diff options
Diffstat (limited to 'fs/xfs/xfs_file.c')
| -rw-r--r-- | fs/xfs/xfs_file.c | 1433 | 
1 files changed, 1433 insertions, 0 deletions
diff --git a/fs/xfs/xfs_file.c b/fs/xfs/xfs_file.c new file mode 100644 index 00000000000..1f66779d7a4 --- /dev/null +++ b/fs/xfs/xfs_file.c @@ -0,0 +1,1433 @@ +/* + * Copyright (c) 2000-2005 Silicon Graphics, Inc. + * All Rights Reserved. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it would be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write the Free Software Foundation, + * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA + */ +#include "xfs.h" +#include "xfs_fs.h" +#include "xfs_shared.h" +#include "xfs_format.h" +#include "xfs_log_format.h" +#include "xfs_trans_resv.h" +#include "xfs_sb.h" +#include "xfs_ag.h" +#include "xfs_mount.h" +#include "xfs_da_format.h" +#include "xfs_da_btree.h" +#include "xfs_inode.h" +#include "xfs_trans.h" +#include "xfs_inode_item.h" +#include "xfs_bmap.h" +#include "xfs_bmap_util.h" +#include "xfs_error.h" +#include "xfs_dir2.h" +#include "xfs_dir2_priv.h" +#include "xfs_ioctl.h" +#include "xfs_trace.h" +#include "xfs_log.h" +#include "xfs_dinode.h" + +#include <linux/aio.h> +#include <linux/dcache.h> +#include <linux/falloc.h> +#include <linux/pagevec.h> + +static const struct vm_operations_struct xfs_file_vm_ops; + +/* + * Locking primitives for read and write IO paths to ensure we consistently use + * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. + */ +static inline void +xfs_rw_ilock( +	struct xfs_inode	*ip, +	int			type) +{ +	if (type & XFS_IOLOCK_EXCL) +		mutex_lock(&VFS_I(ip)->i_mutex); +	xfs_ilock(ip, type); +} + +static inline void +xfs_rw_iunlock( +	struct xfs_inode	*ip, +	int			type) +{ +	xfs_iunlock(ip, type); +	if (type & XFS_IOLOCK_EXCL) +		mutex_unlock(&VFS_I(ip)->i_mutex); +} + +static inline void +xfs_rw_ilock_demote( +	struct xfs_inode	*ip, +	int			type) +{ +	xfs_ilock_demote(ip, type); +	if (type & XFS_IOLOCK_EXCL) +		mutex_unlock(&VFS_I(ip)->i_mutex); +} + +/* + *	xfs_iozero + * + *	xfs_iozero clears the specified range of buffer supplied, + *	and marks all the affected blocks as valid and modified.  If + *	an affected block is not allocated, it will be allocated.  If + *	an affected block is not completely overwritten, and is not + *	valid before the operation, it will be read from disk before + *	being partially zeroed. + */ +int +xfs_iozero( +	struct xfs_inode	*ip,	/* inode			*/ +	loff_t			pos,	/* offset in file		*/ +	size_t			count)	/* size of data to zero		*/ +{ +	struct page		*page; +	struct address_space	*mapping; +	int			status; + +	mapping = VFS_I(ip)->i_mapping; +	do { +		unsigned offset, bytes; +		void *fsdata; + +		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ +		bytes = PAGE_CACHE_SIZE - offset; +		if (bytes > count) +			bytes = count; + +		status = pagecache_write_begin(NULL, mapping, pos, bytes, +					AOP_FLAG_UNINTERRUPTIBLE, +					&page, &fsdata); +		if (status) +			break; + +		zero_user(page, offset, bytes); + +		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes, +					page, fsdata); +		WARN_ON(status <= 0); /* can't return less than zero! */ +		pos += bytes; +		count -= bytes; +		status = 0; +	} while (count); + +	return (-status); +} + +/* + * Fsync operations on directories are much simpler than on regular files, + * as there is no file data to flush, and thus also no need for explicit + * cache flush operations, and there are no non-transaction metadata updates + * on directories either. + */ +STATIC int +xfs_dir_fsync( +	struct file		*file, +	loff_t			start, +	loff_t			end, +	int			datasync) +{ +	struct xfs_inode	*ip = XFS_I(file->f_mapping->host); +	struct xfs_mount	*mp = ip->i_mount; +	xfs_lsn_t		lsn = 0; + +	trace_xfs_dir_fsync(ip); + +	xfs_ilock(ip, XFS_ILOCK_SHARED); +	if (xfs_ipincount(ip)) +		lsn = ip->i_itemp->ili_last_lsn; +	xfs_iunlock(ip, XFS_ILOCK_SHARED); + +	if (!lsn) +		return 0; +	return -_xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); +} + +STATIC int +xfs_file_fsync( +	struct file		*file, +	loff_t			start, +	loff_t			end, +	int			datasync) +{ +	struct inode		*inode = file->f_mapping->host; +	struct xfs_inode	*ip = XFS_I(inode); +	struct xfs_mount	*mp = ip->i_mount; +	int			error = 0; +	int			log_flushed = 0; +	xfs_lsn_t		lsn = 0; + +	trace_xfs_file_fsync(ip); + +	error = filemap_write_and_wait_range(inode->i_mapping, start, end); +	if (error) +		return error; + +	if (XFS_FORCED_SHUTDOWN(mp)) +		return -XFS_ERROR(EIO); + +	xfs_iflags_clear(ip, XFS_ITRUNCATED); + +	if (mp->m_flags & XFS_MOUNT_BARRIER) { +		/* +		 * If we have an RT and/or log subvolume we need to make sure +		 * to flush the write cache the device used for file data +		 * first.  