diff options
Diffstat (limited to 'fs/xfs/linux-2.6/xfs_sync.c')
| -rw-r--r-- | fs/xfs/linux-2.6/xfs_sync.c | 996 | 
1 files changed, 0 insertions, 996 deletions
diff --git a/fs/xfs/linux-2.6/xfs_sync.c b/fs/xfs/linux-2.6/xfs_sync.c deleted file mode 100644 index afb0d7cfad1..00000000000 --- a/fs/xfs/linux-2.6/xfs_sync.c +++ /dev/null @@ -1,996 +0,0 @@ -/* - * Copyright (c) 2000-2005 Silicon Graphics, Inc. - * All Rights Reserved. - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License as - * published by the Free Software Foundation. - * - * This program is distributed in the hope that it would be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write the Free Software Foundation, - * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA - */ -#include "xfs.h" -#include "xfs_fs.h" -#include "xfs_types.h" -#include "xfs_bit.h" -#include "xfs_log.h" -#include "xfs_inum.h" -#include "xfs_trans.h" -#include "xfs_sb.h" -#include "xfs_ag.h" -#include "xfs_mount.h" -#include "xfs_bmap_btree.h" -#include "xfs_inode.h" -#include "xfs_dinode.h" -#include "xfs_error.h" -#include "xfs_filestream.h" -#include "xfs_vnodeops.h" -#include "xfs_inode_item.h" -#include "xfs_quota.h" -#include "xfs_trace.h" -#include "xfs_fsops.h" - -#include <linux/kthread.h> -#include <linux/freezer.h> - -/* - * The inode lookup is done in batches to keep the amount of lock traffic and - * radix tree lookups to a minimum. The batch size is a trade off between - * lookup reduction and stack usage. This is in the reclaim path, so we can't - * be too greedy. - */ -#define XFS_LOOKUP_BATCH	32 - -STATIC int -xfs_inode_ag_walk_grab( -	struct xfs_inode	*ip) -{ -	struct inode		*inode = VFS_I(ip); - -	/* nothing to sync during shutdown */ -	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) -		return EFSCORRUPTED; - -	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */ -	if (xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM)) -		return ENOENT; - -	/* If we can't grab the inode, it must on it's way to reclaim. */ -	if (!igrab(inode)) -		return ENOENT; - -	if (is_bad_inode(inode)) { -		IRELE(ip); -		return ENOENT; -	} - -	/* inode is valid */ -	return 0; -} - -STATIC int -xfs_inode_ag_walk( -	struct xfs_mount	*mp, -	struct xfs_perag	*pag, -	int			(*execute)(struct xfs_inode *ip, -					   struct xfs_perag *pag, int flags), -	int			flags) -{ -	uint32_t		first_index; -	int			last_error = 0; -	int			skipped; -	int			done; -	int			nr_found; - -restart: -	done = 0; -	skipped = 0; -	first_index = 0; -	nr_found = 0; -	do { -		struct xfs_inode *batch[XFS_LOOKUP_BATCH]; -		int		error = 0; -		int		i; - -		read_lock(&pag->pag_ici_lock); -		nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, -					(void **)batch, first_index, -					XFS_LOOKUP_BATCH); -		if (!nr_found) { -			read_unlock(&pag->pag_ici_lock); -			break; -		} - -		/* -		 * Grab the inodes before we drop the lock. if we found -		 * nothing, nr == 0 and the loop will be skipped. -		 */ -		for (i = 0; i < nr_found; i++) { -			struct xfs_inode *ip = batch[i]; - -			if (done || xfs_inode_ag_walk_grab(ip)) -				batch[i] = NULL; - -			/* -			 * Update the index for the next lookup. Catch overflows -			 * into the next AG range which can occur if we have inodes -			 * in the last block of the AG and we are currently -			 * pointing to the last inode. -			 */ -			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); -			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) -				done = 1; -		} - -		/* unlock now we've grabbed the inodes. */ -		read_unlock(&pag->pag_ici_lock); - -		for (i = 0; i < nr_found; i++) { -			if (!batch[i]) -				continue; -			error = execute(batch[i], pag, flags); -			IRELE(batch[i]); -			if (error == EAGAIN) { -				skipped++; -				continue; -			} -			if (error && last_error != EFSCORRUPTED) -				last_error = error; -		} - -		/* bail out if the filesystem is corrupted.  */ -		if (error == EFSCORRUPTED) -			break; - -	} while (nr_found && !done); - -	if (skipped) { -		delay(1); -		goto restart; -	} -	return last_error; -} - -int -xfs_inode_ag_iterator( -	struct xfs_mount	*mp, -	int			(*execute)(struct xfs_inode *ip, -					   struct xfs_perag *pag, int flags), -	int			flags) -{ -	struct xfs_perag	*pag; -	int			error = 0; -	int			last_error = 0; -	xfs_agnumber_t		ag; - -	ag = 0; -	while ((pag = xfs_perag_get(mp, ag))) { -		ag = pag->pag_agno + 1; -		error = xfs_inode_ag_walk(mp, pag, execute, flags); -		xfs_perag_put(pag); -		if (error) { -			last_error = error; -			if (error == EFSCORRUPTED) -				break; -		} -	} -	return XFS_ERROR(last_error); -} - -STATIC int -xfs_sync_inode_data( -	struct xfs_inode	*ip, -	struct xfs_perag	*pag, -	int			flags) -{ -	struct inode		*inode = VFS_I(ip); -	struct address_space *mapping = inode->i_mapping; -	int			error = 0; - -	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) -		goto out_wait; - -	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) { -		if (flags & SYNC_TRYLOCK) -			goto out_wait; -		xfs_ilock(ip, XFS_IOLOCK_SHARED); -	} - -	error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ? -				0 : XBF_ASYNC, FI_NONE); -	xfs_iunlock(ip, XFS_IOLOCK_SHARED); - - out_wait: -	if (flags & SYNC_WAIT) -		xfs_ioend_wait(ip); -	return error; -} - -STATIC int -xfs_sync_inode_attr( -	struct xfs_inode	*ip, -	struct xfs_perag	*pag, -	int			flags) -{ -	int			error = 0; - -	xfs_ilock(ip, XFS_ILOCK_SHARED); -	if (xfs_inode_clean(ip)) -		goto out_unlock; -	if (!xfs_iflock_nowait(ip)) { -		if (!(flags & SYNC_WAIT)) -			goto out_unlock; -		xfs_iflock(ip); -	} - -	if (xfs_inode_clean(ip)) { -		xfs_ifunlock(ip); -		goto out_unlock; -	} - -	error = xfs_iflush(ip, flags); - - out_unlock: -	xfs_iunlock(ip, XFS_ILOCK_SHARED); -	return error; -} - -/* - * Write out pagecache data for the whole filesystem. - */ -STATIC int -xfs_sync_data( -	struct xfs_mount	*mp, -	int			flags) -{ -	int			error; - -	ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0); - -	error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags); -	if (error) -		return XFS_ERROR(error); - -	xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0); -	return 0; -} - -/* - * Write out inode metadata (attributes) for the whole filesystem. - */ -STATIC int -xfs_sync_attr( -	struct xfs_mount	*mp, -	int			flags) -{ -	ASSERT((flags & ~SYNC_WAIT) == 0); - -	return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags); -} - -STATIC int -xfs_sync_fsdata( -	struct xfs_mount	*mp) -{ -	struct xfs_buf		*bp; - -	/* -	 * If the buffer is pinned then push on the log so we won't get stuck -	 * waiting in the write for someone, maybe ourselves, to flush the log. -	 * -	 * Even though we just pushed the log above, we did not have the -	 * superblock buffer locked at that point so it can become pinned in -	 * between there and here. -	 */ -	bp = xfs_getsb(mp, 0); -	if (XFS_BUF_ISPINNED(bp)) -		xfs_log_force(mp, 0); - -	return xfs_bwrite(mp, bp); -} - -/* - * When remounting a filesystem read-only or freezing the filesystem, we have - * two phases to execute. This first phase is syncing the data before we - * quiesce the filesystem, and the second is flushing all the inodes out after - * we've waited for all the transactions created by the first phase to - * complete. The second phase ensures that the inodes are written to their - * location on disk rather than just existing in transactions in the log. This - * means after a quiesce there is no log replay required to write the inodes to - * disk (this is the main difference between a sync and a quiesce). - */ -/* - * First stage of freeze - no writers will make progress now we are here, - * so we flush delwri and delalloc buffers here, then wait for all I/O to - * complete.  