diff options
Diffstat (limited to 'fs/xfs/xfs_icache.c')
| -rw-r--r-- | fs/xfs/xfs_icache.c | 1327 | 
1 files changed, 1327 insertions, 0 deletions
diff --git a/fs/xfs/xfs_icache.c b/fs/xfs/xfs_icache.c new file mode 100644 index 00000000000..c48df5f25b9 --- /dev/null +++ b/fs/xfs/xfs_icache.c @@ -0,0 +1,1327 @@ +/* + * Copyright (c) 2000-2005 Silicon Graphics, Inc. + * All Rights Reserved. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it would be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write the Free Software Foundation, + * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA + */ +#include "xfs.h" +#include "xfs_fs.h" +#include "xfs_format.h" +#include "xfs_log_format.h" +#include "xfs_trans_resv.h" +#include "xfs_inum.h" +#include "xfs_sb.h" +#include "xfs_ag.h" +#include "xfs_mount.h" +#include "xfs_inode.h" +#include "xfs_error.h" +#include "xfs_trans.h" +#include "xfs_trans_priv.h" +#include "xfs_inode_item.h" +#include "xfs_quota.h" +#include "xfs_trace.h" +#include "xfs_icache.h" +#include "xfs_bmap_util.h" + +#include <linux/kthread.h> +#include <linux/freezer.h> + +STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp, +				struct xfs_perag *pag, struct xfs_inode *ip); + +/* + * Allocate and initialise an xfs_inode. + */ +struct xfs_inode * +xfs_inode_alloc( +	struct xfs_mount	*mp, +	xfs_ino_t		ino) +{ +	struct xfs_inode	*ip; + +	/* +	 * if this didn't occur in transactions, we could use +	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the +	 * code up to do this anyway. +	 */ +	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP); +	if (!ip) +		return NULL; +	if (inode_init_always(mp->m_super, VFS_I(ip))) { +		kmem_zone_free(xfs_inode_zone, ip); +		return NULL; +	} + +	ASSERT(atomic_read(&ip->i_pincount) == 0); +	ASSERT(!spin_is_locked(&ip->i_flags_lock)); +	ASSERT(!xfs_isiflocked(ip)); +	ASSERT(ip->i_ino == 0); + +	mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); + +	/* initialise the xfs inode */ +	ip->i_ino = ino; +	ip->i_mount = mp; +	memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); +	ip->i_afp = NULL; +	memset(&ip->i_df, 0, sizeof(xfs_ifork_t)); +	ip->i_flags = 0; +	ip->i_delayed_blks = 0; +	memset(&ip->i_d, 0, sizeof(xfs_icdinode_t)); + +	return ip; +} + +STATIC void +xfs_inode_free_callback( +	struct rcu_head		*head) +{ +	struct inode		*inode = container_of(head, struct inode, i_rcu); +	struct xfs_inode	*ip = XFS_I(inode); + +	kmem_zone_free(xfs_inode_zone, ip); +} + +void +xfs_inode_free( +	struct xfs_inode	*ip) +{ +	switch (ip->i_d.di_mode & S_IFMT) { +	case S_IFREG: +	case S_IFDIR: +	case S_IFLNK: +		xfs_idestroy_fork(ip, XFS_DATA_FORK); +		break; +	} + +	if (ip->i_afp) +		xfs_idestroy_fork(ip, XFS_ATTR_FORK); + +	if (ip->i_itemp) { +		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL)); +		xfs_inode_item_destroy(ip); +		ip->i_itemp = NULL; +	} + +	/* +	 * Because we use RCU freeing we need to ensure the inode always +	 * appears to be reclaimed with an invalid inode number when in the +	 * free state. The ip->i_flags_lock provides the barrier against lookup +	 * races. +	 */ +	spin_lock(&ip->i_flags_lock); +	ip->i_flags = XFS_IRECLAIM; +	ip->i_ino = 0; +	spin_unlock(&ip->i_flags_lock); + +	/* asserts to verify all state is correct here */ +	ASSERT(atomic_read(&ip->i_pincount) == 0); +	ASSERT(!xfs_isiflocked(ip)); + +	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); +} + +/* + * Check the validity of the inode we just found it the cache + */ +static int +xfs_iget_cache_hit( +	struct xfs_perag	*pag, +	struct xfs_inode	*ip, +	xfs_ino_t		ino, +	int			flags, +	int			lock_flags) __releases(RCU) +{ +	struct inode		*inode = VFS_I(ip); +	struct xfs_mount	*mp = ip->i_mount; +	int			error; + +	/* +	 * check for re-use of an inode within an RCU grace period due to the +	 * radix tree nodes not being updated yet. We monitor for this by +	 * setting the inode number to zero before freeing the inode structure. +	 * If the inode has been reallocated and set up, then the inode number +	 * will not match, so check for that, too. +	 */ +	spin_lock(&ip->i_flags_lock); +	if (ip->i_ino != ino) { +		trace_xfs_iget_skip(ip); +		XFS_STATS_INC(xs_ig_frecycle); +		error = EAGAIN; +		goto out_error; +	} + + +	/* +	 * If we are racing with another cache hit that is currently +	 * instantiating this inode or currently recycling it out of +	 * reclaimabe state, wait for the initialisation to complete +	 * before continuing. +	 * +	 * XXX(hch): eventually we