This is to ensure newly written file data make +		 * it to disk before logging the new inode size in case of +		 * an extending write. +		 */ +		if (XFS_IS_REALTIME_INODE(ip)) +			xfs_blkdev_issue_flush(mp->m_rtdev_targp); +		else if (mp->m_logdev_targp != mp->m_ddev_targp) +			xfs_blkdev_issue_flush(mp->m_ddev_targp); +	} + +	/* +	 * All metadata updates are logged, which means that we just have +	 * to flush the log up to the latest LSN that touched the inode. +	 */ +	xfs_ilock(ip, XFS_ILOCK_SHARED); +	if (xfs_ipincount(ip)) { +		if (!datasync || +		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP)) +			lsn = ip->i_itemp->ili_last_lsn; +	} +	xfs_iunlock(ip, XFS_ILOCK_SHARED); + +	if (lsn) +		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); + +	/* +	 * If we only have a single device, and the log force about was +	 * a no-op we might have to flush the data device cache here. +	 * This can only happen for fdatasync/O_DSYNC if we were overwriting +	 * an already allocated file and thus do not have any metadata to +	 * commit. +	 */ +	if ((mp->m_flags & XFS_MOUNT_BARRIER) && +	    mp->m_logdev_targp == mp->m_ddev_targp && +	    !XFS_IS_REALTIME_INODE(ip) && +	    !log_flushed) +		xfs_blkdev_issue_flush(mp->m_ddev_targp); + +	return -error; +} + +STATIC ssize_t +xfs_file_read_iter( +	struct kiocb		*iocb, +	struct iov_iter		*to) +{ +	struct file		*file = iocb->ki_filp; +	struct inode		*inode = file->f_mapping->host; +	struct xfs_inode	*ip = XFS_I(inode); +	struct xfs_mount	*mp = ip->i_mount; +	size_t			size = iov_iter_count(to); +	ssize_t			ret = 0; +	int			ioflags = 0; +	xfs_fsize_t		n; +	loff_t			pos = iocb->ki_pos; + +	XFS_STATS_INC(xs_read_calls); + +	if (unlikely(file->f_flags & O_DIRECT)) +		ioflags |= IO_ISDIRECT; +	if (file->f_mode & FMODE_NOCMTIME) +		ioflags |= IO_INVIS; + +	if (unlikely(ioflags & IO_ISDIRECT)) { +		xfs_buftarg_t	*target = +			XFS_IS_REALTIME_INODE(ip) ? +				mp->m_rtdev_targp : mp->m_ddev_targp; +		/* DIO must be aligned to device logical sector size */ +		if ((pos | size) & target->bt_logical_sectormask) { +			if (pos == i_size_read(inode)) +				return 0; +			return -XFS_ERROR(EINVAL); +		} +	} + +	n = mp->m_super->s_maxbytes - pos; +	if (n <= 0 || size == 0) +		return 0; + +	if (n < size) +		size = n; + +	if (XFS_FORCED_SHUTDOWN(mp)) +		return -EIO; + +	/* +	 * Locking is a bit tricky here. If we take an exclusive lock +	 * for direct IO, we effectively serialise all new concurrent +	 * read IO to this file and block it behind IO that is currently in +	 * progress because IO in progress holds the IO lock shared. We only +	 * need to hold the lock exclusive to blow away the page cache, so +	 * only take lock exclusively if the page cache needs invalidation. +	 * This allows the normal direct IO case of no page cache pages to +	 * proceeed concurrently without serialisation. +	 */ +	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); +	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) { +		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); +		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); + +		if (inode->i_mapping->nrpages) { +			ret = filemap_write_and_wait_range( +							VFS_I(ip)->i_mapping, +							pos, -1); +			if (ret) { +				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); +				return ret; +			} +			truncate_pagecache_range(VFS_I(ip), pos, -1); +		} +		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); +	} + +	trace_xfs_file_read(ip, size, pos, ioflags); + +	ret = generic_file_read_iter(iocb, to); +	if (ret > 0) +		XFS_STATS_ADD(xs_read_bytes, ret); + +	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); +	return ret; +} + +STATIC ssize_t +xfs_file_splice_read( +	struct file		*infilp, +	loff_t			*ppos, +	struct pipe_inode_info	*pipe, +	size_t			count, +	unsigned int		flags) +{ +	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host); +	int			ioflags = 0; +	ssize_t			ret; + +	XFS_STATS_INC(xs_read_calls); + +	if (infilp->f_mode & FMODE_NOCMTIME) +		ioflags |= IO_INVIS; + +	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) +		return -EIO; + +	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); + +	trace_xfs_file_splice_read(ip, count, *ppos, ioflags); + +	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); +	if (ret > 0) +		XFS_STATS_ADD(xs_read_bytes, ret); + +	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); +	return ret; +} + +/* + * This routine is called to handle zeroing any space in the last block of the + * file that is beyond the EOF.  