diff options
Diffstat (limited to 'kernel/cgroup.c')
| -rw-r--r-- | kernel/cgroup.c | 7083 | 
1 files changed, 3772 insertions, 3311 deletions
diff --git a/kernel/cgroup.c b/kernel/cgroup.c index 66a416b42c1..70776aec256 100644 --- a/kernel/cgroup.c +++ b/kernel/cgroup.c @@ -26,12 +26,16 @@   *  distribution for more details.   */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt +  #include <linux/cgroup.h> +#include <linux/cred.h>  #include <linux/ctype.h>  #include <linux/errno.h> -#include <linux/fs.h> +#include <linux/init_task.h>  #include <linux/kernel.h>  #include <linux/list.h> +#include <linux/magic.h>  #include <linux/mm.h>  #include <linux/mutex.h>  #include <linux/mount.h> @@ -39,164 +43,135 @@  #include <linux/proc_fs.h>  #include <linux/rcupdate.h>  #include <linux/sched.h> -#include <linux/backing-dev.h> -#include <linux/seq_file.h>  #include <linux/slab.h> -#include <linux/magic.h>  #include <linux/spinlock.h> +#include <linux/rwsem.h>  #include <linux/string.h>  #include <linux/sort.h>  #include <linux/kmod.h> -#include <linux/module.h>  #include <linux/delayacct.h>  #include <linux/cgroupstats.h> -#include <linux/hash.h> -#include <linux/namei.h> +#include <linux/hashtable.h>  #include <linux/pid_namespace.h>  #include <linux/idr.h>  #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */ -#include <linux/eventfd.h> -#include <linux/poll.h> +#include <linux/kthread.h> +#include <linux/delay.h> -#include <asm/atomic.h> - -static DEFINE_MUTEX(cgroup_mutex); +#include <linux/atomic.h>  /* - * Generate an array of cgroup subsystem pointers. At boot time, this is - * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are - * registered after that. The mutable section of this array is protected by - * cgroup_mutex. + * pidlists linger the following amount before being destroyed.  The goal + * is avoiding frequent destruction in the middle of consecutive read calls + * Expiring in the middle is a performance problem not a correctness one. + * 1 sec should be enough.   */ -#define SUBSYS(_x) &_x ## _subsys, -static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = { -#include <linux/cgroup_subsys.h> -}; +#define CGROUP_PIDLIST_DESTROY_DELAY	HZ -#define MAX_CGROUP_ROOT_NAMELEN 64 +#define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\ +					 MAX_CFTYPE_NAME + 2)  /* - * A cgroupfs_root represents the root of a cgroup hierarchy, - * and may be associated with a superblock to form an active - * hierarchy + * cgroup_mutex is the master lock.  Any modification to cgroup or its + * hierarchy must be performed while holding it. + * + * css_set_rwsem protects task->cgroups pointer, the list of css_set + * objects, and the chain of tasks off each css_set. + * + * These locks are exported if CONFIG_PROVE_RCU so that accessors in + * cgroup.h can use them for lockdep annotations.   */ -struct cgroupfs_root { -	struct super_block *sb; - -	/* -	 * The bitmask of subsystems intended to be attached to this -	 * hierarchy -	 */ -	unsigned long subsys_bits; - -	/* Unique id for this hierarchy. */ -	int hierarchy_id; - -	/* The bitmask of subsystems currently attached to this hierarchy */ -	unsigned long actual_subsys_bits; +#ifdef CONFIG_PROVE_RCU +DEFINE_MUTEX(cgroup_mutex); +DECLARE_RWSEM(css_set_rwsem); +EXPORT_SYMBOL_GPL(cgroup_mutex); +EXPORT_SYMBOL_GPL(css_set_rwsem); +#else +static DEFINE_MUTEX(cgroup_mutex); +static DECLARE_RWSEM(css_set_rwsem); +#endif -	/* A list running through the attached subsystems */ -	struct list_head subsys_list; +/* + * Protects cgroup_idr and css_idr so that IDs can be released without + * grabbing cgroup_mutex. + */ +static DEFINE_SPINLOCK(cgroup_idr_lock); -	/* The root cgroup for this hierarchy */ -	struct cgroup top_cgroup; +/* + * Protects cgroup_subsys->release_agent_path.  Modifying it also requires + * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock. + */ +static DEFINE_SPINLOCK(release_agent_path_lock); -	/* Tracks how many cgroups are currently defined in hierarchy.*/ -	int number_of_cgroups; +#define cgroup_assert_mutex_or_rcu_locked()				\ +	rcu_lockdep_assert(rcu_read_lock_held() ||			\ +			   lockdep_is_held(&cgroup_mutex),		\ +			   "cgroup_mutex or RCU read lock required"); -	/* A list running through the active hierarchies */ -	struct list_head root_list; +/* + * cgroup destruction makes heavy use of work items and there can be a lot + * of concurrent destructions.  Use a separate workqueue so that cgroup + * destruction work items don't end up filling up max_active of system_wq + * which may lead to deadlock. + */ +static struct workqueue_struct *cgroup_destroy_wq; -	/* Hierarchy-specific flags */ -	unsigned long flags; +/* + * pidlist destructions need to be flushed on cgroup destruction.  Use a + * separate workqueue as flush domain. + */ +static struct workqueue_struct *cgroup_pidlist_destroy_wq; -	/* The path to use for release notifications. */ -	char release_agent_path[PATH_MAX]; +/* generate an array of cgroup subsystem pointers */ +#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, +static struct cgroup_subsys *cgroup_subsys[] = { +#include <linux/cgroup_subsys.h> +}; +#undef SUBSYS -	/* The name for this hierarchy - may be empty */ -	char name[MAX_CGROUP_ROOT_NAMELEN]; +/* array of cgroup subsystem names */ +#define SUBSYS(_x) [_x ## _cgrp_id] = #_x, +static const char *cgroup_subsys_name[] = { +#include <linux/cgroup_subsys.h>  }; +#undef SUBSYS  /* - * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the - * subsystems that are otherwise unattached - it never has more than a - * single cgroup, and all tasks are part of that cgroup. + * The default hierarchy, reserved for the subsystems that are otherwise + * unattached - it never has more than a single cgroup, and all tasks are + * part of that cgroup.   */ -static struct cgroupfs_root rootnode; +struct cgroup_root cgrp_dfl_root;  /* - * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when - * cgroup_subsys->use_id != 0. + * The default hierarchy always exists but is hidden until mounted for the + * first time.  This is for backward compatibility.   */ -#define CSS_ID_MAX	(65535) -struct css_id { -	/* -	 * The css to which this ID points. This pointer is set to valid value -	 * after cgroup is populated. If cgroup is removed, this will be NULL. -	 * This pointer is expected to be RCU-safe because destroy() -	 * is called after synchronize_rcu(). But for safe use, css_is_removed() -	 * css_tryget() should be used for avoiding race. -	 */ -	struct cgroup_subsys_state __rcu *css; -	/* -	 * ID of this css. -	 */ -	unsigned short id; -	/* -	 * Depth in hierarchy which this ID belongs to. -	 */ -	unsigned short depth; -	/* -	 * ID is freed by RCU. (and lookup routine is RCU safe.) -	 */ -	struct rcu_head rcu_head; -	/* -	 * Hierarchy of CSS ID belongs to. -	 */ -	unsigned short stack[0]; /* Array of Length (depth+1) */ -}; +static bool cgrp_dfl_root_visible; -/* - * cgroup_event represents events which userspace want to recieve. - */ -struct cgroup_event { -	/* -	 * Cgroup which the event belongs to. -	 */ -	struct cgroup *cgrp; -	/* -	 * Control file which the event associated. -	 */ -	struct cftype *cft; -	/* -	 * eventfd to signal userspace about the event. -	 */ -	struct eventfd_ctx *eventfd; -	/* -	 * Each of these stored in a list by the cgroup. -	 */ -	struct list_head list; -	/* -	 * All fields below needed to unregister event when -	 * userspace closes eventfd. -	 */ -	poll_table pt; -	wait_queue_head_t *wqh; -	wait_queue_t wait; -	struct work_struct remove; -}; +/* some controllers are not supported in the default hierarchy */ +static const unsigned int cgrp_dfl_root_inhibit_ss_mask = 0 +#ifdef CONFIG_CGROUP_DEBUG +	| (1 << debug_cgrp_id) +#endif +	;  /* The list of hierarchy roots */ -static LIST_HEAD(roots); -static int root_count; +static LIST_HEAD(cgroup_roots); +static int cgroup_root_count; -static DEFINE_IDA(hierarchy_ida); -static int next_hierarchy_id; -static DEFINE_SPINLOCK(hierarchy_id_lock); +/* hierarchy ID allocation and mapping, protected by cgroup_mutex */ +static DEFINE_IDR(cgroup_hierarchy_idr); -/* dummytop is a shorthand for the dummy hierarchy's top cgroup */ -#define dummytop (&rootnode.top_cgroup) +/* + * Assign a monotonically increasing serial number to csses.  It guarantees + * cgroups with bigger numbers are newer than those with smaller numbers. + * Also, as csses are always appended to the parent's ->children list, it + * guarantees that sibling csses are always sorted in the ascending serial + * number order on the list.  Protected by cgroup_mutex. + */ +static u64 css_serial_nr_next = 1;  /* This flag indicates whether tasks in the fork and exit paths should   * check for fork/exit handlers to call. This avoids us having to do @@ -205,30 +180,152 @@ static DEFINE_SPINLOCK(hierarchy_id_lock);   */  static int need_forkexit_callback __read_mostly; -#ifdef CONFIG_PROVE_LOCKING -int cgroup_lock_is_held(void) +static struct cftype cgroup_base_files[]; + +static void cgroup_put(struct cgroup *cgrp); +static int rebind_subsystems(struct cgroup_root *dst_root, +			     unsigned int ss_mask); +static int cgroup_destroy_locked(struct cgroup *cgrp); +static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss); +static void css_release(struct percpu_ref *ref); +static void kill_css(struct cgroup_subsys_state *css); +static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[], +			      bool is_add); +static void cgroup_pidlist_destroy_all(struct cgroup *cgrp); + +/* IDR wrappers which synchronize using cgroup_idr_lock */ +static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, +			    gfp_t gfp_mask) +{ +	int ret; + +	idr_preload(gfp_mask); +	spin_lock_bh(&cgroup_idr_lock); +	ret = idr_alloc(idr, ptr, start, end, gfp_mask); +	spin_unlock_bh(&cgroup_idr_lock); +	idr_preload_end(); +	return ret; +} + +static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) +{ +	void *ret; + +	spin_lock_bh(&cgroup_idr_lock); +	ret = idr_replace(idr, ptr, id); +	spin_unlock_bh(&cgroup_idr_lock); +	return ret; +} + +static void cgroup_idr_remove(struct idr *idr, int id)  { -	return lockdep_is_held(&cgroup_mutex); +	spin_lock_bh(&cgroup_idr_lock); +	idr_remove(idr, id); +	spin_unlock_bh(&cgroup_idr_lock);  } -#else /* #ifdef CONFIG_PROVE_LOCKING */ -int cgroup_lock_is_held(void) + +static struct cgroup *cgroup_parent(struct cgroup *cgrp)  { -	return mutex_is_locked(&cgroup_mutex); +	struct cgroup_subsys_state *parent_css = cgrp->self.parent; + +	if (parent_css) +		return container_of(parent_css, struct cgroup, self); +	return NULL;  } -#endif /* #else #ifdef CONFIG_PROVE_LOCKING */ -EXPORT_SYMBOL_GPL(cgroup_lock_is_held); +/** + * cgroup_css - obtain a cgroup's css for the specified subsystem + * @cgrp: the cgroup of interest + * @ss: the subsystem of interest (%NULL returns @cgrp->self) + * + * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This + * function must be called either under cgroup_mutex or rcu_read_lock() and + * the caller is responsible for pinning the returned css if it wants to + * keep accessing it outside the said locks.  This function may return + * %NULL if @cgrp doesn't have @subsys_id enabled. + */ +static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, +					      struct cgroup_subsys *ss) +{ +	if (ss) +		return rcu_dereference_check(cgrp->subsys[ss->id], +					lockdep_is_held(&cgroup_mutex)); +	else +		return &cgrp->self; +} + +/** + * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem + * @cgrp: the cgroup of interest + * @ss: the subsystem of interest (%NULL returns @cgrp->self) + * + * Similar to cgroup_css() but returns the effctive css, which is defined + * as the matching css of the nearest ancestor including self which has @ss + * enabled.  If @ss is associated with the hierarchy @cgrp is on, this + * function is guaranteed to return non-NULL css. + */ +static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, +						struct cgroup_subsys *ss) +{ +	lockdep_assert_held(&cgroup_mutex); + +	if (!ss) +		return &cgrp->self; + +	if (!(cgrp->root->subsys_mask & (1 << ss->id))) +		return NULL; + +	while (cgroup_parent(cgrp) && +	       !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id))) +		cgrp = cgroup_parent(cgrp); + +	return cgroup_css(cgrp, ss); +}  /* convenient tests for these bits */ -inline int cgroup_is_removed(const struct cgroup *cgrp) +static inline bool cgroup_is_dead(const struct cgroup *cgrp)  { -	return test_bit(CGRP_REMOVED, &cgrp->flags); +	return !(cgrp->self.flags & CSS_ONLINE);  } -/* bits in struct cgroupfs_root flags field */ -enum { -	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */ -}; +struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) +{ +	struct cgroup *cgrp = of->kn->parent->priv; +	struct cftype *cft = of_cft(of); + +	/* +	 * This is open and unprotected implementation of cgroup_css(). +	 * seq_css() is only called from a kernfs file operation which has +	 * an active reference on the file.  Because all the subsystem +	 * files are drained before a css is disassociated with a cgroup, +	 * the matching css from the cgroup's subsys table is guaranteed to +	 * be and stay valid until the enclosing operation is complete. +	 */ +	if (cft->ss) +		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); +	else +		return &cgrp->self; +} +EXPORT_SYMBOL_GPL(of_css); + +/** + * cgroup_is_descendant - test ancestry + * @cgrp: the cgroup to be tested + * @ancestor: possible ancestor of @cgrp + * + * Test whether @cgrp is a descendant of @ancestor.  It also returns %true + * if @cgrp == @ancestor.  This function is safe to call as long as @cgrp + * and @ancestor are accessible. + */ +bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor) +{ +	while (cgrp) { +		if (cgrp == ancestor) +			return true; +		cgrp = cgroup_parent(cgrp); +	} +	return false; +}  static int cgroup_is_releasable(const struct cgroup *cgrp)  { @@ -243,64 +340,138 @@ static int notify_on_release(const struct cgroup *cgrp)  	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);  } -static int clone_children(const struct cgroup *cgrp) -{ -	return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags); -} +/** + * for_each_css - iterate all css's of a cgroup + * @css: the iteration cursor + * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end + * @cgrp: the target cgroup to iterate css's of + * + * Should be called under cgroup_[tree_]mutex. + */ +#define for_each_css(css, ssid, cgrp)					\ +	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\ +		if (!((css) = rcu_dereference_check(			\ +				(cgrp)->subsys[(ssid)],			\ +				lockdep_is_held(&cgroup_mutex)))) { }	\ +		else -/* - * for_each_subsys() allows you to iterate on each subsystem attached to - * an active hierarchy +/** + * for_each_e_css - iterate all effective css's of a cgroup + * @css: the iteration cursor + * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end + * @cgrp: the target cgroup to iterate css's of + * + * Should be called under cgroup_[tree_]mutex.   */ -#define for_each_subsys(_root, _ss) \ -list_for_each_entry(_ss, &_root->subsys_list, sibling) +#define for_each_e_css(css, ssid, cgrp)					\ +	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\ +		if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \ +			;						\ +		else -/* for_each_active_root() allows you to iterate across the active hierarchies */ -#define for_each_active_root(_root) \ -list_for_each_entry(_root, &roots, root_list) +/** + * for_each_subsys - iterate all enabled cgroup subsystems + * @ss: the iteration cursor + * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end + */ +#define for_each_subsys(ss, ssid)					\ +	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT &&		\ +	     (((ss) = cgroup_subsys[ssid]) || true); (ssid)++) + +/* iterate across the hierarchies */ +#define for_each_root(root)						\ +	list_for_each_entry((root), &cgroup_roots, root_list) + +/* iterate over child cgrps, lock should be held throughout iteration */ +#define cgroup_for_each_live_child(child, cgrp)				\ +	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ +		if (({ lockdep_assert_held(&cgroup_mutex);		\ +		       cgroup_is_dead(child); }))			\ +			;						\ +		else  /* the list of cgroups eligible for automatic release. Protected by   * release_list_lock */  static LIST_HEAD(release_list); -static DEFINE_SPINLOCK(release_list_lock); +static DEFINE_RAW_SPINLOCK(release_list_lock);  static void cgroup_release_agent(struct work_struct *work);  static DECLARE_WORK(release_agent_work, cgroup_release_agent);  static void check_for_release(struct cgroup *cgrp); -/* Link structure for associating css_set objects with cgroups */ -struct cg_cgroup_link { -	/* -	 * List running through cg_cgroup_links associated with a -	 * cgroup, anchored on cgroup->css_sets -	 */ -	struct list_head cgrp_link_list; -	struct cgroup *cgrp; -	/* -	 * List running through cg_cgroup_links pointing at a -	 * single css_set object, anchored on css_set->cg_links -	 */ -	struct list_head cg_link_list; -	struct css_set *cg; +/* + * A cgroup can be associated with multiple css_sets as different tasks may + * belong to different cgroups on different hierarchies.  In the other + * direction, a css_set is naturally associated with multiple cgroups. + * This M:N relationship is represented by the following link structure + * which exists for each association and allows traversing the associations + * from both sides. + */ +struct cgrp_cset_link { +	/* the cgroup and css_set this link associates */ +	struct cgroup		*cgrp; +	struct css_set		*cset; + +	/* list of cgrp_cset_links anchored at cgrp->cset_links */ +	struct list_head	cset_link; + +	/* list of cgrp_cset_links anchored at css_set->cgrp_links */ +	struct list_head	cgrp_link;  }; -/* The default css_set - used by init and its children prior to any +/* + * The default css_set - used by init and its children prior to any   * hierarchies being mounted. It contains a pointer to the root state   * for each subsystem. Also used to anchor the list of css_sets. Not   * reference-counted, to improve performance when child cgroups   * haven't been created.   */ +struct css_set init_css_set = { +	.refcount		= ATOMIC_INIT(1), +	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links), +	.tasks			= LIST_HEAD_INIT(init_css_set.tasks), +	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks), +	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node), +	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node), +}; -static struct css_set init_css_set; -static struct cg_cgroup_link init_css_set_link; +static int css_set_count	= 1;	/* 1 for init_css_set */ -static int cgroup_init_idr(struct cgroup_subsys *ss, -			   struct cgroup_subsys_state *css); +/** + * cgroup_update_populated - updated populated count of a cgroup + * @cgrp: the target cgroup + * @populated: inc or dec populated count + * + * @cgrp is either getting the first task (css_set) or losing the last. + * Update @cgrp->populated_cnt accordingly.  The count is propagated + * towards root so that a given cgroup's populated_cnt is zero iff the + * cgroup and all its descendants are empty. + * + * @cgrp's interface file "cgroup.populated" is zero if + * @cgrp->populated_cnt is zero and 1 otherwise.  When @cgrp->populated_cnt + * changes from or to zero, userland is notified that the content of the + * interface file has changed.  This can be used to detect when @cgrp and + * its descendants become populated or empty. + */ +static void cgroup_update_populated(struct cgroup *cgrp, bool populated) +{ +	lockdep_assert_held(&css_set_rwsem); -/* css_set_lock protects the list of css_set objects, and the - * chain of tasks off each css_set.  Nests outside task->alloc_lock - * due to cgroup_iter_start() */ -static DEFINE_RWLOCK(css_set_lock); -static int css_set_count; +	do { +		bool trigger; + +		if (populated) +			trigger = !cgrp->populated_cnt++; +		else +			trigger = !--cgrp->populated_cnt; + +		if (!trigger) +			break; + +		if (cgrp->populated_kn) +			kernfs_notify(cgrp->populated_kn); +		cgrp = cgroup_parent(cgrp); +	} while (cgrp); +}  /*   * hash table for cgroup groups. This improves the performance to find @@ -308,147 +479,136 @@ static int css_set_count;   * account cgroups in empty hierarchies.   */  #define CSS_SET_HASH_BITS	7 -#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS) -static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE]; +static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); -static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[]) +static unsigned long css_set_hash(struct cgroup_subsys_state *css[])  { +	unsigned long key = 0UL; +	struct cgroup_subsys *ss;  	int i; -	int index; -	unsigned long tmp = 0UL; -	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) -		tmp += (unsigned long)css[i]; -	tmp = (tmp >> 16) ^ tmp; +	for_each_subsys(ss, i) +		key += (unsigned long)css[i]; +	key = (key >> 16) ^ key; -	index = hash_long(tmp, CSS_SET_HASH_BITS); - -	return &css_set_table[index]; +	return key;  } -static void free_css_set_rcu(struct rcu_head *obj) +static void put_css_set_locked(struct css_set *cset, bool taskexit)  { -	struct css_set *cg = container_of(obj, struct css_set, rcu_head); -	kfree(cg); -} +	struct cgrp_cset_link *link, *tmp_link; +	struct cgroup_subsys *ss; +	int ssid; -/* We don't maintain the lists running through each css_set to its - * task until after the first call to cgroup_iter_start(). This - * reduces the fork()/exit() overhead for people who have cgroups - * compiled into their kernel but not actually in use */ -static int use_task_css_set_links __read_mostly; +	lockdep_assert_held(&css_set_rwsem); -static void __put_css_set(struct css_set *cg, int taskexit) -{ -	struct cg_cgroup_link *link; -	struct cg_cgroup_link *saved_link; -	/* -	 * Ensure that the refcount doesn't hit zero while any readers -	 * can see it. Similar to atomic_dec_and_lock(), but for an -	 * rwlock -	 */ -	if (atomic_add_unless(&cg->refcount, -1, 1)) -		return; -	write_lock(&css_set_lock); -	if (!atomic_dec_and_test(&cg->refcount)) { -		write_unlock(&css_set_lock); +	if (!atomic_dec_and_test(&cset->refcount))  		return; -	}  	/* This css_set is dead. unlink it and release cgroup refcounts */ -	hlist_del(&cg->hlist); +	for_each_subsys(ss, ssid) +		list_del(&cset->e_cset_node[ssid]); +	hash_del(&cset->hlist);  	css_set_count--; -	list_for_each_entry_safe(link, saved_link, &cg->cg_links, -				 cg_link_list) { +	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {  		struct cgroup *cgrp = link->cgrp; -		list_del(&link->cg_link_list); -		list_del(&link->cgrp_link_list); -		if (atomic_dec_and_test(&cgrp->count) && -		    notify_on_release(cgrp)) { -			if (taskexit) -				set_bit(CGRP_RELEASABLE, &cgrp->flags); -			check_for_release(cgrp); + +		list_del(&link->cset_link); +		list_del(&link->cgrp_link); + +		/* @cgrp can't go away while we're holding css_set_rwsem */ +		if (list_empty(&cgrp->cset_links)) { +			cgroup_update_populated(cgrp, false); +			if (notify_on_release(cgrp)) { +				if (taskexit) +					set_bit(CGRP_RELEASABLE, &cgrp->flags); +				check_for_release(cgrp); +			}  		}  		kfree(link);  	} -	write_unlock(&css_set_lock); -	call_rcu(&cg->rcu_head, free_css_set_rcu); +	kfree_rcu(cset, rcu_head);  } -/* - * refcounted get/put for css_set objects - */ -static inline void get_css_set(struct css_set *cg) +static void put_css_set(struct css_set *cset, bool taskexit)  { -	atomic_inc(&cg->refcount); -} +	/* +	 * Ensure that the refcount doesn't hit zero while any readers +	 * can see it. Similar to atomic_dec_and_lock(), but for an +	 * rwlock +	 */ +	if (atomic_add_unless(&cset->refcount, -1, 1)) +		return; -static inline void put_css_set(struct css_set *cg) -{ -	__put_css_set(cg, 0); +	down_write(&css_set_rwsem); +	put_css_set_locked(cset, taskexit); +	up_write(&css_set_rwsem);  } -static inline void put_css_set_taskexit(struct css_set *cg) +/* + * refcounted get/put for css_set objects + */ +static inline void get_css_set(struct css_set *cset)  { -	__put_css_set(cg, 1); +	atomic_inc(&cset->refcount);  } -/* +/**   * compare_css_sets - helper function for find_existing_css_set(). - * @cg: candidate css_set being tested - * @old_cg: existing css_set for a task + * @cset: candidate css_set being tested + * @old_cset: existing css_set for a task   * @new_cgrp: cgroup that's being entered by the task   * @template: desired set of css pointers in css_set (pre-calculated)   * - * Returns true if "cg" matches "old_cg" except for the hierarchy + * Returns true if "cset" matches "old_cset" except for the hierarchy   * which "new_cgrp" belongs to, for which it should match "new_cgrp".   */ -static bool compare_css_sets(struct css_set *cg, -			     struct css_set *old_cg, +static bool compare_css_sets(struct css_set *cset, +			     struct css_set *old_cset,  			     struct cgroup *new_cgrp,  			     struct cgroup_subsys_state *template[])  {  	struct list_head *l1, *l2; -	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) { -		/* Not all subsystems matched */ +	/* +	 * On the default hierarchy, there can be csets which are +	 * associated with the same set of cgroups but different csses. +	 * Let's first ensure that csses match. +	 */ +	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))  		return false; -	}  	/*  	 * Compare cgroup pointers in order to distinguish between -	 * different cgroups in heirarchies with no subsystems. We -	 * could get by with just this check alone (and skip the -	 * memcmp above) but on most setups the memcmp check will -	 * avoid the need for this more expensive check on almost all -	 * candidates. +	 * different cgroups in hierarchies.  As different cgroups may +	 * share the same effective css, this comparison is always +	 * necessary.  	 */ - -	l1 = &cg->cg_links; -	l2 = &old_cg->cg_links; +	l1 = &cset->cgrp_links; +	l2 = &old_cset->cgrp_links;  	while (1) { -		struct cg_cgroup_link *cgl1, *cgl2; -		struct cgroup *cg1, *cg2; +		struct cgrp_cset_link *link1, *link2; +		struct cgroup *cgrp1, *cgrp2;  		l1 = l1->next;  		l2 = l2->next;  		/* See if we reached the end - both lists are equal length. */ -		if (l1 == &cg->cg_links) { -			BUG_ON(l2 != &old_cg->cg_links); +		if (l1 == &cset->cgrp_links) { +			BUG_ON(l2 != &old_cset->cgrp_links);  			break;  		} else { -			BUG_ON(l2 == &old_cg->cg_links); +			BUG_ON(l2 == &old_cset->cgrp_links);  		}  		/* Locate the cgroups associated with these links. */ -		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list); -		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list); -		cg1 = cgl1->cgrp; -		cg2 = cgl2->cgrp; +		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); +		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); +		cgrp1 = link1->cgrp; +		cgrp2 = link2->cgrp;  		/* Hierarchies should be linked in the same order. */ -		BUG_ON(cg1->root != cg2->root); +		BUG_ON(cgrp1->root != cgrp2->root);  		/*  		 * If this hierarchy is the hierarchy of the cgroup @@ -457,239 +617,340 @@ static bool compare_css_sets(struct css_set *cg,  		 * hierarchy, then this css_set should point to the  		 * same cgroup as the old css_set.  		 */ -		if (cg1->root == new_cgrp->root) { -			if (cg1 != new_cgrp) +		if (cgrp1->root == new_cgrp->root) { +			if (cgrp1 != new_cgrp)  				return false;  		} else { -			if (cg1 != cg2) +			if (cgrp1 != cgrp2)  				return false;  		}  	}  	return true;  } -/* - * find_existing_css_set() is a helper for - * find_css_set(), and checks to see whether an existing - * css_set is suitable. - * - * oldcg: the cgroup group that we're using before the cgroup - * transition - * - * cgrp: the cgroup that we're moving into - * - * template: location in which to build the desired set of subsystem - * state objects for the new cgroup group +/** + * find_existing_css_set - init css array and find the matching css_set + * @old_cset: the css_set that we're using before the cgroup transition + * @cgrp: the cgroup that we're moving into + * @template: out param for the new set of csses, should be clear on entry   */ -static struct css_set *find_existing_css_set( -	struct css_set *oldcg, -	struct cgroup *cgrp, -	struct cgroup_subsys_state *template[]) +static struct css_set *find_existing_css_set(struct css_set *old_cset, +					struct cgroup *cgrp, +					struct cgroup_subsys_state *template[])  { +	struct cgroup_root *root = cgrp->root; +	struct cgroup_subsys *ss; +	struct css_set *cset; +	unsigned long key;  	int i; -	struct cgroupfs_root *root = cgrp->root; -	struct hlist_head *hhead; -	struct hlist_node *node; -	struct css_set *cg;  	/*  	 * Build the set of subsystem state objects that we want to see in the  	 * new css_set. while subsystems can change globally, the entries here  	 * won't change, so no need for locking.  	 */ -	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { -		if (root->subsys_bits & (1UL << i)) { -			/* Subsystem is in this hierarchy. So we want -			 * the subsystem state from the new -			 * cgroup */ -			template[i] = cgrp->subsys[i]; +	for_each_subsys(ss, i) { +		if (root->subsys_mask & (1UL << i)) { +			/* +			 * @ss is in this hierarchy, so we want the +			 * effective css from @cgrp. +			 */ +			template[i] = cgroup_e_css(cgrp, ss);  		} else { -			/* Subsystem is not in this hierarchy, so we -			 * don't want to change the subsystem state */ -			template[i] = oldcg->subsys[i]; +			/* +			 * @ss is not in this hierarchy, so we don't want +			 * to change the css. +			 */ +			template[i] = old_cset->subsys[i];  		}  	} -	hhead = css_set_hash(template); -	hlist_for_each_entry(cg, node, hhead, hlist) { -		if (!compare_css_sets(cg, oldcg, cgrp, template)) +	key = css_set_hash(template); +	hash_for_each_possible(css_set_table, cset, hlist, key) { +		if (!compare_css_sets(cset, old_cset, cgrp, template))  			continue;  		/* This css_set matches what we need */ -		return cg; +		return cset;  	}  	/* No existing cgroup group matched */  	return NULL;  } -static void free_cg_links(struct list_head *tmp) +static void free_cgrp_cset_links(struct list_head *links_to_free)  { -	struct cg_cgroup_link *link; -	struct cg_cgroup_link *saved_link; +	struct cgrp_cset_link *link, *tmp_link; -	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) { -		list_del(&link->cgrp_link_list); +	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { +		list_del(&link->cset_link);  		kfree(link);  	}  } -/* - * allocate_cg_links() allocates "count" cg_cgroup_link structures - * and chains them on tmp through their cgrp_link_list fields. Returns 0 on - * success or a negative error +/** + * allocate_cgrp_cset_links - allocate cgrp_cset_links + * @count: the number of links to allocate + * @tmp_links: list_head the allocated links are put on + * + * Allocate @count cgrp_cset_link structures and chain them on @tmp_links + * through ->cset_link.  Returns 0 on success or -errno.   */ -static int allocate_cg_links(int count, struct list_head *tmp) +static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)  { -	struct cg_cgroup_link *link; +	struct cgrp_cset_link *link;  	int i; -	INIT_LIST_HEAD(tmp); + +	INIT_LIST_HEAD(tmp_links); +  	for (i = 0; i < count; i++) { -		link = kmalloc(sizeof(*link), GFP_KERNEL); +		link = kzalloc(sizeof(*link), GFP_KERNEL);  		if (!link) { -			free_cg_links(tmp); +			free_cgrp_cset_links(tmp_links);  			return -ENOMEM;  		} -		list_add(&link->cgrp_link_list, tmp); +		list_add(&link->cset_link, tmp_links);  	}  	return 0;  }  /**   * link_css_set - a helper function to link a css_set to a cgroup - * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links() - * @cg: the css_set to be linked + * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() + * @cset: the css_set to be linked   * @cgrp: the destination cgroup   */ -static void link_css_set(struct list_head *tmp_cg_links, -			 struct css_set *cg, struct cgroup *cgrp) +static void link_css_set(struct list_head *tmp_links, struct css_set *cset, +			 struct cgroup *cgrp)  { -	struct cg_cgroup_link *link; +	struct cgrp_cset_link *link; -	BUG_ON(list_empty(tmp_cg_links)); -	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link, -				cgrp_link_list); -	link->cg = cg; +	BUG_ON(list_empty(tmp_links)); + +	if (cgroup_on_dfl(cgrp)) +		cset->dfl_cgrp = cgrp; + +	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); +	link->cset = cset;  	link->cgrp = cgrp; -	atomic_inc(&cgrp->count); -	list_move(&link->cgrp_link_list, &cgrp->css_sets); + +	if (list_empty(&cgrp->cset_links)) +		cgroup_update_populated(cgrp, true); +	list_move(&link->cset_link, &cgrp->cset_links); +  	/*  	 * Always add links to the tail of the list so that the list  	 * is sorted by order of hierarchy creation  	 */ -	list_add_tail(&link->cg_link_list, &cg->cg_links); +	list_add_tail(&link->cgrp_link, &cset->cgrp_links);  } -/* - * find_css_set() takes an existing cgroup group and a - * cgroup object, and returns a css_set object that's - * equivalent to the old group, but with the given cgroup - * substituted into the appropriate hierarchy. Must be called with - * cgroup_mutex held +/** + * find_css_set - return a new css_set with one cgroup updated + * @old_cset: the baseline css_set + * @cgrp: the cgroup to be updated + * + * Return a new css_set that's equivalent to @old_cset, but with @cgrp + * substituted into the appropriate hierarchy.   */ -static struct css_set *find_css_set( -	struct css_set *oldcg, struct cgroup *cgrp) +static struct css_set *find_css_set(struct css_set *old_cset, +				    struct cgroup *cgrp)  { -	struct css_set *res; -	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; - -	struct list_head tmp_cg_links; +	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; +	struct css_set *cset; +	struct list_head tmp_links; +	struct cgrp_cset_link *link; +	struct cgroup_subsys *ss; +	unsigned long key; +	int ssid; -	struct hlist_head *hhead; -	struct cg_cgroup_link *link; +	lockdep_assert_held(&cgroup_mutex);  	/* First see if we already have a cgroup group that matches  	 * the desired set */ -	read_lock(&css_set_lock); -	res = find_existing_css_set(oldcg, cgrp, template); -	if (res) -		get_css_set(res); -	read_unlock(&css_set_lock); +	down_read(&css_set_rwsem); +	cset = find_existing_css_set(old_cset, cgrp, template); +	if (cset) +		get_css_set(cset); +	up_read(&css_set_rwsem); -	if (res) -		return res; +	if (cset) +		return cset; -	res = kmalloc(sizeof(*res), GFP_KERNEL); -	if (!res) +	cset = kzalloc(sizeof(*cset), GFP_KERNEL); +	if (!cset)  		return NULL; -	/* Allocate all the cg_cgroup_link objects that we'll need */ -	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) { -		kfree(res); +	/* Allocate all the cgrp_cset_link objects that we'll need */ +	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { +		kfree(cset);  		return NULL;  	} -	atomic_set(&res->refcount, 1); -	INIT_LIST_HEAD(&res->cg_links); -	INIT_LIST_HEAD(&res->tasks); -	INIT_HLIST_NODE(&res->hlist); +	atomic_set(&cset->refcount, 1); +	INIT_LIST_HEAD(&cset->cgrp_links); +	INIT_LIST_HEAD(&cset->tasks); +	INIT_LIST_HEAD(&cset->mg_tasks); +	INIT_LIST_HEAD(&cset->mg_preload_node); +	INIT_LIST_HEAD(&cset->mg_node); +	INIT_HLIST_NODE(&cset->hlist);  	/* Copy the set of subsystem state objects generated in  	 * find_existing_css_set() */ -	memcpy(res->subsys, template, sizeof(res->subsys)); +	memcpy(cset->subsys, template, sizeof(cset->subsys)); -	write_lock(&css_set_lock); +	down_write(&css_set_rwsem);  	/* Add reference counts and links from the new css_set. */ -	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) { +	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {  		struct cgroup *c = link->cgrp; +  		if (c->root == cgrp->root)  			c = cgrp; -		link_css_set(&tmp_cg_links, res, c); +		link_css_set(&tmp_links, cset, c);  	} -	BUG_ON(!list_empty(&tmp_cg_links)); +	BUG_ON(!list_empty(&tmp_links));  	css_set_count++; -	/* Add this cgroup group to the hash table */ -	hhead = css_set_hash(res->subsys); -	hlist_add_head(&res->hlist, hhead); +	/* Add @cset to the hash table */ +	key = css_set_hash(cset->subsys); +	hash_add(css_set_table, &cset->hlist, key); -	write_unlock(&css_set_lock); +	for_each_subsys(ss, ssid) +		list_add_tail(&cset->e_cset_node[ssid], +			      &cset->subsys[ssid]->cgroup->e_csets[ssid]); -	return res; +	up_write(&css_set_rwsem); + +	return cset;  } -/* - * Return the cgroup for "task" from the given hierarchy. Must be - * called with cgroup_mutex held. - */ -static struct cgroup *task_cgroup_from_root(struct task_struct *task, -					    struct cgroupfs_root *root) +static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)  { -	struct css_set *css; -	struct cgroup *res = NULL; +	struct cgroup *root_cgrp = kf_root->kn->priv; + +	return root_cgrp->root; +} + +static int cgroup_init_root_id(struct cgroup_root *root) +{ +	int id; + +	lockdep_assert_held(&cgroup_mutex); + +	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); +	if (id < 0) +		return id; + +	root->hierarchy_id = id; +	return 0; +} + +static void cgroup_exit_root_id(struct cgroup_root *root) +{ +	lockdep_assert_held(&cgroup_mutex); + +	if (root->hierarchy_id) { +		idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); +		root->hierarchy_id = 0; +	} +} + +static void cgroup_free_root(struct cgroup_root *root) +{ +	if (root) { +		/* hierarhcy ID shoulid already have been released */ +		WARN_ON_ONCE(root->hierarchy_id); + +		idr_destroy(&root->cgroup_idr); +		kfree(root); +	} +} + +static void cgroup_destroy_root(struct cgroup_root *root) +{ +	struct cgroup *cgrp = &root->cgrp; +	struct cgrp_cset_link *link, *tmp_link; + +	mutex_lock(&cgroup_mutex); + +	BUG_ON(atomic_read(&root->nr_cgrps)); +	BUG_ON(!list_empty(&cgrp->self.children)); + +	/* Rebind all subsystems back to the default hierarchy */ +	rebind_subsystems(&cgrp_dfl_root, root->subsys_mask); -	BUG_ON(!mutex_is_locked(&cgroup_mutex)); -	read_lock(&css_set_lock);  	/* -	 * No need to lock the task - since we hold cgroup_mutex the -	 * task can't change groups, so the only thing that can happen -	 * is that it exits and its css is set back to init_css_set. +	 * Release all the links from cset_links to this hierarchy's +	 * root cgroup  	 */ -	css = task->cgroups; -	if (css == &init_css_set) { -		res = &root->top_cgroup; +	down_write(&css_set_rwsem); + +	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { +		list_del(&link->cset_link); +		list_del(&link->cgrp_link); +		kfree(link); +	} +	up_write(&css_set_rwsem); + +	if (!list_empty(&root->root_list)) { +		list_del(&root->root_list); +		cgroup_root_count--; +	} + +	cgroup_exit_root_id(root); + +	mutex_unlock(&cgroup_mutex); + +	kernfs_destroy_root(root->kf_root); +	cgroup_free_root(root); +} + +/* look up cgroup associated with given css_set on the specified hierarchy */ +static struct cgroup *cset_cgroup_from_root(struct css_set *cset, +					    struct cgroup_root *root) +{ +	struct cgroup *res = NULL; + +	lockdep_assert_held(&cgroup_mutex); +	lockdep_assert_held(&css_set_rwsem); + +	if (cset == &init_css_set) { +		res = &root->cgrp;  	} else { -		struct cg_cgroup_link *link; -		list_for_each_entry(link, &css->cg_links, cg_link_list) { +		struct cgrp_cset_link *link; + +		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {  			struct cgroup *c = link->cgrp; +  			if (c->root == root) {  				res = c;  				break;  			}  		}  	} -	read_unlock(&css_set_lock); +  	BUG_ON(!res);  	return res;  }  /* - * There is one global cgroup mutex. We also require taking - * task_lock() when dereferencing a task's cgroup subsys pointers. - * See "The task_lock() exception", at the end of this comment. - * + * Return the cgroup for "task" from the given hierarchy. Must be + * called with cgroup_mutex and css_set_rwsem held. + */ +static struct cgroup *task_cgroup_from_root(struct task_struct *task, +					    struct cgroup_root *root) +{ +	/* +	 * No need to lock the task - since we hold cgroup_mutex the +	 * task can't change groups, so the only thing that can happen +	 * is that it exits and its css is set back to init_css_set. +	 */ +	return cset_cgroup_from_root(task_css_set(task), root); +} + +/*   * A task must hold cgroup_mutex to modify cgroups.   *   * Any task can increment and decrement the count field without lock. @@ -715,375 +976,302 @@ static struct cgroup *task_cgroup_from_root(struct task_struct *task,   * A cgroup can only be deleted if both its 'count' of using tasks   * is zero, and its list of 'children' cgroups is empty.  Since all   * tasks in the system use _some_ cgroup, and since there is always at - * least one task in the system (init, pid == 1), therefore, top_cgroup + * least one task in the system (init, pid == 1), therefore, root cgroup   * always has either children cgroups and/or using tasks.  So we don't - * need a special hack to ensure that top_cgroup cannot be deleted. - * - *	The task_lock() exception - * - * The need for this exception arises from the action of - * cgroup_attach_task(), which overwrites one tasks cgroup pointer with - * another.  It does so using cgroup_mutex, however there are - * several performance critical places that need to reference - * task->cgroup without the expense of grabbing a system global - * mutex.  Therefore except as noted below, when dereferencing or, as - * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use - * task_lock(), which acts on a spinlock (task->alloc_lock) already in - * the task_struct routinely used for such matters. + * need a special hack to ensure that root cgroup cannot be deleted.   *   * P.S.  One more locking exception.  RCU is used to guard the   * update of a tasks cgroup pointer by cgroup_attach_task()   */ -/** - * cgroup_lock - lock out any changes to cgroup structures - * - */ -void cgroup_lock(void) +static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask); +static struct kernfs_syscall_ops cgroup_kf_syscall_ops; +static const struct file_operations proc_cgroupstats_operations; + +static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, +			      char *buf)  { -	mutex_lock(&cgroup_mutex); +	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && +	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) +		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", +			 cft->ss->name, cft->name); +	else +		strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX); +	return buf;  } -EXPORT_SYMBOL_GPL(cgroup_lock);  /** - * cgroup_unlock - release lock on cgroup changes + * cgroup_file_mode - deduce file mode of a control file + * @cft: the control file in question   * - * Undo the lock taken in a previous cgroup_lock() call. + * returns cft->mode if ->mode is not 0 + * returns S_IRUGO|S_IWUSR if it has both a read and a write handler + * returns S_IRUGO if it has only a read handler + * returns S_IWUSR if it has only a write hander   */ -void cgroup_unlock(void) +static umode_t cgroup_file_mode(const struct cftype *cft)  { -	mutex_unlock(&cgroup_mutex); -} -EXPORT_SYMBOL_GPL(cgroup_unlock); +	umode_t mode = 0; -/* - * A couple of forward declarations required, due to cyclic reference loop: - * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir -> - * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations - * -> cgroup_mkdir. - */ +	if (cft->mode) +		return cft->mode; -static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode); -static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); -static int cgroup_populate_dir(struct cgroup *cgrp); -static const struct inode_operations cgroup_dir_inode_operations; -static const struct file_operations proc_cgroupstats_operations; +	if (cft->read_u64 || cft->read_s64 || cft->seq_show) +		mode |= S_IRUGO; -static struct backing_dev_info cgroup_backing_dev_info = { -	.name		= "cgroup", -	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK, -}; +	if (cft->write_u64 || cft->write_s64 || cft->write) +		mode |= S_IWUSR; -static int alloc_css_id(struct cgroup_subsys *ss, -			struct cgroup *parent, struct cgroup *child); +	return mode; +} -static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb) +static void cgroup_get(struct cgroup *cgrp)  { -	struct inode *inode = new_inode(sb); +	WARN_ON_ONCE(cgroup_is_dead(cgrp)); +	css_get(&cgrp->self); +} -	if (inode) { -		inode->i_ino = get_next_ino(); -		inode->i_mode = mode; -		inode->i_uid = current_fsuid(); -		inode->i_gid = current_fsgid(); -		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; -		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info; -	} -	return inode; +static void cgroup_put(struct cgroup *cgrp) +{ +	css_put(&cgrp->self);  } -/* - * Call subsys's pre_destroy handler. - * This is called before css refcnt check. +/** + * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods + * @kn: the kernfs_node being serviced + * + * This helper undoes cgroup_kn_lock_live() and should be invoked before + * the method finishes if locking succeeded.  Note that once this function + * returns the cgroup returned by cgroup_kn_lock_live() may become + * inaccessible any time.  If the caller intends to continue to access the + * cgroup, it should pin it before invoking this function.   */ -static int cgroup_call_pre_destroy(struct cgroup *cgrp) +static void cgroup_kn_unlock(struct kernfs_node *kn)  { -	struct cgroup_subsys *ss; -	int ret = 0; - -	for_each_subsys(cgrp->root, ss) -		if (ss->pre_destroy) { -			ret = ss->pre_destroy(ss, cgrp); -			if (ret) -				break; -		} +	struct cgroup *cgrp; -	return ret; -} +	if (kernfs_type(kn) == KERNFS_DIR) +		cgrp = kn->priv; +	else +		cgrp = kn->parent->priv; -static void free_cgroup_rcu(struct rcu_head *obj) -{ -	struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head); +	mutex_unlock(&cgroup_mutex); -	kfree(cgrp); +	kernfs_unbreak_active_protection(kn); +	cgroup_put(cgrp);  } -static void cgroup_diput(struct dentry *dentry, struct inode *inode) +/** + * cgroup_kn_lock_live - locking helper for cgroup kernfs methods + * @kn: the kernfs_node being serviced + * + * This helper is to be used by a cgroup kernfs method currently servicing + * @kn.  It breaks the active protection, performs cgroup locking and + * verifies that the associated cgroup is alive.  Returns the cgroup if + * alive; otherwise, %NULL.  A successful return should be undone by a + * matching cgroup_kn_unlock() invocation. + * + * Any cgroup kernfs method implementation which requires locking the + * associated cgroup should use this helper.  It avoids nesting cgroup + * locking under kernfs active protection and allows all kernfs operations + * including self-removal. + */ +static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)  { -	/* is dentry a directory ? if so, kfree() associated cgroup */ -	if (S_ISDIR(inode->i_mode)) { -		struct cgroup *cgrp = dentry->d_fsdata; -		struct cgroup_subsys *ss; -		BUG_ON(!(cgroup_is_removed(cgrp))); -		/* It's possible for external users to be holding css -		 * reference counts on a cgroup; css_put() needs to -		 * be able to access the cgroup after decrementing -		 * the reference count in order to know if it needs to -		 * queue the cgroup to be handled by the release -		 * agent */ -		synchronize_rcu(); +	struct cgroup *cgrp; -		mutex_lock(&cgroup_mutex); -		/* -		 * Release the subsystem state objects. -		 */ -		for_each_subsys(cgrp->root, ss) -			ss->destroy(ss, cgrp); +	if (kernfs_type(kn) == KERNFS_DIR) +		cgrp = kn->priv; +	else +		cgrp = kn->parent->priv; -		cgrp->root->number_of_cgroups--; -		mutex_unlock(&cgroup_mutex); +	/* +	 * We're gonna grab cgroup_mutex which nests outside kernfs +	 * active_ref.  cgroup liveliness check alone provides enough +	 * protection against removal.  Ensure @cgrp stays accessible and +	 * break the active_ref protection. +	 */ +	cgroup_get(cgrp); +	kernfs_break_active_protection(kn); -		/* -		 * Drop the active superblock reference that we took when we -		 * created the cgroup -		 */ -		deactivate_super(cgrp->root->sb); +	mutex_lock(&cgroup_mutex); -		/* -		 * if we're getting rid of the cgroup, refcount should ensure -		 * that there are no pidlists left. -		 */ -		BUG_ON(!list_empty(&cgrp->pidlists)); +	if (!cgroup_is_dead(cgrp)) +		return cgrp; -		call_rcu(&cgrp->rcu_head, free_cgroup_rcu); -	} -	iput(inode); +	cgroup_kn_unlock(kn); +	return NULL;  } -static void remove_dir(struct dentry *d) +static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)  { -	struct dentry *parent = dget(d->d_parent); +	char name[CGROUP_FILE_NAME_MAX]; -	d_delete(d); -	simple_rmdir(parent->d_inode, d); -	dput(parent); +	lockdep_assert_held(&cgroup_mutex); +	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));  } -static void cgroup_clear_directory(struct dentry *dentry) +/** + * cgroup_clear_dir - remove subsys files in a cgroup directory + * @cgrp: target cgroup + * @subsys_mask: mask of the subsystem ids whose files should be removed + */ +static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)  { -	struct list_head *node; +	struct cgroup_subsys *ss; +	int i; -	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex)); -	spin_lock(&dcache_lock); -	node = dentry->d_subdirs.next; -	while (node != &dentry->d_subdirs) { -		struct dentry *d = list_entry(node, struct dentry, d_u.d_child); -		list_del_init(node); -		if (d->d_inode) { -			/* This should never be called on a cgroup -			 * directory with child cgroups */ -			BUG_ON(d->d_inode->i_mode & S_IFDIR); -			d = dget_locked(d); -			spin_unlock(&dcache_lock); -			d_delete(d); -			simple_unlink(dentry->d_inode, d); -			dput(d); -			spin_lock(&dcache_lock); -		} -		node = dentry->d_subdirs.next; +	for_each_subsys(ss, i) { +		struct cftype *cfts; + +		if (!(subsys_mask & (1 << i))) +			continue; +		list_for_each_entry(cfts, &ss->cfts, node) +			cgroup_addrm_files(cgrp, cfts, false);  	} -	spin_unlock(&dcache_lock);  } -/* - * NOTE : the dentry must have been dget()'ed - */ -static void cgroup_d_remove_dir(struct dentry *dentry) +static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)  { -	cgroup_clear_directory(dentry); - -	spin_lock(&dcache_lock); -	list_del_init(&dentry->d_u.d_child); -	spin_unlock(&dcache_lock); -	remove_dir(dentry); -} +	struct cgroup_subsys *ss; +	unsigned int tmp_ss_mask; +	int ssid, i, ret; -/* - * A queue for waiters to do rmdir() cgroup. A tasks will sleep when - * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some - * reference to css->refcnt. In general, this refcnt is expected to goes down - * to zero, soon. - * - * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex; - */ -DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq); +	lockdep_assert_held(&cgroup_mutex); -static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp) -{ -	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))) -		wake_up_all(&cgroup_rmdir_waitq); -} +	for_each_subsys(ss, ssid) { +		if (!(ss_mask & (1 << ssid))) +			continue; -void cgroup_exclude_rmdir(struct cgroup_subsys_state *css) -{ -	css_get(css); -} +		/* if @ss has non-root csses attached to it, can't move */ +		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss))) +			return -EBUSY; -void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css) -{ -	cgroup_wakeup_rmdir_waiter(css->cgroup); -	css_put(css); -} +		/* can't move between two non-dummy roots either */ +		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) +			return -EBUSY; +	} -/* - * Call with cgroup_mutex held. Drops reference counts on modules, including - * any duplicate ones that parse_cgroupfs_options took. If this function - * returns an error, no reference counts are touched. - */ -static int rebind_subsystems(struct cgroupfs_root *root, -			      unsigned long final_bits) -{ -	unsigned long added_bits, removed_bits; -	struct cgroup *cgrp = &root->top_cgroup; -	int i; +	/* skip creating root files on dfl_root for inhibited subsystems */ +	tmp_ss_mask = ss_mask; +	if (dst_root == &cgrp_dfl_root) +		tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask; -	BUG_ON(!mutex_is_locked(&cgroup_mutex)); +	ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask); +	if (ret) { +		if (dst_root != &cgrp_dfl_root) +			return ret; -	removed_bits = root->actual_subsys_bits & ~final_bits; -	added_bits = final_bits & ~root->actual_subsys_bits; -	/* Check that any added subsystems are currently free */ -	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { -		unsigned long bit = 1UL << i; -		struct cgroup_subsys *ss = subsys[i]; -		if (!(bit & added_bits)) -			continue;  		/* -		 * Nobody should tell us to do a subsys that doesn't exist: -		 * parse_cgroupfs_options should catch that case and refcounts -		 * ensure that subsystems won't disappear once selected. +		 * Rebinding back to the default root is not allowed to +		 * fail.  Using both default and non-default roots should +		 * be rare.  Moving subsystems back and forth even more so. +		 * Just warn about it and continue.  		 */ -		BUG_ON(ss == NULL); -		if (ss->root != &rootnode) { -			/* Subsystem isn't free */ -			return -EBUSY; +		if (cgrp_dfl_root_visible) { +			pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n", +				ret, ss_mask); +			pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");  		}  	} -	/* Currently we don't handle adding/removing subsystems when -	 * any child cgroups exist. This is theoretically supportable -	 * but involves complex error handling, so it's being left until -	 * later */ -	if (root->number_of_cgroups > 1) -		return -EBUSY; +	/* +	 * Nothing can fail from this point on.  Remove files for the +	 * removed subsystems and rebind each subsystem. +	 */ +	for_each_subsys(ss, ssid) +		if (ss_mask & (1 << ssid)) +			cgroup_clear_dir(&ss->root->cgrp, 1 << ssid); -	/* Process each subsystem */ -	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { -		struct cgroup_subsys *ss = subsys[i]; -		unsigned long bit = 1UL << i; -		if (bit & added_bits) { -			/* We're binding this subsystem to this hierarchy */ -			BUG_ON(ss == NULL); -			BUG_ON(cgrp->subsys[i]); -			BUG_ON(!dummytop->subsys[i]); -			BUG_ON(dummytop->subsys[i]->cgroup != dummytop); -			mutex_lock(&ss->hierarchy_mutex); -			cgrp->subsys[i] = dummytop->subsys[i]; -			cgrp->subsys[i]->cgroup = cgrp; -			list_move(&ss->sibling, &root->subsys_list); -			ss->root = root; -			if (ss->bind) -				ss->bind(ss, cgrp); -			mutex_unlock(&ss->hierarchy_mutex); -			/* refcount was already taken, and we're keeping it */ -		} else if (bit & removed_bits) { -			/* We're removing this subsystem */ -			BUG_ON(ss == NULL); -			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]); -			BUG_ON(cgrp->subsys[i]->cgroup != cgrp); -			mutex_lock(&ss->hierarchy_mutex); -			if (ss->bind) -				ss->bind(ss, dummytop); -			dummytop->subsys[i]->cgroup = dummytop; -			cgrp->subsys[i] = NULL; -			subsys[i]->root = &rootnode; -			list_move(&ss->sibling, &rootnode.subsys_list); -			mutex_unlock(&ss->hierarchy_mutex); -			/* subsystem is now free - drop reference on module */ -			module_put(ss->module); -		} else if (bit & final_bits) { -			/* Subsystem state should already exist */ -			BUG_ON(ss == NULL); -			BUG_ON(!cgrp->subsys[i]); -			/* -			 * a refcount was taken, but we already had one, so -			 * drop the extra reference. -			 */ -			module_put(ss->module); -#ifdef CONFIG_MODULE_UNLOAD -			BUG_ON(ss->module && !module_refcount(ss->module)); -#endif -		} else { -			/* Subsystem state shouldn't exist */ -			BUG_ON(cgrp->subsys[i]); -		} +	for_each_subsys(ss, ssid) { +		struct cgroup_root *src_root; +		struct cgroup_subsys_state *css; +		struct css_set *cset; + +		if (!(ss_mask & (1 << ssid))) +			continue; + +		src_root = ss->root; +		css = cgroup_css(&src_root->cgrp, ss); + +		WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss)); + +		RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL); +		rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css); +		ss->root = dst_root; +		css->cgroup = &dst_root->cgrp; + +		down_write(&css_set_rwsem); +		hash_for_each(css_set_table, i, cset, hlist) +			list_move_tail(&cset->e_cset_node[ss->id], +				       &dst_root->cgrp.e_csets[ss->id]); +		up_write(&css_set_rwsem); + +		src_root->subsys_mask &= ~(1 << ssid); +		src_root->cgrp.child_subsys_mask &= ~(1 << ssid); + +		/* default hierarchy doesn't enable controllers by default */ +		dst_root->subsys_mask |= 1 << ssid; +		if (dst_root != &cgrp_dfl_root) +			dst_root->cgrp.child_subsys_mask |= 1 << ssid; + +		if (ss->bind) +			ss->bind(css);  	} -	root->subsys_bits = root->actual_subsys_bits = final_bits; -	synchronize_rcu(); +	kernfs_activate(dst_root->cgrp.kn);  	return 0;  } -static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs) +static int cgroup_show_options(struct seq_file *seq, +			       struct kernfs_root *kf_root)  { -	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info; +	struct cgroup_root *root = cgroup_root_from_kf(kf_root);  	struct cgroup_subsys *ss; - -	mutex_lock(&cgroup_mutex); -	for_each_subsys(root, ss) -		seq_printf(seq, ",%s", ss->name); -	if (test_bit(ROOT_NOPREFIX, &root->flags)) +	int ssid; + +	for_each_subsys(ss, ssid) +		if (root->subsys_mask & (1 << ssid)) +			seq_printf(seq, ",%s", ss->name); +	if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) +		seq_puts(seq, ",sane_behavior"); +	if (root->flags & CGRP_ROOT_NOPREFIX)  		seq_puts(seq, ",noprefix"); +	if (root->flags & CGRP_ROOT_XATTR) +		seq_puts(seq, ",xattr"); + +	spin_lock(&release_agent_path_lock);  	if (strlen(root->release_agent_path))  		seq_printf(seq, ",release_agent=%s", root->release_agent_path); -	if (clone_children(&root->top_cgroup)) +	spin_unlock(&release_agent_path_lock); + +	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))  		seq_puts(seq, ",clone_children");  	if (strlen(root->name))  		seq_printf(seq, ",name=%s", root->name); -	mutex_unlock(&cgroup_mutex);  	return 0;  }  struct cgroup_sb_opts { -	unsigned long subsys_bits; -	unsigned long flags; +	unsigned int subsys_mask; +	unsigned int flags;  	char *release_agent; -	bool clone_children; +	bool cpuset_clone_children;  	char *name;  	/* User explicitly requested empty subsystem */  	bool none; - -	struct cgroupfs_root *new_root; -  }; -/* - * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call - * with cgroup_mutex held to protect the subsys[] array. This function takes - * refcounts on subsystems to be used, unless it returns error, in which case - * no refcounts are taken. - */  static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)  {  	char *token, *o = data;  	bool all_ss = false, one_ss = false; -	unsigned long mask = (unsigned long)-1; +	unsigned int mask = -1U; +	struct cgroup_subsys *ss;  	int i; -	bool module_pin_failed = false; - -	BUG_ON(!mutex_is_locked(&cgroup_mutex));  #ifdef CONFIG_CPUSETS -	mask = ~(1UL << cpuset_subsys_id); +	mask = ~(1U << cpuset_cgrp_id);  #endif  	memset(opts, 0, sizeof(*opts)); @@ -1103,12 +1291,20 @@ static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)  			all_ss = true;  			continue;  		} +		if (!strcmp(token, "__DEVEL__sane_behavior")) { +			opts->flags |= CGRP_ROOT_SANE_BEHAVIOR; +			continue; +		}  		if (!strcmp(token, "noprefix")) { -			set_bit(ROOT_NOPREFIX, &opts->flags); +			opts->flags |= CGRP_ROOT_NOPREFIX;  			continue;  		}  		if (!strcmp(token, "clone_children")) { -			opts->clone_children = true; +			opts->cpuset_clone_children = true; +			continue; +		} +		if (!strcmp(token, "xattr")) { +			opts->flags |= CGRP_ROOT_XATTR;  			continue;  		}  		if (!strncmp(token, "release_agent=", 14)) { @@ -1147,10 +1343,7 @@ static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)  			continue;  		} -		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { -			struct cgroup_subsys *ss = subsys[i]; -			if (ss == NULL) -				continue; +		for_each_subsys(ss, i) {  			if (strcmp(token, ss->name))  				continue;  			if (ss->disabled) @@ -1159,7 +1352,7 @@ static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)  			/* Mutually exclusive option 'all' + subsystem name */  			if (all_ss)  				return -EINVAL; -			set_bit(i, &opts->subsys_bits); +			opts->subsys_mask |= (1 << i);  			one_ss = true;  			break; @@ -1168,101 +1361,64 @@ static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)  			return -ENOENT;  	} -	/* -	 * If the 'all' option was specified select all the subsystems, -	 * otherwise 'all, 'none' and a subsystem name options were not -	 * specified, let's default to 'all' -	 */ -	if (all_ss || (!all_ss && !one_ss && !opts->none)) { -		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { -			struct cgroup_subsys *ss = subsys[i]; -			if (ss == NULL) -				continue; -			if (ss->disabled) -				continue; -			set_bit(i, &opts->subsys_bits); +	/* Consistency checks */ + +	if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) { +		pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n"); + +		if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) || +		    opts->cpuset_clone_children || opts->release_agent || +		    opts->name) { +			pr_err("sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n"); +			return -EINVAL;  		} -	} +	} else { +		/* +		 * If the 'all' option was specified select all the +		 * subsystems, otherwise if 'none', 'name=' and a subsystem +		 * name options were not specified, let's default to 'all' +		 */ +		if (all_ss || (!one_ss && !opts->none && !opts->name)) +			for_each_subsys(ss, i) +				if (!ss->disabled) +					opts->subsys_mask |= (1 << i); -	/* Consistency checks */ +		/* +		 * We either have to specify by name or by subsystems. (So +		 * all empty hierarchies must have a name). +		 */ +		if (!opts->subsys_mask && !opts->name) +			return -EINVAL; +	}  	/*  	 * Option noprefix was introduced just for backward compatibility  	 * with the old cpuset, so we allow noprefix only if mounting just  	 * the cpuset subsystem.  	 */ -	if (test_bit(ROOT_NOPREFIX, &opts->flags) && -	    (opts->subsys_bits & mask)) +	if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))  		return -EINVAL;  	/* Can't specify "none" and some subsystems */ -	if (opts->subsys_bits && opts->none) -		return -EINVAL; - -	/* -	 * We either have to specify by name or by subsystems. (So all -	 * empty hierarchies must have a name). -	 */ -	if (!opts->subsys_bits && !opts->name) +	if (opts->subsys_mask && opts->none)  		return -EINVAL; -	/* -	 * Grab references on all the modules we'll need, so the subsystems -	 * don't dance around before rebind_subsystems attaches them. This may -	 * take duplicate reference counts on a subsystem that's already used, -	 * but rebind_subsystems handles this case. -	 */ -	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) { -		unsigned long bit = 1UL << i; - -		if (!(bit & opts->subsys_bits)) -			continue; -		if (!try_module_get(subsys[i]->module)) { -			module_pin_failed = true; -			break; -		} -	} -	if (module_pin_failed) { -		/* -		 * oops, one of the modules was going away. this means that we -		 * raced with a module_delete call, and to the user this is -		 * essentially a "subsystem doesn't exist" case. -		 */ -		for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) { -			/* drop refcounts only on the ones we took */ -			unsigned long bit = 1UL << i; - -			if (!(bit & opts->subsys_bits)) -				continue; -			module_put(subsys[i]->module); -		} -		return -ENOENT; -	} -  	return 0;  } -static void drop_parsed_module_refcounts(unsigned long subsys_bits) -{ -	int i; -	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) { -		unsigned long bit = 1UL << i; - -		if (!