diff options
Diffstat (limited to 'kernel/cgroup.c')
| -rw-r--r-- | kernel/cgroup.c | 7227 |
1 files changed, 3671 insertions, 3556 deletions
diff --git a/kernel/cgroup.c b/kernel/cgroup.c index a5d3b5325f7..70776aec256 100644 --- a/kernel/cgroup.c +++ b/kernel/cgroup.c @@ -26,14 +26,16 @@ * distribution for more details. */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + #include <linux/cgroup.h> #include <linux/cred.h> #include <linux/ctype.h> #include <linux/errno.h> -#include <linux/fs.h> #include <linux/init_task.h> #include <linux/kernel.h> #include <linux/list.h> +#include <linux/magic.h> #include <linux/mm.h> #include <linux/mutex.h> #include <linux/mount.h> @@ -41,182 +43,135 @@ #include <linux/proc_fs.h> #include <linux/rcupdate.h> #include <linux/sched.h> -#include <linux/backing-dev.h> -#include <linux/seq_file.h> #include <linux/slab.h> -#include <linux/magic.h> #include <linux/spinlock.h> +#include <linux/rwsem.h> #include <linux/string.h> #include <linux/sort.h> #include <linux/kmod.h> -#include <linux/module.h> #include <linux/delayacct.h> #include <linux/cgroupstats.h> -#include <linux/hash.h> -#include <linux/namei.h> +#include <linux/hashtable.h> #include <linux/pid_namespace.h> #include <linux/idr.h> #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */ -#include <linux/eventfd.h> -#include <linux/poll.h> -#include <linux/flex_array.h> /* used in cgroup_attach_proc */ +#include <linux/kthread.h> +#include <linux/delay.h> #include <linux/atomic.h> /* + * pidlists linger the following amount before being destroyed. The goal + * is avoiding frequent destruction in the middle of consecutive read calls + * Expiring in the middle is a performance problem not a correctness one. + * 1 sec should be enough. + */ +#define CGROUP_PIDLIST_DESTROY_DELAY HZ + +#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ + MAX_CFTYPE_NAME + 2) + +/* * cgroup_mutex is the master lock. Any modification to cgroup or its * hierarchy must be performed while holding it. * - * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify - * cgroupfs_root of any cgroup hierarchy - subsys list, flags, - * release_agent_path and so on. Modifying requires both cgroup_mutex and - * cgroup_root_mutex. Readers can acquire either of the two. This is to - * break the following locking order cycle. + * css_set_rwsem protects task->cgroups pointer, the list of css_set + * objects, and the chain of tasks off each css_set. * - * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem - * B. namespace_sem -> cgroup_mutex - * - * B happens only through cgroup_show_options() and using cgroup_root_mutex - * breaks it. + * These locks are exported if CONFIG_PROVE_RCU so that accessors in + * cgroup.h can use them for lockdep annotations. */ +#ifdef CONFIG_PROVE_RCU +DEFINE_MUTEX(cgroup_mutex); +DECLARE_RWSEM(css_set_rwsem); +EXPORT_SYMBOL_GPL(cgroup_mutex); +EXPORT_SYMBOL_GPL(css_set_rwsem); +#else static DEFINE_MUTEX(cgroup_mutex); -static DEFINE_MUTEX(cgroup_root_mutex); +static DECLARE_RWSEM(css_set_rwsem); +#endif /* - * Generate an array of cgroup subsystem pointers. At boot time, this is - * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are - * registered after that. The mutable section of this array is protected by - * cgroup_mutex. + * Protects cgroup_idr and css_idr so that IDs can be released without + * grabbing cgroup_mutex. */ -#define SUBSYS(_x) &_x ## _subsys, -static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = { -#include <linux/cgroup_subsys.h> -}; - -#define MAX_CGROUP_ROOT_NAMELEN 64 +static DEFINE_SPINLOCK(cgroup_idr_lock); /* - * A cgroupfs_root represents the root of a cgroup hierarchy, - * and may be associated with a superblock to form an active - * hierarchy + * Protects cgroup_subsys->release_agent_path. Modifying it also requires + * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock. */ -struct cgroupfs_root { - struct super_block *sb; - - /* - * The bitmask of subsystems intended to be attached to this - * hierarchy - */ - unsigned long subsys_bits; - - /* Unique id for this hierarchy. */ - int hierarchy_id; - - /* The bitmask of subsystems currently attached to this hierarchy */ - unsigned long actual_subsys_bits; +static DEFINE_SPINLOCK(release_agent_path_lock); - /* A list running through the attached subsystems */ - struct list_head subsys_list; +#define cgroup_assert_mutex_or_rcu_locked() \ + rcu_lockdep_assert(rcu_read_lock_held() || \ + lockdep_is_held(&cgroup_mutex), \ + "cgroup_mutex or RCU read lock required"); - /* The root cgroup for this hierarchy */ - struct cgroup top_cgroup; - - /* Tracks how many cgroups are currently defined in hierarchy.*/ - int number_of_cgroups; - - /* A list running through the active hierarchies */ - struct list_head root_list; +/* + * cgroup destruction makes heavy use of work items and there can be a lot + * of concurrent destructions. Use a separate workqueue so that cgroup + * destruction work items don't end up filling up max_active of system_wq + * which may lead to deadlock. + */ +static struct workqueue_struct *cgroup_destroy_wq; - /* Hierarchy-specific flags */ - unsigned long flags; +/* + * pidlist destructions need to be flushed on cgroup destruction. Use a + * separate workqueue as flush domain. + */ +static struct workqueue_struct *cgroup_pidlist_destroy_wq; - /* The path to use for release notifications. */ - char release_agent_path[PATH_MAX]; +/* generate an array of cgroup subsystem pointers */ +#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, +static struct cgroup_subsys *cgroup_subsys[] = { +#include <linux/cgroup_subsys.h> +}; +#undef SUBSYS - /* The name for this hierarchy - may be empty */ - char name[MAX_CGROUP_ROOT_NAMELEN]; +/* array of cgroup subsystem names */ +#define SUBSYS(_x) [_x ## _cgrp_id] = #_x, +static const char *cgroup_subsys_name[] = { +#include <linux/cgroup_subsys.h> }; +#undef SUBSYS /* - * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the - * subsystems that are otherwise unattached - it never has more than a - * single cgroup, and all tasks are part of that cgroup. + * The default hierarchy, reserved for the subsystems that are otherwise + * unattached - it never has more than a single cgroup, and all tasks are + * part of that cgroup. */ -static struct cgroupfs_root rootnode; +struct cgroup_root cgrp_dfl_root; /* - * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when - * cgroup_subsys->use_id != 0. + * The default hierarchy always exists but is hidden until mounted for the + * first time. This is for backward compatibility. */ -#define CSS_ID_MAX (65535) -struct css_id { - /* - * The css to which this ID points. This pointer is set to valid value - * after cgroup is populated. If cgroup is removed, this will be NULL. - * This pointer is expected to be RCU-safe because destroy() - * is called after synchronize_rcu(). But for safe use, css_is_removed() - * css_tryget() should be used for avoiding race. - */ - struct cgroup_subsys_state __rcu *css; - /* - * ID of this css. - */ - unsigned short id; - /* - * Depth in hierarchy which this ID belongs to. - */ - unsigned short depth; - /* - * ID is freed by RCU. (and lookup routine is RCU safe.) - */ - struct rcu_head rcu_head; - /* - * Hierarchy of CSS ID belongs to. - */ - unsigned short stack[0]; /* Array of Length (depth+1) */ -}; +static bool cgrp_dfl_root_visible; -/* - * cgroup_event represents events which userspace want to receive. - */ -struct cgroup_event { - /* - * Cgroup which the event belongs to. - */ - struct cgroup *cgrp; - /* - * Control file which the event associated. - */ - struct cftype *cft; - /* - * eventfd to signal userspace about the event. - */ - struct eventfd_ctx *eventfd; - /* - * Each of these stored in a list by the cgroup. - */ - struct list_head list; - /* - * All fields below needed to unregister event when - * userspace closes eventfd. - */ - poll_table pt; - wait_queue_head_t *wqh; - wait_queue_t wait; - struct work_struct remove; -}; +/* some controllers are not supported in the default hierarchy */ +static const unsigned int cgrp_dfl_root_inhibit_ss_mask = 0 +#ifdef CONFIG_CGROUP_DEBUG + | (1 << debug_cgrp_id) +#endif + ; /* The list of hierarchy roots */ -static LIST_HEAD(roots); -static int root_count; +static LIST_HEAD(cgroup_roots); +static int cgroup_root_count; -static DEFINE_IDA(hierarchy_ida); -static int next_hierarchy_id; -static DEFINE_SPINLOCK(hierarchy_id_lock); +/* hierarchy ID allocation and mapping, protected by cgroup_mutex */ +static DEFINE_IDR(cgroup_hierarchy_idr); -/* dummytop is a shorthand for the dummy hierarchy's top cgroup */ -#define dummytop (&rootnode.top_cgroup) +/* + * Assign a monotonically increasing serial number to csses. It guarantees + * cgroups with bigger numbers are newer than those with smaller numbers. + * Also, as csses are always appended to the parent's ->children list, it + * guarantees that sibling csses are always sorted in the ascending serial + * number order on the list. Protected by cgroup_mutex. + */ +static u64 css_serial_nr_next = 1; /* This flag indicates whether tasks in the fork and exit paths should * check for fork/exit handlers to call. This avoids us having to do @@ -225,30 +180,152 @@ static DEFINE_SPINLOCK(hierarchy_id_lock); */ static int need_forkexit_callback __read_mostly; -#ifdef CONFIG_PROVE_LOCKING -int cgroup_lock_is_held(void) +static struct cftype cgroup_base_files[]; + +static void cgroup_put(struct cgroup *cgrp); +static int rebind_subsystems(struct cgroup_root *dst_root, + unsigned int ss_mask); +static int cgroup_destroy_locked(struct cgroup *cgrp); +static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss); +static void css_release(struct percpu_ref *ref); +static void kill_css(struct cgroup_subsys_state *css); +static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[], + bool is_add); +static void cgroup_pidlist_destroy_all(struct cgroup *cgrp); + +/* IDR wrappers which synchronize using cgroup_idr_lock */ +static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, + gfp_t gfp_mask) { - return lockdep_is_held(&cgroup_mutex); + int ret; + + idr_preload(gfp_mask); + spin_lock_bh(&cgroup_idr_lock); + ret = idr_alloc(idr, ptr, start, end, gfp_mask); + spin_unlock_bh(&cgroup_idr_lock); + idr_preload_end(); + return ret; } -#else /* #ifdef CONFIG_PROVE_LOCKING */ -int cgroup_lock_is_held(void) + +static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) { - return mutex_is_locked(&cgroup_mutex); + void *ret; + + spin_lock_bh(&cgroup_idr_lock); + ret = idr_replace(idr, ptr, id); + spin_unlock_bh(&cgroup_idr_lock); + return ret; } -#endif /* #else #ifdef CONFIG_PROVE_LOCKING */ -EXPORT_SYMBOL_GPL(cgroup_lock_is_held); +static void cgroup_idr_remove(struct idr *idr, int id) +{ + spin_lock_bh(&cgroup_idr_lock); + idr_remove(idr, id); + spin_unlock_bh(&cgroup_idr_lock); +} + +static struct cgroup *cgroup_parent(struct cgroup *cgrp) +{ + struct cgroup_subsys_state *parent_css = cgrp->self.parent; + + if (parent_css) + return container_of(parent_css, struct cgroup, self); + return NULL; +} + +/** + * cgroup_css - obtain a cgroup's css for the specified subsystem + * @cgrp: the cgroup of interest + * @ss: the subsystem of interest (%NULL returns @cgrp->self) + * + * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This + * function must be called either under cgroup_mutex or rcu_read_lock() and + * the caller is responsible for pinning the returned css if it wants to + * keep accessing it outside the said locks. This function may return + * %NULL if @cgrp doesn't have @subsys_id enabled. + */ +static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, + struct cgroup_subsys *ss) +{ + if (ss) + return rcu_dereference_check(cgrp->subsys[ss->id], + lockdep_is_held(&cgroup_mutex)); + else + return &cgrp->self; +} + +/** + * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem + * @cgrp: the cgroup of interest + * @ss: the subsystem of interest (%NULL returns @cgrp->self) + * + * Similar to cgroup_css() but returns the effctive css, which is defined + * as the matching css of the nearest ancestor including self which has @ss + * enabled. If @ss is associated with the hierarchy @cgrp is on, this + * function is guaranteed to return non-NULL css. + */ +static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, + struct cgroup_subsys *ss) +{ + lockdep_assert_held(&cgroup_mutex); + + if (!ss) + return &cgrp->self; + + if (!(cgrp->root->subsys_mask & (1 << ss->id))) + return NULL; + + while (cgroup_parent(cgrp) && + !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id))) + cgrp = cgroup_parent(cgrp); + + return cgroup_css(cgrp, ss); +} /* convenient tests for these bits */ -inline int cgroup_is_removed(const struct cgroup *cgrp) +static inline bool cgroup_is_dead(const struct cgroup *cgrp) { - return test_bit(CGRP_REMOVED, &cgrp->flags); + return !(cgrp->self.flags & CSS_ONLINE); } -/* bits in struct cgroupfs_root flags field */ -enum { - ROOT_NOPREFIX, /* mounted subsystems have no named prefix */ -}; +struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) +{ + struct cgroup *cgrp = of->kn->parent->priv; + struct cftype *cft = of_cft(of); + + /* + * This is open and unprotected implementation of cgroup_css(). + * seq_css() is only called from a kernfs file operation which has + * an active reference on the file. Because all the subsystem + * files are drained before a css is disassociated with a cgroup, + * the matching css from the cgroup's subsys table is guaranteed to + * be and stay valid until the enclosing operation is complete. + */ + if (cft->ss) + return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); + else + return &cgrp->self; +} +EXPORT_SYMBOL_GPL(of_css); + +/** + * cgroup_is_descendant - test ancestry + * @cgrp: the cgroup to be tested + * @ancestor: possible ancestor of @cgrp + * + * Test whether @cgrp is a descendant of @ancestor. It also returns %true + * if @cgrp == @ancestor. This function is safe to call as long as @cgrp + * and @ancestor are accessible. + */ +bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor) +{ + while (cgrp) { + if (cgrp == ancestor) + return true; + cgrp = cgroup_parent(cgrp); + } + return false; +} static int cgroup_is_releasable(const struct cgroup *cgrp) { @@ -263,21 +340,55 @@ static int notify_on_release(const struct cgroup *cgrp) return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); } -static int clone_children(const struct cgroup *cgrp) -{ - return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags); -} +/** + * for_each_css - iterate all css's of a cgroup + * @css: the iteration cursor + * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end + * @cgrp: the target cgroup to iterate css's of + * + * Should be called under cgroup_[tree_]mutex. + */ +#define for_each_css(css, ssid, cgrp) \ + for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ + if (!((css) = rcu_dereference_check( \ + (cgrp)->subsys[(ssid)], \ + lockdep_is_held(&cgroup_mutex)))) { } \ + else -/* - * for_each_subsys() allows you to iterate on each subsystem attached to - * an active hierarchy +/** + * for_each_e_css - iterate all effective css's of a cgroup + * @css: the iteration cursor + * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end + * @cgrp: the target cgroup to iterate css's of + * + * Should be called under cgroup_[tree_]mutex. */ -#define for_each_subsys(_root, _ss) \ -list_for_each_entry(_ss, &_root->subsys_list, sibling) +#define for_each_e_css(css, ssid, cgrp) \ + for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ + if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \ + ; \ + else -/* for_each_active_root() allows you to iterate across the active hierarchies */ -#define for_each_active_root(_root) \ -list_for_each_entry(_root, &roots, root_list) +/** + * for_each_subsys - iterate all enabled cgroup subsystems + * @ss: the iteration cursor + * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end + */ +#define for_each_subsys(ss, ssid) \ + for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \ + (((ss) = cgroup_subsys[ssid]) || true); (ssid)++) + +/* iterate across the hierarchies */ +#define for_each_root(root) \ + list_for_each_entry((root), &cgroup_roots, root_list) + +/* iterate over child cgrps, lock should be held throughout iteration */ +#define cgroup_for_each_live_child(child, cgrp) \ + list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ + if (({ lockdep_assert_held(&cgroup_mutex); \ + cgroup_is_dead(child); })) \ + ; \ + else /* the list of cgroups eligible for automatic release. Protected by * release_list_lock */ @@ -287,40 +398,80 @@ static void cgroup_release_agent(struct work_struct *work); static DECLARE_WORK(release_agent_work, cgroup_release_agent); static void check_for_release(struct cgroup *cgrp); -/* Link structure for associating css_set objects with cgroups */ -struct cg_cgroup_link { - /* - * List running through cg_cgroup_links associated with a - * cgroup, anchored on cgroup->css_sets - */ - struct list_head cgrp_link_list; - struct cgroup *cgrp; - /* - * List running through cg_cgroup_links pointing at a - * single css_set object, anchored on css_set->cg_links - */ - struct list_head cg_link_list; - struct css_set *cg; +/* + * A cgroup can be associated with multiple css_sets as different tasks may + * belong to different cgroups on different hierarchies. In the other + * direction, a css_set is naturally associated with multiple cgroups. + * This M:N relationship is represented by the following link structure + * which exists for each association and allows traversing the associations + * from both sides. + */ +struct cgrp_cset_link { + /* the cgroup and css_set this link associates */ + struct cgroup *cgrp; + struct css_set *cset; + + /* list of cgrp_cset_links anchored at cgrp->cset_links */ + struct list_head cset_link; + + /* list of cgrp_cset_links anchored at css_set->cgrp_links */ + struct list_head cgrp_link; }; -/* The default css_set - used by init and its children prior to any +/* + * The default css_set - used by init and its children prior to any * hierarchies being mounted. It contains a pointer to the root state * for each subsystem. Also used to anchor the list of css_sets. Not * reference-counted, to improve performance when child cgroups * haven't been created. */ +struct css_set init_css_set = { + .refcount = ATOMIC_INIT(1), + .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), + .tasks = LIST_HEAD_INIT(init_css_set.tasks), + .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), + .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), + .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), +}; -static struct css_set init_css_set; -static struct cg_cgroup_link init_css_set_link; +static int css_set_count = 1; /* 1 for init_css_set */ -static int cgroup_init_idr(struct cgroup_subsys *ss, - struct cgroup_subsys_state *css); +/** + * cgroup_update_populated - updated populated count of a cgroup + * @cgrp: the target cgroup + * @populated: inc or dec populated count + * + * @cgrp is either getting the first task (css_set) or losing the last. + * Update @cgrp->populated_cnt accordingly. The count is propagated + * towards root so that a given cgroup's populated_cnt is zero iff the + * cgroup and all its descendants are empty. + * + * @cgrp's interface file "cgroup.populated" is zero if + * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt + * changes from or to zero, userland is notified that the content of the + * interface file has changed. This can be used to detect when @cgrp and + * its descendants become populated or empty. + */ +static void cgroup_update_populated(struct cgroup *cgrp, bool populated) +{ + lockdep_assert_held(&css_set_rwsem); -/* css_set_lock protects the list of css_set objects, and the - * chain of tasks off each css_set. Nests outside task->alloc_lock - * due to cgroup_iter_start() */ -static DEFINE_RWLOCK(css_set_lock); -static int css_set_count; + do { + bool trigger; + + if (populated) + trigger = !cgrp->populated_cnt++; + else + trigger = !--cgrp->populated_cnt; + + if (!trigger) + break; + + if (cgrp->populated_kn) + kernfs_notify(cgrp->populated_kn); + cgrp = cgroup_parent(cgrp); + } while (cgrp); +} /* * hash table for cgroup groups. This improves the performance to find @@ -328,141 +479,136 @@ static int css_set_count; * account cgroups in empty hierarchies. */ #define CSS_SET_HASH_BITS 7 -#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS) -static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE]; +static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); -static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[]) +static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) { + unsigned long key = 0UL; + struct cgroup_subsys *ss; int i; - int index; - unsigned long tmp = 0UL; - - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) - tmp += (unsigned long)css[i]; - tmp = (tmp >> 16) ^ tmp; - index = hash_long(tmp, CSS_SET_HASH_BITS); + for_each_subsys(ss, i) + key += (unsigned long)css[i]; + key = (key >> 16) ^ key; - return &css_set_table[index]; + return key; } -/* We don't maintain the lists running through each css_set to its - * task until after the first call to cgroup_iter_start(). This - * reduces the fork()/exit() overhead for people who have cgroups - * compiled into their kernel but not actually in use */ -static int use_task_css_set_links __read_mostly; - -static void __put_css_set(struct css_set *cg, int taskexit) +static void put_css_set_locked(struct css_set *cset, bool taskexit) { - struct cg_cgroup_link *link; - struct cg_cgroup_link *saved_link; - /* - * Ensure that the refcount doesn't hit zero while any readers - * can see it. Similar to atomic_dec_and_lock(), but for an - * rwlock - */ - if (atomic_add_unless(&cg->refcount, -1, 1)) - return; - write_lock(&css_set_lock); - if (!atomic_dec_and_test(&cg->refcount)) { - write_unlock(&css_set_lock); + struct cgrp_cset_link *link, *tmp_link; + struct cgroup_subsys *ss; + int ssid; + + lockdep_assert_held(&css_set_rwsem); + + if (!atomic_dec_and_test(&cset->refcount)) return; - } /* This css_set is dead. unlink it and release cgroup refcounts */ - hlist_del(&cg->hlist); + for_each_subsys(ss, ssid) + list_del(&cset->e_cset_node[ssid]); + hash_del(&cset->hlist); css_set_count--; - list_for_each_entry_safe(link, saved_link, &cg->cg_links, - cg_link_list) { + list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { struct cgroup *cgrp = link->cgrp; - list_del(&link->cg_link_list); - list_del(&link->cgrp_link_list); - if (atomic_dec_and_test(&cgrp->count) && - notify_on_release(cgrp)) { - if (taskexit) - set_bit(CGRP_RELEASABLE, &cgrp->flags); - check_for_release(cgrp); + + list_del(&link->cset_link); + list_del(&link->cgrp_link); + + /* @cgrp can't go away while we're holding css_set_rwsem */ + if (list_empty(&cgrp->cset_links)) { + cgroup_update_populated(cgrp, false); + if (notify_on_release(cgrp)) { + if (taskexit) + set_bit(CGRP_RELEASABLE, &cgrp->flags); + check_for_release(cgrp); + } } kfree(link); } - write_unlock(&css_set_lock); - kfree_rcu(cg, rcu_head); + kfree_rcu(cset, rcu_head); } -/* - * refcounted get/put for css_set objects - */ -static inline void get_css_set(struct css_set *cg) +static void put_css_set(struct css_set *cset, bool taskexit) { - atomic_inc(&cg->refcount); -} + /* + * Ensure that the refcount doesn't hit zero while any readers + * can see it. Similar to atomic_dec_and_lock(), but for an + * rwlock + */ + if (atomic_add_unless(&cset->refcount, -1, 1)) + return; -static inline void put_css_set(struct css_set *cg) -{ - __put_css_set(cg, 0); + down_write(&css_set_rwsem); + put_css_set_locked(cset, taskexit); + up_write(&css_set_rwsem); } -static inline void put_css_set_taskexit(struct css_set *cg) +/* + * refcounted get/put for css_set objects + */ +static inline void get_css_set(struct css_set *cset) { - __put_css_set(cg, 1); + atomic_inc(&cset->refcount); } -/* +/** * compare_css_sets - helper function for find_existing_css_set(). - * @cg: candidate css_set being tested - * @old_cg: existing css_set for a task + * @cset: candidate css_set being tested + * @old_cset: existing css_set for a task * @new_cgrp: cgroup that's being entered by the task * @template: desired set of css pointers in css_set (pre-calculated) * - * Returns true if "cg" matches "old_cg" except for the hierarchy + * Returns true if "cset" matches "old_cset" except for the hierarchy * which "new_cgrp" belongs to, for which it should match "new_cgrp". */ -static bool compare_css_sets(struct css_set *cg, - struct css_set *old_cg, +static bool compare_css_sets(struct css_set *cset, + struct css_set *old_cset, struct cgroup *new_cgrp, struct cgroup_subsys_state *template[]) { struct list_head *l1, *l2; - if (memcmp(template, cg->subsys, sizeof(cg->subsys))) { - /* Not all subsystems matched */ + /* + * On the default hierarchy, there can be csets which are + * associated with the same set of cgroups but different csses. + * Let's first ensure that csses match. + */ + if (memcmp(template, cset->subsys, sizeof(cset->subsys))) return false; - } /* * Compare cgroup pointers in order to distinguish between - * different cgroups in heirarchies with no subsystems. We - * could get by with just this check alone (and skip the - * memcmp above) but on most setups the memcmp check will - * avoid the need for this more expensive check on almost all - * candidates. + * different cgroups in hierarchies. As different cgroups may + * share the same effective css, this comparison is always + * necessary. */ - - l1 = &cg->cg_links; - l2 = &old_cg->cg_links; + l1 = &cset->cgrp_links; + l2 = &old_cset->cgrp_links; while (1) { - struct cg_cgroup_link *cgl1, *cgl2; - struct cgroup *cg1, *cg2; + struct cgrp_cset_link *link1, *link2; + struct cgroup *cgrp1, *cgrp2; l1 = l1->next; l2 = l2->next; /* See if we reached the end - both lists are equal length. */ - if (l1 == &cg->cg_links) { - BUG_ON(l2 != &old_cg->cg_links); + if (l1 == &cset->cgrp_links) { + BUG_ON(l2 != &old_cset->cgrp_links); break; } else { - BUG_ON(l2 == &old_cg->cg_links); + BUG_ON(l2 == &old_cset->cgrp_links); } /* Locate the cgroups associated with these links. */ - cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list); - cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list); - cg1 = cgl1->cgrp; - cg2 = cgl2->cgrp; + link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); + link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); + cgrp1 = link1->cgrp; + cgrp2 = link2->cgrp; /* Hierarchies should be linked in the same order. */ - BUG_ON(cg1->root != cg2->root); + BUG_ON(cgrp1->root != cgrp2->root); /* * If this hierarchy is the hierarchy of the cgroup @@ -471,239 +617,340 @@ static bool compare_css_sets(struct css_set *cg, * hierarchy, then this css_set should point to the * same cgroup as the old css_set. */ - if (cg1->root == new_cgrp->root) { - if (cg1 != new_cgrp) + if (cgrp1->root == new_cgrp->root) { + if (cgrp1 != new_cgrp) return false; } else { - if (cg1 != cg2) + if (cgrp1 != cgrp2) return false; } } return true; } -/* - * find_existing_css_set() is a helper for - * find_css_set(), and checks to see whether an existing - * css_set is suitable. - * - * oldcg: the cgroup group that we're using before the cgroup - * transition - * - * cgrp: the cgroup that we're moving into - * - * template: location in which to build the desired set of subsystem - * state objects for the new cgroup group +/** + * find_existing_css_set - init css array and find the matching css_set + * @old_cset: the css_set that we're using before the cgroup transition + * @cgrp: the cgroup that we're moving into + * @template: out param for the new set of csses, should be clear on entry */ -static struct css_set *find_existing_css_set( - struct css_set *oldcg, - struct cgroup *cgrp, - struct cgroup_subsys_state *template[]) +static struct css_set *find_existing_css_set(struct css_set *old_cset, + struct cgroup *cgrp, + struct cgroup_subsys_state *template[]) { + struct cgroup_root *root = cgrp->root; + struct cgroup_subsys *ss; + struct css_set *cset; + unsigned long key; int i; - struct cgroupfs_root *root = cgrp->root; - struct hlist_head *hhead; - struct hlist_node *node; - struct css_set *cg; /* * Build the set of subsystem state objects that we want to see in the * new css_set. while subsystems can change globally, the entries here * won't change, so no need for locking. */ - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { - if (root->subsys_bits & (1UL << i)) { - /* Subsystem is in this hierarchy. So we want - * the subsystem state from the new - * cgroup */ - template[i] = cgrp->subsys[i]; + for_each_subsys(ss, i) { + if (root->subsys_mask & (1UL << i)) { + /* + * @ss is in this hierarchy, so we want the + * effective css from @cgrp. + */ + template[i] = cgroup_e_css(cgrp, ss); } else { - /* Subsystem is not in this hierarchy, so we - * don't want to change the subsystem state */ - template[i] = oldcg->subsys[i]; + /* + * @ss is not in this hierarchy, so we don't want + * to change the css. + */ + template[i] = old_cset->subsys[i]; } } - hhead = css_set_hash(template); - hlist_for_each_entry(cg, node, hhead, hlist) { - if (!compare_css_sets(cg, oldcg, cgrp, template)) + key = css_set_hash(template); + hash_for_each_possible(css_set_table, cset, hlist, key) { + if (!compare_css_sets(cset, old_cset, cgrp, template)) continue; /* This css_set matches what we need */ - return cg; + return cset; } /* No existing cgroup group matched */ return NULL; } -static void free_cg_links(struct list_head *tmp) +static void free_cgrp_cset_links(struct list_head *links_to_free) { - struct cg_cgroup_link *link; - struct cg_cgroup_link *saved_link; + struct cgrp_cset_link *link, *tmp_link; - list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) { - list_del(&link->cgrp_link_list); + list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { + list_del(&link->cset_link); kfree(link); } } -/* - * allocate_cg_links() allocates "count" cg_cgroup_link structures - * and chains them on tmp through their cgrp_link_list fields. Returns 0 on - * success or a negative error +/** + * allocate_cgrp_cset_links - allocate cgrp_cset_links + * @count: the number of links to allocate + * @tmp_links: list_head the allocated links are put on + * + * Allocate @count cgrp_cset_link structures and chain them on @tmp_links + * through ->cset_link. Returns 0 on success or -errno. */ -static int allocate_cg_links(int count, struct list_head *tmp) +static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) { - struct cg_cgroup_link *link; + struct cgrp_cset_link *link; int i; - INIT_LIST_HEAD(tmp); + + INIT_LIST_HEAD(tmp_links); + for (i = 0; i < count; i++) { - link = kmalloc(sizeof(*link), GFP_KERNEL); + link = kzalloc(sizeof(*link), GFP_KERNEL); if (!link) { - free_cg_links(tmp); + free_cgrp_cset_links(tmp_links); return -ENOMEM; } - list_add(&link->cgrp_link_list, tmp); + list_add(&link->cset_link, tmp_links); } return 0; } /** * link_css_set - a helper function to link a css_set to a cgroup - * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links() - * @cg: the css_set to be linked + * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() + * @cset: the css_set to be linked * @cgrp: the destination cgroup */ -static void link_css_set(struct list_head *tmp_cg_links, - struct css_set *cg, struct cgroup *cgrp) +static void link_css_set(struct list_head *tmp_links, struct css_set *cset, + struct cgroup *cgrp) { - struct cg_cgroup_link *link; + struct cgrp_cset_link *link; + + BUG_ON(list_empty(tmp_links)); + + if (cgroup_on_dfl(cgrp)) + cset->dfl_cgrp = cgrp; - BUG_ON(list_empty(tmp_cg_links)); - link = list_first_entry(tmp_cg_links, struct cg_cgroup_link, - cgrp_link_list); - link->cg = cg; + link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); + link->cset = cset; link->cgrp = cgrp; - atomic_inc(&cgrp->count); - list_move(&link->cgrp_link_list, &cgrp->css_sets); + + if (list_empty(&cgrp->cset_links)) + cgroup_update_populated(cgrp, true); + list_move(&link->cset_link, &cgrp->cset_links); + /* * Always add links to the tail of the list so that the list * is sorted by order of hierarchy creation */ - list_add_tail(&link->cg_link_list, &cg->cg_links); + list_add_tail(&link->cgrp_link, &cset->cgrp_links); } -/* - * find_css_set() takes an existing cgroup group and a - * cgroup object, and returns a css_set object that's - * equivalent to the old group, but with the given cgroup - * substituted into the appropriate hierarchy. Must be called with - * cgroup_mutex held +/** + * find_css_set - return a new css_set with one cgroup updated + * @old_cset: the baseline css_set + * @cgrp: the cgroup to be updated + * + * Return a new css_set that's equivalent to @old_cset, but with @cgrp + * substituted into the appropriate hierarchy. */ -static struct css_set *find_css_set( - struct css_set *oldcg, struct cgroup *cgrp) +static struct css_set *find_css_set(struct css_set *old_cset, + struct cgroup *cgrp) { - struct css_set *res; - struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; - - struct list_head tmp_cg_links; + struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; + struct css_set *cset; + struct list_head tmp_links; + struct cgrp_cset_link *link; + struct cgroup_subsys *ss; + unsigned long key; + int ssid; - struct hlist_head *hhead; - struct cg_cgroup_link *link; + lockdep_assert_held(&cgroup_mutex); /* First see if we already have a cgroup group that matches * the desired set */ - read_lock(&css_set_lock); - res = find_existing_css_set(oldcg, cgrp, template); - if (res) - get_css_set(res); - read_unlock(&css_set_lock); + down_read(&css_set_rwsem); + cset = find_existing_css_set(old_cset, cgrp, template); + if (cset) + get_css_set(cset); + up_read(&css_set_rwsem); - if (res) - return res; + if (cset) + return cset; - res = kmalloc(sizeof(*res), GFP_KERNEL); - if (!res) + cset = kzalloc(sizeof(*cset), GFP_KERNEL); + if (!cset) return NULL; - /* Allocate all the cg_cgroup_link objects that we'll need */ - if (allocate_cg_links(root_count, &tmp_cg_links) < 0) { - kfree(res); + /* Allocate all the cgrp_cset_link objects that we'll need */ + if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { + kfree(cset); return NULL; } - atomic_set(&res->refcount, 1); - INIT_LIST_HEAD(&res->cg_links); - INIT_LIST_HEAD(&res->tasks); - INIT_HLIST_NODE(&res->hlist); + atomic_set(&cset->refcount, 1); + INIT_LIST_HEAD(&cset->cgrp_links); + INIT_LIST_HEAD(&cset->tasks); + INIT_LIST_HEAD(&cset->mg_tasks); + INIT_LIST_HEAD(&cset->mg_preload_node); + INIT_LIST_HEAD(&cset->mg_node); + INIT_HLIST_NODE(&cset->hlist); /* Copy the set of subsystem state objects generated in * find_existing_css_set() */ - memcpy(res->subsys, template, sizeof(res->subsys)); + memcpy(cset->subsys, template, sizeof(cset->subsys)); - write_lock(&css_set_lock); + down_write(&css_set_rwsem); /* Add reference counts and links from the new css_set. */ - list_for_each_entry(link, &oldcg->cg_links, cg_link_list) { + list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { struct cgroup *c = link->cgrp; + if (c->root == cgrp->root) c = cgrp; - link_css_set(&tmp_cg_links, res, c); + link_css_set(&tmp_links, cset, c); } - BUG_ON(!list_empty(&tmp_cg_links)); + BUG_ON(!list_empty(&tmp_links)); css_set_count++; - /* Add this cgroup group to the hash table */ - hhead = css_set_hash(res->subsys); - hlist_add_head(&res->hlist, hhead); + /* Add @cset to the hash table */ + key = css_set_hash(cset->subsys); + hash_add(css_set_table, &cset->hlist, key); - write_unlock(&css_set_lock); + for_each_subsys(ss, ssid) + list_add_tail(&cset->e_cset_node[ssid], + &cset->subsys[ssid]->cgroup->e_csets[ssid]); - return res; + up_write(&css_set_rwsem); + + return cset; } -/* - * Return the cgroup for "task" from the given hierarchy. Must be - * called with cgroup_mutex held. - */ -static struct cgroup *task_cgroup_from_root(struct task_struct *task, - struct cgroupfs_root *root) +static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) { - struct css_set *css; - struct cgroup *res = NULL; + struct cgroup *root_cgrp = kf_root->kn->priv; + + return root_cgrp->root; +} + +static int cgroup_init_root_id(struct cgroup_root *root) +{ + int id; + + lockdep_assert_held(&cgroup_mutex); + + id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); + if (id < 0) + return id; + + root->hierarchy_id = id; + return 0; +} + +static void cgroup_exit_root_id(struct cgroup_root *root) +{ + lockdep_assert_held(&cgroup_mutex); + + if (root->hierarchy_id) { + idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); + root->hierarchy_id = 0; + } +} + +static void cgroup_free_root(struct cgroup_root *root) +{ + if (root) { + /* hierarhcy ID shoulid already have been released */ + WARN_ON_ONCE(root->hierarchy_id); + + idr_destroy(&root->cgroup_idr); + kfree(root); + } +} + +static void cgroup_destroy_root(struct cgroup_root *root) +{ + struct cgroup *cgrp = &root->cgrp; + struct cgrp_cset_link *link, *tmp_link; + + mutex_lock(&cgroup_mutex); + + BUG_ON(atomic_read(&root->nr_cgrps)); + BUG_ON(!list_empty(&cgrp->self.children)); + + /* Rebind all subsystems back to the default hierarchy */ + rebind_subsystems(&cgrp_dfl_root, root->subsys_mask); - BUG_ON(!mutex_is_locked(&cgroup_mutex)); - read_lock(&css_set_lock); /* - * No need to lock the task - since we hold cgroup_mutex the - * task can't change groups, so the only thing that can happen - * is that it exits and its css is set back to init_css_set. + * Release all the links from cset_links to this hierarchy's + * root cgroup */ - css = task->cgroups; - if (css == &init_css_set) { - res = &root->top_cgroup; + down_write(&css_set_rwsem); + + list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { + list_del(&link->cset_link); + list_del(&link->cgrp_link); + kfree(link); + } + up_write(&css_set_rwsem); + + if (!list_empty(&root->root_list)) { + list_del(&root->root_list); + cgroup_root_count--; + } + + cgroup_exit_root_id(root); + + mutex_unlock(&cgroup_mutex); + + kernfs_destroy_root(root->kf_root); + cgroup_free_root(root); +} + +/* look up cgroup associated with given css_set on the specified hierarchy */ +static struct cgroup *cset_cgroup_from_root(struct css_set *cset, + struct cgroup_root *root) +{ + struct cgroup *res = NULL; + + lockdep_assert_held(&cgroup_mutex); + lockdep_assert_held(&css_set_rwsem); + + if (cset == &init_css_set) { + res = &root->cgrp; } else { - struct cg_cgroup_link *link; - list_for_each_entry(link, &css->cg_links, cg_link_list) { + struct cgrp_cset_link *link; + + list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { struct cgroup *c = link->cgrp; + if (c->root == root) { res = c; break; } } } - read_unlock(&css_set_lock); + BUG_ON(!res); return res; } /* - * There is one global cgroup mutex. We also require taking - * task_lock() when dereferencing a task's cgroup subsys pointers. - * See "The task_lock() exception", at the end of this comment. - * + * Return the cgroup for "task" from the given hierarchy. Must be + * called with cgroup_mutex and css_set_rwsem held. + */ +static struct cgroup *task_cgroup_from_root(struct task_struct *task, + struct cgroup_root *root) +{ + /* + * No need to lock the task - since we hold cgroup_mutex the + * task can't change groups, so the only thing that can happen + * is that it exits and its css is set back to init_css_set. + */ + return cset_cgroup_from_root(task_css_set(task), root); +} + +/* * A task must hold cgroup_mutex to modify cgroups. * * Any task can increment and decrement the count field without lock. @@ -729,384 +976,302 @@ static struct cgroup *task_cgroup_from_root(struct task_struct *task, * A cgroup can only be deleted if both its 'count' of using tasks * is zero, and its list of 'children' cgroups is empty. Since all * tasks in the system use _some_ cgroup, and since there is always at - * least one task in the system (init, pid == 1), therefore, top_cgroup + * least one task in the system (init, pid == 1), therefore, root cgroup * always has either children cgroups and/or using tasks. So we don't - * need a special hack to ensure that top_cgroup cannot be deleted. - * - * The task_lock() exception - * - * The need for this exception arises from the action of - * cgroup_attach_task(), which overwrites one tasks cgroup pointer with - * another. It does so using cgroup_mutex, however there are - * several performance critical places that need to reference - * task->cgroup without the expense of grabbing a system global - * mutex. Therefore except as noted below, when dereferencing or, as - * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use - * task_lock(), which acts on a spinlock (task->alloc_lock) already in - * the task_struct routinely used for such matters. + * need a special hack to ensure that root cgroup cannot be deleted. * * P.S. One more locking exception. RCU is used to guard the * update of a tasks cgroup pointer by cgroup_attach_task() */ -/** - * cgroup_lock - lock out any changes to cgroup structures - * - */ -void cgroup_lock(void) +static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask); +static struct kernfs_syscall_ops cgroup_kf_syscall_ops; +static const struct file_operations proc_cgroupstats_operations; + +static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, + char *buf) { - mutex_lock(&cgroup_mutex); + if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && + !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) + snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", + cft->ss->name, cft->name); + else + strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX); + return buf; } -EXPORT_SYMBOL_GPL(cgroup_lock); /** - * cgroup_unlock - release lock on cgroup changes + * cgroup_file_mode - deduce file mode of a control file + * @cft: the control file in question * - * Undo the lock taken in a previous cgroup_lock() call. + * returns cft->mode if ->mode is not 0 + * returns S_IRUGO|S_IWUSR if it has both a read and a write handler + * returns S_IRUGO if it has only a read handler + * returns S_IWUSR if it has only a write hander */ -void cgroup_unlock(void) +static umode_t cgroup_file_mode(const struct cftype *cft) { - mutex_unlock(&cgroup_mutex); -} -EXPORT_SYMBOL_GPL(cgroup_unlock); + umode_t mode = 0; -/* - * A couple of forward declarations required, due to cyclic reference loop: - * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir -> - * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations - * -> cgroup_mkdir. - */ + if (cft->mode) + return cft->mode; -static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode); -static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *); -static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); -static int cgroup_populate_dir(struct cgroup *cgrp); -static const struct inode_operations cgroup_dir_inode_operations; -static const struct file_operations proc_cgroupstats_operations; + if (cft->read_u64 || cft->read_s64 || cft->seq_show) + mode |= S_IRUGO; -static struct backing_dev_info cgroup_backing_dev_info = { - .name = "cgroup", - .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK, -}; + if (cft->write_u64 || cft->write_s64 || cft->write) + mode |= S_IWUSR; -static int alloc_css_id(struct cgroup_subsys *ss, - struct cgroup *parent, struct cgroup *child); + return mode; +} -static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb) +static void cgroup_get(struct cgroup *cgrp) { - struct inode *inode = new_inode(sb); + WARN_ON_ONCE(cgroup_is_dead(cgrp)); + css_get(&cgrp->self); +} - if (inode) { - inode->i_ino = get_next_ino(); - inode->i_mode = mode; - inode->i_uid = current_fsuid(); - inode->i_gid = current_fsgid(); - inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; - inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info; - } - return inode; +static void cgroup_put(struct cgroup *cgrp) +{ + css_put(&cgrp->self); } -/* - * Call subsys's pre_destroy handler. - * This is called before css refcnt check. +/** + * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods + * @kn: the kernfs_node being serviced + * + * This helper undoes cgroup_kn_lock_live() and should be invoked before + * the method finishes if locking succeeded. Note that once this function + * returns the cgroup returned by cgroup_kn_lock_live() may become + * inaccessible any time. If the caller intends to continue to access the + * cgroup, it should pin it before invoking this function. */ -static int cgroup_call_pre_destroy(struct cgroup *cgrp) +static void cgroup_kn_unlock(struct kernfs_node *kn) { - struct cgroup_subsys *ss; - int ret = 0; + struct cgroup *cgrp; - for_each_subsys(cgrp->root, ss) - if (ss->pre_destroy) { - ret = ss->pre_destroy(ss, cgrp); - if (ret) - break; - } + if (kernfs_type(kn) == KERNFS_DIR) + cgrp = kn->priv; + else + cgrp = kn->parent->priv; - return ret; + mutex_unlock(&cgroup_mutex); + + kernfs_unbreak_active_protection(kn); + cgroup_put(cgrp); } -static void cgroup_diput(struct dentry *dentry, struct inode *inode) +/** + * cgroup_kn_lock_live - locking helper for cgroup kernfs methods + * @kn: the kernfs_node being serviced + * + * This helper is to be used by a cgroup kernfs method currently servicing + * @kn. It breaks the active protection, performs cgroup locking and + * verifies that the associated cgroup is alive. Returns the cgroup if + * alive; otherwise, %NULL. A successful return should be undone by a + * matching cgroup_kn_unlock() invocation. + * + * Any cgroup kernfs method implementation which requires locking the + * associated cgroup should use this helper. It avoids nesting cgroup + * locking under kernfs active protection and allows all kernfs operations + * including self-removal. + */ +static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn) { - /* is dentry a directory ? if so, kfree() associated cgroup */ - if (S_ISDIR(inode->i_mode)) { - struct cgroup *cgrp = dentry->d_fsdata; - struct cgroup_subsys *ss; - BUG_ON(!(cgroup_is_removed(cgrp))); - /* It's possible for external users to be holding css - * reference counts on a cgroup; css_put() needs to - * be able to access the cgroup after decrementing - * the reference count in order to know if it needs to - * queue the cgroup to be handled by the release - * agent */ - synchronize_rcu(); - - mutex_lock(&cgroup_mutex); - /* - * Release the subsystem state objects. - */ - for_each_subsys(cgrp->root, ss) - ss->destroy(ss, cgrp); + struct cgroup *cgrp; - cgrp->root->number_of_cgroups--; - mutex_unlock(&cgroup_mutex); + if (kernfs_type(kn) == KERNFS_DIR) + cgrp = kn->priv; + else + cgrp = kn->parent->priv; - /* - * Drop the active superblock reference that we took when we - * created the cgroup - */ - deactivate_super(cgrp->root->sb); + /* + * We're gonna grab cgroup_mutex which nests outside kernfs + * active_ref. cgroup liveliness check alone provides enough + * protection against removal. Ensure @cgrp stays accessible and + * break the active_ref protection. + */ + cgroup_get(cgrp); + kernfs_break_active_protection(kn); - /* - * if we're getting rid of the cgroup, refcount should ensure - * that there are no pidlists left. - */ - BUG_ON(!list_empty(&cgrp->pidlists)); + mutex_lock(&cgroup_mutex); - kfree_rcu(cgrp, rcu_head); - } - iput(inode); -} + if (!cgroup_is_dead(cgrp)) + return cgrp; -static int cgroup_delete(const struct dentry *d) -{ - return 1; + cgroup_kn_unlock(kn); + return NULL; } -static void remove_dir(struct dentry *d) +static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) { - struct dentry *parent = dget(d->d_parent); + char name[CGROUP_FILE_NAME_MAX]; - d_delete(d); - simple_rmdir(parent->d_inode, d); - dput(parent); + lockdep_assert_held(&cgroup_mutex); + kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); } -static void cgroup_clear_directory(struct dentry *dentry) +/** + * cgroup_clear_dir - remove subsys files in a cgroup directory + * @cgrp: target cgroup + * @subsys_mask: mask of the subsystem ids whose files should be removed + */ +static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask) { - struct list_head *node; + struct cgroup_subsys *ss; + int i; - BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex)); - spin_lock(&dentry->d_lock); - node = dentry->d_subdirs.next; - while (node != &dentry->d_subdirs) { - struct dentry *d = list_entry(node, struct dentry, d_u.d_child); + for_each_subsys(ss, i) { + struct cftype *cfts; - spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); - list_del_init(node); - if (d->d_inode) { - /* This should never be called on a cgroup - * directory with child cgroups */ - BUG_ON(d->d_inode->i_mode & S_IFDIR); - dget_dlock(d); - spin_unlock(&d->d_lock); - spin_unlock(&dentry->d_lock); - d_delete(d); - simple_unlink(dentry->d_inode, d); - dput(d); - spin_lock(&dentry->d_lock); - } else - spin_unlock(&d->d_lock); - node = dentry->d_subdirs.next; + if (!(subsys_mask & (1 << i))) + continue; + list_for_each_entry(cfts, &ss->cfts, node) + cgroup_addrm_files(cgrp, cfts, false); } - spin_unlock(&dentry->d_lock); } -/* - * NOTE : the dentry must have been dget()'ed - */ -static void cgroup_d_remove_dir(struct dentry *dentry) +static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask) { - struct dentry *parent; - - cgroup_clear_directory(dentry); - - parent = dentry->d_parent; - spin_lock(&parent->d_lock); - spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); - list_del_init(&dentry->d_u.d_child); - spin_unlock(&dentry->d_lock); - spin_unlock(&parent->d_lock); - remove_dir(dentry); -} + struct cgroup_subsys *ss; + unsigned int tmp_ss_mask; + int ssid, i, ret; -/* - * A queue for waiters to do rmdir() cgroup. A tasks will sleep when - * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some - * reference to css->refcnt. In general, this refcnt is expected to goes down - * to zero, soon. - * - * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex; - */ -static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq); + lockdep_assert_held(&cgroup_mutex); -static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp) -{ - if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))) - wake_up_all(&cgroup_rmdir_waitq); -} + for_each_subsys(ss, ssid) { + if (!(ss_mask & (1 << ssid))) + continue; -void cgroup_exclude_rmdir(struct cgroup_subsys_state *css) -{ - css_get(css); -} + /* if @ss has non-root csses attached to it, can't move */ + if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss))) + return -EBUSY; -void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css) -{ - cgroup_wakeup_rmdir_waiter(css->cgroup); - css_put(css); -} + /* can't move between two non-dummy roots either */ + if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) + return -EBUSY; + } -/* - * Call with cgroup_mutex held. Drops reference counts on modules, including - * any duplicate ones that parse_cgroupfs_options took. If this function - * returns an error, no reference counts are touched. - */ -static int rebind_subsystems(struct cgroupfs_root *root, - unsigned long final_bits) -{ - unsigned long added_bits, removed_bits; - struct cgroup *cgrp = &root->top_cgroup; - int i; + /* skip creating root files on dfl_root for inhibited subsystems */ + tmp_ss_mask = ss_mask; + if (dst_root == &cgrp_dfl_root) + tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask; - BUG_ON(!mutex_is_locked(&cgroup_mutex)); - BUG_ON(!mutex_is_locked(&cgroup_root_mutex)); + ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask); + if (ret) { + if (dst_root != &cgrp_dfl_root) + return ret; - removed_bits = root->actual_subsys_bits & ~final_bits; - added_bits = final_bits & ~root->actual_subsys_bits; - /* Check that any added subsystems are currently free */ - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { - unsigned long bit = 1UL << i; - struct cgroup_subsys *ss = subsys[i]; - if (!(bit & added_bits)) - continue; /* - * Nobody should tell us to do a subsys that doesn't exist: - * parse_cgroupfs_options should catch that case and refcounts - * ensure that subsystems won't disappear once selected. + * Rebinding back to the default root is not allowed to + * fail. Using both default and non-default roots should + * be rare. Moving subsystems back and forth even more so. + * Just warn about it and continue. */ - BUG_ON(ss == NULL); - if (ss->root != &rootnode) { - /* Subsystem isn't free */ - return -EBUSY; + if (cgrp_dfl_root_visible) { + pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n", + ret, ss_mask); + pr_warn("you may retry by moving them to a different hierarchy and unbinding\n"); } } - /* Currently we don't handle adding/removing subsystems when - * any child cgroups exist. This is theoretically supportable - * but involves complex error handling, so it's being left until - * later */ - if (root->number_of_cgroups > 1) - return -EBUSY; + /* + * Nothing can fail from this point on. Remove files for the + * removed subsystems and rebind each subsystem. + */ + for_each_subsys(ss, ssid) + if (ss_mask & (1 << ssid)) + cgroup_clear_dir(&ss->root->cgrp, 1 << ssid); - /* Process each subsystem */ - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { - struct cgroup_subsys *ss = subsys[i]; - unsigned long bit = 1UL << i; - if (bit & added_bits) { - /* We're binding this subsystem to this hierarchy */ - BUG_ON(ss == NULL); - BUG_ON(cgrp->subsys[i]); - BUG_ON(!dummytop->subsys[i]); - BUG_ON(dummytop->subsys[i]->cgroup != dummytop); - mutex_lock(&ss->hierarchy_mutex); - cgrp->subsys[i] = dummytop->subsys[i]; - cgrp->subsys[i]->cgroup = cgrp; - list_move(&ss->sibling, &root->subsys_list); - ss->root = root; - if (ss->bind) - ss->bind(ss, cgrp); - mutex_unlock(&ss->hierarchy_mutex); - /* refcount was already taken, and we're keeping it */ - } else if (bit & removed_bits) { - /* We're removing this subsystem */ - BUG_ON(ss == NULL); - BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]); - BUG_ON(cgrp->subsys[i]->cgroup != cgrp); - mutex_lock(&ss->hierarchy_mutex); - if (ss->bind) - ss->bind(ss, dummytop); - dummytop->subsys[i]->cgroup = dummytop; - cgrp->subsys[i] = NULL; - subsys[i]->root = &rootnode; - list_move(&ss->sibling, &rootnode.subsys_list); - mutex_unlock(&ss->hierarchy_mutex); - /* subsystem is now free - drop reference on module */ - module_put(ss->module); - } else if (bit & final_bits) { - /* Subsystem state should already exist */ - BUG_ON(ss == NULL); - BUG_ON(!cgrp->subsys[i]); - /* - * a refcount was taken, but we already had one, so - * drop the extra reference. - */ - module_put(ss->module); -#ifdef CONFIG_MODULE_UNLOAD - BUG_ON(ss->module && !module_refcount(ss->module)); -#endif - } else { - /* Subsystem state shouldn't exist */ - BUG_ON(cgrp->subsys[i]); - } + for_each_subsys(ss, ssid) { + struct cgroup_root *src_root; + struct cgroup_subsys_state *css; + struct css_set *cset; + + if (!(ss_mask & (1 << ssid))) + continue; + + src_root = ss->root; + css = cgroup_css(&src_root->cgrp, ss); + + WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss)); + + RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL); + rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css); + ss->root = dst_root; + css->cgroup = &dst_root->cgrp; + + down_write(&css_set_rwsem); + hash_for_each(css_set_table, i, cset, hlist) + list_move_tail(&cset->e_cset_node[ss->id], + &dst_root->cgrp.e_csets[ss->id]); + up_write(&css_set_rwsem); + + src_root->subsys_mask &= ~(1 << ssid); + src_root->cgrp.child_subsys_mask &= ~(1 << ssid); + + /* default hierarchy doesn't enable controllers by default */ + dst_root->subsys_mask |= 1 << ssid; + if (dst_root != &cgrp_dfl_root) + dst_root->cgrp.child_subsys_mask |= 1 << ssid; + + if (ss->bind) + ss->bind(css); } - root->subsys_bits = root->actual_subsys_bits = final_bits; - synchronize_rcu(); + kernfs_activate(dst_root->cgrp.kn); return 0; } -static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry) +static int cgroup_show_options(struct seq_file *seq, + struct kernfs_root *kf_root) { - struct cgroupfs_root *root = dentry->d_sb->s_fs_info; + struct cgroup_root *root = cgroup_root_from_kf(kf_root); struct cgroup_subsys *ss; - - mutex_lock(&cgroup_root_mutex); - for_each_subsys(root, ss) - seq_printf(seq, ",%s", ss->name); - if (test_bit(ROOT_NOPREFIX, &root->flags)) + int ssid; + + for_each_subsys(ss, ssid) + if (root->subsys_mask & (1 << ssid)) + seq_printf(seq, ",%s", ss->name); + if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) + seq_puts(seq, ",sane_behavior"); + if (root->flags & CGRP_ROOT_NOPREFIX) seq_puts(seq, ",noprefix"); + if (root->flags & CGRP_ROOT_XATTR) + seq_puts(seq, ",xattr"); + + spin_lock(&release_agent_path_lock); if (strlen(root->release_agent_path)) seq_printf(seq, ",release_agent=%s", root->release_agent_path); - if (clone_children(&root->top_cgroup)) + spin_unlock(&release_agent_path_lock); + + if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) seq_puts(seq, ",clone_children"); if (strlen(root->name)) seq_printf(seq, ",name=%s", root->name); - mutex_unlock(&cgroup_root_mutex); return 0; } struct cgroup_sb_opts { - unsigned long subsys_bits; - unsigned long flags; + unsigned int subsys_mask; + unsigned int flags; char *release_agent; - bool clone_children; + bool cpuset_clone_children; char *name; /* User explicitly requested empty subsystem */ bool none; - - struct cgroupfs_root *new_root; - }; -/* - * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call - * with cgroup_mutex held to protect the subsys[] array. This function takes - * refcounts on subsystems to be used, unless it returns error, in which case - * no refcounts are taken. - */ static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) { char *token, *o = data; bool all_ss = false, one_ss = false; - unsigned long mask = (unsigned long)-1; + unsigned int mask = -1U; + struct cgroup_subsys *ss; int i; - bool module_pin_failed = false; - - BUG_ON(!mutex_is_locked(&cgroup_mutex)); #ifdef CONFIG_CPUSETS - mask = ~(1UL << cpuset_subsys_id); + mask = ~(1U << cpuset_cgrp_id); #endif memset(opts, 0, sizeof(*opts)); @@ -1126,12 +1291,20 @@ static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) all_ss = true; continue; } + if (!strcmp(token, "__DEVEL__sane_behavior")) { + opts->flags |= CGRP_ROOT_SANE_BEHAVIOR; + continue; + } if (!strcmp(token, "noprefix")) { - set_bit(ROOT_NOPREFIX, &opts->flags); + opts->flags |= CGRP_ROOT_NOPREFIX; continue; } if (!strcmp(token, "clone_children")) { - opts->clone_children = true; + opts->cpuset_clone_children = true; + continue; + } + if (!strcmp(token, "xattr")) { + opts->flags |= CGRP_ROOT_XATTR; continue; } if (!strncmp(token, "release_agent=", 14)) { @@ -1170,10 +1343,7 @@ static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) continue; } - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { - struct cgroup_subsys *ss = subsys[i]; - if (ss == NULL) - continue; + for_each_subsys(ss, i) { if (strcmp(token, ss->name)) continue; if (ss->disabled) @@ -1182,7 +1352,7 @@ static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) /* Mutually exclusive option 'all' + subsystem name */ if (all_ss) return -EINVAL; - set_bit(i, &opts->subsys_bits); + opts->subsys_mask |= (1 << i); one_ss = true; break; @@ -1191,501 +1361,479 @@ static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) return -ENOENT; } - /* - * If the 'all' option was specified select all the subsystems, - * otherwise if 'none', 'name=' and a subsystem name options - * were not specified, let's default to 'all' - */ - if (all_ss || (!one_ss && !opts->none && !opts->name)) { - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { - struct cgroup_subsys *ss = subsys[i]; - if (ss == NULL) - continue; - if (ss->disabled) - continue; - set_bit(i, &opts->subsys_bits); + /* Consistency checks */ + + if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) { + pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n"); + + if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) || + opts->cpuset_clone_children || opts->release_agent || + opts->name) { + pr_err("sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n"); + return -EINVAL; } - } + } else { + /* + * If the 'all' option was specified select all the + * subsystems, otherwise if 'none', 'name=' and a subsystem + * name options were not specified, let's default to 'all' + */ + if (all_ss || (!one_ss && !opts->none && !opts->name)) + for_each_subsys(ss, i) + if (!ss->disabled) + opts->subsys_mask |= (1 << i); - /* Consistency checks */ + /* + * We either have to specify by name or by subsystems. (So + * all empty hierarchies must have a name). + */ + if (!opts->subsys_mask && !opts->name) + return -EINVAL; + } /* * Option noprefix was introduced just for backward compatibility * with the old cpuset, so we allow noprefix only if mounting just * the cpuset subsystem. */ - if (test_bit(ROOT_NOPREFIX, &opts->flags) && - (opts->subsys_bits & mask)) + if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask)) return -EINVAL; /* Can't specify "none" and some subsystems */ - if (opts->subsys_bits && opts->none) - return -EINVAL; - - /* - * We either have to specify by name or by subsystems. (So all - * empty hierarchies must have a name). - */ - if (!opts->subsys_bits && !opts->name) + if (opts->subsys_mask && opts->none) return -EINVAL; - /* - * Grab references on all the modules we'll need, so the subsystems - * don't dance around before rebind_subsystems attaches them. This may - * take duplicate reference counts on a subsystem that's already used, - * but rebind_subsystems handles this case. - */ - for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) { - unsigned long bit = 1UL << i; - - if (!(bit & opts->subsys_bits)) - continue; - if (!try_module_get(subsys[i]->module)) { - module_pin_failed = true; - break; - } - } - if (module_pin_failed) { - /* - * oops, one of the modules was going away. this means that we - * raced with a module_delete call, and to the user this is - * essentially a "subsystem doesn't exist" case. - */ - for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) { - /* drop refcounts only on the ones we took */ - unsigned long bit = 1UL << i; - - if (!(bit & opts->subsys_bits)) - continue; - module_put(subsys[i]->module); - } - return -ENOENT; - } - return 0; } -static void drop_parsed_module_refcounts(unsigned long subsys_bits) -{ - int i; - for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) { - unsigned long bit = 1UL << i; - - if (!