diff options
Diffstat (limited to 'fs/xfs/linux-2.6/xfs_sync.c')
| -rw-r--r-- | fs/xfs/linux-2.6/xfs_sync.c | 921 |
1 files changed, 0 insertions, 921 deletions
diff --git a/fs/xfs/linux-2.6/xfs_sync.c b/fs/xfs/linux-2.6/xfs_sync.c deleted file mode 100644 index d59c4a65d49..00000000000 --- a/fs/xfs/linux-2.6/xfs_sync.c +++ /dev/null @@ -1,921 +0,0 @@ -/* - * Copyright (c) 2000-2005 Silicon Graphics, Inc. - * All Rights Reserved. - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License as - * published by the Free Software Foundation. - * - * This program is distributed in the hope that it would be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write the Free Software Foundation, - * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA - */ -#include "xfs.h" -#include "xfs_fs.h" -#include "xfs_types.h" -#include "xfs_bit.h" -#include "xfs_log.h" -#include "xfs_inum.h" -#include "xfs_trans.h" -#include "xfs_sb.h" -#include "xfs_ag.h" -#include "xfs_mount.h" -#include "xfs_bmap_btree.h" -#include "xfs_inode.h" -#include "xfs_dinode.h" -#include "xfs_error.h" -#include "xfs_filestream.h" -#include "xfs_vnodeops.h" -#include "xfs_inode_item.h" -#include "xfs_quota.h" -#include "xfs_trace.h" -#include "xfs_fsops.h" - -#include <linux/kthread.h> -#include <linux/freezer.h> - - -STATIC xfs_inode_t * -xfs_inode_ag_lookup( - struct xfs_mount *mp, - struct xfs_perag *pag, - uint32_t *first_index, - int tag) -{ - int nr_found; - struct xfs_inode *ip; - - /* - * use a gang lookup to find the next inode in the tree - * as the tree is sparse and a gang lookup walks to find - * the number of objects requested. - */ - if (tag == XFS_ICI_NO_TAG) { - nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, - (void **)&ip, *first_index, 1); - } else { - nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, - (void **)&ip, *first_index, 1, tag); - } - if (!nr_found) - return NULL; - - /* - * Update the index for the next lookup. Catch overflows - * into the next AG range which can occur if we have inodes - * in the last block of the AG and we are currently - * pointing to the last inode. - */ - *first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); - if (*first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) - return NULL; - return ip; -} - -STATIC int -xfs_inode_ag_walk( - struct xfs_mount *mp, - struct xfs_perag *pag, - int (*execute)(struct xfs_inode *ip, - struct xfs_perag *pag, int flags), - int flags, - int tag, - int exclusive, - int *nr_to_scan) -{ - uint32_t first_index; - int last_error = 0; - int skipped; - -restart: - skipped = 0; - first_index = 0; - do { - int error = 0; - xfs_inode_t *ip; - - if (exclusive) - write_lock(&pag->pag_ici_lock); - else - read_lock(&pag->pag_ici_lock); - ip = xfs_inode_ag_lookup(mp, pag, &first_index, tag); - if (!ip) { - if (exclusive) - write_unlock(&pag->pag_ici_lock); - else - read_unlock(&pag->pag_ici_lock); - break; - } - - /* execute releases pag->pag_ici_lock */ - error = execute(ip, pag, flags); - if (error == EAGAIN) { - skipped++; - continue; - } - if (error) - last_error = error; - - /* bail out if the filesystem is corrupted. */ - if (error == EFSCORRUPTED) - break; - - } while ((*nr_to_scan)--); - - if (skipped) { - delay(1); - goto restart; - } - return last_error; -} - -/* - * Select the next per-ag structure to iterate during the walk. The reclaim - * walk is optimised only to walk AGs with reclaimable inodes in them. - */ -static struct xfs_perag * -xfs_inode_ag_iter_next_pag( - struct xfs_mount *mp, - xfs_agnumber_t *first, - int tag) -{ - struct xfs_perag *pag = NULL; - - if (tag == XFS_ICI_RECLAIM_TAG) { - int found; - int ref; - - spin_lock(&mp->m_perag_lock); - found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, - (void **)&pag, *first, 1, tag); - if (found <= 0) { - spin_unlock(&mp->m_perag_lock); - return NULL; - } - *first = pag->pag_agno + 1; - /* open