should do something equivalent to +	 *	     wait_on_inode to wait for these flags to be cleared +	 *	     instead of polling for it. +	 */ +	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { +		trace_xfs_iget_skip(ip); +		XFS_STATS_INC(xs_ig_frecycle); +		error = EAGAIN; +		goto out_error; +	} + +	/* +	 * If lookup is racing with unlink return an error immediately. +	 */ +	if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) { +		error = ENOENT; +		goto out_error; +	} + +	/* +	 * If IRECLAIMABLE is set, we've torn down the VFS inode already. +	 * Need to carefully get it back into useable state. +	 */ +	if (ip->i_flags & XFS_IRECLAIMABLE) { +		trace_xfs_iget_reclaim(ip); + +		/* +		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode +		 * from stomping over us while we recycle the inode.  We can't +		 * clear the radix tree reclaimable tag yet as it requires +		 * pag_ici_lock to be held exclusive. +		 */ +		ip->i_flags |= XFS_IRECLAIM; + +		spin_unlock(&ip->i_flags_lock); +		rcu_read_unlock(); + +		error = -inode_init_always(mp->m_super, inode); +		if (error) { +			/* +			 * Re-initializing the inode failed, and we are in deep +			 * trouble.  Try to re-add it to the reclaim list. +			 */ +			rcu_read_lock(); +			spin_lock(&ip->i_flags_lock); + +			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); +			ASSERT(ip->i_flags & XFS_IRECLAIMABLE); +			trace_xfs_iget_reclaim_fail(ip); +			goto out_error; +		} + +		spin_lock(&pag->pag_ici_lock); +		spin_lock(&ip->i_flags_lock); + +		/* +		 * Clear the per-lifetime state in the inode as we are now +		 * effectively a new inode and need to return to the initial +		 * state before reuse occurs. +		 */ +		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; +		ip->i_flags |= XFS_INEW; +		__xfs_inode_clear_reclaim_tag(mp, pag, ip); +		inode->i_state = I_NEW; + +		ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock)); +		mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); + +		spin_unlock(&ip->i_flags_lock); +		spin_unlock(&pag->pag_ici_lock); +	} else { +		/* If the VFS inode is being torn down, pause and try again. */ +		if (!igrab(inode)) { +			trace_xfs_iget_skip(ip); +			error = EAGAIN; +			goto out_error; +		} + +		/* We've got a live one. */ +		spin_unlock(&ip->i_flags_lock); +		rcu_read_unlock(); +		trace_xfs_iget_hit(ip); +	} + +	if (lock_flags != 0) +		xfs_ilock(ip, lock_flags); + +	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE); +	XFS_STATS_INC(xs_ig_found); + +	return 0; + +out_error: +	spin_unlock(&ip->i_flags_lock); +	rcu_read_unlock(); +	return error; +} + + +static int +xfs_iget_cache_miss( +	struct xfs_mount	*mp, +	struct xfs_perag	*pag, +	xfs_trans_t		*tp, +	xfs_ino_t		ino, +	struct xfs_inode	**ipp, +	int			flags, +	int			lock_flags) +{ +	struct xfs_inode	*ip; +	int			error; +	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino); +	int			iflags; + +	ip = xfs_inode_alloc(mp, ino); +	if (!ip) +		return ENOMEM; + +	error = xfs_iread(mp, tp, ip, flags); +	if (error) +		goto out_destroy; + +	trace_xfs_iget_miss(ip); + +	if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) { +		error = ENOENT; +		goto out_destroy; +	} + +	/* +	 * Preload the radix tree so we can insert safely under the +	 * write spinlock. Note that we cannot sleep inside the preload +	 * region. Since we can be called from transaction context, don't +	 * recurse into the file system. +	 */ +	if (radix_tree_preload(GFP_NOFS)) { +		error = EAGAIN; +		goto out_destroy; +	} + +	/* +	 * Because the inode hasn't been added to the radix-tree yet it can't +	 * be found by another thread, so we can do the non-sleeping lock here. +	 */ +	if (lock_flags) { +		if (!xfs_ilock_nowait(ip, lock_flags)) +			BUG(); +	} + +	/* +	 * These values must be set before inserting the inode into the radix +	 * tree as the moment it is inserted a concurrent lookup (allowed by the +	 * RCU locking mechanism) can find it and that lookup must see that this +	 * is an inode currently under construction (i.e. that XFS_INEW is set). +	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the +	 * memory barrier that ensures this detection works correctly at lookup +	 * time. +	 */ +	iflags = XFS_INEW; +	if (flags & XFS_IGET_DONTCACHE) +		iflags |= XFS_IDONTCACHE; +	ip->i_udquot = NULL; +	ip->i_gdquot = NULL; +	ip->i_pdquot = NULL; +	xfs_iflags_set(ip, iflags); + +	/* insert the new inode */ +	spin_lock(&pag->pag_ici_lock); +	error = radix_tree_insert(&pag->pag_ici_root, agino, ip); +	