(bit & subsys_bits)) - continue; - module_put(subsys[i]->module); - } -} - -static int cgroup_remount(struct super_block *sb, int *flags, char *data) +static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) { int ret = 0; - struct cgroupfs_root *root = sb->s_fs_info; - struct cgroup *cgrp = &root->top_cgroup; + struct cgroup_root *root = cgroup_root_from_kf(kf_root); struct cgroup_sb_opts opts; + unsigned int added_mask, removed_mask; + + if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) { + pr_err("sane_behavior: remount is not allowed\n"); + return -EINVAL; + } - mutex_lock(&cgrp->dentry->d_inode->i_mutex); mutex_lock(&cgroup_mutex); - mutex_lock(&cgroup_root_mutex); /* See what subsystems are wanted */ ret = parse_cgroupfs_options(data, &opts); if (ret) goto out_unlock; + if (opts.subsys_mask != root->subsys_mask || opts.release_agent) + pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", + task_tgid_nr(current), current->comm); + + added_mask = opts.subsys_mask & ~root->subsys_mask; + removed_mask = root->subsys_mask & ~opts.subsys_mask; + /* Don't allow flags or name to change at remount */ - if (opts.flags != root->flags || + if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) || (opts.name && strcmp(opts.name, root->name))) { + pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n", + opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "", + root->flags & CGRP_ROOT_OPTION_MASK, root->name); ret = -EINVAL; - drop_parsed_module_refcounts(opts.subsys_bits); goto out_unlock; } - ret = rebind_subsystems(root, opts.subsys_bits); - if (ret) { - drop_parsed_module_refcounts(opts.subsys_bits); + /* remounting is not allowed for populated hierarchies */ + if (!list_empty(&root->cgrp.self.children)) { + ret = -EBUSY; goto out_unlock; } - /* (re)populate subsystem files */ - cgroup_populate_dir(cgrp); + ret = rebind_subsystems(root, added_mask); + if (ret) + goto out_unlock; - if (opts.release_agent) + rebind_subsystems(&cgrp_dfl_root, removed_mask); + + if (opts.release_agent) { + spin_lock(&release_agent_path_lock); strcpy(root->release_agent_path, opts.release_agent); + spin_unlock(&release_agent_path_lock); + } out_unlock: kfree(opts.release_agent); kfree(opts.name); - mutex_unlock(&cgroup_root_mutex); mutex_unlock(&cgroup_mutex); - mutex_unlock(&cgrp->dentry->d_inode->i_mutex); return ret; } -static const struct super_operations cgroup_ops = { - .statfs = simple_statfs, - .drop_inode = generic_delete_inode, - .show_options = cgroup_show_options, - .remount_fs = cgroup_remount, -}; +/* + * To reduce the fork() overhead for systems that are not actually using + * their cgroups capability, we don't maintain the lists running through + * each css_set to its tasks until we see the list actually used - in other + * words after the first mount. + */ +static bool use_task_css_set_links __read_mostly; -static void init_cgroup_housekeeping(struct cgroup *cgrp) +static void cgroup_enable_task_cg_lists(void) { - INIT_LIST_HEAD(&cgrp->sibling); - INIT_LIST_HEAD(&cgrp->children); - INIT_LIST_HEAD(&cgrp->css_sets); - INIT_LIST_HEAD(&cgrp->release_list); - INIT_LIST_HEAD(&cgrp->pidlists); - mutex_init(&cgrp->pidlist_mutex); - INIT_LIST_HEAD(&cgrp->event_list); - spin_lock_init(&cgrp->event_list_lock); -} + struct task_struct *p, *g; -static void init_cgroup_root(struct cgroupfs_root *root) -{ - struct cgroup *cgrp = &root->top_cgroup; - INIT_LIST_HEAD(&root->subsys_list); - INIT_LIST_HEAD(&root->root_list); - root->number_of_cgroups = 1; - cgrp->root = root; - cgrp->top_cgroup = cgrp; - init_cgroup_housekeeping(cgrp); -} + down_write(&css_set_rwsem); -static bool init_root_id(struct cgroupfs_root *root) -{ - int ret = 0; + if (use_task_css_set_links) + goto out_unlock; - do { - if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL)) - return false; - spin_lock(&hierarchy_id_lock); - /* Try to allocate the next unused ID */ - ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id, - &root->hierarchy_id); - if (ret == -ENOSPC) - /* Try again starting from 0 */ - ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id); - if (!ret) { - next_hierarchy_id = root->hierarchy_id + 1; - } else if (ret != -EAGAIN) { - /* Can only get here if the 31-bit IDR is full ... */ - BUG_ON(ret); + use_task_css_set_links = true; + + /* + * We need tasklist_lock because RCU is not safe against + * while_each_thread(). Besides, a forking task that has passed + * cgroup_post_fork() without seeing use_task_css_set_links = 1 + * is not guaranteed to have its child immediately visible in the + * tasklist if we walk through it with RCU. + */ + read_lock(&tasklist_lock); + do_each_thread(g, p) { + WARN_ON_ONCE(!list_empty(&p->cg_list) || + task_css_set(p) != &init_css_set); + + /* + * We should check if the process is exiting, otherwise + * it will race with cgroup_exit() in that the list + * entry won't be deleted though the process has exited. + * Do it while holding siglock so that we don't end up + * racing against cgroup_exit(). + */ + spin_lock_irq(&p->sighand->siglock); + if (!(p->flags & PF_EXITING)) { + struct css_set *cset = task_css_set(p); + + list_add(&p->cg_list, &cset->tasks); + get_css_set(cset); } - spin_unlock(&hierarchy_id_lock); - } while (ret); - return true; + spin_unlock_irq(&p->sighand->siglock); + } while_each_thread(g, p); + read_unlock(&tasklist_lock); +out_unlock: + up_write(&css_set_rwsem); } -static int cgroup_test_super(struct super_block *sb, void *data) +static void init_cgroup_housekeeping(struct cgroup *cgrp) { - struct cgroup_sb_opts *opts = data; - struct cgroupfs_root *root = sb->s_fs_info; + struct cgroup_subsys *ss; + int ssid; - /* If we asked for a name then it must match */ - if (opts->name && strcmp(opts->name, root->name)) - return 0; + INIT_LIST_HEAD(&cgrp->self.sibling); + INIT_LIST_HEAD(&cgrp->self.children); + INIT_LIST_HEAD(&cgrp->cset_links); + INIT_LIST_HEAD(&cgrp->release_list); + INIT_LIST_HEAD(&cgrp->pidlists); + mutex_init(&cgrp->pidlist_mutex); + cgrp->self.cgroup = cgrp; + cgrp->self.flags |= CSS_ONLINE; - /* - * If we asked for subsystems (or explicitly for no - * subsystems) then they must match - */ - if ((opts->subsys_bits || opts->none) - && (opts->subsys_bits != root->subsys_bits)) - return 0; + for_each_subsys(ss, ssid) + INIT_LIST_HEAD(&cgrp->e_csets[ssid]); - return 1; + init_waitqueue_head(&cgrp->offline_waitq); } -static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts) +static void init_cgroup_root(struct cgroup_root *root, + struct cgroup_sb_opts *opts) { - struct cgroupfs_root *root; - - if (!opts->subsys_bits && !opts->none) - return NULL; - - root = kzalloc(sizeof(*root), GFP_KERNEL); - if (!root) - return ERR_PTR(-ENOMEM); + struct cgroup *cgrp = &root->cgrp; - if (!init_root_id(root)) { - kfree(root); - return ERR_PTR(-ENOMEM); - } - init_cgroup_root(root); + INIT_LIST_HEAD(&root->root_list); + atomic_set(&root->nr_cgrps, 1); + cgrp->root = root; + init_cgroup_housekeeping(cgrp); + idr_init(&root->cgroup_idr); - root->subsys_bits = opts->subsys_bits; root->flags = opts->flags; if (opts->release_agent) strcpy(root->release_agent_path, opts->release_agent); if (opts->name) strcpy(root->name, opts->name); - if (opts->clone_children) - set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags); - return root; + if (opts->cpuset_clone_children) + set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); } -static void cgroup_drop_root(struct cgroupfs_root *root) +static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask) { - if (!root) - return; - - BUG_ON(!root->hierarchy_id); - spin_lock(&hierarchy_id_lock); - ida_remove(&hierarchy_ida, root->hierarchy_id); - spin_unlock(&hierarchy_id_lock); - kfree(root); -} + LIST_HEAD(tmp_links); + struct cgroup *root_cgrp = &root->cgrp; + struct css_set *cset; + int i, ret; -static int cgroup_set_super(struct super_block *sb, void *data) -{ - int ret; - struct cgroup_sb_opts *opts = data; + lockdep_assert_held(&cgroup_mutex); - /* If we don't have a new root, we can't set up a new sb */ - if (!opts->new_root) - return -EINVAL; + ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT); + if (ret < 0) + goto out; + root_cgrp->id = ret; - BUG_ON(!opts->subsys_bits && !opts->none); + ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release); + if (ret) + goto out; - ret = set_anon_super(sb, NULL); + /* + * We're accessing css_set_count without locking css_set_rwsem here, + * but that's OK - it can only be increased by someone holding + * cgroup_lock, and that's us. The worst that can happen is that we + * have some link structures left over + */ + ret = allocate_cgrp_cset_links(css_set_count, &tmp_links); if (ret) - return ret; + goto cancel_ref; - sb->s_fs_info = opts->new_root; - opts->new_root->sb = sb; + ret = cgroup_init_root_id(root); + if (ret) + goto cancel_ref; + + root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops, + KERNFS_ROOT_CREATE_DEACTIVATED, + root_cgrp); + if (IS_ERR(root->kf_root)) { + ret = PTR_ERR(root->kf_root); + goto exit_root_id; + } + root_cgrp->kn = root->kf_root->kn; - sb->s_blocksize = PAGE_CACHE_SIZE; - sb->s_blocksize_bits = PAGE_CACHE_SHIFT; - sb->s_magic = CGROUP_SUPER_MAGIC; - sb->s_op = &cgroup_ops; + ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true); + if (ret) + goto destroy_root; - return 0; -} + ret = rebind_subsystems(root, ss_mask); + if (ret) + goto destroy_root; -static int cgroup_get_rootdir(struct super_block *sb) -{ - static const struct dentry_operations cgroup_dops = { - .d_iput = cgroup_diput, - .d_delete = cgroup_delete, - }; + /* + * There must be no failure case after here, since rebinding takes + * care of subsystems' refcounts, which are explicitly dropped in + * the failure exit path. + */ + list_add(&root->root_list, &cgroup_roots); + cgroup_root_count++; - struct inode *inode = - cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb); - struct dentry *dentry; + /* + * Link the root cgroup in this hierarchy into all the css_set + * objects. + */ + down_write(&css_set_rwsem); + hash_for_each(css_set_table, i, cset, hlist) + link_css_set(&tmp_links, cset, root_cgrp); + up_write(&css_set_rwsem); - if (!inode) - return -ENOMEM; + BUG_ON(!list_empty(&root_cgrp->self.children)); + BUG_ON(atomic_read(&root->nr_cgrps) != 1); - inode->i_fop = &simple_dir_operations; - inode->i_op = &cgroup_dir_inode_operations; - /* directories start off with i_nlink == 2 (for "." entry) */ - inc_nlink(inode); - dentry = d_alloc_root(inode); - if (!dentry) { - iput(inode); - return -ENOMEM; - } - sb->s_root = dentry; - /* for everything else we want ->d_op set */ - sb->s_d_op = &cgroup_dops; - return 0; + kernfs_activate(root_cgrp->kn); + ret = 0; + goto out; + +destroy_root: + kernfs_destroy_root(root->kf_root); + root->kf_root = NULL; +exit_root_id: + cgroup_exit_root_id(root); +cancel_ref: + percpu_ref_cancel_init(&root_cgrp->self.refcnt); +out: + free_cgrp_cset_links(&tmp_links); + return ret; } static struct dentry *cgroup_mount(struct file_system_type *fs_type, int flags, const char *unused_dev_name, void *data) { + struct super_block *pinned_sb = NULL; + struct cgroup_subsys *ss; + struct cgroup_root *root; struct cgroup_sb_opts opts; - struct cgroupfs_root *root; - int ret = 0; - struct super_block *sb; - struct cgroupfs_root *new_root; - struct inode *inode; + struct dentry *dentry; + int ret; + int i; + bool new_sb; + + /* + * The first time anyone tries to mount a cgroup, enable the list + * linking each css_set to its tasks and fix up all existing tasks. + */ + if (!use_task_css_set_links) + cgroup_enable_task_cg_lists(); - /* First find the desired set of subsystems */ mutex_lock(&cgroup_mutex); + + /* First find the desired set of subsystems */ ret = parse_cgroupfs_options(data, &opts); - mutex_unlock(&cgroup_mutex); if (ret) - goto out_err; + goto out_unlock; - /* - * Allocate a new cgroup root. We may not need it if we're - * reusing an existing hierarchy. - */ - new_root = cgroup_root_from_opts(&opts); - if (IS_ERR(new_root)) { - ret = PTR_ERR(new_root); - goto drop_modules; - } - opts.new_root = new_root; - - /* Locate an existing or new sb for this hierarchy */ - sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts); - if (IS_ERR(sb)) { - ret = PTR_ERR(sb); - cgroup_drop_root(opts.new_root); - goto drop_modules; + /* look for a matching existing root */ + if (!opts.subsys_mask && !opts.none && !opts.name) { + cgrp_dfl_root_visible = true; + root = &cgrp_dfl_root; + cgroup_get(&root->cgrp); + ret = 0; + goto out_unlock; } - root = sb->s_fs_info; - BUG_ON(!root); - if (root == opts.new_root) { - /* We used the new root structure, so this is a new hierarchy */ - struct list_head tmp_cg_links; - struct cgroup *root_cgrp = &root->top_cgroup; - struct cgroupfs_root *existing_root; - const struct cred *cred; - int i; - - BUG_ON(sb->s_root != NULL); + /* + * Destruction of cgroup root is asynchronous, so subsystems may + * still be dying after the previous unmount. Let's drain the + * dying subsystems. We just need to ensure that the ones + * unmounted previously finish dying and don't care about new ones + * starting. Testing ref liveliness is good enough. + */ + for_each_subsys(ss, i) { + if (!(opts.subsys_mask & (1 << i)) || + ss->root == &cgrp_dfl_root) + continue; - ret = cgroup_get_rootdir(sb); - if (ret) - goto drop_new_super; - inode = sb->s_root->d_inode; + if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) { + mutex_unlock(&cgroup_mutex); + msleep(10); + ret = restart_syscall(); + goto out_free; + } + cgroup_put(&ss->root->cgrp); + } - mutex_lock(&inode->i_mutex); - mutex_lock(&cgroup_mutex); - mutex_lock(&cgroup_root_mutex); + for_each_root(root) { + bool name_match = false; - /* Check for name clashes with existing mounts */ - ret = -EBUSY; - if (strlen(root->name)) - for_each_active_root(existing_root) - if (!strcmp(existing_root->name, root->name)) - goto unlock_drop; + if (root == &cgrp_dfl_root) + continue; /* - * We're accessing css_set_count without locking - * css_set_lock here, but that's OK - it can only be - * increased by someone holding cgroup_lock, and - * that's us. The worst that can happen is that we - * have some link structures left over + * If we asked for a name then it must match. Also, if + * name matches but sybsys_mask doesn't, we should fail. + * Remember whether name matched. */ - ret = allocate_cg_links(css_set_count, &tmp_cg_links); - if (ret) - goto unlock_drop; - - ret = rebind_subsystems(root, root->subsys_bits); - if (ret == -EBUSY) { - free_cg_links(&tmp_cg_links); - goto unlock_drop; + if (opts.name) { + if (strcmp(opts.name, root->name)) + continue; + name_match = true; } + /* - * There must be no failure case after here, since rebinding - * takes care of subsystems' refcounts, which are explicitly - * dropped in the failure exit path. + * If we asked for subsystems (or explicitly for no + * subsystems) then they must match. */ + if ((opts.subsys_mask || opts.none) && + (opts.subsys_mask != root->subsys_mask)) { + if (!name_match) + continue; + ret = -EBUSY; + goto out_unlock; + } - /* EBUSY should be the only error here */ - BUG_ON(ret); - - list_add(&root->root_list, &roots); - root_count++; - - sb->s_root->d_fsdata = root_cgrp; - root->top_cgroup.dentry = sb->s_root; - - /* Link the top cgroup in this hierarchy into all - * the css_set objects */ - write_lock(&css_set_lock); - for (i = 0; i < CSS_SET_TABLE_SIZE; i++) { - struct hlist_head *hhead = &css_set_table[i]; - struct hlist_node *node; - struct css_set *cg; + if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) { + if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) { + pr_err("sane_behavior: new mount options should match the existing superblock\n"); + ret = -EINVAL; + goto out_unlock; + } else { + pr_warn("new mount options do not match the existing superblock, will be ignored\n"); + } + } - hlist_for_each_entry(cg, node, hhead, hlist) - link_css_set(&tmp_cg_links, cg, root_cgrp); + /* + * We want to reuse @root whose lifetime is governed by its + * ->cgrp. Let's check whether @root is alive and keep it + * that way. As cgroup_kill_sb() can happen anytime, we + * want to block it by pinning the sb so that @root doesn't + * get killed before mount is complete. + * + * With the sb pinned, tryget_live can reliably indicate + * whether @root can be reused. If it's being killed, + * drain it. We can use wait_queue for the wait but this + * path is super cold. Let's just sleep a bit and retry. + */ + pinned_sb = kernfs_pin_sb(root->kf_root, NULL); + if (IS_ERR(pinned_sb) || + !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) { + mutex_unlock(&cgroup_mutex); + if (!IS_ERR_OR_NULL(pinned_sb)) + deactivate_super(pinned_sb); + msleep(10); + ret = restart_syscall(); + goto out_free; } - write_unlock(&css_set_lock); - free_cg_links(&tmp_cg_links); + ret = 0; + goto out_unlock; + } - BUG_ON(!list_empty(&root_cgrp->sibling)); - BUG_ON(!list_empty(&root_cgrp->children)); - BUG_ON(root->number_of_cgroups != 1); + /* + * No such thing, create a new one. name= matching without subsys + * specification is allowed for already existing hierarchies but we + * can't create new one without subsys specification. + */ + if (!opts.subsys_mask && !opts.none) { + ret = -EINVAL; + goto out_unlock; + } - cred = override_creds(&init_cred); - cgroup_populate_dir(root_cgrp); - revert_creds(cred); - mutex_unlock(&cgroup_root_mutex); - mutex_unlock(&cgroup_mutex); - mutex_unlock(&inode->i_mutex); - } else { - /* - * We re-used an existing hierarchy - the new root (if - * any) is not needed - */ - cgroup_drop_root(opts.new_root); - /* no subsys rebinding, so refcounts don't change */ - drop_parsed_module_refcounts(opts.subsys_bits); + root = kzalloc(sizeof(*root), GFP_KERNEL); + if (!root) { + ret = -ENOMEM; + goto out_unlock; } - kfree(opts.release_agent); - kfree(opts.name); - return dget(sb->s_root); + init_cgroup_root(root, &opts); + + ret = cgroup_setup_root(root, opts.subsys_mask); + if (ret) + cgroup_free_root(root); - unlock_drop: - mutex_unlock(&cgroup_root_mutex); +out_unlock: mutex_unlock(&cgroup_mutex); - mutex_unlock(&inode->i_mutex); - drop_new_super: - deactivate_locked_super(sb); - drop_modules: - drop_parsed_module_refcounts(opts.subsys_bits); - out_err: +out_free: kfree(opts.release_agent); kfree(opts.name); - return ERR_PTR(ret); -} - -static void cgroup_kill_sb(struct super_block *sb) { - struct cgroupfs_root *root = sb->s_fs_info; - struct cgroup *cgrp = &root->top_cgroup; - int ret; - struct cg_cgroup_link *link; - struct cg_cgroup_link *saved_link; - BUG_ON(!root); - - BUG_ON(root->number_of_cgroups != 1); - BUG_ON(!list_empty(&cgrp->children)); - BUG_ON(!list_empty(&cgrp->sibling)); - - mutex_lock(&cgroup_mutex); - mutex_lock(&cgroup_root_mutex); + if (ret) + return ERR_PTR(ret); - /* Rebind all subsystems back to the default hierarchy */ - ret = rebind_subsystems(root, 0); - /* Shouldn't be able to fail ... */ - BUG_ON(ret); + dentry = kernfs_mount(fs_type, flags, root->kf_root, + CGROUP_SUPER_MAGIC, &new_sb); + if (IS_ERR(dentry) || !new_sb) + cgroup_put(&root->cgrp); /* - * Release all the links from css_sets to this hierarchy's - * root cgroup + * If @pinned_sb, we're reusing an existing root and holding an + * extra ref on its sb. Mount is complete. Put the extra ref. */ - write_lock(&css_set_lock); - - list_for_each_entry_safe(link, saved_link, &cgrp->css_sets, - cgrp_link_list) { - list_del(&link->cg_link_list); - list_del(&link->cgrp_link_list); - kfree(link); + if (pinned_sb) { + WARN_ON(new_sb); + deactivate_super(pinned_sb); } - write_unlock(&css_set_lock); - if (!list_empty(&root->root_list)) { - list_del(&root->root_list); - root_count--; - } + return dentry; +} - mutex_unlock(&cgroup_root_mutex); - mutex_unlock(&cgroup_mutex); +static void cgroup_kill_sb(struct super_block *sb) +{ + struct kernfs_root *kf_root = kernfs_root_from_sb(sb); + struct cgroup_root *root = cgroup_root_from_kf(kf_root); + + /* + * If @root doesn't have any mounts or children, start killing it. + * This prevents new mounts by disabling percpu_ref_tryget_live(). + * cgroup_mount() may wait for @root's release. + * + * And don't kill the default root. + */ + if (css_has_online_children(&root->cgrp.self) || + root == &cgrp_dfl_root) + cgroup_put(&root->cgrp); + else + percpu_ref_kill(&root->cgrp.self.refcnt); - kill_litter_super(sb); - cgroup_drop_root(root); + kernfs_kill_sb(sb); } static struct file_system_type cgroup_fs_type = { @@ -1696,81 +1844,66 @@ static struct file_system_type cgroup_fs_type = { static struct kobject *cgroup_kobj; -static inline struct cgroup *__d_cgrp(struct dentry *dentry) -{ - return dentry->d_fsdata; -} - -static inline struct cftype *__d_cft(struct dentry *dentry) -{ - return dentry->d_fsdata; -} - /** - * cgroup_path - generate the path of a cgroup - * @cgrp: the cgroup in question + * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy + * @task: target task * @buf: the buffer to write the path into * @buflen: the length of the buffer * - * Called with cgroup_mutex held or else with an RCU-protected cgroup - * reference. Writes path of cgroup into buf. Returns 0 on success, - * -errno on error. + * Determine @task's cgroup on the first (the one with the lowest non-zero + * hierarchy_id) cgroup hierarchy and copy its path into @buf. This + * function grabs cgroup_mutex and shouldn't be used inside locks used by + * cgroup controller callbacks. + * + * Return value is the same as kernfs_path(). */ -int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen) +char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) { - char *start; - struct dentry *dentry = rcu_dereference_check(cgrp->dentry, - cgroup_lock_is_held()); - - if (!dentry || cgrp == dummytop) { - /* - * Inactive subsystems have no dentry for their root - * cgroup - */ - strcpy(buf, "/"); - return 0; - } - - start = buf + buflen; + struct cgroup_root *root; + struct cgroup *cgrp; + int hierarchy_id = 1; + char *path = NULL; - *--start = '\0'; - for (;;) { - int len = dentry->d_name.len; + mutex_lock(&cgroup_mutex); + down_read(&css_set_rwsem); - if ((start -= len) < buf) - return -ENAMETOOLONG; - memcpy(start, dentry->d_name.name, len); - cgrp = cgrp->parent; - if (!cgrp) - break; + root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); - dentry = rcu_dereference_check(cgrp->dentry, - cgroup_lock_is_held()); - if (!cgrp->parent) - continue; - if (--start < buf) - return -ENAMETOOLONG; - *start = '/'; + if (root) { + cgrp = task_cgroup_from_root(task, root); + path = cgroup_path(cgrp, buf, buflen); + } else { + /* if no hierarchy exists, everyone is in "/" */ + if (strlcpy(buf, "/", buflen) < buflen) + path = buf; } - memmove(buf, start, buf + buflen - start); - return 0; -} -EXPORT_SYMBOL_GPL(cgroup_path); -/* - * Control Group taskset - */ -struct task_and_cgroup { - struct task_struct *task; - struct cgroup *cgrp; -}; + up_read(&css_set_rwsem); + mutex_unlock(&cgroup_mutex); + return path; +} +EXPORT_SYMBOL_GPL(task_cgroup_path); +/* used to track tasks and other necessary states during migration */ struct cgroup_taskset { - struct task_and_cgroup single; - struct flex_array *tc_array; - int tc_array_len; - int idx; - struct cgroup *cur_cgrp; + /* the src and dst cset list running through cset->mg_node */ + struct list_head src_csets; + struct list_head dst_csets; + + /* + * Fields for cgroup_taskset_*() iteration. + * + * Before migration is committed, the target migration tasks are on + * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of + * the csets on ->dst_csets. ->csets point to either ->src_csets + * or ->dst_csets depending on whether migration is committed. + * + * ->cur_csets and ->cur_task point to the current task position + * during iteration. + */ + struct list_head *csets; + struct css_set *cur_cset; + struct task_struct *cur_task; }; /** @@ -1781,15 +1914,11 @@ struct cgroup_taskset { */ struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset) { - if (tset->tc_array) { - tset->idx = 0; - return cgroup_taskset_next(tset); - } else { - tset->cur_cgrp = tset->single.cgrp; - return tset->single.task; - } + tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); + tset->cur_task = NULL; + + return cgroup_taskset_next(tset); } -EXPORT_SYMBOL_GPL(cgroup_taskset_first); /** * cgroup_taskset_next - iterate to the next task in taskset @@ -1800,54 +1929,45 @@ EXPORT_SYMBOL_GPL(cgroup_taskset_first); */ struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset) { - struct task_and_cgroup *tc; + struct css_set *cset = tset->cur_cset; + struct task_struct *task = tset->cur_task; - if (!tset->tc_array || tset->idx >= tset->tc_array_len) - return NULL; + while (&cset->mg_node != tset->csets) { + if (!task) + task = list_first_entry(&cset->mg_tasks, + struct task_struct, cg_list); + else + task = list_next_entry(task, cg_list); - tc = flex_array_get(tset->tc_array, tset->idx++); - tset->cur_cgrp = tc->cgrp; - return tc->task; -} -EXPORT_SYMBOL_GPL(cgroup_taskset_next); + if (&task->cg_list != &cset->mg_tasks) { + tset->cur_cset = cset; + tset->cur_task = task; + return task; + } -/** - * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task - * @tset: taskset of interest - * - * Return the cgroup for the current (last returned) task of @tset. This - * function must be preceded by either cgroup_taskset_first() or - * cgroup_taskset_next(). - */ -struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset) -{ - return tset->cur_cgrp; -} -EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup); + cset = list_next_entry(cset, mg_node); + task = NULL; + } -/** - * cgroup_taskset_size - return the number of tasks in taskset - * @tset: taskset of interest - */ -int cgroup_taskset_size(struct cgroup_taskset *tset) -{ - return tset->tc_array ? tset->tc_array_len : 1; + return NULL; } -EXPORT_SYMBOL_GPL(cgroup_taskset_size); - -/* +/** * cgroup_task_migrate - move a task from one cgroup to another. + * @old_cgrp: the cgroup @tsk is being migrated from + * @tsk: the task being migrated + * @new_cset: the new css_set @tsk is being attached to * - * 'guarantee' is set if the caller promises that a new css_set for the task - * will already exist. If not set, this function might sleep, and can fail with - * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked. + * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked. */ -static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp, - struct task_struct *tsk, bool guarantee) +static void cgroup_task_migrate(struct cgroup *old_cgrp, + struct task_struct *tsk, + struct css_set *new_cset) { - struct css_set *oldcg; - struct css_set *newcg; + struct css_set *old_cset; + + lockdep_assert_held(&cgroup_mutex); + lockdep_assert_held(&css_set_rwsem); /* * We are synchronized through threadgroup_lock() against PF_EXITING @@ -1855,1182 +1975,1584 @@ static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp, * css_set to init_css_set and dropping the old one. */ WARN_ON_ONCE(tsk->flags & PF_EXITING); - oldcg = tsk->cgroups; - - /* locate or allocate a new css_set for this task. */ - if (guarantee) { - /* we know the css_set we want already exists. */ - struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; - read_lock(&css_set_lock); - newcg = find_existing_css_set(oldcg, cgrp, template); - BUG_ON(!newcg); - get_css_set(newcg); - read_unlock(&css_set_lock); - } else { - might_sleep(); - /* find_css_set will give us newcg already referenced. */ - newcg = find_css_set(oldcg, cgrp); - if (!newcg) - return -ENOMEM; - } - - task_lock(tsk); - rcu_assign_pointer(tsk->cgroups, newcg); - task_unlock(tsk); + old_cset = task_css_set(tsk); - /* Update the css_set linked lists if we're using them */ - write_lock(&css_set_lock); - if (!list_empty(&tsk->cg_list)) - list_move(&tsk->cg_list, &newcg->tasks); - write_unlock(&css_set_lock); + get_css_set(new_cset); + rcu_assign_pointer(tsk->cgroups, new_cset); /* - * We just gained a reference on oldcg by taking it from the task. As - * trading it for newcg is protected by cgroup_mutex, we're safe to drop - * it here; it will be freed under RCU. + * Use move_tail so that cgroup_taskset_first() still returns the + * leader after migration. This works because cgroup_migrate() + * ensures that the dst_cset of the leader is the first on the + * tset's dst_csets list. */ - put_css_set(oldcg); + list_move_tail(&tsk->cg_list, &new_cset->mg_tasks); - set_bit(CGRP_RELEASABLE, &oldcgrp->flags); - return 0; + /* + * We just gained a reference on old_cset by taking it from the + * task. As trading it for new_cset is protected by cgroup_mutex, + * we're safe to drop it here; it will be freed under RCU. + */ + set_bit(CGRP_RELEASABLE, &old_cgrp->flags); + put_css_set_locked(old_cset, false); } /** - * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp' - * @cgrp: the cgroup the task is attaching to - * @tsk: the task to be attached + * cgroup_migrate_finish - cleanup after attach + * @preloaded_csets: list of preloaded css_sets * - * Call with cgroup_mutex and threadgroup locked. May take task_lock of - * @tsk during call. + * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See + * those functions for details. */ -int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) +static void cgroup_migrate_finish(struct list_head *preloaded_csets) { - int retval; - struct cgroup_subsys *ss, *failed_ss = NULL; - struct cgroup *oldcgrp; - struct cgroupfs_root *root = cgrp->root; - struct cgroup_taskset tset = { }; - - /* @tsk either already exited or can't exit until the end */ - if (tsk->flags & PF_EXITING) - return -ESRCH; - - /* Nothing to do if the task is already in that cgroup */ - oldcgrp = task_cgroup_from_root(tsk, root); - if (cgrp == oldcgrp) - return 0; - - tset.single.task = tsk; - tset.single.cgrp = oldcgrp; - - for_each_subsys(root, ss) { - if (ss->can_attach) { - retval = ss->can_attach(ss, cgrp, &tset); - if (retval) { - /* - * Remember on which subsystem the can_attach() - * failed, so that we only call cancel_attach() - * against the subsystems whose can_attach() - * succeeded. (See below) - */ - failed_ss = ss; - goto out; - } - } - } + struct css_set *cset, *tmp_cset; - retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false); - if (retval) - goto out; + lockdep_assert_held(&cgroup_mutex); - for_each_subsys(root, ss) { - if (ss->attach) - ss->attach(ss, cgrp, &tset); + down_write(&css_set_rwsem); + list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) { + cset->mg_src_cgrp = NULL; + cset->mg_dst_cset = NULL; + list_del_init(&cset->mg_preload_node); + put_css_set_locked(cset, false); } - - synchronize_rcu(); - - /* - * wake up rmdir() waiter. the rmdir should fail since the cgroup - * is no longer empty. - */ - cgroup_wakeup_rmdir_waiter(cgrp); -out: - if (retval) { - for_each_subsys(root, ss) { - if (ss == failed_ss) - /* - * This subsystem was the one that failed the - * can_attach() check earlier, so we don't need - * to call cancel_attach() against it or any - * remaining subsystems. - */ - break; - if (ss->cancel_attach) - ss->cancel_attach(ss, cgrp, &tset); - } - } - return retval; + up_write(&css_set_rwsem); } /** - * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' - * @from: attach to all cgroups of a given task - * @tsk: the task to be attached + * cgroup_migrate_add_src - add a migration source css_set + * @src_cset: the source css_set to add + * @dst_cgrp: the destination cgroup + * @preloaded_csets: list of preloaded css_sets + * + * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin + * @src_cset and add it to @preloaded_csets, which should later be cleaned + * up by cgroup_migrate_finish(). + * + * This function may be called without holding threadgroup_lock even if the + * target is a process. Threads may be created and destroyed but as long + * as cgroup_mutex is not dropped, no new css_set can be put into play and + * the preloaded css_sets are guaranteed to cover all migrations. */ -int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) +static void cgroup_migrate_add_src(struct css_set *src_cset, + struct cgroup *dst_cgrp, + struct list_head *preloaded_csets) { - struct cgroupfs_root *root; - int retval = 0; + struct cgroup *src_cgrp; - cgroup_lock(); - for_each_active_root(root) { - struct cgroup *from_cg = task_cgroup_from_root(from, root); + lockdep_assert_held(&cgroup_mutex); + lockdep_assert_held(&css_set_rwsem); - retval = cgroup_attach_task(from_cg, tsk); - if (retval) - break; - } - cgroup_unlock(); + src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); - return retval; + if (!list_empty(&src_cset->mg_preload_node)) + return; + + WARN_ON(src_cset->mg_src_cgrp); + WARN_ON(!list_empty(&src_cset->mg_tasks)); + WARN_ON(!list_empty(&src_cset->mg_node)); + + src_cset->mg_src_cgrp = src_cgrp; + get_css_set(src_cset); + list_add(&src_cset->mg_preload_node, preloaded_csets); } -EXPORT_SYMBOL_GPL(cgroup_attach_task_all); -/* - * cgroup_attach_proc works in two stages, the first of which prefetches all - * new css_sets needed (to make sure we have enough memory before committing - * to the move) and stores them in a list of entries of the following type. - * TODO: possible optimization: use css_set->rcu_head