coded pag reference increment */ - ref = atomic_inc_return(&pag->pag_ref); - spin_unlock(&mp->m_perag_lock); - trace_xfs_perag_get_reclaim(mp, pag->pag_agno, ref, _RET_IP_); - } else { - pag = xfs_perag_get(mp, *first); - (*first)++; - } - return pag; -} - -int -xfs_inode_ag_iterator( - struct xfs_mount *mp, - int (*execute)(struct xfs_inode *ip, - struct xfs_perag *pag, int flags), - int flags, - int tag, - int exclusive, - int *nr_to_scan) -{ - struct xfs_perag *pag; - int error = 0; - int last_error = 0; - xfs_agnumber_t ag; - int nr; - - nr = nr_to_scan ? *nr_to_scan : INT_MAX; - ag = 0; - while ((pag = xfs_inode_ag_iter_next_pag(mp, &ag, tag))) { - error = xfs_inode_ag_walk(mp, pag, execute, flags, tag, - exclusive, &nr); - xfs_perag_put(pag); - if (error) { - last_error = error; - if (error == EFSCORRUPTED) - break; - } - if (nr <= 0) - break; - } - if (nr_to_scan) - *nr_to_scan = nr; - return XFS_ERROR(last_error); -} - -/* must be called with pag_ici_lock held and releases it */ -int -xfs_sync_inode_valid( - struct xfs_inode *ip, - struct xfs_perag *pag) -{ - struct inode *inode = VFS_I(ip); - int error = EFSCORRUPTED; - - /* nothing to sync during shutdown */ - if (XFS_FORCED_SHUTDOWN(ip->i_mount)) - goto out_unlock; - - /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ - error = ENOENT; - if (xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM)) - goto out_unlock; - - /* If we can't grab the inode, it must on it's way to reclaim. */ - if (!igrab(inode)) - goto out_unlock; - - if (is_bad_inode(inode)) { - IRELE(ip); - goto out_unlock; - } - - /* inode is valid */ - error = 0; -out_unlock: - read_unlock(&pag->pag_ici_lock); - return error; -} - -STATIC int -xfs_sync_inode_data( - struct xfs_inode *ip, - struct xfs_perag *pag, - int flags) -{ - struct inode *inode = VFS_I(ip); - struct address_space *mapping = inode->i_mapping; - int error = 0; - - error = xfs_sync_inode_valid(ip, pag); - if (error) - return error; - - if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) - goto out_wait; - - if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) { - if (flags & SYNC_TRYLOCK) - goto out_wait; - xfs_ilock(ip, XFS_IOLOCK_SHARED); - } - - error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ? - 0 : XBF_ASYNC, FI_NONE); - xfs_iunlock(ip, XFS_IOLOCK_SHARED); - - out_wait: - if (flags & SYNC_WAIT) - xfs_ioend_wait(ip); - IRELE(ip); - return error; -} - -STATIC int -xfs_sync_inode_attr( - struct xfs_inode *ip, - struct xfs_perag *pag, - int flags) -{ - int error = 0; - - error = xfs_sync_inode_valid(ip, pag); - if (error) - return error; - - xfs_ilock(ip, XFS_ILOCK_SHARED); - if (xfs_inode_clean(ip)) - goto out_unlock; - if (!xfs_iflock_nowait(ip)) { - if (!(flags & SYNC_WAIT)) - goto out_unlock; - xfs_iflock(ip); - } - - if (xfs_inode_clean(ip)) { - xfs_ifunlock(ip); - goto out_unlock; - } - - error = xfs_iflush(ip, flags); - - out_unlock: - xfs_iunlock(ip, XFS_ILOCK_SHARED); - IRELE(ip); - return error; -} - -/* - * Write out pagecache data for the whole filesystem. - */ -STATIC int -xfs_sync_data( - struct xfs_mount *mp, - int flags) -{ - int error; - - ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0); - - error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags, - XFS_ICI_NO_TAG, 0, NULL); - if (error) - return XFS_ERROR(error); - - xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0); - return 0; -} - -/* - * Write out inode metadata (attributes) for the whole filesystem. - */ -STATIC int -xfs_sync_attr( - struct xfs_mount *mp, - int flags) -{ - ASSERT((flags & ~SYNC_WAIT) == 0); - - return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags, - XFS_ICI_NO_TAG, 0, NULL); -} - -STATIC int -xfs_sync_fsdata( - struct xfs_mount *mp) -{ - struct xfs_buf *bp; - - /* - * If the buffer is pinned then push on the log so we won't get stuck - * waiting in the write for someone, maybe ourselves, to