Data is frozen at that point. Metadata is not frozen, - * transactions can still occur here so don't bother flushing the buftarg - * because it'll just get dirty again. - */ -int -xfs_quiesce_data( -	struct xfs_mount	*mp) -{ -	int			error, error2 = 0; - -	/* push non-blocking */ -	xfs_sync_data(mp, 0); -	xfs_qm_sync(mp, SYNC_TRYLOCK); - -	/* push and block till complete */ -	xfs_sync_data(mp, SYNC_WAIT); -	xfs_qm_sync(mp, SYNC_WAIT); - -	/* write superblock and hoover up shutdown errors */ -	error = xfs_sync_fsdata(mp); - -	/* make sure all delwri buffers are written out */ -	xfs_flush_buftarg(mp->m_ddev_targp, 1); - -	/* mark the log as covered if needed */ -	if (xfs_log_need_covered(mp)) -		error2 = xfs_fs_log_dummy(mp, SYNC_WAIT); - -	/* flush data-only devices */ -	if (mp->m_rtdev_targp) -		XFS_bflush(mp->m_rtdev_targp); - -	return error ? error : error2; -} - -STATIC void -xfs_quiesce_fs( -	struct xfs_mount	*mp) -{ -	int	count = 0, pincount; - -	xfs_reclaim_inodes(mp, 0); -	xfs_flush_buftarg(mp->m_ddev_targp, 0); - -	/* -	 * This loop must run at least twice.  The first instance of the loop -	 * will flush most meta data but that will generate more meta data -	 * (typically directory updates).  Which then must be flushed and -	 * logged before we can write the unmount record. We also so sync -	 * reclaim of inodes to catch any that the above delwri flush skipped. -	 */ -	do { -		xfs_reclaim_inodes(mp, SYNC_WAIT); -		xfs_sync_attr(mp, SYNC_WAIT); -		pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1); -		if (!pincount) { -			delay(50); -			count++; -		} -	} while (count < 2); -} - -/* - * Second stage of a quiesce. The data is already synced, now we have to take - * care of the metadata. New transactions are already blocked, so we need to - * wait for any remaining transactions to drain out before proceding. - */ -void -xfs_quiesce_attr( -	struct xfs_mount	*mp) -{ -	int	error = 0; - -	/* wait for all modifications to complete */ -	while (atomic_read(&mp->m_active_trans) > 0) -		delay(100); - -	/* flush inodes and push all remaining buffers out to disk */ -	xfs_quiesce_fs(mp); - -	/* -	 * Just warn here till VFS can correctly support -	 * read-only remount without racing. -	 */ -	WARN_ON(atomic_read(&mp->m_active_trans) != 0); - -	/* Push the superblock and write an unmount record */ -	error = xfs_log_sbcount(mp, 1); -	if (error) -		xfs_fs_cmn_err(CE_WARN, mp, -				"xfs_attr_quiesce: failed to log sb changes. " -				"Frozen image may not be consistent."); -	xfs_log_unmount_write(mp); -	xfs_unmountfs_writesb(mp); -} - -/* - * Enqueue a work item to be picked up by the vfs xfssyncd thread. - * Doing this has two advantages: - * - It saves on stack space, which is tight in certain situations - * - It can be used (with care) as a mechanism to avoid deadlocks. - * Flushing while allocating in a full filesystem requires both. - */ -STATIC void -xfs_syncd_queue_work( -	struct xfs_mount *mp, -	void		*data, -	void		(*syncer)(struct xfs_mount *, void *), -	struct completion *completion) -{ -	struct xfs_sync_work *work; - -	work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP); -	INIT_LIST_HEAD(&work->w_list); -	work->w_syncer = syncer; -	work->w_data = data; -	work->w_mount = mp; -	work->w_completion = completion; -	spin_lock(&mp->m_sync_lock); -	list_add_tail(&work->w_list, &mp->m_sync_list); -	spin_unlock(&mp->m_sync_lock); -	wake_up_process(mp->m_sync_task); -} - -/* - * Flush delayed allocate data, attempting to free up reserved space - * from existing allocations.  