if (unlikely(error)) { +		WARN_ON(error != -EEXIST); +		XFS_STATS_INC(xs_ig_dup); +		error = EAGAIN; +		goto out_preload_end; +	} +	spin_unlock(&pag->pag_ici_lock); +	radix_tree_preload_end(); + +	*ipp = ip; +	return 0; + +out_preload_end: +	spin_unlock(&pag->pag_ici_lock); +	radix_tree_preload_end(); +	if (lock_flags) +		xfs_iunlock(ip, lock_flags); +out_destroy: +	__destroy_inode(VFS_I(ip)); +	xfs_inode_free(ip); +	return error; +} + +/* + * Look up an inode by number in the given file system. + * The inode is looked up in the cache held in each AG. + * If the inode is found in the cache, initialise the vfs inode + * if necessary. + * + * If it is not in core, read it in from the file system's device, + * add it to the cache and initialise the vfs inode. + * + * The inode is locked according to the value of the lock_flags parameter. + * This flag parameter indicates how and if the inode's IO lock and inode lock + * should be taken. + * + * mp -- the mount point structure for the current file system.  It points + *       to the inode hash table. + * tp -- a pointer to the current transaction if there is one.  This is + *       simply passed through to the xfs_iread() call. + * ino -- the number of the inode desired.  This is the unique identifier + *        within the file system for the inode being requested. + * lock_flags -- flags indicating how to lock the inode.  See the comment + *		 for xfs_ilock() for a list of valid values. + */ +int +xfs_iget( +	xfs_mount_t	*mp, +	xfs_trans_t	*tp, +	xfs_ino_t	ino, +	uint		flags, +	uint		lock_flags, +	xfs_inode_t	**ipp) +{ +	xfs_inode_t	*ip; +	int		error; +	xfs_perag_t	*pag; +	xfs_agino_t	agino; + +	/* +	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode +	 * doesn't get freed while it's being referenced during a +	 * radix tree traversal here.  It assumes this function +	 * aqcuires only the ILOCK (and therefore it has no need to +	 * involve the IOLOCK in this synchronization). +	 */ +	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); + +	/* reject inode numbers outside existing AGs */ +	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) +		return EINVAL; + +	/* get the perag structure and ensure that it's inode capable */ +	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); +	agino = XFS_INO_TO_AGINO(mp, ino); + +again: +	error = 0; +	rcu_read_lock(); +	ip = radix_tree_lookup(&pag->pag_ici_root, agino); + +	if (ip) { +		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); +		if (error) +			goto out_error_or_again; +	} else { +		rcu_read_unlock(); +		XFS_STATS_INC(xs_ig_missed); + +		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, +							flags, lock_flags); +		if (error) +			goto out_error_or_again; +	} +	xfs_perag_put(pag); + +	*ipp = ip; + +	/* +	 * If we have a real type for an on-disk inode, we can set ops(&unlock) +	 * now.	 If it's a new inode being created, xfs_ialloc will handle it. +	 */ +	if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0) +		xfs_setup_inode(ip); +	return 0; + +out_error_or_again: +	if (error == EAGAIN) { +		delay(1); +		goto again; +	} +	xfs_perag_put(pag); +	return error; +} + +/* + * The inode lookup is done in batches to keep the amount of lock traffic and + * radix tree lookups to a minimum. The batch size is a trade off between + * lookup reduction and stack usage. This is in the reclaim path, so we can't + * be too greedy. + */ +#define XFS_LOOKUP_BATCH	32 + +STATIC int +xfs_inode_ag_walk_grab( +	struct xfs_inode	*ip) +{ +	struct inode		*inode = VFS_I(ip); + +	ASSERT(rcu_read_lock_held()); + +	/* +	 * check for stale RCU freed inode +	 * +	 * If the inode has been reallocated, it doesn't matter if it's not in +	 * the AG we are walking - we are walking for writeback, so if it +	 * passes all the "valid inode" checks and is dirty, then we'll write +	 * it back anyway.  