We do this since the size is being increased + * without writing anything to that block and we don't want to read the + * garbage on the disk. + */ +STATIC int				/* error (positive) */ +xfs_zero_last_block( +	struct xfs_inode	*ip, +	xfs_fsize_t		offset, +	xfs_fsize_t		isize) +{ +	struct xfs_mount	*mp = ip->i_mount; +	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize); +	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize); +	int			zero_len; +	int			nimaps = 1; +	int			error = 0; +	struct xfs_bmbt_irec	imap; + +	xfs_ilock(ip, XFS_ILOCK_EXCL); +	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); +	xfs_iunlock(ip, XFS_ILOCK_EXCL); +	if (error) +		return error; + +	ASSERT(nimaps > 0); + +	/* +	 * If the block underlying isize is just a hole, then there +	 * is nothing to zero. +	 */ +	if (imap.br_startblock == HOLESTARTBLOCK) +		return 0; + +	zero_len = mp->m_sb.sb_blocksize - zero_offset; +	if (isize + zero_len > offset) +		zero_len = offset - isize; +	return xfs_iozero(ip, isize, zero_len); +} + +/* + * Zero any on disk space between the current EOF and the new, larger EOF. + * + * This handles the normal case of zeroing the remainder of the last block in + * the file and the unusual case of zeroing blocks out beyond the size of the + * file.  This second case only happens with fixed size extents and when the + * system crashes before the inode size was updated but after blocks were + * allocated. + * + * Expects the iolock to be held exclusive, and will take the ilock internally. + */ +int					/* error (positive) */ +xfs_zero_eof( +	struct xfs_inode	*ip, +	xfs_off_t		offset,		/* starting I/O offset */ +	xfs_fsize_t		isize)		/* current inode size */ +{ +	struct xfs_mount	*mp = ip->i_mount; +	xfs_fileoff_t		start_zero_fsb; +	xfs_fileoff_t		end_zero_fsb; +	xfs_fileoff_t		zero_count_fsb; +	xfs_fileoff_t		last_fsb; +	xfs_fileoff_t		zero_off; +	xfs_fsize_t		zero_len; +	int			nimaps; +	int			error = 0; +	struct xfs_bmbt_irec	imap; + +	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); +	ASSERT(offset > isize); + +	/* +	 * First handle zeroing the block on which isize resides. +	 * +	 * We only zero a part of that block so it is handled specially. +	 */ +	if (XFS_B_FSB_OFFSET(mp, isize) != 0) { +		error = xfs_zero_last_block(ip, offset, isize); +		if (error) +			return error; +	} + +	/* +	 * Calculate the range between the new size and the old where blocks +	 * needing to be zeroed may exist. +	 * +	 * To get the block where the last byte in the file currently resides, +	 * we need to subtract one from the size and truncate back to a block +	 * boundary.  We subtract 1 in case the size is exactly on a block +	 * boundary. +	 */ +	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; +	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); +	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); +	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); +	if (last_fsb == end_zero_fsb) { +		/* +		 * The size was only incremented on its last block. +		 * We took care of that above, so just return. +		 */ +		return 0; +	} + +	ASSERT(start_zero_fsb <= end_zero_fsb); +	while (start_zero_fsb <= end_zero_fsb) { +		nimaps = 1; +		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; + +		xfs_ilock(ip, XFS_ILOCK_EXCL); +		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, +					  &imap, &nimaps, 0); +		xfs_iunlock(ip, XFS_ILOCK_EXCL); +		if (error) +			return error; + +		ASSERT(nimaps > 0); + +		if (imap.br_state == XFS_EXT_UNWRITTEN || +		    imap.br_startblock == HOLESTARTBLOCK) { +			start_zero_fsb = imap.br_startoff + imap.br_blockcount; +			ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); +			continue; +		} + +		/* +		 * There are blocks we need to zero. +		 */ +		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); +		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); + +		if ((zero_off + zero_len) > offset) +			zero_len = offset - zero_off; + +		error = xfs_iozero(ip, zero_off, zero_len); +		if (error) +			return error; + +		start_zero_fsb = imap.br_startoff + imap.br_blockcount; +		ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); +	} + +	return 0; +} + +/* + * Common pre-write limit and setup checks. + * + * Called with the iolocked held either shared and exclusive according to + * @iolock, and returns with it held.  Might upgrade the iolock to exclusive + * if called for a direct write beyond i_size. + */ +STATIC ssize_t +xfs_file_aio_write_checks( +	struct file		*file, +	loff_t			*pos, +	size_t			*count, +	int			*iolock) +{ +	struct inode		*inode = file->f_mapping->host; +	struct xfs_inode	*ip = XFS_I(inode); +	int			error = 0; + +restart: +	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode)); +	if (error) +		return error; + +	/* +	 * If the offset is beyond the size of the file, we need to zero any +	 * blocks that fall between the existing EOF and the start of this +	 * write.  