At this point a new allocation attempt - * has failed with ENOSPC and we are in the process of scratching our - * heads, looking about for more room... - */ -STATIC void -xfs_flush_inodes_work( -	struct xfs_mount *mp, -	void		*arg) -{ -	struct inode	*inode = arg; -	xfs_sync_data(mp, SYNC_TRYLOCK); -	xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT); -	iput(inode); -} - -void -xfs_flush_inodes( -	xfs_inode_t	*ip) -{ -	struct inode	*inode = VFS_I(ip); -	DECLARE_COMPLETION_ONSTACK(completion); - -	igrab(inode); -	xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion); -	wait_for_completion(&completion); -	xfs_log_force(ip->i_mount, XFS_LOG_SYNC); -} - -/* - * Every sync period we need to unpin all items, reclaim inodes and sync - * disk quotas.  We might need to cover the log to indicate that the - * filesystem is idle and not frozen. - */ -STATIC void -xfs_sync_worker( -	struct xfs_mount *mp, -	void		*unused) -{ -	int		error; - -	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { -		xfs_log_force(mp, 0); -		xfs_reclaim_inodes(mp, 0); -		/* dgc: errors ignored here */ -		error = xfs_qm_sync(mp, SYNC_TRYLOCK); -		if (mp->m_super->s_frozen == SB_UNFROZEN && -		    xfs_log_need_covered(mp)) -			error = xfs_fs_log_dummy(mp, 0); -	} -	mp->m_sync_seq++; -	wake_up(&mp->m_wait_single_sync_task); -} - -STATIC int -xfssyncd( -	void			*arg) -{ -	struct xfs_mount	*mp = arg; -	long			timeleft; -	xfs_sync_work_t		*work, *n; -	LIST_HEAD		(tmp); - -	set_freezable(); -	timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10); -	for (;;) { -		if (list_empty(&mp->m_sync_list)) -			timeleft = schedule_timeout_interruptible(timeleft); -		/* swsusp */ -		try_to_freeze(); -		if (kthread_should_stop() && list_empty(&mp->m_sync_list)) -			break; - -		spin_lock(&mp->m_sync_lock); -		/* -		 * We can get woken by laptop mode, to do a sync - -		 * that's the (only!) case where the list would be -		 * empty with time remaining. -		 */ -		if (!timeleft || list_empty(&mp->m_sync_list)) { -			if (!timeleft) -				timeleft = xfs_syncd_centisecs * -							msecs_to_jiffies(10); -			INIT_LIST_HEAD(&mp->m_sync_work.w_list); -			list_add_tail(&mp->m_sync_work.w_list, -					&mp->m_sync_list); -		} -		list_splice_init(&mp->m_sync_list, &tmp); -		spin_unlock(&mp->m_sync_lock); - -		list_for_each_entry_safe(work, n, &tmp, w_list) { -			(*work->w_syncer)(mp, work->w_data); -			list_del(&work->w_list); -			if (work == &mp->m_sync_work) -				continue; -			if (work->w_completion) -				complete(work->w_completion); -			kmem_free(work); -		} -	} - -	return 0; -} - -int -xfs_syncd_init( -	struct xfs_mount	*mp) -{ -	mp->m_sync_work.w_syncer = xfs_sync_worker; -	mp->m_sync_work.w_mount = mp; -	mp->m_sync_work.w_completion = NULL; -	mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd/%s", mp->m_fsname); -	if (IS_ERR(mp->m_sync_task)) -		return -PTR_ERR(mp->m_sync_task); -	return 0; -} - -void -xfs_syncd_stop( -	struct xfs_mount	*mp) -{ -	kthread_stop(mp->m_sync_task); -} - -void -__xfs_inode_set_reclaim_tag( -	struct xfs_perag	*pag, -	struct xfs_inode	*ip) -{ -	radix_tree_tag_set(&pag->pag_ici_root, -			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), -			   XFS_ICI_RECLAIM_TAG); - -	if (!pag->pag_ici_reclaimable) { -		/* propagate the reclaim tag up into the perag radix tree */ -		spin_lock(&ip->i_mount->m_perag_lock); -		radix_tree_tag_set(&ip->i_mount->m_perag_tree, -				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), -				XFS_ICI_RECLAIM_TAG); -		spin_unlock(&ip->i_mount->m_perag_lock); -		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno, -							-1, _RET_IP_); -	} -	pag->pag_ici_reclaimable++; -} - -/* - * We set the inode flag atomically with the radix tree tag. - * Once we get tag lookups on the radix tree, this inode flag - * can go away. - */ -void -xfs_inode_set_reclaim_tag( -	xfs_inode_t	*ip) -{ -	struct xfs_mount *mp = ip->i_mount; -	struct xfs_perag *pag; - -	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); -	write_lock(&pag->pag_ici_lock); -	spin_lock(&ip->i_flags_lock); -	__xfs_inode_set_reclaim_tag(pag, ip); -	__xfs_iflags_set(ip, XFS_IRECLAIMABLE); -	