(bit & subsys_bits)) -			continue; -		module_put(subsys[i]->module); -	} -} - -static int cgroup_remount(struct super_block *sb, int *flags, char *data) +static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)  {  	int ret = 0; -	struct cgroupfs_root *root = sb->s_fs_info; -	struct cgroup *cgrp = &root->top_cgroup; +	struct cgroup_root *root = cgroup_root_from_kf(kf_root);  	struct cgroup_sb_opts opts; +	unsigned int added_mask, removed_mask; + +	if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) { +		pr_err("sane_behavior: remount is not allowed\n"); +		return -EINVAL; +	} -	mutex_lock(&cgrp->dentry->d_inode->i_mutex);  	mutex_lock(&cgroup_mutex);  	/* See what subsystems are wanted */ @@ -1270,1342 +1426,2133 @@ static int cgroup_remount(struct super_block *sb, int *flags, char *data)  	if (ret)  		goto out_unlock; +	if (opts.subsys_mask != root->subsys_mask || opts.release_agent) +		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", +			task_tgid_nr(current), current->comm); + +	added_mask = opts.subsys_mask & ~root->subsys_mask; +	removed_mask = root->subsys_mask & ~opts.subsys_mask; +  	/* Don't allow flags or name to change at remount */ -	if (opts.flags != root->flags || +	if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||  	    (opts.name && strcmp(opts.name, root->name))) { +		pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n", +		       opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "", +		       root->flags & CGRP_ROOT_OPTION_MASK, root->name);  		ret = -EINVAL; -		drop_parsed_module_refcounts(opts.subsys_bits);  		goto out_unlock;  	} -	ret = rebind_subsystems(root, opts.subsys_bits); -	if (ret) { -		drop_parsed_module_refcounts(opts.subsys_bits); +	/* remounting is not allowed for populated hierarchies */ +	if (!list_empty(&root->cgrp.self.children)) { +		ret = -EBUSY;  		goto out_unlock;  	} -	/* (re)populate subsystem files */ -	cgroup_populate_dir(cgrp); +	ret = rebind_subsystems(root, added_mask); +	if (ret) +		goto out_unlock; + +	rebind_subsystems(&cgrp_dfl_root, removed_mask); -	if (opts.release_agent) +	if (opts.release_agent) { +		spin_lock(&release_agent_path_lock);  		strcpy(root->release_agent_path, opts.release_agent); +		spin_unlock(&release_agent_path_lock); +	}   out_unlock:  	kfree(opts.release_agent);  	kfree(opts.name);  	mutex_unlock(&cgroup_mutex); -	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);  	return ret;  } -static const struct super_operations cgroup_ops = { -	.statfs = simple_statfs, -	.drop_inode = generic_delete_inode, -	.show_options = cgroup_show_options, -	.remount_fs = cgroup_remount, -}; +/* + * To reduce the fork() overhead for systems that are not actually using + * their cgroups capability, we don't maintain the lists running through + * each css_set to its tasks until we see the list actually used - in other + * words after the first mount. + */ +static bool use_task_css_set_links __read_mostly; -static void init_cgroup_housekeeping(struct cgroup *cgrp) +static void cgroup_enable_task_cg_lists(void)  { -	INIT_LIST_HEAD(&cgrp->sibling); -	INIT_LIST_HEAD(&cgrp->children); -	INIT_LIST_HEAD(&cgrp->css_sets); -	INIT_LIST_HEAD(&cgrp->release_list); -	INIT_LIST_HEAD(&cgrp->pidlists); -	mutex_init(&cgrp->pidlist_mutex); -	INIT_LIST_HEAD(&cgrp->event_list); -	spin_lock_init(&cgrp->event_list_lock); -} +	struct task_struct *p, *g; -static void init_cgroup_root(struct cgroupfs_root *root) -{ -	struct cgroup *cgrp = &root->top_cgroup; -	INIT_LIST_HEAD(&root->subsys_list); -	INIT_LIST_HEAD(&root->root_list); -	root->number_of_cgroups = 1; -	cgrp->root = root; -	cgrp->top_cgroup = cgrp; -	init_cgroup_housekeeping(cgrp); -} +	down_write(&css_set_rwsem); -static bool init_root_id(struct cgroupfs_root *root) -{ -	int ret = 0; +	if (use_task_css_set_links) +		goto out_unlock; -	do { -		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL)) -			return false; -		spin_lock(&hierarchy_id_lock); -		/* Try to allocate the next unused ID */ -		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id, -					&root->hierarchy_id); -		if (ret == -ENOSPC) -			/* Try again starting from 0 */ -			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id); -		if (!ret) { -			next_hierarchy_id = root->hierarchy_id + 1; -		} else if (ret != -EAGAIN) { -			/* Can only get here if the 31-bit IDR is full ... */ -			BUG_ON(ret); +	use_task_css_set_links = true; + +	/* +	 * We need tasklist_lock because RCU is not safe against +	 * while_each_thread(). Besides, a forking task that has passed +	 * cgroup_post_fork() without seeing use_task_css_set_links = 1 +	 * is not guaranteed to have its child immediately visible in the +	 * tasklist if we walk through it with RCU. +	 */ +	read_lock(&tasklist_lock); +	do_each_thread(g, p) { +		WARN_ON_ONCE(!list_empty(&p->cg_list) || +			     task_css_set(p) != &init_css_set); + +		/* +		 * We should check if the process is exiting, otherwise +		 * it will race with cgroup_exit() in that the list +		 * entry won't be deleted though the process has exited. +		 * Do it while holding siglock so that we don't end up +		 * racing against cgroup_exit(). +		 */ +		spin_lock_irq(&p->sighand->siglock); +		if (!(p->flags & PF_EXITING)) { +			struct css_set *cset = task_css_set(p); + +			list_add(&p->cg_list, &cset->tasks); +			get_css_set(cset);  		} -		spin_unlock(&hierarchy_id_lock); -	} while (ret); -	return true; +		spin_unlock_irq(&p->sighand->siglock); +	} while_each_thread(g, p); +	read_unlock(&tasklist_lock); +out_unlock: +	up_write(&css_set_rwsem);  } -static int cgroup_test_super(struct super_block *sb, void *data) +static void init_cgroup_housekeeping(struct cgroup *cgrp)  { -	struct cgroup_sb_opts *opts = data; -	struct cgroupfs_root *root = sb->s_fs_info; +	struct cgroup_subsys *ss; +	int ssid; -	/* If we asked for a name then it must match */ -	if (opts->name && strcmp(opts->name, root->name)) -		return 0; +	INIT_LIST_HEAD(&cgrp->self.sibling); +	INIT_LIST_HEAD(&cgrp->self.children); +	INIT_LIST_HEAD(&cgrp->cset_links); +	INIT_LIST_HEAD(&cgrp->release_list); +	INIT_LIST_HEAD(&cgrp->pidlists); +	mutex_init(&cgrp->pidlist_mutex); +	cgrp->self.cgroup = cgrp; +	cgrp->self.flags |= CSS_ONLINE; -	/* -	 * If we asked for subsystems (or explicitly for no -	 * subsystems) then they must match -	 */ -	if ((opts->subsys_bits || opts->none) -	    && (opts->subsys_bits != root->subsys_bits)) -		return 0; +	for_each_subsys(ss, ssid) +		INIT_LIST_HEAD(&cgrp->e_csets[ssid]); -	return 1; +	init_waitqueue_head(&cgrp->offline_waitq);  } -static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts) +static void init_cgroup_root(struct cgroup_root *root, +			     struct cgroup_sb_opts *opts)  { -	struct cgroupfs_root *root; - -	if (!opts->subsys_bits && !opts->none) -		return NULL; - -	root = kzalloc(sizeof(*root), GFP_KERNEL); -	if (!root) -		return ERR_PTR(-ENOMEM); +	struct cgroup *cgrp = &root->cgrp; -	if (!init_root_id(root)) { -		kfree(root); -		return ERR_PTR(-ENOMEM); -	} -	init_cgroup_root(root); +	INIT_LIST_HEAD(&root->root_list); +	atomic_set(&root->nr_cgrps, 1); +	cgrp->root = root; +	init_cgroup_housekeeping(cgrp); +	idr_init(&root->cgroup_idr); -	root->subsys_bits = opts->subsys_bits;  	root->flags = opts->flags;  	if (opts->release_agent)  		strcpy(root->release_agent_path, opts->release_agent);  	if (opts->name)  		strcpy(root->name, opts->name); -	if (opts->clone_children) -		set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags); -	return root; +	if (opts->cpuset_clone_children) +		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);  } -static void cgroup_drop_root(struct cgroupfs_root *root) +static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)  { -	if (!root) -		return; +	LIST_HEAD(tmp_links); +	struct cgroup *root_cgrp = &root->cgrp; +	struct css_set *cset; +	int i, ret; -	BUG_ON(!root->hierarchy_id); -	spin_lock(&hierarchy_id_lock); -	ida_remove(&hierarchy_ida, root->hierarchy_id); -	spin_unlock(&hierarchy_id_lock); -	kfree(root); -} +	lockdep_assert_held(&cgroup_mutex); -static int cgroup_set_super(struct super_block *sb, void *data) -{ -	int ret; -	struct cgroup_sb_opts *opts = data; +	ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT); +	if (ret < 0) +		goto out; +	root_cgrp->id = ret; -	/* If we don't have a new root, we can't set up a new sb */ -	if (!opts->new_root) -		return -EINVAL; +	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release); +	if (ret) +		goto out; -	BUG_ON(!opts->subsys_bits && !opts->none); +	/* +	 * We're accessing css_set_count without locking css_set_rwsem here, +	 * but that's OK - it can only be increased by someone holding +	 * cgroup_lock, and that's us. The worst that can happen is that we +	 * have some link structures left over +	 */ +	ret = allocate_cgrp_cset_links(css_set_count, &tmp_links); +	if (ret) +		goto cancel_ref; -	ret = set_anon_super(sb, NULL); +	ret = cgroup_init_root_id(root);  	if (ret) -		return ret; +		goto cancel_ref; + +	root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops, +					   KERNFS_ROOT_CREATE_DEACTIVATED, +					   root_cgrp); +	if (IS_ERR(root->kf_root)) { +		ret = PTR_ERR(root->kf_root); +		goto exit_root_id; +	} +	root_cgrp->kn = root->kf_root->kn; -	sb->s_fs_info = opts->new_root; -	opts->new_root->sb = sb; +	ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true); +	if (ret) +		goto destroy_root; -	sb->s_blocksize = PAGE_CACHE_SIZE; -	sb->s_blocksize_bits = PAGE_CACHE_SHIFT; -	sb->s_magic = CGROUP_SUPER_MAGIC; -	sb->s_op = &cgroup_ops; +	ret = rebind_subsystems(root, ss_mask); +	if (ret) +		goto destroy_root; -	return 0; -} +	/* +	 * There must be no failure case after here, since rebinding takes +	 * care of subsystems' refcounts, which are explicitly dropped in +	 * the failure exit path. +	 */ +	list_add(&root->root_list, &cgroup_roots); +	cgroup_root_count++; -static int cgroup_get_rootdir(struct super_block *sb) -{ -	struct inode *inode = -		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb); -	struct dentry *dentry; +	/* +	 * Link the root cgroup in this hierarchy into all the css_set +	 * objects. +	 */ +	down_write(&css_set_rwsem); +	hash_for_each(css_set_table, i, cset, hlist) +		link_css_set(&tmp_links, cset, root_cgrp); +	up_write(&css_set_rwsem); -	if (!inode) -		return -ENOMEM; +	BUG_ON(!list_empty(&root_cgrp->self.children)); +	BUG_ON(atomic_read(&root->nr_cgrps) != 1); -	inode->i_fop = &simple_dir_operations; -	inode->i_op = &cgroup_dir_inode_operations; -	/* directories start off with i_nlink == 2 (for "." entry) */ -	inc_nlink(inode); -	dentry = d_alloc_root(inode); -	if (!dentry) { -		iput(inode); -		return -ENOMEM; -	} -	sb->s_root = dentry; -	return 0; +	kernfs_activate(root_cgrp->kn); +	ret = 0; +	goto out; + +destroy_root: +	kernfs_destroy_root(root->kf_root); +	root->kf_root = NULL; +exit_root_id: +	cgroup_exit_root_id(root); +cancel_ref: +	percpu_ref_cancel_init(&root_cgrp->self.refcnt); +out: +	free_cgrp_cset_links(&tmp_links); +	return ret;  }  static struct dentry *cgroup_mount(struct file_system_type *fs_type,  			 int flags, const char *unused_dev_name,  			 void *data)  { +	struct super_block *pinned_sb = NULL; +	struct cgroup_subsys *ss; +	struct cgroup_root *root;  	struct cgroup_sb_opts opts; -	struct cgroupfs_root *root; -	int ret = 0; -	struct super_block *sb; -	struct cgroupfs_root *new_root; +	struct dentry *dentry; +	int ret; +	int i; +	bool new_sb; + +	/* +	 * The first time anyone tries to mount a cgroup, enable the list +	 * linking each css_set to its tasks and fix up all existing tasks. +	 */ +	if (!use_task_css_set_links) +		cgroup_enable_task_cg_lists(); -	/* First find the desired set of subsystems */  	mutex_lock(&cgroup_mutex); + +	/* First find the desired set of subsystems */  	ret = parse_cgroupfs_options(data, &opts); -	mutex_unlock(&cgroup_mutex);  	if (ret) -		goto out_err; +		goto out_unlock; + +	/* look for a matching existing root */ +	if (!opts.subsys_mask && !opts.none && !opts.name) { +		cgrp_dfl_root_visible = true; +		root = &cgrp_dfl_root; +		cgroup_get(&root->cgrp); +		ret = 0; +		goto out_unlock; +	}  	/* -	 * Allocate a new cgroup root. We may not need it if we're -	 * reusing an existing hierarchy. +	 * Destruction of cgroup root is asynchronous, so subsystems may +	 * still be dying after the previous unmount.  Let's drain the +	 * dying subsystems.  We just need to ensure that the ones +	 * unmounted previously finish dying and don't care about new ones +	 * starting.  Testing ref liveliness is good enough.  	 */ -	new_root = cgroup_root_from_opts(&opts); -	if (IS_ERR(new_root)) { -		ret = PTR_ERR(new_root); -		goto drop_modules; -	} -	opts.new_root = new_root; - -	/* Locate an existing or new sb for this hierarchy */ -	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts); -	if (IS_ERR(sb)) { -		ret = PTR_ERR(sb); -		cgroup_drop_root(opts.new_root); -		goto drop_modules; +	for_each_subsys(ss, i) { +		if (!(opts.subsys_mask & (1 << i)) || +		    ss->root == &cgrp_dfl_root) +			continue; + +		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) { +			mutex_unlock(&cgroup_mutex); +			msleep(10); +			ret = restart_syscall(); +			goto out_free; +		} +		cgroup_put(&ss->root->cgrp);  	} -	root = sb->s_fs_info; -	BUG_ON(!root); -	if (root == opts.new_root) { -		/* We used the new root structure, so this is a new hierarchy */ -		struct list_head tmp_cg_links; -		struct cgroup *root_cgrp = &root->top_cgroup; -		struct inode *inode; -		struct cgroupfs_root *existing_root; -		int i; +	for_each_root(root) { +		bool name_match = false; -		BUG_ON(sb->s_root != NULL); +		if (root == &cgrp_dfl_root) +			continue; -		ret = cgroup_get_rootdir(sb); -		if (ret) -			goto drop_new_super; -		inode = sb->s_root->d_inode; +		/* +		 * If we asked for a name then it must match.  Also, if +		 * name matches but sybsys_mask doesn't, we should fail. +		 * Remember whether name matched. +		 */ +		if (opts.name) { +			if (strcmp(opts.name, root->name)) +				continue; +			name_match = true; +		} -		mutex_lock(&inode->i_mutex); -		mutex_lock(&cgroup_mutex); +		/* +		 * If we asked for subsystems (or explicitly for no +		 * subsystems) then they must match. +		 */ +		if ((opts.subsys_mask || opts.none) && +		    (opts.subsys_mask != root->subsys_mask)) { +			if (!name_match) +				continue; +			ret = -EBUSY; +			goto out_unlock; +		} -		if (strlen(root->name)) { -			/* Check for name clashes with existing mounts */ -			for_each_active_root(existing_root) { -				if (!strcmp(existing_root->name, root->name)) { -					ret = -EBUSY; -					mutex_unlock(&cgroup_mutex); -					mutex_unlock(&inode->i_mutex); -					goto drop_new_super; -				} +		if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) { +			if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) { +				pr_err("sane_behavior: new mount options should match the existing superblock\n"); +				ret = -EINVAL; +				goto out_unlock; +			} else { +				pr_warn("new mount options do not match the existing superblock, will be ignored\n");  			}  		}  		/* -		 * We're accessing css_set_count without locking -		 * css_set_lock here, but that's OK - it can only be -		 * increased by someone holding cgroup_lock, and -		 * that's us. The worst that can happen is that we -		 * have some link structures left over +		 * We want to reuse @root whose lifetime is governed by its +		 * ->cgrp.  Let's check whether @root is alive and keep it +		 * that way.  As cgroup_kill_sb() can happen anytime, we +		 * want to block it by pinning the sb so that @root doesn't +		 * get killed before mount is complete. +		 * +		 * With the sb pinned, tryget_live can reliably indicate +		 * whether @root can be reused.  If it's being killed, +		 * drain it.  We can use wait_queue for the wait but this +		 * path is super cold.  Let's just sleep a bit and retry.  		 */ -		ret = allocate_cg_links(css_set_count, &tmp_cg_links); -		if (ret) { +		pinned_sb = kernfs_pin_sb(root->kf_root, NULL); +		if (IS_ERR(pinned_sb) || +		    !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {  			mutex_unlock(&cgroup_mutex); -			mutex_unlock(&inode->i_mutex); -			goto drop_new_super; +			if (!IS_ERR_OR_NULL(pinned_sb)) +				deactivate_super(pinned_sb); +			msleep(10); +			ret = restart_syscall(); +			goto out_free;  		} -		ret = rebind_subsystems(root, root->subsys_bits); -		if (ret == -EBUSY) { -			mutex_unlock(&cgroup_mutex); -			mutex_unlock(&inode->i_mutex); -			free_cg_links(&tmp_cg_links); -			goto drop_new_super; -		} -		/* -		 * There must be no failure case after here, since rebinding -		 * takes care of subsystems' refcounts, which are explicitly -		 * dropped in the failure exit path. -		 */ +		ret = 0; +		goto out_unlock; +	} -		/* EBUSY should be the only error here */ -		BUG_ON(ret); +	/* +	 * No such thing, create a new one.  name= matching without subsys +	 * specification is allowed for already existing hierarchies but we +	 * can't create new one without subsys specification. +	 */ +	if (!opts.subsys_mask && !opts.none) { +		ret = -EINVAL; +		goto out_unlock; +	} -		list_add(&root->root_list, &roots); -		root_count++; +	root = kzalloc(sizeof(*root), GFP_KERNEL); +	if (!root) { +		ret = -ENOMEM; +		goto out_unlock; +	} -		sb->s_root->d_fsdata = root_cgrp; -		root->top_cgroup.dentry = sb->s_root; +	init_cgroup_root(root, &opts); -		/* Link the top cgroup in this hierarchy into all -		 * the css_set objects */ -		write_lock(&css_set_lock); -		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) { -			struct hlist_head *hhead = &css_set_table[i]; -			struct hlist_node *node; -			struct css_set *cg; +	ret = cgroup_setup_root(root, opts.subsys_mask); +	if (ret) +		cgroup_free_root(root); -			hlist_for_each_entry(cg, node, hhead, hlist) -				link_css_set(&tmp_cg_links, cg, root_cgrp); -		} -		write_unlock(&css_set_lock); +out_unlock: +	mutex_unlock(&cgroup_mutex); +out_free: +	kfree(opts.release_agent); +	kfree(opts.name); -		free_cg_links(&tmp_cg_links); +	if (ret) +		return ERR_PTR(ret); -		BUG_ON(!list_empty(&root_cgrp->sibling)); -		BUG_ON(!list_empty(&root_cgrp->children)); -		BUG_ON(root->number_of_cgroups != 1); +	dentry = kernfs_mount(fs_type, flags, root->kf_root, +				CGROUP_SUPER_MAGIC, &new_sb); +	if (IS_ERR(dentry) || !new_sb) +		cgroup_put(&root->cgrp); -		cgroup_populate_dir(root_cgrp); -		mutex_unlock(&cgroup_mutex); -		mutex_unlock(&inode->i_mutex); -	} else { -		/* -		 * We re-used an existing hierarchy - the new root (if -		 * any) is not needed -		 */ -		cgroup_drop_root(opts.new_root); -		/* no subsys rebinding, so refcounts don't change */ -		drop_parsed_module_refcounts(opts.subsys_bits); +	/* +	 * If @pinned_sb, we're reusing an existing root and holding an +	 * extra ref on its sb.  Mount is complete.  Put the extra ref. +	 */ +	if (pinned_sb) { +		WARN_ON(new_sb); +		deactivate_super(pinned_sb);  	} -	kfree(opts.release_agent); -	kfree(opts.name); -	return dget(sb->s_root); +	return dentry; +} - drop_new_super: -	deactivate_locked_super(sb); - drop_modules: -	drop_parsed_module_refcounts(opts.subsys_bits); - out_err: -	kfree(opts.release_agent); -	kfree(opts.name); -	return ERR_PTR(ret); +static void cgroup_kill_sb(struct super_block *sb) +{ +	struct kernfs_root *kf_root = kernfs_root_from_sb(sb); +	struct cgroup_root *root = cgroup_root_from_kf(kf_root); + +	/* +	 * If @root doesn't have any mounts or children, start killing it. +	 * This prevents new mounts by disabling percpu_ref_tryget_live(). +	 * cgroup_mount() may wait for @root's release. +	 * +	 * And don't kill the default root. +	 */ +	if (css_has_online_children(&root->cgrp.self) || +	    root == &cgrp_dfl_root) +		cgroup_put(&root->cgrp); +	else +		percpu_ref_kill(&root->cgrp.self.refcnt); + +	kernfs_kill_sb(sb);  } -static void cgroup_kill_sb(struct super_block *sb) { -	struct cgroupfs_root *root = sb->s_fs_info; -	struct cgroup *cgrp = &root->top_cgroup; -	int ret; -	struct cg_cgroup_link *link; -	struct cg_cgroup_link *saved_link; +static struct file_system_type cgroup_fs_type = { +	.name = "cgroup", +	.mount = cgroup_mount, +	.kill_sb = cgroup_kill_sb, +}; -	BUG_ON(!root); +static struct kobject *cgroup_kobj; -	BUG_ON(root->number_of_cgroups != 1); -	BUG_ON(!list_empty(&cgrp->children)); -	BUG_ON(!list_empty(&cgrp->sibling)); +/** + * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy + * @task: target task + * @buf: the buffer to write the path into + * @buflen: the length of the buffer + * + * Determine @task's cgroup on the first (the one with the lowest non-zero + * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This + * function grabs cgroup_mutex and shouldn't be used inside locks used by + * cgroup controller callbacks. + * + * Return value is the same as kernfs_path(). + */ +char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) +{ +	struct cgroup_root *root; +	struct cgroup *cgrp; +	int hierarchy_id = 1; +	char *path = NULL;  	mutex_lock(&cgroup_mutex); +	down_read(&css_set_rwsem); -	/* Rebind all subsystems back to the default hierarchy */ -	ret = rebind_subsystems(root, 0); -	/* Shouldn't be able to fail ... */ -	BUG_ON(ret); +	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); + +	if (root) { +		cgrp = task_cgroup_from_root(task, root); +		path = cgroup_path(cgrp, buf, buflen); +	} else { +		/* if no hierarchy exists, everyone is in "/" */ +		if (strlcpy(buf, "/", buflen) < buflen) +			path = buf; +	} + +	up_read(&css_set_rwsem); +	mutex_unlock(&cgroup_mutex); +	return path; +} +EXPORT_SYMBOL_GPL(task_cgroup_path); + +/* used to track tasks and other necessary states during migration */ +struct cgroup_taskset { +	/* the src and dst cset list running through cset->mg_node */ +	struct list_head	src_csets; +	struct list_head	dst_csets;  	/* -	 * Release all the links from css_sets to this hierarchy's -	 * root cgroup +	 * Fields for cgroup_taskset_*() iteration. +	 * +	 * Before migration is committed, the target migration tasks are on +	 * ->mg_tasks of the csets on ->src_csets.  After, on ->mg_tasks of +	 * the csets on ->dst_csets.  ->csets point to either ->src_csets +	 * or ->dst_csets depending on whether migration is committed. +	 * +	 * ->cur_csets and ->cur_task point to the current task position +	 * during iteration.  	 */ -	write_lock(&css_set_lock); +	struct list_head	*csets; +	struct css_set		*cur_cset; +	struct task_struct	*cur_task; +}; -	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets, -				 cgrp_link_list) { -		list_del(&link->cg_link_list); -		list_del(&link->cgrp_link_list); -		kfree(link); -	} -	write_unlock(&css_set_lock); +/** + * cgroup_taskset_first - reset taskset and return the first task + * @tset: taskset of interest + * + * @tset iteration is initialized and the first task is returned. + */ +struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset) +{ +	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); +	tset->cur_task = NULL; -	if (!list_empty(&root->root_list)) { -		list_del(&root->root_list); -		root_count--; -	} +	return cgroup_taskset_next(tset); +} -	mutex_unlock(&cgroup_mutex); +/** + * cgroup_taskset_next - iterate to the next task in taskset + * @tset: taskset of interest + * + * Return the next task in @tset.  Iteration must have been initialized + * with cgroup_taskset_first(). + */ +struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset) +{ +	struct css_set *cset = tset->cur_cset; +	struct task_struct *task = tset->cur_task; -	kill_litter_super(sb); -	cgroup_drop_root(root); +	while (&cset->mg_node != tset->csets) { +		if (!task) +			task = list_first_entry(&cset->mg_tasks, +						struct task_struct, cg_list); +		else +			task = list_next_entry(task, cg_list); + +		if (&task->cg_list != &cset->mg_tasks) { +			tset->cur_cset = cset; +			tset->cur_task = task; +			return task; +		} + +		cset = list_next_entry(cset, mg_node); +		task = NULL; +	} + +	return NULL;  } -static struct file_system_type cgroup_fs_type = { -	.name = "cgroup", -	.mount = cgroup_mount, -	.kill_sb = cgroup_kill_sb, -}; +/** + * cgroup_task_migrate - move a task from one cgroup to another. + * @old_cgrp: the cgroup @tsk is being migrated from + * @tsk: the task being migrated + * @new_cset: the new css_set @tsk is being attached to + * + * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked. + */ +static void cgroup_task_migrate(struct cgroup *old_cgrp, +				struct task_struct *tsk, +				struct css_set *new_cset) +{ +	struct css_set *old_cset; -static struct kobject *cgroup_kobj; +	lockdep_assert_held(&cgroup_mutex); +	lockdep_assert_held(&css_set_rwsem); + +	/* +	 * We are synchronized through threadgroup_lock() against PF_EXITING +	 * setting such that we can't race against cgroup_exit() changing the +	 * css_set to init_css_set and dropping the old one. +	 */ +	WARN_ON_ONCE(tsk->flags & PF_EXITING); +	old_cset = task_css_set(tsk); + +	get_css_set(new_cset); +	rcu_assign_pointer(tsk->cgroups, new_cset); + +	/* +	 * Use move_tail so that cgroup_taskset_first() still returns the +	 * leader after migration.  This works because cgroup_migrate() +	 * ensures that the dst_cset of the leader is the first on the +	 * tset's dst_csets list. +	 */ +	list_move_tail(&tsk->cg_list, &new_cset->mg_tasks); + +	/* +	 * We just gained a reference on old_cset by taking it from the +	 * task. As trading it for new_cset is protected by cgroup_mutex, +	 * we're safe to drop it here; it will be freed under RCU. +	 */ +	set_bit(CGRP_RELEASABLE, &old_cgrp->flags); +	put_css_set_locked(old_cset, false); +} -static inline struct cgroup *__d_cgrp(struct dentry *dentry) +/** + * cgroup_migrate_finish - cleanup after attach + * @preloaded_csets: list of preloaded css_sets + * + * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See + * those functions for details. + */ +static void cgroup_migrate_finish(struct list_head *preloaded_csets)  { -	return dentry->d_fsdata; +	struct css_set *cset, *tmp_cset; + +	lockdep_assert_held(&cgroup_mutex); + +	down_write(&css_set_rwsem); +	list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) { +		cset->mg_src_cgrp = NULL; +		cset->mg_dst_cset = NULL; +		list_del_init(&cset->mg_preload_node); +		put_css_set_locked(cset, false); +	} +	up_write(&css_set_rwsem);  } -static inline struct cftype *__d_cft(struct dentry *dentry) +/** + * cgroup_migrate_add_src - add a migration source css_set + * @src_cset: the source css_set to add + * @dst_cgrp: the destination cgroup + * @preloaded_csets: list of preloaded css_sets + * + * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin + * @src_cset and add it to @preloaded_csets, which should later be cleaned + * up by cgroup_migrate_finish(). + * + * This function may be called without holding threadgroup_lock even if the + * target is a process.  Threads may be created and destroyed but as long + * as cgroup_mutex is not dropped, no new css_set can be put into play and + * the preloaded css_sets are guaranteed to cover all migrations. + */ +static void cgroup_migrate_add_src(struct css_set *src_cset, +				   struct cgroup *dst_cgrp, +				   struct list_head *preloaded_csets)  { -	return dentry->d_fsdata; +	struct cgroup *src_cgrp; + +	lockdep_assert_held(&cgroup_mutex); +	lockdep_assert_held(&css_set_rwsem); + +	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); + +	if (!list_empty(&src_cset->mg_preload_node)) +		return; + +	WARN_ON(src_cset->mg_src_cgrp); +	WARN_ON(!list_empty(&src_cset->mg_tasks)); +	WARN_ON(!list_empty(&src_cset->mg_node)); + +	src_cset->mg_src_cgrp = src_cgrp; +	get_css_set(src_cset); +	list_add(&src_cset->mg_preload_node, preloaded_csets);  }  /** - * cgroup_path - generate the path of a cgroup - * @cgrp: the cgroup in question - * @buf: the buffer to write the path into - * @buflen: the length of the buffer + * cgroup_migrate_prepare_dst - prepare destination css_sets for migration + * @dst_cgrp: the destination cgroup (may be %NULL) + * @preloaded_csets: list of preloaded source css_sets + * + * Tasks are about to be moved to @dst_cgrp and all the source css_sets + * have been preloaded to @preloaded_csets.  This function looks up and + * pins all destination css_sets, links each to its source, and append them + * to @preloaded_csets.  If @dst_cgrp is %NULL, the destination of each + * source css_set is assumed to be its cgroup on the default hierarchy.   * - * Called with cgroup_mutex held or else with an RCU-protected cgroup - * reference.  Writes path of cgroup into buf.  Returns 0 on success, - * -errno on error. + * This function must be called after cgroup_migrate_add_src() has been + * called on each migration source css_set.  After migration is performed + * using cgroup_migrate(), cgroup_migrate_finish() must be called on + * @preloaded_csets.   */ -int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen) +static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp, +				      struct list_head *preloaded_csets)  { -	char *start; -	struct dentry *dentry = rcu_dereference_check(cgrp->dentry, -						      rcu_read_lock_held() || -						      cgroup_lock_is_held()); +	LIST_HEAD(csets); +	struct css_set *src_cset, *tmp_cset; -	if (!dentry || cgrp == dummytop) { -		/* -		 * Inactive subsystems have no dentry for their root -		 * cgroup -		 */ -		strcpy(buf, "/"); -		return 0; -	} +	lockdep_assert_held(&cgroup_mutex); + +	/* +	 * Except for the root, child_subsys_mask must be zero for a cgroup +	 * with tasks so that child cgroups don't compete against tasks. +	 */ +	if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) && +	    dst_cgrp->child_subsys_mask) +		return -EBUSY; -	start = buf + buflen; +	/* look up the dst cset for each src cset and link it to src */ +	list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) { +		struct css_set *dst_cset; -	*--start = '\0'; -	for (;;) { -		int len = dentry->d_name.len; +		dst_cset = find_css_set(src_cset, +					dst_cgrp ?: src_cset->dfl_cgrp); +		if (!dst_cset) +			goto err; -		if ((start -= len) < buf) -			return -ENAMETOOLONG; -		memcpy(start, dentry->d_name.name, len); -		cgrp = cgrp->parent; -		if (!cgrp) -			break; +		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); -		dentry = rcu_dereference_check(cgrp->dentry, -					       rcu_read_lock_held() || -					       cgroup_lock_is_held()); -		if (!cgrp->parent) +		/* +		 * If src cset equals dst, it's noop.  Drop the src. +		 * cgroup_migrate() will skip the cset too.  Note that we +		 * can't handle src == dst as some nodes are used by both. +		 */ +		if (src_cset == dst_cset) { +			src_cset->mg_src_cgrp = NULL; +			list_del_init(&src_cset->mg_preload_node); +			put_css_set(src_cset, false); +			put_css_set(dst_cset, false);  			continue; -		if (--start < buf) -			return -ENAMETOOLONG; -		*start = '/'; +		} + +		src_cset->mg_dst_cset = dst_cset; + +		if (list_empty(&dst_cset->mg_preload_node)) +			list_add(&dst_cset->mg_preload_node, &csets); +		else +			put_css_set(dst_cset, false);  	} -	memmove(buf, start, buf + buflen - start); + +	list_splice_tail(&csets, preloaded_csets);  	return 0; +err: +	cgroup_migrate_finish(&csets); +	return -ENOMEM;  } -EXPORT_SYMBOL_GPL(cgroup_path);  /** - * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp' - * @cgrp: the cgroup the task is attaching to - * @tsk: the task to be attached + * cgroup_migrate - migrate a process or task to a cgroup + * @cgrp: the destination cgroup + * @leader: the leader of the process or the task to migrate + * @threadgroup: whether @leader points to the whole process or a single task   * - * Call holding cgroup_mutex. May take task_lock of - * the task 'tsk' during call. + * Migrate a process or task denoted by @leader to @cgrp.  If migrating a + * process, the caller must be holding threadgroup_lock of @leader.  