct vfsmount *mnt) + * silently switch it to mount "cgroup" instead + */ +static struct dentry *cpuset_mount(struct file_system_type *fs_type, + int flags, const char *unused_dev_name, void *data) { struct file_system_type *cgroup_fs = get_fs_type("cgroup"); - int ret = -ENODEV; + struct dentry *ret = ERR_PTR(-ENODEV); if (cgroup_fs) { char mountopts[] = "cpuset,noprefix," "release_agent=/sbin/cpuset_release_agent"; - ret = cgroup_fs->get_sb(cgroup_fs, flags, - unused_dev_name, mountopts, mnt); + ret = cgroup_fs->mount(cgroup_fs, flags, + unused_dev_name, mountopts); put_filesystem(cgroup_fs); } return ret; @@ -263,134 +291,61 @@ static int cpuset_get_sb(struct file_system_type *fs_type, static struct file_system_type cpuset_fs_type = { .name = "cpuset", - .get_sb = cpuset_get_sb, + .mount = cpuset_mount, }; /* - * Return in *pmask the portion of a cpusets's cpus_allowed that + * Return in pmask the portion of a cpusets's cpus_allowed that * are online. If none are online, walk up the cpuset hierarchy - * until we find one that does have some online cpus. If we get - * all the way to the top and still haven't found any online cpus, - * return cpu_online_map. Or if passed a NULL cs from an exit'ing - * task, return cpu_online_map. + * until we find one that does have some online cpus. The top + * cpuset always has some cpus online. * * One way or another, we guarantee to return some non-empty subset - * of cpu_online_map. + * of cpu_online_mask. * * Call with callback_mutex held. */ - -static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask) +static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask) { - while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map)) - cs = cs->parent; - if (cs) - cpus_and(*pmask, cs->cpus_allowed, cpu_online_map); - else - *pmask = cpu_online_map; - BUG_ON(!cpus_intersects(*pmask, cpu_online_map)); + while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask)) + cs = parent_cs(cs); + cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask); } /* * Return in *pmask the portion of a cpusets's mems_allowed that * are online, with memory. If none are online with memory, walk * up the cpuset hierarchy until we find one that does have some - * online mems. If we get all the way to the top and still haven't - * found any online mems, return node_states[N_HIGH_MEMORY]. + * online mems. The top cpuset always has some mems online. * * One way or another, we guarantee to return some non-empty subset - * of node_states[N_HIGH_MEMORY]. + * of node_states[N_MEMORY]. * * Call with callback_mutex held. */ - -static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask) +static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) { - while (cs && !nodes_intersects(cs->mems_allowed, - node_states[N_HIGH_MEMORY])) - cs = cs->parent; - if (cs) - nodes_and(*pmask, cs->mems_allowed, - node_states[N_HIGH_MEMORY]); - else - *pmask = node_states[N_HIGH_MEMORY]; - BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY])); + while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY])) + cs = parent_cs(cs); + nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]); } -/** - * cpuset_update_task_memory_state - update task memory placement - * - * If the current tasks cpusets mems_allowed changed behind our - * backs, update current->mems_allowed, mems_generation and task NUMA - * mempolicy to the new value. - * - * Task mempolicy is updated by rebinding it relative to the - * current->cpuset if a task has its memory placement changed. - * Do not call this routine if in_interrupt(). - * - * Call without callback_mutex or task_lock() held. May be - * called with or without cgroup_mutex held. Thanks in part to - * 'the_top_cpuset_hack', the task's cpuset pointer will never - * be NULL. This routine also might acquire callback_mutex during - * call. - * - * Reading current->cpuset->mems_generation doesn't need task_lock - * to guard the current->cpuset derefence, because it is guarded - * from concurrent freeing of current->cpuset using RCU. - * - * The rcu_dereference() is technically probably not needed, - * as I don't actually mind if I see a new cpuset pointer but - * an old value of mems_generation. However this really only - * matters on alpha systems using cpusets heavily. If I dropped - * that rcu_dereference(), it would save them a memory barrier. - * For all other arch's, rcu_dereference is a no-op anyway, and for - * alpha systems not using cpusets, another planned optimization, - * avoiding the rcu critical section for tasks in the root cpuset - * which is statically allocated, so can't vanish, will make this - * irrelevant. Better to use RCU as intended, than to engage in - * some cute trick to save a memory barrier that is impossible to - * test, for alpha systems using cpusets heavily, which might not - * even exist. - * - * This routine is needed to update the per-task mems_allowed data, - * within the tasks context, when it is trying to allocate memory - * (in various mm/mempolicy.c routines) and notices that some other - * task has been modifying its cpuset. +/* + * update task's spread flag if cpuset's page/slab spread flag is set + * + * Called with callback_mutex/cpuset_mutex held */ - -void cpuset_update_task_memory_state(void) +static void cpuset_update_task_spread_flag(struct cpuset *cs, + struct task_struct *tsk) { - int my_cpusets_mem_gen; - struct task_struct *tsk = current; - struct cpuset *cs; - - if (task_cs(tsk) == &top_cpuset) { - /* Don't need rcu for top_cpuset. It's never freed. */ - my_cpusets_mem_gen = top_cpuset.mems_generation; - } else { - rcu_read_lock(); - my_cpusets_mem_gen = task_cs(current)->mems_generation; - rcu_read_unlock(); - } - - if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) { - mutex_lock(&callback_mutex); - task_lock(tsk); - cs = task_cs(tsk); /* Maybe changed when task not locked */ - guarantee_online_mems(cs, &tsk->mems_allowed); - tsk->cpuset_mems_generation = cs->mems_generation; - if (is_spread_page(cs)) - tsk->flags |= PF_SPREAD_PAGE; - else - tsk->flags &= ~PF_SPREAD_PAGE; - if (is_spread_slab(cs)) - tsk->flags |= PF_SPREAD_SLAB; - else - tsk->flags &= ~PF_SPREAD_SLAB; - task_unlock(tsk); - mutex_unlock(&callback_mutex); - mpol_rebind_task(tsk, &tsk->mems_allowed); - } + if (is_spread_page(cs)) + tsk->flags |= PF_SPREAD_PAGE; + else + tsk->flags &= ~PF_SPREAD_PAGE; + if (is_spread_slab(cs)) + tsk->flags |= PF_SPREAD_SLAB; + else + tsk->flags &= ~PF_SPREAD_SLAB; } /* @@ -398,17 +353,48 @@ void cpuset_update_task_memory_state(void) * * One cpuset is a subset of another if all its allowed CPUs and * Memory Nodes are a subset of the other, and its exclusive flags - * are only set if the other's are set. Call holding cgroup_mutex. + * are only set if the other's are set. Call holding cpuset_mutex. */ static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) { - return cpus_subset(p->cpus_allowed, q->cpus_allowed) && + return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && nodes_subset(p->mems_allowed, q->mems_allowed) && is_cpu_exclusive(p) <= is_cpu_exclusive(q) && is_mem_exclusive(p) <= is_mem_exclusive(q); } +/** + * alloc_trial_cpuset - allocate a trial cpuset + * @cs: the cpuset that the trial cpuset duplicates + */ +static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) +{ + struct cpuset *trial; + + trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); + if (!trial) + return NULL; + + if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) { + kfree(trial); + return NULL; + } + cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); + + return trial; +} + +/** + * free_trial_cpuset - free the trial cpuset + * @trial: the trial cpuset to be freed + */ +static void free_trial_cpuset(struct cpuset *trial) +{ + free_cpumask_var(trial->cpus_allowed); + kfree(trial); +} + /* * validate_change() - Used to validate that any proposed cpuset change * follows the structural rules for cpusets. @@ -416,7 +402,7 @@ static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) * If we replaced the flag and mask values of the current cpuset * (cur) with those values in the trial cpuset (trial), would * our various subset and exclusive rules still be valid? Presumes - * cgroup_mutex held. + * cpuset_mutex held. * * 'cur' is the address of an actual, in-use cpuset. Operations * such as list traversal that depend on the actual address of the @@ -429,92 +415,121 @@ static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) * Return 0 if valid, -errno if not. */ -static int validate_change(const struct cpuset *cur, const struct cpuset *trial) +static int validate_change(struct cpuset *cur, struct cpuset *trial) { - struct cgroup *cont; + struct cgroup_subsys_state *css; struct cpuset *c, *par; + int ret; + + rcu_read_lock(); /* Each of our child cpusets must be a subset of us */ - list_for_each_entry(cont, &cur->css.cgroup->children, sibling) { - if (!is_cpuset_subset(cgroup_cs(cont), trial)) - return -EBUSY; - } + ret = -EBUSY; + cpuset_for_each_child(c, css, cur) + if (!is_cpuset_subset(c, trial)) + goto out; /* Remaining checks don't apply to root cpuset */ + ret = 0; if (cur == &top_cpuset) - return 0; + goto out; - par = cur->parent; + par = parent_cs(cur); /* We must be a subset of our parent cpuset */ + ret = -EACCES; if (!is_cpuset_subset(trial, par)) - return -EACCES; + goto out; /* * If either I or some sibling (!= me) is exclusive, we can't * overlap */ - list_for_each_entry(cont, &par->css.cgroup->children, sibling) { - c = cgroup_cs(cont); + ret = -EINVAL; + cpuset_for_each_child(c, css, par) { if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && c != cur && - cpus_intersects(trial->cpus_allowed, c->cpus_allowed)) - return -EINVAL; + cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) + goto out; if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && c != cur && nodes_intersects(trial->mems_allowed, c->mems_allowed)) - return -EINVAL; + goto out; } - /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */ - if (cgroup_task_count(cur->css.cgroup)) { - if (cpus_empty(trial->cpus_allowed) || - nodes_empty(trial->mems_allowed)) { - return -ENOSPC; - } + /* + * Cpusets with tasks - existing or newly being attached - can't + * be changed to have empty cpus_allowed or mems_allowed. + */ + ret = -ENOSPC; + if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) { + if (!cpumask_empty(cur->cpus_allowed) && + cpumask_empty(trial->cpus_allowed)) + goto out; + if (!nodes_empty(cur->mems_allowed) && + nodes_empty(trial->mems_allowed)) + goto out; } - return 0; + ret = 0; +out: + rcu_read_unlock(); + return ret; } +#ifdef CONFIG_SMP /* - * Helper routine for rebuild_sched_domains(). + * Helper routine for generate_sched_domains(). * Do cpusets a, b have overlapping cpus_allowed masks? */ - static int cpusets_overlap(struct cpuset *a, struct cpuset *b) { - return cpus_intersects(a->cpus_allowed, b->cpus_allowed); + return cpumask_intersects(a->cpus_allowed, b->cpus_allowed); } static void update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) { - if (!dattr) - return; if (dattr->relax_domain_level < c->relax_domain_level) dattr->relax_domain_level = c->relax_domain_level; return; } +static void update_domain_attr_tree(struct sched_domain_attr *dattr, + struct cpuset *root_cs) +{ + struct cpuset *cp; + struct cgroup_subsys_state *pos_css; + + rcu_read_lock(); + cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { + if (cp == root_cs) + continue; + + /* skip the