If zeroing is needed and we are currently holding the +	 * iolock shared, we need to update it to exclusive which implies +	 * having to redo all checks before. +	 */ +	if (*pos > i_size_read(inode)) { +		if (*iolock == XFS_IOLOCK_SHARED) { +			xfs_rw_iunlock(ip, *iolock); +			*iolock = XFS_IOLOCK_EXCL; +			xfs_rw_ilock(ip, *iolock); +			goto restart; +		} +		error = -xfs_zero_eof(ip, *pos, i_size_read(inode)); +		if (error) +			return error; +	} + +	/* +	 * Updating the timestamps will grab the ilock again from +	 * xfs_fs_dirty_inode, so we have to call it after dropping the +	 * lock above.  Eventually we should look into a way to avoid +	 * the pointless lock roundtrip. +	 */ +	if (likely(!(file->f_mode & FMODE_NOCMTIME))) { +		error = file_update_time(file); +		if (error) +			return error; +	} + +	/* +	 * If we're writing the file then make sure to clear the setuid and +	 * setgid bits if the process is not being run by root.  This keeps +	 * people from modifying setuid and setgid binaries. +	 */ +	return file_remove_suid(file); +} + +/* + * xfs_file_dio_aio_write - handle direct IO writes + * + * Lock the inode appropriately to prepare for and issue a direct IO write. + * By separating it from the buffered write path we remove all the tricky to + * follow locking changes and looping. + * + * If there are cached pages or we're extending the file, we need IOLOCK_EXCL + * until we're sure the bytes at the new EOF have been zeroed and/or the cached + * pages are flushed out. + * + * In most cases the direct IO writes will be done holding IOLOCK_SHARED + * allowing them to be done in parallel with reads and other direct IO writes. + * However, if the IO is not aligned to filesystem blocks, the direct IO layer + * needs to do sub-block zeroing and that requires serialisation against other + * direct IOs to the same block. In this case we need to serialise the + * submission of the unaligned IOs so that we don't get racing block zeroing in + * the dio layer.  To avoid the problem with aio, we also need to wait for + * outstanding IOs to complete so that unwritten extent conversion is completed + * before we try to map the overlapping block. This is currently implemented by + * hitting it with a big hammer (i.e. inode_dio_wait()). + * + * Returns with locks held indicated by @iolock and errors indicated by + * negative return values. + */ +STATIC ssize_t +xfs_file_dio_aio_write( +	struct kiocb		*iocb, +	struct iov_iter		*from) +{ +	struct file		*file = iocb->ki_filp; +	struct address_space	*mapping = file->f_mapping; +	struct inode		*inode = mapping->host; +	struct xfs_inode	*ip = XFS_I(inode); +	struct xfs_mount	*mp = ip->i_mount; +	ssize_t			ret = 0; +	int			unaligned_io = 0; +	int			iolock; +	size_t			count = iov_iter_count(from); +	loff_t			pos = iocb->ki_pos; +	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ? +					mp->m_rtdev_targp : mp->m_ddev_targp; + +	/* DIO must be aligned to device logical sector size */ +	if ((pos | count) & target->bt_logical_sectormask) +		return -XFS_ERROR(EINVAL); + +	/* "unaligned" here means not aligned to a filesystem block */ +	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) +		unaligned_io = 1; + +	/* +	 * We don't need to take an exclusive lock unless there page cache needs +	 * to be invalidated or unaligned IO is being executed. We don't need to +	 * consider the EOF extension case here because +	 * xfs_file_aio_write_checks() will relock the inode as necessary for +	 * EOF zeroing cases and fill out the new inode size as appropriate. +	 */ +	if (unaligned_io || mapping->nrpages) +		iolock = XFS_IOLOCK_EXCL; +	else +		iolock = XFS_IOLOCK_SHARED; +	xfs_rw_ilock(ip, iolock); + +	/* +	 * Recheck if there are cached pages that need invalidate after we got +	 * the iolock to protect against other threads adding new pages while +	 * we were waiting for the iolock. +	 */ +	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { +		xfs_rw_iunlock(ip, iolock); +		iolock = XFS_IOLOCK_EXCL; +		xfs_rw_ilock(ip, iolock); +	} + +	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); +	if (ret) +		goto out; +	iov_iter_truncate(from, count); + +	if (mapping->nrpages) { +		ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, +						    pos, -1); +		if (ret) +			goto out; +		truncate_pagecache_range(VFS_I(ip), pos, -1); +	} + +	/* +	 * If we are doing unaligned IO, wait for all other IO to drain, +	 * otherwise demote the lock if we had to flush cached pages +	 */ +	if (unaligned_io) +		inode_dio_wait(inode); +	else if (iolock == XFS_IOLOCK_EXCL) { +		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); +		iolock = XFS_IOLOCK_SHARED; +	} + +	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); +	ret = generic_file_direct_write(iocb, from, pos); + +out: +	xfs_rw_iunlock(ip, iolock); + +	/* No fallback to buffered IO on errors for XFS. */ +	ASSERT(ret < 0 || ret == count); +	return ret; +} + +STATIC ssize_t +xfs_file_buffered_aio_write( +	