The + * caller is also responsible for invoking cgroup_migrate_add_src() and + * cgroup_migrate_prepare_dst() on the targets before invoking this + * function and following up with cgroup_migrate_finish(). + * + * As long as a controller's ->can_attach() doesn't fail, this function is + * guaranteed to succeed.  This means that, excluding ->can_attach() + * failure, when migrating multiple targets, the success or failure can be + * decided for all targets by invoking group_migrate_prepare_dst() before + * actually starting migrating.   */ -int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) +static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader, +			  bool threadgroup)  { -	int retval = 0; -	struct cgroup_subsys *ss, *failed_ss = NULL; -	struct cgroup *oldcgrp; -	struct css_set *cg; -	struct css_set *newcg; -	struct cgroupfs_root *root = cgrp->root; - -	/* Nothing to do if the task is already in that cgroup */ -	oldcgrp = task_cgroup_from_root(tsk, root); -	if (cgrp == oldcgrp) +	struct cgroup_taskset tset = { +		.src_csets	= LIST_HEAD_INIT(tset.src_csets), +		.dst_csets	= LIST_HEAD_INIT(tset.dst_csets), +		.csets		= &tset.src_csets, +	}; +	struct cgroup_subsys_state *css, *failed_css = NULL; +	struct css_set *cset, *tmp_cset; +	struct task_struct *task, *tmp_task; +	int i, ret; + +	/* +	 * Prevent freeing of tasks while we take a snapshot. Tasks that are +	 * already PF_EXITING could be freed from underneath us unless we +	 * take an rcu_read_lock. +	 */ +	down_write(&css_set_rwsem); +	rcu_read_lock(); +	task = leader; +	do { +		/* @task either already exited or can't exit until the end */ +		if (task->flags & PF_EXITING) +			goto next; + +		/* leave @task alone if post_fork() hasn't linked it yet */ +		if (list_empty(&task->cg_list)) +			goto next; + +		cset = task_css_set(task); +		if (!cset->mg_src_cgrp) +			goto next; + +		/* +		 * cgroup_taskset_first() must always return the leader. +		 * Take care to avoid disturbing the ordering. +		 */ +		list_move_tail(&task->cg_list, &cset->mg_tasks); +		if (list_empty(&cset->mg_node)) +			list_add_tail(&cset->mg_node, &tset.src_csets); +		if (list_empty(&cset->mg_dst_cset->mg_node)) +			list_move_tail(&cset->mg_dst_cset->mg_node, +				       &tset.dst_csets); +	next: +		if (!threadgroup) +			break; +	} while_each_thread(leader, task); +	rcu_read_unlock(); +	up_write(&css_set_rwsem); + +	/* methods shouldn't be called if no task is actually migrating */ +	if (list_empty(&tset.src_csets))  		return 0; -	for_each_subsys(root, ss) { -		if (ss->can_attach) { -			retval = ss->can_attach(ss, cgrp, tsk, false); -			if (retval) { -				/* -				 * Remember on which subsystem the can_attach() -				 * failed, so that we only call cancel_attach() -				 * against the subsystems whose can_attach() -				 * succeeded. (See below) -				 */ -				failed_ss = ss; -				goto out; +	/* check that we can legitimately attach to the cgroup */ +	for_each_e_css(css, i, cgrp) { +		if (css->ss->can_attach) { +			ret = css->ss->can_attach(css, &tset); +			if (ret) { +				failed_css = css; +				goto out_cancel_attach;  			}  		}  	} -	task_lock(tsk); -	cg = tsk->cgroups; -	get_css_set(cg); -	task_unlock(tsk);  	/* -	 * Locate or allocate a new css_set for this task, -	 * based on its final set of cgroups +	 * Now that we're guaranteed success, proceed to move all tasks to +	 * the new cgroup.  There are no failure cases after here, so this +	 * is the commit point.  	 */ -	newcg = find_css_set(cg, cgrp); -	put_css_set(cg); -	if (!newcg) { -		retval = -ENOMEM; -		goto out; +	down_write(&css_set_rwsem); +	list_for_each_entry(cset, &tset.src_csets, mg_node) { +		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) +			cgroup_task_migrate(cset->mg_src_cgrp, task, +					    cset->mg_dst_cset);  	} +	up_write(&css_set_rwsem); -	task_lock(tsk); -	if (tsk->flags & PF_EXITING) { -		task_unlock(tsk); -		put_css_set(newcg); -		retval = -ESRCH; -		goto out; -	} -	rcu_assign_pointer(tsk->cgroups, newcg); -	task_unlock(tsk); +	/* +	 * Migration is committed, all target tasks are now on dst_csets. +	 * Nothing is sensitive to fork() after this point.  Notify +	 * controllers that migration is complete. +	 */ +	tset.csets = &tset.dst_csets; -	/* Update the css_set linked lists if we're using them */ -	write_lock(&css_set_lock); -	if (!list_empty(&tsk->cg_list)) { -		list_del(&tsk->cg_list); -		list_add(&tsk->cg_list, &newcg->tasks); -	} -	write_unlock(&css_set_lock); +	for_each_e_css(css, i, cgrp) +		if (css->ss->attach) +			css->ss->attach(css, &tset); -	for_each_subsys(root, ss) { -		if (ss->attach) -			ss->attach(ss, cgrp, oldcgrp, tsk, false); -	} -	set_bit(CGRP_RELEASABLE, &oldcgrp->flags); -	synchronize_rcu(); -	put_css_set(cg); +	ret = 0; +	goto out_release_tset; -	/* -	 * wake up rmdir() waiter. the rmdir should fail since the cgroup -	 * is no longer empty. -	 */ -	cgroup_wakeup_rmdir_waiter(cgrp); -out: -	if (retval) { -		for_each_subsys(root, ss) { -			if (ss == failed_ss) -				/* -				 * This subsystem was the one that failed the -				 * can_attach() check earlier, so we don't need -				 * to call cancel_attach() against it or any -				 * remaining subsystems. -				 */ -				break; -			if (ss->cancel_attach) -				ss->cancel_attach(ss, cgrp, tsk, false); -		} +out_cancel_attach: +	for_each_e_css(css, i, cgrp) { +		if (css == failed_css) +			break; +		if (css->ss->cancel_attach) +			css->ss->cancel_attach(css, &tset);  	} -	return retval; +out_release_tset: +	down_write(&css_set_rwsem); +	list_splice_init(&tset.dst_csets, &tset.src_csets); +	list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) { +		list_splice_tail_init(&cset->mg_tasks, &cset->tasks); +		list_del_init(&cset->mg_node); +	} +	up_write(&css_set_rwsem); +	return ret;  }  /** - * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' - * @from: attach to all cgroups of a given task - * @tsk: the task to be attached + * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup + * @dst_cgrp: the cgroup to attach to + * @leader: the task or the leader of the threadgroup to be attached + * @threadgroup: attach the whole threadgroup? + * + * Call holding cgroup_mutex and threadgroup_lock of @leader.   */ -int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) +static int cgroup_attach_task(struct cgroup *dst_cgrp, +			      struct task_struct *leader, bool threadgroup)  { -	struct cgroupfs_root *root; -	int retval = 0; - -	cgroup_lock(); -	for_each_active_root(root) { -		struct cgroup *from_cg = task_cgroup_from_root(from, root); +	LIST_HEAD(preloaded_csets); +	struct task_struct *task; +	int ret; -		retval = cgroup_attach_task(from_cg, tsk); -		if (retval) +	/* look up all src csets */ +	down_read(&css_set_rwsem); +	rcu_read_lock(); +	task = leader; +	do { +		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, +				       &preloaded_csets); +		if (!threadgroup)  			break; -	} -	cgroup_unlock(); +	} while_each_thread(leader, task); +	rcu_read_unlock(); +	up_read(&css_set_rwsem); -	return retval; +	/* prepare dst csets and commit */ +	ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets); +	if (!ret) +		ret = cgroup_migrate(dst_cgrp, leader, threadgroup); + +	cgroup_migrate_finish(&preloaded_csets); +	return ret;  } -EXPORT_SYMBOL_GPL(cgroup_attach_task_all);  /* - * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex - * held. May take task_lock of task + * Find the task_struct of the task to attach by vpid and pass it along to the + * function to attach either it or all tasks in its threadgroup. Will lock + * cgroup_mutex and threadgroup.   */ -static int attach_task_by_pid(struct cgroup *cgrp, u64 pid) +static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, +				    size_t nbytes, loff_t off, bool threadgroup)  {  	struct task_struct *tsk;  	const struct cred *cred = current_cred(), *tcred; +	struct cgroup *cgrp; +	pid_t pid;  	int ret; +	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) +		return -EINVAL; + +	cgrp = cgroup_kn_lock_live(of->kn); +	if (!cgrp) +		return -ENODEV; + +retry_find_task: +	rcu_read_lock();  	if (pid) { -		rcu_read_lock();  		tsk = find_task_by_vpid(pid); -		if (!tsk || tsk->flags & PF_EXITING) { +		if (!tsk) {  			rcu_read_unlock(); -			return -ESRCH; +			ret = -ESRCH; +			goto out_unlock_cgroup;  		} - +		/* +		 * even if we're attaching all tasks in the thread group, we +		 * only need to check permissions on one of them. +		 */  		tcred = __task_cred(tsk); -		if (cred->euid && -		    cred->euid != tcred->uid && -		    cred->euid != tcred->suid) { +		if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && +		    !uid_eq(cred->euid, tcred->uid) && +		    !uid_eq(cred->euid, tcred->suid)) {  			rcu_read_unlock(); -			return -EACCES; +			ret = -EACCES; +			goto out_unlock_cgroup;  		} -		get_task_struct(tsk); -		rcu_read_unlock(); -	} else { +	} else  		tsk = current; -		get_task_struct(tsk); + +	if (threadgroup) +		tsk = tsk->group_leader; + +	/* +	 * Workqueue threads may acquire PF_NO_SETAFFINITY and become +	 * trapped in a cpuset, or RT worker may be born in a cgroup +	 * with no rt_runtime allocated.  Just say no. +	 */ +	if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) { +		ret = -EINVAL; +		rcu_read_unlock(); +		goto out_unlock_cgroup;  	} -	ret = cgroup_attach_task(cgrp, tsk); -	put_task_struct(tsk); -	return ret; -} +	get_task_struct(tsk); +	rcu_read_unlock(); -static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid) -{ -	int ret; -	if (!cgroup_lock_live_group(cgrp)) -		return -ENODEV; -	ret = attach_task_by_pid(cgrp, pid); -	cgroup_unlock(); -	return ret; +	threadgroup_lock(tsk); +	if (threadgroup) { +		if (!thread_group_leader(tsk)) { +			/* +			 * a race with de_thread from another thread's exec() +			 * may strip us of our leadership, if this happens, +			 * there is no choice but to throw this task away and +			 * try again; this is +			 * "double-double-toil-and-trouble-check locking". +			 */ +			threadgroup_unlock(tsk); +			put_task_struct(tsk); +			goto retry_find_task; +		} +	} + +	ret = cgroup_attach_task(cgrp, tsk, threadgroup); + +	threadgroup_unlock(tsk); + +	put_task_struct(tsk); +out_unlock_cgroup: +	cgroup_kn_unlock(of->kn); +	return ret ?: nbytes;  }  /** - * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. - * @cgrp: the cgroup to be checked for liveness - * - * On success, returns true; the lock should be later released with - * cgroup_unlock(). On failure returns false with no lock held. + * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' + * @from: attach to all cgroups of a given task + * @tsk: the task to be attached   */ -bool cgroup_lock_live_group(struct cgroup *cgrp) +int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)  { +	struct cgroup_root *root; +	int retval = 0; +  	mutex_lock(&cgroup_mutex); -	if (cgroup_is_removed(cgrp)) { -		mutex_unlock(&cgroup_mutex); -		return false; +	for_each_root(root) { +		struct cgroup *from_cgrp; + +		if (root == &cgrp_dfl_root) +			continue; + +		down_read(&css_set_rwsem); +		from_cgrp = task_cgroup_from_root(from, root); +		up_read(&css_set_rwsem); + +		retval = cgroup_attach_task(from_cgrp, tsk, false); +		if (retval) +			break;  	} -	return true; +	mutex_unlock(&cgroup_mutex); + +	return retval; +} +EXPORT_SYMBOL_GPL(cgroup_attach_task_all); + +static ssize_t cgroup_tasks_write(struct kernfs_open_file *of, +				  char *buf, size_t nbytes, loff_t off) +{ +	return __cgroup_procs_write(of, buf, nbytes, off, false);  } -EXPORT_SYMBOL_GPL(cgroup_lock_live_group); -static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft, -				      const char *buffer) +static ssize_t cgroup_procs_write(struct kernfs_open_file *of, +				  char *buf, size_t nbytes, loff_t off)  { +	return __cgroup_procs_write(of, buf, nbytes, off, true); +} + +static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, +					  char *buf, size_t nbytes, loff_t off) +{ +	struct cgroup *cgrp; +  	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); -	if (strlen(buffer) >= PATH_MAX) -		return -EINVAL; -	if (!cgroup_lock_live_group(cgrp)) + +	cgrp = cgroup_kn_lock_live(of->kn); +	if (!cgrp)  		return -ENODEV; -	strcpy(cgrp->root->release_agent_path, buffer); -	cgroup_unlock(); -	return 0; +	spin_lock(&release_agent_path_lock); +	strlcpy(cgrp->root->release_agent_path, strstrip(buf), +		sizeof(cgrp->root->release_agent_path)); +	spin_unlock(&release_agent_path_lock); +	cgroup_kn_unlock(of->kn); +	return nbytes;  } -static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft, -				     struct seq_file *seq) +static int cgroup_release_agent_show(struct seq_file *seq, void *v)  { -	if (!cgroup_lock_live_group(cgrp)) -		return -ENODEV; +	struct cgroup *cgrp = seq_css(seq)->cgroup; + +	spin_lock(&release_agent_path_lock);  	seq_puts(seq, cgrp->root->release_agent_path); +	spin_unlock(&release_agent_path_lock);  	seq_putc(seq, '\n'); -	cgroup_unlock();  	return 0;  } -/* A buffer size big enough for numbers or short strings */ -#define CGROUP_LOCAL_BUFFER_SIZE 64 - -static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft, -				struct file *file, -				const char __user *userbuf, -				size_t nbytes, loff_t *unused_ppos) +static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)  { -	char buffer[CGROUP_LOCAL_BUFFER_SIZE]; -	int retval = 0; -	char *end; +	struct cgroup *cgrp = seq_css(seq)->cgroup; -	if (!nbytes) -		return -EINVAL; -	if (nbytes >= sizeof(buffer)) -		return -E2BIG; -	if (copy_from_user(buffer, userbuf, nbytes)) -		return -EFAULT; +	seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp)); +	return 0; +} -	buffer[nbytes] = 0;     /* nul-terminate */ -	if (cft->write_u64) { -		u64 val = simple_strtoull(strstrip(buffer), &end, 0); -		if (*end) -			return -EINVAL; -		retval = cft->write_u64(cgrp, cft, val); -	} else { -		s64 val = simple_strtoll(strstrip(buffer), &end, 0); -		if (*end) -			return -EINVAL; -		retval = cft->write_s64(cgrp, cft, val); +static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask) +{ +	struct cgroup_subsys *ss; +	bool printed = false; +	int ssid; + +	for_each_subsys(ss, ssid) { +		if (ss_mask & (1 << ssid)) { +			if (printed) +				seq_putc(seq, ' '); +			seq_printf(seq, "%s", ss->name); +			printed = true; +		}  	} -	if (!retval) -		retval = nbytes; -	return retval; +	if (printed) +		seq_putc(seq, '\n');  } -static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft, -				   struct file *file, -				   const char __user *userbuf, -				   size_t nbytes, loff_t *unused_ppos) +/* show controllers which are currently attached to the default hierarchy */ +static int cgroup_root_controllers_show(struct seq_file *seq, void *v)  { -	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE]; -	int retval = 0; -	size_t max_bytes = cft->max_write_len; -	char *buffer = local_buffer; - -	if (!max_bytes) -		max_bytes = sizeof(local_buffer) - 1; -	if (nbytes >= max_bytes) -		return -E2BIG; -	/* Allocate a dynamic buffer if we need one */ -	if (nbytes >= sizeof(local_buffer)) { -		buffer = kmalloc(nbytes + 1, GFP_KERNEL); -		if (buffer == NULL) -			return -ENOMEM; +	struct cgroup *cgrp = seq_css(seq)->cgroup; + +	cgroup_print_ss_mask(seq, cgrp->root->subsys_mask & +			     ~cgrp_dfl_root_inhibit_ss_mask); +	return 0; +} + +/* show controllers which are enabled from the parent */ +static int cgroup_controllers_show(struct seq_file *seq, void *v) +{ +	struct cgroup *cgrp = seq_css(seq)->cgroup; + +	cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->child_subsys_mask); +	return 0; +} + +/* show controllers which are enabled for a given cgroup's children */ +static int cgroup_subtree_control_show(struct seq_file *seq, void *v) +{ +	struct cgroup *cgrp = seq_css(seq)->cgroup; + +	cgroup_print_ss_mask(seq, cgrp->child_subsys_mask); +	return 0; +} + +/** + * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy + * @cgrp: root of the subtree to update csses for + * + * @cgrp's child_subsys_mask has changed and its subtree's (self excluded) + * css associations need to be updated accordingly.  This function looks up + * all css_sets which are attached to the subtree, creates the matching + * updated css_sets and migrates the tasks to the new ones. + */ +static int cgroup_update_dfl_csses(struct cgroup *cgrp) +{ +	LIST_HEAD(preloaded_csets); +	struct cgroup_subsys_state *css; +	struct css_set *src_cset; +	int ret; + +	lockdep_assert_held(&cgroup_mutex); + +	/* look up all csses currently attached to @cgrp's subtree */ +	down_read(&css_set_rwsem); +	css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) { +		struct cgrp_cset_link *link; + +		/* self is not affected by child_subsys_mask change */ +		if (css->cgroup == cgrp) +			continue; + +		list_for_each_entry(link, &css->cgroup->cset_links, cset_link) +			cgroup_migrate_add_src(link->cset, cgrp, +					       &preloaded_csets);  	} -	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) { -		retval = -EFAULT; -		goto out; +	up_read(&css_set_rwsem); + +	/* NULL dst indicates self on default hierarchy */ +	ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets); +	if (ret) +		goto out_finish; + +	list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) { +		struct task_struct *last_task = NULL, *task; + +		/* src_csets precede dst_csets, break on the first dst_cset */ +		if (!src_cset->mg_src_cgrp) +			break; + +		/* +		 * All tasks in src_cset need to be migrated to the +		 * matching dst_cset.  Empty it process by process.  We +		 * walk tasks but migrate processes.  The leader might even +		 * belong to a different cset but such src_cset would also +		 * be among the target src_csets because the default +		 * hierarchy enforces per-process membership. +		 */ +		while (true) { +			down_read(&css_set_rwsem); +			task = list_first_entry_or_null(&src_cset->tasks, +						struct task_struct, cg_list); +			if (task) { +				task = task->group_leader; +				WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp); +				get_task_struct(task); +			} +			up_read(&css_set_rwsem); + +			if (!task) +				break; + +			/* guard against possible infinite loop */ +			if (WARN(last_task == task, +				 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n")) +				goto out_finish; +			last_task = task; + +			threadgroup_lock(task); +			/* raced against de_thread() from another thread? */ +			if (!thread_group_leader(task)) { +				threadgroup_unlock(task); +				put_task_struct(task); +				continue; +			} + +			ret = cgroup_migrate(src_cset->dfl_cgrp, task, true); + +			threadgroup_unlock(task); +			put_task_struct(task); + +			if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret)) +				goto out_finish; +		}  	} -	buffer[nbytes] = 0;     /* nul-terminate */ -	retval = cft->write_string(cgrp, cft, strstrip(buffer)); -	if (!retval) -		retval = nbytes; -out: -	if (buffer != local_buffer) -		kfree(buffer); -	return retval; +out_finish: +	cgroup_migrate_finish(&preloaded_csets); +	return ret;  } -static ssize_t cgroup_file_write(struct file *file, const char __user *buf, -						size_t nbytes, loff_t *ppos) +/* change the enabled child controllers for a cgroup in the default hierarchy */ +static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, +					    char *buf, size_t nbytes, +					    loff_t off)  { -	struct cftype *cft = __d_cft(file->f_dentry); -	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); +	unsigned int enable = 0, disable = 0; +	struct cgroup *cgrp, *child; +	struct cgroup_subsys *ss; +	char *tok; +	int ssid, ret; -	if (cgroup_is_removed(cgrp)) +	/* +	 * Parse input - space separated list of subsystem names prefixed +	 * with either + or -. +	 */ +	buf = strstrip(buf); +	while ((tok = strsep(&buf, " "))) { +		if (tok[0] == '\0') +			continue; +		for_each_subsys(ss, ssid) { +			if (ss->disabled || strcmp(tok + 1, ss->name) || +			    ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask)) +				continue; + +			if (*tok == '+') { +				enable |= 1 << ssid; +				disable &= ~(1 << ssid); +			} else if (*tok == '-') { +				disable |= 1 << ssid; +				enable &= ~(1 << ssid); +			} else { +				return -EINVAL; +			} +			break; +		} +		if (ssid == CGROUP_SUBSYS_COUNT) +			return -EINVAL; +	} + +	cgrp = cgroup_kn_lock_live(of->kn); +	if (!cgrp)  		return -ENODEV; -	if (cft->write) -		return cft->write(cgrp, cft, file, buf, nbytes, ppos); -	if (cft->write_u64 || cft->write_s64) -		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos); -	if (cft->write_string) -		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos); -	if (cft->trigger) { -		int ret = cft->trigger(cgrp, (unsigned int)cft->private); -		return ret ? ret : nbytes; + +	for_each_subsys(ss, ssid) { +		if (enable & (1 << ssid)) { +			if (cgrp->child_subsys_mask & (1 << ssid)) { +				enable &= ~(1 << ssid); +				continue; +			} + +			/* +			 * Because css offlining is asynchronous, userland +			 * might try to re-enable the same controller while +			 * the previous instance is still around.  In such +			 * cases, wait till it's gone using offline_waitq. +			 */ +			cgroup_for_each_live_child(child, cgrp) { +				DEFINE_WAIT(wait); + +				if (!cgroup_css(child, ss)) +					continue; + +				cgroup_get(child); +				prepare_to_wait(&child->offline_waitq, &wait, +						TASK_UNINTERRUPTIBLE); +				cgroup_kn_unlock(of->kn); +				schedule(); +				finish_wait(&child->offline_waitq, &wait); +				cgroup_put(child); + +				return restart_syscall(); +			} + +			/* unavailable or not enabled on the parent? */ +			if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) || +			    (cgroup_parent(cgrp) && +			     !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ssid)))) { +				ret = -ENOENT; +				goto out_unlock; +			} +		} else if (disable & (1 << ssid)) { +			if (!(cgrp->child_subsys_mask & (1 << ssid))) { +				disable &= ~(1 << ssid); +				continue; +			} + +			/* a child has it enabled? */ +			cgroup_for_each_live_child(child, cgrp) { +				if (child->child_subsys_mask & (1 << ssid)) { +					ret = -EBUSY; +					goto out_unlock; +				} +			} +		} +	} + +	if (!enable && !disable) { +		ret = 0; +		goto out_unlock;  	} -	return -EINVAL; + +	/* +	 * Except for the root, child_subsys_mask must be zero for a cgroup +	 * with tasks so that child cgroups don't compete against tasks. +	 */ +	if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) { +		ret = -EBUSY; +		goto out_unlock; +	} + +	/* +	 * Create csses for enables and update child_subsys_mask.  This +	 * changes cgroup_e_css() results which in turn makes the +	 * subsequent cgroup_update_dfl_csses() associate all tasks in the +	 * subtree to the updated csses. +	 */ +	for_each_subsys(ss, ssid) { +		if (!(enable & (1 << ssid))) +			continue; + +		cgroup_for_each_live_child(child, cgrp) { +			ret = create_css(child, ss); +			if (ret) +				goto err_undo_css; +		} +	} + +	cgrp->child_subsys_mask |= enable; +	cgrp->child_subsys_mask &= ~disable; + +	ret = cgroup_update_dfl_csses(cgrp); +	if (ret) +		goto err_undo_css; + +	/* all tasks are now migrated away from the old csses, kill them */ +	for_each_subsys(ss, ssid) { +		if (!(disable & (1 << ssid))) +			continue; + +		cgroup_for_each_live_child(child, cgrp) +			kill_css(cgroup_css(child, ss)); +	} + +	kernfs_activate(cgrp->kn); +	ret = 0; +out_unlock: +	cgroup_kn_unlock(of->kn); +	return ret ?: nbytes; + +err_undo_css: +	cgrp->child_subsys_mask &= ~enable; +	cgrp->child_subsys_mask |= disable; + +	for_each_subsys(ss, ssid) { +		if (!(enable & (1 << ssid))) +			continue; + +		cgroup_for_each_live_child(child, cgrp) { +			struct cgroup_subsys_state *css = cgroup_css(child, ss); +			if (css) +				kill_css(css); +		} +	} +	goto out_unlock;  } -static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft, -			       struct file *file, -			       char __user *buf, size_t nbytes, -			       loff_t *ppos) +static int cgroup_populated_show(struct seq_file *seq, void *v)  { -	char tmp[CGROUP_LOCAL_BUFFER_SIZE]; -	u64 val = cft->read_u64(cgrp, cft); -	int len = sprintf(tmp, "%llu\n", (unsigned long long) val); +	seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt); +	return 0; +} -	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); +static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, +				 size_t nbytes, loff_t off) +{ +	struct cgroup *cgrp = of->kn->parent->priv; +	struct cftype *cft = of->kn->priv; +	struct cgroup_subsys_state *css; +	int ret; + +	if (cft->write) +		return cft->write(of, buf, nbytes, off); + +	/* +	 * kernfs guarantees that a file isn't deleted with operations in +	 * flight, which means that the matching css is and stays alive and +	 * doesn't need to be pinned.  The RCU locking is not necessary +	 * either.  It's just for the convenience of using cgroup_css(). +	 */ +	rcu_read_lock(); +	css = cgroup_css(cgrp, cft->ss); +	rcu_read_unlock(); + +	if (cft->write_u64) { +		unsigned long long v; +		ret = kstrtoull(buf, 0, &v); +		if (!ret) +			ret = cft->write_u64(css, cft, v); +	} else if (cft->write_s64) { +		long long v; +		ret = kstrtoll(buf, 0, &v); +		if (!ret) +			ret = cft->write_s64(css, cft, v); +	} else { +		ret = -EINVAL; +	} + +	return ret ?: nbytes;  } -static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft, -			       struct file *file, -			       char __user *buf, size_t nbytes, -			       loff_t *ppos) +static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)  { -	char tmp[CGROUP_LOCAL_BUFFER_SIZE]; -	s64 val = cft->read_s64(cgrp, cft); -	int len = sprintf(tmp, "%lld\n", (long long) val); +	return seq_cft(seq)->seq_start(seq, ppos); +} -	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); +static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) +{ +	return seq_cft(seq)->seq_next(seq, v, ppos);  } -static ssize_t cgroup_file_read(struct file *file, char __user *buf, -				   size_t nbytes, loff_t *ppos) +static void cgroup_seqfile_stop(struct seq_file *seq, void *v)  { -	struct cftype *cft = __d_cft(file->f_dentry); -	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); +	seq_cft(seq)->seq_stop(seq, v); +} -	if (cgroup_is_removed(cgrp)) -		return -ENODEV; +static int cgroup_seqfile_show(struct seq_file *m, void *arg) +{ +	struct cftype *cft = seq_cft(m); +	struct cgroup_subsys_state *css = seq_css(m); + +	if (cft->seq_show) +		return cft->seq_show(m, arg); -	if (cft->read) -		return cft->read(cgrp, cft, file, buf, nbytes, ppos);  	if (cft->read_u64) -		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos); -	if (cft->read_s64) -		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos); -	return -EINVAL; +		seq_printf(m, "%llu\n", cft->read_u64(css, cft)); +	else if (cft->read_s64) +		seq_printf(m, "%lld\n", cft->read_s64(css, cft)); +	else +		return -EINVAL; +	return 0;  } +static struct kernfs_ops cgroup_kf_single_ops = { +	.atomic_write_len	= PAGE_SIZE, +	.write			= cgroup_file_write, +	.seq_show		= cgroup_seqfile_show, +}; + +static struct kernfs_ops cgroup_kf_ops = { +	.atomic_write_len	= PAGE_SIZE, +	.write			= cgroup_file_write, +	.seq_start		= cgroup_seqfile_start, +	.seq_next		= cgroup_seqfile_next, +	.seq_stop		= cgroup_seqfile_stop, +	.seq_show		= cgroup_seqfile_show, +}; +  /* - * seqfile ops/methods for returning structured data. Currently just - * supports string->u64 maps, but can be extended in future. + * cgroup_rename - Only allow simple rename of directories in place.   */ +static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, +			 const char *new_name_str) +{ +	struct cgroup *cgrp = kn->priv; +	int ret; -struct cgroup_seqfile_state { -	struct cftype *cft; -	struct cgroup *cgroup; -}; +	if (kernfs_type(kn) != KERNFS_DIR) +		return -ENOTDIR; +	if (kn->parent != new_parent) +		return -EIO; + +	/* +	 * This isn't a proper migration and its usefulness is very +	 * limited.  Disallow if sane_behavior. +	 */ +	if (cgroup_sane_behavior(cgrp)) +		return -EPERM; + +	/* +	 * We're gonna grab cgroup_mutex which nests outside kernfs +	 * active_ref.  kernfs_rename() doesn't require active_ref +	 * protection.  Break them before grabbing cgroup_mutex. +	 */ +	kernfs_break_active_protection(new_parent); +	kernfs_break_active_protection(kn); + +	mutex_lock(&cgroup_mutex); + +	ret = kernfs_rename(kn, new_parent, new_name_str); + +	mutex_unlock(&cgroup_mutex); + +	kernfs_unbreak_active_protection(kn); +	kernfs_unbreak_active_protection(new_parent); +	return ret; +} -static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value) +/* set uid and gid of cgroup dirs and files to that of the creator */ +static int cgroup_kn_set_ugid(struct kernfs_node *kn)  { -	struct seq_file *sf = cb->state; -	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value); +	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, +			       .ia_uid = current_fsuid(), +			       .ia_gid = current_fsgid(), }; + +	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && +	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) +		return 0; + +	return kernfs_setattr(kn, &iattr);  } -static int cgroup_seqfile_show(struct seq_file *m, void *arg) +static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft) +{ +	char name[CGROUP_FILE_NAME_MAX]; +	struct kernfs_node *kn; +	struct lock_class_key *key = NULL; +	int ret; + +#ifdef CONFIG_DEBUG_LOCK_ALLOC +	key = &cft->lockdep_key; +#endif +	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), +				  cgroup_file_mode(cft), 0, cft->kf_ops, cft, +				  NULL, false, key); +	if (IS_ERR(kn)) +		return PTR_ERR(kn); + +	ret = cgroup_kn_set_ugid(kn); +	if (ret) { +		kernfs_remove(kn); +		return ret; +	} + +	if (cft->seq_show == cgroup_populated_show) +		cgrp->populated_kn = kn; +	return 0; +} + +/** + * cgroup_addrm_files - add or remove files to a cgroup directory + * @cgrp: the target cgroup + * @cfts: array of cftypes to be added + * @is_add: whether to add or remove + * + * Depending on @is_add, add or remove files defined by @cfts on @cgrp. + * For removals, this function never fails.  If addition fails, this + * function doesn't remove files already added.  