spin_unlock(&ip->i_flags_lock); -	write_unlock(&pag->pag_ici_lock); -	xfs_perag_put(pag); -} - -STATIC void -__xfs_inode_clear_reclaim( -	xfs_perag_t	*pag, -	xfs_inode_t	*ip) -{ -	pag->pag_ici_reclaimable--; -	if (!pag->pag_ici_reclaimable) { -		/* clear the reclaim tag from the perag radix tree */ -		spin_lock(&ip->i_mount->m_perag_lock); -		radix_tree_tag_clear(&ip->i_mount->m_perag_tree, -				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), -				XFS_ICI_RECLAIM_TAG); -		spin_unlock(&ip->i_mount->m_perag_lock); -		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno, -							-1, _RET_IP_); -	} -} - -void -__xfs_inode_clear_reclaim_tag( -	xfs_mount_t	*mp, -	xfs_perag_t	*pag, -	xfs_inode_t	*ip) -{ -	radix_tree_tag_clear(&pag->pag_ici_root, -			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); -	__xfs_inode_clear_reclaim(pag, ip); -} - -/* - * Grab the inode for reclaim exclusively. - * Return 0 if we grabbed it, non-zero otherwise. - */ -STATIC int -xfs_reclaim_inode_grab( -	struct xfs_inode	*ip, -	int			flags) -{ - -	/* -	 * do some unlocked checks first to avoid unnecceary lock traffic. -	 * The first is a flush lock check, the second is a already in reclaim -	 * check. Only do these checks if we are not going to block on locks. -	 */ -	if ((flags & SYNC_TRYLOCK) && -	    (!ip->i_flush.done || __xfs_iflags_test(ip, XFS_IRECLAIM))) { -		return 1; -	} - -	/* -	 * The radix tree lock here protects a thread in xfs_iget from racing -	 * with us starting reclaim on the inode.  Once we have the -	 * XFS_IRECLAIM flag set it will not touch us. -	 */ -	spin_lock(&ip->i_flags_lock); -	ASSERT_ALWAYS(__xfs_iflags_test(ip, XFS_IRECLAIMABLE)); -	if (__xfs_iflags_test(ip, XFS_IRECLAIM)) { -		/* ignore as it is already under reclaim */ -		spin_unlock(&ip->i_flags_lock); -		return 1; -	} -	__xfs_iflags_set(ip, XFS_IRECLAIM); -	spin_unlock(&ip->i_flags_lock); -	return 0; -} - -/* - * Inodes in different states need to be treated differently, and the return - * value of xfs_iflush is not sufficient to get this right. The following table - * lists the inode states and the reclaim actions necessary for non-blocking - * reclaim: - * - * - *	inode state	     iflush ret		required action - *      ---------------      ----------         --------------- - *	bad			-		reclaim - *	shutdown		EIO		unpin and reclaim - *	clean, unpinned		0		reclaim - *	stale, unpinned		0		reclaim - *	clean, pinned(*)	0		requeue - *	stale, pinned		EAGAIN		requeue - *	dirty, delwri ok	0		requeue - *	dirty, delwri blocked	EAGAIN		requeue - *	dirty, sync flush	0		reclaim - * - * (*) dgc: I don't think the clean, pinned state is possible but it gets - * handled anyway given the order of checks implemented. - * - * As can be seen from the table, the return value of xfs_iflush() is not - * sufficient to correctly decide the reclaim action here. The checks in - * xfs_iflush() might look like duplicates, but they are not. - * - * Also, because we get the flush lock first, we know that any inode that has - * been flushed delwri has had the flush completed by the time we check that - * the inode is clean. The clean inode check needs to be done before flushing - * the inode delwri otherwise we would loop forever requeuing clean inodes as - * we cannot tell apart a successful delwri flush and a clean inode from the - * return value of xfs_iflush(). - * - * Note that because the inode is flushed delayed write by background - * writeback, the flush lock may already be held here and waiting on it can - * result in very long latencies. Hence for sync reclaims, where we wait on the - * flush lock, the caller should push out delayed write inodes first before - * trying to reclaim them to minimise the amount of time spent waiting. For - * background relaim, we just requeue the inode for the next pass. - * - * Hence the order of actions after gaining the locks should be: - *	bad		=> reclaim - *	shutdown	=> unpin and reclaim - *	pinned, delwri	=> requeue - *	pinned, sync	=> unpin - *	stale		=> reclaim - *	clean		=> reclaim - *	dirty, delwri	=> flush and requeue - *	dirty, sync	=> flush, wait and reclaim - */ -STATIC int -xfs_reclaim_inode( -	struct xfs_inode	*ip, -	struct xfs_perag	*pag, -	int			sync_mode) -{ -	int	error = 0; - -	xfs_ilock(ip, XFS_ILOCK_EXCL); -	if (!xfs_iflock_nowait(ip)) { -		if (!