If it has been reallocated and still being +	 * initialised, the XFS_INEW check below will catch it. +	 */ +	spin_lock(&ip->i_flags_lock); +	if (!ip->i_ino) +		goto out_unlock_noent; + +	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */ +	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM)) +		goto out_unlock_noent; +	spin_unlock(&ip->i_flags_lock); + +	/* nothing to sync during shutdown */ +	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) +		return EFSCORRUPTED; + +	/* If we can't grab the inode, it must on it's way to reclaim. */ +	if (!igrab(inode)) +		return ENOENT; + +	/* inode is valid */ +	return 0; + +out_unlock_noent: +	spin_unlock(&ip->i_flags_lock); +	return ENOENT; +} + +STATIC int +xfs_inode_ag_walk( +	struct xfs_mount	*mp, +	struct xfs_perag	*pag, +	int			(*execute)(struct xfs_inode *ip, int flags, +					   void *args), +	int			flags, +	void			*args, +	int			tag) +{ +	uint32_t		first_index; +	int			last_error = 0; +	int			skipped; +	int			done; +	int			nr_found; + +restart: +	done = 0; +	skipped = 0; +	first_index = 0; +	nr_found = 0; +	do { +		struct xfs_inode *batch[XFS_LOOKUP_BATCH]; +		int		error = 0; +		int		i; + +		rcu_read_lock(); + +		if (tag == -1) +			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, +					(void **)batch, first_index, +					XFS_LOOKUP_BATCH); +		else +			nr_found = radix_tree_gang_lookup_tag( +					&pag->pag_ici_root, +					(void **) batch, first_index, +					XFS_LOOKUP_BATCH, tag); + +		if (!nr_found) { +			rcu_read_unlock(); +			break; +		} + +		/* +		 * Grab the inodes before we drop the lock. if we found +		 * nothing, nr == 0 and the loop will be skipped. +		 */ +		for (i = 0; i < nr_found; i++) { +			struct xfs_inode *ip = batch[i]; + +			if (done || xfs_inode_ag_walk_grab(ip)) +				batch[i] = NULL; + +			/* +			 * Update the index for the next lookup. Catch +			 * overflows into the next AG range which can occur if +			 * we have inodes in the last block of the AG and we +			 * are currently pointing to the last inode. +			 * +			 * Because we may see inodes that are from the wrong AG +			 * due to RCU freeing and reallocation, only update the +			 * index if it lies in this AG. It was a race that lead +			 * us to see this inode, so another lookup from the +			 * same index will not find it again. +			 */ +			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) +				continue; +			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); +			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) +				done = 1; +		} + +		/* unlock now we've grabbed the inodes. */ +		rcu_read_unlock(); + +		for (i = 0; i < nr_found; i++) { +			if (!batch[i]) +				continue; +			error = execute(batch[i], flags, args); +			IRELE(batch[i]); +			if (error == EAGAIN) { +				skipped++; +				continue; +			} +			if (error && last_error != EFSCORRUPTED) +				last_error = error; +		} + +		/* bail out if the filesystem is corrupted.  */ +		if (error == EFSCORRUPTED) +			break; + +		cond_resched(); + +	} while (nr_found && !done); + +	if (skipped) { +		delay(1); +		goto restart; +	} +	return last_error; +} + +/* + * Background scanning to trim post-EOF preallocated space. This is queued + * based on the 'speculative_prealloc_lifetime' tunable (5m by default). + */ +STATIC void +xfs_queue_eofblocks( +	struct xfs_mount *mp) +{ +	rcu_read_lock(); +	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG)) +		queue_delayed_work(mp->m_eofblocks_workqueue, +				   &mp->m_eofblocks_work, +				   msecs_to_jiffies(xfs_eofb_secs * 1000)); +	rcu_read_unlock(); +} + +void +xfs_eofblocks_worker( +	struct work_struct *work) +{ +	struct xfs_mount *mp = container_of(to_delayed_work(work), +				struct xfs_mount, m_eofblocks_work); +	xfs_icache_free_eofblocks(mp, NULL); +	xfs_queue_eofblocks(mp); +} + +int +xfs_inode_ag_iterator( +	struct xfs_mount	*mp, +	int			(*execute)(struct xfs_inode *ip, int flags, +					   void *args), +	int			flags, +	void			*args) +{ +	struct xfs_perag	*pag; +	int			error = 0; +	int			last_error = 0; +	xfs_agnumber_t		ag; + +	ag = 0; +	while ((pag = xfs_perag_get(mp, ag))) { +		ag = pag->pag_agno + 1; +		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1); +		xfs_perag_put(pag); +		if (error) { +			last_error = error; +			if (error == EFSCORRUPTED) +				break; +		} +	} +	return XFS_ERROR(last_error); +} + +int +xfs_inode_ag_iterator_tag( +	struct xfs_mount	*mp, +	int			(*execute)(struct xfs_inode *ip, int flags, +					   void *args), +	int			flags, +	void			*args, +	int			tag) +{ +	struct xfs_perag	*pag; +	int			error = 0; +	int			last_error = 0; +	xfs_agnumber_t		ag; + +	ag = 0; +	while ((pag = xfs_perag_get_tag(mp, ag, tag))) { +		ag = pag->pag_agno + 1; +		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag); +		xfs_perag_put(pag); +		if (error) { +			last_error = error; +			if (error == EFSCORRUPTED) +				break; +		} +	} +	return XFS_ERROR(last_error); +} + +/* + * Queue a new inode reclaim pass if there are reclaimable inodes and there + * isn't a reclaim pass already in progress. By default it runs every 5s based + * on the xfs periodic sync default of 30s. Perhaps this