The caller is responsible + * for cleaning up. + */ +static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[], +			      bool is_add)  { -	struct cgroup_seqfile_state *state = m->private; -	struct cftype *cft = state->cft; -	if (cft->read_map) { -		struct cgroup_map_cb cb = { -			.fill = cgroup_map_add, -			.state = m, -		}; -		return cft->read_map(state->cgroup, cft, &cb); +	struct cftype *cft; +	int ret; + +	lockdep_assert_held(&cgroup_mutex); + +	for (cft = cfts; cft->name[0] != '\0'; cft++) { +		/* does cft->flags tell us to skip this file on @cgrp? */ +		if ((cft->flags & CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) +			continue; +		if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp)) +			continue; +		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) +			continue; +		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) +			continue; + +		if (is_add) { +			ret = cgroup_add_file(cgrp, cft); +			if (ret) { +				pr_warn("%s: failed to add %s, err=%d\n", +					__func__, cft->name, ret); +				return ret; +			} +		} else { +			cgroup_rm_file(cgrp, cft); +		}  	} -	return cft->read_seq_string(state->cgroup, cft, m); +	return 0;  } -static int cgroup_seqfile_release(struct inode *inode, struct file *file) +static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)  { -	struct seq_file *seq = file->private_data; -	kfree(seq->private); -	return single_release(inode, file); +	LIST_HEAD(pending); +	struct cgroup_subsys *ss = cfts[0].ss; +	struct cgroup *root = &ss->root->cgrp; +	struct cgroup_subsys_state *css; +	int ret = 0; + +	lockdep_assert_held(&cgroup_mutex); + +	/* add/rm files for all cgroups created before */ +	css_for_each_descendant_pre(css, cgroup_css(root, ss)) { +		struct cgroup *cgrp = css->cgroup; + +		if (cgroup_is_dead(cgrp)) +			continue; + +		ret = cgroup_addrm_files(cgrp, cfts, is_add); +		if (ret) +			break; +	} + +	if (is_add && !ret) +		kernfs_activate(root->kn); +	return ret;  } -static const struct file_operations cgroup_seqfile_operations = { -	.read = seq_read, -	.write = cgroup_file_write, -	.llseek = seq_lseek, -	.release = cgroup_seqfile_release, -}; +static void cgroup_exit_cftypes(struct cftype *cfts) +{ +	struct cftype *cft; -static int cgroup_file_open(struct inode *inode, struct file *file) +	for (cft = cfts; cft->name[0] != '\0'; cft++) { +		/* free copy for custom atomic_write_len, see init_cftypes() */ +		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) +			kfree(cft->kf_ops); +		cft->kf_ops = NULL; +		cft->ss = NULL; +	} +} + +static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)  { -	int err;  	struct cftype *cft; -	err = generic_file_open(inode, file); -	if (err) -		return err; -	cft = __d_cft(file->f_dentry); +	for (cft = cfts; cft->name[0] != '\0'; cft++) { +		struct kernfs_ops *kf_ops; -	if (cft->read_map || cft->read_seq_string) { -		struct cgroup_seqfile_state *state = -			kzalloc(sizeof(*state), GFP_USER); -		if (!state) -			return -ENOMEM; -		state->cft = cft; -		state->cgroup = __d_cgrp(file->f_dentry->d_parent); -		file->f_op = &cgroup_seqfile_operations; -		err = single_open(file, cgroup_seqfile_show, state); -		if (err < 0) -			kfree(state); -	} else if (cft->open) -		err = cft->open(inode, file); -	else -		err = 0; +		WARN_ON(cft->ss || cft->kf_ops); -	return err; +		if (cft->seq_start) +			kf_ops = &cgroup_kf_ops; +		else +			kf_ops = &cgroup_kf_single_ops; + +		/* +		 * Ugh... if @cft wants a custom max_write_len, we need to +		 * make a copy of kf_ops to set its atomic_write_len. +		 */ +		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { +			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); +			if (!kf_ops) { +				cgroup_exit_cftypes(cfts); +				return -ENOMEM; +			} +			kf_ops->atomic_write_len = cft->max_write_len; +		} + +		cft->kf_ops = kf_ops; +		cft->ss = ss; +	} + +	return 0;  } -static int cgroup_file_release(struct inode *inode, struct file *file) +static int cgroup_rm_cftypes_locked(struct cftype *cfts)  { -	struct cftype *cft = __d_cft(file->f_dentry); -	if (cft->release) -		return cft->release(inode, file); +	lockdep_assert_held(&cgroup_mutex); + +	if (!cfts || !cfts[0].ss) +		return -ENOENT; + +	list_del(&cfts->node); +	cgroup_apply_cftypes(cfts, false); +	cgroup_exit_cftypes(cfts);  	return 0;  } -/* - * cgroup_rename - Only allow simple rename of directories in place. +/** + * cgroup_rm_cftypes - remove an array of cftypes from a subsystem + * @cfts: zero-length name terminated array of cftypes + * + * Unregister @cfts.  Files described by @cfts are removed from all + * existing cgroups and all future cgroups won't have them either.  This + * function can be called anytime whether @cfts' subsys is attached or not. + * + * Returns 0 on successful unregistration, -ENOENT if @cfts is not + * registered.   */ -static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry, -			    struct inode *new_dir, struct dentry *new_dentry) +int cgroup_rm_cftypes(struct cftype *cfts)  { -	if (!S_ISDIR(old_dentry->d_inode->i_mode)) -		return -ENOTDIR; -	if (new_dentry->d_inode) -		return -EEXIST; -	if (old_dir != new_dir) -		return -EIO; -	return simple_rename(old_dir, old_dentry, new_dir, new_dentry); +	int ret; + +	mutex_lock(&cgroup_mutex); +	ret = cgroup_rm_cftypes_locked(cfts); +	mutex_unlock(&cgroup_mutex); +	return ret;  } -static const struct file_operations cgroup_file_operations = { -	.read = cgroup_file_read, -	.write = cgroup_file_write, -	.llseek = generic_file_llseek, -	.open = cgroup_file_open, -	.release = cgroup_file_release, -}; +/** + * cgroup_add_cftypes - add an array of cftypes to a subsystem + * @ss: target cgroup subsystem + * @cfts: zero-length name terminated array of cftypes + * + * Register @cfts to @ss.  Files described by @cfts are created for all + * existing cgroups to which @ss is attached and all future cgroups will + * have them too.  This function can be called anytime whether @ss is + * attached or not. + * + * Returns 0 on successful registration, -errno on failure.  Note that this + * function currently returns 0 as long as @cfts registration is successful + * even if some file creation attempts on existing cgroups fail. + */ +int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) +{ +	int ret; -static const struct inode_operations cgroup_dir_inode_operations = { -	.lookup = simple_lookup, -	.mkdir = cgroup_mkdir, -	.rmdir = cgroup_rmdir, -	.rename = cgroup_rename, -}; +	if (ss->disabled) +		return 0; -/* - * Check if a file is a control file +	if (!cfts || cfts[0].name[0] == '\0') +		return 0; + +	ret = cgroup_init_cftypes(ss, cfts); +	if (ret) +		return ret; + +	mutex_lock(&cgroup_mutex); + +	list_add_tail(&cfts->node, &ss->cfts); +	ret = cgroup_apply_cftypes(cfts, true); +	if (ret) +		cgroup_rm_cftypes_locked(cfts); + +	mutex_unlock(&cgroup_mutex); +	return ret; +} + +/** + * cgroup_task_count - count the number of tasks in a cgroup. + * @cgrp: the cgroup in question + * + * Return the number of tasks in the cgroup.   */ -static inline struct cftype *__file_cft(struct file *file) +static int cgroup_task_count(const struct cgroup *cgrp)  { -	if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations) -		return ERR_PTR(-EINVAL); -	return __d_cft(file->f_dentry); +	int count = 0; +	struct cgrp_cset_link *link; + +	down_read(&css_set_rwsem); +	list_for_each_entry(link, &cgrp->cset_links, cset_link) +		count += atomic_read(&link->cset->refcount); +	up_read(&css_set_rwsem); +	return count;  } -static int cgroup_create_file(struct dentry *dentry, mode_t mode, -				struct super_block *sb) +/** + * css_next_child - find the next child of a given css + * @pos: the current position (%NULL to initiate traversal) + * @parent: css whose children to walk + * + * This function returns the next child of @parent and should be called + * under either cgroup_mutex or RCU read lock.  The only requirement is + * that @parent and @pos are accessible.  The next sibling is guaranteed to + * be returned regardless of their states. + * + * If a subsystem synchronizes ->css_online() and the start of iteration, a + * css which finished ->css_online() is guaranteed to be visible in the + * future iterations and will stay visible until the last reference is put. + * A css which hasn't finished ->css_online() or already finished + * ->css_offline() may show up during traversal.  It's each subsystem's + * responsibility to synchronize against on/offlining. + */ +struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, +					   struct cgroup_subsys_state *parent)  { -	static const struct dentry_operations cgroup_dops = { -		.d_iput = cgroup_diput, -	}; +	struct cgroup_subsys_state *next; -	struct inode *inode; +	cgroup_assert_mutex_or_rcu_locked(); -	if (!dentry) -		return -ENOENT; -	if (dentry->d_inode) -		return -EEXIST; +	/* +	 * @pos could already have been unlinked from the sibling list. +	 * Once a cgroup is removed, its ->sibling.next is no longer +	 * updated when its next sibling changes.  CSS_RELEASED is set when +	 * @pos is taken off list, at which time its next pointer is valid, +	 * and, as releases are serialized, the one pointed to by the next +	 * pointer is guaranteed to not have started release yet.  This +	 * implies that if we observe !CSS_RELEASED on @pos in this RCU +	 * critical section, the one pointed to by its next pointer is +	 * guaranteed to not have finished its RCU grace period even if we +	 * have dropped rcu_read_lock() inbetween iterations. +	 * +	 * If @pos has CSS_RELEASED set, its next pointer can't be +	 * dereferenced; however, as each css is given a monotonically +	 * increasing unique serial number and always appended to the +	 * sibling list, the next one can be found by walking the parent's +	 * children until the first css with higher serial number than +	 * @pos's.  While this path can be slower, it happens iff iteration +	 * races against release and the race window is very small. +	 */ +	if (!pos) { +		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); +	} else if (likely(!(pos->flags & CSS_RELEASED))) { +		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); +	} else { +		list_for_each_entry_rcu(next, &parent->children, sibling) +			if (next->serial_nr > pos->serial_nr) +				break; +	} -	inode = cgroup_new_inode(mode, sb); -	if (!inode) -		return -ENOMEM; +	/* +	 * @next, if not pointing to the head, can be dereferenced and is +	 * the next sibling. +	 */ +	if (&next->sibling != &parent->children) +		return next; +	return NULL; +} + +/** + * css_next_descendant_pre - find the next descendant for pre-order walk + * @pos: the current position (%NULL to initiate traversal) + * @root: css whose descendants to walk + * + * To be used by css_for_each_descendant_pre().  Find the next descendant + * to visit for pre-order traversal of @root's descendants.  @root is + * included in the iteration and the first node to be visited. + * + * While this function requires cgroup_mutex or RCU read locking, it + * doesn't require the whole traversal to be contained in a single critical + * section.  This function will return the correct next descendant as long + * as both @pos and @root are accessible and @pos is a descendant of @root. + * + * If a subsystem synchronizes ->css_online() and the start of iteration, a + * css which finished ->css_online() is guaranteed to be visible in the + * future iterations and will stay visible until the last reference is put. + * A css which hasn't finished ->css_online() or already finished + * ->css_offline() may show up during traversal.  It's each subsystem's + * responsibility to synchronize against on/offlining. + */ +struct cgroup_subsys_state * +css_next_descendant_pre(struct cgroup_subsys_state *pos, +			struct cgroup_subsys_state *root) +{ +	struct cgroup_subsys_state *next; -	if (S_ISDIR(mode)) { -		inode->i_op = &cgroup_dir_inode_operations; -		inode->i_fop = &simple_dir_operations; +	cgroup_assert_mutex_or_rcu_locked(); -		/* start off with i_nlink == 2 (for "." entry) */ -		inc_nlink(inode); +	/* if first iteration, visit @root */ +	if (!pos) +		return root; -		/* start with the directory inode held, so that we can -		 * populate it without racing with another mkdir */ -		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); -	} else if (S_ISREG(mode)) { -		inode->i_size = 0; -		inode->i_fop = &cgroup_file_operations; -	} -	dentry->d_op = &cgroup_dops; -	d_instantiate(dentry, inode); -	dget(dentry);	/* Extra count - pin the dentry in core */ -	return 0; -} +	/* visit the first child if exists */ +	next = css_next_child(NULL, pos); +	if (next) +		return next; -/* - * cgroup_create_dir - create a directory for an object. - * @cgrp: the cgroup we create the directory for. It must have a valid - *        ->parent field. And we are going to fill its ->dentry field. - * @dentry: dentry of the new cgroup - * @mode: mode to set on new directory. - */ -static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry, -				mode_t mode) -{ -	struct dentry *parent; -	int error = 0; - -	parent = cgrp->parent->dentry; -	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb); -	if (!error) { -		dentry->d_fsdata = cgrp; -		inc_nlink(parent->d_inode); -		rcu_assign_pointer(cgrp->dentry, dentry); -		dget(dentry); +	/* no child, visit my or the closest ancestor's next sibling */ +	while (pos != root) { +		next = css_next_child(pos, pos->parent); +		if (next) +			return next; +		pos = pos->parent;  	} -	dput(dentry); -	return error; +	return NULL;  }  /** - * cgroup_file_mode - deduce file mode of a control file - * @cft: the control file in question + * css_rightmost_descendant - return the rightmost descendant of a css + * @pos: css of interest   * - * returns cft->mode if ->mode is not 0 - * returns S_IRUGO|S_IWUSR if it has both a read and a write handler - * returns S_IRUGO if it has only a read handler - * returns S_IWUSR if it has only a write hander + * Return the rightmost descendant of @pos.  If there's no descendant, @pos + * is returned.  This can be used during pre-order traversal to skip + * subtree of @pos. + * + * While this function requires cgroup_mutex or RCU read locking, it + * doesn't require the whole traversal to be contained in a single critical + * section.  This function will return the correct rightmost descendant as + * long as @pos is accessible.   */ -static mode_t cgroup_file_mode(const struct cftype *cft) +struct cgroup_subsys_state * +css_rightmost_descendant(struct cgroup_subsys_state *pos)  { -	mode_t mode = 0; +	struct cgroup_subsys_state *last, *tmp; -	if (cft->mode) -		return cft->mode; - -	if (cft->read || cft->read_u64 || cft->read_s64 || -	    cft->read_map || cft->read_seq_string) -		mode |= S_IRUGO; +	cgroup_assert_mutex_or_rcu_locked(); -	if (cft->write || cft->write_u64 || cft->write_s64 || -	    cft->write_string || cft->trigger) -		mode |= S_IWUSR; +	do { +		last = pos; +		/* ->prev isn't RCU safe, walk ->next till the end */ +		pos = NULL; +		css_for_each_child(tmp, last) +			pos = tmp; +	} while (pos); -	return mode; +	return last;  } -int cgroup_add_file(struct cgroup *cgrp, -		       struct cgroup_subsys *subsys, -		       const struct cftype *cft) +static struct cgroup_subsys_state * +css_leftmost_descendant(struct cgroup_subsys_state *pos)  { -	struct dentry *dir = cgrp->dentry; -	struct dentry *dentry; -	int error; -	mode_t mode; +	struct cgroup_subsys_state *last; -	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 }; -	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) { -		strcpy(name, subsys->name); -		strcat(name, "."); -	} -	strcat(name, cft->name); -	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex)); -	dentry = lookup_one_len(name, dir, strlen(name)); -	if (!IS_ERR(dentry)) { -		mode = cgroup_file_mode(cft); -		error = cgroup_create_file(dentry, mode | S_IFREG, -						cgrp->root->sb); -		if (!error) -			dentry->d_fsdata = (void *)cft; -		dput(dentry); -	} else -		error = PTR_ERR(dentry); -	return error; +	do { +		last = pos; +		pos = css_next_child(NULL, pos); +	} while (pos); + +	return last;  } -EXPORT_SYMBOL_GPL(cgroup_add_file); -int cgroup_add_files(struct cgroup *cgrp, -			struct cgroup_subsys *subsys, -			const struct cftype cft[], -			int count) +/** + * css_next_descendant_post - find the next descendant for post-order walk + * @pos: the current position (%NULL to initiate traversal) + * @root: css whose descendants to walk + * + * To be used by css_for_each_descendant_post().  Find the next descendant + * to visit for post-order traversal of @root's descendants.  @root is + * included in the iteration and the last node to be visited. + * + * While this function requires cgroup_mutex or RCU read locking, it + * doesn't require the whole traversal to be contained in a single critical + * section.  This function will return the correct next descendant as long + * as both @pos and @cgroup are accessible and @pos is a descendant of + * @cgroup. + * + * If a subsystem synchronizes ->css_online() and the start of iteration, a + * css which finished ->css_online() is guaranteed to be visible in the + * future iterations and will stay visible until the last reference is put. + * A css which hasn't finished ->css_online() or already finished + * ->css_offline() may show up during traversal.  It's each subsystem's + * responsibility to synchronize against on/offlining. + */ +struct cgroup_subsys_state * +css_next_descendant_post(struct cgroup_subsys_state *pos, +			 struct cgroup_subsys_state *root)  { -	int i, err; -	for (i = 0; i < count; i++) { -		err = cgroup_add_file(cgrp, subsys, &cft[i]); -		if (err) -			return err; -	} -	return 0; +	struct cgroup_subsys_state *next; + +	cgroup_assert_mutex_or_rcu_locked(); + +	/* if first iteration, visit leftmost descendant which may be @root */ +	if (!pos) +		return css_leftmost_descendant(root); + +	/* if we visited @root, we're done */ +	if (pos == root) +		return NULL; + +	/* if there's an unvisited sibling, visit its leftmost descendant */ +	next = css_next_child(pos, pos->parent); +	if (next) +		return css_leftmost_descendant(next); + +	/* no sibling left, visit parent */ +	return pos->parent;  } -EXPORT_SYMBOL_GPL(cgroup_add_files);  /** - * cgroup_task_count - count the number of tasks in a cgroup. - * @cgrp: the cgroup in question + * css_has_online_children - does a css have online children + * @css: the target css   * - * Return the number of tasks in the cgroup. + * Returns %true if @css has any online children; otherwise, %false.  This + * function can be called from any context but the caller is responsible + * for synchronizing against on/offlining as necessary.   */ -int cgroup_task_count(const struct cgroup *cgrp) +bool css_has_online_children(struct cgroup_subsys_state *css)  { -	int count = 0; -	struct cg_cgroup_link *link; +	struct cgroup_subsys_state *child; +	bool ret = false; -	read_lock(&css_set_lock); -	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) { -		count += atomic_read(&link->cg->refcount); +	rcu_read_lock(); +	css_for_each_child(child, css) { +		if (child->flags & CSS_ONLINE) { +			ret = true; +			break; +		}  	} -	read_unlock(&css_set_lock); -	return count; +	rcu_read_unlock(); +	return ret;  } -/* - * Advance a list_head iterator.  The iterator should be positioned at - * the start of a css_set +/** + * css_advance_task_iter - advance a task itererator to the next css_set + * @it: the iterator to advance + * + * Advance @it to the next css_set to walk.   */ -static void cgroup_advance_iter(struct cgroup *cgrp, -				struct cgroup_iter *it) +static void css_advance_task_iter(struct css_task_iter *it)  { -	struct list_head *l = it->cg_link; -	struct cg_cgroup_link *link; -	struct css_set *cg; +	struct list_head *l = it->cset_pos; +	struct cgrp_cset_link *link; +	struct css_set *cset;  	/* Advance to the next non-empty css_set */  	do {  		l = l->next; -		if (l == &cgrp->css_sets) { -			it->cg_link = NULL; +		if (l == it->cset_head) { +			it->cset_pos = NULL;  			return;  		} -		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list); -		cg = link->cg; -	} while (list_empty(&cg->tasks)); -	it->cg_link = l; -	it->task = cg->tasks.next; + +		if (it->ss) { +			cset = container_of(l, struct css_set, +					    e_cset_node[it->ss->id]); +		} else { +			link = list_entry(l, struct cgrp_cset_link, cset_link); +			cset = link->cset; +		} +	} while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks)); + +	it->cset_pos = l; + +	if (!list_empty(&cset->tasks)) +		it->task_pos = cset->tasks.next; +	else +		it->task_pos = cset->mg_tasks.next; + +	it->tasks_head = &cset->tasks; +	it->mg_tasks_head = &cset->mg_tasks;  } -/* - * To reduce the fork() overhead for systems that are not actually - * using their cgroups capability, we don't maintain the lists running - * through each css_set to its tasks until we see the list actually - * used - in other words after the first call to cgroup_iter_start(). +/** + * css_task_iter_start - initiate task iteration + * @css: the css to walk tasks of + * @it: the task iterator to use + * + * Initiate iteration through the tasks of @css.  The caller can call + * css_task_iter_next() to walk through the tasks until the function + * returns NULL.  On completion of iteration, css_task_iter_end() must be + * called.   * - * The tasklist_lock is not held here, as do_each_thread() and - * while_each_thread() are protected by RCU. + * Note that this function acquires a lock which is released when the + * iteration finishes.  The caller can't sleep while iteration is in + * progress.   */ -static void cgroup_enable_task_cg_lists(void) +void css_task_iter_start(struct cgroup_subsys_state *css, +			 struct css_task_iter *it) +	__acquires(css_set_rwsem)  { -	struct task_struct *p, *g; -	write_lock(&css_set_lock); -	use_task_css_set_links = 1; -	do_each_thread(g, p) { -		task_lock(p); -		/* -		 * We should check if the process is exiting, otherwise -		 * it will race with cgroup_exit() in that the list -		 * entry won't be deleted though the process has exited. -		 */ -		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list)) -			list_add(&p->cg_list, &p->cgroups->tasks); -		task_unlock(p); -	} while_each_thread(g, p); -	write_unlock(&css_set_lock); -} +	/* no one should try to iterate before mounting cgroups */ +	WARN_ON_ONCE(!use_task_css_set_links); -void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it) -{ -	/* -	 * The first time anyone tries to iterate across a cgroup, -	 * we need to enable the list linking each css_set to its -	 * tasks, and fix up all existing tasks. -	 */ -	if (!use_task_css_set_links) -		cgroup_enable_task_cg_lists(); +	down_read(&css_set_rwsem); -	read_lock(&css_set_lock); -	it->cg_link = &cgrp->css_sets; -	cgroup_advance_iter(cgrp, it); +	it->ss = css->ss; + +	if (it->ss) +		it->cset_pos = &css->cgroup->e_csets[css->ss->id]; +	else +		it->cset_pos = &css->cgroup->cset_links; + +	it->cset_head = it->cset_pos; + +	css_advance_task_iter(it);  } -struct task_struct *cgroup_iter_next(struct cgroup *cgrp, -					struct cgroup_iter *it) +/** + * css_task_iter_next - return the next task for the iterator + * @it: the task iterator being iterated + * + * The "next" function for task iteration.  @it should have been + * initialized via css_task_iter_start().  Returns NULL when the iteration + * reaches the end. + */ +struct task_struct *css_task_iter_next(struct css_task_iter *it)  {  	struct task_struct *res; -	struct list_head *l = it->task; -	struct cg_cgroup_link *link; +	struct list_head *l = it->task_pos;  	/* If the iterator cg is NULL, we have no tasks */ -	if (!it->cg_link) +	if (!it->cset_pos)  		return NULL;  	res = list_entry(l, struct task_struct, cg_list); -	/* Advance iterator to find next entry */ + +	/* +	 * Advance iterator to find next entry.  cset->tasks is consumed +	 * first and then ->mg_tasks.  After ->mg_tasks, we move onto the +	 * next cset. +	 */  	l = l->next; -	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list); -	if (l == &link->cg->tasks) { -		/* We reached the end of this task list - move on to -		 * the next cg_cgroup_link */ -		cgroup_advance_iter(cgrp, it); -	} else { -		it->task = l; -	} -	return res; -} -void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it) -{ -	read_unlock(&css_set_lock); -} +	if (l == it->tasks_head) +		l = it->mg_tasks_head->next; -static inline int started_after_time(struct task_struct *t1, -				     struct timespec *time, -				     struct task_struct *t2) -{ -	int start_diff = timespec_compare(&t1->start_time, time); -	if (start_diff > 0) { -		return 1; -	} else if (start_diff < 0) { -		return 0; -	} else { -		/* -		 * Arbitrarily, if two processes started at the same -		 * time, we'll say that the lower pointer value -		 * started first. Note that t2 may have exited by now -		 * so this may not be a valid pointer any longer, but -		 * that's fine - it still serves to distinguish -		 * between two tasks started (effectively) simultaneously. -		 */ -		return t1 > t2; -	} +	if (l == it->mg_tasks_head) +		css_advance_task_iter(it); +	else +		it->task_pos = l; + +	return res;  } -/* - * This function is a callback from heap_insert() and is used to order - * the heap. - * In this case we order the heap in descending task start time. +/** + * css_task_iter_end - finish task iteration + * @it: the task iterator to finish + * + * Finish task iteration started by css_task_iter_start().   */ -static inline int started_after(void *p1, void *p2) +void css_task_iter_end(struct css_task_iter *it) +	__releases(css_set_rwsem)  { -	struct task_struct *t1 = p1; -	struct task_struct *t2 = p2; -	return started_after_time(t1, &t2->start_time, t2); +	up_read(&css_set_rwsem);  }  /** - * cgroup_scan_tasks - iterate though all the tasks in a cgroup - * @scan: struct cgroup_scanner containing arguments for the scan + * cgroup_trasnsfer_tasks - move tasks from one cgroup to another + * @to: cgroup to which the tasks will be moved + * @from: cgroup in which the tasks currently reside   * - * Arguments include pointers to callback functions test_task() and - * process_task(). - * Iterate through all the tasks in a cgroup, calling test_task() for each, - * and if it returns true, call process_task() for it also. - * The test_task pointer may be NULL, meaning always true (select all tasks). - * Effectively duplicates cgroup_iter_{start,next,end}() - * but does not lock css_set_lock for the call to process_task(). - * The struct cgroup_scanner may be embedded in any structure of the caller's - * creation. - * It is guaranteed that process_task() will act on every task that - * is a member of the cgroup for the duration of this call. This - * function may or may not call process_task() for tasks that exit - * or move to a different cgroup during the call, or are forked or - * move into the cgroup during the call. - * - * Note that test_task() may be called with locks held, and may in some - * situations be called multiple times for the same task, so it should - * be cheap. - * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been - * pre-allocated and will be used for heap operations (and its "gt" member will - * be overwritten), else a temporary heap will be used (allocation of which - * may cause this function to fail). + * Locking rules between cgroup_post_fork() and the migration path + * guarantee that, if a task is forking while being migrated, the new child + * is guaranteed to be either visible in the source cgroup after the + * parent's migration is complete or put into the target cgroup.  No task + * can slip out of migration through forking.   */ -int cgroup_scan_tasks(struct cgroup_scanner *scan) -{ -	int retval, i; -	struct cgroup_iter it; -	struct task_struct *p, *dropped; -	/* Never dereference latest_task, since it's not refcounted */ -	struct task_struct *latest_task = NULL; -	struct ptr_heap tmp_heap; -	struct ptr_heap *heap; -	struct timespec latest_time = { 0, 0 }; - -	if (scan->heap) { -		/* The caller supplied our heap and pre-allocated its memory */ -		heap = scan->heap; -		heap->gt = &started_after; -	} else { -		/* We need to allocate our own heap memory */ -		heap = &tmp_heap; -		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after); -		if (retval) -			/* cannot allocate the heap */ -			return retval; -	} +int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) +{ +	LIST_HEAD(preloaded_csets); +	struct cgrp_cset_link *link; +	struct css_task_iter it; +	struct task_struct *task; +	int ret; + +	mutex_lock(&cgroup_mutex); + +	/* all tasks in @from are being moved, all csets are source */ +	down_read(&css_set_rwsem); +	list_for_each_entry(link, &from->cset_links, cset_link) +		cgroup_migrate_add_src(link->cset, to, &preloaded_csets); +	up_read(&css_set_rwsem); + +	ret = cgroup_migrate_prepare_dst(to, &preloaded_csets); +	if (ret) +		goto out_err; - again:  	/* -	 * Scan tasks in the cgroup, using the scanner's "test_task" callback -	 * to determine which are of interest, and using the scanner's -	 * "process_task" callback to process any of them that need an update. -	 * Since we don't want to hold any locks during the task updates, -	 * gather tasks to be processed in a heap structure. -	 * The heap is sorted by descending task start time. -	 * If the statically-sized heap fills up, we overflow tasks that -	 * started later, and in future iterations only consider tasks that -	 * started after the latest task in the previous pass. This -	 * guarantees forward progress and that we don't miss any tasks. +	 * Migrate tasks one-by-one until @form is empty.  This fails iff +	 * ->can_attach() fails.  	 */ -	heap->size = 0; -	cgroup_iter_start(scan->cg, &it); -	while ((p = cgroup_iter_next(scan->cg, &it))) { -		/* -		 * Only affect tasks that qualify per the caller's callback, -		 * if he provided one -		 */ -		if (scan->test_task && !scan->test_task(p, scan)) -			continue; -		/* -		 * Only process tasks that started after the last task -		 * we processed -		 */ -		if (!started_after_time(p, &latest_time, latest_task)) -			continue; -		dropped = heap_insert(heap, p); -		if (dropped == NULL) { -			/* -			 * The new task was inserted; the heap wasn't -			 * previously full -			 */ -			get_task_struct(p); -		} else if (dropped != p) { -			/* -			 * The new task was inserted, and pushed out a -			 * different task -			 */ -			get_task_struct(p); -			put_task_struct(dropped); -		} -		/* -		 * Else the new task was newer than anything already in -		 * the heap and wasn't inserted -		 */ -	} -	cgroup_iter_end(scan->cg, &it); - -	if (heap->size) { -		for (i = 0; i < heap->size; i++) { -			struct task_struct *q = heap->ptrs[i]; -			if (i == 0) { -				latest_time = q->start_time; -				latest_task = q; -			} -			/* Process the task per the caller's callback */ -			scan->process_task(q, scan); -			put_task_struct(q); +	do { +		css_task_iter_start(&from->self, &it); +		task = css_task_iter_next(&it); +		if (task) +			get_task_struct(task); +		css_task_iter_end(&it); + +		if (task) { +			ret = cgroup_migrate(to, task, false); +			put_task_struct(task);  		} -		/* -		 * If we had to process any tasks at all, scan again -		 * in case some of them were in the middle of forking -		 * children that didn't get processed. -		 * Not the most efficient way to do it, but it avoids -		 * having to take callback_mutex in the fork path -		 */ -		goto again; -	} -	if (heap == &tmp_heap) -		heap_free(&tmp_heap); -	return 0; +	} while (task && !ret); +out_err: +	cgroup_migrate_finish(&preloaded_csets); +	mutex_unlock(&cgroup_mutex); +	return ret;  }  /* @@ -2618,6 +3565,36 @@ int cgroup_scan_tasks(struct cgroup_scanner *scan)   *   */ +/* which pidlist file are we talking about? */ +enum cgroup_filetype { +	CGROUP_FILE_PROCS, +	CGROUP_FILE_TASKS, +}; + +/* + * A pidlist is a list of pids that virtually represents the contents of one + * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, + * a pair (one each for procs, tasks) for each pid namespace that's relevant + * to the cgroup. + */ +struct cgroup_pidlist { +	/* +	 * used to find which pidlist is wanted. doesn't change as long as +	 * this particular list stays in the list. +	*/ +	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; +	/* array of xids */ +	pid_t *list; +	/* how many elements the above list has */ +	int length; +	/* each of these stored in a list by its cgroup */ +	struct list_head links; +	/* pointer to the cgroup we belong to, for list removal purposes */ +	struct cgroup *owner; +	/* for delayed destruction */ +	struct delayed_work destroy_dwork; +}; +  /*   * The following two functions "fix" the issue where there are more pids   * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. @@ -2631,6 +3608,7 @@ static void *pidlist_allocate(int count)  	else  		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);  } +  static void pidlist_free(void *p)  {  	if (is_vmalloc_addr(p)) @@ -2638,35 +3616,55 @@ static void pidlist_free(void *p)  	else  		kfree(p);  } -static void *pidlist_resize(void *p, int newcount) + +/* + * Used to destroy all pidlists lingering waiting for destroy timer.  