whole subtree if @cp doesn't have any CPU */ + if (cpumask_empty(cp->cpus_allowed)) { + pos_css = css_rightmost_descendant(pos_css); + continue; + } + + if (is_sched_load_balance(cp)) + update_domain_attr(dattr, cp); + } + rcu_read_unlock(); +} + /* - * rebuild_sched_domains() + * generate_sched_domains() * - * If the flag 'sched_load_balance' of any cpuset with non-empty - * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset - * which has that flag enabled, or if any cpuset with a non-empty - * 'cpus' is removed, then call this routine to rebuild the - * scheduler's dynamic sched domains. - * - * This routine builds a partial partition of the systems CPUs - * (the set of non-overlappping cpumask_t's in the array 'part' - * below), and passes that partial partition to the kernel/sched.c - * partition_sched_domains() routine, which will rebuild the - * schedulers load balancing domains (sched domains) as specified - * by that partial partition. A 'partial partition' is a set of - * non-overlapping subsets whose union is a subset of that set. + * This function builds a partial partition of the systems CPUs + * A 'partial partition' is a set of non-overlapping subsets whose + * union is a subset of that set. + * The output of this function needs to be passed to kernel/sched/core.c + * partition_sched_domains() routine, which will rebuild the scheduler's + * load balancing domains (sched domains) as specified by that partial + * partition. * - * See "What is sched_load_balance" in Documentation/cpusets.txt + * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt * for a background explanation of this. * * Does not return errors, on the theory that the callers of this @@ -522,16 +537,10 @@ update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) * domains when operating in the severe memory shortage situations * that could cause allocation failures below. * - * Call with cgroup_mutex held. May take callback_mutex during - * call due to the kfifo_alloc() and kmalloc() calls. May nest - * a call to the get_online_cpus()/put_online_cpus() pair. - * Must not be called holding callback_mutex, because we must not - * call get_online_cpus() while holding callback_mutex. Elsewhere - * the kernel nests callback_mutex inside get_online_cpus() calls. - * So the reverse nesting would risk an ABBA deadlock. + * Must be called with cpuset_mutex held. * * The three key local variables below are: - * q - a kfifo queue of cpuset pointers, used to implement a + * q - a linked-list queue of cpuset pointers, used to implement a * top-down scan of all cpusets. This scan loads a pointer * to each cpuset marked is_sched_load_balance into the * array 'csa'. For our purposes, rebuilding the schedulers @@ -544,7 +553,7 @@ update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) * is a subset of one of these domains, while there are as * many such domains as possible, each as small as possible. * doms - Conversion of 'csa' to an array of cpumasks, for passing to - * the kernel/sched.c routine partition_sched_domains() in a + * the kernel/sched/core.c routine partition_sched_domains() in a * convenient format, that can be easily compared to the prior * value to determine what partition elements (sched domains) * were changed (added or removed.) @@ -563,59 +572,68 @@ update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) * element of the partition (one sched domain) to be passed to * partition_sched_domains(). */ - -static void rebuild_sched_domains(void) +static int generate_sched_domains(cpumask_var_t **domains, + struct sched_domain_attr **attributes) { - struct kfifo *q; /* queue of cpusets to be scanned */ struct cpuset *cp; /* scans q */ struct cpuset **csa; /* array of all cpuset ptrs */ int csn; /* how many cpuset ptrs in csa so far */ int i, j, k; /* indices for partition finding loops */ - cpumask_t *doms; /* resulting partition; i.e. sched domains */ + cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ struct sched_domain_attr *dattr; /* attributes for custom domains */ - int ndoms; /* number of sched domains in result */ - int nslot; /* next empty doms[] cpumask_t slot */ + int ndoms = 0; /* number of sched domains in result */ + int nslot; /* next empty doms[] struct cpumask slot */ + struct cgroup_subsys_state *pos_css; - q = NULL; - csa = NULL; doms = NULL; dattr = NULL; + csa = NULL; /* Special case for the 99% of systems with one, full, sched domain */ if (is_sched_load_balance(&top_cpuset)) { ndoms = 1; - doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL); + doms = alloc_sched_domains(ndoms); if (!doms) - goto rebuild; + goto done; + dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); if (dattr) { *dattr = SD_ATTR_INIT; - update_domain_attr(dattr, &top_cpuset); + update_domain_attr_tree(dattr, &top_cpuset); } - *doms = top_cpuset.cpus_allowed; - goto rebuild; - } + cpumask_copy(doms[0], top_cpuset.cpus_allowed); - q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL); - if (IS_ERR(q)) goto done; - csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL); + } + + csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL); if (!csa) goto done; csn = 0; - cp = &top_cpuset; - __kfifo_put(q, (void *)&cp, sizeof(cp)); - while (__kfifo_get(q, (void *)&cp, sizeof(cp))) { - struct cgroup *cont; - struct cpuset *child; /* scans child cpusets of cp */ + rcu_read_lock(); + cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { + if (cp == &top_cpuset) + continue; + /* + * Continue traversing beyond @cp iff @cp has some CPUs and + * isn't load balancing. The former is obvious. The + * latter: All child cpusets contain a subset of the + * parent's cpus, so just skip them, and then we call + * update_domain_attr_tree() to calc relax_domain_level of + * the corresponding sched domain. + */ + if (!cpumask_empty(cp->cpus_allowed) && + !is_sched_load_balance(cp)) + continue; + if (is_sched_load_balance(cp)) csa[csn++] = cp; - list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { - child = cgroup_cs(cont); - __kfifo_put(q, (void *)&child, sizeof(cp)); - } - } + + /* skip @cp's subtree */ + pos_css = css_rightmost_descendant(pos_css); + } + rcu_read_unlock(); for (i = 0; i < csn; i++) csa[i]->pn = i; @@ -644,194 +662,274 @@ restart: } } - /* Convert <csn, csa> to <ndoms, doms> */ - doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL); + /* + * Now we know how many domains to create. + * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. + */ + doms = alloc_sched_domains(ndoms); if (!doms) - goto rebuild; + goto done; + + /* + * The rest of the code, including the scheduler, can deal with + * dattr==NULL case. No need to abort if alloc fails. + */ dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL); for (nslot = 0, i = 0; i < csn; i++) { struct cpuset *a = csa[i]; + struct cpumask *dp; int apn = a->pn; - if (apn >= 0) { - cpumask_t *dp = doms + nslot; - - if (nslot == ndoms) { - static int warnings = 10; - if (warnings) { - printk(KERN_WARNING - "rebuild_sched_domains confused:" - " nslot %d, ndoms %d, csn %d, i %d," - " apn %d\n", - nslot, ndoms, csn, i, apn); - warnings--; - } - continue; + if (apn < 0) { + /* Skip completed partitions */ + continue; + } + + dp = doms[nslot]; + + if (nslot == ndoms) { + static int warnings = 10; + if (warnings) { + pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", + nslot, ndoms, csn, i, apn); + warnings--; } + continue; + } - cpus_clear(*dp); - if (dattr) - *(dattr + nslot) = SD_ATTR_INIT; - for (j = i; j < csn; j++) { - struct cpuset *b = csa[j]; + cpumask_clear(dp); + if (dattr) + *(dattr + nslot) = SD_ATTR_INIT; + for (j = i; j < csn; j++) { + struct cpuset *b = csa[j]; - if (apn == b->pn) { - cpus_or(*dp, *dp, b->cpus_allowed); - b->pn = -1; - update_domain_attr(dattr, b); - } + if (apn == b->pn) { + cpumask_or(dp, dp, b->cpus_allowed); + if (dattr) + update_domain_attr_tree(dattr + nslot, b); + + /* Done with this partition */ + b->pn = -1; } - nslot++; } + nslot++; } BUG_ON(nslot != ndoms); -rebuild: - /* Have scheduler rebuild sched domains */ +done: + kfree(csa); + + /* + * Fallback to the default domain if kmalloc() failed. + * See comments in partition_sched_domains(). + */ + if (doms == NULL) + ndoms = 1; + + *domains = doms; + *attributes = dattr; + return ndoms; +} + +/* + * Rebuild scheduler domains. + * + * If the flag 'sched_load_balance' of any cpuset with non-empty + * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset + * which has that flag enabled, or if any cpuset with a non-empty + * 'cpus' is removed, then call this routine to rebuild the + * scheduler's dynamic sched domains. + * + * Call with cpuset_mutex held. Takes get_online_cpus(). + */ +static void rebuild_sched_domains_locked(void) +{ + struct sched_domain_attr *attr; + cpumask_var_t *doms; + int ndoms; + + lockdep_assert_held(&cpuset_mutex); get_online_cpus(); - partition_sched_domains(ndoms, doms, dattr); + + /* + * We have raced with CPU hotplug. Don't do anything to avoid + * passing doms with offlined cpu to partition_sched_domains(). + * Anyways, hotplug work item will rebuild sched domains. + */ + if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask)) + goto out; + + /* Generate domain masks and attrs */ + ndoms = generate_sched_domains(&doms, &attr); + + /* Have scheduler rebuild the domains */ + partition_sched_domains(ndoms, doms, attr); +out: put_online_cpus(); +} +#else /* !CONFIG_SMP */ +static void rebuild_sched_domains_locked(void) +{ +} +#endif /* CONFIG_SMP */ -done: - if (q && !IS_ERR(q)) - kfifo_free(q); - kfree(csa); - /* Don't kfree(doms) -- partition_sched_domains() does that. */ - /* Don't kfree(dattr) -- partition_sched_domains() does that. */ +void rebuild_sched_domains(void) +{ + mutex_lock(&cpuset_mutex); + rebuild_sched_domains_locked(); + mutex_unlock(&cpuset_mutex); } -static inline int started_after_time(struct task_struct *t1, - struct timespec *time, - struct task_struct *t2) +/* + * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus + * @cs: the cpuset in interest + * + * A cpuset's effective cpumask is the cpumask of the nearest ancestor + * with non-empty cpus. We use effective cpumask whenever: + * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask + * if the cpuset they reside in has no cpus) + * - we want to retrieve task_cs(tsk)'s cpus_allowed. + * + * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an + * exception. See comments there. + */ +static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs) { - int start_diff = timespec_compare(&t1->start_time, time); - if (start_diff > 0) { - return 1; - } else if (start_diff < 0) { - return 0; - } else { - /* - * Arbitrarily, if two processes started at the same - * time, we'll say that the lower pointer value - * started first. Note that t2 may have exited by now - * so this may not be a valid pointer any longer, but - * that's fine - it still serves to distinguish - * between two tasks started (effectively) - * simultaneously. - */ - return t1 > t2; - } + while (cpumask_empty(cs->cpus_allowed)) + cs = parent_cs(cs); + return cs; } -static inline int started_after(void *p1, void *p2) +/* + * effective_nodemask_cpuset - return nearest ancestor with non-empty mems + * @cs: the cpuset in interest + * + * A cpuset's effective nodemask is the nodemask of the nearest ancestor + * with non-empty memss. We use effective nodemask whenever: + * - we update tasks' mems_allowed. (they take on the ancestor's nodemask + * if the cpuset