should have it's own + * tunable, but that can be done if this method proves to be ineffective or too + * aggressive. + */ +static void +xfs_reclaim_work_queue( +	struct xfs_mount        *mp) +{ + +	rcu_read_lock(); +	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { +		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, +			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); +	} +	rcu_read_unlock(); +} + +/* + * This is a fast pass over the inode cache to try to get reclaim moving on as + * many inodes as possible in a short period of time. It kicks itself every few + * seconds, as well as being kicked by the inode cache shrinker when memory + * goes low. It scans as quickly as possible avoiding locked inodes or those + * already being flushed, and once done schedules a future pass. + */ +void +xfs_reclaim_worker( +	struct work_struct *work) +{ +	struct xfs_mount *mp = container_of(to_delayed_work(work), +					struct xfs_mount, m_reclaim_work); + +	xfs_reclaim_inodes(mp, SYNC_TRYLOCK); +	xfs_reclaim_work_queue(mp); +} + +static void +__xfs_inode_set_reclaim_tag( +	struct xfs_perag	*pag, +	struct xfs_inode	*ip) +{ +	radix_tree_tag_set(&pag->pag_ici_root, +			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), +			   XFS_ICI_RECLAIM_TAG); + +	if (!pag->pag_ici_reclaimable) { +		/* propagate the reclaim tag up into the perag radix tree */ +		spin_lock(&ip->i_mount->m_perag_lock); +		radix_tree_tag_set(&ip->i_mount->m_perag_tree, +				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), +				XFS_ICI_RECLAIM_TAG); +		spin_unlock(&ip->i_mount->m_perag_lock); + +		/* schedule periodic background inode reclaim */ +		xfs_reclaim_work_queue(ip->i_mount); + +		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno, +							-1, _RET_IP_); +	} +	pag->pag_ici_reclaimable++; +} + +/* + * We set the inode flag atomically with the radix tree tag. + * Once we get tag lookups on the radix tree, this inode flag + * can go away. + */ +void +xfs_inode_set_reclaim_tag( +	xfs_inode_t	*ip) +{ +	struct xfs_mount *mp = ip->i_mount; +	struct xfs_perag *pag; + +	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); +	spin_lock(&pag->pag_ici_lock); +	spin_lock(&ip->i_flags_lock); +	__xfs_inode_set_reclaim_tag(pag, ip); +	__xfs_iflags_set(ip, XFS_IRECLAIMABLE); +	spin_unlock(&ip->i_flags_lock); +	spin_unlock(&pag->pag_ici_lock); +	xfs_perag_put(pag); +} + +STATIC void +__xfs_inode_clear_reclaim( +	xfs_perag_t	*pag, +	xfs_inode_t	*ip) +{ +	pag->pag_ici_reclaimable--; +	if (!pag->pag_ici_reclaimable) { +		/* clear the reclaim tag from the perag radix tree */ +		spin_lock(&ip->i_mount->m_perag_lock); +		radix_tree_tag_clear(&ip->i_mount->m_perag_tree, +				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), +				XFS_ICI_RECLAIM_TAG); +		spin_unlock(&ip->i_mount->m_perag_lock); +		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno, +							-1, _RET_IP_); +	} +} + +STATIC void +__xfs_inode_clear_reclaim_tag( +	xfs_mount_t	*mp, +	xfs_perag_t	*pag, +	xfs_inode_t	*ip) +{ +	radix_tree_tag_clear(&pag->pag_ici_root, +			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); +	__xfs_inode_clear_reclaim(pag, ip); +} + +/* + * Grab the inode for reclaim exclusively. + * Return 0 if we grabbed it, non-zero otherwise. + */ +STATIC int +xfs_reclaim_inode_grab( +	struct xfs_inode	*ip, +	int			flags) +{ +	ASSERT(rcu_read_lock_held()); + +	/* quick check for stale RCU freed inode */ +	if (!ip->i_ino) +		return 1; + +	/* +	 * If we are asked for non-blocking operation, do unlocked checks to +	 * see if the inode already is being flushed or in reclaim to avoid +	 * lock traffic. +	 */ +	if ((flags & SYNC_TRYLOCK) && +	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) +		return 1; + +	/* +	 * The radix tree lock here protects a thread in xfs_iget from racing +	 * with us starting reclaim on the inode.  