struct kiocb		*iocb, +	struct iov_iter		*from) +{ +	struct file		*file = iocb->ki_filp; +	struct address_space	*mapping = file->f_mapping; +	struct inode		*inode = mapping->host; +	struct xfs_inode	*ip = XFS_I(inode); +	ssize_t			ret; +	int			enospc = 0; +	int			iolock = XFS_IOLOCK_EXCL; +	loff_t			pos = iocb->ki_pos; +	size_t			count = iov_iter_count(from); + +	xfs_rw_ilock(ip, iolock); + +	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); +	if (ret) +		goto out; + +	iov_iter_truncate(from, count); +	/* We can write back this queue in page reclaim */ +	current->backing_dev_info = mapping->backing_dev_info; + +write_retry: +	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0); +	ret = generic_perform_write(file, from, pos); +	if (likely(ret >= 0)) +		iocb->ki_pos = pos + ret; +	/* +	 * If we just got an ENOSPC, try to write back all dirty inodes to +	 * convert delalloc space to free up some of the excess reserved +	 * metadata space. +	 */ +	if (ret == -ENOSPC && !enospc) { +		enospc = 1; +		xfs_flush_inodes(ip->i_mount); +		goto write_retry; +	} + +	current->backing_dev_info = NULL; +out: +	xfs_rw_iunlock(ip, iolock); +	return ret; +} + +STATIC ssize_t +xfs_file_write_iter( +	struct kiocb		*iocb, +	struct iov_iter		*from) +{ +	struct file		*file = iocb->ki_filp; +	struct address_space	*mapping = file->f_mapping; +	struct inode		*inode = mapping->host; +	struct xfs_inode	*ip = XFS_I(inode); +	ssize_t			ret; +	size_t			ocount = iov_iter_count(from); + +	XFS_STATS_INC(xs_write_calls); + +	if (ocount == 0) +		return 0; + +	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) +		return -EIO; + +	if (unlikely(file->f_flags & O_DIRECT)) +		ret = xfs_file_dio_aio_write(iocb, from); +	else +		ret = xfs_file_buffered_aio_write(iocb, from); + +	if (ret > 0) { +		ssize_t err; + +		XFS_STATS_ADD(xs_write_bytes, ret); + +		/* Handle various SYNC-type writes */ +		err = generic_write_sync(file, iocb->ki_pos - ret, ret); +		if (err < 0) +			ret = err; +	} +	return ret; +} + +STATIC long +xfs_file_fallocate( +	struct file		*file, +	int			mode, +	loff_t			offset, +	loff_t			len) +{ +	struct inode		*inode = file_inode(file); +	struct xfs_inode	*ip = XFS_I(inode); +	struct xfs_trans	*tp; +	long			error; +	loff_t			new_size = 0; + +	if (!S_ISREG(inode->i_mode)) +		return -EINVAL; +	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | +		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE)) +		return -EOPNOTSUPP; + +	xfs_ilock(ip, XFS_IOLOCK_EXCL); +	if (mode & FALLOC_FL_PUNCH_HOLE) { +		error = xfs_free_file_space(ip, offset, len); +		if (error) +			goto out_unlock; +	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) { +		unsigned blksize_mask = (1 << inode->i_blkbits) - 1; + +		if (offset & blksize_mask || len & blksize_mask) { +			error = EINVAL; +			goto out_unlock; +		} + +		/* +		 * There is no need to overlap collapse range with EOF, +		 * in which case it is effectively a truncate operation +		 */ +		if (offset + len >= i_size_read(inode)) { +			error = EINVAL; +			goto out_unlock; +		} + +		new_size = i_size_read(inode) - len; + +		error = xfs_collapse_file_space(ip, offset, len); +		if (error) +			goto out_unlock; +	} else { +		if (!(mode & FALLOC_FL_KEEP_SIZE) && +		    offset + len > i_size_read(inode)) { +			new_size = offset + len; +			error = -inode_newsize_ok(inode, new_size); +			if (error) +				goto out_unlock; +		} + +		if (mode & FALLOC_FL_ZERO_RANGE) +			error = xfs_zero_file_space(ip, offset, len); +		else +			error = xfs_alloc_file_space(ip, offset, len, +						     XFS_BMAPI_PREALLOC); +		if (error) +			goto out_unlock; +	} + +	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID); +	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0); +	if (error) { +		xfs_trans_cancel(tp, 0); +		goto out_unlock; +	} + +	xfs_ilock(ip, XFS_ILOCK_EXCL); +	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); +	ip->i_d.di_mode &= ~S_ISUID; +	if (ip->i_d.di_mode & S_IXGRP) +		ip->i_d.di_mode &= ~S_ISGID; + +	if (!(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE))) +		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; + +	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); +	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); + +	if (file->f_flags & O_DSYNC) +		xfs_trans_set_sync(tp); +	error = xfs_trans_commit(tp, 0); +	if (error) +		goto out_unlock; + +	/* Change file size if needed */ +	if (new_size) { +		struct iattr iattr; + +		iattr.ia_valid = ATTR_SIZE; +		iattr.ia_size = new_size; +		error = xfs_setattr_size(ip, &iattr); +	} + +out_unlock: +	xfs_iunlock(ip, XFS_IOLOCK_EXCL); +	return -error; +} + + +STATIC int +xfs_file_open( +	struct inode	*inode, +	struct file	*file) +{ +	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) +		return -EFBIG; +	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) +		return -EIO; +	return 0; +} + +STATIC int +xfs_dir_open( +	struct inode	*inode, +	struct file	*file) +{ +	struct xfs_inode *ip = XFS_I(inode); +	int		mode; +	int		error; + +	error = xfs_file_open(inode, file); +	if (error) +		return error; + +	/* +	 * If there are any blocks, read-ahead block 0 as we're almost +	 * certain to have the next operation be a read there. +	 */ +	mode = xfs_ilock_data_map_shared(ip); +	if (ip->i_d.di_nextents > 0) +		xfs_dir3_data_readahead(ip, 0, -1); +	xfs_iunlock(ip, mode); +	return 0; +} + +STATIC int +xfs_file_release( +	struct inode	*inode, +	struct file	*filp) +{ +	return -xfs_release(XFS_I(inode)); +} + +STATIC int +xfs_file_readdir( +	struct file	*file, +	struct dir_context *ctx) +{ +	struct inode	*inode = file_inode(file); +	xfs_inode_t	*ip = XFS_I(inode); +	int		error; +	size_t		bufsize; + +	/* +	 * The Linux API doesn't pass down the total size of the buffer +	 * we read into down to the filesystem.  With the filldir concept +	 * it's not needed for correct information, but the XFS dir2 leaf +	 * code wants an estimate of the buffer size to calculate it's +	 * readahead window and size the buffers used for mapping to +	 * physical blocks. +	 * +	 * Try to give it an estimate that's good enough, maybe at some +	 * point we can change the ->readdir prototype to include the +	 * buffer size.  For now we use the current glibc buffer size. +	 */ +	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); + +	error = xfs_readdir(ip, ctx, bufsize); +	if (error) +		return -error; +	return 0; +} + +STATIC int +xfs_file_mmap( +	struct file	*filp, +	struct vm_area_struct *vma) +{ +	vma->vm_ops = &xfs_file_vm_ops; + +	file_accessed(filp); +	return 0; +} + +/* + * mmap()d file has taken write protection fault and is being made + * writable. We can set the page state up correctly for a writable + * page, which means we can do correct delalloc accounting (ENOSPC + * checking!) and unwritten extent mapping. + */ +STATIC int +xfs_vm_page_mkwrite( +	struct vm_area_struct	*vma, +	struct vm_fault		*vmf) +{ +	return block_page_mkwrite(vma, vmf, xfs_get_blocks); +} + +/* + * This type is designed to indicate the type of offset we would like + * to search from page cache for either xfs_seek_data() or xfs_seek_hole(). + */ +enum { +	HOLE_OFF = 0, +	DATA_OFF, +}; + +/* + * Lookup the desired type of offset from the given page. + * + * On success, return true and the offset argument will point to the + * start of the region that was found.  Otherwise this function will + * return false and keep the offset argument unchanged. + */ +STATIC bool +xfs_lookup_buffer_offset( +	struct page		*page, +	loff_t			*offset, +	unsigned int		type) +{ +	loff_t			lastoff = page_offset(page); +	bool			found = false; +	struct buffer_head	*bh, *head; + +	bh = head = page_buffers(page); +	do { +		/* +		 * Unwritten extents that have data in the page +		 * cache covering them can be identified by the +		 * BH_Unwritten state flag.  Pages with multiple +		 * buffers might have a mix of holes, data and +		 * unwritten extents - any buffer with valid +		 * data in it should have BH_Uptodate flag set +		 * on it. +		 */ +		if (buffer_unwritten(bh) || +		    buffer_uptodate(bh)) { +			if (type == DATA_OFF) +				found = true; +		} else { +			if (type == HOLE_OFF) +				found = true; +		} + +		if (found) { +			*offset = lastoff; +			break; +		} +		lastoff += bh->b_size; +	} while ((bh = bh->b_this_page) != head); + +	return found; +} + +/* + * This routine is called to find out and return a data or hole offset + * from the page cache for unwritten extents according to the desired + * type for xfs_seek_data() or xfs_seek_hole(). + * + * The argument offset is used to tell where we start to search from the + * page cache.  Map is used to figure out the end points of the range to + * lookup pages. + * + * Return true if the desired type of offset was found, and the argument + * offset is filled with that address.  Otherwise, return false and keep + * offset unchanged. + */ +STATIC bool +xfs_find_get_desired_pgoff( +	struct inode		*inode, +	struct xfs_bmbt_irec	*map, +	unsigned int		type, +	loff_t			*offset) +{ +	struct xfs_inode	*ip = XFS_I(inode); +	struct xfs_mount	*mp = ip->i_mount; +	struct pagevec		pvec; +	pgoff_t			index; +	pgoff_t			end; +	loff_t			endoff; +	loff_t			startoff = *offset; +	loff_t			lastoff = startoff; +	bool			found = false; + +	pagevec_init(&pvec, 0); + +	index = startoff >> PAGE_CACHE_SHIFT; +	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); +	end = endoff >> PAGE_CACHE_SHIFT; +	do { +		int		want; +		unsigned	nr_pages; +		unsigned int	i; + +		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); +		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, +					  want); +		/* +		 * No page mapped into given range.  