they reside in has no mems) + * - we want to retrieve task_cs(tsk)'s mems_allowed. + * + * Called with cpuset_mutex held. + */ +static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs) { - struct task_struct *t1 = p1; - struct task_struct *t2 = p2; - return started_after_time(t1, &t2->start_time, t2); + while (nodes_empty(cs->mems_allowed)) + cs = parent_cs(cs); + return cs; } /** - * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's - * @tsk: task to test - * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner - * - * Call with cgroup_mutex held. May take callback_mutex during call. - * Called for each task in a cgroup by cgroup_scan_tasks(). - * Return nonzero if this tasks's cpus_allowed mask should be changed (in other - * words, if its mask is not equal to its cpuset's mask). + * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. + * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed + * + * Iterate through each task of @cs updating its cpus_allowed to the + * effective cpuset's. As this function is called with cpuset_mutex held, + * cpuset membership stays stable. */ -static int cpuset_test_cpumask(struct task_struct *tsk, - struct cgroup_scanner *scan) +static void update_tasks_cpumask(struct cpuset *cs) { - return !cpus_equal(tsk->cpus_allowed, - (cgroup_cs(scan->cg))->cpus_allowed); + struct cpuset *cpus_cs = effective_cpumask_cpuset(cs); + struct css_task_iter it; + struct task_struct *task; + + css_task_iter_start(&cs->css, &it); + while ((task = css_task_iter_next(&it))) + set_cpus_allowed_ptr(task, cpus_cs->cpus_allowed); + css_task_iter_end(&it); } -/** - * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's - * @tsk: task to test - * @scan: struct cgroup_scanner containing the cgroup of the task +/* + * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy. + * @root_cs: the root cpuset of the hierarchy + * @update_root: update root cpuset or not? * - * Called by cgroup_scan_tasks() for each task in a cgroup whose - * cpus_allowed mask needs to be changed. + * This will update cpumasks of tasks in @root_cs and all other empty cpusets + * which take on cpumask of @root_cs. * - * We don't need to re-check for the cgroup/cpuset membership, since we're - * holding cgroup_lock() at this point. + * Called with cpuset_mutex held */ -static void cpuset_change_cpumask(struct task_struct *tsk, - struct cgroup_scanner *scan) +static void update_tasks_cpumask_hier(struct cpuset *root_cs, bool update_root) { - set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed)); + struct cpuset *cp; + struct cgroup_subsys_state *pos_css; + + rcu_read_lock(); + cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { + if (cp == root_cs) { + if (!update_root) + continue; + } else { + /* skip the whole subtree if @cp have some CPU */ + if (!cpumask_empty(cp->cpus_allowed)) { + pos_css = css_rightmost_descendant(pos_css); + continue; + } + } + if (!css_tryget_online(&cp->css)) + continue; + rcu_read_unlock(); + + update_tasks_cpumask(cp); + + rcu_read_lock(); + css_put(&cp->css); + } + rcu_read_unlock(); } /** * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it * @cs: the cpuset to consider + * @trialcs: trial cpuset * @buf: buffer of cpu numbers written to this cpuset */ -static int update_cpumask(struct cpuset *cs, char *buf) +static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, + const char *buf) { - struct cpuset trialcs; - struct cgroup_scanner scan; - struct ptr_heap heap; int retval; int is_load_balanced; - /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */ + /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ if (cs == &top_cpuset) return -EACCES; - trialcs = *cs; - /* * An empty cpus_allowed is ok only if the cpuset has no tasks. * Since cpulist_parse() fails on an empty mask, we special case * that parsing. The validate_change() call ensures that cpusets * with tasks have cpus. */ - buf = strstrip(buf); if (!*buf) { - cpus_clear(trialcs.cpus_allowed); + cpumask_clear(trialcs->cpus_allowed); } else { - retval = cpulist_parse(buf, trialcs.cpus_allowed); + retval = cpulist_parse(buf, trialcs->cpus_allowed); if (retval < 0) return retval; - if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map)) + if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask)) return -EINVAL; } - retval = validate_change(cs, &trialcs); - if (retval < 0) - return retval; /* Nothing to do if the cpus didn't change */ - if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed)) + if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) return 0; - retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, &started_after); - if (retval) + retval = validate_change(cs, trialcs); + if (retval < 0) return retval; - is_load_balanced = is_sched_load_balance(&trialcs); + is_load_balanced = is_sched_load_balance(trialcs); mutex_lock(&callback_mutex); - cs->cpus_allowed = trialcs.cpus_allowed; + cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); mutex_unlock(&callback_mutex); - /* - * Scan tasks in the cpuset, and update the cpumasks of any - * that need an update. - */ - scan.cg = cs->css.cgroup; - scan.test_task = cpuset_test_cpumask; - scan.process_task = cpuset_change_cpumask; - scan.heap = &heap; - cgroup_scan_tasks(&scan); - heap_free(&heap); + update_tasks_cpumask_hier(cs, true); if (is_load_balanced) - rebuild_sched_domains(); + rebuild_sched_domains_locked(); return 0; } @@ -843,83 +941,206 @@ static int update_cpumask(struct cpuset *cs, char *buf) * Temporarilly set tasks mems_allowed to target nodes of migration, * so that the migration code can allocate pages on these nodes. * - * Call holding cgroup_mutex, so current's cpuset won't change - * during this call, as manage_mutex holds off any cpuset_attach() - * calls. Therefore we don't need to take task_lock around the - * call to guarantee_online_mems(), as we know no one is changing - * our task's cpuset. - * - * Hold callback_mutex around the two modifications of our tasks - * mems_allowed to synchronize with cpuset_mems_allowed(). - * * While the mm_struct we are migrating is typically from some * other task, the task_struct mems_allowed that we are hacking * is for our current task, which must allocate new pages for that * migrating memory region. - * - * We call cpuset_update_task_memory_state() before hacking - * our tasks mems_allowed, so that we are assured of being in - * sync with our tasks cpuset, and in particular, callbacks to - * cpuset_update_task_memory_state() from nested page allocations - * won't see any mismatch of our cpuset and task mems_generation - * values, so won't overwrite our hacked tasks mems_allowed - * nodemask. */ static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to) { struct task_struct *tsk = current; + struct cpuset *mems_cs; - cpuset_update_task_memory_state(); - - mutex_lock(&callback_mutex); tsk->mems_allowed = *to; - mutex_unlock(&callback_mutex); do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL); - mutex_lock(&callback_mutex); - guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed); - mutex_unlock(&callback_mutex); + rcu_read_lock(); + mems_cs = effective_nodemask_cpuset(task_cs(tsk)); + guarantee_online_mems(mems_cs, &tsk->mems_allowed); + rcu_read_unlock(); +} + +/* + * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy + * @tsk: the task to change + * @newmems: new nodes that the task will be set + * + * In order to avoid seeing no nodes if the old and new nodes are disjoint, + * we structure updates as setting all new allowed nodes, then clearing newly + * disallowed ones. + */ +static void cpuset_change_task_nodemask(struct task_struct *tsk, + nodemask_t *newmems) +{ + bool need_loop; + + /* + * Allow tasks that have access to memory reserves because they have + * been OOM killed to get memory anywhere. + */ + if (unlikely(test_thread_flag(TIF_MEMDIE))) + return; + if (current->flags & PF_EXITING) /* Let dying task have memory */ + return; + + task_lock(tsk); + /* + * Determine if a loop is necessary if another thread is doing + * read_mems_allowed_begin(). If at least one node remains unchanged and + * tsk does not have a mempolicy, then an empty nodemask will not be + * possible when mems_allowed is larger than a word. + */ + need_loop = task_has_mempolicy(tsk) || + !nodes_intersects(*newmems, tsk->mems_allowed); + + if (need_loop) { + local_irq_disable(); + write_seqcount_begin(&tsk->mems_allowed_seq); + } + + nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); + mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1); + + mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2); + tsk->mems_allowed = *newmems; + + if (need_loop) { + write_seqcount_end(&tsk->mems_allowed_seq); + local_irq_enable(); + } + + task_unlock(tsk); +} + +static void *cpuset_being_rebound; + +/** + * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. + * @cs: the cpuset in which each task's mems_allowed mask needs to be changed + * + * Iterate through each task of @cs updating its mems_allowed to the + * effective cpuset's. As this function is called with cpuset_mutex held, + * cpuset membership stays stable. + */ +static void update_tasks_nodemask(struct cpuset *cs) +{ + static nodemask_t newmems; /* protected by cpuset_mutex */ + struct cpuset *mems_cs = effective_nodemask_cpuset(cs); + struct css_task_iter it; + struct task_struct *task; + + cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ + + guarantee_online_mems(mems_cs, &newmems); + + /* + * The mpol_rebind_mm() call takes mmap_sem, which we couldn't + * take while holding tasklist_lock. Forks can happen - the + * mpol_dup() cpuset_being_rebound check will catch such forks, + * and rebind their vma mempolicies too. Because we still hold + * the global cpuset_mutex, we know that no other rebind effort + * will be contending for the global variable cpuset_being_rebound. + * It's ok if we rebind the same mm twice; mpol_rebind_mm() + * is idempotent. Also migrate pages in each mm to new nodes. + */ + css_task_iter_start(&cs->css, &it); + while ((task = css_task_iter_next(&it))) { + struct mm_struct *mm; + bool migrate; + + cpuset_change_task_nodemask(task, &newmems); + + mm = get_task_mm(task); + if (!mm) + continue; + + migrate = is_memory_migrate(cs); + + mpol_rebind_mm(mm, &cs->mems_allowed); + if (migrate) + cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); + mmput(mm); + } + css_task_iter_end(&it); + + /* + * All the tasks' nodemasks have been updated, update + * cs->old_mems_allowed. + */ + cs->old_mems_allowed = newmems; + + /* We're done rebinding vmas to this cpuset's new mems_allowed. */ + cpuset_being_rebound = NULL; +} + +/* + * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy. + * @cs: the root cpuset of the hierarchy + * @update_root: update the root cpuset or not? + * + * This will update nodemasks of tasks in @root_cs and all other empty cpusets + * which take on nodemask of @root_cs. + * + * Called with cpuset_mutex held + */ +static void update_tasks_nodemask_hier(struct cpuset *root_cs, bool update_root) +{ + struct cpuset *cp; + struct cgroup_subsys_state *pos_css; + + rcu_read_lock(); + cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { + if (cp == root_cs) { + if (!update_root) + continue; + } else { + /* skip the whole subtree if @cp have some CPU */ + if (!nodes_empty(cp->mems_allowed)) { + pos_css = css_rightmost_descendant(pos_css); + continue; + } + } + if (!css_tryget_online(&cp->css)) + continue; + rcu_read_unlock(); + + update_tasks_nodemask(cp); + + rcu_read_lock(); + css_put(&cp->css); + } + rcu_read_unlock(); } /* * Handle user request to change the 'mems' memory placement * of a cpuset. Needs to validate the request, update the - * cpusets mems_allowed and mems_generation, and for each - * task in the cpuset, rebind any vma mempolicies and if - * the cpuset is marked 'memory_migrate', migrate the tasks - * pages to the new memory. + * cpusets mems_allowed, and for each task in the cpuset, + * update mems_allowed and rebind task's mempolicy and any vma + * mempolicies and if the cpuset is marked 'memory_migrate', + * migrate the tasks pages to the new memory. * - * Call with cgroup_mutex held. May take callback_mutex during call. + * Call with cpuset_mutex held. May take callback_mutex during call. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, * lock each such tasks mm->mmap_sem, scan its vma's and rebind * their mempolicies to the cpusets new mems_allowed. */ - -static void *cpuset_being_rebound; - -static int update_nodemask(struct cpuset *cs, char *buf) +static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, + const char *buf) { - struct cpuset trialcs; - nodemask_t oldmem; - struct task_struct *p; - struct mm_struct **mmarray; - int i, n, ntasks; - int migrate; - int fudge; int retval; - struct cgroup_iter it; /* - * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY]; + * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; * it's read-only */ - if (cs == &top_cpuset) - return -EACCES; - - trialcs = *cs; + if (cs == &top_cpuset) { + retval = -EACCES; + goto done; + } /* * An empty mems_allowed is ok iff there are no tasks in the cpuset. @@ -927,165 +1148,132 @@ static int update_nodemask(struct cpuset *cs, char *buf) * that parsing. The validate_change() call ensures that cpusets * with tasks have memory. */ - buf = strstrip(buf); if (!*buf) { - nodes_clear(trialcs.mems_allowed); + nodes_clear(trialcs->mems_allowed); } else { - retval = nodelist_parse(buf, trialcs.mems_allowed); + retval = nodelist_parse(buf, trialcs->mems_allowed); if (retval < 0) goto done; - if (!nodes_subset(trialcs.mems_allowed, - node_states[N_HIGH_MEMORY])) - return -EINVAL; + if (!nodes_subset(trialcs->mems_allowed, + node_states[N_MEMORY])) { + retval = -EINVAL; + goto done; + } } - oldmem = cs->mems_allowed; - if (nodes_equal(oldmem, trialcs.mems_allowed)) { + + if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { retval = 0; /* Too easy - nothing to do */ goto done; } - retval = validate_change(cs, &trialcs); + retval = validate_change(cs, trialcs); if (retval < 0) goto done; mutex_lock(&callback_mutex); - cs->mems_allowed = trialcs.mems_allowed; - cs->mems_generation = cpuset_mems_generation++; + cs->mems_allowed = trialcs->mems_allowed; mutex_unlock(&callback_mutex); - cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ - - fudge = 10; /* spare mmarray[] slots */ - fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */ - retval = -ENOMEM; - - /* - * Allocate mmarray[] to hold mm reference for each task - * in cpuset cs. Can't kmalloc GFP_KERNEL while holding - * tasklist_lock. We could use GFP_ATOMIC, but with a - * few more lines of code, we can retry until we get a big - * enough mmarray[] w/o using GFP_ATOMIC. - */ - while (1) { - ntasks = cgroup_task_count(cs->css.cgroup); /* guess */ - ntasks += fudge; - mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL); - if (!mmarray) - goto done; - read_lock(&tasklist_lock); /* block fork */ - if (cgroup_task_count(cs->css.cgroup) <= ntasks) - break; /* got enough */ - read_unlock(&tasklist_lock); /* try again */ - kfree(mmarray); - } - - n = 0; - - /* Load up mmarray[] with mm reference for each task in cpuset. */ - cgroup_iter_start(cs->css.cgroup, &it); - while ((p = cgroup_iter_next(cs->css.cgroup, &it))) { - struct mm_struct *mm; - - if (n >= ntasks) { - printk(KERN_WARNING - "Cpuset mempolicy rebind incomplete.\n"); - break; - } - mm = get_task_mm(p); - if (!mm) - continue; - mmarray[n++] = mm; - } - cgroup_iter_end(cs->css.cgroup, &it); - read_unlock(&tasklist_lock); - - /* - * Now that we've dropped the tasklist spinlock, we can - * rebind the vma mempolicies of each mm in mmarray[] to their - * new cpuset, and release that mm. The mpol_rebind_mm() - * call takes mmap_sem, which we couldn't take while holding - * tasklist_lock. Forks can happen again now - the mpol_dup() - * cpuset_being_rebound check will catch such forks, and rebind - * their vma mempolicies too. Because we still hold the global - * cgroup_mutex, we know that no other rebind effort will - * be contending for the global variable cpuset_being_rebound. - * It's ok if we rebind the same mm twice; mpol_rebind_mm() - * is idempotent. Also migrate pages in each mm to new nodes. - */ - migrate = is_memory_migrate(cs); - for (i = 0; i < n; i++) { - struct mm_struct *mm = mmarray[i]; - - mpol_rebind_mm(mm, &cs->mems_allowed); - if (migrate) - cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed); - mmput(mm); - } - - /* We're done rebinding vmas to this cpuset's new mems_allowed. */ - kfree(mmarray); - cpuset_being_rebound = NULL; - retval = 0; + update_tasks_nodemask_hier(cs, true); done: return retval; } int current_cpuset_is_being_rebound(void) { - return task_cs(current) == cpuset_being_rebound; + int ret; + + rcu_read_lock(); + ret = task_cs(current) == cpuset_being_rebound; + rcu_read_unlock(); + + return ret; } static int update_relax_domain_level(struct cpuset *cs, s64 val) { - if (val < -1 || val >= SD_LV_MAX) +#ifdef CONFIG_SMP + if (val < -1 || val >= sched_domain_level_max) return -EINVAL; +#endif if (val != cs->relax_domain_level) { cs->relax_domain_level = val; - rebuild_sched_domains(); + if (!cpumask_empty(cs->cpus_allowed) && + is_sched_load_balance(cs)) + rebuild_sched_domains_locked(); } return 0; } +/** + * update_tasks_flags - update the spread flags of tasks in the cpuset. + * @cs: the cpuset in which each task's spread flags needs to be changed + * + * Iterate through each task of @cs updating its spread flags. As this + * function is called with cpuset_mutex held, cpuset membership stays + * stable. + */ +static void update_tasks_flags(struct cpuset *cs) +{ + struct css_task_iter it; + struct task_struct *task; + + css_task_iter_start(&cs->css, &it); + while ((task = css_task_iter_next(&it))) + cpuset_update_task_spread_flag(cs, task); + css_task_iter_end(&it); +} + /* * update_flag - read a 0 or a 1 in a file and update associated flag * bit: the bit to update (see cpuset_flagbits_t) * cs: the cpuset to update * turning_on: whether the flag is being set or cleared * - * Call with cgroup_mutex held. + * Call with cpuset_mutex held. */ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, int turning_on) { - struct cpuset trialcs; + struct cpuset *trialcs; + int balance_flag_changed; + int spread_flag_changed; int err; - int cpus_nonempty, balance_flag_changed; - trialcs = *cs; + trialcs = alloc_trial_cpuset(cs); + if (!trialcs) + return -ENOMEM; + if (turning_on) - set_bit(bit, &trialcs.flags); + set_bit(bit, &trialcs->flags); else - clear_bit(bit, &trialcs.flags); + clear_bit(bit, &trialcs->flags); - err = validate_change(cs, &trialcs); + err = validate_change(cs, trialcs); if (err < 0) - return err; + goto out; - cpus_nonempty = !cpus_empty(trialcs.cpus_allowed); balance_flag_changed = (is_sched_load_balance(cs) != - is_sched_load_balance(&trialcs)); + is_sched_load_balance(trialcs)); + + spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) + || (is_spread_page(cs) != is_spread_page(trialcs))); mutex_lock(&callback_mutex); - cs->flags = trialcs.flags; + cs->flags = trialcs->flags; mutex_unlock(&callback_mutex); - if (cpus_nonempty && balance_flag_changed) - rebuild_sched_domains(); + if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) + rebuild_sched_domains_locked(); - return 0; + if (spread_flag_changed) + update_tasks_flags(cs); +out: + free_trial_cpuset(trialcs); + return err; } /* @@ -1186,43 +1374,140 @@ static int fmeter_getrate(struct fmeter *fmp) return val; } -/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ -static int cpuset_can_attach(struct cgroup_subsys *ss, - struct cgroup *cont, struct task_struct *tsk) +static struct cpuset *cpuset_attach_old_cs; + +/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ +static int cpuset_can_attach(struct cgroup_subsys_state *css, + struct cgroup_taskset *tset) { - struct cpuset *cs = cgroup_cs(cont); + struct cpuset *cs = css_cs(css); + struct task_struct *task; + int ret; + + /* used later by cpuset_attach() */ + cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset)); - if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) - return -ENOSPC; + mutex_lock(&cpuset_mutex); - return security_task_setscheduler(tsk, 0, NULL); + /* + * We allow to move tasks into an empty cpuset if sane_behavior + * flag is set. + */ + ret = -ENOSPC; + if (!cgroup_sane_behavior(css->cgroup) && + (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) + goto out_unlock; + + cgroup_taskset_for_each(task, tset) { + /* + * Kthreads which disallow setaffinity shouldn't be moved + * to a new cpuset; we don't want to change their cpu + * affinity and isolating such threads by their set of + * allowed nodes is unnecessary. Thus, cpusets are not + * applicable for such threads. This prevents checking for + * success of set_cpus_allowed_ptr() on all attached tasks + * before cpus_allowed may be changed. + */ + ret = -EINVAL; + if (task->flags & PF_NO_SETAFFINITY) + goto out_unlock; + ret = security_task_setscheduler(task); + if (ret) + goto out_unlock; + } + + /* + * Mark attach is in progress. This makes validate_change() fail + * changes which zero cpus/mems_allowed. + */ + cs->attach_in_progress++; + ret = 0; +out_unlock: + mutex_unlock(&cpuset_mutex); + return ret; } -static void cpuset_attach(struct cgroup_subsys *ss, - struct cgroup *cont, struct cgroup *oldcont, - struct task_struct *tsk) +static void cpuset_cancel_attach(struct cgroup_subsys_state *css, + struct cgroup_taskset *tset) { - cpumask_t cpus; - nodemask_t from, to; + mutex_lock(&cpuset_mutex); + css_cs(css)->attach_in_progress--; + mutex_unlock(&cpuset_mutex); +} + +/* + * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach() + * but we can't allocate it dynamically there. Define it global and + * allocate from cpuset_init(). + */ +static cpumask_var_t cpus_attach; + +static void cpuset_attach(struct cgroup_subsys_state *css, + struct cgroup_taskset *tset) +{ + /* static buf protected by cpuset_mutex */ + static nodemask_t cpuset_attach_nodemask_to; struct mm_struct *mm; - struct cpuset *cs = cgroup_cs(cont); - struct cpuset *oldcs = cgroup_cs(oldcont); + struct task_struct *task; + struct task_struct *leader = cgroup_taskset_first(tset); + struct cpuset *cs = css_cs(css); + struct cpuset *oldcs = cpuset_attach_old_cs; + struct cpuset *cpus_cs = effective_cpumask_cpuset(cs); + struct cpuset *mems_cs = effective_nodemask_cpuset(cs); - mutex_lock(&callback_mutex); - guarantee_online_cpus(cs, &cpus); - set_cpus_allowed_ptr(tsk, &cpus); - mutex_unlock(&callback_mutex); + mutex_lock(&cpuset_mutex); + + /* prepare for attach */ + if (cs == &top_cpuset) + cpumask_copy(cpus_attach, cpu_possible_mask); + else + guarantee_online_cpus(cpus_cs, cpus_attach); + + guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to); + + cgroup_taskset_for_each(task, tset) { + /* + * can_attach beforehand should guarantee that this doesn't + * fail. TODO: have