Once we have the +	 * XFS_IRECLAIM flag set it will not touch us. +	 * +	 * Due to RCU lookup, we may find inodes that have been freed and only +	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that +	 * aren't candidates for reclaim at all, so we must check the +	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim. +	 */ +	spin_lock(&ip->i_flags_lock); +	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || +	    __xfs_iflags_test(ip, XFS_IRECLAIM)) { +		/* not a reclaim candidate. */ +		spin_unlock(&ip->i_flags_lock); +		return 1; +	} +	__xfs_iflags_set(ip, XFS_IRECLAIM); +	spin_unlock(&ip->i_flags_lock); +	return 0; +} + +/* + * Inodes in different states need to be treated differently. The following + * table lists the inode states and the reclaim actions necessary: + * + *	inode state	     iflush ret		required action + *      ---------------      ----------         --------------- + *	bad			-		reclaim + *	shutdown		EIO		unpin and reclaim + *	clean, unpinned		0		reclaim + *	stale, unpinned		0		reclaim + *	clean, pinned(*)	0		requeue + *	stale, pinned		EAGAIN		requeue + *	dirty, async		-		requeue + *	dirty, sync		0		reclaim + * + * (*) dgc: I don't think the clean, pinned state is possible but it gets + * handled anyway given the order of checks implemented. + * + * Also, because we get the flush lock first, we know that any inode that has + * been flushed delwri has had the flush completed by the time we check that + * the inode is clean. + * + * Note that because the inode is flushed delayed write by AIL pushing, the + * flush lock may already be held here and waiting on it can result in very + * long latencies.  Hence for sync reclaims, where we wait on the flush lock, + * the caller should push the AIL first before trying to reclaim inodes to + * minimise the amount of time spent waiting.  For background relaim, we only + * bother to reclaim clean inodes anyway. + * + * Hence the order of actions after gaining the locks should be: + *	bad		=> reclaim + *	shutdown	=> unpin and reclaim + *	pinned, async	=> requeue + *	pinned, sync	=> unpin + *	stale		=> reclaim + *	clean		=> reclaim + *	dirty, async	=> requeue + *	dirty, sync	=> flush, wait and reclaim + */ +STATIC int +xfs_reclaim_inode( +	struct xfs_inode	*ip, +	struct xfs_perag	*pag, +	int			sync_mode) +{ +	struct xfs_buf		*bp = NULL; +	int			error; + +restart: +	error = 0; +	xfs_ilock(ip, XFS_ILOCK_EXCL); +	if (!xfs_iflock_nowait(ip)) { +		if (!(sync_mode & SYNC_WAIT)) +			goto out; +		xfs_iflock(ip); +	} + +	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { +		xfs_iunpin_wait(ip); +		xfs_iflush_abort(ip, false); +		goto reclaim; +	} +	if (xfs_ipincount(ip)) { +		if (!(sync_mode & SYNC_WAIT)) +			goto out_ifunlock; +		xfs_iunpin_wait(ip); +	} +	if (xfs_iflags_test(ip, XFS_ISTALE)) +		goto reclaim; +	if (xfs_inode_clean(ip)) +		goto reclaim; + +	/* +	 * Never flush out dirty data during non-blocking reclaim, as it would +	 * just contend with AIL pushing trying to do the same job. +	 */ +	if (!(sync_mode & SYNC_WAIT)) +		goto out_ifunlock; + +	/* +	 * Now we have an inode that needs flushing. +	 * +	 * Note that xfs_iflush will never block on the inode buffer lock, as +	 * xfs_ifree_cluster() can lock the inode buffer before it locks the +	 * ip->i_lock, and we are doing the exact opposite here.  As a result, +	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would +	 * result in an ABBA deadlock with xfs_ifree_cluster(). +	 * +	 * As xfs_ifree_cluser() must gather all inodes that are active in the +	 * cache to mark them stale, if we hit this case we don't actually want +	 * to do IO here - we want the inode marked stale so we can simply +	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the +	 * inode, back off and try again.  Hopefully the next pass through will +	 * see the stale flag set on the inode. +	 */ +	error = xfs_iflush(ip, &bp); +	if (error == EAGAIN) { +		xfs_iunlock(ip, XFS_ILOCK_EXCL); +		/* backoff longer than in xfs_ifree_cluster */ +		delay(2); +		goto restart; +	} + +	if (!error) { +		error = xfs_bwrite(bp); +		xfs_buf_relse(bp); +	} + +	xfs_iflock(ip); +reclaim: +	xfs_ifunlock(ip); +	xfs_iunlock(ip, XFS_ILOCK_EXCL); + +	XFS_STATS_INC(xs_ig_reclaims); +	/* +	 * Remove the inode from the per-AG radix tree. +	 * +	 * Because radix_tree_delete won't complain even if the item was never +	 * added to the tree assert that it's been there before to catch +	 * problems with the inode life time early on. +	 */ +	spin_lock(&pag->pag_ici_lock); +	if (!radix_tree_delete(&pag->pag_ici_root, +				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino))) +		ASSERT(0); +	__xfs_inode_clear_reclaim(pag, ip); +	spin_unlock(&pag->pag_ici_lock); + +	/* +	 * Here we do an (almost) spurious inode lock in order to coordinate +	 * with inode cache radix tree lookups.  