None + * should be left afterwards. + */ +static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)  { -	void *newlist; -	/* note: if new alloc fails, old p will still be valid either way */ -	if (is_vmalloc_addr(p)) { -		newlist = vmalloc(newcount * sizeof(pid_t)); -		if (!newlist) -			return NULL; -		memcpy(newlist, p, newcount * sizeof(pid_t)); -		vfree(p); -	} else { -		newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL); +	struct cgroup_pidlist *l, *tmp_l; + +	mutex_lock(&cgrp->pidlist_mutex); +	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) +		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); +	mutex_unlock(&cgrp->pidlist_mutex); + +	flush_workqueue(cgroup_pidlist_destroy_wq); +	BUG_ON(!list_empty(&cgrp->pidlists)); +} + +static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) +{ +	struct delayed_work *dwork = to_delayed_work(work); +	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, +						destroy_dwork); +	struct cgroup_pidlist *tofree = NULL; + +	mutex_lock(&l->owner->pidlist_mutex); + +	/* +	 * Destroy iff we didn't get queued again.  The state won't change +	 * as destroy_dwork can only be queued while locked. +	 */ +	if (!delayed_work_pending(dwork)) { +		list_del(&l->links); +		pidlist_free(l->list); +		put_pid_ns(l->key.ns); +		tofree = l;  	} -	return newlist; + +	mutex_unlock(&l->owner->pidlist_mutex); +	kfree(tofree);  }  /*   * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries - * If the new stripped list is sufficiently smaller and there's enough memory - * to allocate a new buffer, will let go of the unneeded memory. Returns the - * number of unique elements. + * Returns the number of unique elements.   */ -/* is the size difference enough that we should re-allocate the array? */ -#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new)) -static int pidlist_uniq(pid_t **p, int length) +static int pidlist_uniq(pid_t *list, int length)  {  	int src, dest = 1; -	pid_t *list = *p; -	pid_t *newlist;  	/*  	 * we presume the 0th element is unique, so i starts at 1. trivial @@ -2687,67 +3685,95 @@ static int pidlist_uniq(pid_t **p, int length)  		dest++;  	}  after: -	/* -	 * if the length difference is large enough, we want to allocate a -	 * smaller buffer to save memory. if this fails due to out of memory, -	 * we'll just stay with what we've got. -	 */ -	if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) { -		newlist = pidlist_resize(list, dest); -		if (newlist) -			*p = newlist; -	}  	return dest;  } +/* + * The two pid files - task and cgroup.procs - guaranteed that the result + * is sorted, which forced this whole pidlist fiasco.  As pid order is + * different per namespace, each namespace needs differently sorted list, + * making it impossible to use, for example, single rbtree of member tasks + * sorted by task pointer.  As pidlists can be fairly large, allocating one + * per open file is dangerous, so cgroup had to implement shared pool of + * pidlists keyed by cgroup and namespace. + * + * All this extra complexity was caused by the original implementation + * committing to an entirely unnecessary property.  In the long term, we + * want to do away with it.  Explicitly scramble sort order if + * sane_behavior so that no such expectation exists in the new interface. + * + * Scrambling is done by swapping every two consecutive bits, which is + * non-identity one-to-one mapping which disturbs sort order sufficiently. + */ +static pid_t pid_fry(pid_t pid) +{ +	unsigned a = pid & 0x55555555; +	unsigned b = pid & 0xAAAAAAAA; + +	return (a << 1) | (b >> 1); +} + +static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid) +{ +	if (cgroup_sane_behavior(cgrp)) +		return pid_fry(pid); +	else +		return pid; +} +  static int cmppid(const void *a, const void *b)  {  	return *(pid_t *)a - *(pid_t *)b;  } +static int fried_cmppid(const void *a, const void *b) +{ +	return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b); +} + +static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, +						  enum cgroup_filetype type) +{ +	struct cgroup_pidlist *l; +	/* don't need task_nsproxy() if we're looking at ourself */ +	struct pid_namespace *ns = task_active_pid_ns(current); + +	lockdep_assert_held(&cgrp->pidlist_mutex); + +	list_for_each_entry(l, &cgrp->pidlists, links) +		if (l->key.type == type && l->key.ns == ns) +			return l; +	return NULL; +} +  /*   * find the appropriate pidlist for our purpose (given procs vs tasks)   * returns with the lock on that pidlist already held, and takes care   * of the use count, or returns NULL with no locks held if we're out of   * memory.   */ -static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, -						  enum cgroup_filetype type) +static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, +						enum cgroup_filetype type)  {  	struct cgroup_pidlist *l; -	/* don't need task_nsproxy() if we're looking at ourself */ -	struct pid_namespace *ns = current->nsproxy->pid_ns; -	/* -	 * We can't drop the pidlist_mutex before taking the l->mutex in case -	 * the last ref-holder is trying to remove l from the list at the same -	 * time. Holding the pidlist_mutex precludes somebody taking whichever -	 * list we find out from under us - compare release_pid_array(). -	 */ -	mutex_lock(&cgrp->pidlist_mutex); -	list_for_each_entry(l, &cgrp->pidlists, links) { -		if (l->key.type == type && l->key.ns == ns) { -			/* make sure l doesn't vanish out from under us */ -			down_write(&l->mutex); -			mutex_unlock(&cgrp->pidlist_mutex); -			return l; -		} -	} +	lockdep_assert_held(&cgrp->pidlist_mutex); + +	l = cgroup_pidlist_find(cgrp, type); +	if (l) +		return l; +  	/* entry not found; create a new one */ -	l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); -	if (!l) { -		mutex_unlock(&cgrp->pidlist_mutex); +	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); +	if (!l)  		return l; -	} -	init_rwsem(&l->mutex); -	down_write(&l->mutex); + +	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);  	l->key.type = type; -	l->key.ns = get_pid_ns(ns); -	l->use_count = 0; /* don't increment here */ -	l->list = NULL; +	/* don't need task_nsproxy() if we're looking at ourself */ +	l->key.ns = get_pid_ns(task_active_pid_ns(current));  	l->owner = cgrp;  	list_add(&l->links, &cgrp->pidlists); -	mutex_unlock(&cgrp->pidlist_mutex);  	return l;  } @@ -2760,10 +3786,12 @@ static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,  	pid_t *array;  	int length;  	int pid, n = 0; /* used for populating the array */ -	struct cgroup_iter it; +	struct css_task_iter it;  	struct task_struct *tsk;  	struct cgroup_pidlist *l; +	lockdep_assert_held(&cgrp->pidlist_mutex); +  	/*  	 * If cgroup gets more users after we read count, we won't have  	 * enough space - tough.  This race is indistinguishable to the @@ -2775,8 +3803,8 @@ static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,  	if (!array)  		return -ENOMEM;  	/* now, populate the array */ -	cgroup_iter_start(cgrp, &it); -	while ((tsk = cgroup_iter_next(cgrp, &it))) { +	css_task_iter_start(&cgrp->self, &it); +	while ((tsk = css_task_iter_next(&it))) {  		if (unlikely(n == length))  			break;  		/* get tgid or pid for procs or tasks file respectively */ @@ -2787,23 +3815,27 @@ static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,  		if (pid > 0) /* make sure to only use valid results */  			array[n++] = pid;  	} -	cgroup_iter_end(cgrp, &it); +	css_task_iter_end(&it);  	length = n;  	/* now sort & (if procs) strip out duplicates */ -	sort(array, length, sizeof(pid_t), cmppid, NULL); +	if (cgroup_sane_behavior(cgrp)) +		sort(array, length, sizeof(pid_t), fried_cmppid, NULL); +	else +		sort(array, length, sizeof(pid_t), cmppid, NULL);  	if (type == CGROUP_FILE_PROCS) -		length = pidlist_uniq(&array, length); -	l = cgroup_pidlist_find(cgrp, type); +		length = pidlist_uniq(array, length); + +	l = cgroup_pidlist_find_create(cgrp, type);  	if (!l) { +		mutex_unlock(&cgrp->pidlist_mutex);  		pidlist_free(array);  		return -ENOMEM;  	} -	/* store array, freeing old if necessary - lock already held */ + +	/* store array, freeing old if necessary */  	pidlist_free(l->list);  	l->list = array;  	l->length = length; -	l->use_count++; -	up_write(&l->mutex);  	*lp = l;  	return 0;  } @@ -2819,24 +3851,34 @@ static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,   */  int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)  { -	int ret = -EINVAL; +	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);  	struct cgroup *cgrp; -	struct cgroup_iter it; +	struct css_task_iter it;  	struct task_struct *tsk; +	/* it should be kernfs_node belonging to cgroupfs and is a directory */ +	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || +	    kernfs_type(kn) != KERNFS_DIR) +		return -EINVAL; + +	mutex_lock(&cgroup_mutex); +  	/* -	 * Validate dentry by checking the superblock operations, -	 * and make sure it's a directory. +	 * We aren't being called from kernfs and there's no guarantee on +	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(), +	 * @kn->priv is RCU safe.  Let's do the RCU dancing.  	 */ -	if (dentry->d_sb->s_op != &cgroup_ops || -	    !S_ISDIR(dentry->d_inode->i_mode)) -		 goto err; - -	ret = 0; -	cgrp = dentry->d_fsdata; +	rcu_read_lock(); +	cgrp = rcu_dereference(kn->priv); +	if (!cgrp || cgroup_is_dead(cgrp)) { +		rcu_read_unlock(); +		mutex_unlock(&cgroup_mutex); +		return -ENOENT; +	} +	rcu_read_unlock(); -	cgroup_iter_start(cgrp, &it); -	while ((tsk = cgroup_iter_next(cgrp, &it))) { +	css_task_iter_start(&cgrp->self, &it); +	while ((tsk = css_task_iter_next(&it))) {  		switch (tsk->state) {  		case TASK_RUNNING:  			stats->nr_running++; @@ -2856,10 +3898,10 @@ int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)  			break;  		}  	} -	cgroup_iter_end(cgrp, &it); +	css_task_iter_end(&it); -err: -	return ret; +	mutex_unlock(&cgroup_mutex); +	return 0;  } @@ -2877,20 +3919,45 @@ static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)  	 * after a seek to the start). Use a binary-search to find the  	 * next pid to display, if any  	 */ -	struct cgroup_pidlist *l = s->private; +	struct kernfs_open_file *of = s->private; +	struct cgroup *cgrp = seq_css(s)->cgroup; +	struct cgroup_pidlist *l; +	enum cgroup_filetype type = seq_cft(s)->private;  	int index = 0, pid = *pos; -	int *iter; +	int *iter, ret; + +	mutex_lock(&cgrp->pidlist_mutex); + +	/* +	 * !NULL @of->priv indicates that this isn't the first start() +	 * after open.  If the matching pidlist is around, we can use that. +	 * Look for it.  Note that @of->priv can't be used directly.  It +	 * could already have been destroyed. +	 */ +	if (of->priv) +		of->priv = cgroup_pidlist_find(cgrp, type); + +	/* +	 * Either this is the first start() after open or the matching +	 * pidlist has been destroyed inbetween.  Create a new one. +	 */ +	if (!of->priv) { +		ret = pidlist_array_load(cgrp, type, +					 (struct cgroup_pidlist **)&of->priv); +		if (ret) +			return ERR_PTR(ret); +	} +	l = of->priv; -	down_read(&l->mutex);  	if (pid) {  		int end = l->length;  		while (index < end) {  			int mid = (index + end) / 2; -			if (l->list[mid] == pid) { +			if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {  				index = mid;  				break; -			} else if (l->list[mid] <= pid) +			} else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)  				index = mid + 1;  			else  				end = mid; @@ -2901,19 +3968,25 @@ static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)  		return NULL;  	/* Update the abstract position to be the actual pid that we found */  	iter = l->list + index; -	*pos = *iter; +	*pos = cgroup_pid_fry(cgrp, *iter);  	return iter;  }  static void cgroup_pidlist_stop(struct seq_file *s, void *v)  { -	struct cgroup_pidlist *l = s->private; -	up_read(&l->mutex); +	struct kernfs_open_file *of = s->private; +	struct cgroup_pidlist *l = of->priv; + +	if (l) +		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, +				 CGROUP_PIDLIST_DESTROY_DELAY); +	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);  }  static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)  { -	struct cgroup_pidlist *l = s->private; +	struct kernfs_open_file *of = s->private; +	struct cgroup_pidlist *l = of->priv;  	pid_t *p = v;  	pid_t *end = l->list + l->length;  	/* @@ -2924,7 +3997,7 @@ static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)  	if (p >= end) {  		return NULL;  	} else { -		*pos = *p; +		*pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);  		return p;  	}  } @@ -2934,958 +4007,726 @@ static int cgroup_pidlist_show(struct seq_file *s, void *v)  	return seq_printf(s, "%d\n", *(int *)v);  } -/* - * seq_operations functions for iterating on pidlists through seq_file - - * independent of whether it's tasks or procs - */ -static const struct seq_operations cgroup_pidlist_seq_operations = { -	.start = cgroup_pidlist_start, -	.stop = cgroup_pidlist_stop, -	.next = cgroup_pidlist_next, -	.show = cgroup_pidlist_show, -}; - -static void cgroup_release_pid_array(struct cgroup_pidlist *l) +static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, +					 struct cftype *cft)  { -	/* -	 * the case where we're the last user of this particular pidlist will -	 * have us remove it from the cgroup's list, which entails taking the -	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup-> -	 * pidlist_mutex, we have to take pidlist_mutex first. -	 */ -	mutex_lock(&l->owner->pidlist_mutex); -	down_write(&l->mutex); -	BUG_ON(!l->use_count); -	if (!--l->use_count) { -		/* we're the last user if refcount is 0; remove and free */ -		list_del(&l->links); -		mutex_unlock(&l->owner->pidlist_mutex); -		pidlist_free(l->list); -		put_pid_ns(l->key.ns); -		up_write(&l->mutex); -		kfree(l); -		return; -	} -	mutex_unlock(&l->owner->pidlist_mutex); -	up_write(&l->mutex); +	return notify_on_release(css->cgroup);  } -static int cgroup_pidlist_release(struct inode *inode, struct file *file) +static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, +					  struct cftype *cft, u64 val)  { -	struct cgroup_pidlist *l; -	if (!(file->f_mode & FMODE_READ)) -		return 0; -	/* -	 * the seq_file will only be initialized if the file was opened for -	 * reading; hence we check if it's not null only in that case. -	 */ -	l = ((struct seq_file *)file->private_data)->private; -	cgroup_release_pid_array(l); -	return seq_release(inode, file); -} - -static const struct file_operations cgroup_pidlist_operations = { -	.read = seq_read, -	.llseek = seq_lseek, -	.write = cgroup_file_write, -	.release = cgroup_pidlist_release, -}; - -/* - * The following functions handle opens on a file that displays a pidlist - * (tasks or procs). Prepare an array of the process/thread IDs of whoever's - * in the cgroup. - */ -/* helper function for the two below it */ -static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type) -{ -	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); -	struct cgroup_pidlist *l; -	int retval; - -	/* Nothing to do for write-only files */ -	if (!(file->f_mode & FMODE_READ)) -		return 0; - -	/* have the array populated */ -	retval = pidlist_array_load(cgrp, type, &l); -	if (retval) -		return retval; -	/* configure file information */ -	file->f_op = &cgroup_pidlist_operations; - -	retval = seq_open(file, &cgroup_pidlist_seq_operations); -	if (retval) { -		cgroup_release_pid_array(l); -		return retval; -	} -	((struct seq_file *)file->private_data)->private = l; +	clear_bit(CGRP_RELEASABLE, &css->cgroup->flags); +	if (val) +		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); +	else +		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);  	return 0;  } -static int cgroup_tasks_open(struct inode *unused, struct file *file) -{ -	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS); -} -static int cgroup_procs_open(struct inode *unused, struct file *file) -{ -	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS); -} -static u64 cgroup_read_notify_on_release(struct cgroup *cgrp, -					    struct cftype *cft) +static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, +				      struct cftype *cft)  { -	return notify_on_release(cgrp); +	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);  } -static int cgroup_write_notify_on_release(struct cgroup *cgrp, -					  struct cftype *cft, -					  u64 val) +static int cgroup_clone_children_write(struct cgroup_subsys_state *css, +				       struct cftype *cft, u64 val)  { -	clear_bit(CGRP_RELEASABLE, &cgrp->flags);  	if (val) -		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); +		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);  	else -		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); +		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);  	return 0;  } -/* - * Unregister event and free resources. +static struct cftype cgroup_base_files[] = { +	{ +		.name = "cgroup.procs", +		.seq_start = cgroup_pidlist_start, +		.seq_next = cgroup_pidlist_next, +		.seq_stop = cgroup_pidlist_stop, +		.seq_show = cgroup_pidlist_show, +		.private = CGROUP_FILE_PROCS, +		.write = cgroup_procs_write, +		.mode = S_IRUGO | S_IWUSR, +	}, +	{ +		.name = "cgroup.clone_children", +		.flags = CFTYPE_INSANE, +		.read_u64 = cgroup_clone_children_read, +		.write_u64 = cgroup_clone_children_write, +	}, +	{ +		.name = "cgroup.sane_behavior", +		.flags = CFTYPE_ONLY_ON_ROOT, +		.seq_show = cgroup_sane_behavior_show, +	}, +	{ +		.name = "cgroup.controllers", +		.flags = CFTYPE_ONLY_ON_DFL | CFTYPE_ONLY_ON_ROOT, +		.seq_show = cgroup_root_controllers_show, +	}, +	{ +		.name = "cgroup.controllers", +		.flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT, +		.seq_show = cgroup_controllers_show, +	}, +	{ +		.name = "cgroup.subtree_control", +		.flags = CFTYPE_ONLY_ON_DFL, +		.seq_show = cgroup_subtree_control_show, +		.write = cgroup_subtree_control_write, +	}, +	{ +		.name = "cgroup.populated", +		.flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT, +		.seq_show = cgroup_populated_show, +	}, + +	/* +	 * Historical crazy stuff.  These don't have "cgroup."  prefix and +	 * don't exist if sane_behavior.  If you're depending on these, be +	 * prepared to be burned. +	 */ +	{ +		.name = "tasks", +		.flags = CFTYPE_INSANE,		/* use "procs" instead */ +		.seq_start = cgroup_pidlist_start, +		.seq_next = cgroup_pidlist_next, +		.seq_stop = cgroup_pidlist_stop, +		.seq_show = cgroup_pidlist_show, +		.private = CGROUP_FILE_TASKS, +		.write = cgroup_tasks_write, +		.mode = S_IRUGO | S_IWUSR, +	}, +	{ +		.name = "notify_on_release", +		.flags = CFTYPE_INSANE, +		.read_u64 = cgroup_read_notify_on_release, +		.write_u64 = cgroup_write_notify_on_release, +	}, +	{ +		.name = "release_agent", +		.flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT, +		.seq_show = cgroup_release_agent_show, +		.write = cgroup_release_agent_write, +		.max_write_len = PATH_MAX - 1, +	}, +	{ }	/* terminate */ +}; + +/** + * cgroup_populate_dir - create subsys files in a cgroup directory + * @cgrp: target cgroup + * @subsys_mask: mask of the subsystem ids whose files should be added   * - * Gets called from workqueue. + * On failure, no file is added.   */ -static void cgroup_event_remove(struct work_struct *work) +static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)  { -	struct cgroup_event *event = container_of(work, struct cgroup_event, -			remove); -	struct cgroup *cgrp = event->cgrp; +	struct cgroup_subsys *ss; +	int i, ret = 0; -	event->cft->unregister_event(cgrp, event->cft, event->eventfd); +	/* process cftsets of each subsystem */ +	for_each_subsys(ss, i) { +		struct cftype *cfts; -	eventfd_ctx_put(event->eventfd); -	kfree(event); -	dput(cgrp->dentry); -} +		if (!(subsys_mask & (1 << i))) +			continue; -/* - * Gets called on POLLHUP on eventfd when user closes it. - * - * Called with wqh->lock held and interrupts disabled. - */ -static int cgroup_event_wake(wait_queue_t *wait, unsigned mode, -		int sync, void *key) -{ -	struct cgroup_event *event = container_of(wait, -			struct cgroup_event, wait); -	struct cgroup *cgrp = event->cgrp; -	unsigned long flags = (unsigned long)key; - -	if (flags & POLLHUP) { -		__remove_wait_queue(event->wqh, &event->wait); -		spin_lock(&cgrp->event_list_lock); -		list_del(&event->list); -		spin_unlock(&cgrp->event_list_lock); -		/* -		 * We are in atomic context, but cgroup_event_remove() may -		 * sleep, so we have to call it in workqueue. -		 */ -		schedule_work(&event->remove); +		list_for_each_entry(cfts, &ss->cfts, node) { +			ret = cgroup_addrm_files(cgrp, cfts, true); +			if (ret < 0) +				goto err; +		}  	} -  	return 0; -} - -static void cgroup_event_ptable_queue_proc(struct file *file, -		wait_queue_head_t *wqh, poll_table *pt) -{ -	struct cgroup_event *event = container_of(pt, -			struct cgroup_event, pt); - -	event->wqh = wqh; -	add_wait_queue(wqh, &event->wait); +err: +	cgroup_clear_dir(cgrp, subsys_mask); +	return ret;  }  /* - * Parse input and register new cgroup event handler. + * css destruction is four-stage process. + * + * 1. Destruction starts.  Killing of the percpu_ref is initiated. + *    Implemented in kill_css(). + * + * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs + *    and thus css_tryget_online() is guaranteed to fail, the css can be + *    offlined by invoking offline_css().  After offlining, the base ref is + *    put.  Implemented in css_killed_work_fn(). + * + * 3. When the percpu_ref reaches zero, the only possible remaining + *    accessors are inside RCU read sections.  css_release() schedules the + *    RCU callback.   * - * Input must be in format '<event_fd> <control_fd> <args>'. - * Interpretation of args is defined by control file implementation. + * 4. After the grace period, the css can be freed.  Implemented in + *    css_free_work_fn(). + * + * It is actually hairier because both step 2 and 4 require process context + * and thus involve punting to css->destroy_work adding two additional + * steps to the already complex sequence.   */ -static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft, -				      const char *buffer) -{ -	struct cgroup_event *event = NULL; -	unsigned int efd, cfd; -	struct file *efile = NULL; -	struct file *cfile = NULL; -	char *endp; -	int ret; +static void css_free_work_fn(struct work_struct *work) +{ +	struct cgroup_subsys_state *css = +		container_of(work, struct cgroup_subsys_state, destroy_work); +	struct cgroup *cgrp = css->cgroup; -	efd = simple_strtoul(buffer, &endp, 10); -	if (*endp != ' ') -		return -EINVAL; -	buffer = endp + 1; +	if (css->ss) { +		/* css free path */ +		if (css->parent) +			css_put(css->parent); -	cfd = simple_strtoul(buffer, &endp, 10); -	if ((*endp != ' ') && (*endp != '\0')) -		return -EINVAL; -	buffer = endp + 1; +		css->ss->css_free(css); +		cgroup_put(cgrp); +	} else { +		/* cgroup free path */ +		atomic_dec(&cgrp->root->nr_cgrps); +		cgroup_pidlist_destroy_all(cgrp); -	event = kzalloc(sizeof(*event), GFP_KERNEL); -	if (!event) -		return -ENOMEM; -	event->cgrp = cgrp; -	INIT_LIST_HEAD(&event->list); -	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc); -	init_waitqueue_func_entry(&event->wait, cgroup_event_wake); -	INIT_WORK(&event->remove, cgroup_event_remove); - -	efile = eventfd_fget(efd); -	if (IS_ERR(efile)) { -		ret = PTR_ERR(efile); -		goto fail; +		if (cgroup_parent(cgrp)) { +			/* +			 * We get a ref to the parent, and put the ref when +			 * this cgroup is being freed, so it's guaranteed +			 * that the parent won't be destroyed before its +			 * children. +			 */ +			cgroup_put(cgroup_parent(cgrp)); +			kernfs_put(cgrp->kn); +			kfree(cgrp); +		} else { +			/* +			 * This is root cgroup's refcnt reaching zero, +			 * which indicates that the root should be +			 * released. +			 */ +			cgroup_destroy_root(cgrp->root); +		}  	} +} -	event->eventfd = eventfd_ctx_fileget(efile); -	if (IS_ERR(event->eventfd)) { -		ret = PTR_ERR(event->eventfd); -		goto fail; -	} +static void css_free_rcu_fn(struct rcu_head *rcu_head) +{ +	struct cgroup_subsys_state *css = +		container_of(rcu_head, struct cgroup_subsys_state, rcu_head); -	cfile = fget(cfd); -	if (!cfile) { -		ret = -EBADF; -		goto fail; -	} +	INIT_WORK(&css->destroy_work, css_free_work_fn); +	queue_work(cgroup_destroy_wq, &css->destroy_work); +} -	/* the process need read permission on control file */ -	ret = file_permission(cfile, MAY_READ); -	if (ret < 0) -		goto fail; +static void css_release_work_fn(struct work_struct *work) +{ +	struct cgroup_subsys_state *css = +		container_of(work, struct cgroup_subsys_state, destroy_work); +	struct cgroup_subsys *ss = css->ss; +	struct cgroup *cgrp = css->cgroup; -	event->cft = __file_cft(cfile); -	if (IS_ERR(event->cft)) { -		ret = PTR_ERR(event->cft); -		goto fail; -	} +	mutex_lock(&cgroup_mutex); -	if (!event->cft->register_event || !event->cft->unregister_event) { -		ret = -EINVAL; -		goto fail; +	css->flags |= CSS_RELEASED; +	list_del_rcu(&css->sibling); + +	if (ss) { +		/* css release path */ +		cgroup_idr_remove(&ss->css_idr, css->id); +	} else { +		/* cgroup release path */ +		cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); +		cgrp->id = -1;  	} -	ret = event->cft->register_event(cgrp, event->cft, -			event->eventfd, buffer); -	if (ret) -		goto fail; +	mutex_unlock(&cgroup_mutex); -	if (efile->f_op->poll(efile, &event->pt) & POLLHUP) { -		event->cft->unregister_event(cgrp, event->cft, event->eventfd); -		ret = 0; -		goto fail; -	} +	call_rcu(&css->rcu_head, css_free_rcu_fn); +} -	/* -	 * Events should be removed after rmdir of cgroup directory, but before -	 * destroying subsystem state objects. Let's take reference to cgroup -	 * directory dentry to do that. -	 */ -	dget(cgrp->dentry); +static void css_release(struct percpu_ref *ref) +{ +	struct cgroup_subsys_state *css = +		container_of(ref, struct cgroup_subsys_state, refcnt); -	spin_lock(&cgrp->event_list_lock); -	list_add(&event->list, &cgrp->event_list); -	spin_unlock(&cgrp->event_list_lock); +	INIT_WORK(&css->destroy_work, css_release_work_fn); +	queue_work(cgroup_destroy_wq, &css->destroy_work); +} -	fput(cfile); -	fput(efile); +static void init_and_link_css(struct cgroup_subsys_state *css, +			      struct cgroup_subsys *ss, struct cgroup *cgrp) +{ +	lockdep_assert_held(&cgroup_mutex); -	return 0; +	cgroup_get(cgrp); -fail: -	if (cfile) -		fput(cfile); +	memset(css, 0, sizeof(*css)); +	css->cgroup = cgrp; +	css->ss = ss; +	INIT_LIST_HEAD(&css->sibling); +	INIT_LIST_HEAD(&css->children); +	css->serial_nr = css_serial_nr_next++; + +	if (cgroup_parent(cgrp)) { +		css->parent = cgroup_css(cgroup_parent(cgrp), ss); +		css_get(css->parent); +	} -	if (event && event->eventfd && !IS_ERR(event->eventfd)) -		eventfd_ctx_put(event->eventfd); +	BUG_ON(cgroup_css(cgrp, ss)); +} -	if (!IS_ERR_OR_NULL(efile)) -		fput(efile); +/* invoke ->css_online() on a new CSS and mark it online if successful */ +static int online_css(struct cgroup_subsys_state *css) +{ +	struct cgroup_subsys *ss = css->ss; +	int ret = 0; -	kfree(event); +	lockdep_assert_held(&cgroup_mutex); +	if (ss->css_online) +		ret = ss->css_online(css); +	if (!ret) { +		css->flags |= CSS_ONLINE; +		rcu_assign_pointer(css->cgroup->subsys[ss->id], css); +	}  	return ret;  } -static u64 cgroup_clone_children_read(struct cgroup *cgrp, -				    struct cftype *cft) +/* if the CSS is online, invoke ->css_offline() on it and mark it offline */ +static void offline_css(struct cgroup_subsys_state *css)  { -	return clone_children(cgrp); -} +	struct cgroup_subsys *ss = css->ss; -static int cgroup_clone_children_write(struct cgroup *cgrp, -				     struct cftype *cft, -				     u64 val) -{ -	if (val) -		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags); -	else -		clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags); -	return 0; -} +	lockdep_assert_held(&cgroup_mutex); -/* - * for the common functions, 'private' gives the type of file - */ -/* for hysterical raisins, we can't put this on the older files */ -#define CGROUP_FILE_GENERIC_PREFIX "cgroup." -static struct cftype files[] = { -	{ -		.name = "tasks", -		.open = cgroup_tasks_open, -		.write_u64 = cgroup_tasks_write, -		.release = cgroup_pidlist_release, -		.mode = S_IRUGO | S_IWUSR, -	}, -	{ -		.name = CGROUP_FILE_GENERIC_PREFIX "procs", -		.open = cgroup_procs_open, -		/* .write_u64 = cgroup_procs_write, TODO */ -		.release = cgroup_pidlist_release, -		.mode = S_IRUGO, -	}, -	{ -		.name = "notify_on_release", -		.read_u64 = cgroup_read_notify_on_release, -		.write_u64 = cgroup_write_notify_on_release, -	}, -	{ -		.name = CGROUP_FILE_GENERIC_PREFIX "event_control", -		.write_string = cgroup_write_event_control, -		.mode = S_IWUGO, -	}, -	{ -		.name = "cgroup.clone_children", -		.read_u64 = cgroup_clone_children_read, -		.write_u64 = cgroup_clone_children_write, -	}, -}; +	if (!(css->flags & CSS_ONLINE)) +		return; -static struct cftype cft_release_agent = { -	.name = "release_agent", -	.read_seq_string = cgroup_release_agent_show, -	.write_string = cgroup_release_agent_write, -	.max_write_len = PATH_MAX, -}; +	if (ss->css_offline) +		ss->css_offline(css); -static int cgroup_populate_dir(struct cgroup *cgrp) +	css->flags &= ~CSS_ONLINE; +	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); + +	wake_up_all(&css->cgroup->offline_waitq); +} + +/** + * create_css - create a cgroup_subsys_state + * @cgrp: the cgroup new css will be associated with + * @ss: the subsys of new css + * + * Create a new css associated with @cgrp - @ss pair.  On success, the new + * css is online and installed in @cgrp with all interface files created. + * Returns 0 on success, -errno on failure. + */ +static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)  { +	struct cgroup *parent = cgroup_parent(cgrp); +	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); +	struct cgroup_subsys_state *css;  	int err; -	struct cgroup_subsys *ss; -	/* First clear out any existing files */ -	cgroup_clear_directory(cgrp->dentry); +	lockdep_assert_held(&cgroup_mutex); -	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files)); -	if (err < 0) -		return err; +	css = ss->css_alloc(parent_css); +	if (IS_ERR(css)) +		return PTR_ERR(css); -	if (cgrp == cgrp->top_cgroup) { -		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0) -			return err; -	} +	init_and_link_css(css, ss, cgrp); -	for_each_subsys(cgrp->root, ss) { -		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0) -			return err; -	} -	/* This cgroup is ready now */ -	for_each_subsys(cgrp->root, ss) { -		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; -		/* -		 * Update id->css pointer and make this css visible from -		 * CSS ID functions. This pointer will be dereferened -		 * from RCU-read-side without locks. -		 */ -		if (css->id) -			rcu_assign_pointer(css->id->css, css); -	} +	err = percpu_ref_init(&css->refcnt, css_release); +	if (err) +		goto err_free_css; -	return 0; -} +	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT); +	if (err < 0) +		goto err_free_percpu_ref; +	css->id = err; -static void init_cgroup_css(struct cgroup_subsys_state *css, -			       struct cgroup_subsys *ss, -			       struct cgroup *cgrp) -{ -	css->cgroup = cgrp; -	atomic_set(&css->refcnt, 1); -	css->flags = 0; -	css->id = NULL; -	if (cgrp == dummytop) -		set_bit(CSS_ROOT, &css->flags); -	BUG_ON(cgrp->subsys[ss->subsys_id]); -	cgrp->subsys[ss->subsys_id] = css; -} +	err = cgroup_populate_dir(cgrp, 1 << ss->id); +	if (err) +		goto err_free_id; -static void cgroup_lock_hierarchy(struct cgroupfs_root *root) -{ -	/* We need to take each hierarchy_mutex in a consistent order */ -	int i; +	/* @css is ready to be brought online now, make it visible */ +	list_add_tail_rcu(&css->sibling, &parent_css->children); +	cgroup_idr_replace(&ss->css_idr, css, css->id); -	/* -	 * No worry about a race with rebind_subsystems that might mess up the -	 * locking order, since both parties are under cgroup_mutex. -	 */ -	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { -		struct cgroup_subsys *ss = subsys[i]; -		if (ss == NULL) -			continue; -		if (ss->root == root) -			mutex_lock(&ss->hierarchy_mutex); +	err = online_css(css); +	if (err) +		goto err_list_del; + +	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && +	    cgroup_parent(parent)) { +		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", +			current->comm, current->pid, ss->name); +		if (!strcmp(ss->name, "memory")) +			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); +		ss->warned_broken_hierarchy = true;  	} -} -static void cgroup_unlock_hierarchy(struct cgroupfs_root *root) -{ -	int i; +	return 0; -	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { -		struct cgroup_subsys *ss = subsys[i]; -		if (ss == NULL) -			continue; -		if (ss->root == root) -			mutex_unlock(&ss->hierarchy_mutex); -	} +err_list_del: +	list_del_rcu(&css->sibling); +	cgroup_clear_dir(css->cgroup, 1 << css->ss->id); +err_free_id: +	cgroup_idr_remove(&ss->css_idr, css->id); +err_free_percpu_ref: +	percpu_ref_cancel_init(&css->refcnt); +err_free_css: +	call_rcu(&css->rcu_head, css_free_rcu_fn); +	return err;  } -/* - * cgroup_create - create a cgroup - * @parent: cgroup that will be parent of the new cgroup - * @dentry: dentry of the new cgroup - * @mode: mode to set on new inode - * - * Must be called with the mutex on the parent inode held - */ -static long cgroup_create(struct cgroup *parent, struct dentry *dentry, -			     mode_t mode) +static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, +			umode_t mode)  { -	struct cgroup *cgrp; -	struct cgroupfs_root *root = parent->root; -	int err = 0; +	struct cgroup *parent, *cgrp; +	struct cgroup_root *root;  	struct cgroup_subsys *ss; -	struct super_block *sb = root->sb; +	struct kernfs_node *kn; +	int ssid, ret; +	parent = cgroup_kn_lock_live(parent_kn); +	if (!parent) +		return -ENODEV; +	root = parent->root; + +	/* allocate the cgroup and its ID, 0 is reserved for the root */  	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL); -	if (!cgrp) -		return -ENOMEM; +	if (!cgrp) { +		ret = -ENOMEM; +		goto out_unlock; +	} -	/* Grab a reference on the superblock so the hierarchy doesn't -	 * get deleted on unmount if there are child cgroups.  