If we are searching holes +		 * and if this is the first time we got into the loop, it means +		 * that the given offset is landed in a hole, return it. +		 * +		 * If we have already stepped through some block buffers to find +		 * holes but they all contains data.  In this case, the last +		 * offset is already updated and pointed to the end of the last +		 * mapped page, if it does not reach the endpoint to search, +		 * that means there should be a hole between them. +		 */ +		if (nr_pages == 0) { +			/* Data search found nothing */ +			if (type == DATA_OFF) +				break; + +			ASSERT(type == HOLE_OFF); +			if (lastoff == startoff || lastoff < endoff) { +				found = true; +				*offset = lastoff; +			} +			break; +		} + +		/* +		 * At lease we found one page.  If this is the first time we +		 * step into the loop, and if the first page index offset is +		 * greater than the given search offset, a hole was found. +		 */ +		if (type == HOLE_OFF && lastoff == startoff && +		    lastoff < page_offset(pvec.pages[0])) { +			found = true; +			break; +		} + +		for (i = 0; i < nr_pages; i++) { +			struct page	*page = pvec.pages[i]; +			loff_t		b_offset; + +			/* +			 * At this point, the page may be truncated or +			 * invalidated (changing page->mapping to NULL), +			 * or even swizzled back from swapper_space to tmpfs +			 * file mapping. However, page->index will not change +			 * because we have a reference on the page. +			 * +			 * Searching done if the page index is out of range. +			 * If the current offset is not reaches the end of +			 * the specified search range, there should be a hole +			 * between them. +			 */ +			if (page->index > end) { +				if (type == HOLE_OFF && lastoff < endoff) { +					*offset = lastoff; +					found = true; +				} +				goto out; +			} + +			lock_page(page); +			/* +			 * Page truncated or invalidated(page->mapping == NULL). +			 * We can freely skip it and proceed to check the next +			 * page. +			 */ +			if (unlikely(page->mapping != inode->i_mapping)) { +				unlock_page(page); +				continue; +			} + +			if (!page_has_buffers(page)) { +				unlock_page(page); +				continue; +			} + +			found = xfs_lookup_buffer_offset(page, &b_offset, type); +			if (found) { +				/* +				 * The found offset may be less than the start +				 * point to search if this is the first time to +				 * come here. +				 */ +				*offset = max_t(loff_t, startoff, b_offset); +				unlock_page(page); +				goto out; +			} + +			/* +			 * We either searching data but nothing was found, or +			 * searching hole but found a data buffer.  In either +			 * case, probably the next page contains the desired +			 * things, update the last offset to it so. +			 */ +			lastoff = page_offset(page) + PAGE_SIZE; +			unlock_page(page); +		} + +		/* +		 * The number of returned pages less than our desired, search +		 * done.  In this case, nothing was found for searching data, +		 * but we found a hole behind the last offset. +		 */ +		if (nr_pages < want) { +			if (type == HOLE_OFF) { +				*offset = lastoff; +				found = true; +			} +			break; +		} + +		index = pvec.pages[i - 1]->index + 1; +		pagevec_release(&pvec); +	} while (index <= end); + +out: +	pagevec_release(&pvec); +	return found; +} + +STATIC loff_t +xfs_seek_data( +	struct file		*file, +	loff_t			start) +{ +	struct inode		*inode = file->f_mapping->host; +	struct xfs_inode	*ip = XFS_I(inode); +	struct xfs_mount	*mp = ip->i_mount; +	loff_t			uninitialized_var(offset); +	xfs_fsize_t		isize; +	xfs_fileoff_t		fsbno; +	xfs_filblks_t		end; +	uint			lock; +	int			error; + +	lock = xfs_ilock_data_map_shared(ip); + +	isize = i_size_read(inode); +	if (start >= isize) { +		error = ENXIO; +		goto out_unlock; +	} + +	/* +	 * Try to read extents from the first block indicated +	 * by fsbno to the end block of the file. +	 */ +	fsbno = XFS_B_TO_FSBT(mp, start); +	end = XFS_B_TO_FSB(mp, isize); +	for (;;) { +		struct xfs_bmbt_irec	map[2]; +		int			nmap = 2; +		unsigned int		i; + +		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, +				       XFS_BMAPI_ENTIRE); +		if (error) +			goto out_unlock; + +		/* No extents at given offset, must be beyond EOF */ +		if (nmap == 0) { +			error = ENXIO; +			goto out_unlock; +		} + +		for (i = 0; i < nmap; i++) { +			offset = max_t(loff_t, start, +				       XFS_FSB_TO_B(mp, map[i].br_startoff)); + +			/* Landed in a data extent */ +			if (map[i].br_startblock == DELAYSTARTBLOCK || +			    (map[i].br_state == XFS_EXT_NORM && +			     !isnullstartblock(map[i].br_startblock))) +				goto out; + +			/* +			 * Landed in an unwritten extent, try to search data +			 * from page cache. +			 */ +			if (map[i].br_state == XFS_EXT_UNWRITTEN) { +				if (xfs_find_get_desired_pgoff(inode, &map[i], +							DATA_OFF, &offset)) +					goto out; +			} +		} + +		/* +		 * map[0] is hole or its an unwritten extent but +		 * without data in page cache.  