This is because the lookup +	 * can reference the inodes in the cache without taking references. +	 * +	 * We make that OK here by ensuring that we wait until the inode is +	 * unlocked after the lookup before we go ahead and free it. +	 */ +	xfs_ilock(ip, XFS_ILOCK_EXCL); +	xfs_qm_dqdetach(ip); +	xfs_iunlock(ip, XFS_ILOCK_EXCL); + +	xfs_inode_free(ip); +	return error; + +out_ifunlock: +	xfs_ifunlock(ip); +out: +	xfs_iflags_clear(ip, XFS_IRECLAIM); +	xfs_iunlock(ip, XFS_ILOCK_EXCL); +	/* +	 * We could return EAGAIN here to make reclaim rescan the inode tree in +	 * a short while. However, this just burns CPU time scanning the tree +	 * waiting for IO to complete and the reclaim work never goes back to +	 * the idle state. Instead, return 0 to let the next scheduled +	 * background reclaim attempt to reclaim the inode again. +	 */ +	return 0; +} + +/* + * Walk the AGs and reclaim the inodes in them. Even if the filesystem is + * corrupted, we still want to try to reclaim all the inodes. If we don't, + * then a shut down during filesystem unmount reclaim walk leak all the + * unreclaimed inodes. + */ +STATIC int +xfs_reclaim_inodes_ag( +	struct xfs_mount	*mp, +	int			flags, +	int			*nr_to_scan) +{ +	struct xfs_perag	*pag; +	int			error = 0; +	int			last_error = 0; +	xfs_agnumber_t		ag; +	int			trylock = flags & SYNC_TRYLOCK; +	int			skipped; + +restart: +	ag = 0; +	skipped = 0; +	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { +		unsigned long	first_index = 0; +		int		done = 0; +		int		nr_found = 0; + +		ag = pag->pag_agno + 1; + +		if (trylock) { +			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { +				skipped++; +				xfs_perag_put(pag); +				continue; +			} +			first_index = pag->pag_ici_reclaim_cursor; +		} else +			mutex_lock(&pag->pag_ici_reclaim_lock); + +		do { +			struct xfs_inode *batch[XFS_LOOKUP_BATCH]; +			int	i; + +			rcu_read_lock(); +			nr_found = radix_tree_gang_lookup_tag( +					&pag->pag_ici_root, +					(void **)batch, first_index, +					XFS_LOOKUP_BATCH, +					XFS_ICI_RECLAIM_TAG); +			if (!nr_found) { +				done = 1; +				rcu_read_unlock(); +				break; +			} + +			/* +			 * Grab the inodes before we drop the lock. if we found +			 * nothing, nr == 0 and the loop will be skipped. +			 */ +			for (i = 0; i < nr_found; i++) { +				struct xfs_inode *ip = batch[i]; + +				if (done || xfs_reclaim_inode_grab(ip, flags)) +					batch[i] = NULL; + +				/* +				 * Update the index for the next lookup. Catch +				 * overflows into the next AG range which can +				 * occur if we have inodes in the last block of +				 * the AG and we are currently pointing to the +				 * last inode. +				 * +				 * Because we may see inodes that are from the +				 * wrong AG due to RCU freeing and +				 * reallocation, only update the index if it +				 * lies in this AG. It was a race that lead us +				 * to see this inode, so another lookup from +				 * the same index will not find it again. +				 */ +				if (XFS_INO_TO_AGNO(mp, ip->i_ino) != +								pag->pag_agno) +					continue; +				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); +				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) +					done = 1; +			} + +			/* unlock now we've grabbed the inodes. */ +			rcu_read_unlock(); + +			for (i = 0; i < nr_found; i++) { +				if (!batch[i]) +					continue; +				error = xfs_reclaim_inode(batch[i], pag, flags); +				if (error && last_error != EFSCORRUPTED) +					last_error = error; +			} + +			*nr_to_scan -= XFS_LOOKUP_BATCH; + +			cond_resched(); + +		} while (nr_found && !done && *nr_to_scan > 0); + +		if (trylock && !done) +			pag->pag_ici_reclaim_cursor = first_index; +		else +			pag->pag_ici_reclaim_cursor = 0; +		mutex_unlock(&pag->pag_ici_reclaim_lock); +		xfs_perag_put(pag); +	} + +	/* +	 * if we skipped any AG, and we still have scan count remaining, do +	 * another pass this time using blocking reclaim semantics (i.e +	 * waiting on the reclaim locks and ignoring the reclaim cursors). This +	 * ensure that when we get more reclaimers than AGs we block rather +	 * than spin trying to execute reclaim. +	 */ +	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { +		trylock = 0; +		goto restart; +	} +	return XFS_ERROR(last_error); +} + +int +xfs_reclaim_inodes( +	xfs_mount_t	*mp, +	int		mode) +{ +	int		nr_to_scan = INT_MAX; + +	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); +} + +/* + * Scan a certain number of inodes for reclaim. + * + * When called we make sure that there is a background (fast) inode reclaim in + * progress, while we will throttle the speed of reclaim via doing synchronous + * reclaim of inodes. That means if we come across dirty inodes, we wait for + * them to be cleaned, which we hope will not be very long due to the + * background walker having already