for chaining instead +/** + * cgroup_migrate_prepare_dst - prepare destination css_sets for migration + * @dst_cgrp: the destination cgroup (may be %NULL) + * @preloaded_csets: list of preloaded source css_sets + * + * Tasks are about to be moved to @dst_cgrp and all the source css_sets + * have been preloaded to @preloaded_csets. This function looks up and + * pins all destination css_sets, links each to its source, and append them + * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each + * source css_set is assumed to be its cgroup on the default hierarchy. + * + * This function must be called after cgroup_migrate_add_src() has been + * called on each migration source css_set. After migration is performed + * using cgroup_migrate(), cgroup_migrate_finish() must be called on + * @preloaded_csets. */ -struct cg_list_entry { - struct css_set *cg; - struct list_head links; -}; - -static bool css_set_check_fetched(struct cgroup *cgrp, - struct task_struct *tsk, struct css_set *cg, - struct list_head *newcg_list) +static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp, + struct list_head *preloaded_csets) { - struct css_set *newcg; - struct cg_list_entry *cg_entry; - struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; + LIST_HEAD(csets); + struct css_set *src_cset, *tmp_cset; - read_lock(&css_set_lock); - newcg = find_existing_css_set(cg, cgrp, template); - read_unlock(&css_set_lock); + lockdep_assert_held(&cgroup_mutex); - /* doesn't exist at all? */ - if (!newcg) - return false; - /* see if it's already in the list */ - list_for_each_entry(cg_entry, newcg_list, links) - if (cg_entry->cg == newcg) - return true; + /* + * Except for the root, child_subsys_mask must be zero for a cgroup + * with tasks so that child cgroups don't compete against tasks. + */ + if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) && + dst_cgrp->child_subsys_mask) + return -EBUSY; - /* not found */ - return false; -} + /* look up the dst cset for each src cset and link it to src */ + list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) { + struct css_set *dst_cset; -/* - * Find the new css_set and store it in the list in preparation for moving the - * given task to the given cgroup. Returns 0 or -ENOMEM. - */ -static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg, - struct list_head *newcg_list) -{ - struct css_set *newcg; - struct cg_list_entry *cg_entry; + dst_cset = find_css_set(src_cset, + dst_cgrp ?: src_cset->dfl_cgrp); + if (!dst_cset) + goto err; - /* ensure a new css_set will exist for this thread */ - newcg = find_css_set(cg, cgrp); - if (!newcg) - return -ENOMEM; - /* add it to the list */ - cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL); - if (!cg_entry) { - put_css_set(newcg); - return -ENOMEM; + WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); + + /* + * If src cset equals dst, it's noop. Drop the src. + * cgroup_migrate() will skip the cset too. Note that we + * can't handle src == dst as some nodes are used by both. + */ + if (src_cset == dst_cset) { + src_cset->mg_src_cgrp = NULL; + list_del_init(&src_cset->mg_preload_node); + put_css_set(src_cset, false); + put_css_set(dst_cset, false); + continue; + } + + src_cset->mg_dst_cset = dst_cset; + + if (list_empty(&dst_cset->mg_preload_node)) + list_add(&dst_cset->mg_preload_node, &csets); + else + put_css_set(dst_cset, false); } - cg_entry->cg = newcg; - list_add(&cg_entry->links, newcg_list); + + list_splice_tail(&csets, preloaded_csets); return 0; +err: + cgroup_migrate_finish(&csets); + return -ENOMEM; } /** - * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup - * @cgrp: the cgroup to attach to - * @leader: the threadgroup leader task_struct of the group to be attached + * cgroup_migrate - migrate a process or task to a cgroup + * @cgrp: the destination cgroup + * @leader: the leader of the process or the task to migrate + * @threadgroup: whether @leader points to the whole process or a single task + * + * Migrate a process or task denoted by @leader to @cgrp. If migrating a + * process, the caller must be holding threadgroup_lock of @leader. The + * caller is also responsible for invoking cgroup_migrate_add_src() and + * cgroup_migrate_prepare_dst() on the targets before invoking this + * function and following up with cgroup_migrate_finish(). * - * Call holding cgroup_mutex and the group_rwsem of the leader. Will take - * task_lock of each thread in leader's threadgroup individually in turn. + * As long as a controller's ->can_attach() doesn't fail, this function is + * guaranteed to succeed. This means that, excluding ->can_attach() + * failure, when migrating multiple targets, the success or failure can be + * decided for all targets by invoking group_migrate_prepare_dst() before + * actually starting migrating. */ -static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader) -{ - int retval, i, group_size; - struct cgroup_subsys *ss, *failed_ss = NULL; - /* guaranteed to be initialized later, but the compiler needs this */ - struct css_set *oldcg; - struct cgroupfs_root *root = cgrp->root; - /* threadgroup list cursor and array */ - struct task_struct *tsk; - struct task_and_cgroup *tc; - struct flex_array *group; - struct cgroup_taskset tset = { }; - /* - * we need to make sure we have css_sets for all the tasks we're - * going to move -before- we actually start moving them, so that in - * case we get an ENOMEM we can bail out before making any changes. - */ - struct list_head newcg_list; - struct cg_list_entry *cg_entry, *temp_nobe; +static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader, + bool threadgroup) +{ + struct cgroup_taskset tset = { + .src_csets = LIST_HEAD_INIT(tset.src_csets), + .dst_csets = LIST_HEAD_INIT(tset.dst_csets), + .csets = &tset.src_csets, + }; + struct cgroup_subsys_state *css, *failed_css = NULL; + struct css_set *cset, *tmp_cset; + struct task_struct *task, *tmp_task; + int i, ret; /* - * step 0: in order to do expensive, possibly blocking operations for - * every thread, we cannot iterate the thread group list, since it needs - * rcu or tasklist locked. instead, build an array of all threads in the - * group - group_rwsem prevents new threads from appearing, and if - * threads exit, this will just be an over-estimate. + * Prevent freeing of tasks while we take a snapshot. Tasks that are + * already PF_EXITING could be freed from underneath us unless we + * take an rcu_read_lock. */ - group_size = get_nr_threads(leader); - /* flex_array supports very large thread-groups better than kmalloc. */ - group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL); - if (!group) - return -ENOMEM; - /* pre-allocate to guarantee space while iterating in rcu read-side. */ - retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL); - if (retval) - goto out_free_group_list; - - /* prevent changes to the threadgroup list while we take a snapshot. */ - read_lock(&tasklist_lock); - if (!thread_group_leader(leader)) { - /* - * a race with de_thread from another thread's exec() may strip - * us of our leadership, making while_each_thread unsafe to use - * on this task. if this happens, there is no choice but to - * throw this task away and try again (from cgroup_procs_write); - * this is "double-double-toil-and-trouble-check locking". - */ - read_unlock(&tasklist_lock); - retval = -EAGAIN; - goto out_free_group_list; - } - - tsk = leader; - i = 0; + down_write(&css_set_rwsem); + rcu_read_lock(); + task = leader; do { - struct task_and_cgroup ent; + /* @task either already exited or can't exit until the end */ + if (task->flags & PF_EXITING) + goto next; - /* @tsk either already exited or can't exit until the end */ - if (tsk->flags & PF_EXITING) - continue; + /* leave @task alone if post_fork() hasn't linked it yet */ + if (list_empty(&task->cg_list)) + goto next; + + cset = task_css_set(task); + if (!cset->mg_src_cgrp) + goto next; - /* as per above, nr_threads may decrease, but not increase. */ - BUG_ON(i >= group_size); /* - * saying GFP_ATOMIC has no effect here because we did prealloc - * earlier, but it's good form to communicate our expectations. + * cgroup_taskset_first() must always return the leader. + * Take care to avoid disturbing the ordering. */ - ent.task = tsk; - ent.cgrp = task_cgroup_from_root(tsk, root); - /* nothing to do if this task is already in the cgroup */ - if (ent.cgrp == cgrp) - continue; - retval = flex_array_put(group, i, &ent, GFP_ATOMIC); - BUG_ON(retval != 0); - i++; - } while_each_thread(leader, tsk); - /* remember the number of threads in the array for later. */ - group_size = i; - tset.tc_array = group; - tset.tc_array_len = group_size; - read_unlock(&tasklist_lock); + list_move_tail(&task->cg_list, &cset->mg_tasks); + if (list_empty(&cset->mg_node)) + list_add_tail(&cset->mg_node, &tset.src_csets); + if (list_empty(&cset->mg_dst_cset->mg_node)) + list_move_tail(&cset->mg_dst_cset->mg_node, + &tset.dst_csets); + next: + if (!threadgroup) + break; + } while_each_thread(leader, task); + rcu_read_unlock(); + up_write(&css_set_rwsem); /* methods shouldn't be called if no task is actually migrating */ - retval = 0; - if (!group_size) - goto out_free_group_list; + if (list_empty(&tset.src_csets)) + return 0; - /* - * step 1: check that we can legitimately attach to the cgroup. - */ - for_each_subsys(root, ss) { - if (ss->can_attach) { - retval = ss->can_attach(ss, cgrp, &tset); - if (retval) { - failed_ss = ss; + /* check that we can legitimately attach to the cgroup */ + for_each_e_css(css, i, cgrp) { + if (css->ss->can_attach) { + ret = css->ss->can_attach(css, &tset); + if (ret) { + failed_css = css; goto out_cancel_attach; } } } /* - * step 2: make sure css_sets exist for all threads to be migrated. - * we use find_css_set, which allocates a new one if necessary. + * Now that we're guaranteed success, proceed to move all tasks to + * the new cgroup. There are no failure cases after here, so this + * is the commit point. */ - INIT_LIST_HEAD(&newcg_list); - for (i = 0; i < group_size; i++) { - tc = flex_array_get(group, i); - oldcg = tc->task->cgroups; - - /* if we don't already have it in the list get a new one */ - if (!css_set_check_fetched(cgrp, tc->task, oldcg, - &newcg_list)) { - retval = css_set_prefetch(cgrp, oldcg, &newcg_list); - if (retval) - goto out_list_teardown; - } + down_write(&css_set_rwsem); + list_for_each_entry(cset, &tset.src_csets, mg_node) { + list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) + cgroup_task_migrate(cset->mg_src_cgrp, task, + cset->mg_dst_cset); } + up_write(&css_set_rwsem); /* - * step 3: now that we're guaranteed success wrt the css_sets, - * proceed to move all tasks to the new cgroup. There are no - * failure cases after here, so this is the commit point. + * Migration is committed, all target tasks are now on dst_csets. + * Nothing is sensitive to fork() after this point. Notify + * controllers that migration is complete. */ - for (i = 0; i < group_size; i++) { - tc = flex_array_get(group, i); - retval = cgroup_task_migrate(cgrp, tc->cgrp, tc->task, true); - BUG_ON(retval); - } - /* nothing is sensitive to fork() after this point. */ + tset.csets = &tset.dst_csets; - /* - * step 4: do subsystem attach callbacks. - */ - for_each_subsys(root, ss) { - if (ss->attach) - ss->attach(ss, cgrp, &tset); - } + for_each_e_css(css, i, cgrp) + if (css->ss->attach) + css->ss->attach(css, &tset); + + ret = 0; + goto out_release_tset; - /* - * step 5: success! and cleanup - */ - synchronize_rcu(); - cgroup_wakeup_rmdir_waiter(cgrp); - retval = 0; -out_list_teardown: - /* clean up the list of prefetched css_sets. */ - list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) { - list_del(&cg_entry->links); - put_css_set(cg_entry->cg); - kfree(cg_entry); - } out_cancel_attach: - /* same deal as in cgroup_attach_task */ - if (retval) { - for_each_subsys(root, ss) { - if (ss == failed_ss) - break; - if (ss->cancel_attach) - ss->cancel_attach(ss, cgrp, &tset); - } + for_each_e_css(css, i, cgrp) { + if (css == failed_css) + break; + if (css->ss->cancel_attach) + css->ss->cancel_attach(css, &tset); } -out_free_group_list: - flex_array_free(group); - return retval; +out_release_tset: + down_write(&css_set_rwsem); + list_splice_init(&tset.dst_csets, &tset.src_csets); + list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) { + list_splice_tail_init(&cset->mg_tasks, &cset->tasks); + list_del_init(&cset->mg_node); + } + up_write(&css_set_rwsem); + return ret; +} + +/** + * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup + * @dst_cgrp: the cgroup to attach to + * @leader: the task or the leader of the threadgroup to be attached + * @threadgroup: attach the whole threadgroup? + * + * Call holding cgroup_mutex and threadgroup_lock of @leader. + */ +static int cgroup_attach_task(struct cgroup *dst_cgrp, + struct task_struct *leader, bool threadgroup) +{ + LIST_HEAD(preloaded_csets); + struct task_struct *task; + int ret; + + /* look up all src csets */ + down_read(&css_set_rwsem); + rcu_read_lock(); + task = leader; + do { + cgroup_migrate_add_src(task_css_set(task), dst_cgrp, + &preloaded_csets); + if (!threadgroup) + break; + } while_each_thread(leader, task); + rcu_read_unlock(); + up_read(&css_set_rwsem); + + /* prepare dst csets and commit */ + ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets); + if (!ret) + ret = cgroup_migrate(dst_cgrp, leader, threadgroup); + + cgroup_migrate_finish(&preloaded_csets); + return ret; } /* * Find the task_struct of the task to attach by vpid and pass it along to the * function to attach either it or all tasks in its threadgroup. Will lock - * cgroup_mutex and threadgroup; may take task_lock of task. + * cgroup_mutex and threadgroup. */ -static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup) +static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off, bool threadgroup) { struct task_struct *tsk; const struct cred *cred = current_cred(), *tcred; + struct cgroup *cgrp; + pid_t pid; int ret; - if (!cgroup_lock_live_group(cgrp)) + if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) + return -EINVAL; + + cgrp = cgroup_kn_lock_live(of->kn); + if (!cgrp) return -ENODEV; +retry_find_task: + rcu_read_lock(); if (pid) { - rcu_read_lock(); tsk = find_task_by_vpid(pid); if (!tsk) { rcu_read_unlock(); - cgroup_unlock(); - return -ESRCH; - } - if (threadgroup) { - /* - * RCU protects this access, since tsk was found in the - * tid map. a race with de_thread may cause group_leader - * to stop being the leader, but cgroup_attach_proc will - * detect it later. - */ - tsk = tsk->group_leader; + ret = -ESRCH; + goto out_unlock_cgroup; } /* * even if we're attaching all tasks in the thread group, we * only need to check permissions on one of them. */ tcred = __task_cred(tsk); - if (cred->euid && - cred->euid != tcred->uid && - cred->euid != tcred->suid) { + if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && + !uid_eq(cred->euid, tcred->uid) && + !uid_eq(cred->euid, tcred->suid)) { rcu_read_unlock(); - cgroup_unlock(); - return -EACCES; + ret = -EACCES; + goto out_unlock_cgroup; } - get_task_struct(tsk); + } else + tsk = current; + + if (threadgroup) + tsk = tsk->group_leader; + + /* + * Workqueue threads may acquire PF_NO_SETAFFINITY and become + * trapped in a cpuset, or RT worker may be born in a cgroup + * with no rt_runtime allocated. Just say no. + */ + if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) { + ret = -EINVAL; rcu_read_unlock(); - } else { - if (threadgroup) - tsk = current->group_leader; - else - tsk = current; - get_task_struct(tsk); + goto out_unlock_cgroup; } + get_task_struct(tsk); + rcu_read_unlock(); + threadgroup_lock(tsk); + if (threadgroup) { + if (!thread_group_leader(tsk)) { + /* + * a race with de_thread from another thread's exec() + * may strip us of our leadership, if this happens, + * there is no choice but to throw this task away and + * try again; this is + * "double-double-toil-and-trouble-check locking". + */ + threadgroup_unlock(tsk); + put_task_struct(tsk); + goto retry_find_task; + } + } - if (threadgroup) - ret = cgroup_attach_proc(cgrp, tsk); - else - ret = cgroup_attach_task(cgrp, tsk); + ret = cgroup_attach_task(cgrp, tsk, threadgroup); threadgroup_unlock(tsk); put_task_struct(tsk); - cgroup_unlock(); - return ret; +out_unlock_cgroup: + cgroup_kn_unlock(of->kn); + return ret ?: nbytes; } -static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid) +/** + * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' + * @from: attach to all cgroups of a given task + * @tsk: the task to be attached + */ +int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) { - return attach_task_by_pid(cgrp, pid, false); + struct cgroup_root *root; + int retval = 0; + + mutex_lock(&cgroup_mutex); + for_each_root(root) { + struct cgroup *from_cgrp; + + if (root == &cgrp_dfl_root) + continue; + + down_read(&css_set_rwsem); + from_cgrp = task_cgroup_from_root(from, root); + up_read(&css_set_rwsem); + + retval = cgroup_attach_task(from_cgrp, tsk, false); + if (retval) + break; + } + mutex_unlock(&cgroup_mutex); + + return retval; } +EXPORT_SYMBOL_GPL(cgroup_attach_task_all); -static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid) +static ssize_t cgroup_tasks_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) { - int ret; - do { - /* - * attach_proc fails with -EAGAIN if threadgroup leadership - * changes in the middle of the operation, in which case we need - * to find the task_struct for the new leader and start over. - */ - ret = attach_task_by_pid(cgrp, tgid, true); - } while (ret == -EAGAIN); - return ret; + return __cgroup_procs_write(of, buf, nbytes, off, false); } -/** - * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. - * @cgrp: the cgroup to be checked for liveness - * - * On success, returns true; the lock should be later released with - * cgroup_unlock(). On failure returns false with no lock held. - */ -bool cgroup_lock_live_group(struct cgroup *cgrp) +static ssize_t cgroup_procs_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) { - mutex_lock(&cgroup_mutex); - if (cgroup_is_removed(cgrp)) { - mutex_unlock(&cgroup_mutex); - return false; - } - return true; + return __cgroup_procs_write(of, buf, nbytes, off, true); } -EXPORT_SYMBOL_GPL(cgroup_lock_live_group); -static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft, - const char *buffer) +static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) { + struct cgroup *cgrp; + BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); - if (strlen(buffer) >= PATH_MAX) - return -EINVAL; - if (!cgroup_lock_live_group(cgrp)) + + cgrp = cgroup_kn_lock_live(of->kn); + if (!cgrp) return -ENODEV; - mutex_lock(&cgroup_root_mutex); - strcpy(cgrp->root->release_agent_path, buffer); - mutex_unlock(&cgroup_root_mutex); - cgroup_unlock(); - return 0; + spin_lock(&release_agent_path_lock); + strlcpy(cgrp->root->release_agent_path, strstrip(buf), + sizeof(cgrp->root->release_agent_path)); + spin_unlock(&release_agent_path_lock); + cgroup_kn_unlock(of->kn); + return nbytes; } -static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft, - struct seq_file *seq) +static int cgroup_release_agent_show(struct seq_file *seq, void *v) { - if (!cgroup_lock_live_group(cgrp)) - return -ENODEV; + struct cgroup *cgrp = seq_css(seq)->cgroup; + + spin_lock(&release_agent_path_lock); seq_puts(seq, cgrp->root->release_agent_path); + spin_unlock(&release_agent_path_lock); seq_putc(seq, '\n'); - cgroup_unlock(); return 0; } -/* A buffer size big enough for numbers or short strings */ -#define CGROUP_LOCAL_BUFFER_SIZE 64 - -static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft, - struct file *file, - const char __user *userbuf, - size_t nbytes, loff_t *unused_ppos) +static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) { - char buffer[CGROUP_LOCAL_BUFFER_SIZE]; - int retval = 0; - char *end; + struct cgroup *cgrp = seq_css(seq)->cgroup; - if (!nbytes) - return -EINVAL; - if (nbytes >= sizeof(buffer)) - return -E2BIG; - if (copy_from_user(buffer, userbuf, nbytes)) - return -EFAULT; + seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp)); + return 0; +} - buffer[nbytes] = 0; /* nul-terminate */ - if (cft->write_u64) { - u64 val = simple_strtoull(strstrip(buffer), &end, 0); - if (*end) - return -EINVAL; - retval = cft->write_u64(cgrp, cft, val); - } else { - s64 val = simple_strtoll(strstrip(buffer), &end, 0); - if (*end) - return -EINVAL; - retval = cft->write_s64(cgrp, cft, val); +static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask) +{ + struct cgroup_subsys *ss; + bool printed = false; + int ssid; + + for_each_subsys(ss, ssid) { + if (ss_mask & (1 << ssid)) { + if (printed) + seq_putc(seq, ' '); + seq_printf(seq, "%s", ss->name); + printed = true; + } } - if (!retval) - retval = nbytes; - return retval; + if (printed) + seq_putc(seq, '\n'); } -static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft, - struct file *file, - const char __user *userbuf, - size_t nbytes, loff_t *unused_ppos) +/* show controllers which are currently attached to the default hierarchy */ +static int cgroup_root_controllers_show(struct seq_file *seq, void *v) { - char local_buffer[CGROUP_LOCAL_BUFFER_SIZE]; - int retval = 0; - size_t max_bytes = cft->max_write_len; - char *buffer = local_buffer; - - if (!max_bytes) - max_bytes = sizeof(local_buffer) - 1; - if (nbytes >= max_bytes) - return -E2BIG; - /* Allocate a dynamic buffer if we need one */ - if (nbytes >= sizeof(local_buffer)) { - buffer = kmalloc(nbytes + 1, GFP_KERNEL); - if (buffer == NULL) - return -ENOMEM; - } - if (nbytes && copy_from_user(buffer, userbuf, nbytes)) { - retval = -EFAULT; - goto out; - } + struct cgroup *cgrp = seq_css(seq)->cgroup; - buffer[nbytes] = 0; /* nul-terminate */ - retval = cft->write_string(cgrp, cft, strstrip(buffer)); - if (!retval) - retval = nbytes; -out: - if (buffer != local_buffer) - kfree(buffer); - return retval; + cgroup_print_ss_mask(seq, cgrp->root->subsys_mask & + ~cgrp_dfl_root_inhibit_ss_mask); + return 0; } -static ssize_t cgroup_file_write(struct file *file, const char __user *buf, - size_t nbytes, loff_t *ppos) +/* show controllers which are enabled from the parent */ +static int cgroup_controllers_show(struct seq_file *seq, void *v) { - struct cftype *cft = __d_cft(file->f_dentry); - struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); + struct cgroup *cgrp = seq_css(seq)->cgroup; - if (cgroup_is_removed(cgrp)) - return -ENODEV; - if (cft->write) - return cft->write(cgrp, cft, file, buf, nbytes, ppos); - if (cft->write_u64 || cft->write_s64) - return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos); - if (cft->write_string) - return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos); - if (cft->trigger) { - int ret = cft->trigger(cgrp, (unsigned int)cft->private); - return ret ? ret : nbytes; - } - return -EINVAL; + cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->child_subsys_mask); + return 0; } -static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft, - struct file *file, - char __user *buf, size_t nbytes, - loff_t *ppos) +/* show controllers which are enabled for a given cgroup's children */ +static int cgroup_subtree_control_show(struct seq_file *seq, void *v) { - char tmp[CGROUP_LOCAL_BUFFER_SIZE]; - u64 val = cft->read_u64(cgrp, cft); - int len = sprintf(tmp, "%llu\n", (unsigned long long) val); + struct cgroup *cgrp = seq_css(seq)->cgroup; - return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); + cgroup_print_ss_mask(seq, cgrp->child_subsys_mask); + return 0; } -static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft, - struct file *file, - char __user *buf, size_t nbytes, - loff_t *ppos) +/** + * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy + * @cgrp: root of the subtree to update csses for + * + * @cgrp's child_subsys_mask has changed and its subtree's (self excluded) + * css associations need to be updated accordingly. This function looks up + * all css_sets which are attached to the subtree, creates the matching + * updated css_sets and migrates the tasks to the new ones. + */ +static int cgroup_update_dfl_csses(struct cgroup *cgrp) { - char tmp[CGROUP_LOCAL_BUFFER_SIZE]; - s64 val = cft->read_s64(cgrp, cft); - int len = sprintf(tmp, "%lld\n", (long long) val); + LIST_HEAD(preloaded_csets); + struct cgroup_subsys_state *css; + struct css_set *src_cset; + int ret; + + lockdep_assert_held(&cgroup_mutex); + + /* look up all csses currently attached to @cgrp's subtree */ + down_read(&css_set_rwsem); + css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) { + struct cgrp_cset_link *link; + + /* self is not affected by child_subsys_mask change */ + if (css->cgroup == cgrp) + continue; + + list_for_each_entry(link, &css->cgroup->cset_links, cset_link) + cgroup_migrate_add_src(link->cset, cgrp, + &preloaded_csets); + } + up_read(&css_set_rwsem); - return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); + /* NULL dst indicates self on default hierarchy */ + ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets); + if (ret) + goto out_finish; + + list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) { + struct task_struct *last_task = NULL, *task; + + /* src_csets precede dst_csets, break on the first dst_cset */ + if (!src_cset->mg_src_cgrp) + break; + + /* + * All tasks in src_cset need to be migrated to the + * matching dst_cset. Empty it process by process. We + * walk tasks but migrate processes. The leader might even + * belong to a different cset but such src_cset would also + * be among the target src_csets because the default + * hierarchy enforces per-process membership. + */ + while (true) { + down_read(&css_set_rwsem); + task = list_first_entry_or_null(&src_cset->tasks, + struct task_struct, cg_list); + if (task) { + task = task->group_leader; + WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp); + get_task_struct(task); + } + up_read(&css_set_rwsem); + + if (!task) + break; + + /* guard against possible infinite loop */ + if (WARN(last_task == task, + "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n")) + goto out_finish; + last_task = task; + + threadgroup_lock(task); + /* raced against de_thread() from another thread? */ + if (!thread_group_leader(task)) { + threadgroup_unlock(task); + put_task_struct(task); + continue; + } + + ret = cgroup_migrate(src_cset->dfl_cgrp, task, true); + + threadgroup_unlock(task); + put_task_struct(task); + + if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret)) + goto out_finish; + } + } + +out_finish: + cgroup_migrate_finish(&preloaded_csets); + return ret; } -static ssize_t cgroup_file_read(struct file *file, char __user *buf, - size_t nbytes, loff_t *ppos) +/* change the enabled child controllers for a cgroup in the default hierarchy */ +static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, + loff_t off) { - struct cftype *cft = __d_cft(file->f_dentry); - struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); + unsigned int enable = 0, disable = 0; + struct cgroup *cgrp, *child; + struct cgroup_subsys *ss; + char *tok; + int ssid, ret; + + /* + * Parse input - space separated list of subsystem names prefixed + * with either + or -. + */ + buf = strstrip(buf); + while ((tok = strsep(&buf, " "))) { + if (tok[0] == '\0') + continue; + for_each_subsys(ss, ssid) { + if (ss->disabled || strcmp(tok + 1, ss->name) || + ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask)) + continue; + + if (*tok == '+') { + enable |= 1 << ssid; + disable &= ~(1 << ssid); + } else if (*tok == '-') { + disable |= 1 << ssid; + enable &= ~(1 << ssid); + } else { + return -EINVAL; + } + break; + } + if (ssid == CGROUP_SUBSYS_COUNT) + return -EINVAL; + } - if (cgroup_is_removed(cgrp)) + cgrp = cgroup_kn_lock_live(of->kn); + if (!cgrp) return -ENODEV; - if (cft->read) - return cft->read(cgrp, cft, file, buf, nbytes, ppos); - if (cft->read_u64) - return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos); - if (cft->read_s64) - return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos); - return -EINVAL; -} + for_each_subsys(ss, ssid) { + if (enable & (1 << ssid)) { + if (cgrp->child_subsys_mask & (1 << ssid)) { + enable &= ~(1 << ssid); + continue; + } -/* - * seqfile ops/methods for returning structured data. Currently just - * supports string->u64 maps, but can be extended in future. - */ + /* + * Because css offlining is asynchronous, userland + * might try to re-enable the same controller while + * the previous instance is still around. In such + * cases, wait till it's gone using offline_waitq. + */ + cgroup_for_each_live_child(child, cgrp) { + DEFINE_WAIT(wait); -struct cgroup_seqfile_state { - struct cftype *cft; - struct cgroup *cgroup; -}; + if (!cgroup_css(child, ss)) + continue; + + cgroup_get(child); + prepare_to_wait(&child->offline_waitq, &wait, + TASK_UNINTERRUPTIBLE); + cgroup_kn_unlock(of->kn); + schedule(); + finish_wait(&child->offline_waitq, &wait); + cgroup_put(child); + + return restart_syscall(); + } + + /* unavailable or not enabled on the parent? */ + if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) || + (cgroup_parent(cgrp) && + !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ssid)))) { + ret = -ENOENT; + goto out_unlock; + } + } else if (disable & (1 << ssid)) { + if (!(cgrp->child_subsys_mask & (1 << ssid))) { + disable &= ~(1 << ssid); + continue; + } + + /* a child has it enabled? */ + cgroup_for_each_live_child(child, cgrp) { + if (child->child_subsys_mask & (1 << ssid)) { + ret = -EBUSY; + goto out_unlock; + } + } + } + } + + if (!enable && !disable) { + ret = 0; + goto out_unlock; + } + + /* + * Except for the root, child_subsys_mask must be zero for a cgroup + * with tasks so that child cgroups don't compete against tasks. + */ + if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) { + ret = -EBUSY; + goto out_unlock; + } -static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value) + /* + * Create csses for enables and update child_subsys_mask. This + * changes cgroup_e_css() results which in turn makes the + * subsequent cgroup_update_dfl_csses() associate all tasks in the + * subtree to the updated csses. + */ + for_each_subsys(ss, ssid) { + if (!(enable & (1 << ssid))) + continue; + + cgroup_for_each_live_child(child, cgrp) { + ret = create_css(child, ss); + if (ret) + goto err_undo_css; + } + } + + cgrp->child_subsys_mask |= enable; + cgrp->child_subsys_mask &= ~disable; + + ret = cgroup_update_dfl_csses(cgrp); + if (ret) + goto err_undo_css; + + /* all tasks are now migrated away from the old csses, kill them */ + for_each_subsys(ss, ssid) { + if (!(disable & (1 << ssid))) + continue; + + cgroup_for_each_live_child(child, cgrp) + kill_css(cgroup_css(child, ss)); + } + + kernfs_activate(cgrp->kn); + ret = 0; +out_unlock: + cgroup_kn_unlock(of->kn); + return ret ?: nbytes; + +err_undo_css: + cgrp->child_subsys_mask &= ~enable; + cgrp->child_subsys_mask |= disable; + + for_each_subsys(ss, ssid) { + if (!