diff options
Diffstat (limited to 'include/asm-mips/bitops.h')
| -rw-r--r-- | include/asm-mips/bitops.h | 967 |
1 files changed, 0 insertions, 967 deletions
diff --git a/include/asm-mips/bitops.h b/include/asm-mips/bitops.h deleted file mode 100644 index 5496f9064a6..00000000000 --- a/include/asm-mips/bitops.h +++ /dev/null @@ -1,967 +0,0 @@ -/* - * This file is subject to the terms and conditions of the GNU General Public - * License. See the file "COPYING" in the main directory of this archive - * for more details. - * - * Copyright (c) 1994 - 1997, 1999, 2000 Ralf Baechle (ralf@gnu.org) - * Copyright (c) 1999, 2000 Silicon Graphics, Inc. - */ -#ifndef _ASM_BITOPS_H -#define _ASM_BITOPS_H - -#include <linux/config.h> -#include <linux/compiler.h> -#include <linux/types.h> -#include <asm/bug.h> -#include <asm/byteorder.h> /* sigh ... */ -#include <asm/cpu-features.h> - -#if (_MIPS_SZLONG == 32) -#define SZLONG_LOG 5 -#define SZLONG_MASK 31UL -#define __LL "ll " -#define __SC "sc " -#define cpu_to_lelongp(x) cpu_to_le32p((__u32 *) (x)) -#elif (_MIPS_SZLONG == 64) -#define SZLONG_LOG 6 -#define SZLONG_MASK 63UL -#define __LL "lld " -#define __SC "scd " -#define cpu_to_lelongp(x) cpu_to_le64p((__u64 *) (x)) -#endif - -#ifdef __KERNEL__ - -#include <asm/interrupt.h> -#include <asm/sgidefs.h> -#include <asm/war.h> - -/* - * clear_bit() doesn't provide any barrier for the compiler. - */ -#define smp_mb__before_clear_bit() smp_mb() -#define smp_mb__after_clear_bit() smp_mb() - -/* - * Only disable interrupt for kernel mode stuff to keep usermode stuff - * that dares to use kernel include files alive. - */ - -#define __bi_flags unsigned long flags -#define __bi_local_irq_save(x) local_irq_save(x) -#define __bi_local_irq_restore(x) local_irq_restore(x) -#else -#define __bi_flags -#define __bi_local_irq_save(x) -#define __bi_local_irq_restore(x) -#endif /* __KERNEL__ */ - -/* - * set_bit - Atomically set a bit in memory - * @nr: the bit to set - * @addr: the address to start counting from - * - * This function is atomic and may not be reordered. See __set_bit() - * if you do not require the atomic guarantees. - * Note that @nr may be almost arbitrarily large; this function is not - * restricted to acting on a single-word quantity. - */ -static inline void set_bit(unsigned long nr, volatile unsigned long *addr) -{ - unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); - unsigned long temp; - - if (cpu_has_llsc && R10000_LLSC_WAR) { - __asm__ __volatile__( - " .set mips3 \n" - "1: " __LL "%0, %1 # set_bit \n" - " or %0, %2 \n" - " " __SC "%0, %1 \n" - " beqzl %0, 1b \n" - " .set mips0 \n" - : "=&r" (temp), "=m" (*m) - : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m)); - } else if (cpu_has_llsc) { - __asm__ __volatile__( - " .set mips3 \n" - "1: " __LL "%0, %1 # set_bit \n" - " or %0, %2 \n" - " " __SC "%0, %1 \n" - " beqz %0, 1b \n" - " .set mips0 \n" - : "=&r" (temp), "=m" (*m) - : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m)); - } else { - volatile unsigned long *a = addr; - unsigned long mask; - __bi_flags; - - a += nr >> SZLONG_LOG; - mask = 1UL << (nr & SZLONG_MASK); - __bi_local_irq_save(flags); - *a |= mask; - __bi_local_irq_restore(flags); - } -} - -/* - * __set_bit - Set a bit in memory - * @nr: the bit to set - * @addr: the address to start counting from - * - * Unlike set_bit(), this function is non-atomic and may be reordered. - * If it's called on the same region of memory simultaneously, the effect - * may be that only one operation succeeds. - */ -static inline void __set_bit(unsigned long nr, volatile unsigned long * addr) -{ - unsigned long * m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); - - *m |= 1UL << (nr & SZLONG_MASK); -} - -/* - * clear_bit - Clears a bit in memory - * @nr: Bit to clear - * @addr: Address to start counting from - * - * clear_bit() is atomic and may not be reordered. However, it does - * not contain a memory barrier, so if it is used for locking purposes, - * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() - * in order to ensure changes are visible on other processors. - */ -static inline void clear_bit(unsigned long nr, volatile unsigned long *addr) -{ - unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); - unsigned long temp; - - if (cpu_has_llsc && R10000_LLSC_WAR) { - __asm__ __volatile__( - " .set mips3 \n" - "1: " __LL "%0, %1 # clear_bit \n" - " and %0, %2 \n" - " " __SC "%0, %1 \n" - " beqzl %0, 1b \n" - " .set mips0 \n" - : "=&r" (temp), "=m" (*m) - : "ir" (~(1UL << (nr & SZLONG_MASK))), "m" (*m)); - } else if (cpu_has_llsc) { - __asm__ __volatile__( - " .set mips3 \n" - "1: " __LL "%0, %1 # clear_bit \n" - " and %0, %2 \n" - " " __SC "%0, %1 \n" - " beqz %0, 1b \n" - " .set mips0 \n" - : "=&r" (temp), "=m" (*m) - : "ir" (~(1UL << (nr & SZLONG_MASK))), "m" (*m)); - } else { - volatile unsigned long *a = addr; - unsigned long mask; - __bi_flags; - - a += nr >> SZLONG_LOG; - mask = 1UL << (nr & SZLONG_MASK); - __bi_local_irq_save(flags); - *a &= ~mask; - __bi_local_irq_restore(flags); - } -} - -/* - * __clear_bit - Clears a bit in memory - * @nr: Bit to clear - * @addr: Address to start counting from - * - * Unlike clear_bit(), this function is non-atomic and may be reordered. - * If it's called on the same region of memory simultaneously, the effect - * may be that only one operation succeeds. - */ -static inline void __clear_bit(unsigned long nr, volatile unsigned long * addr) -{ - unsigned long * m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); - - *m &= ~(1UL << (nr & SZLONG_MASK)); -} - -/* - * change_bit - Toggle a bit in memory - * @nr: Bit to change - * @addr: Address to start counting from - * - * change_bit() is atomic and may not be reordered. - * Note that @nr may be almost arbitrarily large; this function is not - * restricted to acting on a single-word quantity. - */ -static inline void change_bit(unsigned long nr, volatile unsigned long *addr) -{ - if (cpu_has_llsc && R10000_LLSC_WAR) { - unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); - unsigned long temp; - - __asm__ __volatile__( - " .set mips3 \n" - "1: " __LL "%0, %1 # change_bit \n" - " xor %0, %2 \n" - " " __SC "%0, %1 \n" - " beqzl %0, 1b \n" - " .set mips0 \n" - : "=&r" (temp), "=m" (*m) - : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m)); - } else if (cpu_has_llsc) { - unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); - unsigned long temp; - - __asm__ __volatile__( - " .set mips3 \n" - "1: " __LL "%0, %1 # change_bit \n" - " xor %0, %2 \n" - " " __SC "%0, %1 \n" - " beqz %0, 1b \n" - " .set mips0 \n" - : "=&r" (temp), "=m" (*m) - : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m)); - } else { - volatile unsigned long *a = addr; - unsigned long mask; - __bi_flags; - - a += nr >> SZLONG_LOG; - mask = 1UL << (nr & SZLONG_MASK); - __bi_local_irq_save(flags); - *a ^= mask; - __bi_local_irq_restore(flags); - } -} - -/* - * __change_bit - Toggle a bit in memory - * @nr: the bit to change - * @addr: the address to start counting from - * - * Unlike change_bit(), this function is non-atomic and