a better way to handle failure here + */ + WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); + + cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); + cpuset_update_task_spread_flag(cs, task); + } - from = oldcs->mems_allowed; - to = cs->mems_allowed; - mm = get_task_mm(tsk); + /* + * Change mm, possibly for multiple threads in a threadgroup. This is + * expensive and may sleep. + */ + cpuset_attach_nodemask_to = cs->mems_allowed; + mm = get_task_mm(leader); if (mm) { - mpol_rebind_mm(mm, &to); - if (is_memory_migrate(cs)) - cpuset_migrate_mm(mm, &from, &to); + struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs); + + mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); + + /* + * old_mems_allowed is the same with mems_allowed here, except + * if this task is being moved automatically due to hotplug. + * In that case @mems_allowed has been updated and is empty, + * so @old_mems_allowed is the right nodesets that we migrate + * mm from. + */ + if (is_memory_migrate(cs)) { + cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed, + &cpuset_attach_nodemask_to); + } mmput(mm); } + cs->old_mems_allowed = cpuset_attach_nodemask_to; + + cs->attach_in_progress--; + if (!cs->attach_in_progress) + wake_up(&cpuset_attach_wq); + + mutex_unlock(&cpuset_mutex); } /* The various types of files and directories in a cpuset file system */ @@ -1242,71 +1527,17 @@ typedef enum { FILE_SPREAD_SLAB, } cpuset_filetype_t; -static ssize_t cpuset_common_file_write(struct cgroup *cont, - struct cftype *cft, - struct file *file, - const char __user *userbuf, - size_t nbytes, loff_t *unused_ppos) +static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, + u64 val) { - struct cpuset *cs = cgroup_cs(cont); + struct cpuset *cs = css_cs(css); cpuset_filetype_t type = cft->private; - char *buffer; int retval = 0; - /* Crude upper limit on largest legitimate cpulist user might write. */ - if (nbytes > 100U + 6 * max(NR_CPUS, MAX_NUMNODES)) - return -E2BIG; - - /* +1 for nul-terminator */ - buffer = kmalloc(nbytes + 1, GFP_KERNEL); - if (!buffer) - return -ENOMEM; - - if (copy_from_user(buffer, userbuf, nbytes)) { - retval = -EFAULT; - goto out1; - } - buffer[nbytes] = 0; /* nul-terminate */ - - cgroup_lock(); - - if (cgroup_is_removed(cont)) { + mutex_lock(&cpuset_mutex); + if (!is_cpuset_online(cs)) { retval = -ENODEV; - goto out2; - } - - switch (type) { - case FILE_CPULIST: - retval = update_cpumask(cs, buffer); - break; - case FILE_MEMLIST: - retval = update_nodemask(cs, buffer); - break; - default: - retval = -EINVAL; - goto out2; - } - - if (retval == 0) - retval = nbytes; -out2: - cgroup_unlock(); -out1: - kfree(buffer); - return retval; -} - -static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val) -{ - int retval = 0; - struct cpuset *cs = cgroup_cs(cgrp); - cpuset_filetype_t type = cft->private; - - cgroup_lock(); - - if (cgroup_is_removed(cgrp)) { - cgroup_unlock(); - return -ENODEV; + goto out_unlock; } switch (type) { @@ -1333,32 +1564,30 @@ static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val) break; case FILE_SPREAD_PAGE: retval = update_flag(CS_SPREAD_PAGE, cs, val); - cs->mems_generation = cpuset_mems_generation++; break; case FILE_SPREAD_SLAB: retval = update_flag(CS_SPREAD_SLAB, cs, val); - cs->mems_generation = cpuset_mems_generation++; break; default: retval = -EINVAL; break; } - cgroup_unlock(); +out_unlock: + mutex_unlock(&cpuset_mutex); return retval; } -static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val) +static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, + s64 val) { - int retval = 0; - struct cpuset *cs = cgroup_cs(cgrp); + struct cpuset *cs = css_cs(css); cpuset_filetype_t type = cft->private; + int retval = -ENODEV; - cgroup_lock(); + mutex_lock(&cpuset_mutex); + if (!is_cpuset_online(cs)) + goto out_unlock; - if (cgroup_is_removed(cgrp)) { - cgroup_unlock(); - return -ENODEV; - } switch (type) { case FILE_SCHED_RELAX_DOMAIN_LEVEL: retval = update_relax_domain_level(cs, val); @@ -1367,83 +1596,123 @@ static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val) retval = -EINVAL; break; } - cgroup_unlock(); +out_unlock: + mutex_unlock(&cpuset_mutex); return retval; } /* - * These ascii lists should be read in a single call, by using a user - * buffer large enough to hold the entire map. If read in smaller - * chunks, there is no guarantee of atomicity. Since the display format - * used, list of ranges of sequential numbers, is variable length, - * and since these maps can change value dynamically, one could read - * gibberish by doing partial reads while a list was changing. - * A single large read to a buffer that crosses a page boundary is - * ok, because the result being copied to user land is not recomputed - * across a page fault. + * Common handling for a write to a "cpus" or "mems" file. */ - -static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs) +static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) { - cpumask_t mask; + struct cpuset *cs = css_cs(of_css(of)); + struct cpuset *trialcs; + int retval = -ENODEV; - mutex_lock(&callback_mutex); - mask = cs->cpus_allowed; - mutex_unlock(&callback_mutex); + buf = strstrip(buf); - return cpulist_scnprintf(page, PAGE_SIZE, mask); -} + /* + * CPU or memory hotunplug may leave @cs w/o any execution + * resources, in which case the hotplug code asynchronously updates + * configuration and transfers all tasks to the nearest ancestor + * which can execute. + * + * As writes to "cpus" or "mems" may restore @cs's execution + * resources, wait for the previously scheduled operations before + * proceeding, so that we don't end up keep removing tasks added + * after execution capability is restored. + * + * cpuset_hotplug_work calls back into cgroup core via + * cgroup_transfer_tasks() and waiting for it from a cgroupfs + * operation like this one can lead to a deadlock through kernfs + * active_ref protection. Let's break the protection. Losing the + * protection is okay as we check whether @cs is online after + * grabbing cpuset_mutex anyway. This only happens on the legacy + * hierarchies. + */ + css_get(&cs->css); + kernfs_break_active_protection(of->kn); + flush_work(&cpuset_hotplug_work); -static int cpuset_sprintf_memlist(char *page, struct cpuset *cs) -{ - nodemask_t mask; + mutex_lock(&cpuset_mutex); + if (!is_cpuset_online(cs)) + goto out_unlock; - mutex_lock(&callback_mutex); - mask = cs->mems_allowed; - mutex_unlock(&callback_mutex); + trialcs = alloc_trial_cpuset(cs); + if (!trialcs) { + retval = -ENOMEM; + goto out_unlock; + } - return nodelist_scnprintf(page, PAGE_SIZE, mask); + switch (of_cft(of)->private) { + case FILE_CPULIST: + retval = update_cpumask(cs, trialcs, buf); + break; + case FILE_MEMLIST: + retval = update_nodemask(cs, trialcs, buf); + break; + default: + retval = -EINVAL; + break; + } + + free_trial_cpuset(trialcs); +out_unlock: + mutex_unlock(&cpuset_mutex); + kernfs_unbreak_active_protection(of->kn); + css_put(&cs->css); + return retval ?: nbytes; } -static ssize_t cpuset_common_file_read(struct cgroup *cont, - struct cftype *cft, - struct file *file, - char __user *buf, - size_t nbytes, loff_t *ppos) +/* + * These ascii lists should be read in a single call, by using a user + * buffer large enough to hold the entire map. If read in smaller + * chunks, there is no guarantee of atomicity. Since the display format + * used, list of ranges of sequential numbers, is variable length, + * and since these maps can change value dynamically, one could read + * gibberish by doing partial reads while a list was changing. + */ +static int cpuset_common_seq_show(struct seq_file *sf, void *v) { - struct cpuset *cs = cgroup_cs(cont); - cpuset_filetype_t type = cft->private; - char *page; - ssize_t retval = 0; - char *s; + struct cpuset *cs = css_cs(seq_css(sf)); + cpuset_filetype_t type = seq_cft(sf)->private; + ssize_t count; + char *buf, *s; + int ret = 0; - if (!(page = (char *)__get_free_page(GFP_TEMPORARY))) - return -ENOMEM; + count = seq_get_buf(sf, &buf); + s = buf; - s = page; + mutex_lock(&callback_mutex); switch (type) { case FILE_CPULIST: - s += cpuset_sprintf_cpulist(s, cs); + s += cpulist_scnprintf(s, count, cs->cpus_allowed); break; case FILE_MEMLIST: - s += cpuset_sprintf_memlist(s, cs); + s += nodelist_scnprintf(s, count, cs->mems_allowed); break; default: - retval = -EINVAL; - goto out; + ret = -EINVAL; + goto out_unlock; } - *s++ = '\n'; - retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page); -out: - free_page((unsigned long)page); - return retval; + if (s < buf + count - 1) { + *s++ = '\n'; + seq_commit(sf, s - buf); + } else { + seq_commit(sf, -1); + } +out_unlock: + mutex_unlock(&callback_mutex); + return ret; } -static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft) +static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) { - struct cpuset *cs = cgroup_cs(cont); + struct cpuset *cs = css_cs(css); cpuset_filetype_t type = cft->private; switch (type) { case FILE_CPU_EXCLUSIVE: @@ -1467,11 +1736,14 @@ static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft) default: BUG(); } + + /* Unreachable but makes gcc happy */ + return 0; } -static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft) +static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) { - struct cpuset *cs = cgroup_cs(cont); + struct cpuset *cs = css_cs(css); cpuset_filetype_t type = cft->private; switch (type) { case FILE_SCHED_RELAX_DOMAIN_LEVEL: @@ -1479,6 +1751,9 @@ static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft) default: BUG(); } + + /* Unrechable but makes gcc happy */ + return 0; } @@ -1489,15 +1764,17 @@ static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft) static struct cftype files[] = { { .name = "cpus", - .read = cpuset_common_file_read, - .write = cpuset_common_file_write, + .seq_show = cpuset_common_seq_show, + .write = cpuset_write_resmask, + .max_write_len = (100U + 6 * NR_CPUS), .private = FILE_CPULIST, }, { .name = "mems", - .read = cpuset_common_file_read, - .write = cpuset_common_file_write, + .seq_show = cpuset_common_seq_show, + .write = cpuset_write_resmask, + .max_write_len = (100U + 6 * MAX_NUMNODES), .private = FILE_MEMLIST, }, @@ -1548,6 +1825,7 @@ static struct cftype files[] = { .read_u64 = cpuset_read_u64, .write_u64 = cpuset_write_u64, .private = FILE_MEMORY_PRESSURE, + .mode = S_IRUGO, }, { @@ -1563,157 +1841,143 @@ static struct cftype files[] = { .write_u64 = cpuset_write_u64, .private = FILE_SPREAD_SLAB, }, -}; -static struct cftype cft_memory_pressure_enabled = { - .name = "memory_pressure_enabled", - .read_u64 = cpuset_read_u64, - .write_u64 = cpuset_write_u64, - .private = FILE_MEMORY_PRESSURE_ENABLED, -}; - -static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont) -{ - int err; + { + .name = "memory_pressure_enabled", + .flags = CFTYPE_ONLY_ON_ROOT, + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_MEMORY_PRESSURE_ENABLED, + }, - err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files)); - if (err) - return err; - /* memory_pressure_enabled is in root cpuset only */ - if (!cont->parent) - err = cgroup_add_file(cont, ss, - &cft_memory_pressure_enabled); - return err; -} + { } /* terminate */ +}; /* - * post_clone() is called at the end of cgroup_clone(). - * 'cgroup' was just created automatically as a result of - * a cgroup_clone(), and the current task is about to - * be moved into 'cgroup'. - * - * Currently we refuse to set up the cgroup - thereby - * refusing the task to be entered, and as a result refusing - * the sys_unshare() or clone() which initiated it - if any - * sibling cpusets have exclusive cpus or mem. - * - * If this becomes a problem for some users who wish to - * allow that scenario, then cpuset_post_clone() could be - * changed to grant parent->cpus_allowed-sibling_cpus_exclusive - * (and likewise for mems) to the new cgroup. Called with cgroup_mutex - * held. + * cpuset_css_alloc - allocate a cpuset css + * cgrp: control group that the new cpuset will be part of */ -static void cpuset_post_clone(struct cgroup_subsys *ss, - struct cgroup *cgroup) + +static struct cgroup_subsys_state * +cpuset_css_alloc(struct cgroup_subsys_state *parent_css) { - struct cgroup *parent, *child; - struct cpuset *cs, *parent_cs; + struct cpuset *cs; - parent = cgroup->parent; - list_for_each_entry(child, &parent->children, sibling) { - cs = cgroup_cs(child); - if (is_mem_exclusive(cs) || is_cpu_exclusive(cs)) - return; + if (!parent_css) + return &top_cpuset.css; + + cs = kzalloc(sizeof(*cs), GFP_KERNEL); + if (!cs) + return ERR_PTR(-ENOMEM); + if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) { + kfree(cs); + return ERR_PTR(-ENOMEM); } - cs = cgroup_cs(cgroup); - parent_cs = cgroup_cs(parent); - cs->mems_allowed = parent_cs->mems_allowed; - cs->cpus_allowed = parent_cs->cpus_allowed; - return; -} + set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); + cpumask_clear(cs->cpus_allowed); + nodes_clear(cs->mems_allowed); + fmeter_init(&cs->fmeter); + cs->relax_domain_level = -1; -/* - * cpuset_create - create a cpuset - * ss: cpuset cgroup subsystem - * cont: control group that the new cpuset will be part of - */ + return &cs->css; +} -static struct cgroup_subsys_state *cpuset_create( - struct cgroup_subsys *ss, - struct cgroup *cont) +static int cpuset_css_online(struct cgroup_subsys_state *css) { - struct cpuset *cs; - struct cpuset *parent; + struct cpuset *cs = css_cs(css); + struct cpuset *parent = parent_cs(cs); + struct cpuset *tmp_cs; + struct cgroup_subsys_state *pos_css; - if (!cont->parent) { - /* This is early initialization for the top cgroup */ - top_cpuset.mems_generation = cpuset_mems_generation++; - return &top_cpuset.css; - } - parent = cgroup_cs(cont->parent); - cs = kmalloc(sizeof(*cs), GFP_KERNEL); - if (!cs) - return ERR_PTR(-ENOMEM); + if (!parent) + return 0; + + mutex_lock(&cpuset_mutex); - cpuset_update_task_memory_state(); - cs->flags = 0; + set_bit(CS_ONLINE, &cs->flags); if (is_spread_page(parent)) set_bit(CS_SPREAD_PAGE, &cs->flags); if (is_spread_slab(parent)) set_bit(CS_SPREAD_SLAB, &cs->flags); - set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); - cpus_clear(cs->cpus_allowed); - nodes_clear(cs->mems_allowed); - cs->mems_generation = cpuset_mems_generation++; - fmeter_init(&cs->fmeter); - cs->relax_domain_level = -1; - cs->parent = parent; - number_of_cpusets++; - return &cs->css ; + cpuset_inc(); + + if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) + goto out_unlock; + + /* + * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is + * set. This flag handling is implemented in cgroup core for + * histrical reasons - the flag may be specified during mount. + * + * Currently, if any sibling cpusets have exclusive cpus or mem, we + * refuse to clone the configuration - thereby refusing the task to + * be entered, and as a result refusing the sys_unshare() or + * clone() which initiated it. If this becomes a problem for some + * users who wish to allow that scenario, then this could be + * changed to grant parent->cpus_allowed-sibling_cpus_exclusive + * (and likewise for mems) to the new cgroup. + */ + rcu_read_lock(); + cpuset_for_each_child(tmp_cs, pos_css, parent) { + if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { + rcu_read_unlock(); + goto out_unlock; + } + } + rcu_read_unlock(); + + mutex_lock(&callback_mutex); + cs->mems_allowed = parent->mems_allowed; + cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); + mutex_unlock(&callback_mutex); +out_unlock: + mutex_unlock(&cpuset_mutex); + return 0; } /* - * Locking note on the strange update_flag() call below: - * * If the cpuset being removed has its flag 'sched_load_balance' * enabled, then simulate turning sched_load_balance off, which - * will call rebuild_sched_domains(). The get_online_cpus() - * call in rebuild_sched_domains() must not be made while holding - * callback_mutex. Elsewhere the kernel nests callback_mutex inside - * get_online_cpus() calls. So the reverse nesting would risk an - * ABBA deadlock. + * will call rebuild_sched_domains_locked(). */ -static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont) +static void cpuset_css_offline(struct cgroup_subsys_state *css) { - struct cpuset *cs = cgroup_cs(cont); + struct cpuset *cs = css_cs(css); - cpuset_update_task_memory_state(); + mutex_lock(&cpuset_mutex); if (is_sched_load_balance(cs)) update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); - number_of_cpusets--; + cpuset_dec(); + clear_bit(CS_ONLINE, &cs->flags); + + mutex_unlock(&cpuset_mutex); +} + +static void cpuset_css_free(struct cgroup_subsys_state *css) +{ + struct cpuset *cs = css_cs(css); + + free_cpumask_var(cs->cpus_allowed); kfree(cs); } -struct cgroup_subsys cpuset_subsys = { - .name = "cpuset", - .create = cpuset_create, - .destroy = cpuset_destroy, +struct cgroup_subsys cpuset_cgrp_subsys = { + .css_alloc = cpuset_css_alloc, + .css_online = cpuset_css_online, + .css_offline = cpuset_css_offline, + .css_free = cpuset_css_free, .can_attach = cpuset_can_attach, + .cancel_attach = cpuset_cancel_attach, .attach = cpuset_attach, - .populate = cpuset_populate, - .post_clone = cpuset_post_clone, - .subsys_id = cpuset_subsys_id, + .base_cftypes = files, .early_init = 1, }; -/* - * cpuset_init_early - just enough so that the calls to - * cpuset_update_task_memory_state() in early init code - * are harmless. - */ - -int __init cpuset_init_early(void) -{ - top_cpuset.mems_generation = cpuset_mems_generation++; - return 0; -} - - /** * cpuset_init - initialize cpusets at system boot * @@ -1724,11 +1988,13 @@ int __init cpuset_init(void) { int err = 0; - cpus_setall(top_cpuset.cpus_allowed); + if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)) + BUG(); + + cpumask_setall(top_cpuset.cpus_allowed); nodes_setall(top_cpuset.mems_allowed); fmeter_init(&top_cpuset.fmeter); - top_cpuset.mems_generation = cpuset_mems_generation++; set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); top_cpuset.relax_domain_level = -1; @@ -1736,257 +2002,284 @@ int __init cpuset_init(void) if (err < 0) return err; - number_of_cpusets = 1; + if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)) + BUG(); + return 0; } -/** - * cpuset_do_move_task - move a given task to another cpuset - * @tsk: pointer to task_struct the task to move - * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner - * - * Called by cgroup_scan_tasks() for each task in a cgroup. - * Return nonzero to stop the walk through the tasks. +/* + * If CPU and/or memory hotplug handlers, below, unplug any CPUs + * or memory nodes, we need to walk over the cpuset hierarchy, + * removing that CPU or node from all cpusets. If this removes the + * last CPU or node from a cpuset, then move the tasks in the empty + * cpuset to its next-highest non-empty parent. */ -static void cpuset_do_move_task(struct task_struct *tsk, - struct cgroup_scanner *scan) +static void remove_tasks_in_empty_cpuset(struct cpuset *cs) { - struct cpuset_hotplug_scanner *chsp; + struct cpuset *parent; - chsp = container_of(scan, struct cpuset_hotplug_scanner, scan); - cgroup_attach_task(chsp->to, tsk); + /* + * Find its next-highest non-empty parent, (top cpuset + * has online cpus, so can't be empty). + */ + parent = parent_cs(cs); + while (cpumask_empty(parent->cpus_allowed) || + nodes_empty(parent->mems_allowed)) + parent = parent_cs(parent); + + if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { + pr_err("cpuset: failed to transfer tasks out of empty cpuset "); + pr_cont_cgroup_name(cs->css.cgroup); + pr_cont("\n"); + } } /** - * move_member_tasks_to_cpuset - move tasks from one cpuset to another - * @from: cpuset in which the tasks currently reside - * @to: cpuset to which the tasks will be moved + * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug + * @cs: cpuset in interest * - * Called with cgroup_mutex held - * callback_mutex must not be held, as cpuset_attach() will take it. - * - * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, - * calling callback functions for each. + * Compare @cs's cpu and mem masks against top_cpuset and if some have gone + * offline, update @cs accordingly. If @cs ends up with no CPU or memory, + * all its tasks are moved to the nearest ancestor with both resources. */ -static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to) +static void cpuset_hotplug_update_tasks(struct cpuset *cs) { - struct cpuset_hotplug_scanner scan; + static cpumask_t off_cpus; + static nodemask_t off_mems; + bool is_empty; + bool sane = cgroup_sane_behavior(cs->css.cgroup); - scan.scan.cg = from->css.cgroup; - scan.scan.test_task = NULL; /* select all tasks in cgroup */ - scan.scan.process_task = cpuset_do_move_task; - scan.scan.heap = NULL; - scan.to = to->css.cgroup; +retry: + wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); - if (cgroup_scan_tasks((struct cgroup_scanner *)&scan)) - printk(KERN_ERR "move_member_tasks_to_cpuset: " - "cgroup_scan_tasks failed\n"); -} + mutex_lock(&cpuset_mutex); -/* - * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs - * or memory nodes, we need to walk over the cpuset hierarchy, - * removing that CPU or node from all cpusets. If this removes the - * last CPU or node from a cpuset, then move the tasks in the empty - * cpuset to its next-highest non-empty parent. - * - * Called with cgroup_mutex held - * callback_mutex must not be held, as cpuset_attach() will take it. - */ -static void remove_tasks_in_empty_cpuset(struct cpuset *cs) -{ - struct cpuset *parent; + /* + * We have raced with task attaching. We wait until attaching + * is finished, so we won't attach a task to an empty cpuset. + */ + if (cs->attach_in_progress) { + mutex_unlock(&cpuset_mutex); + goto retry; + } + + cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed); + nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed); + + mutex_lock(&callback_mutex); + cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus); + mutex_unlock(&callback_mutex); /* - * The cgroup's css_sets list is in use if there are tasks - * in the cpuset; the list is empty if there are none; - * the cs->css.refcnt seems always 0. + * If sane_behavior flag is set, we need to update tasks' cpumask + * for empty cpuset to take on ancestor's cpumask. Otherwise, don't + * call update_tasks_cpumask() if the cpuset becomes empty, as + * the tasks in it will be migrated to an ancestor. */ - if (list_empty(&cs->css.cgroup->css_sets)) - return; + if ((sane && cpumask_empty(cs->cpus_allowed)) || + (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed))) + update_tasks_cpumask(cs); + + mutex_lock(&callback_mutex); + nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems); + mutex_unlock(&callback_mutex); /* - * Find its next-highest non-empty parent, (top cpuset - * has online cpus, so can't be empty). + * If sane_behavior flag is set, we need to update tasks' nodemask + * for empty cpuset to take on ancestor's nodemask. Otherwise, don't + * call update_tasks_nodemask() if the cpuset becomes empty, as + * the tasks in it will be migratd to an ancestor. */ - parent = cs->parent; - while (cpus_empty(parent->cpus_allowed) || - nodes_empty(parent->mems_allowed)) - parent = parent->parent; + if ((sane && nodes_empty(cs->mems_allowed)) || + (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed))) + update_tasks_nodemask(cs); + + is_empty = cpumask_empty(cs->cpus_allowed) || + nodes_empty(cs->mems_allowed); - move_member_tasks_to_cpuset(cs, parent); + mutex_unlock(&cpuset_mutex); + + /* + * If sane_behavior flag is set, we'll keep tasks in empty cpusets. + * + * Otherwise move tasks to the nearest ancestor with execution + * resources. This is full cgroup operation which will + * also call back into cpuset. Should be done outside any lock. + */ + if (!sane && is_empty) + remove_tasks_in_empty_cpuset(cs); } -/* - * Walk the specified cpuset subtree and look for empty cpusets. - * The tasks of such cpuset must be moved to a parent cpuset. +/** + * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset * - * Called with cgroup_mutex held. We take callback_mutex to modify - * cpus_allowed and mems_allowed. + * This function is called after either CPU or memory configuration has + * changed and updates cpuset accordingly. The top_cpuset is always + * synchronized to cpu_active_mask and N_MEMORY, which is necessary in + * order to make cpusets transparent (of no affect) on systems that are + * actively using CPU hotplug but making no active use of cpusets. * - * This walk processes the tree from top to bottom, completing one layer - * before dropping down to the next. It always processes a node before - * any of its children. + * Non-root cpusets are only affected by offlining. If any CPUs or memory + * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on + * all descendants. * - * For now, since we lack memory hot unplug, we'll never see a cpuset - * that has tasks along with an empty 'mems'. But if we did see such - * a cpuset, we'd handle it just like we do if its 'cpus' was empty. + * Note that CPU offlining during suspend is ignored. We don't modify + * cpusets across suspend/resume cycles at all. */ -static void scan_for_empty_cpusets(const struct cpuset *root) +static void cpuset_hotplug_workfn(struct work_struct *work) { - struct cpuset *cp; /* scans cpusets being updated */ - struct cpuset *child; /* scans child cpusets of cp */ - struct list_head queue; - struct cgroup *cont; + static cpumask_t new_cpus; + static nodemask_t new_mems; + bool cpus_updated, mems_updated; - INIT_LIST_HEAD(&queue); + mutex_lock(&cpuset_mutex); - list_add_tail((struct list_head *)&root->stack_list, &queue); + /* fetch the available cpus/mems and find out which changed how */ + cpumask_copy(&new_cpus, cpu_active_mask); + new_mems = node_states[N_MEMORY]; - while (!list_empty(&queue)) { - cp = container_of(queue.next, struct cpuset, stack_list); - list_del(queue.next); - list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { - child = cgroup_cs(cont); - list_add_tail(&child->stack_list, &queue); - } - cont = cp->css.cgroup; - - /* Continue past cpusets with all cpus, mems online */ - if (cpus_subset(cp->cpus_allowed, cpu_online_map) && - nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY])) - continue; + cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus); + mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems); - /* Remove offline cpus and mems from this cpuset. */ + /* synchronize cpus_allowed to cpu_active_mask */ + if (cpus_updated) { mutex_lock(&callback_mutex); - cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map); - nodes_and(cp->mems_allowed, cp->mems_allowed, - node_states[N_HIGH_MEMORY]); + cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); mutex_unlock(&callback_mutex); - - /* Move tasks from the empty cpuset to a parent */ - if (cpus_empty(cp->cpus_allowed) || - nodes_empty(cp->mems_allowed)) - remove_tasks_in_empty_cpuset(cp); + /* we don't mess with cpumasks of tasks in top_cpuset */ } -} - -/* - * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track - * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to - * track what's online after any CPU or memory node hotplug or unplug event. - * - * Since there are two callers of this routine, one for CPU hotplug - * events and one for memory node hotplug events, we could have coded - * two separate routines here. We code it as a single common routine - * in order to minimize text size. - */ -static void common_cpu_mem_hotplug_unplug(int rebuild_sd) -{ - cgroup_lock(); + /* synchronize mems_allowed to N_MEMORY */ + if (mems_updated) { + mutex_lock(&callback_mutex); + top_cpuset.mems_allowed = new_mems; + mutex_unlock(&callback_mutex); + update_tasks_nodemask(&top_cpuset); + } - top_cpuset.cpus_allowed = cpu_online_map; - top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; - scan_for_empty_cpusets(&top_cpuset); + mutex_unlock(&cpuset_mutex); - /* - * Scheduler destroys domains on hotplug events. - * Rebuild them based on the current settings. - */ - if (rebuild_sd) - rebuild_sched_domains(); + /* if cpus or mems changed, we need to propagate to descendants */ + if (cpus_updated || mems_updated) { + struct cpuset *cs; + struct cgroup_subsys_state *pos_css; - cgroup_unlock(); -} + rcu_read_lock(); + cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { + if (cs == &top_cpuset || !css_tryget_online(&cs->css)) + continue; + rcu_read_unlock(); -/* - * The top_cpuset tracks what CPUs and Memory Nodes are online, - * period. This is necessary in order to make cpusets transparent - * (of no affect) on systems that are actively using CPU hotplug - * but making no active use of cpusets. - * - * This routine ensures that top_cpuset.cpus_allowed tracks - * cpu_online_map on each CPU hotplug (cpuhp) event. - */ + cpuset_hotplug_update_tasks(cs); -static int cpuset_handle_cpuhp(struct notifier_block *unused_nb, - unsigned long phase, void *unused_cpu) -{ - switch (phase) { - case CPU_UP_CANCELED: - case CPU_UP_CANCELED_FROZEN: - case CPU_DOWN_FAILED: - case CPU_DOWN_FAILED_FROZEN: - case CPU_ONLINE: - case CPU_ONLINE_FROZEN: - case CPU_DEAD: - case CPU_DEAD_FROZEN: - common_cpu_mem_hotplug_unplug(1); - break; - default: - return NOTIFY_DONE; + rcu_read_lock(); + css_put(&cs->css); + } + rcu_read_unlock(); } - return NOTIFY_OK; + /* rebuild sched domains if cpus_allowed has changed */ + if (cpus_updated) + rebuild_sched_domains(); +} + +void cpuset_update_active_cpus(bool cpu_online) +{ + /* + * We're inside cpu hotplug critical region which usually nests + * inside cgroup synchronization. Bounce actual hotplug processing + * to a work item to avoid reverse locking order. + * + * We still need to do partition_sched_domains() synchronously; + * otherwise, the scheduler will get confused and put tasks to the + * dead CPU. Fall back to the default single domain. + * cpuset_hotplug_workfn() will rebuild it as necessary. + */ + partition_sched_domains(1, NULL, NULL); + schedule_work(&cpuset_hotplug_work); } -#ifdef CONFIG_MEMORY_HOTPLUG /* - * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY]. - * Call this routine anytime after you change - * node_states[N_HIGH_MEMORY]. - * See also the previous routine cpuset_handle_cpuhp(). + * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. + * Call this routine anytime after node_states[N_MEMORY] changes. + * See cpuset_update_active_cpus() for CPU hotplug handling. */ - -void cpuset_track_online_nodes(void) +static int cpuset_track_online_nodes(struct notifier_block *self, + unsigned long action, void *arg) { - common_cpu_mem_hotplug_unplug(0); + schedule_work(&cpuset_hotplug_work); + return NOTIFY_OK; } -#endif + +static struct notifier_block cpuset_track_online_nodes_nb = { + .notifier_call = cpuset_track_online_nodes, + .priority = 10, /* ??! */ +}; /** * cpuset_init_smp - initialize cpus_allowed * * Description: Finish top cpuset after cpu, node maps are initialized - **/ - + */ void __init cpuset_init_smp(void) { - top_cpuset.cpus_allowed = cpu_online_map; - top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; + cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); + top_cpuset.mems_allowed = node_states[N_MEMORY]; + top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; - hotcpu_notifier(cpuset_handle_cpuhp, 0); + register_hotmemory_notifier(&cpuset_track_online_nodes_nb); } /** - * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. - * @pmask: pointer to cpumask_t variable to receive cpus_allowed set. + * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. * - * Description: Returns the cpumask_t cpus_allowed of the cpuset + * Description: Returns the cpumask_var_t cpus_allowed of the cpuset * attached to the specified @tsk. Guaranteed to return some non-empty - * subset of cpu_online_map, even if this means going outside the + * subset of cpu_online_mask, even if this means going outside the * tasks cpuset. **/ -void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask) +void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) { + struct cpuset *cpus_cs; + mutex_lock(&callback_mutex); - cpuset_cpus_allowed_locked(tsk, pmask); + rcu_read_lock(); + cpus_cs = effective_cpumask_cpuset(task_cs(tsk)); + guarantee_online_cpus(cpus_cs, pmask); + rcu_read_unlock(); mutex_unlock(&callback_mutex); } -/** - * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset. - * Must be called with callback_mutex held. - **/ -void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask) +void cpuset_cpus_allowed_fallback(struct task_struct *tsk) { - task_lock(tsk); - guarantee_online_cpus(task_cs(tsk), pmask); - task_unlock(tsk); + struct cpuset *cpus_cs; + + rcu_read_lock(); + cpus_cs = effective_cpumask_cpuset(task_cs(tsk)); + do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed); + rcu_read_unlock(); + + /* + * We own tsk->cpus_allowed, nobody can change it under us. + * + * But we used cs && cs->cpus_allowed lockless and thus can + * race with cgroup_attach_task() or update_cpumask() and get + * the wrong tsk->cpus_allowed. However, both cases imply the + * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() + * which takes task_rq_lock(). + * + * If we are called after it dropped the lock we must see all + * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary + * set any mask even if it is not right from task_cs() pov, + * the pending set_cpus_allowed_ptr() will fix things. + * + * select_fallback_rq() will fix things ups and set cpu_possible_mask + * if required. + */ } void cpuset_init_current_mems_allowed(void) @@ -2000,18 +2293,20 @@ void cpuset_init_current_mems_allowed(void) * * Description: Returns the nodemask_t mems_allowed of the cpuset * attached to the specified @tsk. Guaranteed to return some non-empty - * subset of node_states[N_HIGH_MEMORY], even if this means going outside the + * subset of node_states[N_MEMORY], even if this means going outside the * tasks cpuset. **/ nodemask_t cpuset_mems_allowed(struct task_struct *tsk) { + struct cpuset *mems_cs; nodemask_t mask; mutex_lock(&callback_mutex); - task_lock(tsk); - guarantee_online_mems(task_cs(tsk), &mask); - task_unlock(tsk); + rcu_read_lock(); + mems_cs = effective_nodemask_cpuset(task_cs(tsk)); + guarantee_online_mems(mems_cs, &mask); + rcu_read_unlock(); mutex_unlock(&callback_mutex); return mask; @@ -2034,34 +2329,32 @@ int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall * (an unusual