(enable & (1 << ssid))) + continue; + + cgroup_for_each_live_child(child, cgrp) { + struct cgroup_subsys_state *css = cgroup_css(child, ss); + if (css) + kill_css(css); + } + } + goto out_unlock; +} + +static int cgroup_populated_show(struct seq_file *seq, void *v) { - struct seq_file *sf = cb->state; - return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value); + seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt); + return 0; } -static int cgroup_seqfile_show(struct seq_file *m, void *arg) +static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off) { - struct cgroup_seqfile_state *state = m->private; - struct cftype *cft = state->cft; - if (cft->read_map) { - struct cgroup_map_cb cb = { - .fill = cgroup_map_add, - .state = m, - }; - return cft->read_map(state->cgroup, cft, &cb); + struct cgroup *cgrp = of->kn->parent->priv; + struct cftype *cft = of->kn->priv; + struct cgroup_subsys_state *css; + int ret; + + if (cft->write) + return cft->write(of, buf, nbytes, off); + + /* + * kernfs guarantees that a file isn't deleted with operations in + * flight, which means that the matching css is and stays alive and + * doesn't need to be pinned. The RCU locking is not necessary + * either. It's just for the convenience of using cgroup_css(). + */ + rcu_read_lock(); + css = cgroup_css(cgrp, cft->ss); + rcu_read_unlock(); + + if (cft->write_u64) { + unsigned long long v; + ret = kstrtoull(buf, 0, &v); + if (!ret) + ret = cft->write_u64(css, cft, v); + } else if (cft->write_s64) { + long long v; + ret = kstrtoll(buf, 0, &v); + if (!ret) + ret = cft->write_s64(css, cft, v); + } else { + ret = -EINVAL; } - return cft->read_seq_string(state->cgroup, cft, m); + + return ret ?: nbytes; } -static int cgroup_seqfile_release(struct inode *inode, struct file *file) +static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) { - struct seq_file *seq = file->private_data; - kfree(seq->private); - return single_release(inode, file); + return seq_cft(seq)->seq_start(seq, ppos); } -static const struct file_operations cgroup_seqfile_operations = { - .read = seq_read, - .write = cgroup_file_write, - .llseek = seq_lseek, - .release = cgroup_seqfile_release, -}; - -static int cgroup_file_open(struct inode *inode, struct file *file) +static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) { - int err; - struct cftype *cft; - - err = generic_file_open(inode, file); - if (err) - return err; - cft = __d_cft(file->f_dentry); - - if (cft->read_map || cft->read_seq_string) { - struct cgroup_seqfile_state *state = - kzalloc(sizeof(*state), GFP_USER); - if (!state) - return -ENOMEM; - state->cft = cft; - state->cgroup = __d_cgrp(file->f_dentry->d_parent); - file->f_op = &cgroup_seqfile_operations; - err = single_open(file, cgroup_seqfile_show, state); - if (err < 0) - kfree(state); - } else if (cft->open) - err = cft->open(inode, file); - else - err = 0; + return seq_cft(seq)->seq_next(seq, v, ppos); +} - return err; +static void cgroup_seqfile_stop(struct seq_file *seq, void *v) +{ + seq_cft(seq)->seq_stop(seq, v); } -static int cgroup_file_release(struct inode *inode, struct file *file) +static int cgroup_seqfile_show(struct seq_file *m, void *arg) { - struct cftype *cft = __d_cft(file->f_dentry); - if (cft->release) - return cft->release(inode, file); + struct cftype *cft = seq_cft(m); + struct cgroup_subsys_state *css = seq_css(m); + + if (cft->seq_show) + return cft->seq_show(m, arg); + + if (cft->read_u64) + seq_printf(m, "%llu\n", cft->read_u64(css, cft)); + else if (cft->read_s64) + seq_printf(m, "%lld\n", cft->read_s64(css, cft)); + else + return -EINVAL; return 0; } +static struct kernfs_ops cgroup_kf_single_ops = { + .atomic_write_len = PAGE_SIZE, + .write = cgroup_file_write, + .seq_show = cgroup_seqfile_show, +}; + +static struct kernfs_ops cgroup_kf_ops = { + .atomic_write_len = PAGE_SIZE, + .write = cgroup_file_write, + .seq_start = cgroup_seqfile_start, + .seq_next = cgroup_seqfile_next, + .seq_stop = cgroup_seqfile_stop, + .seq_show = cgroup_seqfile_show, +}; + /* * cgroup_rename - Only allow simple rename of directories in place. */ -static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry, - struct inode *new_dir, struct dentry *new_dentry) +static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, + const char *new_name_str) { - if (!S_ISDIR(old_dentry->d_inode->i_mode)) + struct cgroup *cgrp = kn->priv; + int ret; + + if (kernfs_type(kn) != KERNFS_DIR) return -ENOTDIR; - if (new_dentry->d_inode) - return -EEXIST; - if (old_dir != new_dir) + if (kn->parent != new_parent) return -EIO; - return simple_rename(old_dir, old_dentry, new_dir, new_dentry); + + /* + * This isn't a proper migration and its usefulness is very + * limited. Disallow if sane_behavior. + */ + if (cgroup_sane_behavior(cgrp)) + return -EPERM; + + /* + * We're gonna grab cgroup_mutex which nests outside kernfs + * active_ref. kernfs_rename() doesn't require active_ref + * protection. Break them before grabbing cgroup_mutex. + */ + kernfs_break_active_protection(new_parent); + kernfs_break_active_protection(kn); + + mutex_lock(&cgroup_mutex); + + ret = kernfs_rename(kn, new_parent, new_name_str); + + mutex_unlock(&cgroup_mutex); + + kernfs_unbreak_active_protection(kn); + kernfs_unbreak_active_protection(new_parent); + return ret; } -static const struct file_operations cgroup_file_operations = { - .read = cgroup_file_read, - .write = cgroup_file_write, - .llseek = generic_file_llseek, - .open = cgroup_file_open, - .release = cgroup_file_release, -}; +/* set uid and gid of cgroup dirs and files to that of the creator */ +static int cgroup_kn_set_ugid(struct kernfs_node *kn) +{ + struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, + .ia_uid = current_fsuid(), + .ia_gid = current_fsgid(), }; -static const struct inode_operations cgroup_dir_inode_operations = { - .lookup = cgroup_lookup, - .mkdir = cgroup_mkdir, - .rmdir = cgroup_rmdir, - .rename = cgroup_rename, -}; + if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && + gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) + return 0; -static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) + return kernfs_setattr(kn, &iattr); +} + +static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft) { - if (dentry->d_name.len > NAME_MAX) - return ERR_PTR(-ENAMETOOLONG); - d_add(dentry, NULL); - return NULL; + char name[CGROUP_FILE_NAME_MAX]; + struct kernfs_node *kn; + struct lock_class_key *key = NULL; + int ret; + +#ifdef CONFIG_DEBUG_LOCK_ALLOC + key = &cft->lockdep_key; +#endif + kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), + cgroup_file_mode(cft), 0, cft->kf_ops, cft, + NULL, false, key); + if (IS_ERR(kn)) + return PTR_ERR(kn); + + ret = cgroup_kn_set_ugid(kn); + if (ret) { + kernfs_remove(kn); + return ret; + } + + if (cft->seq_show == cgroup_populated_show) + cgrp->populated_kn = kn; + return 0; } -/* - * Check if a file is a control file +/** + * cgroup_addrm_files - add or remove files to a cgroup directory + * @cgrp: the target cgroup + * @cfts: array of cftypes to be added + * @is_add: whether to add or remove + * + * Depending on @is_add, add or remove files defined by @cfts on @cgrp. + * For removals, this function never fails. If addition fails, this + * function doesn't remove files already added. The caller is responsible + * for cleaning up. */ -static inline struct cftype *__file_cft(struct file *file) +static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[], + bool is_add) { - if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations) - return ERR_PTR(-EINVAL); - return __d_cft(file->f_dentry); + struct cftype *cft; + int ret; + + lockdep_assert_held(&cgroup_mutex); + + for (cft = cfts; cft->name[0] != '\0'; cft++) { + /* does cft->flags tell us to skip this file on @cgrp? */ + if ((cft->flags & CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) + continue; + if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp)) + continue; + if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) + continue; + if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) + continue; + + if (is_add) { + ret = cgroup_add_file(cgrp, cft); + if (ret) { + pr_warn("%s: failed to add %s, err=%d\n", + __func__, cft->name, ret); + return ret; + } + } else { + cgroup_rm_file(cgrp, cft); + } + } + return 0; } -static int cgroup_create_file(struct dentry *dentry, umode_t mode, - struct super_block *sb) +static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) { - struct inode *inode; + LIST_HEAD(pending); + struct cgroup_subsys *ss = cfts[0].ss; + struct cgroup *root = &ss->root->cgrp; + struct cgroup_subsys_state *css; + int ret = 0; - if (!dentry) - return -ENOENT; - if (dentry->d_inode) - return -EEXIST; + lockdep_assert_held(&cgroup_mutex); - inode = cgroup_new_inode(mode, sb); - if (!inode) - return -ENOMEM; + /* add/rm files for all cgroups created before */ + css_for_each_descendant_pre(css, cgroup_css(root, ss)) { + struct cgroup *cgrp = css->cgroup; + + if (cgroup_is_dead(cgrp)) + continue; + + ret = cgroup_addrm_files(cgrp, cfts, is_add); + if (ret) + break; + } - if (S_ISDIR(mode)) { - inode->i_op = &cgroup_dir_inode_operations; - inode->i_fop = &simple_dir_operations; + if (is_add && !ret) + kernfs_activate(root->kn); + return ret; +} - /* start off with i_nlink == 2 (for "." entry) */ - inc_nlink(inode); +static void cgroup_exit_cftypes(struct cftype *cfts) +{ + struct cftype *cft; - /* start with the directory inode held, so that we can - * populate it without racing with another mkdir */ - mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); - } else if (S_ISREG(mode)) { - inode->i_size = 0; - inode->i_fop = &cgroup_file_operations; + for (cft = cfts; cft->name[0] != '\0'; cft++) { + /* free copy for custom atomic_write_len, see init_cftypes() */ + if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) + kfree(cft->kf_ops); + cft->kf_ops = NULL; + cft->ss = NULL; } - d_instantiate(dentry, inode); - dget(dentry); /* Extra count - pin the dentry in core */ +} + +static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) +{ + struct cftype *cft; + + for (cft = cfts; cft->name[0] != '\0'; cft++) { + struct kernfs_ops *kf_ops; + + WARN_ON(cft->ss || cft->kf_ops); + + if (cft->seq_start) + kf_ops = &cgroup_kf_ops; + else + kf_ops = &cgroup_kf_single_ops; + + /* + * Ugh... if @cft wants a custom max_write_len, we need to + * make a copy of kf_ops to set its atomic_write_len. + */ + if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { + kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); + if (!kf_ops) { + cgroup_exit_cftypes(cfts); + return -ENOMEM; + } + kf_ops->atomic_write_len = cft->max_write_len; + } + + cft->kf_ops = kf_ops; + cft->ss = ss; + } + return 0; } -/* - * cgroup_create_dir - create a directory for an object. - * @cgrp: the cgroup we create the directory for. It must have a valid - * ->parent field. And we are going to fill its ->dentry field. - * @dentry: dentry of the new cgroup - * @mode: mode to set on new directory. +static int cgroup_rm_cftypes_locked(struct cftype *cfts) +{ + lockdep_assert_held(&cgroup_mutex); + + if (!cfts || !cfts[0].ss) + return -ENOENT; + + list_del(&cfts->node); + cgroup_apply_cftypes(cfts, false); + cgroup_exit_cftypes(cfts); + return 0; +} + +/** + * cgroup_rm_cftypes - remove an array of cftypes from a subsystem + * @cfts: zero-length name terminated array of cftypes + * + * Unregister @cfts. Files described by @cfts are removed from all + * existing cgroups and all future cgroups won't have them either. This + * function can be called anytime whether @cfts' subsys is attached or not. + * + * Returns 0 on successful unregistration, -ENOENT if @cfts is not + * registered. */ -static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry, - umode_t mode) -{ - struct dentry *parent; - int error = 0; - - parent = cgrp->parent->dentry; - error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb); - if (!error) { - dentry->d_fsdata = cgrp; - inc_nlink(parent->d_inode); - rcu_assign_pointer(cgrp->dentry, dentry); - dget(dentry); - } - dput(dentry); +int cgroup_rm_cftypes(struct cftype *cfts) +{ + int ret; - return error; + mutex_lock(&cgroup_mutex); + ret = cgroup_rm_cftypes_locked(cfts); + mutex_unlock(&cgroup_mutex); + return ret; } /** - * cgroup_file_mode - deduce file mode of a control file - * @cft: the control file in question + * cgroup_add_cftypes - add an array of cftypes to a subsystem + * @ss: target cgroup subsystem + * @cfts: zero-length name terminated array of cftypes * - * returns cft->mode if ->mode is not 0 - * returns S_IRUGO|S_IWUSR if it has both a read and a write handler - * returns S_IRUGO if it has only a read handler - * returns S_IWUSR if it has only a write hander + * Register @cfts to @ss. Files described by @cfts are created for all + * existing cgroups to which @ss is attached and all future cgroups will + * have them too. This function can be called anytime whether @ss is + * attached or not. + * + * Returns 0 on successful registration, -errno on failure. Note that this + * function currently returns 0 as long as @cfts registration is successful + * even if some file creation attempts on existing cgroups fail. */ -static umode_t cgroup_file_mode(const struct cftype *cft) +int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) { - umode_t mode = 0; + int ret; - if (cft->mode) - return cft->mode; + if (ss->disabled) + return 0; - if (cft->read || cft->read_u64 || cft->read_s64 || - cft->read_map || cft->read_seq_string) - mode |= S_IRUGO; + if (!cfts || cfts[0].name[0] == '\0') + return 0; - if (cft->write || cft->write_u64 || cft->write_s64 || - cft->write_string || cft->trigger) - mode |= S_IWUSR; + ret = cgroup_init_cftypes(ss, cfts); + if (ret) + return ret; - return mode; + mutex_lock(&cgroup_mutex); + + list_add_tail(&cfts->node, &ss->cfts); + ret = cgroup_apply_cftypes(cfts, true); + if (ret) + cgroup_rm_cftypes_locked(cfts); + + mutex_unlock(&cgroup_mutex); + return ret; } -int cgroup_add_file(struct cgroup *cgrp, - struct cgroup_subsys *subsys, - const struct cftype *cft) +/** + * cgroup_task_count - count the number of tasks in a cgroup. + * @cgrp: the cgroup in question + * + * Return the number of tasks in the cgroup. + */ +static int cgroup_task_count(const struct cgroup *cgrp) { - struct dentry *dir = cgrp->dentry; - struct dentry *dentry; - int error; - umode_t mode; + int count = 0; + struct cgrp_cset_link *link; + + down_read(&css_set_rwsem); + list_for_each_entry(link, &cgrp->cset_links, cset_link) + count += atomic_read(&link->cset->refcount); + up_read(&css_set_rwsem); + return count; +} - char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 }; - if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) { - strcpy(name, subsys->name); - strcat(name, "."); +/** + * css_next_child - find the next child of a given css + * @pos: the current position (%NULL to initiate traversal) + * @parent: css whose children to walk + * + * This function returns the next child of @parent and should be called + * under either cgroup_mutex or RCU read lock. The only requirement is + * that @parent and @pos are accessible. The next sibling is guaranteed to + * be returned regardless of their states. + * + * If a subsystem synchronizes ->css_online() and the start of iteration, a + * css which finished ->css_online() is guaranteed to be visible in the + * future iterations and will stay visible until the last reference is put. + * A css which hasn't finished ->css_online() or already finished + * ->css_offline() may show up during traversal. It's each subsystem's + * responsibility to synchronize against on/offlining. + */ +struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, + struct cgroup_subsys_state *parent) +{ + struct cgroup_subsys_state *next; + + cgroup_assert_mutex_or_rcu_locked(); + + /* + * @pos could already have been unlinked from the sibling list. + * Once a cgroup is removed, its ->sibling.next is no longer + * updated when its next sibling changes. CSS_RELEASED is set when + * @pos is taken off list, at which time its next pointer is valid, + * and, as releases are serialized, the one pointed to by the next + * pointer is guaranteed to not have started release yet. This + * implies that if we observe !CSS_RELEASED on @pos in this RCU + * critical section, the one pointed to by its next pointer is + * guaranteed to not have finished its RCU grace period even if we + * have dropped rcu_read_lock() inbetween iterations. + * + * If @pos has CSS_RELEASED set, its next pointer can't be + * dereferenced; however, as each css is given a monotonically + * increasing unique serial number and always appended to the + * sibling list, the next one can be found by walking the parent's + * children until the first css with higher serial number than + * @pos's. While this path can be slower, it happens iff iteration + * races against release and the race window is very small. + */ + if (!pos) { + next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); + } else if (likely(!(pos->flags & CSS_RELEASED))) { + next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); + } else { + list_for_each_entry_rcu(next, &parent->children, sibling) + if (next->serial_nr > pos->serial_nr) + break; } - strcat(name, cft->name); - BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex)); - dentry = lookup_one_len(name, dir, strlen(name)); - if (!IS_ERR(dentry)) { - mode = cgroup_file_mode(cft); - error = cgroup_create_file(dentry, mode | S_IFREG, - cgrp->root->sb); - if (!error) - dentry->d_fsdata = (void *)cft; - dput(dentry); - } else - error = PTR_ERR(dentry); - return error; + + /* + * @next, if not pointing to the head, can be dereferenced and is + * the next sibling. + */ + if (&next->sibling != &parent->children) + return next; + return NULL; } -EXPORT_SYMBOL_GPL(cgroup_add_file); -int cgroup_add_files(struct cgroup *cgrp, - struct cgroup_subsys *subsys, - const struct cftype cft[], - int count) +/** + * css_next_descendant_pre - find the next descendant for pre-order walk + * @pos: the current position (%NULL to initiate traversal) + * @root: css whose descendants to walk + * + * To be used by css_for_each_descendant_pre(). Find the next descendant + * to visit for pre-order traversal of @root's descendants. @root is + * included in the iteration and the first node to be visited. + * + * While this function requires cgroup_mutex or RCU read locking, it + * doesn't require the whole traversal to be contained in a single critical + * section. This function will return the correct next descendant as long + * as both @pos and @root are accessible and @pos is a descendant of @root. + * + * If a subsystem synchronizes ->css_online() and the start of iteration, a + * css which finished ->css_online() is guaranteed to be visible in the + * future iterations and will stay visible until the last reference is put. + * A css which hasn't finished ->css_online() or already finished + * ->css_offline() may show up during traversal. It's each subsystem's + * responsibility to synchronize against on/offlining. + */ +struct cgroup_subsys_state * +css_next_descendant_pre(struct cgroup_subsys_state *pos, + struct cgroup_subsys_state *root) { - int i, err; - for (i = 0; i < count; i++) { - err = cgroup_add_file(cgrp, subsys, &cft[i]); - if (err) - return err; + struct cgroup_subsys_state *next; + + cgroup_assert_mutex_or_rcu_locked(); + + /* if first iteration, visit @root */ + if (!pos) + return root; + + /* visit the first child if exists */ + next = css_next_child(NULL, pos); + if (next) + return next; + + /* no child, visit my or the closest ancestor's next sibling */ + while (pos != root) { + next = css_next_child(pos, pos->parent); + if (next) + return next; + pos = pos->parent; } - return 0; + + return NULL; } -EXPORT_SYMBOL_GPL(cgroup_add_files); /** - * cgroup_task_count - count the number of tasks in a cgroup. - * @cgrp: the cgroup in question + * css_rightmost_descendant - return the rightmost descendant of a css + * @pos: css of interest * - * Return the number of tasks in the cgroup. + * Return the rightmost descendant of @pos. If there's no descendant, @pos + * is returned. This can be used during pre-order traversal to skip + * subtree of @pos. + * + * While this function requires cgroup_mutex or RCU read locking, it + * doesn't require the whole traversal to be contained in a single critical + * section. This function will return the correct rightmost descendant as + * long as @pos is accessible. */ -int cgroup_task_count(const struct cgroup *cgrp) +struct cgroup_subsys_state * +css_rightmost_descendant(struct cgroup_subsys_state *pos) { - int count = 0; - struct cg_cgroup_link *link; + struct cgroup_subsys_state *last, *tmp; + + cgroup_assert_mutex_or_rcu_locked(); + + do { + last = pos; + /* ->prev isn't RCU safe, walk ->next till the end */ + pos = NULL; + css_for_each_child(tmp, last) + pos = tmp; + } while (pos); + + return last; +} + +static struct cgroup_subsys_state * +css_leftmost_descendant(struct cgroup_subsys_state *pos) +{ + struct cgroup_subsys_state *last; + + do { + last = pos; + pos = css_next_child(NULL, pos); + } while (pos); + + return last; +} + +/** + * css_next_descendant_post - find the next descendant for post-order walk + * @pos: the current position (%NULL to initiate traversal) + * @root: css whose descendants to walk + * + * To be used by css_for_each_descendant_post(). Find the next descendant + * to visit for post-order traversal of @root's descendants. @root is + * included in the iteration and the last node to be visited. + * + * While this function requires cgroup_mutex or RCU read locking, it + * doesn't require the whole traversal to be contained in a single critical + * section. This function will return the correct next descendant as long + * as both @pos and @cgroup are accessible and @pos is a descendant of + * @cgroup. + * + * If a subsystem synchronizes ->css_online() and the start of iteration, a + * css which finished ->css_online() is guaranteed to be visible in the + * future iterations and will stay visible until the last reference is put. + * A css which hasn't finished ->css_online() or already finished + * ->css_offline() may show up during traversal. It's each subsystem's + * responsibility to synchronize against on/offlining. + */ +struct cgroup_subsys_state * +css_next_descendant_post(struct cgroup_subsys_state *pos, + struct cgroup_subsys_state *root) +{ + struct cgroup_subsys_state *next; + + cgroup_assert_mutex_or_rcu_locked(); + + /* if first iteration, visit leftmost descendant which may be @root */ + if (!pos) + return css_leftmost_descendant(root); + + /* if we visited @root, we're done */ + if (pos == root) + return NULL; + + /* if there's an unvisited sibling, visit its leftmost descendant */ + next = css_next_child(pos, pos->parent); + if (next) + return css_leftmost_descendant(next); + + /* no sibling left, visit parent */ + return pos->parent; +} + +/** + * css_has_online_children - does a css have online children + * @css: the target css + * + * Returns %true if @css has any online children; otherwise, %false. This + * function can be called from any context but the caller is responsible + * for synchronizing against on/offlining as necessary. + */ +bool css_has_online_children(struct cgroup_subsys_state *css) +{ + struct cgroup_subsys_state *child; + bool ret = false; - read_lock(&css_set_lock); - list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) { - count += atomic_read(&link->cg->refcount); + rcu_read_lock(); + css_for_each_child(child, css) { + if (child->flags & CSS_ONLINE) { + ret = true; + break; + } } - read_unlock(&css_set_lock); - return count; + rcu_read_unlock(); + return ret; } -/* - * Advance a list_head iterator. The iterator should be positioned at - * the start of a css_set +/** + * css_advance_task_iter - advance a task itererator to the next css_set + * @it: the iterator to advance + * + * Advance @it to the next css_set to walk. */ -static void cgroup_advance_iter(struct cgroup *cgrp, - struct cgroup_iter *it) +static void css_advance_task_iter(struct css_task_iter *it) { - struct list_head *l = it->cg_link; - struct cg_cgroup_link *link; - struct css_set *cg; + struct list_head *l = it->cset_pos; + struct cgrp_cset_link *link; + struct css_set *cset; /* Advance to the next non-empty css_set */ do { l = l->next; - if (l == &cgrp->css_sets) { - it->cg_link = NULL; + if (l == it->cset_head) { + it->cset_pos = NULL; return; } - link = list_entry(l, struct cg_cgroup_link, cgrp_link_list); - cg = link->cg; - } while (list_empty(&cg->tasks)); - it->cg_link = l; - it->task = cg->tasks.next; + + if (it->ss) { + cset = container_of(l, struct css_set, + e_cset_node[it->ss->id]); + } else { + link = list_entry(l, struct cgrp_cset_link, cset_link); + cset = link->cset; + } + } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks)); + + it->cset_pos = l; + + if (!list_empty(&cset->tasks)) + it->task_pos = cset->tasks.next; + else + it->task_pos = cset->mg_tasks.next; + + it->tasks_head = &cset->tasks; + it->mg_tasks_head = &cset->mg_tasks; } -/* - * To reduce the fork() overhead for systems that are not actually - * using their cgroups capability, we don't maintain the lists running - * through each css_set to its tasks until we see the list actually - * used - in other words after the first call to cgroup_iter_start(). +/** + * css_task_iter_start - initiate task iteration + * @css: the css to walk tasks of + * @it: the task iterator to use * - * The tasklist_lock is not held here, as do_each_thread() and - * while_each_thread() are protected by RCU. + * Initiate iteration through the tasks of @css. The caller can call + * css_task_iter_next() to walk through the tasks until the function + * returns NULL. On completion of iteration, css_task_iter_end() must be + * called. + * + * Note that this function acquires a lock which is released when the + * iteration finishes. The caller can't sleep while iteration is in + * progress. */ -static void cgroup_enable_task_cg_lists(void) +void css_task_iter_start(struct cgroup_subsys_state *css, + struct css_task_iter *it) + __acquires(css_set_rwsem) { - struct task_struct *p, *g; - write_lock(&css_set_lock); - use_task_css_set_links = 1; - do_each_thread(g, p) { - task_lock(p); - /* - * We should check if the process is exiting, otherwise - * it will race with cgroup_exit() in that the list - * entry won't be deleted though the process has exited. - */ - if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list)) - list_add(&p->cg_list, &p->cgroups->tasks); - task_unlock(p); - } while_each_thread(g, p); - write_unlock(&css_set_lock); -} + /* no one should try to iterate before mounting cgroups */ + WARN_ON_ONCE(!use_task_css_set_links); -void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it) - __acquires(css_set_lock) -{ - /* - * The first time anyone tries to iterate across a cgroup, - * we need to enable the list linking each css_set to its - * tasks, and fix up all existing tasks. - */ - if (!use_task_css_set_links) - cgroup_enable_task_cg_lists(); + down_read(&css_set_rwsem); + + it->ss = css->ss; + + if (it->ss) + it->cset_pos = &css->cgroup->e_csets[css->ss->id]; + else + it->cset_pos = &css->cgroup->cset_links; - read_lock(&css_set_lock); - it->cg_link = &cgrp->css_sets; - cgroup_advance_iter(cgrp, it); + it->cset_head = it->cset_pos; + + css_advance_task_iter(it); } -struct task_struct *cgroup_iter_next(struct cgroup *cgrp, - struct cgroup_iter *it) +/** + * css_task_iter_next - return the next task for the iterator + * @it: the task iterator being iterated + * + * The "next" function for task iteration. @it should have been + * initialized via css_task_iter_start(). Returns NULL when the iteration + * reaches the end. + */ +struct task_struct *css_task_iter_next(struct css_task_iter *it) { struct task_struct *res; - struct list_head *l = it->task; - struct cg_cgroup_link *link; + struct list_head *l = it->task_pos; /* If the iterator cg is NULL, we have no tasks */ - if (!it->cg_link) + if (!it->cset_pos) return NULL; res = list_entry(l, struct task_struct, cg_list); - /* Advance iterator to find next entry */ + + /* + * Advance iterator to find next entry. cset->tasks is consumed + * first and then ->mg_tasks. After ->mg_tasks, we move onto the + * next cset. + */ l = l->next; - link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list); - if (l == &link->cg->tasks) { - /* We reached the end of this task list - move on to - * the next cg_cgroup_link */ - cgroup_advance_iter(cgrp, it); - } else { - it->task = l; - } - return res; -} -void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it) - __releases(css_set_lock) -{ - read_unlock(&css_set_lock); -} + if (l == it->tasks_head) + l = it->mg_tasks_head->next; -static inline int started_after_time(struct task_struct *t1, - struct timespec *time, - struct task_struct *t2) -{ - int start_diff = timespec_compare(&t1->start_time, time); - if (start_diff > 0) { - return 1; - } else if (start_diff < 0) { - return 0; - } else { - /* - * Arbitrarily, if two processes started at the same - * time, we'll say that the lower pointer value - * started first. Note that t2 may have exited by now - * so this may not be a valid pointer any longer, but - * that's fine - it still serves to distinguish - * between two tasks started (effectively) simultaneously. - */ - return t1 > t2; - } + if (l == it->mg_tasks_head) + css_advance_task_iter(it); + else + it->task_pos = l; + + return res; } -/* - * This function is a callback from heap_insert() and is used to order - * the heap. - * In this case we order the heap in descending task start time. +/** + * css_task_iter_end - finish task iteration + * @it: the task iterator to finish + * + * Finish task iteration started by css_task_iter_start(). */ -static inline int started_after(void *p1, void *p2) +void css_task_iter_end(struct css_task_iter *it) + __releases(css_set_rwsem) { - struct task_struct *t1 = p1; - struct task_struct *t2 = p2; - return started_after_time(t1, &t2->start_time, t2); + up_read(&css_set_rwsem); } /** - * cgroup_scan_tasks - iterate though all the tasks in a cgroup - * @scan: struct cgroup_scanner containing arguments for the scan - * - * Arguments include pointers to callback functions test_task() and - * process_task(). - * Iterate through all the tasks in a cgroup, calling test_task() for each, - * and if it returns true, call process_task() for it also. - * The test_task pointer may be NULL, meaning always true (select all tasks). - * Effectively duplicates cgroup_iter_{start,next,end}() - * but does not lock css_set_lock for the call to process_task(). - * The struct cgroup_scanner may be embedded in any structure of the caller's - * creation. - * It is guaranteed that process_task() will act on every task that - * is a member of the cgroup for the duration of this call. This - * function may or may not call process_task() for tasks that exit - * or move to a different cgroup during the call, or are forked or - * move into the cgroup during the call. + * cgroup_trasnsfer_tasks - move tasks from one cgroup to another + * @to: cgroup to which the tasks will be moved + * @from: cgroup in which the tasks currently reside * - * Note that test_task() may be called with locks held, and may in some - * situations be called multiple times for the same task, so it should - * be cheap. - * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been - * pre-allocated and will be used for heap operations (and its "gt" member will - * be overwritten), else a temporary heap will be used (allocation of which - * may cause this function to fail). + * Locking rules between cgroup_post_fork() and the migration path + * guarantee that, if a task is forking while being migrated, the new child + * is guaranteed to be either visible in the source cgroup after the + * parent's migration is complete or put into the target cgroup. No task + * can slip out of migration through forking. */ -int cgroup_scan_tasks(struct cgroup_scanner *scan) -{ - int retval, i; - struct cgroup_iter it; - struct task_struct *p, *dropped; - /* Never dereference latest_task, since it's not refcounted */ - struct task_struct *latest_task = NULL; - struct ptr_heap tmp_heap; - struct ptr_heap *heap; - struct timespec latest_time = { 0, 0 }; - - if (scan->heap) { - /* The caller supplied our heap and pre-allocated its memory */ - heap = scan->heap; - heap->gt = &started_after; - } else { - /* We need to allocate our own heap memory */ - heap = &tmp_heap; - retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after); - if (retval) - /* cannot allocate the heap */ - return retval; - } +int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) +{ + LIST_HEAD(preloaded_csets); + struct cgrp_cset_link *link; + struct css_task_iter it; + struct task_struct *task; + int ret; + + mutex_lock(&cgroup_mutex); + + /* all tasks in @from are being moved, all csets are source */ + down_read(&css_set_rwsem); + list_for_each_entry(link, &from->cset_links, cset_link) + cgroup_migrate_add_src(link->cset, to, &preloaded_csets); + up_read(&css_set_rwsem); + + ret = cgroup_migrate_prepare_dst(to, &preloaded_csets); + if (ret) + goto out_err; - again: /* - * Scan tasks in the cgroup, using the scanner's "test_task" callback - * to determine which are of interest, and using the scanner's - * "process_task" callback to process any of them that need an update. - * Since we don't want to hold any locks during the task updates, - * gather tasks to be processed in a heap structure. - * The heap is sorted by descending task start time. - * If the statically-sized heap fills up, we overflow tasks that - * started later, and in future iterations only consider tasks that - * started after the latest task in the previous pass. This - * guarantees forward progress and that we don't miss any tasks. + * Migrate tasks one-by-one until @form is empty. This fails iff + * ->can_attach() fails. */ - heap->size = 0; - cgroup_iter_start(scan->cg, &it); - while ((p = cgroup_iter_next(scan->cg, &it))) { - /* - * Only affect tasks that qualify per the caller's callback, - * if he provided one - */ - if (scan->test_task && !scan->test_task(p, scan)) - continue; - /* - * Only process tasks that started after the last task - * we processed - */ - if (!started_after_time(p, &latest_time, latest_task)) - continue; - dropped = heap_insert(heap, p); - if (dropped == NULL) { - /* - * The new task was inserted; the heap wasn't - * previously full - */ - get_task_struct(p); - } else if (dropped != p) { - /* - * The new task was inserted, and pushed out a - * different task - */ - get_task_struct(p); - put_task_struct(dropped); - } - /* - * Else the new task was newer than anything already in - * the heap and wasn't inserted - */ - } - cgroup_iter_end(scan->cg, &it); - - if (heap->size) { - for (i = 0; i < heap->size; i++) { - struct task_struct *q = heap->ptrs[i]; - if (i == 0) { - latest_time = q->start_time; - latest_task = q; - } - /* Process the task per the caller's callback */ - scan->process_task(q, scan); - put_task_struct(q); + do { + css_task_iter_start(&from->self, &it); + task = css_task_iter_next(&it); + if (task) + get_task_struct(task); + css_task_iter_end(&it); + + if (task) { + ret = cgroup_migrate(to, task, false); + put_task_struct(task); } - /* - * If we had to process any tasks at all, scan again - * in case some of them were in the middle of forking - * children that didn't get processed. - * Not the most efficient way to do it, but it avoids - * having to take callback_mutex in the fork path - */ - goto again; - } - if (heap == &tmp_heap) - heap_free(&tmp_heap); - return 0; + } while (task && !ret); +out_err: + cgroup_migrate_finish(&preloaded_csets); + mutex_unlock(&cgroup_mutex); + return ret; } /* @@ -3043,6 +3565,36 @@ int cgroup_scan_tasks(struct cgroup_scanner *scan) * */ +/* which pidlist file are we talking about? */ +enum cgroup_filetype { + CGROUP_FILE_PROCS, + CGROUP_FILE_TASKS, +}; + +/* + * A pidlist is a list of pids that virtually represents the contents of one + * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, + * a pair (one each for procs, tasks) for each pid namespace that's relevant + * to the cgroup. + */ +struct cgroup_pidlist { + /* + * used to find which pidlist is wanted. doesn't change as long as + * this particular list stays in the list. + */ + struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; + /* array of xids */ + pid_t *list; + /* how many elements the above list has */ + int length; + /* each of these stored in a list by its cgroup */ + struct list_head links; + /* pointer to the cgroup we belong to, for list removal purposes */ + struct cgroup *owner; + /* for delayed destruction */ + struct delayed_work destroy_dwork; +}; + /* * The following two functions "fix" the issue where there are more pids * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. @@ -3056,6 +3608,7 @@ static void *pidlist_allocate(int count) else return kmalloc(count * sizeof(pid_t), GFP_KERNEL); } + static void pidlist_free(void *p) { if (is_vmalloc_addr(p)) @@ -3063,35 +3616,55 @@ static void pidlist_free(void *p) else kfree(p); } -static void *pidlist_resize(void *p, int newcount) + +/* + * Used to destroy all pidlists lingering waiting for destroy timer. None + * should be left afterwards. + */ +static void cgroup_pidlist_destroy_all(struct cgroup *cgrp) { - void *newlist; - /* note: if new alloc fails, old p will still be valid either way */ - if (is_vmalloc_addr(p)) { - newlist = vmalloc(newcount * sizeof(pid_t)); - if (!newlist) - return NULL; - memcpy(newlist, p, newcount * sizeof(pid_t)); - vfree(p); - } else { - newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL); + struct cgroup_pidlist *l, *tmp_l; + + mutex_lock(&cgrp->pidlist_mutex); + list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) + mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); + mutex_unlock(&cgrp->pidlist_mutex); + + flush_workqueue(cgroup_pidlist_destroy_wq); + BUG_ON(!list_empty(&cgrp->pidlists)); +} + +static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) +{ + struct delayed_work *dwork = to_delayed_work(work); + struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, + destroy_dwork); + struct cgroup_pidlist *tofree = NULL; + + mutex_lock(&l->owner->pidlist_mutex); + + /* + * Destroy iff we didn't get queued again. The state won't change + * as destroy_dwork can only be queued while locked. + */ + if (!delayed_work_pending(dwork)) { + list_del(&l->links); + pidlist_free(l->list); + put_pid_ns(l->key.ns); + tofree = l; } - return newlist; + + mutex_unlock(&l->owner->pidlist_mutex); + kfree(tofree); } /* * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries - * If the new stripped list is sufficiently smaller and there's enough memory - * to allocate a new buffer, will let go of the unneeded memory. Returns the - * number of unique elements. + * Returns the number of unique elements. */ -/* is the size difference enough that we should re-allocate the array? */ -#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new)) -static int pidlist_uniq(pid_t **p, int length) +static int pidlist_uniq(pid_t *list, int length) { int src, dest = 1; - pid_t *list = *p; - pid_t *newlist; /* * we presume the 0th element is unique, so i starts at 1. trivial @@ -3112,67 +3685,95 @@ static int pidlist_uniq(pid_t **p, int length) dest++; } after: - /* - * if the length difference is large enough, we want to allocate a - * smaller buffer to save memory. if this fails due to out of memory, - * we'll just stay with what we've got. - */ - if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) { - newlist = pidlist_resize(list, dest); - if (newlist) - *p = newlist; - } return dest; } +/* + * The two pid files - task and cgroup.procs - guaranteed that the result + * is sorted, which forced this whole pidlist fiasco. As pid order is + * different per namespace, each namespace needs differently sorted list, + * making it impossible to use, for example, single rbtree of member tasks + * sorted by task pointer. As pidlists can be fairly large, allocating one + * per open file is dangerous, so cgroup had to implement shared pool of + * pidlists keyed by cgroup and namespace. + * + * All this extra complexity was caused by the original implementation + * committing to an entirely unnecessary property. In the long term, we + * want to do away with it. Explicitly scramble sort order if + * sane_behavior so that no such expectation exists in the new interface. + * + * Scrambling is done by swapping every two consecutive bits, which is + * non-identity one-to-one mapping which disturbs sort order sufficiently. + */ +static pid_t pid_fry(pid_t pid) +{ + unsigned a = pid & 0x55555555; + unsigned b = pid & 0xAAAAAAAA; + + return (a << 1) | (b >> 1); +} + +static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid) +{ + if (cgroup_sane_behavior(cgrp)) + return pid_fry(pid); + else + return pid; +} + static int cmppid(const void *a, const void *b) { return *(pid_t *)a - *(pid_t *)b; } +static int fried_cmppid(const void *a, const void *b) +{ + return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b); +} + +static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, + enum cgroup_filetype type) +{ + struct cgroup_pidlist *l; + /* don't need task_nsproxy() if we're looking at ourself */ + struct pid_namespace *ns = task_active_pid_ns(current); + + lockdep_assert_held(&cgrp->pidlist_mutex); + + list_for_each_entry(l, &cgrp->pidlists, links) + if (l->key.type == type && l->key.ns == ns) + return l; + return NULL; +} + /* * find the appropriate pidlist for our purpose (given procs vs tasks) * returns with the lock on that pidlist already held, and takes care * of the use count, or returns NULL with no locks held if we're out of * memory. */ -static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, - enum cgroup_filetype type) +static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, + enum cgroup_filetype type) { struct cgroup_pidlist *l; - /* don't need task_nsproxy() if we're looking at ourself */ - struct pid_namespace *ns = current->nsproxy->pid_ns; - /* - * We can't drop the pidlist_mutex before taking the l->mutex in case - * the last ref-holder is trying to remove l from the list at the same - * time. Holding the pidlist_mutex precludes somebody taking whichever - * list we find out from under us - compare release_pid_array(). - */ - mutex_lock(&cgrp->pidlist_mutex); - list_for_each_entry(l, &cgrp->pidlists, links) { - if (l->key.type == type && l->key.ns == ns) { - /* make sure l doesn't vanish out from under us */ - down_write(&l->mutex); - mutex_unlock(&cgrp->pidlist_mutex); - return l; - } - } + lockdep_assert_held(&cgrp->pidlist_mutex); + + l = cgroup_pidlist_find(cgrp, type); + if (l) + return l; + /* entry not found; create a new one */ - l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); - if (!l) { - mutex_unlock(&cgrp->pidlist_mutex); + l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); + if (!l) return l; - } - init_rwsem(&l->mutex); - down_write(&l->mutex); + + INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); l->key.type = type; - l->key.ns = get_pid_ns(ns); - l->use_count = 0; /* don't increment here */ - l->list = NULL; + /* don't need task_nsproxy() if we're looking at ourself */ + l->key.ns = get_pid_ns(task_active_pid_ns(current)); l->owner = cgrp; list_add(&l->links, &cgrp->pidlists); - mutex_unlock(&cgrp->pidlist_mutex); return l; } @@ -3185,10 +3786,12 @@ static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, pid_t *array; int length; int pid, n = 0; /* used for populating the array */ - struct cgroup_iter it; + struct css_task_iter it; struct task_struct *tsk; struct cgroup_pidlist *l; + lockdep_assert_held(&cgrp->pidlist_mutex); + /* * If cgroup gets more users after we read count, we won't have * enough space - tough. This race is indistinguishable to the @@ -3200,8 +3803,8 @@ static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, if (!array) return -ENOMEM; /* now, populate the array */ - cgroup_iter_start(cgrp, &it); - while ((tsk = cgroup_iter_next(cgrp, &it))) { + css_task_iter_start(&cgrp->self, &it); + while ((tsk = css_task_iter_next(&it))) { if (unlikely(n == length)) break; /* get tgid or pid for procs or tasks file respectively */ @@ -3212,23 +3815,27 @@ static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, if (pid > 0) /* make sure to only use valid results */ array[n++] = pid; } - cgroup_iter_end(cgrp, &it); + css_task_iter_end(&it); length = n; /* now sort & (if procs) strip out duplicates */ - sort(array, length, sizeof(pid_t), cmppid, NULL); + if (cgroup_sane_behavior(cgrp)) + sort(array, length, sizeof(pid_t), fried_cmppid, NULL); + else + sort(array, length, sizeof(pid_t), cmppid, NULL); if (type == CGROUP_FILE_PROCS) - length = pidlist_uniq(&array, length); - l = cgroup_pidlist_find(cgrp, type); + length = pidlist_uniq(array, length); + + l = cgroup_pidlist_find_create(cgrp, type); if (!l) { + mutex_unlock(&cgrp->pidlist_mutex); pidlist_free(array); return -ENOMEM; } - /* store array, freeing old if necessary - lock already held */ + + /* store array, freeing old if necessary */ pidlist_free(l->list); l->list = array; l->length = length; - l->use_count++; - up_write(&l->mutex); *lp = l; return 0; } @@ -3244,24 +3851,34 @@ static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, */ int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) { - int ret = -EINVAL; + struct kernfs_node *kn = kernfs_node_from_dentry(dentry); struct cgroup *cgrp; - struct cgroup_iter it; + struct css_task_iter it; struct task_struct *tsk; + /* it should be kernfs_node belonging to cgroupfs and is a directory */ + if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || + kernfs_type(kn) != KERNFS_DIR) + return -EINVAL; + + mutex_lock(&cgroup_mutex); + /* - * Validate dentry by checking the superblock operations, - * and make sure it's a directory. + * We aren't being called from kernfs and there's no guarantee on + * @kn->priv's validity. For this and css_tryget_online_from_dir(), + * @kn->priv is RCU safe. Let's do the RCU dancing. */ - if (dentry->d_sb->s_op != &cgroup_ops || - !S_ISDIR(dentry->d_inode->i_mode)) - goto err; - - ret = 0; - cgrp = dentry->d_fsdata; + rcu_read_lock(); + cgrp = rcu_dereference(kn->priv); + if (!cgrp || cgroup_is_dead(cgrp)) { + rcu_read_unlock(); + mutex_unlock(&cgroup_mutex); + return -ENOENT; + } + rcu_read_unlock(); - cgroup_iter_start(cgrp, &it); - while ((tsk = cgroup_iter_next(cgrp, &it))) { + css_task_iter_start(&cgrp->self, &it); + while ((tsk = css_task_iter_next(&it))) { switch (tsk->state) { case TASK_RUNNING: stats->nr_running++; @@ -3281,10 +3898,10 @@ int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) break; } } - cgroup_iter_end(cgrp, &it); + css_task_iter_end(&it); -err: - return ret; + mutex_unlock(&cgroup_mutex); + return 0; } @@ -3302,20 +3919,45 @@ static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) * after a seek to the start). Use a binary-search to find the * next pid to display, if any */ - struct cgroup_pidlist *l = s->private; + struct kernfs_open_file *of = s->private; + struct cgroup *cgrp = seq_css(s)->cgroup; + struct cgroup_pidlist *l; + enum cgroup_filetype type = seq_cft(s)->private; int index = 0, pid = *pos; - int *iter; + int *iter, ret; + + mutex_lock(&cgrp->pidlist_mutex); + + /* + * !NULL @of->priv indicates that this isn't the first start() + * after open. If the matching pidlist is around, we can use that. + * Look for it. Note that @of->priv can't be used directly. It + * could already have been destroyed. + */ + if (of->priv) + of->priv = cgroup_pidlist_find(cgrp, type); + + /* + * Either this is the first start() after open or the matching + * pidlist has been destroyed inbetween. Create a new one. + */ + if (!of->priv) { + ret = pidlist_array_load(cgrp, type, + (struct cgroup_pidlist **)&of->priv); + if (ret) + return ERR_PTR(ret); + } + l = of->priv; - down_read(&l->mutex); if (pid) { int end = l->length; while (index < end) { int mid = (index + end) / 2; - if (l->list[mid] == pid) { + if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) { index = mid; break; - } else if (l->list[mid] <= pid) + } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid) index = mid + 1; else end = mid; @@ -3326,19 +3968,25 @@ static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) return NULL; /* Update the abstract position to be the actual pid that we found */ iter = l->list + index; - *pos = *iter; + *pos = cgroup_pid_fry(cgrp, *iter); return iter; } static void cgroup_pidlist_stop(struct seq_file *s, void *v) { - struct cgroup_pidlist *l = s->private; - up_read(&l->mutex); + struct kernfs_open_file *of = s->private; + struct cgroup_pidlist *l = of->priv; + + if (l) + mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, + CGROUP_PIDLIST_DESTROY_DELAY); + mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); } static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) { - struct cgroup_pidlist *l = s->private; + struct kernfs_open_file *of = s->private; + struct cgroup_pidlist *l = of->priv; pid_t *p = v; pid_t *end = l->list + l->length; /* @@ -3349,7 +3997,7 @@ static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) if (p >= end) { return NULL; } else { - *pos = *p; + *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p); return p; } } @@ -3359,756 +4007,714 @@ static int cgroup_pidlist_show(struct seq_file *s, void *v) return seq_printf(s, "%d\n", *(int *)v); } -/* - * seq_operations functions for iterating on pidlists through seq_file - - * independent of whether it's tasks or procs - */ -static const struct seq_operations cgroup_pidlist_seq_operations = { - .start = cgroup_pidlist_start, - .stop = cgroup_pidlist_stop, - .next = cgroup_pidlist_next, - .show = cgroup_pidlist_show, -}; - -static void cgroup_release_pid_array(struct cgroup_pidlist *l) +static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, + struct cftype *cft) { - /* - * the case where we're the last user of this particular pidlist will - * have us remove it from the cgroup's list, which entails taking the - * mutex. since in pidlist_find the pidlist->lock depends on cgroup-> - * pidlist_mutex, we have to take pidlist_mutex first. - */ - mutex_lock(&l->owner->pidlist_mutex); - down_write(&l->mutex); - BUG_ON(!l->use_count); - if (!--l->use_count) { - /* we're the last user if refcount is 0; remove and free */ - list_del(&l->links); - mutex_unlock(&l->owner->pidlist_mutex); - pidlist_free(l->list); - put_pid_ns(l->key.ns); - up_write(&l->mutex); - kfree(l); - return; - } - mutex_unlock(&l->owner->pidlist_mutex); - up_write(&l->mutex); + return notify_on_release(css->cgroup); } -static int cgroup_pidlist_release(struct inode *inode, struct file *file) -{ - struct cgroup_pidlist *l; - if (!(file->f_mode & FMODE_READ)) - return 0; - /* - * the seq_file will only be initialized if the file was opened for - * reading; hence we check if it's not null only in that case. - */ - l = ((struct seq_file *)file->private_data)->private; - cgroup_release_pid_array(l); - return seq_release(inode, file); -} - -static const struct file_operations cgroup_pidlist_operations = { - .read = seq_read, - .llseek = seq_lseek, - .write = cgroup_file_write, - .release = cgroup_pidlist_release, -}; - -/* - * The following functions handle opens on a file that displays a pidlist - * (tasks or procs). Prepare an array of the process/thread IDs of whoever's - * in the cgroup. - */ -/* helper function for the two below it */ -static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type) +static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, + struct cftype *cft, u64 val) { - struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); - struct cgroup_pidlist *l; - int retval; - - /* Nothing to do for write-only files */ - if (!(file->f_mode & FMODE_READ)) - return 0; - - /* have the array populated */ - retval = pidlist_array_load(cgrp, type, &l); - if (retval) - return retval; - /* configure file information */ - file->f_op = &cgroup_pidlist_operations; - - retval = seq_open(file, &cgroup_pidlist_seq_operations); - if (retval) { - cgroup_release_pid_array(l); - return retval; - } - ((struct seq_file *)file->private_data)->private = l; + clear_bit(CGRP_RELEASABLE, &css->cgroup->flags); + if (val) + set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); + else + clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); return 0; } -static int cgroup_tasks_open(struct inode *unused, struct file *file) -{ - return cgroup_pidlist_open(file, CGROUP_FILE_TASKS); -} -static int cgroup_procs_open(struct inode *unused, struct file *file) -{ - return cgroup_pidlist_open(file, CGROUP_FILE_PROCS); -} -static u64 cgroup_read_notify_on_release(struct cgroup *cgrp, - struct cftype *cft) +static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, + struct cftype *cft) { - return notify_on_release(cgrp); + return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); } -static int cgroup_write_notify_on_release(struct cgroup *cgrp, - struct cftype *cft, - u64 val) +static int cgroup_clone_children_write(struct cgroup_subsys_state *css, + struct cftype *cft, u64 val) { - clear_bit(CGRP_RELEASABLE, &cgrp->flags); if (val) - set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); + set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); else - clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); + clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); return 0; } -/* - * Unregister event and free resources. +static struct cftype cgroup_base_files[] = { + { + .name = "cgroup.procs", + .seq_start = cgroup_pidlist_start, + .seq_next = cgroup_pidlist_next, + .seq_stop = cgroup_pidlist_stop, + .seq_show = cgroup_pidlist_show, + .private = CGROUP_FILE_PROCS, + .write = cgroup_procs_write, + .mode = S_IRUGO | S_IWUSR, + }, + { + .name = "cgroup.clone_children", + .flags = CFTYPE_INSANE, + .read_u64 = cgroup_clone_children_read, + .write_u64 = cgroup_clone_children_write, + }, + { + .name = "cgroup.sane_behavior", + .flags = CFTYPE_ONLY_ON_ROOT, + .seq_show = cgroup_sane_behavior_show, + }, + { + .name = "cgroup.controllers", + .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_ONLY_ON_ROOT, + .seq_show = cgroup_root_controllers_show, + }, + { + .name = "cgroup.controllers", + .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT, + .seq_show = cgroup_controllers_show, + }, + { + .name = "cgroup.subtree_control", + .flags = CFTYPE_ONLY_ON_DFL, + .seq_show = cgroup_subtree_control_show, + .write = cgroup_subtree_control_write, + }, + { + .name = "cgroup.populated", + .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT, + .seq_show = cgroup_populated_show, + }, + + /* + * Historical crazy stuff. These don't have "cgroup." prefix and + * don't exist if sane_behavior. If you're depending on these, be + * prepared to be burned. + */ + { + .name = "tasks", + .flags = CFTYPE_INSANE, /* use "procs" instead */ + .seq_start = cgroup_pidlist_start, + .seq_next = cgroup_pidlist_next, + .seq_stop = cgroup_pidlist_stop, + .seq_show = cgroup_pidlist_show, + .private = CGROUP_FILE_TASKS, + .write = cgroup_tasks_write, + .mode = S_IRUGO | S_IWUSR, + }, + { + .name = "notify_on_release", + .flags = CFTYPE_INSANE, + .read_u64 = cgroup_read_notify_on_release, + .write_u64 = cgroup_write_notify_on_release, + }, + { + .name = "release_agent", + .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT, + .seq_show = cgroup_release_agent_show, + .write = cgroup_release_agent_write, + .max_write_len = PATH_MAX - 1, + }, + { } /* terminate */ +}; + +/** + * cgroup_populate_dir - create subsys files in a cgroup directory + * @cgrp: target cgroup + * @subsys_mask: mask of the subsystem ids whose files should be added * - * Gets called from workqueue. + * On failure, no file is added. */ -static void cgroup_event_remove(struct work_struct *work) +static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask) { - struct cgroup_event *event = container_of(work, struct cgroup_event, - remove); - struct cgroup *cgrp = event->cgrp; + struct cgroup_subsys *ss; + int i, ret = 0; - event->cft->unregister_event(cgrp, event->cft, event->eventfd); + /* process cftsets of each subsystem */ + for_each_subsys(ss, i) { + struct cftype *cfts; - eventfd_ctx_put(event->eventfd); - kfree(event); - dput(cgrp->dentry); -} + if (!(subsys_mask & (1 << i))) + continue; -/* - * Gets called on POLLHUP on eventfd when user closes it. - * - * Called with wqh->lock held and interrupts disabled. - */ -static int cgroup_event_wake(wait_queue_t *wait, unsigned mode, - int sync, void *key) -{ - struct cgroup_event *event = container_of(wait, - struct cgroup_event, wait); - struct cgroup *cgrp = event->cgrp; - unsigned long flags = (unsigned long)key; - - if (flags & POLLHUP) { - __remove_wait_queue(event->wqh, &event->wait); - spin_lock(&cgrp->event_list_lock); - list_del(&event->list); - spin_unlock(&cgrp->event_list_lock); - /* - * We are in atomic context, but cgroup_event_remove() may - * sleep, so we have to call it in workqueue. - */ - schedule_work(&event->remove); + list_for_each_entry(cfts, &ss->cfts, node) { + ret = cgroup_addrm_files(cgrp, cfts, true); + if (ret < 0) + goto err; + } } - return 0; -} - -static void cgroup_event_ptable_queue_proc(struct file *file, - wait_queue_head_t *wqh, poll_table *pt) -{ - struct cgroup_event *event = container_of(pt, - struct cgroup_event, pt); - - event->wqh = wqh; - add_wait_queue(wqh, &event->wait); +err: + cgroup_clear_dir(cgrp, subsys_mask); + return ret; } /* - * Parse input and register new cgroup event handler. + * css destruction is four-stage process. + * + * 1. Destruction starts. Killing of the percpu_ref is initiated. + * Implemented in kill_css(). * - * Input must be in format '<event_fd> <control_fd> <args>'. - * Interpretation of args is defined by control file implementation. + * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs + * and thus css_tryget_online() is guaranteed to fail, the css can be + * offlined by invoking offline_css(). After offlining, the base ref is + * put. Implemented in css_killed_work_fn(). + * + * 3. When the percpu_ref reaches zero, the only possible remaining + * accessors are inside RCU read sections. css_release() schedules the + * RCU callback. + * + * 4. After the grace period, the css can be freed. Implemented in + * css_free_work_fn(). + * + * It is actually hairier because both step 2 and 4 require process context + * and thus involve punting to css->destroy_work adding two additional + * steps to the already complex sequence. */ -static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft, - const char *buffer) -{ - struct cgroup_event *event = NULL; - unsigned int efd, cfd; - struct file *efile = NULL; - struct file *cfile = NULL; - char *endp; - int ret; +static void css_free_work_fn(struct work_struct *work) +{ + struct cgroup_subsys_state *css = + container_of(work, struct cgroup_subsys_state, destroy_work); + struct cgroup *cgrp = css->cgroup; - efd = simple_strtoul(buffer, &endp, 10); - if (*endp != ' ') - return -EINVAL; - buffer = endp + 1; + if (css->ss) { + /* css free path */ + if (css->parent) + css_put(css->parent); - cfd = simple_strtoul(buffer, &endp, 10); - if ((*endp != ' ') && (*endp != '\0')) - return -EINVAL; - buffer = endp + 1; + css->ss->css_free(css); + cgroup_put(cgrp); + } else { + /* cgroup free path */ + atomic_dec(&cgrp->root->nr_cgrps); + cgroup_pidlist_destroy_all(cgrp); - event = kzalloc(sizeof(*event), GFP_KERNEL); - if (!event) - return -ENOMEM; - event->cgrp = cgrp; - INIT_LIST_HEAD(&event->list); - init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc); - init_waitqueue_func_entry(&event->wait, cgroup_event_wake); - INIT_WORK(&event->remove, cgroup_event_remove); - - efile = eventfd_fget(efd); - if (IS_ERR(efile)) { - ret = PTR_ERR(efile); - goto fail; + if (cgroup_parent(cgrp)) { + /* + * We get a ref to the parent, and put the ref when + * this cgroup is being freed, so it's guaranteed + * that the parent won't be destroyed before its + * children. + */ + cgroup_put(cgroup_parent(cgrp)); + kernfs_put(cgrp->kn); + kfree(cgrp); + } else { + /* + * This is root cgroup's refcnt reaching zero, + * which indicates that the root should be + * released. + */ + cgroup_destroy_root(cgrp->root); + } } +} - event->eventfd = eventfd_ctx_fileget(efile); - if (IS_ERR(event->eventfd)) { - ret = PTR_ERR(event->eventfd); - goto fail; - } +static void css_free_rcu_fn(struct rcu_head *rcu_head) +{ + struct cgroup_subsys_state *css = + container_of(rcu_head, struct cgroup_subsys_state, rcu_head); - cfile = fget(cfd); - if (!cfile) { - ret = -EBADF; - goto fail; - } + INIT_WORK(&css->destroy_work, css_free_work_fn); + queue_work(cgroup_destroy_wq, &css->destroy_work); +} - /* the process need read permission on control file */ - /* AV: shouldn't we check that it's been opened for read instead? */ - ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ); - if (ret < 0) - goto fail; +static void css_release_work_fn(struct work_struct *work) +{ + struct cgroup_subsys_state *css = + container_of(work, struct cgroup_subsys_state, destroy_work); + struct cgroup_subsys *ss = css->ss; + struct cgroup *cgrp = css->cgroup; - event->cft = __file_cft(cfile); - if (IS_ERR(event->cft)) { - ret = PTR_ERR(event->cft); - goto fail; - } + mutex_lock(&cgroup_mutex); - if (!event->cft->register_event || !event->cft->unregister_event) { - ret = -EINVAL; - goto fail; + css->flags |= CSS_RELEASED; + list_del_rcu(&css->sibling); + + if (ss) { + /* css release path */ + cgroup_idr_remove(&ss->css_idr, css->id); + } else { + /* cgroup release path */ + cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); + cgrp->id = -1; } - ret = event->cft->register_event(cgrp, event->cft, - event->eventfd, buffer); - if (ret) - goto fail; + mutex_unlock(&cgroup_mutex); - if (efile->f_op->poll(efile, &event->pt) & POLLHUP) { - event->cft->unregister_event(cgrp, event->cft, event->eventfd); - ret = 0; - goto fail; - } + call_rcu(&css->rcu_head, css_free_rcu_fn); +} - /* - * Events should be removed after rmdir of cgroup directory, but before - * destroying subsystem state objects. Let's take reference to cgroup - * directory dentry to do that. - */ - dget(cgrp->dentry); +static void css_release(struct percpu_ref *ref) +{ + struct cgroup_subsys_state *css = + container_of(ref, struct cgroup_subsys_state, refcnt); - spin_lock(&cgrp->event_list_lock); - list_add(&event->list, &cgrp->event_list); - spin_unlock(&cgrp->event_list_lock); + INIT_WORK(&css->destroy_work, css_release_work_fn); + queue_work(cgroup_destroy_wq, &css->destroy_work); +} - fput(cfile); - fput(efile); +static void init_and_link_css(struct cgroup_subsys_state *css, + struct cgroup_subsys *ss, struct cgroup *cgrp) +{ + lockdep_assert_held(&cgroup_mutex); - return 0; + cgroup_get(cgrp); -fail: - if (cfile) - fput(cfile); + memset(css, 0, sizeof(*css)); + css->cgroup = cgrp; + css->ss = ss; + INIT_LIST_HEAD(&css->sibling); + INIT_LIST_HEAD(&css->children); + css->serial_nr = css_serial_nr_next++; + + if (cgroup_parent(cgrp)) { + css->parent = cgroup_css(cgroup_parent(cgrp), ss); + css_get(css->parent); + } - if (event && event->eventfd && !IS_ERR(event->eventfd)) - eventfd_ctx_put(event->eventfd); + BUG_ON(cgroup_css(cgrp, ss)); +} - if (!IS_ERR_OR_NULL(efile)) - fput(efile); +/* invoke ->css_online() on a new CSS and mark it online if successful */ +static int online_css(struct cgroup_subsys_state *css) +{ + struct cgroup_subsys *ss = css->ss; + int ret = 0; - kfree(event); + lockdep_assert_held(&cgroup_mutex); + if (ss->css_online) + ret = ss->css_online(css); + if (!ret) { + css->flags |= CSS_ONLINE; + rcu_assign_pointer(css->cgroup->subsys[ss->id], css); + } return ret; } -static u64 cgroup_clone_children_read(struct cgroup *cgrp, - struct cftype *cft) +/* if the CSS is online, invoke ->css_offline() on it and mark it offline */ +static void offline_css(struct cgroup_subsys_state *css) { - return clone_children(cgrp); -} + struct cgroup_subsys *ss = css->ss; -static int cgroup_clone_children_write(struct cgroup *cgrp, - struct cftype *cft, - u64 val) -{ - if (val) - set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags); - else - clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags); - return 0; -} + lockdep_assert_held(&cgroup_mutex); -/* - * for the common functions, 'private' gives the type of file - */ -/* for hysterical raisins, we can't put this on the older files */ -#define CGROUP_FILE_GENERIC_PREFIX "cgroup." -static struct cftype files[] = { - { - .name = "tasks", - .open = cgroup_tasks_open, - .write_u64 = cgroup_tasks_write, - .release = cgroup_pidlist_release, - .mode = S_IRUGO | S_IWUSR, - }, - { - .name = CGROUP_FILE_GENERIC_PREFIX "procs", - .open = cgroup_procs_open, - .write_u64 = cgroup_procs_write, - .release = cgroup_pidlist_release, - .mode = S_IRUGO | S_IWUSR, - }, - { - .name = "notify_on_release", - .read_u64 = cgroup_read_notify_on_release, - .write_u64 = cgroup_write_notify_on_release, - }, - { - .name = CGROUP_FILE_GENERIC_PREFIX "event_control", - .write_string = cgroup_write_event_control, - .mode = S_IWUGO, - }, - { - .name = "cgroup.clone_children", - .read_u64 = cgroup_clone_children_read, - .write_u64 = cgroup_clone_children_write, - }, -}; + if (!