This -	 * can be done outside cgroup_mutex, since the sb can't -	 * disappear while someone has an open control file on the -	 * fs */ -	atomic_inc(&sb->s_active); +	ret = percpu_ref_init(&cgrp->self.refcnt, css_release); +	if (ret) +		goto out_free_cgrp; -	mutex_lock(&cgroup_mutex); +	/* +	 * Temporarily set the pointer to NULL, so idr_find() won't return +	 * a half-baked cgroup. +	 */ +	cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT); +	if (cgrp->id < 0) { +		ret = -ENOMEM; +		goto out_cancel_ref; +	}  	init_cgroup_housekeeping(cgrp); -	cgrp->parent = parent; -	cgrp->root = parent->root; -	cgrp->top_cgroup = parent->top_cgroup; +	cgrp->self.parent = &parent->self; +	cgrp->root = root;  	if (notify_on_release(parent))  		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); -	if (clone_children(parent)) -		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags); - -	for_each_subsys(root, ss) { -		struct cgroup_subsys_state *css = ss->create(ss, cgrp); +	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) +		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); -		if (IS_ERR(css)) { -			err = PTR_ERR(css); -			goto err_destroy; -		} -		init_cgroup_css(css, ss, cgrp); -		if (ss->use_id) { -			err = alloc_css_id(ss, parent, cgrp); -			if (err) -				goto err_destroy; -		} -		/* At error, ->destroy() callback has to free assigned ID. */ -		if (clone_children(parent) && ss->post_clone) -			ss->post_clone(ss, cgrp); +	/* create the directory */ +	kn = kernfs_create_dir(parent->kn, name, mode, cgrp); +	if (IS_ERR(kn)) { +		ret = PTR_ERR(kn); +		goto out_free_id;  	} +	cgrp->kn = kn; -	cgroup_lock_hierarchy(root); -	list_add(&cgrp->sibling, &cgrp->parent->children); -	cgroup_unlock_hierarchy(root); -	root->number_of_cgroups++; - -	err = cgroup_create_dir(cgrp, dentry, mode); -	if (err < 0) -		goto err_remove; - -	/* The cgroup directory was pre-locked for us */ -	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex)); +	/* +	 * This extra ref will be put in cgroup_free_fn() and guarantees +	 * that @cgrp->kn is always accessible. +	 */ +	kernfs_get(kn); -	err = cgroup_populate_dir(cgrp); -	/* If err < 0, we have a half-filled directory - oh well ;) */ +	cgrp->self.serial_nr = css_serial_nr_next++; -	mutex_unlock(&cgroup_mutex); -	mutex_unlock(&cgrp->dentry->d_inode->i_mutex); +	/* allocation complete, commit to creation */ +	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); +	atomic_inc(&root->nr_cgrps); +	cgroup_get(parent); -	return 0; - - err_remove: +	/* +	 * @cgrp is now fully operational.  If something fails after this +	 * point, it'll be released via the normal destruction path. +	 */ +	cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); -	cgroup_lock_hierarchy(root); -	list_del(&cgrp->sibling); -	cgroup_unlock_hierarchy(root); -	root->number_of_cgroups--; +	ret = cgroup_kn_set_ugid(kn); +	if (ret) +		goto out_destroy; - err_destroy: +	ret = cgroup_addrm_files(cgrp, cgroup_base_files, true); +	if (ret) +		goto out_destroy; -	for_each_subsys(root, ss) { -		if (cgrp->subsys[ss->subsys_id]) -			ss->destroy(ss, cgrp); +	/* let's create and online css's */ +	for_each_subsys(ss, ssid) { +		if (parent->child_subsys_mask & (1 << ssid)) { +			ret = create_css(cgrp, ss); +			if (ret) +				goto out_destroy; +		}  	} -	mutex_unlock(&cgroup_mutex); +	/* +	 * On the default hierarchy, a child doesn't automatically inherit +	 * child_subsys_mask from the parent.  Each is configured manually. +	 */ +	if (!cgroup_on_dfl(cgrp)) +		cgrp->child_subsys_mask = parent->child_subsys_mask; + +	kernfs_activate(kn); -	/* Release the reference count that we took on the superblock */ -	deactivate_super(sb); +	ret = 0; +	goto out_unlock; +out_free_id: +	cgroup_idr_remove(&root->cgroup_idr, cgrp->id); +out_cancel_ref: +	percpu_ref_cancel_init(&cgrp->self.refcnt); +out_free_cgrp:  	kfree(cgrp); -	return err; +out_unlock: +	cgroup_kn_unlock(parent_kn); +	return ret; + +out_destroy: +	cgroup_destroy_locked(cgrp); +	goto out_unlock;  } -static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode) +/* + * This is called when the refcnt of a css is confirmed to be killed. + * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to + * initate destruction and put the css ref from kill_css(). + */ +static void css_killed_work_fn(struct work_struct *work)  { -	struct cgroup *c_parent = dentry->d_parent->d_fsdata; +	struct cgroup_subsys_state *css = +		container_of(work, struct cgroup_subsys_state, destroy_work); -	/* the vfs holds inode->i_mutex already */ -	return cgroup_create(c_parent, dentry, mode | S_IFDIR); -} +	mutex_lock(&cgroup_mutex); +	offline_css(css); +	mutex_unlock(&cgroup_mutex); -static int cgroup_has_css_refs(struct cgroup *cgrp) -{ -	/* Check the reference count on each subsystem. Since we -	 * already established that there are no tasks in the -	 * cgroup, if the css refcount is also 1, then there should -	 * be no outstanding references, so the subsystem is safe to -	 * destroy. We scan across all subsystems rather than using -	 * the per-hierarchy linked list of mounted subsystems since -	 * we can be called via check_for_release() with no -	 * synchronization other than RCU, and the subsystem linked -	 * list isn't RCU-safe */ -	int i; -	/* -	 * We won't need to lock the subsys array, because the subsystems -	 * we're concerned about aren't going anywhere since our cgroup root -	 * has a reference on them. -	 */ -	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { -		struct cgroup_subsys *ss = subsys[i]; -		struct cgroup_subsys_state *css; -		/* Skip subsystems not present or not in this hierarchy */ -		if (ss == NULL || ss->root != cgrp->root) -			continue; -		css = cgrp->subsys[ss->subsys_id]; -		/* When called from check_for_release() it's possible -		 * that by this point the cgroup has been removed -		 * and the css deleted. But a false-positive doesn't -		 * matter, since it can only happen if the cgroup -		 * has been deleted and hence no longer needs the -		 * release agent to be called anyway. */ -		if (css && (atomic_read(&css->refcnt) > 1)) -			return 1; -	} -	return 0; +	css_put(css);  } -/* - * Atomically mark all (or else none) of the cgroup's CSS objects as - * CSS_REMOVED. Return true on success, or false if the cgroup has - * busy subsystems. Call with cgroup_mutex held - */ - -static int cgroup_clear_css_refs(struct cgroup *cgrp) +/* css kill confirmation processing requires process context, bounce */ +static void css_killed_ref_fn(struct percpu_ref *ref)  { -	struct cgroup_subsys *ss; -	unsigned long flags; -	bool failed = false; -	local_irq_save(flags); -	for_each_subsys(cgrp->root, ss) { -		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; -		int refcnt; -		while (1) { -			/* We can only remove a CSS with a refcnt==1 */ -			refcnt = atomic_read(&css->refcnt); -			if (refcnt > 1) { -				failed = true; -				goto done; -			} -			BUG_ON(!refcnt); -			/* -			 * Drop the refcnt to 0 while we check other -			 * subsystems. This will cause any racing -			 * css_tryget() to spin until we set the -			 * CSS_REMOVED bits or abort -			 */ -			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt) -				break; -			cpu_relax(); -		} -	} - done: -	for_each_subsys(cgrp->root, ss) { -		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; -		if (failed) { -			/* -			 * Restore old refcnt if we previously managed -			 * to clear it from 1 to 0 -			 */ -			if (!atomic_read(&css->refcnt)) -				atomic_set(&css->refcnt, 1); -		} else { -			/* Commit the fact that the CSS is removed */ -			set_bit(CSS_REMOVED, &css->flags); -		} -	} -	local_irq_restore(flags); -	return !failed; +	struct cgroup_subsys_state *css = +		container_of(ref, struct cgroup_subsys_state, refcnt); + +	INIT_WORK(&css->destroy_work, css_killed_work_fn); +	queue_work(cgroup_destroy_wq, &css->destroy_work);  } -static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry) +/** + * kill_css - destroy a css + * @css: css to destroy + * + * This function initiates destruction of @css by removing cgroup interface + * files and putting its base reference.  ->css_offline() will be invoked + * asynchronously once css_tryget_online() is guaranteed to fail and when + * the reference count reaches zero, @css will be released. + */ +static void kill_css(struct cgroup_subsys_state *css)  { -	struct cgroup *cgrp = dentry->d_fsdata; -	struct dentry *d; -	struct cgroup *parent; -	DEFINE_WAIT(wait); -	struct cgroup_event *event, *tmp; -	int ret; - -	/* the vfs holds both inode->i_mutex already */ -again: -	mutex_lock(&cgroup_mutex); -	if (atomic_read(&cgrp->count) != 0) { -		mutex_unlock(&cgroup_mutex); -		return -EBUSY; -	} -	if (!list_empty(&cgrp->children)) { -		mutex_unlock(&cgroup_mutex); -		return -EBUSY; -	} -	mutex_unlock(&cgroup_mutex); +	lockdep_assert_held(&cgroup_mutex);  	/* -	 * In general, subsystem has no css->refcnt after pre_destroy(). But -	 * in racy cases, subsystem may have to get css->refcnt after -	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes -	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue -	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir -	 * and subsystem's reference count handling. Please see css_get/put -	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation. +	 * This must happen before css is disassociated with its cgroup. +	 * See seq_css() for details.  	 */ -	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); +	cgroup_clear_dir(css->cgroup, 1 << css->ss->id);  	/* -	 * Call pre_destroy handlers of subsys. Notify subsystems -	 * that rmdir() request comes. +	 * Killing would put the base ref, but we need to keep it alive +	 * until after ->css_offline().  	 */ -	ret = cgroup_call_pre_destroy(cgrp); -	if (ret) { -		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); -		return ret; -	} - -	mutex_lock(&cgroup_mutex); -	parent = cgrp->parent; -	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) { -		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); -		mutex_unlock(&cgroup_mutex); -		return -EBUSY; -	} -	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE); -	if (!cgroup_clear_css_refs(cgrp)) { -		mutex_unlock(&cgroup_mutex); -		/* -		 * Because someone may call cgroup_wakeup_rmdir_waiter() before -		 * prepare_to_wait(), we need to check this flag. -		 */ -		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)) -			schedule(); -		finish_wait(&cgroup_rmdir_waitq, &wait); -		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); -		if (signal_pending(current)) -			return -EINTR; -		goto again; -	} -	/* NO css_tryget() can success after here. */ -	finish_wait(&cgroup_rmdir_waitq, &wait); -	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); - -	spin_lock(&release_list_lock); -	set_bit(CGRP_REMOVED, &cgrp->flags); -	if (!list_empty(&cgrp->release_list)) -		list_del(&cgrp->release_list); -	spin_unlock(&release_list_lock); - -	cgroup_lock_hierarchy(cgrp->root); -	/* delete this cgroup from parent->children */ -	list_del(&cgrp->sibling); -	cgroup_unlock_hierarchy(cgrp->root); - -	spin_lock(&cgrp->dentry->d_lock); -	d = dget(cgrp->dentry); -	spin_unlock(&d->d_lock); - -	cgroup_d_remove_dir(d); -	dput(d); - -	set_bit(CGRP_RELEASABLE, &parent->flags); -	check_for_release(parent); +	css_get(css);  	/* -	 * Unregister events and notify userspace. -	 * Notify userspace about cgroup removing only after rmdir of cgroup -	 * directory to avoid race between userspace and kernelspace +	 * cgroup core guarantees that, by the time ->css_offline() is +	 * invoked, no new css reference will be given out via +	 * css_tryget_online().  We can't simply call percpu_ref_kill() and +	 * proceed to offlining css's because percpu_ref_kill() doesn't +	 * guarantee that the ref is seen as killed on all CPUs on return. +	 * +	 * Use percpu_ref_kill_and_confirm() to get notifications as each +	 * css is confirmed to be seen as killed on all CPUs.  	 */ -	spin_lock(&cgrp->event_list_lock); -	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) { -		list_del(&event->list); -		remove_wait_queue(event->wqh, &event->wait); -		eventfd_signal(event->eventfd, 1); -		schedule_work(&event->remove); -	} -	spin_unlock(&cgrp->event_list_lock); - -	mutex_unlock(&cgroup_mutex); -	return 0; -} - -static void __init cgroup_init_subsys(struct cgroup_subsys *ss) -{ -	struct cgroup_subsys_state *css; - -	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name); - -	/* Create the top cgroup state for this subsystem */ -	list_add(&ss->sibling, &rootnode.subsys_list); -	ss->root = &rootnode; -	css = ss->create(ss, dummytop); -	/* We don't handle early failures gracefully */ -	BUG_ON(IS_ERR(css)); -	init_cgroup_css(css, ss, dummytop); - -	/* Update the init_css_set to contain a subsys -	 * pointer to this state - since the subsystem is -	 * newly registered, all tasks and hence the -	 * init_css_set is in the subsystem's top cgroup. */ -	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id]; - -	need_forkexit_callback |= ss->fork || ss->exit; - -	/* At system boot, before all subsystems have been -	 * registered, no tasks have been forked, so we don't -	 * need to invoke fork callbacks here. */ -	BUG_ON(!list_empty(&init_task.tasks)); - -	mutex_init(&ss->hierarchy_mutex); -	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key); -	ss->active = 1; - -	/* this function shouldn't be used with modular subsystems, since they -	 * need to register a subsys_id, among other things */ -	BUG_ON(ss->module); +	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);  }  /** - * cgroup_load_subsys: load and register a modular subsystem at runtime - * @ss: the subsystem to load + * cgroup_destroy_locked - the first stage of cgroup destruction + * @cgrp: cgroup to be destroyed + * + * css's make use of percpu refcnts whose killing latency shouldn't be + * exposed to userland and are RCU protected.  Also, cgroup core needs to + * guarantee that css_tryget_online() won't succeed by the time + * ->css_offline() is invoked.  To satisfy all the requirements, + * destruction is implemented in the following two steps. + * + * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all + *     userland visible parts and start killing the percpu refcnts of + *     css's.  Set up so that the next stage will be kicked off once all + *     the percpu refcnts are confirmed to be killed.   * - * This function should be called in a modular subsystem's initcall. If the - * subsystem is built as a module, it will be assigned a new subsys_id and set - * up for use. If the subsystem is built-in anyway, work is delegated to the - * simpler cgroup_init_subsys. + * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the + *     rest of destruction.  Once all cgroup references are gone, the + *     cgroup is RCU-freed. + * + * This function implements s1.  After this step, @cgrp is gone as far as + * the userland is concerned and a new cgroup with the same name may be + * created.  As cgroup doesn't care about the names internally, this + * doesn't cause any problem.   */ -int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss) +static int cgroup_destroy_locked(struct cgroup *cgrp) +	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)  { -	int i;  	struct cgroup_subsys_state *css; +	bool empty; +	int ssid; -	/* check name and function validity */ -	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN || -	    ss->create == NULL || ss->destroy == NULL) -		return -EINVAL; - -	/* -	 * we don't support callbacks in modular subsystems. this check is -	 * before the ss->module check for consistency; a subsystem that could -	 * be a module should still have no callbacks even if the user isn't -	 * compiling it as one. -	 */ -	if (ss->fork || ss->exit) -		return -EINVAL; +	lockdep_assert_held(&cgroup_mutex);  	/* -	 * an optionally modular subsystem is built-in: we want to do nothing, -	 * since cgroup_init_subsys will have already taken care of it. +	 * css_set_rwsem synchronizes access to ->cset_links and prevents +	 * @cgrp from being removed while put_css_set() is in progress.  	 */ -	if (ss->module == NULL) { -		/* a few sanity checks */ -		BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT); -		BUG_ON(subsys[ss->subsys_id] != ss); -		return 0; -	} +	down_read(&css_set_rwsem); +	empty = list_empty(&cgrp->cset_links); +	up_read(&css_set_rwsem); +	if (!empty) +		return -EBUSY;  	/* -	 * need to register a subsys id before anything else - for example, -	 * init_cgroup_css needs it. +	 * Make sure there's no live children.  We can't test emptiness of +	 * ->self.children as dead children linger on it while being +	 * drained; otherwise, "rmdir parent/child parent" may fail.  	 */ -	mutex_lock(&cgroup_mutex); -	/* find the first empty slot in the array */ -	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) { -		if (subsys[i] == NULL) -			break; -	} -	if (i == CGROUP_SUBSYS_COUNT) { -		/* maximum number of subsystems already registered! */ -		mutex_unlock(&cgroup_mutex); +	if (css_has_online_children(&cgrp->self))  		return -EBUSY; -	} -	/* assign ourselves the subsys_id */ -	ss->subsys_id = i; -	subsys[i] = ss;  	/* -	 * no ss->create seems to need anything important in the ss struct, so -	 * this can happen first (i.e. before the rootnode attachment). +	 * Mark @cgrp dead.  This prevents further task migration and child +	 * creation by disabling cgroup_lock_live_group().  	 */ -	css = ss->create(ss, dummytop); -	if (IS_ERR(css)) { -		/* failure case - need to deassign the subsys[] slot. */ -		subsys[i] = NULL; -		mutex_unlock(&cgroup_mutex); -		return PTR_ERR(css); -	} +	cgrp->self.flags &= ~CSS_ONLINE; -	list_add(&ss->sibling, &rootnode.subsys_list); -	ss->root = &rootnode; - -	/* our new subsystem will be attached to the dummy hierarchy. */ -	init_cgroup_css(css, ss, dummytop); -	/* init_idr must be after init_cgroup_css because it sets css->id. */ -	if (ss->use_id) { -		int ret = cgroup_init_idr(ss, css); -		if (ret) { -			dummytop->subsys[ss->subsys_id] = NULL; -			ss->destroy(ss, dummytop); -			subsys[i] = NULL; -			mutex_unlock(&cgroup_mutex); -			return ret; -		} -	} +	/* initiate massacre of all css's */ +	for_each_css(css, ssid, cgrp) +		kill_css(css); + +	/* CSS_ONLINE is clear, remove from ->release_list for the last time */ +	raw_spin_lock(&release_list_lock); +	if (!list_empty(&cgrp->release_list)) +		list_del_init(&cgrp->release_list); +	raw_spin_unlock(&release_list_lock);  	/* -	 * Now we need to entangle the css into the existing css_sets. unlike -	 * in cgroup_init_subsys, there are now multiple css_sets, so each one -	 * will need a new pointer to it; done by iterating the css_set_table. -	 * furthermore, modifying the existing css_sets will corrupt the hash -	 * table state, so each changed css_set will need its hash recomputed. -	 * this is all done under the css_set_lock. +	 * Remove @cgrp directory along with the base files.  @cgrp has an +	 * extra ref on its kn.  	 */ -	write_lock(&css_set_lock); -	for (i = 0; i < CSS_SET_TABLE_SIZE; i++) { -		struct css_set *cg; -		struct hlist_node *node, *tmp; -		struct hlist_head *bucket = &css_set_table[i], *new_bucket; - -		hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) { -			/* skip entries that we already rehashed */ -			if (cg->subsys[ss->subsys_id]) -				continue; -			/* remove existing entry */ -			hlist_del(&cg->hlist); -			/* set new value */ -			cg->subsys[ss->subsys_id] = css; -			/* recompute hash and restore entry */ -			new_bucket = css_set_hash(cg->subsys); -			hlist_add_head(&cg->hlist, new_bucket); -		} -	} -	write_unlock(&css_set_lock); +	kernfs_remove(cgrp->kn); -	mutex_init(&ss->hierarchy_mutex); -	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key); -	ss->active = 1; +	set_bit(CGRP_RELEASABLE, &cgroup_parent(cgrp)->flags); +	check_for_release(cgroup_parent(cgrp)); + +	/* put the base reference */ +	percpu_ref_kill(&cgrp->self.refcnt); -	/* success! */ -	mutex_unlock(&cgroup_mutex);  	return 0; -} -EXPORT_SYMBOL_GPL(cgroup_load_subsys); +}; -/** - * cgroup_unload_subsys: unload a modular subsystem - * @ss: the subsystem to unload - * - * This function should be called in a modular subsystem's exitcall. When this - * function is invoked, the refcount on the subsystem's module will be 0, so - * the subsystem will not be attached to any hierarchy. - */ -void cgroup_unload_subsys(struct cgroup_subsys *ss) +static int cgroup_rmdir(struct kernfs_node *kn)  { -	struct cg_cgroup_link *link; -	struct hlist_head *hhead; +	struct cgroup *cgrp; +	int ret = 0; + +	cgrp = cgroup_kn_lock_live(kn); +	if (!cgrp) +		return 0; +	cgroup_get(cgrp);	/* for @kn->priv clearing */ + +	ret = cgroup_destroy_locked(cgrp); -	BUG_ON(ss->module == NULL); +	cgroup_kn_unlock(kn);  	/* -	 * we shouldn't be called if the subsystem is in use, and the use of -	 * try_module_get in parse_cgroupfs_options should ensure that it -	 * doesn't start being used while we're killing it off. +	 * There are two control paths which try to determine cgroup from +	 * dentry without going through kernfs - cgroupstats_build() and +	 * css_tryget_online_from_dir().  Those are supported by RCU +	 * protecting clearing of cgrp->kn->priv backpointer, which should +	 * happen after all files under it have been removed.  	 */ -	BUG_ON(ss->root != &rootnode); +	if (!ret) +		RCU_INIT_POINTER(*(void __rcu __force **)&kn->priv, NULL); + +	cgroup_put(cgrp); +	return ret; +} + +static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { +	.remount_fs		= cgroup_remount, +	.show_options		= cgroup_show_options, +	.mkdir			= cgroup_mkdir, +	.rmdir			= cgroup_rmdir, +	.rename			= cgroup_rename, +}; + +static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) +{ +	struct cgroup_subsys_state *css; + +	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);  	mutex_lock(&cgroup_mutex); -	/* deassign the subsys_id */ -	BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT); -	subsys[ss->subsys_id] = NULL; -	/* remove subsystem from rootnode's list of subsystems */ -	list_del(&ss->sibling); +	idr_init(&ss->css_idr); +	INIT_LIST_HEAD(&ss->cfts); + +	/* Create the root cgroup state for this subsystem */ +	ss->root = &cgrp_dfl_root; +	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); +	/* We don't handle early failures gracefully */ +	BUG_ON(IS_ERR(css)); +	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);  	/* -	 * disentangle the css from all css_sets attached to the dummytop. as -	 * in loading, we need to pay our respects to the hashtable gods. +	 * Root csses are never destroyed and we can't initialize +	 * percpu_ref during early init.  Disable refcnting.  	 */ -	write_lock(&css_set_lock); -	list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) { -		struct css_set *cg = link->cg; - -		hlist_del(&cg->hlist); -		BUG_ON(!cg->subsys[ss->subsys_id]); -		cg->subsys[ss->subsys_id] = NULL; -		hhead = css_set_hash(cg->subsys); -		hlist_add_head(&cg->hlist, hhead); +	css->flags |= CSS_NO_REF; + +	if (early) { +		/* allocation can't be done safely during early init */ +		css->id = 1; +	} else { +		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); +		BUG_ON(css->id < 0);  	} -	write_unlock(&css_set_lock); -	/* -	 * remove subsystem's css from the dummytop and free it - need to free -	 * before marking as null because ss->destroy needs the cgrp->subsys -	 * pointer to find their state. note that this also takes care of -	 * freeing the css_id. -	 */ -	ss->destroy(ss, dummytop); -	dummytop->subsys[ss->subsys_id] = NULL; +	/* Update the init_css_set to contain a subsys +	 * pointer to this state - since the subsystem is +	 * newly registered, all tasks and hence the +	 * init_css_set is in the subsystem's root cgroup. */ +	init_css_set.subsys[ss->id] = css; + +	need_forkexit_callback |= ss->fork || ss->exit; + +	/* At system boot, before all subsystems have been +	 * registered, no tasks have been forked, so we don't +	 * need to invoke fork callbacks here. */ +	BUG_ON(!list_empty(&init_task.tasks)); + +	BUG_ON(online_css(css));  	mutex_unlock(&cgroup_mutex);  } -EXPORT_SYMBOL_GPL(cgroup_unload_subsys);  /**   * cgroup_init_early - cgroup initialization at system boot @@ -3895,42 +4736,29 @@ EXPORT_SYMBOL_GPL(cgroup_unload_subsys);   */  int __init cgroup_init_early(void)  { +	static struct cgroup_sb_opts __initdata opts = +		{ .flags = CGRP_ROOT_SANE_BEHAVIOR }; +	struct cgroup_subsys *ss;  	int i; -	atomic_set(&init_css_set.refcount, 1); -	INIT_LIST_HEAD(&init_css_set.cg_links); -	INIT_LIST_HEAD(&init_css_set.tasks); -	INIT_HLIST_NODE(&init_css_set.hlist); -	css_set_count = 1; -	init_cgroup_root(&rootnode); -	root_count = 1; -	init_task.cgroups = &init_css_set; - -	init_css_set_link.cg = &init_css_set; -	init_css_set_link.cgrp = dummytop; -	list_add(&init_css_set_link.cgrp_link_list, -		 &rootnode.top_cgroup.css_sets); -	list_add(&init_css_set_link.cg_link_list, -		 &init_css_set.cg_links); - -	for (i = 0; i < CSS_SET_TABLE_SIZE; i++) -		INIT_HLIST_HEAD(&css_set_table[i]); - -	/* at bootup time, we don't worry about modular subsystems */ -	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { -		struct cgroup_subsys *ss = subsys[i]; - -		BUG_ON(!ss->name); -		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN); -		BUG_ON(!ss->create); -		BUG_ON(!ss->destroy); -		if (ss->subsys_id != i) { -			printk(KERN_ERR "cgroup: Subsys %s id == %d\n", -			       ss->name, ss->subsys_id); -			BUG(); -		} + +	init_cgroup_root(&cgrp_dfl_root, &opts); +	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; + +	RCU_INIT_POINTER(init_task.cgroups, &init_css_set); + +	for_each_subsys(ss, i) { +		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, +		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n", +		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, +		     ss->id, ss->name); +		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, +		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); + +		ss->id = i; +		ss->name = cgroup_subsys_name[i];  		if (ss->early_init) -			cgroup_init_subsys(ss); +			cgroup_init_subsys(ss, true);  	}  	return 0;  } @@ -3943,72 +4771,104 @@ int __init cgroup_init_early(void)   */  int __init cgroup_init(void)  { -	int err; -	int i; -	struct hlist_head *hhead; +	struct cgroup_subsys *ss; +	unsigned long key; +	int ssid, err; -	err = bdi_init(&cgroup_backing_dev_info); -	if (err) -		return err; +	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); -	/* at bootup time, we don't worry about modular subsystems */ -	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { -		struct cgroup_subsys *ss = subsys[i]; -		if (!ss->early_init) -			cgroup_init_subsys(ss); -		if (ss->use_id) -			cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]); -	} +	mutex_lock(&cgroup_mutex);  	/* Add init_css_set to the hash table */ -	hhead = css_set_hash(init_css_set.subsys); -	hlist_add_head(&init_css_set.hlist, hhead); -	BUG_ON(!init_root_id(&rootnode)); +	key = css_set_hash(init_css_set.subsys); +	hash_add(css_set_table, &init_css_set.hlist, key); -	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj); -	if (!cgroup_kobj) { -		err = -ENOMEM; -		goto out; +	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); + +	mutex_unlock(&cgroup_mutex); + +	for_each_subsys(ss, ssid) { +		if (ss->early_init) { +			struct cgroup_subsys_state *css = +				init_css_set.subsys[ss->id]; + +			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, +						   GFP_KERNEL); +			BUG_ON(css->id < 0); +		} else { +			cgroup_init_subsys(ss, false); +		} + +		list_add_tail(&init_css_set.e_cset_node[ssid], +			      &cgrp_dfl_root.cgrp.e_csets[ssid]); + +		/* +		 * Setting dfl_root subsys_mask needs to consider the +		 * disabled flag and cftype registration needs kmalloc, +		 * both of which aren't available during early_init. +		 */ +		if (!ss->disabled) { +			cgrp_dfl_root.subsys_mask |= 1 << ss->id; +			WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes)); +		}  	} +	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj); +	if (!cgroup_kobj) +		return -ENOMEM; +  	err = register_filesystem(&cgroup_fs_type);  	if (err < 0) {  		kobject_put(cgroup_kobj); -		goto out; +		return err;  	}  	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations); +	return 0; +} -out: -	if (err) -		bdi_destroy(&cgroup_backing_dev_info); +static int __init cgroup_wq_init(void) +{ +	/* +	 * There isn't much point in executing destruction path in +	 * parallel.  Good chunk is serialized with cgroup_mutex anyway. +	 * Use 1 for @max_active. +	 * +	 * We would prefer to do this in cgroup_init() above, but that +	 * is called before init_workqueues(): so leave this until after. +	 */ +	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); +	BUG_ON(!cgroup_destroy_wq); -	return err; +	/* +	 * Used to destroy pidlists and separate to serve as flush domain. +	 * Cap @max_active to 1 too. +	 */ +	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", +						    0, 1); +	BUG_ON(!cgroup_pidlist_destroy_wq); + +	return 0;  } +core_initcall(cgroup_wq_init);  /*   * proc_cgroup_show()   *  - Print task's cgroup paths into seq_file, one line for each hierarchy   *  - Used for /proc/<pid>/cgroup. - *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it - *    doesn't really matter if tsk->cgroup changes after we read it, - *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it - *    anyway.  No need to check that tsk->cgroup != NULL, thanks to - *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks - *    cgroup to top_cgroup.   */  /* TODO: Use a proper seq_file iterator */ -static int proc_cgroup_show(struct seq_file *m, void *v) +int proc_cgroup_show(struct seq_file *m, void *v)  {  	struct pid *pid;  	struct task_struct *tsk; -	char *buf; +	char *buf, *path;  	int retval; -	struct cgroupfs_root *root; +	struct cgroup_root *root;  	retval = -ENOMEM; -	buf = kmalloc(PAGE_SIZE, GFP_KERNEL); +	buf = kmalloc(PATH_MAX, GFP_KERNEL);  	if (!buf)  		goto out; @@ -4021,28 +4881,36 @@ static int proc_cgroup_show(struct seq_file *m, void *v)  	retval = 0;  	mutex_lock(&cgroup_mutex); +	down_read(&css_set_rwsem); -	for_each_active_root(root) { +	for_each_root(root) {  		struct cgroup_subsys *ss;  		struct cgroup *cgrp; -		int count = 0; +		int ssid, count = 0; + +		if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible) +			continue;  		seq_printf(m, "%d:", root->hierarchy_id); -		for_each_subsys(root, ss) -			seq_printf(m, "%s%s", count++ ? "," : "", ss->name); +		for_each_subsys(ss, ssid) +			if (root->subsys_mask & (1 << ssid)) +				seq_printf(m, "%s%s", count++ ? "," : "", ss->name);  		if (strlen(root->name))  			seq_printf(m, "%sname=%s", count ? "," : "",  				   root->name);  		seq_putc(m, ':');  		cgrp = task_cgroup_from_root(tsk, root); -		retval = cgroup_path(cgrp, buf, PAGE_SIZE); -		if (retval < 0) +		path = cgroup_path(cgrp, buf, PATH_MAX); +		if (!path) { +			retval = -ENAMETOOLONG;  			goto out_unlock; -		seq_puts(m, buf); +		} +		seq_puts(m, path);  		seq_putc(m, '\n');  	}  out_unlock: +	up_read(&css_set_rwsem);  	mutex_unlock(&cgroup_mutex);  	put_task_struct(tsk);  out_free: @@ -4051,22 +4919,10 @@ out:  	return retval;  } -static int cgroup_open(struct inode *inode, struct file *file) -{ -	struct pid *pid = PROC_I(inode)->pid; -	return single_open(file, proc_cgroup_show, pid); -} - -const struct file_operations proc_cgroup_operations = { -	.open		= cgroup_open, -	.read		= seq_read, -	.llseek		= seq_lseek, -	.release	= single_release, -}; -  /* Display information about each subsystem and each hierarchy */  static int proc_cgroupstats_show(struct seq_file *m, void *v)  { +	struct cgroup_subsys *ss;  	int i;  	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); @@ -4076,14 +4932,12 @@ static int proc_cgroupstats_show(struct seq_file *m, void *v)  	 * subsys/hierarchy state.  	 */  	mutex_lock(&cgroup_mutex); -	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { -		struct cgroup_subsys *ss = subsys[i]; -		if (ss == NULL) -			continue; + +	for_each_subsys(ss, i)  		seq_printf(m, "%s\t%d\t%d\t%d\n",  			   ss->name, ss->root->hierarchy_id, -			   ss->root->number_of_cgroups, !ss->disabled); -	} +			   atomic_read(&ss->root->nr_cgrps), !ss->disabled); +  	mutex_unlock(&cgroup_mutex);  	return 0;  } @@ -4101,79 +4955,83 @@ static const struct file_operations proc_cgroupstats_operations = {  };  /** - * cgroup_fork - attach newly forked task to its parents cgroup. + * cgroup_fork - initialize cgroup related fields during copy_process()   * @child: pointer to task_struct of forking parent process.   * - * Description: A task inherits its parent's cgroup at fork(). - * - * A pointer to the shared css_set was automatically copied in - * fork.c by dup_task_struct().  However, we ignore that copy, since - * it was not made under the protection of RCU or cgroup_mutex, so - * might no longer be a valid cgroup pointer.  cgroup_attach_task() might - * have already changed current->cgroups, allowing the previously - * referenced cgroup group to be removed and freed. - * - * At the point that cgroup_fork() is called, 'current' is the parent - * task, and the passed argument 'child' points to the child task. + * A task is associated with the init_css_set until cgroup_post_fork() + * attaches it to the parent's css_set.  Empty cg_list indicates that + * @child isn't holding reference to its css_set.   */  void cgroup_fork(struct task_struct *child)  { -	task_lock(current); -	child->cgroups = current->cgroups; -	get_css_set(child->cgroups); -	task_unlock(current); +	RCU_INIT_POINTER(child->cgroups, &init_css_set);  	INIT_LIST_HEAD(&child->cg_list);  }  /** - * cgroup_fork_callbacks - run fork callbacks - * @child: the new task - * - * Called on a new task very soon before adding it to the - * tasklist. No need to take any locks since no-one can - * be operating on this task. - */ -void cgroup_fork_callbacks(struct task_struct *child) -{ -	if (need_forkexit_callback) { -		int i; -		/* -		 * forkexit callbacks are only supported for builtin -		 * subsystems, and the builtin section of the subsys array is -		 * immutable, so we don't need to lock the subsys array here. -		 */ -		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { -			struct cgroup_subsys *ss = subsys[i]; -			if (ss->fork) -				ss->fork(ss, child); -		} -	} -} - -/**   * cgroup_post_fork - called on a new task after adding it to the task list   * @child: the task in question   * - * Adds the task to the list running through its css_set if necessary. - * Has to be after the task is visible on the task list in case we race - * with the first call to cgroup_iter_start() - to guarantee that the - * new task ends up on its list. + * Adds the task to the list running through its css_set if necessary and + * call the subsystem fork() callbacks.  Has to be after the task is + * visible on the task list in case we race with the first call to + * cgroup_task_iter_start() - to guarantee that the new task ends up on its + * list.   */  void cgroup_post_fork(struct task_struct *child)  { +	struct cgroup_subsys *ss; +	int i; + +	/* +	 * This may race against cgroup_enable_task_cg_links().  As that +	 * function sets use_task_css_set_links before grabbing +	 * tasklist_lock and we just went through tasklist_lock to add +	 * @child, it's guaranteed that either we see the set +	 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees +	 * @child during its iteration. +	 * +	 * If we won the race, @child is associated with %current's +	 * css_set.  Grabbing css_set_rwsem guarantees both that the +	 * association is stable, and, on completion of the parent's +	 * migration, @child is visible in the source of migration or +	 * already in the destination cgroup.  This guarantee is necessary +	 * when implementing operations which need to migrate all tasks of +	 * a cgroup to another. +	 * +	 * Note that if we lose to cgroup_enable_task_cg_links(), @child +	 * will remain in init_css_set.  This is safe because all tasks are +	 * in the init_css_set before cg_links is enabled and there's no +	 * operation which transfers all tasks out of init_css_set. +	 */  	if (use_task_css_set_links) { -		write_lock(&css_set_lock); -		task_lock(child); -		if (list_empty(&child->cg_list)) -			list_add(&child->cg_list, &child->cgroups->tasks); -		task_unlock(child); -		write_unlock(&css_set_lock); +		struct css_set *cset; + +		down_write(&css_set_rwsem); +		cset = task_css_set(current); +		if (list_empty(&child->cg_list)) { +			rcu_assign_pointer(child->cgroups, cset); +			list_add(&child->cg_list, &cset->tasks); +			get_css_set(cset); +		} +		up_write(&css_set_rwsem); +	} + +	/* +	 * Call ss->fork().  This must happen after @child is linked on +	 * css_set; otherwise, @child might change state between ->fork() +	 * and addition to css_set. +	 */ +	if (need_forkexit_callback) { +		for_each_subsys(ss, i) +			if (ss->fork) +				ss->fork(child);  	}  } +  /**   * cgroup_exit - detach cgroup from exiting task   * @tsk: pointer to task_struct of exiting process - * @run_callback: run exit callbacks?   *   * Description: Detach cgroup from @tsk and release it.   * @@ -4183,251 +5041,74 @@ void cgroup_post_fork(struct task_struct *child)   * use notify_on_release cgroups where very high task exit scaling   * is required on large systems.   * - * the_top_cgroup_hack: - * - *    Set the exiting tasks cgroup to the root cgroup (top_cgroup). - * - *    We call cgroup_exit() while the task is still competent to - *    handle notify_on_release(), then leave the task attached to the - *    root cgroup in each hierarchy for the remainder of its exit. - * - *    To do this properly, we would increment the reference count on - *    top_cgroup, and near the very end of the kernel/exit.c do_exit() - *    code we would add a second cgroup function call, to drop that - *    reference.  This would just create an unnecessary hot spot on - *    the top_cgroup reference count, to no avail. - * - *    Normally, holding a reference to a cgroup without bumping its - *    count is unsafe.   The cgroup could go away, or someone could - *    attach us to a different cgroup, decrementing the count on - *    the first cgroup that we never incremented.  But in this case, - *    top_cgroup isn't going away, and either task has PF_EXITING set, - *    which wards off any cgroup_attach_task() attempts, or task is a failed - *    fork, never visible to cgroup_attach_task. + * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We + * call cgroup_exit() while the task is still competent to handle + * notify_on_release(), then leave the task attached to the root cgroup in + * each hierarchy for the remainder of its exit.  No need to bother with + * init_css_set refcnting.  init_css_set never goes away and we can't race + * with migration path - PF_EXITING is visible to migration path.   */ -void cgroup_exit(struct task_struct *tsk, int run_callbacks) +void cgroup_exit(struct task_struct *tsk)  { +	struct cgroup_subsys *ss; +	struct css_set *cset; +	bool put_cset = false;  	int i; -	struct css_set *cg; - -	if (run_callbacks && need_forkexit_callback) { -		/* -		 * modular subsystems can't use callbacks, so no need to lock -		 * the subsys array -		 */ -		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { -			struct cgroup_subsys *ss = subsys[i]; -			if (ss->exit) -				ss->exit(ss, tsk); -		} -	}  	/* -	 * Unlink from the css_set task list if necessary. -	 * Optimistically check cg_list before taking -	 * css_set_lock +	 * Unlink from @tsk from its css_set.  As migration path can't race +	 * with us, we can check cg_list without grabbing css_set_rwsem.  	 */  	if (!list_empty(&tsk->cg_list)) { -		write_lock(&css_set_lock); -		if (!list_empty(&tsk->cg_list)) -			list_del(&tsk->cg_list); -		write_unlock(&css_set_lock); +		down_write(&css_set_rwsem); +		list_del_init(&tsk->cg_list); +		up_write(&css_set_rwsem); +		put_cset = true;  	}  	/* Reassign the task to the init_css_set. */ -	task_lock(tsk); -	cg = tsk->cgroups; -	tsk->cgroups = &init_css_set; -	task_unlock(tsk); -	if (cg) -		put_css_set_taskexit(cg); -} - -/** - * cgroup_clone - clone the cgroup the given subsystem is attached to - * @tsk: the task to be moved - * @subsys: the given subsystem - * @nodename: the name for the new cgroup - * - * Duplicate the current cgroup in the hierarchy that the given - * subsystem is attached to, and move this task into the new - * child. - */ -int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys, -							char *nodename) -{ -	struct dentry *dentry; -	int ret = 0; -	struct cgroup *parent, *child; -	struct inode *inode; -	struct css_set *cg; -	struct cgroupfs_root *root; -	struct cgroup_subsys *ss; - -	/* We shouldn't be called by an unregistered subsystem */ -	BUG_ON(!subsys->active); +	cset = task_css_set(tsk); +	RCU_INIT_POINTER(tsk->cgroups, &init_css_set); -	/* First figure out what hierarchy and cgroup we're dealing -	 * with, and pin them so we can drop cgroup_mutex */ -	mutex_lock(&cgroup_mutex); - again: -	root = subsys->root; -	if (root == &rootnode) { -		mutex_unlock(&cgroup_mutex); -		return 0; -	} - -	/* Pin the hierarchy */ -	if (!atomic_inc_not_zero(&root->sb->s_active)) { -		/* We race with the final deactivate_super() */ -		mutex_unlock(&cgroup_mutex); -		return 0; -	} - -	/* Keep the cgroup alive */ -	task_lock(tsk); -	parent = task_cgroup(tsk, subsys->subsys_id); -	cg = tsk->cgroups; -	get_css_set(cg); -	task_unlock(tsk); - -	mutex_unlock(&cgroup_mutex); - -	/* Now do the VFS work to create a cgroup */ -	inode = parent->dentry->d_inode; - -	/* Hold the parent directory mutex across this operation to -	 * stop anyone else deleting the new cgroup */ -	mutex_lock(&inode->i_mutex); -	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename)); -	if (IS_ERR(dentry)) { -		printk(KERN_INFO -		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename, -		       PTR_ERR(dentry)); -		ret = PTR_ERR(dentry); -		goto out_release; -	} - -	/* Create the cgroup directory, which also creates the cgroup */ -	ret = vfs_mkdir(inode, dentry, 0755); -	child = __d_cgrp(dentry); -	dput(dentry); -	if (ret) { -		printk(KERN_INFO -		       "Failed to create cgroup %s: %d\n", nodename, -		       ret); -		goto out_release; -	} - -	/* The cgroup now exists. Retake cgroup_mutex and check -	 * that we're still in the same state that we thought we -	 * were. */ -	mutex_lock(&cgroup_mutex); -	if ((root != subsys->root) || -	    (parent != task_cgroup(tsk, subsys->subsys_id))) { -		/* Aargh, we raced ... */ -		mutex_unlock(&inode->i_mutex); -		put_css_set(cg); - -		deactivate_super(root->sb); -		/* The cgroup is still accessible in the VFS, but -		 * we're not going to try to rmdir() it at this -		 * point. */ -		printk(KERN_INFO -		       "Race in cgroup_clone() - leaking cgroup %s\n", -		       nodename); -		goto again; -	} +	if (need_forkexit_callback) { +		/* see cgroup_post_fork() for details */ +		for_each_subsys(ss, i) { +			if (ss->exit) { +				struct cgroup_subsys_state *old_css = cset->subsys[i]; +				struct cgroup_subsys_state *css = task_css(tsk, i); -	/* do any required auto-setup */ -	for_each_subsys(root, ss) { -		if (ss->post_clone) -			ss->post_clone(ss, child); +				ss->exit(css, old_css, tsk); +			} +		}  	} -	/* All seems fine. Finish by moving the task into the new cgroup */ -	ret = cgroup_attach_task(child, tsk); -	mutex_unlock(&cgroup_mutex); - - out_release: -	mutex_unlock(&inode->i_mutex); - -	mutex_lock(&cgroup_mutex); -	put_css_set(cg); -	mutex_unlock(&cgroup_mutex); -	deactivate_super(root->sb); -	return ret; -} - -/** - * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp - * @cgrp: the cgroup in question - * @task: the task in question - * - * See if @cgrp is a descendant of @task's cgroup in the appropriate - * hierarchy. - * - * If we are sending in dummytop, then presumably we are creating - * the top cgroup in the subsystem. - * - * Called only by the ns (nsproxy) cgroup. - */ -int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task) -{ -	int ret; -	struct cgroup *target; - -	if (cgrp == dummytop) -		return 1; - -	target = task_cgroup_from_root(task, cgrp->root); -	while (cgrp != target && cgrp!= cgrp->top_cgroup) -		cgrp = cgrp->parent; -	ret = (cgrp == target); -	return ret; +	if (put_cset) +		put_css_set(cset, true);  }  static void check_for_release(struct cgroup *cgrp)  { -	/* All of these checks rely on RCU to keep the cgroup -	 * structure alive */ -	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count) -	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) { -		/* Control Group is currently removeable. If it's not +	if (cgroup_is_releasable(cgrp) && list_empty(&cgrp->cset_links) && +	    !css_has_online_children(&cgrp->self)) { +		/* +		 * Control Group is currently removeable. If it's not  		 * already queued for a userspace notification, queue -		 * it now */ +		 * it now +		 */  		int need_schedule_work = 0; -		spin_lock(&release_list_lock); -		if (!cgroup_is_removed(cgrp) && + +		raw_spin_lock(&release_list_lock); +		if (!cgroup_is_dead(cgrp) &&  		    list_empty(&cgrp->release_list)) {  			list_add(&cgrp->release_list, &release_list);  			need_schedule_work = 1;  		} -		spin_unlock(&release_list_lock); +		raw_spin_unlock(&release_list_lock);  		if (need_schedule_work)  			schedule_work(&release_agent_work);  	}  } -/* Caller must verify that the css is not for root cgroup */ -void __css_put(struct cgroup_subsys_state *css, int count) -{ -	struct cgroup *cgrp = css->cgroup; -	int val; -	rcu_read_lock(); -	val = atomic_sub_return(count, &css->refcnt); -	if (val == 1) { -		if (notify_on_release(cgrp)) { -			set_bit(CGRP_RELEASABLE, &cgrp->flags); -			check_for_release(cgrp); -		} -		cgroup_wakeup_rmdir_waiter(cgrp); -	} -	rcu_read_unlock(); -	WARN_ON_ONCE(val < 1); -} -EXPORT_SYMBOL_GPL(__css_put); -  /*   * Notify userspace when a cgroup is released, by running the   * configured release agent with the name of the cgroup (path @@ -4455,20 +5136,21 @@ static void cgroup_release_agent(struct work_struct *work)  {  	BUG_ON(work != &release_agent_work);  	mutex_lock(&cgroup_mutex); -	spin_lock(&release_list_lock); +	raw_spin_lock(&release_list_lock);  	while (!list_empty(&release_list)) {  		char *argv[3], *envp[3];  		int i; -		char *pathbuf = NULL, *agentbuf = NULL; +		char *pathbuf = NULL, *agentbuf = NULL, *path;  		struct cgroup *cgrp = list_entry(release_list.next,  						    struct cgroup,  						    release_list);  		list_del_init(&cgrp->release_list); -		spin_unlock(&release_list_lock); -		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL); +		raw_spin_unlock(&release_list_lock); +		pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);  		if (!pathbuf)  			goto continue_free; -		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) +		path = cgroup_path(cgrp, pathbuf, PATH_MAX); +		if (!path)  			goto continue_free;  		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);  		if (!agentbuf) @@ -4476,7 +5158,7 @@ static void cgroup_release_agent(struct work_struct *work)  		i = 0;  		argv[i++] = agentbuf; -		argv[i++] = pathbuf; +		argv[i++] = path;  		argv[i] = NULL;  		i = 0; @@ -4494,27 +5176,23 @@ static void cgroup_release_agent(struct work_struct *work)   continue_free:  		kfree(pathbuf);  		kfree(agentbuf); -		spin_lock(&release_list_lock); +		raw_spin_lock(&release_list_lock);  	} -	spin_unlock(&release_list_lock); +	raw_spin_unlock(&release_list_lock);  	mutex_unlock(&cgroup_mutex);  }  static int __init cgroup_disable(char *str)  { -	int i; +	struct cgroup_subsys *ss;  	char *token; +	int i;  	while ((token = strsep(&str, ",")) != NULL) {  		if (!*token)  			continue; -		/* -		 * cgroup_disable, being at boot time, can't know about module -		 * subsystems, so we don't worry about them. -		 */ -		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { -			struct cgroup_subsys *ss = subsys[i]; +		for_each_subsys(ss, i) {  			if (!strcmp(token, ss->name)) {  				ss->disabled = 1;  				printk(KERN_INFO "Disabling %s control group" @@ -4527,272 +5205,62 @@ static int __init cgroup_disable(char *str)  }  __setup("cgroup_disable=", cgroup_disable); -/* - * Functons for CSS ID. - */ - -/* - *To get ID other than 0, this should be called when !cgroup_is_removed(). - */ -unsigned short css_id(struct cgroup_subsys_state *css) -{ -	struct css_id *cssid; - -	/* -	 * This css_id() can return correct value when somone has refcnt -	 * on this or this is under rcu_read_lock(). Once css->id is allocated, -	 * it's unchanged until freed. -	 */ -	cssid = rcu_dereference_check(css->id, -			rcu_read_lock_held() || atomic_read(&css->refcnt)); - -	if (cssid) -		return cssid->id; -	return 0; -} -EXPORT_SYMBOL_GPL(css_id); - -unsigned short css_depth(struct cgroup_subsys_state *css) -{ -	struct css_id *cssid; - -	cssid = rcu_dereference_check(css->id, -			rcu_read_lock_held() || atomic_read(&css->refcnt)); - -	if (cssid) -		return cssid->depth; -	return 0; -} -EXPORT_SYMBOL_GPL(css_depth); -  /** - *  css_is_ancestor - test "root" css is an ancestor of "child" - * @child: the css to be tested. - * @root: the css supporsed to be an ancestor of the child. + * css_tryget_online_from_dir - get corresponding css from a cgroup dentry + * @dentry: directory dentry of interest + * @ss: subsystem of interest   * - * Returns true if "root" is an ancestor of "child" in its hierarchy. Because - * this function reads css->id, this use rcu_dereference() and rcu_read_lock(). - * But, considering usual usage, the csses should be valid objects after test. - * Assuming that the caller will do some action to the child if this returns - * returns true, the caller must take "child";s reference count. - * If "child" is valid object and this returns true, "root" is valid, too. + * If @dentry is a directory for a cgroup which has @ss enabled on it, try + * to get the corresponding css and return it.  If such css doesn't exist + * or can't be pinned, an ERR_PTR value is returned.   */ - -bool css_is_ancestor(struct cgroup_subsys_state *child, -		    const struct cgroup_subsys_state *root) -{ -	struct css_id *child_id; -	struct css_id *root_id; -	bool ret = true; - -	rcu_read_lock(); -	child_id  = rcu_dereference(child->id); -	root_id = rcu_dereference(root->id); -	if (!child_id -	    || !root_id -	    || (child_id->depth < root_id->depth) -	    || (child_id->stack[root_id->depth] != root_id->id)) -		ret = false; -	rcu_read_unlock(); -	return ret; -} - -static void __free_css_id_cb(struct rcu_head *head) -{ -	struct css_id *id; - -	id = container_of(head, struct css_id, rcu_head); -	kfree(id); -} - -void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css) -{ -	struct css_id *id = css->id; -	/* When this is called before css_id initialization, id can be NULL */ -	if (!id) -		return; - -	BUG_ON(!ss->use_id); - -	rcu_assign_pointer(id->css, NULL); -	rcu_assign_pointer(css->id, NULL); -	spin_lock(&ss->id_lock); -	idr_remove(&ss->idr, id->id); -	spin_unlock(&ss->id_lock); -	call_rcu(&id->rcu_head, __free_css_id_cb); -} -EXPORT_SYMBOL_GPL(free_css_id); - -/* - * This is called by init or create(). Then, calls to this function are - * always serialized (By cgroup_mutex() at create()). - */ - -static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth) +struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, +						       struct cgroup_subsys *ss)  { -	struct css_id *newid; -	int myid, error, size; - -	BUG_ON(!ss->use_id); - -	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1); -	newid = kzalloc(size, GFP_KERNEL); -	if (!newid) -		return ERR_PTR(-ENOMEM); -	/* get id */ -	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) { -		error = -ENOMEM; -		goto err_out; -	} -	spin_lock(&ss->id_lock); -	/* Don't use 0. allocates an ID of 1-65535 */ -	error = idr_get_new_above(&ss->idr, newid, 1, &myid); -	spin_unlock(&ss->id_lock); - -	/* Returns error when there are no free spaces for new ID.*/ -	if (error) { -		error = -ENOSPC; -		goto err_out; -	} -	if (myid > CSS_ID_MAX) -		goto remove_idr; - -	newid->id = myid; -	newid->depth = depth; -	return newid; -remove_idr: -	error = -ENOSPC; -	spin_lock(&ss->id_lock); -	idr_remove(&ss->idr, myid); -	spin_unlock(&ss->id_lock); -err_out: -	kfree(newid); -	return ERR_PTR(error); - -} - -static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss, -					    struct cgroup_subsys_state *rootcss) -{ -	struct css_id *newid; - -	spin_lock_init(&ss->id_lock); -	idr_init(&ss->idr); - -	newid = get_new_cssid(ss, 0); -	if (IS_ERR(newid)) -		return PTR_ERR(newid); - -	newid->stack[0] = newid->id; -	newid->css = rootcss; -	rootcss->id = newid; -	return 0; -} - -static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent, -			struct cgroup *child) -{ -	int subsys_id, i, depth = 0; -	struct cgroup_subsys_state *parent_css, *child_css; -	struct css_id *child_id, *parent_id; +	struct kernfs_node *kn = kernfs_node_from_dentry(dentry); +	struct cgroup_subsys_state *css = NULL; +	struct cgroup *cgrp; -	subsys_id = ss->subsys_id; -	parent_css = parent->subsys[subsys_id]; -	child_css = child->subsys[subsys_id]; -	parent_id = parent_css->id; -	depth = parent_id->depth + 1; +	/* is @dentry a cgroup dir? */ +	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || +	    kernfs_type(kn) != KERNFS_DIR) +		return ERR_PTR(-EBADF); -	child_id = get_new_cssid(ss, depth); -	if (IS_ERR(child_id)) -		return PTR_ERR(child_id); +	rcu_read_lock(); -	for (i = 0; i < depth; i++) -		child_id->stack[i] = parent_id->stack[i]; -	child_id->stack[depth] = child_id->id;  	/* -	 * child_id->css pointer will be set after this cgroup is available -	 * see cgroup_populate_dir() +	 * This path doesn't originate from kernfs and @kn could already +	 * have been or be removed at any point.  @kn->priv is RCU +	 * protected for this access.  See cgroup_rmdir() for details.  	 */ -	rcu_assign_pointer(child_css->id, child_id); - -	return 0; -} - -/** - * css_lookup - lookup css by id - * @ss: cgroup subsys to be looked into. - * @id: the id - * - * Returns pointer to cgroup_subsys_state if there is valid one with id. - * NULL if not. Should be called under rcu_read_lock() - */ -struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id) -{ -	struct css_id *cssid = NULL; +	cgrp = rcu_dereference(kn->priv); +	if (cgrp) +		css = cgroup_css(cgrp, ss); -	BUG_ON(!ss->use_id); -	cssid = idr_find(&ss->idr, id); - -	if (unlikely(!cssid)) -		return NULL; +	if (!css || !css_tryget_online(css)) +		css = ERR_PTR(-ENOENT); -	return rcu_dereference(cssid->css); +	rcu_read_unlock(); +	return css;  } -EXPORT_SYMBOL_GPL(css_lookup);  /** - * css_get_next - lookup next cgroup under specified hierarchy. - * @ss: pointer to subsystem - * @id: current position of iteration. - * @root: pointer to css. search tree under this. - * @foundid: position of found object. + * css_from_id - lookup css by id + * @id: the cgroup id + * @ss: cgroup subsys to be looked into   * - * Search next css under the specified hierarchy of rootid. Calling under - * rcu_read_lock() is necessary. Returns NULL if it reaches the end. + * Returns the css if there's valid one with @id, otherwise returns NULL. + * Should be called under rcu_read_lock().   */ -struct cgroup_subsys_state * -css_get_next(struct cgroup_subsys *ss, int id, -	     struct cgroup_subsys_state *root, int *foundid) +struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)  { -	struct cgroup_subsys_state *ret = NULL; -	struct css_id *tmp; -	int tmpid; -	int rootid = css_id(root); -	int depth = css_depth(root); - -	if (!rootid) -		return NULL; - -	BUG_ON(!ss->use_id); -	/* fill start point for scan */ -	tmpid = id; -	while (1) { -		/* -		 * scan next entry from bitmap(tree), tmpid is updated after -		 * idr_get_next(). -		 */ -		spin_lock(&ss->id_lock); -		tmp = idr_get_next(&ss->idr, &tmpid); -		spin_unlock(&ss->id_lock); - -		if (!tmp) -			break; -		if (tmp->depth >= depth && tmp->stack[depth] == rootid) { -			ret = rcu_dereference(tmp->css); -			if (ret) { -				*foundid = tmpid; -				break; -			} -		} -		/* continue to scan from next id */ -		tmpid = tmpid + 1; -	} -	return ret; +	WARN_ON_ONCE(!rcu_read_lock_held()); +	return idr_find(&ss->css_idr, id);  }  #ifdef CONFIG_CGROUP_DEBUG -static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss, -						   struct cgroup *cont) +static struct cgroup_subsys_state * +debug_css_alloc(struct cgroup_subsys_state *parent_css)  {  	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); @@ -4802,101 +5270,100 @@ static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,  	return css;  } -static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont) -{ -	kfree(cont->subsys[debug_subsys_id]); -} - -static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft) +static void debug_css_free(struct cgroup_subsys_state *css)  { -	return atomic_read(&cont->count); +	kfree(css);  } -static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft) +static u64 debug_taskcount_read(struct cgroup_subsys_state *css, +				struct cftype *cft)  { -	return cgroup_task_count(cont); +	return cgroup_task_count(css->cgroup);  } -static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft) +static u64 current_css_set_read(struct cgroup_subsys_state *css, +				struct cftype *cft)  {  	return (u64)(unsigned long)current->cgroups;  } -static u64 current_css_set_refcount_read(struct cgroup *cont, -					   struct cftype *cft) +static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css, +					 struct cftype *cft)  {  	u64 count;  	rcu_read_lock(); -	count = atomic_read(¤t->cgroups->refcount); +	count = atomic_read(&task_css_set(current)->refcount);  	rcu_read_unlock();  	return count;  } -static int current_css_set_cg_links_read(struct cgroup *cont, -					 struct cftype *cft, -					 struct seq_file *seq) +static int current_css_set_cg_links_read(struct seq_file *seq, void *v)  { -	struct cg_cgroup_link *link; -	struct css_set *cg; +	struct cgrp_cset_link *link; +	struct css_set *cset; +	char *name_buf; -	read_lock(&css_set_lock); +	name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL); +	if (!name_buf) +		return -ENOMEM; + +	down_read(&css_set_rwsem);  	rcu_read_lock(); -	cg = rcu_dereference(current->cgroups); -	list_for_each_entry(link, &cg->cg_links, cg_link_list) { +	cset = rcu_dereference(current->cgroups); +	list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {  		struct cgroup *c = link->cgrp; -		const char *name; -		if (c->dentry) -			name = c->dentry->d_name.name; -		else -			name = "?"; +		cgroup_name(c, name_buf, NAME_MAX + 1);  		seq_printf(seq, "Root %d group %s\n", -			   c->root->hierarchy_id, name); +			   c->root->hierarchy_id, name_buf);  	}  	rcu_read_unlock(); -	read_unlock(&css_set_lock); +	up_read(&css_set_rwsem); +	kfree(name_buf);  	return 0;  }  #define MAX_TASKS_SHOWN_PER_CSS 25 -static int cgroup_css_links_read(struct cgroup *cont, -				 struct cftype *cft, -				 struct seq_file *seq) +static int cgroup_css_links_read(struct seq_file *seq, void *v)  { -	struct cg_cgroup_link *link; +	struct cgroup_subsys_state *css = seq_css(seq); +	struct cgrp_cset_link *link; -	read_lock(&css_set_lock); -	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) { -		struct css_set *cg = link->cg; +	down_read(&css_set_rwsem); +	list_for_each_entry(link, &css->cgroup->cset_links, cset_link) { +		struct css_set *cset = link->cset;  		struct task_struct *task;  		int count = 0; -		seq_printf(seq, "css_set %p\n", cg); -		list_for_each_entry(task, &cg->tasks, cg_list) { -			if (count++ > MAX_TASKS_SHOWN_PER_CSS) { -				seq_puts(seq, "  ...\n"); -				break; -			} else { -				seq_printf(seq, "  task %d\n", -					   task_pid_vnr(task)); -			} + +		seq_printf(seq, "css_set %p\n", cset); + +		list_for_each_entry(task, &cset->tasks, cg_list) { +			if (count++ > MAX_TASKS_SHOWN_PER_CSS) +				goto overflow; +			seq_printf(seq, "  task %d\n", task_pid_vnr(task));  		} + +		list_for_each_entry(task, &cset->mg_tasks, cg_list) { +			if (count++ > MAX_TASKS_SHOWN_PER_CSS) +				goto overflow; +			seq_printf(seq, "  task %d\n", task_pid_vnr(task)); +		} +		continue; +	overflow: +		seq_puts(seq, "  ...\n");  	} -	read_unlock(&css_set_lock); +	up_read(&css_set_rwsem);  	return 0;  } -static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft) +static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)  { -	return test_bit(CGRP_RELEASABLE, &cgrp->flags); +	return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);  }  static struct cftype debug_files[] =  {  	{ -		.name = "cgroup_refcount", -		.read_u64 = cgroup_refcount_read, -	}, -	{  		.name = "taskcount",  		.read_u64 = debug_taskcount_read,  	}, @@ -4913,31 +5380,25 @@ static struct cftype debug_files[] =  {  	{  		.name = "current_css_set_cg_links", -		.read_seq_string = current_css_set_cg_links_read, +		.seq_show = current_css_set_cg_links_read,  	},  	{  		.name = "cgroup_css_links", -		.read_seq_string = cgroup_css_links_read, +		.seq_show = cgroup_css_links_read,  	},  	{  		.name = "releasable",  		.read_u64 = releasable_read,  	}, -}; -static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont) -{ -	return cgroup_add_files(cont, ss, debug_files, -				ARRAY_SIZE(debug_files)); -} +	{ }	/* terminate */ +}; -struct cgroup_subsys debug_subsys = { -	.name = "debug", -	.create = debug_create, -	.destroy = debug_destroy, -	.populate = debug_populate, -	.subsys_id = debug_subsys_id, +struct cgroup_subsys debug_cgrp_subsys = { +	.css_alloc = debug_css_alloc, +	.css_free = debug_css_free, +	.base_cftypes = debug_files,  };  #endif /* CONFIG_CGROUP_DEBUG */  | 