Probably means that +		 * we are reading after EOF if nothing in map[1]. +		 */ +		if (nmap == 1) { +			error = ENXIO; +			goto out_unlock; +		} + +		ASSERT(i > 1); + +		/* +		 * Nothing was found, proceed to the next round of search +		 * if reading offset not beyond or hit EOF. +		 */ +		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; +		start = XFS_FSB_TO_B(mp, fsbno); +		if (start >= isize) { +			error = ENXIO; +			goto out_unlock; +		} +	} + +out: +	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); + +out_unlock: +	xfs_iunlock(ip, lock); + +	if (error) +		return -error; +	return offset; +} + +STATIC loff_t +xfs_seek_hole( +	struct file		*file, +	loff_t			start) +{ +	struct inode		*inode = file->f_mapping->host; +	struct xfs_inode	*ip = XFS_I(inode); +	struct xfs_mount	*mp = ip->i_mount; +	loff_t			uninitialized_var(offset); +	xfs_fsize_t		isize; +	xfs_fileoff_t		fsbno; +	xfs_filblks_t		end; +	uint			lock; +	int			error; + +	if (XFS_FORCED_SHUTDOWN(mp)) +		return -XFS_ERROR(EIO); + +	lock = xfs_ilock_data_map_shared(ip); + +	isize = i_size_read(inode); +	if (start >= isize) { +		error = ENXIO; +		goto out_unlock; +	} + +	fsbno = XFS_B_TO_FSBT(mp, start); +	end = XFS_B_TO_FSB(mp, isize); + +	for (;;) { +		struct xfs_bmbt_irec	map[2]; +		int			nmap = 2; +		unsigned int		i; + +		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, +				       XFS_BMAPI_ENTIRE); +		if (error) +			goto out_unlock; + +		/* No extents at given offset, must be beyond EOF */ +		if (nmap == 0) { +			error = ENXIO; +			goto out_unlock; +		} + +		for (i = 0; i < nmap; i++) { +			offset = max_t(loff_t, start, +				       XFS_FSB_TO_B(mp, map[i].br_startoff)); + +			/* Landed in a hole */ +			if (map[i].br_startblock == HOLESTARTBLOCK) +				goto out; + +			/* +			 * Landed in an unwritten extent, try to search hole +			 * from page cache. +			 */ +			if (map[i].br_state == XFS_EXT_UNWRITTEN) { +				if (xfs_find_get_desired_pgoff(inode, &map[i], +							HOLE_OFF, &offset)) +					goto out; +			} +		} + +		/* +		 * map[0] contains data or its unwritten but contains +		 * data in page cache, probably means that we are +		 * reading after EOF.  We should fix offset to point +		 * to the end of the file(i.e., there is an implicit +		 * hole at the end of any file). +		 */ +		if (nmap == 1) { +			offset = isize; +			break; +		} + +		ASSERT(i > 1); + +		/* +		 * Both mappings contains data, proceed to the next round of +		 * search if the current reading offset not beyond or hit EOF. +		 */ +		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; +		start = XFS_FSB_TO_B(mp, fsbno); +		if (start >= isize) { +			offset = isize; +			break; +		} +	} + +out: +	/* +	 * At this point, we must have found a hole.  However, the returned +	 * offset may be bigger than the file size as it may be aligned to +	 * page boundary for unwritten extents, we need to deal with this +	 * situation in particular. +	 */ +	offset = min_t(loff_t, offset, isize); +	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); + +out_unlock: +	xfs_iunlock(ip, lock); + +	if (error) +		return -error; +	return offset; +} + +STATIC loff_t +xfs_file_llseek( +	struct file	*file, +	loff_t		offset, +	int		origin) +{ +	switch (origin) { +	case SEEK_END: +	case SEEK_CUR: +	case SEEK_SET: +		return generic_file_llseek(file, offset, origin); +	case SEEK_DATA: +		return xfs_seek_data(file, offset); +	case SEEK_HOLE: +		return xfs_seek_hole(file, offset); +	default: +		return -EINVAL; +	} +} + +const struct file_operations xfs_file_operations = { +	.llseek		= xfs_file_llseek, +	.read		= new_sync_read, +	.write		= new_sync_write, +	.read_iter	= xfs_file_read_iter, +	.write_iter	= xfs_file_write_iter, +	.splice_read	= xfs_file_splice_read, +	.splice_write	= iter_file_splice_write, +	.unlocked_ioctl	= xfs_file_ioctl, +#ifdef CONFIG_COMPAT +	.compat_ioctl	= xfs_file_compat_ioctl, +#endif +	.mmap		= xfs_file_mmap, +	.open		= xfs_file_open, +	.release	= xfs_file_release, +	.fsync		= xfs_file_fsync, +	.fallocate	= xfs_file_fallocate, +}; + +const struct file_operations xfs_dir_file_operations = { +	.open		= xfs_dir_open, +	.read		= generic_read_dir, +	.iterate	= xfs_file_readdir, +	.llseek		= generic_file_llseek, +	.unlocked_ioctl	= xfs_file_ioctl, +#ifdef CONFIG_COMPAT +	.compat_ioctl	= xfs_file_compat_ioctl, +#endif +	.fsync		= xfs_dir_fsync, +}; + +static const struct vm_operations_struct xfs_file_vm_ops = { +	.fault		= filemap_fault, +	.map_pages	= filemap_map_pages, +	.page_mkwrite	= xfs_vm_page_mkwrite, +	.remap_pages	= generic_file_remap_pages, +};  | 