(css->flags & CSS_ONLINE)) + return; -static struct cftype cft_release_agent = { - .name = "release_agent", - .read_seq_string = cgroup_release_agent_show, - .write_string = cgroup_release_agent_write, - .max_write_len = PATH_MAX, -}; + if (ss->css_offline) + ss->css_offline(css); + + css->flags &= ~CSS_ONLINE; + RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); + + wake_up_all(&css->cgroup->offline_waitq); +} -static int cgroup_populate_dir(struct cgroup *cgrp) +/** + * create_css - create a cgroup_subsys_state + * @cgrp: the cgroup new css will be associated with + * @ss: the subsys of new css + * + * Create a new css associated with @cgrp - @ss pair. On success, the new + * css is online and installed in @cgrp with all interface files created. + * Returns 0 on success, -errno on failure. + */ +static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss) { + struct cgroup *parent = cgroup_parent(cgrp); + struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); + struct cgroup_subsys_state *css; int err; - struct cgroup_subsys *ss; - /* First clear out any existing files */ - cgroup_clear_directory(cgrp->dentry); + lockdep_assert_held(&cgroup_mutex); - err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files)); - if (err < 0) - return err; + css = ss->css_alloc(parent_css); + if (IS_ERR(css)) + return PTR_ERR(css); - if (cgrp == cgrp->top_cgroup) { - if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0) - return err; - } + init_and_link_css(css, ss, cgrp); - for_each_subsys(cgrp->root, ss) { - if (ss->populate && (err = ss->populate(ss, cgrp)) < 0) - return err; - } - /* This cgroup is ready now */ - for_each_subsys(cgrp->root, ss) { - struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; - /* - * Update id->css pointer and make this css visible from - * CSS ID functions. This pointer will be dereferened - * from RCU-read-side without locks. - */ - if (css->id) - rcu_assign_pointer(css->id->css, css); - } + err = percpu_ref_init(&css->refcnt, css_release); + if (err) + goto err_free_css; - return 0; -} + err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT); + if (err < 0) + goto err_free_percpu_ref; + css->id = err; -static void init_cgroup_css(struct cgroup_subsys_state *css, - struct cgroup_subsys *ss, - struct cgroup *cgrp) -{ - css->cgroup = cgrp; - atomic_set(&css->refcnt, 1); - css->flags = 0; - css->id = NULL; - if (cgrp == dummytop) - set_bit(CSS_ROOT, &css->flags); - BUG_ON(cgrp->subsys[ss->subsys_id]); - cgrp->subsys[ss->subsys_id] = css; -} + err = cgroup_populate_dir(cgrp, 1 << ss->id); + if (err) + goto err_free_id; -static void cgroup_lock_hierarchy(struct cgroupfs_root *root) -{ - /* We need to take each hierarchy_mutex in a consistent order */ - int i; + /* @css is ready to be brought online now, make it visible */ + list_add_tail_rcu(&css->sibling, &parent_css->children); + cgroup_idr_replace(&ss->css_idr, css, css->id); - /* - * No worry about a race with rebind_subsystems that might mess up the - * locking order, since both parties are under cgroup_mutex. - */ - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { - struct cgroup_subsys *ss = subsys[i]; - if (ss == NULL) - continue; - if (ss->root == root) - mutex_lock(&ss->hierarchy_mutex); + err = online_css(css); + if (err) + goto err_list_del; + + if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && + cgroup_parent(parent)) { + pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", + current->comm, current->pid, ss->name); + if (!strcmp(ss->name, "memory")) + pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); + ss->warned_broken_hierarchy = true; } -} -static void cgroup_unlock_hierarchy(struct cgroupfs_root *root) -{ - int i; + return 0; - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { - struct cgroup_subsys *ss = subsys[i]; - if (ss == NULL) - continue; - if (ss->root == root) - mutex_unlock(&ss->hierarchy_mutex); - } +err_list_del: + list_del_rcu(&css->sibling); + cgroup_clear_dir(css->cgroup, 1 << css->ss->id); +err_free_id: + cgroup_idr_remove(&ss->css_idr, css->id); +err_free_percpu_ref: + percpu_ref_cancel_init(&css->refcnt); +err_free_css: + call_rcu(&css->rcu_head, css_free_rcu_fn); + return err; } -/* - * cgroup_create - create a cgroup - * @parent: cgroup that will be parent of the new cgroup - * @dentry: dentry of the new cgroup - * @mode: mode to set on new inode - * - * Must be called with the mutex on the parent inode held - */ -static long cgroup_create(struct cgroup *parent, struct dentry *dentry, - umode_t mode) +static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, + umode_t mode) { - struct cgroup *cgrp; - struct cgroupfs_root *root = parent->root; - int err = 0; + struct cgroup *parent, *cgrp; + struct cgroup_root *root; struct cgroup_subsys *ss; - struct super_block *sb = root->sb; + struct kernfs_node *kn; + int ssid, ret; + + parent = cgroup_kn_lock_live(parent_kn); + if (!parent) + return -ENODEV; + root = parent->root; + /* allocate the cgroup and its ID, 0 is reserved for the root */ cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL); - if (!cgrp) - return -ENOMEM; + if (!cgrp) { + ret = -ENOMEM; + goto out_unlock; + } - /* Grab a reference on the superblock so the hierarchy doesn't - * get deleted on unmount if there are child cgroups. This - * can be done outside cgroup_mutex, since the sb can't - * disappear while someone has an open control file on the - * fs */ - atomic_inc(&sb->s_active); + ret = percpu_ref_init(&cgrp->self.refcnt, css_release); + if (ret) + goto out_free_cgrp; - mutex_lock(&cgroup_mutex); + /* + * Temporarily set the pointer to NULL, so idr_find() won't return + * a half-baked cgroup. + */ + cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT); + if (cgrp->id < 0) { + ret = -ENOMEM; + goto out_cancel_ref; + } init_cgroup_housekeeping(cgrp); - cgrp->parent = parent; - cgrp->root = parent->root; - cgrp->top_cgroup = parent->top_cgroup; + cgrp->self.parent = &parent->self; + cgrp->root = root; if (notify_on_release(parent)) set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); - if (clone_children(parent)) - set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags); - - for_each_subsys(root, ss) { - struct cgroup_subsys_state *css = ss->create(ss, cgrp); + if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) + set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); - if (IS_ERR(css)) { - err = PTR_ERR(css); - goto err_destroy; - } - init_cgroup_css(css, ss, cgrp); - if (ss->use_id) { - err = alloc_css_id(ss, parent, cgrp); - if (err) - goto err_destroy; - } - /* At error, ->destroy() callback has to free assigned ID. */ - if (clone_children(parent) && ss->post_clone) - ss->post_clone(ss, cgrp); + /* create the directory */ + kn = kernfs_create_dir(parent->kn, name, mode, cgrp); + if (IS_ERR(kn)) { + ret = PTR_ERR(kn); + goto out_free_id; } + cgrp->kn = kn; - cgroup_lock_hierarchy(root); - list_add(&cgrp->sibling, &cgrp->parent->children); - cgroup_unlock_hierarchy(root); - root->number_of_cgroups++; + /* + * This extra ref will be put in cgroup_free_fn() and guarantees + * that @cgrp->kn is always accessible. + */ + kernfs_get(kn); - err = cgroup_create_dir(cgrp, dentry, mode); - if (err < 0) - goto err_remove; + cgrp->self.serial_nr = css_serial_nr_next++; - /* The cgroup directory was pre-locked for us */ - BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex)); + /* allocation complete, commit to creation */ + list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); + atomic_inc(&root->nr_cgrps); + cgroup_get(parent); - err = cgroup_populate_dir(cgrp); - /* If err < 0, we have a half-filled directory - oh well ;) */ + /* + * @cgrp is now fully operational. If something fails after this + * point, it'll be released via the normal destruction path. + */ + cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); - mutex_unlock(&cgroup_mutex); - mutex_unlock(&cgrp->dentry->d_inode->i_mutex); + ret = cgroup_kn_set_ugid(kn); + if (ret) + goto out_destroy; - return 0; + ret = cgroup_addrm_files(cgrp, cgroup_base_files, true); + if (ret) + goto out_destroy; - err_remove: + /* let's create and online css's */ + for_each_subsys(ss, ssid) { + if (parent->child_subsys_mask & (1 << ssid)) { + ret = create_css(cgrp, ss); + if (ret) + goto out_destroy; + } + } - cgroup_lock_hierarchy(root); - list_del(&cgrp->sibling); - cgroup_unlock_hierarchy(root); - root->number_of_cgroups--; + /* + * On the default hierarchy, a child doesn't automatically inherit + * child_subsys_mask from the parent. Each is configured manually. + */ + if (!cgroup_on_dfl(cgrp)) + cgrp->child_subsys_mask = parent->child_subsys_mask; - err_destroy: + kernfs_activate(kn); - for_each_subsys(root, ss) { - if (cgrp->subsys[ss->subsys_id]) - ss->destroy(ss, cgrp); - } + ret = 0; + goto out_unlock; - mutex_unlock(&cgroup_mutex); +out_free_id: + cgroup_idr_remove(&root->cgroup_idr, cgrp->id); +out_cancel_ref: + percpu_ref_cancel_init(&cgrp->self.refcnt); +out_free_cgrp: + kfree(cgrp); +out_unlock: + cgroup_kn_unlock(parent_kn); + return ret; + +out_destroy: + cgroup_destroy_locked(cgrp); + goto out_unlock; +} - /* Release the reference count that we took on the superblock */ - deactivate_super(sb); +/* + * This is called when the refcnt of a css is confirmed to be killed. + * css_tryget_online() is now guaranteed to fail. Tell the subsystem to + * initate destruction and put the css ref from kill_css(). + */ +static void css_killed_work_fn(struct work_struct *work) +{ + struct cgroup_subsys_state *css = + container_of(work, struct cgroup_subsys_state, destroy_work); - kfree(cgrp); - return err; + mutex_lock(&cgroup_mutex); + offline_css(css); + mutex_unlock(&cgroup_mutex); + + css_put(css); } -static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) +/* css kill confirmation processing requires process context, bounce */ +static void css_killed_ref_fn(struct percpu_ref *ref) { - struct cgroup *c_parent = dentry->d_parent->d_fsdata; + struct cgroup_subsys_state *css = + container_of(ref, struct cgroup_subsys_state, refcnt); - /* the vfs holds inode->i_mutex already */ - return cgroup_create(c_parent, dentry, mode | S_IFDIR); + INIT_WORK(&css->destroy_work, css_killed_work_fn); + queue_work(cgroup_destroy_wq, &css->destroy_work); } -static int cgroup_has_css_refs(struct cgroup *cgrp) +/** + * kill_css - destroy a css + * @css: css to destroy + * + * This function initiates destruction of @css by removing cgroup interface + * files and putting its base reference. ->css_offline() will be invoked + * asynchronously once css_tryget_online() is guaranteed to fail and when + * the reference count reaches zero, @css will be released. + */ +static void kill_css(struct cgroup_subsys_state *css) { - /* Check the reference count on each subsystem. Since we - * already established that there are no tasks in the - * cgroup, if the css refcount is also 1, then there should - * be no outstanding references, so the subsystem is safe to - * destroy. We scan across all subsystems rather than using - * the per-hierarchy linked list of mounted subsystems since - * we can be called via check_for_release() with no - * synchronization other than RCU, and the subsystem linked - * list isn't RCU-safe */ - int i; + lockdep_assert_held(&cgroup_mutex); + /* - * We won't need to lock the subsys array, because the subsystems - * we're concerned about aren't going anywhere since our cgroup root - * has a reference on them. + * This must happen before css is disassociated with its cgroup. + * See seq_css() for details. */ - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { - struct cgroup_subsys *ss = subsys[i]; - struct cgroup_subsys_state *css; - /* Skip subsystems not present or not in this hierarchy */ - if (ss == NULL || ss->root != cgrp->root) - continue; - css = cgrp->subsys[ss->subsys_id]; - /* When called from check_for_release() it's possible - * that by this point the cgroup has been removed - * and the css deleted. But a false-positive doesn't - * matter, since it can only happen if the cgroup - * has been deleted and hence no longer needs the - * release agent to be called anyway. */ - if (css && (atomic_read(&css->refcnt) > 1)) - return 1; - } - return 0; -} + cgroup_clear_dir(css->cgroup, 1 << css->ss->id); -/* - * Atomically mark all (or else none) of the cgroup's CSS objects as - * CSS_REMOVED. Return true on success, or false if the cgroup has - * busy subsystems. Call with cgroup_mutex held - */ + /* + * Killing would put the base ref, but we need to keep it alive + * until after ->css_offline(). + */ + css_get(css); -static int cgroup_clear_css_refs(struct cgroup *cgrp) -{ - struct cgroup_subsys *ss; - unsigned long flags; - bool failed = false; - local_irq_save(flags); - for_each_subsys(cgrp->root, ss) { - struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; - int refcnt; - while (1) { - /* We can only remove a CSS with a refcnt==1 */ - refcnt = atomic_read(&css->refcnt); - if (refcnt > 1) { - failed = true; - goto done; - } - BUG_ON(!refcnt); - /* - * Drop the refcnt to 0 while we check other - * subsystems. This will cause any racing - * css_tryget() to spin until we set the - * CSS_REMOVED bits or abort - */ - if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt) - break; - cpu_relax(); - } - } - done: - for_each_subsys(cgrp->root, ss) { - struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; - if (failed) { - /* - * Restore old refcnt if we previously managed - * to clear it from 1 to 0 - */ - if (!atomic_read(&css->refcnt)) - atomic_set(&css->refcnt, 1); - } else { - /* Commit the fact that the CSS is removed */ - set_bit(CSS_REMOVED, &css->flags); - } - } - local_irq_restore(flags); - return !failed; + /* + * cgroup core guarantees that, by the time ->css_offline() is + * invoked, no new css reference will be given out via + * css_tryget_online(). We can't simply call percpu_ref_kill() and + * proceed to offlining css's because percpu_ref_kill() doesn't + * guarantee that the ref is seen as killed on all CPUs on return. + * + * Use percpu_ref_kill_and_confirm() to get notifications as each + * css is confirmed to be seen as killed on all CPUs. + */ + percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); } -static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry) +/** + * cgroup_destroy_locked - the first stage of cgroup destruction + * @cgrp: cgroup to be destroyed + * + * css's make use of percpu refcnts whose killing latency shouldn't be + * exposed to userland and are RCU protected. Also, cgroup core needs to + * guarantee that css_tryget_online() won't succeed by the time + * ->css_offline() is invoked. To satisfy all the requirements, + * destruction is implemented in the following two steps. + * + * s1. Verify @cgrp can be destroyed and mark it dying. Remove all + * userland visible parts and start killing the percpu refcnts of + * css's. Set up so that the next stage will be kicked off once all + * the percpu refcnts are confirmed to be killed. + * + * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the + * rest of destruction. Once all cgroup references are gone, the + * cgroup is RCU-freed. + * + * This function implements s1. After this step, @cgrp is gone as far as + * the userland is concerned and a new cgroup with the same name may be + * created. As cgroup doesn't care about the names internally, this + * doesn't cause any problem. + */ +static int cgroup_destroy_locked(struct cgroup *cgrp) + __releases(&cgroup_mutex) __acquires(&cgroup_mutex) { - struct cgroup *cgrp = dentry->d_fsdata; - struct dentry *d; - struct cgroup *parent; - DEFINE_WAIT(wait); - struct cgroup_event *event, *tmp; - int ret; + struct cgroup_subsys_state *css; + bool empty; + int ssid; - /* the vfs holds both inode->i_mutex already */ -again: - mutex_lock(&cgroup_mutex); - if (atomic_read(&cgrp->count) != 0) { - mutex_unlock(&cgroup_mutex); - return -EBUSY; - } - if (!list_empty(&cgrp->children)) { - mutex_unlock(&cgroup_mutex); + lockdep_assert_held(&cgroup_mutex); + + /* + * css_set_rwsem synchronizes access to ->cset_links and prevents + * @cgrp from being removed while put_css_set() is in progress. + */ + down_read(&css_set_rwsem); + empty = list_empty(&cgrp->cset_links); + up_read(&css_set_rwsem); + if (!empty) return -EBUSY; - } - mutex_unlock(&cgroup_mutex); /* - * In general, subsystem has no css->refcnt after pre_destroy(). But - * in racy cases, subsystem may have to get css->refcnt after - * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes - * make rmdir return -EBUSY too often. To avoid that, we use waitqueue - * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir - * and subsystem's reference count handling. Please see css_get/put - * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation. + * Make sure there's no live children. We can't test emptiness of + * ->self.children as dead children linger on it while being + * drained; otherwise, "rmdir parent/child parent" may fail. */ - set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); + if (css_has_online_children(&cgrp->self)) + return -EBUSY; /* - * Call pre_destroy handlers of subsys. Notify subsystems - * that rmdir() request comes. + * Mark @cgrp dead. This prevents further task migration and child + * creation by disabling cgroup_lock_live_group(). */ - ret = cgroup_call_pre_destroy(cgrp); - if (ret) { - clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); - return ret; - } + cgrp->self.flags &= ~CSS_ONLINE; - mutex_lock(&cgroup_mutex); - parent = cgrp->parent; - if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) { - clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); - mutex_unlock(&cgroup_mutex); - return -EBUSY; - } - prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE); - if (!cgroup_clear_css_refs(cgrp)) { - mutex_unlock(&cgroup_mutex); - /* - * Because someone may call cgroup_wakeup_rmdir_waiter() before - * prepare_to_wait(), we need to check this flag. - */ - if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)) - schedule(); - finish_wait(&cgroup_rmdir_waitq, &wait); - clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); - if (signal_pending(current)) - return -EINTR; - goto again; - } - /* NO css_tryget() can success after here. */ - finish_wait(&cgroup_rmdir_waitq, &wait); - clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); + /* initiate massacre of all css's */ + for_each_css(css, ssid, cgrp) + kill_css(css); + /* CSS_ONLINE is clear, remove from ->release_list for the last time */ raw_spin_lock(&release_list_lock); - set_bit(CGRP_REMOVED, &cgrp->flags); if (!list_empty(&cgrp->release_list)) list_del_init(&cgrp->release_list); raw_spin_unlock(&release_list_lock); - cgroup_lock_hierarchy(cgrp->root); - /* delete this cgroup from parent->children */ - list_del_init(&cgrp->sibling); - cgroup_unlock_hierarchy(cgrp->root); + /* + * Remove @cgrp directory along with the base files. @cgrp has an + * extra ref on its kn. + */ + kernfs_remove(cgrp->kn); + + set_bit(CGRP_RELEASABLE, &cgroup_parent(cgrp)->flags); + check_for_release(cgroup_parent(cgrp)); + + /* put the base reference */ + percpu_ref_kill(&cgrp->self.refcnt); - d = dget(cgrp->dentry); + return 0; +}; + +static int cgroup_rmdir(struct kernfs_node *kn) +{ + struct cgroup *cgrp; + int ret = 0; + + cgrp = cgroup_kn_lock_live(kn); + if (!cgrp) + return 0; + cgroup_get(cgrp); /* for @kn->priv clearing */ - cgroup_d_remove_dir(d); - dput(d); + ret = cgroup_destroy_locked(cgrp); - set_bit(CGRP_RELEASABLE, &parent->flags); - check_for_release(parent); + cgroup_kn_unlock(kn); /* - * Unregister events and notify userspace. - * Notify userspace about cgroup removing only after rmdir of cgroup - * directory to avoid race between userspace and kernelspace + * There are two control paths which try to determine cgroup from + * dentry without going through kernfs - cgroupstats_build() and + * css_tryget_online_from_dir(). Those are supported by RCU + * protecting clearing of cgrp->kn->priv backpointer, which should + * happen after all files under it have been removed. */ - spin_lock(&cgrp->event_list_lock); - list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) { - list_del(&event->list); - remove_wait_queue(event->wqh, &event->wait); - eventfd_signal(event->eventfd, 1); - schedule_work(&event->remove); - } - spin_unlock(&cgrp->event_list_lock); + if (!ret) + RCU_INIT_POINTER(*(void __rcu __force **)&kn->priv, NULL); - mutex_unlock(&cgroup_mutex); - return 0; + cgroup_put(cgrp); + return ret; } -static void __init cgroup_init_subsys(struct cgroup_subsys *ss) +static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { + .remount_fs = cgroup_remount, + .show_options = cgroup_show_options, + .mkdir = cgroup_mkdir, + .rmdir = cgroup_rmdir, + .rename = cgroup_rename, +}; + +static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) { struct cgroup_subsys_state *css; printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name); - /* Create the top cgroup state for this subsystem */ - list_add(&ss->sibling, &rootnode.subsys_list); - ss->root = &rootnode; - css = ss->create(ss, dummytop); + mutex_lock(&cgroup_mutex); + + idr_init(&ss->css_idr); + INIT_LIST_HEAD(&ss->cfts); + + /* Create the root cgroup state for this subsystem */ + ss->root = &cgrp_dfl_root; + css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); /* We don't handle early failures gracefully */ BUG_ON(IS_ERR(css)); - init_cgroup_css(css, ss, dummytop); + init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); + + /* + * Root csses are never destroyed and we can't initialize + * percpu_ref during early init. Disable refcnting. + */ + css->flags |= CSS_NO_REF; + + if (early) { + /* allocation can't be done safely during early init */ + css->id = 1; + } else { + css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); + BUG_ON(css->id < 0); + } /* Update the init_css_set to contain a subsys * pointer to this state - since the subsystem is * newly registered, all tasks and hence the - * init_css_set is in the subsystem's top cgroup. */ - init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id]; + * init_css_set is in the subsystem's root cgroup. */ + init_css_set.subsys[ss->id] = css; need_forkexit_callback |= ss->fork || ss->exit; @@ -4117,322 +4723,152 @@ static void __init cgroup_init_subsys(struct cgroup_subsys *ss) * need to invoke fork callbacks here. */ BUG_ON(!list_empty(&init_task.tasks)); - mutex_init(&ss->hierarchy_mutex); - lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key); - ss->active = 1; + BUG_ON(online_css(css)); - /* this function shouldn't be used with modular subsystems, since they - * need to register a subsys_id, among other things */ - BUG_ON(ss->module); + mutex_unlock(&cgroup_mutex); } /** - * cgroup_load_subsys: load and register a modular subsystem at runtime - * @ss: the subsystem to load + * cgroup_init_early - cgroup initialization at system boot * - * This function should be called in a modular subsystem's initcall. If the - * subsystem is built as a module, it will be assigned a new subsys_id and set - * up for use. If the subsystem is built-in anyway, work is delegated to the - * simpler cgroup_init_subsys. + * Initialize cgroups at system boot, and initialize any + * subsystems that request early init. */ -int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss) +int __init cgroup_init_early(void) { + static struct cgroup_sb_opts __initdata opts = + { .flags = CGRP_ROOT_SANE_BEHAVIOR }; + struct cgroup_subsys *ss; int i; - struct cgroup_subsys_state *css; - - /* check name and function validity */ - if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN || - ss->create == NULL || ss->destroy == NULL) - return -EINVAL; - /* - * we don't support callbacks in modular subsystems. this check is - * before the ss->module check for consistency; a subsystem that could - * be a module should still have no callbacks even if the user isn't - * compiling it as one. - */ - if (ss->fork || ss->exit) - return -EINVAL; + init_cgroup_root(&cgrp_dfl_root, &opts); + cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; - /* - * an optionally modular subsystem is built-in: we want to do nothing, - * since cgroup_init_subsys will have already taken care of it. - */ - if (ss->module == NULL) { - /* a few sanity checks */ - BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT); - BUG_ON(subsys[ss->subsys_id] != ss); - return 0; - } + RCU_INIT_POINTER(init_task.cgroups, &init_css_set); - /* - * need to register a subsys id before anything else - for example, - * init_cgroup_css needs it. - */ - mutex_lock(&cgroup_mutex); - /* find the first empty slot in the array */ - for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) { - if (subsys[i] == NULL) - break; - } - if (i == CGROUP_SUBSYS_COUNT) { - /* maximum number of subsystems already registered! */ - mutex_unlock(&cgroup_mutex); - return -EBUSY; - } - /* assign ourselves the subsys_id */ - ss->subsys_id = i; - subsys[i] = ss; + for_each_subsys(ss, i) { + WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, + "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n", + i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, + ss->id, ss->name); + WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, + "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); - /* - * no ss->create seems to need anything important in the ss struct, so - * this can happen first (i.e. before the rootnode attachment). - */ - css = ss->create(ss, dummytop); - if (IS_ERR(css)) { - /* failure case - need to deassign the subsys[] slot. */ - subsys[i] = NULL; - mutex_unlock(&cgroup_mutex); - return PTR_ERR(css); - } - - list_add(&ss->sibling, &rootnode.subsys_list); - ss->root = &rootnode; - - /* our new subsystem will be attached to the dummy hierarchy. */ - init_cgroup_css(css, ss, dummytop); - /* init_idr must be after init_cgroup_css because it sets css->id. */ - if (ss->use_id) { - int ret = cgroup_init_idr(ss, css); - if (ret) { - dummytop->subsys[ss->subsys_id] = NULL; - ss->destroy(ss, dummytop); - subsys[i] = NULL; - mutex_unlock(&cgroup_mutex); - return ret; - } - } + ss->id = i; + ss->name = cgroup_subsys_name[i]; - /* - * Now we need to entangle the css into the existing css_sets. unlike - * in cgroup_init_subsys, there are now multiple css_sets, so each one - * will need a new pointer to it; done by iterating the css_set_table. - * furthermore, modifying the existing css_sets will corrupt the hash - * table state, so each changed css_set will need its hash recomputed. - * this is all done under the css_set_lock. - */ - write_lock(&css_set_lock); - for (i = 0; i < CSS_SET_TABLE_SIZE; i++) { - struct css_set *cg; - struct hlist_node *node, *tmp; - struct hlist_head *bucket = &css_set_table[i], *new_bucket; - - hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) { - /* skip entries that we already rehashed */ - if (cg->subsys[ss->subsys_id]) - continue; - /* remove existing entry */ - hlist_del(&cg->hlist); - /* set new value */ - cg->subsys[ss->subsys_id] = css; - /* recompute hash and restore entry */ - new_bucket = css_set_hash(cg->subsys); - hlist_add_head(&cg->hlist, new_bucket); - } + if (ss->early_init) + cgroup_init_subsys(ss, true); } - write_unlock(&css_set_lock); - - mutex_init(&ss->hierarchy_mutex); - lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key); - ss->active = 1; - - /* success! */ - mutex_unlock(&cgroup_mutex); return 0; } -EXPORT_SYMBOL_GPL(cgroup_load_subsys); /** - * cgroup_unload_subsys: unload a modular subsystem - * @ss: the subsystem to unload + * cgroup_init - cgroup initialization * - * This function should be called in a modular subsystem's exitcall. When this - * function is invoked, the refcount on the subsystem's module will be 0, so - * the subsystem will not be attached to any hierarchy. + * Register cgroup filesystem and /proc file, and initialize + * any subsystems that didn't request early init. */ -void cgroup_unload_subsys(struct cgroup_subsys *ss) +int __init cgroup_init(void) { - struct cg_cgroup_link *link; - struct hlist_head *hhead; - - BUG_ON(ss->module == NULL); + struct cgroup_subsys *ss; + unsigned long key; + int ssid, err; - /* - * we shouldn't be called if the subsystem is in use, and the use of - * try_module_get in parse_cgroupfs_options should ensure that it - * doesn't start being used while we're killing it off. - */ - BUG_ON(ss->root != &rootnode); + BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); mutex_lock(&cgroup_mutex); - /* deassign the subsys_id */ - BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT); - subsys[ss->subsys_id] = NULL; - - /* remove subsystem from rootnode's list of subsystems */ - list_del_init(&ss->sibling); - /* - * disentangle the css from all css_sets attached to the dummytop. as - * in loading, we need to pay our respects to the hashtable gods. - */ - write_lock(&css_set_lock); - list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) { - struct css_set *cg = link->cg; - - hlist_del(&cg->hlist); - BUG_ON(!cg->subsys[ss->subsys_id]); - cg->subsys[ss->subsys_id] = NULL; - hhead = css_set_hash(cg->subsys); - hlist_add_head(&cg->hlist, hhead); - } - write_unlock(&css_set_lock); + /* Add init_css_set to the hash table */ + key = css_set_hash(init_css_set.subsys); + hash_add(css_set_table, &init_css_set.hlist, key); - /* - * remove subsystem's css from the dummytop and free it - need to free - * before marking as null because ss->destroy needs the cgrp->subsys - * pointer to find their state. note that this also takes care of - * freeing the css_id. - */ - ss->destroy(ss, dummytop); - dummytop->subsys[ss->subsys_id] = NULL; + BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); mutex_unlock(&cgroup_mutex); -} -EXPORT_SYMBOL_GPL(cgroup_unload_subsys); - -/** - * cgroup_init_early - cgroup initialization at system boot - * - * Initialize cgroups at system boot, and initialize any - * subsystems that request early init. - */ -int __init cgroup_init_early(void) -{ - int i; - atomic_set(&init_css_set.refcount, 1); - INIT_LIST_HEAD(&init_css_set.cg_links); - INIT_LIST_HEAD(&init_css_set.tasks); - INIT_HLIST_NODE(&init_css_set.hlist); - css_set_count = 1; - init_cgroup_root(&rootnode); - root_count = 1; - init_task.cgroups = &init_css_set; - - init_css_set_link.cg = &init_css_set; - init_css_set_link.cgrp = dummytop; - list_add(&init_css_set_link.cgrp_link_list, - &rootnode.top_cgroup.css_sets); - list_add(&init_css_set_link.cg_link_list, - &init_css_set.cg_links); - - for (i = 0; i < CSS_SET_TABLE_SIZE; i++) - INIT_HLIST_HEAD(&css_set_table[i]); - - /* at bootup time, we don't worry about modular subsystems */ - for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { - struct cgroup_subsys *ss = subsys[i]; - - BUG_ON(!ss->name); - BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN); - BUG_ON(!ss->create); - BUG_ON(!ss->destroy); - if (ss->subsys_id != i) { - printk(KERN_ERR "cgroup: Subsys %s id == %d\n", - ss->name, ss->subsys_id); - BUG(); - } - if (ss->early_init) - cgroup_init_subsys(ss); - } - return 