may be reordered. - * If it's called on the same region of memory simultaneously, the effect - * may be that only one operation succeeds. - */ -static inline void __change_bit(unsigned long nr, volatile unsigned long * addr) -{ - unsigned long * m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); - - *m ^= 1UL << (nr & SZLONG_MASK); -} - -/* - * test_and_set_bit - Set a bit and return its old value - * @nr: Bit to set - * @addr: Address to count from - * - * This operation is atomic and cannot be reordered. - * It also implies a memory barrier. - */ -static inline int test_and_set_bit(unsigned long nr, - volatile unsigned long *addr) -{ - if (cpu_has_llsc && R10000_LLSC_WAR) { - unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); - unsigned long temp, res; - - __asm__ __volatile__( - " .set mips3 \n" - "1: " __LL "%0, %1 # test_and_set_bit \n" - " or %2, %0, %3 \n" - " " __SC "%2, %1 \n" - " beqzl %2, 1b \n" - " and %2, %0, %3 \n" -#ifdef CONFIG_SMP - " sync \n" -#endif - " .set mips0 \n" - : "=&r" (temp), "=m" (*m), "=&r" (res) - : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m) - : "memory"); - - return res != 0; - } else if (cpu_has_llsc) { - unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); - unsigned long temp, res; - - __asm__ __volatile__( - " .set push \n" - " .set noreorder \n" - " .set mips3 \n" - "1: " __LL "%0, %1 # test_and_set_bit \n" - " or %2, %0, %3 \n" - " " __SC "%2, %1 \n" - " beqz %2, 1b \n" - " and %2, %0, %3 \n" -#ifdef CONFIG_SMP - " sync \n" -#endif - " .set pop \n" - : "=&r" (temp), "=m" (*m), "=&r" (res) - : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m) - : "memory"); - - return res != 0; - } else { - volatile unsigned long *a = addr; - unsigned long mask; - int retval; - __bi_flags; - - a += nr >> SZLONG_LOG; - mask = 1UL << (nr & SZLONG_MASK); - __bi_local_irq_save(flags); - retval = (mask & *a) != 0; - *a |= mask; - __bi_local_irq_restore(flags); - - return retval; - } -} - -/* - * __test_and_set_bit - Set a bit and return its old value - * @nr: Bit to set - * @addr: Address to count from - * - * This operation is non-atomic and can be reordered. - * If two examples of this operation race, one can appear to succeed - * but actually fail. You must protect multiple accesses with a lock. - */ -static inline int __test_and_set_bit(unsigned long nr, - volatile unsigned long *addr) -{ - volatile unsigned long *a = addr; - unsigned long mask; - int retval; - - a += nr >> SZLONG_LOG; - mask = 1UL << (nr & SZLONG_MASK); - retval = (mask & *a) != 0; - *a |= mask; - - return retval; -} - -/* - * test_and_clear_bit - Clear a bit and return its old value - * @nr: Bit to clear - * @addr: Address to count from - * - * This operation is atomic and cannot be reordered. - * It also implies a memory barrier. - */ -static inline int test_and_clear_bit(unsigned long nr, - volatile unsigned long *addr) -{ - if (cpu_has_llsc && R10000_LLSC_WAR) { - unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); - unsigned long temp, res; - - __asm__ __volatile__( - " .set mips3 \n" - "1: " __LL "%0, %1 # test_and_clear_bit \n" - " or %2, %0, %3 \n" - " xor %2, %3 \n" - " " __SC "%2, %1 \n" - " beqzl %2, 1b \n" - " and %2, %0, %3 \n" -#ifdef CONFIG_SMP - " sync \n" -#endif - " .set mips0 \n" - : "=&r" (temp), "=m" (*m), "=&r" (res) - : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m) - : "memory"); - - return res != 0; - } else if (cpu_has_llsc) { - unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); - unsigned long temp, res; - - __asm__ __volatile__( - " .set push \n" - " .set noreorder \n" - " .set mips3 \n" - "1: " __LL "%0, %1 # test_and_clear_bit \n" - " or %2, %0, %3 \n" - " xor %2, %3 \n" - " " __SC "%2, %1 \n" - " beqz %2, 1b \n" - " and %2, %0, %3 \n" -#ifdef CONFIG_SMP - " sync \n" -#endif - " .set pop \n" - : "=&r" (temp), "=m" (*m), "=&r" (res) - : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m) - : "memory"); - - return res != 0; - } else { - volatile unsigned long *a = addr; - unsigned long mask; - int retval; - __bi_flags; - - a += nr >> SZLONG_LOG; - mask = 1UL << (nr & SZLONG_MASK); - __bi_local_irq_save(flags); - retval = (mask & *a) != 0; - *a &= ~mask; - __bi_local_irq_restore(flags); - - return retval; - } -} - -/* - * __test_and_clear_bit - Clear a bit and return its old value - * @nr: Bit to clear - * @addr: Address to count from - * - * This operation is non-atomic and can be reordered. - * If two examples of this operation race, one can appear to succeed - * but actually fail. You must protect multiple accesses with a lock. - */ -static inline int __test_and_clear_bit(unsigned long nr, - volatile unsigned long * addr) -{ - volatile unsigned long *a = addr; - unsigned long mask; - int retval; - - a += (nr >> SZLONG_LOG); - mask = 1UL << (nr & SZLONG_MASK); - retval = ((mask & *a) != 0); - *a &= ~mask; - - return retval; -} - -/* - * test_and_change_bit - Change a bit and return its old value - * @nr: Bit to change - * @addr: Address to count from - * - * This operation is atomic and cannot be reordered. - * It also implies a memory barrier. - */ -static inline int test_and_change_bit(unsigned long nr, - volatile unsigned long *addr) -{ - if (cpu_has_llsc && R10000_LLSC_WAR) { - unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); - unsigned long temp, res; - - __asm__ __volatile__( - " .set mips3 \n" - "1: " __LL "%0, %1 # test_and_change_bit \n" - " xor %2, %0, %3 \n" - " " __SC "%2, %1 \n" - " beqzl %2, 1b \n" - " and %2, %0, %3 \n" -#ifdef CONFIG_SMP - " sync \n" -#endif - " .set mips0 \n" - : "=&r" (temp), "=m" (*m), "=&r" (res) - : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m) - : "memory"); - - return res != 0; - } else if (cpu_has_llsc) { - unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); - unsigned long temp, res; - - __asm__ __volatile__( - " .set push \n" - " .set noreorder \n" - " .set mips3 \n" - "1: " __LL "%0, %1 # test_and_change_bit \n" - " xor %2, %0, %3 \n" - " " __SC "\t%2, %1 \n" - " beqz %2, 1b \n" - " and %2, %0, %3 \n" -#ifdef CONFIG_SMP - " sync \n" -#endif - " .set pop \n" - : "=&r" (temp), "=m" (*m), "=&r" (res) - : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m) - : "memory"); - - return res != 0; - } else { - volatile unsigned long *a = addr; - unsigned long mask, retval; - __bi_flags; - - a += nr >> SZLONG_LOG; - mask = 1UL << (nr & SZLONG_MASK); - __bi_local_irq_save(flags); - retval = (mask & *a) != 0; - *a ^= mask; - __bi_local_irq_restore(flags); - - return retval; - } -} - -/* - * __test_and_change_bit - Change a bit and return its old value - * @nr: Bit to change - * @addr: Address to count from - * - * This operation is non-atomic and can be reordered. - * If two examples of this operation race, one can appear to succeed - * but actually fail. You must protect multiple accesses with a lock. - */ -static inline int __test_and_change_bit(unsigned long nr, - volatile unsigned long *addr) -{ - volatile unsigned long *a = addr; - unsigned long mask; - int retval; - - a += (nr >> SZLONG_LOG); - mask = 1UL << (nr & SZLONG_MASK); - retval = ((mask & *a) != 0); - *a ^= mask; - - return retval; -} - -#undef __bi_flags -#undef __bi_local_irq_save -#undef __bi_local_irq_restore - -/* - * test_bit - Determine whether a bit is set - * @nr: bit number to test - * @addr: Address to start counting from - */ -static inline int test_bit(unsigned long nr, const volatile unsigned long *addr) -{ - return 1UL & (addr[nr >> SZLONG_LOG] >> (nr & SZLONG_MASK)); -} - -/* - * Return the bit position (0..63) of the most significant 1 bit in a word - * Returns -1 if no 1 bit exists - */ -static inline int __ilog2(unsigned long x) -{ - int lz; - - if (sizeof(x) == 4) { - __asm__ ( - " .set push \n" - " .set mips32 \n" - " clz %0, %1 \n" - " .set pop \n" - : "=r" (lz) - : "r" (x)); - - return 31 - lz; - } - - BUG_ON(sizeof(x) != 8); - - __asm__ ( - " .set push \n" - " .set mips64 \n" - " dclz %0, %1 \n" - " .set pop \n" - : "=r" (lz) - : "r" (x)); - - return 63 - lz; -} - -/* - * __ffs - find first bit in word. - * @word: The word to search - * - * Returns 0..SZLONG-1 - * Undefined if no bit exists, so code should check against 0 first. - */ -static inline unsigned long __ffs(unsigned long word) -{ -#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) - return __ilog2(word & -word); -#else - int b = 0, s; - -#ifdef CONFIG_32BIT - s = 16; if (word << 16 != 0) s = 0; b += s; word >>= s; - s = 8; if (word << 24 != 0) s = 0; b += s; word >>= s; - s = 4; if (word << 28 != 0) s = 0; b += s; word >>= s; - s = 2; if (word << 30 != 0) s = 0; b += s; word >>= s; - s = 1; if (word << 31 != 0) s = 0; b += s; - - return b; -#endif -#ifdef CONFIG_64BIT - s = 32; if (word << 32 != 0) s = 0; b += s; word >>= s; - s = 16; if (word << 48 != 0) s = 0; b += s; word >>= s; - s = 8; if (word << 56 != 0) s = 0; b += s; word >>= s; - s = 4; if (word << 60 != 0) s = 0; b += s; word >>= s; - s = 2; if (word << 62 != 0) s = 0; b += s; word >>= s; - s = 1; if (word << 63 != 0) s = 0; b += s; - - return b; -#endif -#endif -} - -/* - * ffs - find first bit set. - * @word: The word to search - * - * Returns 1..SZLONG - * Returns 0 if no bit exists - */ - -static inline unsigned long ffs(unsigned long word) -{ - if (!word) - return 0; - - return __ffs(word) + 1; -} - -/* - * ffz - find first zero in word. - * @word: The word to search - * - * Undefined if no zero exists, so code should check against ~0UL first. - */ -static inline unsigned long ffz(unsigned long word) -{ - return __ffs (~word); -} - -/* - * flz - find last zero in word. - * @word: The word to search - * - * Returns 0..SZLONG-1 - * Undefined if no zero exists, so code should check against ~0UL first. - */ -static inline unsigned long flz(unsigned long word) -{ -#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) - return __ilog2(~word); -#else -#ifdef CONFIG_32BIT - int r = 31, s; - word = ~word; - s = 16; if ((word & 0xffff0000)) s = 0; r -= s; word <<= s; - s = 8; if ((word & 0xff000000)) s = 0; r -= s; word <<= s; - s = 4; if ((word & 0xf0000000)) s = 0; r -= s; word <<= s; - s = 2; if ((word & 0xc0000000)) s = 0; r -= s; word <<= s; - s = 1; if ((word & 0x80000000)) s = 0; r -= s; - - return r; -#endif -#ifdef CONFIG_64BIT - int r = 63, s; - word = ~word; - s = 32; if ((word & 0xffffffff00000000UL)) s = 0; r -= s; word <<= s; - s = 16; if ((word & 0xffff000000000000UL)) s = 0; r -= s; word <<= s; - s = 8; if ((word & 0xff00000000000000UL)) s = 0; r -= s; word <<= s; - s = 4; if ((word & 0xf000000000000000UL)) s = 0; r -= s; word <<= s; - s = 2; if ((word & 0xc000000000000000UL)) s = 0; r -= s; word <<= s; - s = 1; if ((word & 0x8000000000000000UL)) s = 0; r -= s; - - return r; -#endif -#endif -} - -/* - * fls - find last bit set. - * @word: The word to search - * - * Returns 1..SZLONG - * Returns 0 if no bit exists - */ -static inline unsigned long fls(unsigned long word) -{ - if (word == 0) - return 0; - - return flz(~word) + 1; -} - - -/* - * find_next_zero_bit - find the first zero bit in a memory region - * @addr: The address to base the search on - * @offset: The bitnumber to start searching at - * @size: The maximum size to search - */ -static inline unsigned long find_next_zero_bit(const unsigned long *addr, - unsigned long size, unsigned long offset) -{ - const unsigned long *p = addr + (offset >> SZLONG_LOG); - unsigned long result = offset & ~SZLONG_MASK; - unsigned long tmp; - - if (offset >= size) - return size; - size -= result; - offset &= SZLONG_MASK; - if (offset) { - tmp = *(p++); - tmp |= ~0UL >> (_MIPS_SZLONG-offset); - if (size < _MIPS_SZLONG) - goto found_first; - if (~tmp) - goto found_middle; - size -= _MIPS_SZLONG; - result += _MIPS_SZLONG; - } - while (size & ~SZLONG_MASK) { - if (~(tmp = *(p++))) - goto found_middle; - result += _MIPS_SZLONG; - size -= _MIPS_SZLONG; - } - if (!size) - return result; - tmp = *p; - -found_first: - tmp |= ~0UL << size; - if (tmp == ~0UL) /* Are any bits zero? */ - return result + size; /* Nope. */ -found_middle: - return result + ffz(tmp); -} - -#define find_first_zero_bit(addr, size) \ - find_next_zero_bit((addr), (size), 0) - -/* - * find_next_bit - find the next set bit in a memory region - * @addr: The address to base the search on - * @offset: The bitnumber to start searching at - * @size: The maximum size to search - */ -static inline unsigned long find_next_bit(const unsigned long *addr, - unsigned long size, unsigned long offset) -{ - const unsigned long *p = addr + (offset >> SZLONG_LOG); - unsigned long result = offset & ~SZLONG_MASK; - unsigned long tmp; - - if (offset >= size) - return size; - size -= result; - offset &= SZLONG_MASK; - if (offset) { - tmp = *(p++); - tmp &= ~0UL << offset; - if (size < _MIPS_SZLONG) - goto found_first; - if (tmp) - goto found_middle; - size -= _MIPS_SZLONG; - result += _MIPS_SZLONG; - } - while (size & ~SZLONG_MASK) { - if ((tmp = *(p++))) - goto found_middle; - result += _MIPS_SZLONG; - size -= _MIPS_SZLONG; - } - if (!size) - return result; - tmp = *p; - -found_first: - tmp &= ~0UL >> (_MIPS_SZLONG - size); - if (tmp == 0UL) /* Are any bits set? */ - return result + size; /* Nope. */ -found_middle: - return result + __ffs(tmp); -} - -/* - * find_first_bit - find the first set bit in a memory region - * @addr: The address to start the search at - * @size: The maximum size to search - * - * Returns the bit-number of the first set bit, not the number of the byte - * containing a bit. - */ -#define find_first_bit(addr, size) \ - find_next_bit((addr), (size), 0) - -#ifdef __KERNEL__ - -/* - * Every architecture must define this function. It's the fastest - * way of searching a 140-bit bitmap where the first 100 bits are - * unlikely to be set. It's guaranteed that at least one of the 140 - * bits is cleared. - */ -static inline int sched_find_first_bit(const unsigned long *b) -{ -#ifdef CONFIG_32BIT - if (unlikely(b[0])) - return __ffs(b[0]); - if (unlikely(b[1])) - return __ffs(b[1]) + 32; - if (unlikely(b[2])) - return __ffs(b[2]) + 64; - if (b[3]) - return __ffs(b[3]) + 96; - return __ffs(b[4]) + 128; -#endif -#ifdef CONFIG_64BIT - if (unlikely(b[0])) - return __ffs(b[0]); - if (unlikely(b[1])) - return __ffs(b[1]) + 64; - return __ffs(b[2]) + 128; -#endif -} - -/* - * hweightN - returns the hamming weight of a N-bit word - * @x: the word to weigh - * - * The Hamming Weight of a number is the total number of bits set in it. - */ - -#define hweight64(x) generic_hweight64(x) -#define hweight32(x) generic_hweight32(x) -#define hweight16(x) generic_hweight16(x) -#define hweight8(x) generic_hweight8(x) - -static inline int __test_and_set_le_bit(unsigned long nr, unsigned long *addr) -{ - unsigned char *ADDR = (unsigned char *) addr; - int mask, retval; - - ADDR += nr >> 3; - mask = 1 << (nr & 0x07); - retval = (mask & *ADDR) != 0; - *ADDR |= mask; - - return retval; -} - -static inline int __test_and_clear_le_bit(unsigned long nr, unsigned long *addr) -{ - unsigned char *ADDR = (unsigned char *) addr; - int mask, retval; - - ADDR += nr >> 3; - mask = 1 << (nr & 0x07); - retval = (mask & *ADDR) != 0; - *ADDR &= ~mask; - - return retval; -} - -static inline int test_le_bit(unsigned long nr, const unsigned long * addr) -{ - const unsigned char *ADDR = (const unsigned char *) addr; - int mask; - - ADDR += nr >> 3; - mask = 1 << (nr & 0x07); - - return ((mask & *ADDR) != 0); -} - -static inline unsigned long find_next_zero_le_bit(unsigned long *addr, - unsigned long size, unsigned long offset) -{ - unsigned long *p = ((unsigned long *) addr) + (offset >> SZLONG_LOG); - unsigned long result = offset & ~SZLONG_MASK; - unsigned long tmp; - - if (offset >= size) - return size; - size -= result; - offset &= SZLONG_MASK; - if (offset) { - tmp = cpu_to_lelongp(p++); - tmp |= ~0UL >> (_MIPS_SZLONG-offset); /* bug or feature ? */ - if (size < _MIPS_SZLONG) - goto found_first; - if (~tmp) - goto found_middle; - size -= _MIPS_SZLONG; - result += _MIPS_SZLONG; - } - while (size & ~SZLONG_MASK) { - if (~(tmp = cpu_to_lelongp(p++))) - goto found_middle; - result += _MIPS_SZLONG; - size -= _MIPS_SZLONG; - } - if (!size) - return result; - tmp = cpu_to_lelongp(p); - -found_first: - tmp |= ~0UL << size; - if (tmp == ~0UL) /* Are any bits zero? */ - return result + size; /* Nope. */ - -found_middle: - return result + ffz(tmp); -} - -#define find_first_zero_le_bit(addr, size) \ - find_next_zero_le_bit((addr), (size), 0) - -#define ext2_set_bit(nr,addr) \ - __test_and_set_le_bit((nr),(unsigned long*)addr) -#define ext2_clear_bit(nr, addr) \ - __test_and_clear_le_bit((nr),(unsigned long*)addr) - #define ext2_set_bit_atomic(lock, nr, addr) \ -({ \ - int ret; \ - spin_lock(lock); \ - ret = ext2_set_bit((nr), (addr)); \ - spin_unlock(lock); \ - ret; \ -}) - -#define ext2_clear_bit_atomic(lock, nr, addr) \ -({ \ - int ret; \ - spin_lock(lock); \ - ret = ext2_clear_bit((nr), (addr)); \ - spin_unlock(lock); \ - ret; \ -}) -#define ext2_test_bit(nr, addr) test_le_bit((nr),(unsigned long*)addr) -#define ext2_find_first_zero_bit(addr, size) \ - find_first_zero_le_bit((unsigned long*)addr, size) -#define ext2_find_next_zero_bit(addr, size, off) \ - find_next_zero_le_bit((unsigned long*)addr, size, off) - -/* - * Bitmap functions for the minix filesystem. - * - * FIXME: These assume that Minix uses the native byte/bitorder. - * This limits the Minix filesystem's value for data exchange very much. - */ -#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) -#define minix_set_bit(nr,addr) set_bit(nr,addr) -#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) -#define minix_test_bit(nr,addr) test_bit(nr,addr) -#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) - -#endif /* __KERNEL__ */ - -#endif /* _ASM_BITOPS_H */ |