kicked the IO off on those dirty inodes. + */ +long +xfs_reclaim_inodes_nr( +	struct xfs_mount	*mp, +	int			nr_to_scan) +{ +	/* kick background reclaimer and push the AIL */ +	xfs_reclaim_work_queue(mp); +	xfs_ail_push_all(mp->m_ail); + +	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); +} + +/* + * Return the number of reclaimable inodes in the filesystem for + * the shrinker to determine how much to reclaim. + */ +int +xfs_reclaim_inodes_count( +	struct xfs_mount	*mp) +{ +	struct xfs_perag	*pag; +	xfs_agnumber_t		ag = 0; +	int			reclaimable = 0; + +	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { +		ag = pag->pag_agno + 1; +		reclaimable += pag->pag_ici_reclaimable; +		xfs_perag_put(pag); +	} +	return reclaimable; +} + +STATIC int +xfs_inode_match_id( +	struct xfs_inode	*ip, +	struct xfs_eofblocks	*eofb) +{ +	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && +	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) +		return 0; + +	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && +	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) +		return 0; + +	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && +	    xfs_get_projid(ip) != eofb->eof_prid) +		return 0; + +	return 1; +} + +STATIC int +xfs_inode_free_eofblocks( +	struct xfs_inode	*ip, +	int			flags, +	void			*args) +{ +	int ret; +	struct xfs_eofblocks *eofb = args; + +	if (!xfs_can_free_eofblocks(ip, false)) { +		/* inode could be preallocated or append-only */ +		trace_xfs_inode_free_eofblocks_invalid(ip); +		xfs_inode_clear_eofblocks_tag(ip); +		return 0; +	} + +	/* +	 * If the mapping is dirty the operation can block and wait for some +	 * time. Unless we are waiting, skip it. +	 */ +	if (!(flags & SYNC_WAIT) && +	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) +		return 0; + +	if (eofb) { +		if (!xfs_inode_match_id(ip, eofb)) +			return 0; + +		/* skip the inode if the file size is too small */ +		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && +		    XFS_ISIZE(ip) < eofb->eof_min_file_size) +			return 0; +	} + +	ret = xfs_free_eofblocks(ip->i_mount, ip, true); + +	/* don't revisit the inode if we're not waiting */ +	if (ret == EAGAIN && !(flags & SYNC_WAIT)) +		ret = 0; + +	return ret; +} + +int +xfs_icache_free_eofblocks( +	struct xfs_mount	*mp, +	struct xfs_eofblocks	*eofb) +{ +	int flags = SYNC_TRYLOCK; + +	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC)) +		flags = SYNC_WAIT; + +	return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags, +					 eofb, XFS_ICI_EOFBLOCKS_TAG); +} + +void +xfs_inode_set_eofblocks_tag( +	xfs_inode_t	*ip) +{ +	struct xfs_mount *mp = ip->i_mount; +	struct xfs_perag *pag; +	int tagged; + +	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); +	spin_lock(&pag->pag_ici_lock); +	trace_xfs_inode_set_eofblocks_tag(ip); + +	tagged = radix_tree_tagged(&pag->pag_ici_root, +				   XFS_ICI_EOFBLOCKS_TAG); +	radix_tree_tag_set(&pag->pag_ici_root, +			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), +			   XFS_ICI_EOFBLOCKS_TAG); +	if (!tagged) { +		/* propagate the eofblocks tag up into the perag radix tree */ +		spin_lock(&ip->i_mount->m_perag_lock); +		radix_tree_tag_set(&ip->i_mount->m_perag_tree, +				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), +				   XFS_ICI_EOFBLOCKS_TAG); +		spin_unlock(&ip->i_mount->m_perag_lock); + +		/* kick off background trimming */ +		xfs_queue_eofblocks(ip->i_mount); + +		trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno, +					      -1, _RET_IP_); +	} + +	spin_unlock(&pag->pag_ici_lock); +	xfs_perag_put(pag); +} + +void +xfs_inode_clear_eofblocks_tag( +	xfs_inode_t	*ip) +{ +	struct xfs_mount *mp = ip->i_mount; +	struct xfs_perag *pag; + +	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); +	spin_lock(&pag->pag_ici_lock); +	trace_xfs_inode_clear_eofblocks_tag(ip); + +	radix_tree_tag_clear(&pag->pag_ici_root, +			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), +			     XFS_ICI_EOFBLOCKS_TAG); +	if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) { +		/* clear the eofblocks tag from the perag radix tree */ +		spin_lock(&ip->i_mount->m_perag_lock); +		radix_tree_tag_clear(&ip->i_mount->m_perag_tree, +				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), +				     XFS_ICI_EOFBLOCKS_TAG); +		spin_unlock(&ip->i_mount->m_perag_lock); +		trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno, +					       -1, _RET_IP_); +	} + +	spin_unlock(&pag->pag_ici_lock); +	xfs_perag_put(pag); +} +  | 