flush the log. - * - * Even though we just pushed the log above, we did not have the - * superblock buffer locked at that point so it can become pinned in - * between there and here. - */ - bp = xfs_getsb(mp, 0); - if (XFS_BUF_ISPINNED(bp)) - xfs_log_force(mp, 0); - - return xfs_bwrite(mp, bp); -} - -/* - * When remounting a filesystem read-only or freezing the filesystem, we have - * two phases to execute. This first phase is syncing the data before we - * quiesce the filesystem, and the second is flushing all the inodes out after - * we've waited for all the transactions created by the first phase to - * complete. The second phase ensures that the inodes are written to their - * location on disk rather than just existing in transactions in the log. This - * means after a quiesce there is no log replay required to write the inodes to - * disk (this is the main difference between a sync and a quiesce). - */ -/* - * First stage of freeze - no writers will make progress now we are here, - * so we flush delwri and delalloc buffers here, then wait for all I/O to - * complete. Data is frozen at that point. Metadata is not frozen, - * transactions can still occur here so don't bother flushing the buftarg - * because it'll just get dirty again. - */ -int -xfs_quiesce_data( - struct xfs_mount *mp) -{ - int error, error2 = 0; - - /* push non-blocking */ - xfs_sync_data(mp, 0); - xfs_qm_sync(mp, SYNC_TRYLOCK); - - /* push and block till complete */ - xfs_sync_data(mp, SYNC_WAIT); - xfs_qm_sync(mp, SYNC_WAIT); - - /* write superblock and hoover up shutdown errors */ - error = xfs_sync_fsdata(mp); - - /* make sure all delwri buffers are written out */ - xfs_flush_buftarg(mp->m_ddev_targp, 1); - - /* mark the log as covered if needed */ - if (xfs_log_need_covered(mp)) - error2 = xfs_fs_log_dummy(mp, SYNC_WAIT); - - /* flush data-only devices */ - if (mp->m_rtdev_targp) - XFS_bflush(mp->m_rtdev_targp); - - return error ? error : error2; -} - -STATIC void -xfs_quiesce_fs( - struct xfs_mount *mp) -{ - int count = 0, pincount; - - xfs_reclaim_inodes(mp, 0); - xfs_flush_buftarg(mp->m_ddev_targp, 0); - - /* - * This loop must run at least twice. The first instance of the loop - * will flush most meta data but that will generate more meta data - * (typically directory updates). Which then must be flushed and - * logged before we can write the unmount record. We also so sync - * reclaim of inodes to catch any that the above delwri flush skipped. - */ - do { - xfs_reclaim_inodes(mp, SYNC_WAIT); - xfs_sync_attr(mp, SYNC_WAIT); - pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1); - if (!pincount) { - delay(50); - count++; - } - } while (count < 2); -} - -/* - * Second stage of a quiesce. The data is already synced, now we have to take - * care of the metadata. New transactions are already blocked, so we need to - * wait for any remaining transactions to drain out before proceding. - */ -void -xfs_quiesce_attr( - struct xfs_mount *mp) -{ - int error = 0; - - /* wait for all modifications to complete */ - while (atomic_read(&mp->m_active_trans) > 0) - delay(100); - - /* flush inodes and push all remaining buffers out to disk */ - xfs_quiesce_fs(mp); - - /* - * Just warn here till VFS can correctly support - * read-only remount without racing. - */ - WARN_ON(atomic_read(&mp->m_active_trans) != 0); - - /* Push the superblock and write an unmount record */ - error = xfs_log_sbcount(mp, 1); - if (error) - xfs_fs_cmn_err(CE_WARN, mp, - "xfs_attr_quiesce: failed to log sb changes. " - "Frozen image may not be consistent."); - xfs_log_unmount_write(mp); - xfs_unmountfs_writesb(mp); -} - -/* - * Enqueue a work item to be picked up by the vfs xfssyncd thread. - * Doing this has two advantages: - * - It saves on stack space, which is tight in certain situations - * - It can be used (with care) as a mechanism to avoid deadlocks. - * Flushing while allocating