configuration), then returns the root cpuset. */ -static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs) +static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) { - while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent) - cs = cs->parent; + while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) + cs = parent_cs(cs); return cs; } /** - * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node? - * @z: is this zone on an allowed node? + * cpuset_node_allowed_softwall - Can we allocate on a memory node? + * @node: is this an allowed node? * @gfp_mask: memory allocation flags * - * If we're in interrupt, yes, we can always allocate. If - * __GFP_THISNODE is set, yes, we can always allocate. If zone - * z's node is in our tasks mems_allowed, yes. If it's not a - * __GFP_HARDWALL request and this zone's nodes is in the nearest - * hardwalled cpuset ancestor to this tasks cpuset, yes. - * If the task has been OOM killed and has access to memory reserves - * as specified by the TIF_MEMDIE flag, yes. + * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is + * set, yes, we can always allocate. If node is in our task's mems_allowed, + * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest + * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been + * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE + * flag, yes. * Otherwise, no. * - * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall() - * reduces to cpuset_zone_allowed_hardwall(). Otherwise, - * cpuset_zone_allowed_softwall() might sleep, and might allow a zone - * from an enclosing cpuset. + * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to + * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall() + * might sleep, and might allow a node from an enclosing cpuset. * - * cpuset_zone_allowed_hardwall() only handles the simpler case of - * hardwall cpusets, and never sleeps. + * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall + * cpusets, and never sleeps. * * The __GFP_THISNODE placement logic is really handled elsewhere, * by forcibly using a zonelist starting at a specified node, and by @@ -2100,20 +2393,17 @@ static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs) * GFP_USER - only nodes in current tasks mems allowed ok. * * Rule: - * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you + * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables * the code that might scan up ancestor cpusets and sleep. */ - -int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask) +int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask) { - int node; /* node that zone z is on */ - const struct cpuset *cs; /* current cpuset ancestors */ + struct cpuset *cs; /* current cpuset ancestors */ int allowed; /* is allocation in zone z allowed? */ if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) return 1; - node = zone_to_nid(z); might_sleep_if(!(gfp_mask & __GFP_HARDWALL)); if (node_isset(node, current->mems_allowed)) return 1; @@ -2132,25 +2422,25 @@ int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask) /* Not hardwall and node outside mems_allowed: scan up cpusets */ mutex_lock(&callback_mutex); - task_lock(current); + rcu_read_lock(); cs = nearest_hardwall_ancestor(task_cs(current)); - task_unlock(current); - allowed = node_isset(node, cs->mems_allowed); + rcu_read_unlock(); + mutex_unlock(&callback_mutex); return allowed; } /* - * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node? - * @z: is this zone on an allowed node? + * cpuset_node_allowed_hardwall - Can we allocate on a memory node? + * @node: is this an allowed node? * @gfp_mask: memory allocation flags * - * If we're in interrupt, yes, we can always allocate. - * If __GFP_THISNODE is set, yes, we can always allocate. If zone - * z's node is in our tasks mems_allowed, yes. If the task has been - * OOM killed and has access to memory reserves as specified by the - * TIF_MEMDIE flag, yes. Otherwise, no. + * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is + * set, yes, we can always allocate. If node is in our task's mems_allowed, + * yes. If the task has been OOM killed and has access to memory reserves as + * specified by the TIF_MEMDIE flag, yes. + * Otherwise, no. * * The __GFP_THISNODE placement logic is really handled elsewhere, * by forcibly using a zonelist starting at a specified node, and by @@ -2158,20 +2448,16 @@ int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask) * any node on the zonelist except the first. By the time any such * calls get to this routine, we should just shut up and say 'yes'. * - * Unlike the cpuset_zone_allowed_softwall() variant, above, - * this variant requires that the zone be in the current tasks + * Unlike the cpuset_node_allowed_softwall() variant, above, + * this variant requires that the node be in the current task's * mems_allowed or that we're in interrupt. It does not scan up the * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset. * It never sleeps. */ - -int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask) +int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask) { - int node; /* node that zone z is on */ - if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) return 1; - node = zone_to_nid(z); if (node_isset(node, current->mems_allowed)) return 1; /* @@ -2184,34 +2470,8 @@ int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask) } /** - * cpuset_lock - lock out any changes to cpuset structures - * - * The out of memory (oom) code needs to mutex_lock cpusets - * from being changed while it scans the tasklist looking for a - * task in an overlapping cpuset. Expose callback_mutex via this - * cpuset_lock() routine, so the oom code can lock it, before - * locking the task list. The tasklist_lock is a spinlock, so - * must be taken inside callback_mutex. - */ - -void cpuset_lock(void) -{ - mutex_lock(&callback_mutex); -} - -/** - * cpuset_unlock - release lock on cpuset changes - * - * Undo the lock taken in a previous cpuset_lock() call. - */ - -void cpuset_unlock(void) -{ - mutex_unlock(&callback_mutex); -} - -/** - * cpuset_mem_spread_node() - On which node to begin search for a page + * cpuset_mem_spread_node() - On which node to begin search for a file page + * cpuset_slab_spread_node() - On which node to begin search for a slab page * * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for * tasks in a cpuset with is_spread_page or is_spread_slab set), @@ -2236,16 +2496,35 @@ void cpuset_unlock(void) * See kmem_cache_alloc_node(). */ -int cpuset_mem_spread_node(void) +static int cpuset_spread_node(int *rotor) { int node; - node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed); + node = next_node(*rotor, current->mems_allowed); if (node == MAX_NUMNODES) node = first_node(current->mems_allowed); - current->cpuset_mem_spread_rotor = node; + *rotor = node; return node; } + +int cpuset_mem_spread_node(void) +{ + if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) + current->cpuset_mem_spread_rotor = + node_random(¤t->mems_allowed); + + return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); +} + +int cpuset_slab_spread_node(void) +{ + if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) + current->cpuset_slab_spread_rotor = + node_random(¤t->mems_allowed); + + return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); +} + EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); /** @@ -2265,6 +2544,36 @@ int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); } +#define CPUSET_NODELIST_LEN (256) + +/** + * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed + * @tsk: pointer to task_struct of some task. + * + * Description: Prints @task's name, cpuset name, and cached copy of its + * mems_allowed to the kernel log. + */ +void cpuset_print_task_mems_allowed(struct task_struct *tsk) +{ + /* Statically allocated to prevent using excess stack. */ + static char cpuset_nodelist[CPUSET_NODELIST_LEN]; + static DEFINE_SPINLOCK(cpuset_buffer_lock); + struct cgroup *cgrp; + + spin_lock(&cpuset_buffer_lock); + rcu_read_lock(); + + cgrp = task_cs(tsk)->css.cgroup; + nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN, + tsk->mems_allowed); + pr_info("%s cpuset=", tsk->comm); + pr_cont_cgroup_name(cgrp); + pr_cont(" mems_allowed=%s\n", cpuset_nodelist); + + rcu_read_unlock(); + spin_unlock(&cpuset_buffer_lock); +} + /* * Collection of memory_pressure is suppressed unless * this flag is enabled by writing "1" to the special @@ -2293,9 +2602,9 @@ int cpuset_memory_pressure_enabled __read_mostly; void __cpuset_memory_pressure_bump(void) { - task_lock(current); + rcu_read_lock(); fmeter_markevent(&task_cs(current)->fmeter); - task_unlock(current); + rcu_read_unlock(); } #ifdef CONFIG_PROC_PID_CPUSET @@ -2305,19 +2614,19 @@ void __cpuset_memory_pressure_bump(void) * - Used for /proc/<pid>/cpuset. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it * doesn't really matter if tsk->cpuset changes after we read it, - * and we take cgroup_mutex, keeping cpuset_attach() from changing it + * and we take cpuset_mutex, keeping cpuset_attach() from changing it * anyway. */ -static int proc_cpuset_show(struct seq_file *m, void *unused_v) +int proc_cpuset_show(struct seq_file *m, void *unused_v) { struct pid *pid; struct task_struct *tsk; - char *buf; + char *buf, *p; struct cgroup_subsys_state *css; int retval; retval = -ENOMEM; - buf = kmalloc(PAGE_SIZE, GFP_KERNEL); + buf = kmalloc(PATH_MAX, GFP_KERNEL); if (!buf) goto out; @@ -2327,54 +2636,32 @@ static int proc_cpuset_show(struct seq_file *m, void *unused_v) if (!tsk) goto out_free; - retval = -EINVAL; - cgroup_lock(); - css = task_subsys_state(tsk, cpuset_subsys_id); - retval = cgroup_path(css->cgroup, buf, PAGE_SIZE); - if (retval < 0) - goto out_unlock; - seq_puts(m, buf); + retval = -ENAMETOOLONG; + rcu_read_lock(); + css = task_css(tsk, cpuset_cgrp_id); + p = cgroup_path(css->cgroup, buf, PATH_MAX); + rcu_read_unlock(); + if (!p) + goto out_put_task; + seq_puts(m, p); seq_putc(m, '\n'); -out_unlock: - cgroup_unlock(); + retval = 0; +out_put_task: put_task_struct(tsk); out_free: kfree(buf); out: return retval; } - -static int cpuset_open(struct inode *inode, struct file *file) -{ - struct pid *pid = PROC_I(inode)->pid; - return single_open(file, proc_cpuset_show, pid); -} - -const struct file_operations proc_cpuset_operations = { - .open = cpuset_open, - .read = seq_read, - .llseek = seq_lseek, - .release = single_release, -}; #endif /* CONFIG_PROC_PID_CPUSET */ -/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */ +/* Display task mems_allowed in /proc/<pid>/status file. */ void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) { - seq_printf(m, "Cpus_allowed:\t"); - m->count += cpumask_scnprintf(m->buf + m->count, m->size - m->count, - task->cpus_allowed); - seq_printf(m, "\n"); - seq_printf(m, "Cpus_allowed_list:\t"); - m->count += cpulist_scnprintf(m->buf + m->count, m->size - m->count, - task->cpus_allowed); - seq_printf(m, "\n"); - seq_printf(m, "Mems_allowed:\t"); - m->count += nodemask_scnprintf(m->buf + m->count, m->size - m->count, - task->mems_allowed); - seq_printf(m, "\n"); - seq_printf(m, "Mems_allowed_list:\t"); - m->count += nodelist_scnprintf(m->buf + m->count, m->size - m->count, - task->mems_allowed); - seq_printf(m, "\n"); + seq_puts(m, "Mems_allowed:\t"); + seq_nodemask(m, &task->mems_allowed); + seq_puts(m, "\n"); + seq_puts(m, "Mems_allowed_list:\t"); + seq_nodemask_list(m, &task->mems_allowed); + seq_puts(m, "\n"); } |