(sync_mode & SYNC_WAIT)) -			goto out; -		xfs_iflock(ip); -	} - -	if (is_bad_inode(VFS_I(ip))) -		goto reclaim; -	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { -		xfs_iunpin_wait(ip); -		goto reclaim; -	} -	if (xfs_ipincount(ip)) { -		if (!(sync_mode & SYNC_WAIT)) { -			xfs_ifunlock(ip); -			goto out; -		} -		xfs_iunpin_wait(ip); -	} -	if (xfs_iflags_test(ip, XFS_ISTALE)) -		goto reclaim; -	if (xfs_inode_clean(ip)) -		goto reclaim; - -	/* Now we have an inode that needs flushing */ -	error = xfs_iflush(ip, sync_mode); -	if (sync_mode & SYNC_WAIT) { -		xfs_iflock(ip); -		goto reclaim; -	} - -	/* -	 * When we have to flush an inode but don't have SYNC_WAIT set, we -	 * flush the inode out using a delwri buffer and wait for the next -	 * call into reclaim to find it in a clean state instead of waiting for -	 * it now. We also don't return errors here - if the error is transient -	 * then the next reclaim pass will flush the inode, and if the error -	 * is permanent then the next sync reclaim will reclaim the inode and -	 * pass on the error. -	 */ -	if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) { -		xfs_fs_cmn_err(CE_WARN, ip->i_mount, -			"inode 0x%llx background reclaim flush failed with %d", -			(long long)ip->i_ino, error); -	} -out: -	xfs_iflags_clear(ip, XFS_IRECLAIM); -	xfs_iunlock(ip, XFS_ILOCK_EXCL); -	/* -	 * We could return EAGAIN here to make reclaim rescan the inode tree in -	 * a short while. However, this just burns CPU time scanning the tree -	 * waiting for IO to complete and xfssyncd never goes back to the idle -	 * state. Instead, return 0 to let the next scheduled background reclaim -	 * attempt to reclaim the inode again. -	 */ -	return 0; - -reclaim: -	xfs_ifunlock(ip); -	xfs_iunlock(ip, XFS_ILOCK_EXCL); - -	XFS_STATS_INC(xs_ig_reclaims); -	/* -	 * Remove the inode from the per-AG radix tree. -	 * -	 * Because radix_tree_delete won't complain even if the item was never -	 * added to the tree assert that it's been there before to catch -	 * problems with the inode life time early on. -	 */ -	write_lock(&pag->pag_ici_lock); -	if (!radix_tree_delete(&pag->pag_ici_root, -				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino))) -		ASSERT(0); -	__xfs_inode_clear_reclaim(pag, ip); -	write_unlock(&pag->pag_ici_lock); - -	/* -	 * Here we do an (almost) spurious inode lock in order to coordinate -	 * with inode cache radix tree lookups.  This is because the lookup -	 * can reference the inodes in the cache without taking references. -	 * -	 * We make that OK here by ensuring that we wait until the inode is -	 * unlocked after the lookup before we go ahead and free it.  We get -	 * both the ilock and the iolock because the code may need to drop the -	 * ilock one but will still hold the iolock. -	 */ -	xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); -	xfs_qm_dqdetach(ip); -	xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); - -	xfs_inode_free(ip); -	return error; - -} - -/* - * Walk the AGs and reclaim the inodes in them. Even if the filesystem is - * corrupted, we still want to try to reclaim all the inodes. If we don't, - * then a shut down during filesystem unmount reclaim walk leak all the - * unreclaimed inodes. - */ -int -xfs_reclaim_inodes_ag( -	struct xfs_mount	*mp, -	int			flags, -	int			*nr_to_scan) -{ -	struct xfs_perag	*pag; -	