in a full filesystem requires both. - */ -STATIC void -xfs_syncd_queue_work( - struct xfs_mount *mp, - void *data, - void (*syncer)(struct xfs_mount *, void *), - struct completion *completion) -{ - struct xfs_sync_work *work; - - work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP); - INIT_LIST_HEAD(&work->w_list); - work->w_syncer = syncer; - work->w_data = data; - work->w_mount = mp; - work->w_completion = completion; - spin_lock(&mp->m_sync_lock); - list_add_tail(&work->w_list, &mp->m_sync_list); - spin_unlock(&mp->m_sync_lock); - wake_up_process(mp->m_sync_task); -} - -/* - * Flush delayed allocate data, attempting to free up reserved space - * from existing allocations. At this point a new allocation attempt - * has failed with ENOSPC and we are in the process of scratching our - * heads, looking about for more room... - */ -STATIC void -xfs_flush_inodes_work( - struct xfs_mount *mp, - void *arg) -{ - struct inode *inode = arg; - xfs_sync_data(mp, SYNC_TRYLOCK); - xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT); - iput(inode); -} - -void -xfs_flush_inodes( - xfs_inode_t *ip) -{ - struct inode *inode = VFS_I(ip); - DECLARE_COMPLETION_ONSTACK(completion); - - igrab(inode); - xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion); - wait_for_completion(&completion); - xfs_log_force(ip->i_mount, XFS_LOG_SYNC); -} - -/* - * Every sync period we need to unpin all items, reclaim inodes and sync - * disk quotas. We might need to cover the log to indicate that the - * filesystem is idle and not frozen. - */ -STATIC void -xfs_sync_worker( - struct xfs_mount *mp, - void *unused) -{ - int error; - - if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { - xfs_log_force(mp, 0); - xfs_reclaim_inodes(mp, 0); - /* dgc: errors ignored here */ - error = xfs_qm_sync(mp, SYNC_TRYLOCK); - if (mp->m_super->s_frozen == SB_UNFROZEN && - xfs_log_need_covered(mp)) - error = xfs_fs_log_dummy(mp, 0); - } - mp->m_sync_seq++; - wake_up(&mp->m_wait_single_sync_task); -} - -STATIC int -xfssyncd( - void *arg) -{ - struct xfs_mount *mp = arg; - long timeleft; - xfs_sync_work_t *work, *n; - LIST_HEAD (tmp); - - set_freezable(); - timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10); - for (;;) { - if (list_empty(&mp->m_sync_list)) - timeleft = schedule_timeout_interruptible(timeleft); - /* swsusp */ - try_to_freeze(); - if (kthread_should_stop() && list_empty(&mp->m_sync_list)) - break; - - spin_lock(&mp->m_sync_lock); - /* - * We can get woken by laptop mode, to do a sync - - * that's the (only!) case where the list would be - * empty with time remaining. - */ - if (!timeleft || list_empty(&mp->m_sync_list)) { - if (!timeleft) - timeleft = xfs_syncd_centisecs * - msecs_to_jiffies(10); - INIT_LIST_HEAD(&mp->m_sync_work.w_list); - list_add_tail(&mp->m_sync_work.w_list, - &mp->m_sync_list); - } - list_splice_init(&mp->m_sync_list, &tmp); - spin_unlock(&mp->m_sync_lock); - - list_for_each_entry_safe(work, n, &tmp, w_list) { - (*work->w_syncer)(mp, work->w_data); - list_del(&work->w_list); - if (work == &mp->m_sync_work) - continue; - if (work->w_completion) - complete(work->w_completion); - kmem_free(work); - } - } - - return 0; -} - -int -xfs_syncd_init( - struct xfs_mount *mp) -{ - mp->m_sync_work.w_syncer = xfs_sync_worker; - mp->m_sync_work.w_mount = mp; - mp->m_sync_work.w_completion = NULL; - mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd/%s", mp->m_fsname); - if (IS_ERR(mp->m_sync_task)) - return -PTR_ERR(mp->m_sync_task); - return 0; -} - -void -xfs_syncd_stop( - struct xfs_mount *mp) -{ - kthread_stop(mp->m_sync_task); -} - -void -__xfs_inode_set_reclaim_tag( - struct xfs_perag *pag, - struct xfs_inode *ip) -{ - radix_tree_tag_set(&pag->pag_ici_root, - XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), - XFS_ICI_RECLAIM_TAG); - - if (!pag->pag_ici_reclaimable) { - /* propagate the reclaim tag up into the