0; -} + for_each_subsys(ss, ssid) { + if (ss->early_init) { + struct cgroup_subsys_state *css = + init_css_set.subsys[ss->id]; -/** - * cgroup_init - cgroup initialization - * - * Register cgroup filesystem and /proc file, and initialize - * any subsystems that didn't request early init. - */ -int __init cgroup_init(void) -{ - int err; - int i; - struct hlist_head *hhead; + css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, + GFP_KERNEL); + BUG_ON(css->id < 0); + } else { + cgroup_init_subsys(ss, false); + } - err = bdi_init(&cgroup_backing_dev_info); - if (err) - return err; + list_add_tail(&init_css_set.e_cset_node[ssid], + &cgrp_dfl_root.cgrp.e_csets[ssid]); - /* at bootup time, we don't worry about modular subsystems */ - for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { - struct cgroup_subsys *ss = subsys[i]; - if (!ss->early_init) - cgroup_init_subsys(ss); - if (ss->use_id) - cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]); + /* + * Setting dfl_root subsys_mask needs to consider the + * disabled flag and cftype registration needs kmalloc, + * both of which aren't available during early_init. + */ + if (!ss->disabled) { + cgrp_dfl_root.subsys_mask |= 1 << ss->id; + WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes)); + } } - /* Add init_css_set to the hash table */ - hhead = css_set_hash(init_css_set.subsys); - hlist_add_head(&init_css_set.hlist, hhead); - BUG_ON(!init_root_id(&rootnode)); - cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj); - if (!cgroup_kobj) { - err = -ENOMEM; - goto out; - } + if (!cgroup_kobj) + return -ENOMEM; err = register_filesystem(&cgroup_fs_type); if (err < 0) { kobject_put(cgroup_kobj); - goto out; + return err; } proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations); + return 0; +} -out: - if (err) - bdi_destroy(&cgroup_backing_dev_info); +static int __init cgroup_wq_init(void) +{ + /* + * There isn't much point in executing destruction path in + * parallel. Good chunk is serialized with cgroup_mutex anyway. + * Use 1 for @max_active. + * + * We would prefer to do this in cgroup_init() above, but that + * is called before init_workqueues(): so leave this until after. + */ + cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); + BUG_ON(!cgroup_destroy_wq); - return err; + /* + * Used to destroy pidlists and separate to serve as flush domain. + * Cap @max_active to 1 too. + */ + cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", + 0, 1); + BUG_ON(!cgroup_pidlist_destroy_wq); + + return 0; } +core_initcall(cgroup_wq_init); /* * proc_cgroup_show() * - Print task's cgroup paths into seq_file, one line for each hierarchy * - Used for /proc/<pid>/cgroup. - * - No need to task_lock(tsk) on this tsk->cgroup reference, as it - * doesn't really matter if tsk->cgroup changes after we read it, - * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it - * anyway. No need to check that tsk->cgroup != NULL, thanks to - * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks - * cgroup to top_cgroup. */ /* TODO: Use a proper seq_file iterator */ -static int proc_cgroup_show(struct seq_file *m, void *v) +int proc_cgroup_show(struct seq_file *m, void *v) { struct pid *pid; struct task_struct *tsk; - char *buf; + char *buf, *path; int retval; - struct cgroupfs_root *root; + struct cgroup_root *root; retval = -ENOMEM; - buf = kmalloc(PAGE_SIZE, GFP_KERNEL); + buf = kmalloc(PATH_MAX, GFP_KERNEL); if (!buf) goto out; @@ -4445,28 +4881,36 @@ static int proc_cgroup_show(struct seq_file *m, void *v) retval = 0; mutex_lock(&cgroup_mutex); + down_read(&css_set_rwsem); - for_each_active_root(root) { + for_each_root(root) { struct cgroup_subsys *ss; struct cgroup *cgrp; - int count = 0; + int ssid, count = 0; + + if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible) + continue; seq_printf(m, "%d:", root->hierarchy_id); - for_each_subsys(root, ss) - seq_printf(m, "%s%s", count++ ? "," : "", ss->name); + for_each_subsys(ss, ssid) + if (root->subsys_mask & (1 << ssid)) + seq_printf(m, "%s%s", count++ ? "," : "", ss->name); if (strlen(root->name)) seq_printf(m, "%sname=%s", count ? "," : "", root->name); seq_putc(m, ':'); cgrp = task_cgroup_from_root(tsk, root); - retval = cgroup_path(cgrp, buf, PAGE_SIZE); - if (retval < 0) + path = cgroup_path(cgrp, buf, PATH_MAX); + if (!path) { + retval = -ENAMETOOLONG; goto out_unlock; - seq_puts(m, buf); + } + seq_puts(m, path); seq_putc(m, '\n'); } out_unlock: + up_read(&css_set_rwsem); mutex_unlock(&cgroup_mutex); put_task_struct(tsk); out_free: @@ -4475,22 +4919,10 @@ out: return retval; } -static int cgroup_open(struct inode *inode, struct file *file) -{ - struct pid *pid = PROC_I(inode)->pid; - return single_open(file, proc_cgroup_show, pid); -} - -const struct file_operations proc_cgroup_operations = { - .open = cgroup_open, - .read = seq_read, - .llseek = seq_lseek, - .release = single_release, -}; - /* Display information about each subsystem and each hierarchy */ static int proc_cgroupstats_show(struct seq_file *m, void *v) { + struct cgroup_subsys *ss; int i; seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); @@ -4500,14 +4932,12 @@ static int proc_cgroupstats_show(struct seq_file *m, void *v) * subsys/hierarchy state. */ mutex_lock(&cgroup_mutex); - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { - struct cgroup_subsys *ss = subsys[i]; - if (ss == NULL) - continue; + + for_each_subsys(ss, i) seq_printf(m, "%s\t%d\t%d\t%d\n", ss->name, ss->root->hierarchy_id, - ss->root->number_of_cgroups, !ss->disabled); - } + atomic_read(&ss->root->nr_cgrps), !ss->disabled); + mutex_unlock(&cgroup_mutex); return 0; } @@ -4525,99 +4955,83 @@ static const struct file_operations proc_cgroupstats_operations = { }; /** - * cgroup_fork - attach newly forked task to its parents cgroup. + * cgroup_fork - initialize cgroup related fields during copy_process() * @child: pointer to task_struct of forking parent process. * - * Description: A task inherits its parent's cgroup at fork(). - * - * A pointer to the shared css_set was automatically copied in - * fork.c by dup_task_struct(). However, we ignore that copy, since - * it was not made under the protection of RCU, cgroup_mutex or - * threadgroup_change_begin(), so it might no longer be a valid - * cgroup pointer. cgroup_attach_task() might have already changed - * current->cgroups, allowing the previously referenced cgroup - * group to be removed and freed. - * - * Outside the pointer validity we also need to process the css_set - * inheritance between threadgoup_change_begin() and - * threadgoup_change_end(), this way there is no leak in any process - * wide migration performed by cgroup_attach_proc() that could otherwise - * miss a thread because it is too early or too late in the fork stage. - * - * At the point that cgroup_fork() is called, 'current' is the parent - * task, and the passed argument 'child' points to the child task. + * A task is associated with the init_css_set until cgroup_post_fork() + * attaches it to the parent's css_set. Empty cg_list indicates that + * @child isn't holding reference to its css_set. */ void cgroup_fork(struct task_struct *child) { - /* - * We don't need to task_lock() current because current->cgroups - * can't be changed concurrently here. The parent obviously hasn't - * exited and called cgroup_exit(), and we are synchronized against - * cgroup migration through threadgroup_change_begin(). - */ - child->cgroups = current->cgroups; - get_css_set(child->cgroups); + RCU_INIT_POINTER(child->cgroups, &init_css_set); INIT_LIST_HEAD(&child->cg_list); } /** - * cgroup_fork_callbacks - run fork callbacks - * @child: the new task - * - * Called on a new task very soon before adding it to the - * tasklist. No need to take any locks since no-one can - * be operating on this task. - */ -void cgroup_fork_callbacks(struct task_struct *child) -{ - if (need_forkexit_callback) { - int i; - /* - * forkexit callbacks are only supported for builtin - * subsystems, and the builtin section of the subsys array is - * immutable, so we don't need to lock the subsys array here. - */ - for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { - struct cgroup_subsys *ss = subsys[i]; - if (ss->fork) - ss->fork(ss, child); - } - } -} - -/** * cgroup_post_fork - called on a new task after adding it to the task list * @child: the task in question * - * Adds the task to the list running through its css_set if necessary. - * Has to be after the task is visible on the task list in case we race - * with the first call to cgroup_iter_start() - to guarantee that the - * new task ends up on its list. + * Adds the task to the list running through its css_set if necessary and + * call the subsystem fork() callbacks. Has to be after the task is + * visible on the task list in case we race with the first call to + * cgroup_task_iter_start() - to guarantee that the new task ends up on its + * list. */ void cgroup_post_fork(struct task_struct *child) { + struct cgroup_subsys *ss; + int i; + + /* + * This may race against cgroup_enable_task_cg_links(). As that + * function sets use_task_css_set_links before grabbing + * tasklist_lock and we just went through tasklist_lock to add + * @child, it's guaranteed that either we see the set + * use_task_css_set_links or cgroup_enable_task_cg_lists() sees + * @child during its iteration. + * + * If we won the race, @child is associated with %current's + * css_set. Grabbing css_set_rwsem guarantees both that the + * association is stable, and, on completion of the parent's + * migration, @child is visible in the source of migration or + * already in the destination cgroup. This guarantee is necessary + * when implementing operations which need to migrate all tasks of + * a cgroup to another. + * + * Note that if we lose to cgroup_enable_task_cg_links(), @child + * will remain in init_css_set. This is safe because all tasks are + * in the init_css_set before cg_links is enabled and there's no + * operation which transfers all tasks out of init_css_set. + */ if (use_task_css_set_links) { - write_lock(&css_set_lock); + struct css_set *cset; + + down_write(&css_set_rwsem); + cset = task_css_set(current); if (list_empty(&child->cg_list)) { - /* - * It's safe to use child->cgroups without task_lock() - * here because we are protected through - * threadgroup_change_begin() against concurrent - * css_set change in cgroup_task_migrate(). Also - * the task can't exit at that point until - * wake_up_new_task() is called, so we are protected - * against cgroup_exit() setting child->cgroup to - * init_css_set. - */ - list_add(&child->cg_list, &child->cgroups->tasks); + rcu_assign_pointer(child->cgroups, cset); + list_add(&child->cg_list, &cset->tasks); + get_css_set(cset); } - write_unlock(&css_set_lock); + up_write(&css_set_rwsem); + } + + /* + * Call ss->fork(). This must happen after @child is linked on + * css_set; otherwise, @child might change state between ->fork() + * and addition to css_set. + */ + if (need_forkexit_callback) { + for_each_subsys(ss, i) + if (ss->fork) + ss->fork(child); } } + /** * cgroup_exit - detach cgroup from exiting task * @tsk: pointer to task_struct of exiting process - * @run_callback: run exit callbacks? * * Description: Detach cgroup from @tsk and release it. * @@ -4627,111 +5041,64 @@ void cgroup_post_fork(struct task_struct *child) * use notify_on_release cgroups where very high task exit scaling * is required on large systems. * - * the_top_cgroup_hack: - * - * Set the exiting tasks cgroup to the root cgroup (top_cgroup). - * - * We call cgroup_exit() while the task is still competent to - * handle notify_on_release(), then leave the task attached to the - * root cgroup in each hierarchy for the remainder of its exit. - * - * To do this properly, we would increment the reference count on - * top_cgroup, and near the very end of the kernel/exit.c do_exit() - * code we would add a second cgroup function call, to drop that - * reference. This would just create an unnecessary hot spot on - * the top_cgroup reference count, to no avail. - * - * Normally, holding a reference to a cgroup without bumping its - * count is unsafe. The cgroup could go away, or someone could - * attach us to a different cgroup, decrementing the count on - * the first cgroup that we never incremented. But in this case, - * top_cgroup isn't going away, and either task has PF_EXITING set, - * which wards off any cgroup_attach_task() attempts, or task is a failed - * fork, never visible to cgroup_attach_task. + * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We + * call cgroup_exit() while the task is still competent to handle + * notify_on_release(), then leave the task attached to the root cgroup in + * each hierarchy for the remainder of its exit. No need to bother with + * init_css_set refcnting. init_css_set never goes away and we can't race + * with migration path - PF_EXITING is visible to migration path. */ -void cgroup_exit(struct task_struct *tsk, int run_callbacks) +void cgroup_exit(struct task_struct *tsk) { - struct css_set *cg; + struct cgroup_subsys *ss; + struct css_set *cset; + bool put_cset = false; int i; /* - * Unlink from the css_set task list if necessary. - * Optimistically check cg_list before taking - * css_set_lock + * Unlink from @tsk from its css_set. As migration path can't race + * with us, we can check cg_list without grabbing css_set_rwsem. */ if (!list_empty(&tsk->cg_list)) { - write_lock(&css_set_lock); - if (!list_empty(&tsk->cg_list)) - list_del_init(&tsk->cg_list); - write_unlock(&css_set_lock); + down_write(&css_set_rwsem); + list_del_init(&tsk->cg_list); + up_write(&css_set_rwsem); + put_cset = true; } /* Reassign the task to the init_css_set. */ - task_lock(tsk); - cg = tsk->cgroups; - tsk->cgroups = &init_css_set; + cset = task_css_set(tsk); + RCU_INIT_POINTER(tsk->cgroups, &init_css_set); - if (run_callbacks && need_forkexit_callback) { - /* - * modular subsystems can't use callbacks, so no need to lock - * the subsys array - */ - for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { - struct cgroup_subsys *ss = subsys[i]; + if (need_forkexit_callback) { + /* see cgroup_post_fork() for details */ + for_each_subsys(ss, i) { if (ss->exit) { - struct cgroup *old_cgrp = - rcu_dereference_raw(cg->subsys[i])->cgroup; - struct cgroup *cgrp = task_cgroup(tsk, i); - ss->exit(ss, cgrp, old_cgrp, tsk); + struct cgroup_subsys_state *old_css = cset->subsys[i]; + struct cgroup_subsys_state *css = task_css(tsk, i); + + ss->exit(css, old_css, tsk); } } } - task_unlock(tsk); - if (cg) - put_css_set_taskexit(cg); -} - -/** - * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp - * @cgrp: the cgroup in question - * @task: the task in question - * - * See if @cgrp is a descendant of @task's cgroup in the appropriate - * hierarchy. - * - * If we are sending in dummytop, then presumably we are creating - * the top cgroup in the subsystem. - * - * Called only by the ns (nsproxy) cgroup. - */ -int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task) -{ - int ret; - struct cgroup *target; - - if (cgrp == dummytop) - return 1; - - target = task_cgroup_from_root(task, cgrp->root); - while (cgrp != target && cgrp!= cgrp->top_cgroup) - cgrp = cgrp->parent; - ret = (cgrp == target); - return ret; + if (put_cset) + put_css_set(cset, true); } static void check_for_release(struct cgroup *cgrp) { - /* All of these checks rely on RCU to keep the cgroup - * structure alive */ - if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count) - && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) { - /* Control Group is currently removeable. If it's not + if (cgroup_is_releasable(cgrp) && list_empty(&cgrp->cset_links) && + !css_has_online_children(&cgrp->self)) { + /* + * Control Group is currently removeable. If it's not * already queued for a userspace notification, queue - * it now */ + * it now + */ int need_schedule_work = 0; + raw_spin_lock(&release_list_lock); - if (!cgroup_is_removed(cgrp) && + if (!cgroup_is_dead(cgrp) && list_empty(&cgrp->release_list)) { list_add(&cgrp->release_list, &release_list); need_schedule_work = 1; @@ -4742,25 +5109,6 @@ static void check_for_release(struct cgroup *cgrp) } } -/* Caller must verify that the css is not for root cgroup */ -void __css_put(struct cgroup_subsys_state *css, int count) -{ - struct cgroup *cgrp = css->cgroup; - int val; - rcu_read_lock(); - val = atomic_sub_return(count, &css->refcnt); - if (val == 1) { - if (notify_on_release(cgrp)) { - set_bit(CGRP_RELEASABLE, &cgrp->flags); - check_for_release(cgrp); - } - cgroup_wakeup_rmdir_waiter(cgrp); - } - rcu_read_unlock(); - WARN_ON_ONCE(val < 1); -} -EXPORT_SYMBOL_GPL(__css_put); - /* * Notify userspace when a cgroup is released, by running the * configured release agent with the name of the cgroup (path @@ -4792,16 +5140,17 @@ static void cgroup_release_agent(struct work_struct *work) while (!list_empty(&release_list)) { char *argv[3], *envp[3]; int i; - char *pathbuf = NULL, *agentbuf = NULL; + char *pathbuf = NULL, *agentbuf = NULL, *path; struct cgroup *cgrp = list_entry(release_list.next, struct cgroup, release_list); list_del_init(&cgrp->release_list); raw_spin_unlock(&release_list_lock); - pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL); + pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); if (!pathbuf) goto continue_free; - if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) + path = cgroup_path(cgrp, pathbuf, PATH_MAX); + if (!path) goto continue_free; agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); if (!agentbuf) @@ -4809,7 +5158,7 @@ static void cgroup_release_agent(struct work_struct *work) i = 0; argv[i++] = agentbuf; - argv[i++] = pathbuf; + argv[i++] = path; argv[i] = NULL; i = 0; @@ -4835,19 +5184,15 @@ static void cgroup_release_agent(struct work_struct *work) static int __init cgroup_disable(char *str) { - int i; + struct cgroup_subsys *ss; char *token; + int i; while ((token = strsep(&str, ",")) != NULL) { if (!*token) continue; - /* - * cgroup_disable, being at boot time, can't know about module - * subsystems, so we don't worry about them. - */ - for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { - struct cgroup_subsys *ss = subsys[i]; + for_each_subsys(ss, i) { if (!strcmp(token, ss->name)) { ss->disabled = 1; printk(KERN_INFO "Disabling %s control group" @@ -4860,285 +5205,62 @@ static int __init cgroup_disable(char *str) } __setup("cgroup_disable=", cgroup_disable); -/* - * Functons for CSS ID. - */ - -/* - *To get ID other than 0, this should be called when !cgroup_is_removed(). - */ -unsigned short css_id(struct cgroup_subsys_state *css) -{ - struct css_id *cssid; - - /* - * This css_id() can return correct value when somone has refcnt - * on this or this is under rcu_read_lock(). Once css->id is allocated, - * it's unchanged until freed. - */ - cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt)); - - if (cssid) - return cssid->id; - return 0; -} -EXPORT_SYMBOL_GPL(css_id); - -unsigned short css_depth(struct cgroup_subsys_state *css) -{ - struct css_id *cssid; - - cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt)); - - if (cssid) - return cssid->depth; - return 0; -} -EXPORT_SYMBOL_GPL(css_depth); - /** - * css_is_ancestor - test "root" css is an ancestor of "child" - * @child: the css to be tested. - * @root: the css supporsed to be an ancestor of the child. + * css_tryget_online_from_dir - get corresponding css from a cgroup dentry + * @dentry: directory dentry of interest + * @ss: subsystem of interest * - * Returns true if "root" is an ancestor of "child" in its hierarchy. Because - * this function reads css->id, this use rcu_dereference() and rcu_read_lock(). - * But, considering usual usage, the csses should be valid objects after test. - * Assuming that the caller will do some action to the child if this returns - * returns true, the caller must take "child";s reference count. - * If "child" is valid object and this returns true, "root" is valid, too. + * If @dentry is a directory for a cgroup which has @ss enabled on it, try + * to get the corresponding css and return it. If such css doesn't exist + * or can't be pinned, an ERR_PTR value is returned. */ - -bool css_is_ancestor(struct cgroup_subsys_state *child, - const struct cgroup_subsys_state *root) -{ - struct css_id *child_id; - struct css_id *root_id; - bool ret = true; - - rcu_read_lock(); - child_id = rcu_dereference(child->id); - root_id = rcu_dereference(root->id); - if (!child_id - || !root_id - || (child_id->depth < root_id->depth) - || (child_id->stack[root_id->depth] != root_id->id)) - ret = false; - rcu_read_unlock(); - return ret; -} - -void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css) -{ - struct css_id *id = css->id; - /* When this is called before css_id initialization, id can be NULL */ - if (!id) - return; - - BUG_ON(!ss->use_id); - - rcu_assign_pointer(id->css, NULL); - rcu_assign_pointer(css->id, NULL); - write_lock(&ss->id_lock); - idr_remove(&ss->idr, id->id); - write_unlock(&ss->id_lock); - kfree_rcu(id, rcu_head); -} -EXPORT_SYMBOL_GPL(free_css_id); - -/* - * This is called by init or create(). Then, calls to this function are - * always serialized (By cgroup_mutex() at create()). - */ - -static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth) -{ - struct css_id *newid; - int myid, error, size; - - BUG_ON(!ss->use_id); - - size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1); - newid = kzalloc(size, GFP_KERNEL); - if (!newid) - return ERR_PTR(-ENOMEM); - /* get id */ - if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) { - error = -ENOMEM; - goto err_out; - } - write_lock(&ss->id_lock); - /* Don't use 0. allocates an ID of 1-65535 */ - error = idr_get_new_above(&ss->idr, newid, 1, &myid); - write_unlock(&ss->id_lock); - - /* Returns error when there are no free spaces for new ID.*/ - if (error) { - error = -ENOSPC; - goto err_out; - } - if (myid > CSS_ID_MAX) - goto remove_idr; - - newid->id = myid; - newid->depth = depth; - return newid; -remove_idr: - error = -ENOSPC; - write_lock(&ss->id_lock); - idr_remove(&ss->idr, myid); - write_unlock(&ss->id_lock); -err_out: - kfree(newid); - return ERR_PTR(error); - -} - -static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss, - struct cgroup_subsys_state *rootcss) -{ - struct css_id *newid; - - rwlock_init(&ss->id_lock); - idr_init(&ss->idr); - - newid = get_new_cssid(ss, 0); - if (IS_ERR(newid)) - return PTR_ERR(newid); - - newid->stack[0] = newid->id; - newid->css = rootcss; - rootcss->id = newid; - return 0; -} - -static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent, - struct cgroup *child) +struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, + struct cgroup_subsys *ss) { - int subsys_id, i, depth = 0; - struct cgroup_subsys_state *parent_css, *child_css; - struct css_id *child_id, *parent_id; + struct kernfs_node *kn = kernfs_node_from_dentry(dentry); + struct cgroup_subsys_state *css = NULL; + struct cgroup *cgrp; - subsys_id = ss->subsys_id; - parent_css = parent->subsys[subsys_id]; - child_css = child->subsys[subsys_id]; - parent_id = parent_css->id; - depth = parent_id->depth + 1; + /* is @dentry a cgroup dir? */ + if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || + kernfs_type(kn) != KERNFS_DIR) + return ERR_PTR(-EBADF); - child_id = get_new_cssid(ss, depth); - if (IS_ERR(child_id)) - return PTR_ERR(child_id); + rcu_read_lock(); - for (i = 0; i < depth; i++) - child_id->stack[i] = parent_id->stack[i]; - child_id->stack[depth] = child_id->id; /* - * child_id->css pointer will be set after this cgroup is available - * see cgroup_populate_dir() + * This path doesn't originate from kernfs and @kn could already + * have been or be removed at any point. @kn->priv is RCU + * protected for this access. See cgroup_rmdir() for details. */ - rcu_assign_pointer(child_css->id, child_id); - - return 0; -} - -/** - * css_lookup - lookup css by id - * @ss: cgroup subsys to be looked into. - * @id: the id - * - * Returns pointer to cgroup_subsys_state if there is valid one with id. - * NULL if not. Should be called under rcu_read_lock() - */ -struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id) -{ - struct css_id *cssid = NULL; + cgrp = rcu_dereference(kn->priv); + if (cgrp) + css = cgroup_css(cgrp, ss); - BUG_ON(!ss->use_id); - cssid = idr_find(&ss->idr, id); + if (!css || !css_tryget_online(css)) + css = ERR_PTR(-ENOENT); - if (unlikely(!cssid)) - return NULL; - - return rcu_dereference(cssid->css); + rcu_read_unlock(); + return css; } -EXPORT_SYMBOL_GPL(css_lookup); /** - * css_get_next - lookup next cgroup under specified hierarchy. - * @ss: pointer to subsystem - * @id: current position of iteration. - * @root: pointer to css. search tree under this. - * @foundid: position of found object. + * css_from_id - lookup css by id + * @id: the cgroup id + * @ss: cgroup subsys to be looked into * - * Search next css under the specified hierarchy of rootid. Calling under - * rcu_read_lock() is necessary. Returns NULL if it reaches the end. - */ -struct cgroup_subsys_state * -css_get_next(struct cgroup_subsys *ss, int id, - struct cgroup_subsys_state *root, int *foundid) -{ - struct cgroup_subsys_state *ret = NULL; - struct css_id *tmp; - int tmpid; - int rootid = css_id(root); - int depth = css_depth(root); - - if (!rootid) - return NULL; - - BUG_ON(!ss->use_id); - /* fill start point for scan */ - tmpid = id; - while (1) { - /* - * scan next entry from bitmap(tree), tmpid is updated after - * idr_get_next(). - */ - read_lock(&ss->id_lock); - tmp = idr_get_next(&ss->idr, &tmpid); - read_unlock(&ss->id_lock); - - if (!tmp) - break; - if (tmp->depth >= depth && tmp->stack[depth] == rootid) { - ret = rcu_dereference(tmp->css); - if (ret) { - *foundid = tmpid; - break; - } - } - /* continue to scan from next id */ - tmpid = tmpid + 1; - } - return ret; -} - -/* - * get corresponding css from file open on cgroupfs directory + * Returns the css if there's valid one with @id, otherwise returns NULL. + * Should be called under rcu_read_lock(). */ -struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id) +struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) { - struct cgroup *cgrp; - struct inode *inode; - struct cgroup_subsys_state *css; - - inode = f->f_dentry->d_inode; - /* check in cgroup filesystem dir */ - if (inode->i_op != &cgroup_dir_inode_operations) - return ERR_PTR(-EBADF); - - if (id < 0 || id >= CGROUP_SUBSYS_COUNT) - return ERR_PTR(-EINVAL); - - /* get cgroup */ - cgrp = __d_cgrp(f->f_dentry); - css = cgrp->subsys[id]; - return css ? css : ERR_PTR(-ENOENT); + WARN_ON_ONCE(!rcu_read_lock_held()); + return idr_find(&ss->css_idr, id); } #ifdef CONFIG_CGROUP_DEBUG -static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss, - struct cgroup *cont) +static struct cgroup_subsys_state * +debug_css_alloc(struct cgroup_subsys_state *parent_css) { struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); @@ -5148,101 +5270,100 @@ static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss, return css; } -static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont) -{ - kfree(cont->subsys[debug_subsys_id]); -} - -static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft) +static void debug_css_free(struct cgroup_subsys_state *css) { - return atomic_read(&cont->count); + kfree(css); } -static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft) +static u64 debug_taskcount_read(struct cgroup_subsys_state *css, + struct cftype *cft) { - return cgroup_task_count(cont); + return cgroup_task_count(css->cgroup); } -static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft) +static u64 current_css_set_read(struct cgroup_subsys_state *css, + struct cftype *cft) { return (u64)(unsigned long)current->cgroups; } -static u64 current_css_set_refcount_read(struct cgroup *cont, - struct cftype *cft) +static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css, + struct cftype *cft) { u64 count; rcu_read_lock(); - count = atomic_read(¤t->cgroups->refcount); + count = atomic_read(&task_css_set(current)->refcount); rcu_read_unlock(); return count; } -static int current_css_set_cg_links_read(struct cgroup *cont, - struct cftype *cft, - struct seq_file *seq) +static int current_css_set_cg_links_read(struct seq_file *seq, void *v) { - struct cg_cgroup_link *link; - struct css_set *cg; + struct cgrp_cset_link *link; + struct css_set *cset; + char *name_buf; - read_lock(&css_set_lock); + name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL); + if (!name_buf) + return -ENOMEM; + + down_read(&css_set_rwsem); rcu_read_lock(); - cg = rcu_dereference(current->cgroups); - list_for_each_entry(link, &cg->cg_links, cg_link_list) { + cset = rcu_dereference(current->cgroups); + list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { struct cgroup *c = link->cgrp; - const char *name; - if (c->dentry) - name = c->dentry->d_name.name; - else - name = "?"; + cgroup_name(c, name_buf, NAME_MAX + 1); seq_printf(seq, "Root %d group %s\n", - c->root->hierarchy_id, name); + c->root->hierarchy_id, name_buf); } rcu_read_unlock(); - read_unlock(&css_set_lock); + up_read(&css_set_rwsem); + kfree(name_buf); return 0; } #define MAX_TASKS_SHOWN_PER_CSS 25 -static int cgroup_css_links_read(struct cgroup *cont, - struct cftype *cft, - struct seq_file *seq) +static int cgroup_css_links_read(struct seq_file *seq, void *v) { - struct cg_cgroup_link *link; + struct cgroup_subsys_state *css = seq_css(seq); + struct cgrp_cset_link *link; - read_lock(&css_set_lock); - list_for_each_entry(link, &cont->css_sets, cgrp_link_list) { - struct css_set *cg = link->cg; + down_read(&css_set_rwsem); + list_for_each_entry(link, &css->cgroup->cset_links, cset_link) { + struct css_set *cset = link->cset; struct task_struct *task; int count = 0; - seq_printf(seq, "css_set %p\n", cg); - list_for_each_entry(task, &cg->tasks, cg_list) { - if (count++ > MAX_TASKS_SHOWN_PER_CSS) { - seq_puts(seq, " ...\n"); - break; - } else { - seq_printf(seq, " task %d\n", - task_pid_vnr(task)); - } + + seq_printf(seq, "css_set %p\n", cset); + + list_for_each_entry(task, &cset->tasks, cg_list) { + if (count++ > MAX_TASKS_SHOWN_PER_CSS) + goto overflow; + seq_printf(seq, " task %d\n", task_pid_vnr(task)); } + + list_for_each_entry(task, &cset->mg_tasks, cg_list) { + if (count++ > MAX_TASKS_SHOWN_PER_CSS) + goto overflow; + seq_printf(seq, " task %d\n", task_pid_vnr(task)); + } + continue; + overflow: + seq_puts(seq, " ...\n"); } - read_unlock(&css_set_lock); + up_read(&css_set_rwsem); return 0; } -static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft) +static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft) { - return test_bit(CGRP_RELEASABLE, &cgrp->flags); + return test_bit(CGRP_RELEASABLE, &css->cgroup->flags); } static struct cftype debug_files[] = { { - .name = "cgroup_refcount", - .read_u64 = cgroup_refcount_read, - }, - { .name = "taskcount", .read_u64 = debug_taskcount_read, }, @@ -5259,31 +5380,25 @@ static struct cftype debug_files[] = { { .name = "current_css_set_cg_links", - .read_seq_string = current_css_set_cg_links_read, + .seq_show = current_css_set_cg_links_read, }, { .name = "cgroup_css_links", - .read_seq_string = cgroup_css_links_read, + .seq_show = cgroup_css_links_read, }, { .name = "releasable", .read_u64 = releasable_read, }, -}; -static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont) -{ - return cgroup_add_files(cont, ss, debug_files, - ARRAY_SIZE(debug_files)); -} + { } /* terminate */ +}; -struct cgroup_subsys debug_subsys = { - .name = "debug", - .create = debug_create, - .destroy = debug_destroy, - .populate = debug_populate, - .subsys_id = debug_subsys_id, +struct cgroup_subsys debug_cgrp_subsys = { + .css_alloc = debug_css_alloc, + .css_free = debug_css_free, + .base_cftypes = debug_files, }; #endif /* CONFIG_CGROUP_DEBUG */ |