int			error = 0; -	int			last_error = 0; -	xfs_agnumber_t		ag; -	int			trylock = flags & SYNC_TRYLOCK; -	int			skipped; - -restart: -	ag = 0; -	skipped = 0; -	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { -		unsigned long	first_index = 0; -		int		done = 0; -		int		nr_found = 0; - -		ag = pag->pag_agno + 1; - -		if (trylock) { -			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { -				skipped++; -				xfs_perag_put(pag); -				continue; -			} -			first_index = pag->pag_ici_reclaim_cursor; -		} else -			mutex_lock(&pag->pag_ici_reclaim_lock); - -		do { -			struct xfs_inode *batch[XFS_LOOKUP_BATCH]; -			int	i; - -			write_lock(&pag->pag_ici_lock); -			nr_found = radix_tree_gang_lookup_tag( -					&pag->pag_ici_root, -					(void **)batch, first_index, -					XFS_LOOKUP_BATCH, -					XFS_ICI_RECLAIM_TAG); -			if (!nr_found) { -				write_unlock(&pag->pag_ici_lock); -				break; -			} - -			/* -			 * Grab the inodes before we drop the lock. if we found -			 * nothing, nr == 0 and the loop will be skipped. -			 */ -			for (i = 0; i < nr_found; i++) { -				struct xfs_inode *ip = batch[i]; - -				if (done || xfs_reclaim_inode_grab(ip, flags)) -					batch[i] = NULL; - -				/* -				 * Update the index for the next lookup. Catch -				 * overflows into the next AG range which can -				 * occur if we have inodes in the last block of -				 * the AG and we are currently pointing to the -				 * last inode. -				 */ -				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); -				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) -					done = 1; -			} - -			/* unlock now we've grabbed the inodes. */ -			write_unlock(&pag->pag_ici_lock); - -			for (i = 0; i < nr_found; i++) { -				if (!batch[i]) -					continue; -				error = xfs_reclaim_inode(batch[i], pag, flags); -				if (error && last_error != EFSCORRUPTED) -					last_error = error; -			} - -			*nr_to_scan -= XFS_LOOKUP_BATCH; - -		} while (nr_found && !done && *nr_to_scan > 0); - -		if (trylock && !done) -			pag->pag_ici_reclaim_cursor = first_index; -		else -			pag->pag_ici_reclaim_cursor = 0; -		mutex_unlock(&pag->pag_ici_reclaim_lock); -		xfs_perag_put(pag); -	} - -	/* -	 * if we skipped any AG, and we still have scan count remaining, do -	 * another pass this time using blocking reclaim semantics (i.e -	 * waiting on the reclaim locks and ignoring the reclaim cursors). This -	 * ensure that when we get more reclaimers than AGs we block rather -	 * than spin trying to execute reclaim. -	 */ -	if (trylock && skipped && *nr_to_scan > 0) { -		trylock = 0; -		goto restart; -	} -	return XFS_ERROR(last_error); -} - -int -xfs_reclaim_inodes( -	xfs_mount_t	*mp, -	int		mode) -{ -	int		nr_to_scan = INT_MAX; - -	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); -} - -/* - * Shrinker infrastructure. - */ -static int -xfs_reclaim_inode_shrink( -	struct shrinker	*shrink, -	int		nr_to_scan, -	gfp_t		gfp_mask) -{ -	struct xfs_mount *mp; -	struct xfs_perag *pag; -	xfs_agnumber_t	ag; -	int		reclaimable; - -	mp = container_of(shrink, struct xfs_mount, m_inode_shrink); -	if (nr_to_scan) { -		if (!(gfp_mask & __GFP_FS)) -			return -1; - -		xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK, &nr_to_scan); -		/* terminate if we don't exhaust the scan */ -		if (nr_to_scan > 0) -			return -1; -       } - -	reclaimable = 0; -	ag = 0; -	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { -		ag = pag->pag_agno + 1; -		reclaimable += pag->pag_ici_reclaimable; -		xfs_perag_put(pag); -	} -	return reclaimable; -} - -void -xfs_inode_shrinker_register( -	struct xfs_mount	*mp) -{ -	mp->m_inode_shrink.shrink = xfs_reclaim_inode_shrink; -	mp->m_inode_shrink.seeks = DEFAULT_SEEKS; -	register_shrinker(&mp->m_inode_shrink); -} - -void -xfs_inode_shrinker_unregister( -	struct xfs_mount	*mp) -{ -	unregister_shrinker(&mp->m_inode_shrink); -}  | 