perag radix tree */ - spin_lock(&ip->i_mount->m_perag_lock); - radix_tree_tag_set(&ip->i_mount->m_perag_tree, - XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), - XFS_ICI_RECLAIM_TAG); - spin_unlock(&ip->i_mount->m_perag_lock); - trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno, - -1, _RET_IP_); - } - pag->pag_ici_reclaimable++; -} - -/* - * We set the inode flag atomically with the radix tree tag. - * Once we get tag lookups on the radix tree, this inode flag - * can go away. - */ -void -xfs_inode_set_reclaim_tag( - xfs_inode_t *ip) -{ - struct xfs_mount *mp = ip->i_mount; - struct xfs_perag *pag; - - pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); - write_lock(&pag->pag_ici_lock); - spin_lock(&ip->i_flags_lock); - __xfs_inode_set_reclaim_tag(pag, ip); - __xfs_iflags_set(ip, XFS_IRECLAIMABLE); - spin_unlock(&ip->i_flags_lock); - write_unlock(&pag->pag_ici_lock); - xfs_perag_put(pag); -} - -void -__xfs_inode_clear_reclaim_tag( - xfs_mount_t *mp, - xfs_perag_t *pag, - xfs_inode_t *ip) -{ - radix_tree_tag_clear(&pag->pag_ici_root, - XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); - pag->pag_ici_reclaimable--; - if (!pag->pag_ici_reclaimable) { - /* clear the reclaim tag from the perag radix tree */ - spin_lock(&ip->i_mount->m_perag_lock); - radix_tree_tag_clear(&ip->i_mount->m_perag_tree, - XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), - XFS_ICI_RECLAIM_TAG); - spin_unlock(&ip->i_mount->m_perag_lock); - trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno, - -1, _RET_IP_); - } -} - -/* - * Inodes in different states need to be treated differently, and the return - * value of xfs_iflush is not sufficient to get this right. The following table - * lists the inode states and the reclaim actions necessary for non-blocking - * reclaim: - * - * - * inode state iflush ret required action - * --------------- ---------- --------------- - * bad - reclaim - * shutdown EIO unpin and reclaim - * clean, unpinned 0 reclaim - * stale, unpinned 0 reclaim - * clean, pinned(*) 0 requeue - * stale, pinned EAGAIN requeue - * dirty, delwri ok 0 requeue - * dirty, delwri blocked EAGAIN requeue - * dirty, sync flush 0 reclaim - * - * (*) dgc: I don't think the clean, pinned state is possible but it gets - * handled anyway given the order of checks implemented. - * - * As can be seen from the table, the return value of xfs_iflush() is not - * sufficient to correctly decide the reclaim action here. The checks in - * xfs_iflush() might look like duplicates, but they are not. - * - * Also, because we get the flush lock first, we know that any inode that has - * been flushed delwri has had the flush completed by the time we check that - * the inode is clean. The clean inode check needs to be done before flushing - * the inode delwri otherwise we would loop forever requeuing clean inodes as - * we cannot tell apart a successful delwri flush and a clean inode from the - * return value of xfs_iflush(). - * - * Note that because the inode is flushed delayed write by background - * writeback, the flush lock may already be held here and waiting on it can - * result in very long latencies. Hence for sync reclaims, where we wait on the - * flush lock, the caller should push out delayed write inodes first before - * trying to reclaim them to minimise the amount of time spent waiting. For - * background relaim, we just requeue the inode for the next pass. - * - * Hence the order of actions after gaining the locks should be: - * bad => reclaim - * shutdown => unpin and reclaim - * pinned, delwri => requeue - * pinned, sync => unpin - * stale => reclaim - * clean => reclaim - * dirty, delwri => flush and requeue - * dirty, sync => flush, wait and reclaim - */ -STATIC int -xfs_reclaim_inode( - struct xfs_inode *ip, - struct xfs_perag *pag, - int sync_mode) -{ - int error = 0; - - /* - * The radix tree lock here protects a thread in xfs_iget from racing - * with us starting reclaim on the inode. Once we have the - * XFS_IRECLAIM flag set it will not touch us. - */ - spin_lock(&ip->i_flags_lock); - ASSERT_ALWAYS(__xfs_iflags_test(ip, XFS_IRECLAIMABLE)); - if (__xfs_iflags_test(ip, XFS_IRECLAIM)) { - /* ignore as it is already under reclaim */ - spin_unlock(&ip->i_flags_lock); - write_unlock(&pag->pag_ici_lock); - return 0; - } - __xfs_iflags_set(ip, XFS_IRECLAIM); - spin_unlock(&ip->i_flags_lock); - write_unlock(&pag->pag_ici_lock); - - xfs_ilock(ip, XFS_ILOCK_EXCL); - if (!xfs_iflock_nowait(ip)) { - if (!(sync_mode & SYNC_WAIT)) - goto out; - xfs_iflock(ip); - } - - if (is_bad_inode(VFS_I(ip))) - goto reclaim; - if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { - xfs_iunpin_wait(ip); - goto reclaim; - } - if (xfs_ipincount(ip)) { - if (!(sync_mode & SYNC_WAIT)) { - xfs_ifunlock(ip); - goto out; - } - xfs_iunpin_wait(ip); - } - if (xfs_iflags_test(ip, XFS_ISTALE)) - goto reclaim; - if (xfs_inode_clean(ip)) - goto reclaim; - - /* Now we have an inode that needs flushing */ - error = xfs_iflush(ip, sync_mode); - if (sync_mode & SYNC_WAIT) { - xfs_iflock(ip); - goto reclaim; - } - - /* - * When we have to flush an inode but don't have SYNC_WAIT set, we - * flush the inode out using a delwri buffer and wait for the next - * call into reclaim to find it in a clean state instead of waiting for - * it now. We also don't return errors here - if the error is transient - * then the next reclaim pass will flush the inode, and if the error - * is permanent then the next sync reclaim will reclaim the inode and - * pass on the error. - */ - if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) { - xfs_fs_cmn_err(CE_WARN, ip->i_mount, - "inode 0x%llx background reclaim flush failed with %d", - (long long)ip->i_ino, error); - } -out: - xfs_iflags_clear(ip, XFS_IRECLAIM); - xfs_iunlock(ip, XFS_ILOCK_EXCL); - /* - * We could return EAGAIN here to make reclaim rescan the inode tree in - * a short while. However, this just burns CPU time scanning the tree - * waiting for IO to complete and xfssyncd never goes back to the idle - * state. Instead, return 0 to let the next scheduled background reclaim - * attempt to reclaim the inode again. - */ - return 0; - -reclaim: - xfs_ifunlock(ip); - xfs_iunlock(ip, XFS_ILOCK_EXCL); - - XFS_STATS_INC(xs_ig_reclaims); - /* - * Remove the inode from the per-AG radix tree. - * - * Because radix_tree_delete won't complain even if the item was never - * added to the tree assert that it's been there before to catch - * problems with the inode life time early on. - */ - write_lock(&pag->pag_ici_lock); - if (!radix_tree_delete(&pag->pag_ici_root, - XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino))) - ASSERT(0); - write_unlock(&pag->pag_ici_lock); - - /* - * Here we do an (almost) spurious inode lock in order to coordinate - * with inode cache radix tree lookups. This is because the lookup - * can reference the inodes in the cache without taking references. - * - * We make that OK here by ensuring that we wait until the inode is - * unlocked after the lookup before we go ahead and free it. We get - * both the ilock and the iolock because the code may need to drop the - * ilock one but will still hold the iolock. - */ - xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); - xfs_qm_dqdetach(ip); - xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); - - xfs_inode_free(ip); - return error; - -} - -int -xfs_reclaim_inodes( - xfs_mount_t *mp, - int mode) -{ - return xfs_inode_ag_iterator(mp, xfs_reclaim_inode, mode, - XFS_ICI_RECLAIM_TAG, 1, NULL); -} - -/* - * Shrinker infrastructure. - */ -static int -xfs_reclaim_inode_shrink( - struct shrinker *shrink, - int nr_to_scan, - gfp_t gfp_mask) -{ - struct xfs_mount *mp; - struct xfs_perag *pag; - xfs_agnumber_t ag; - int reclaimable; - - mp = container_of(shrink, struct xfs_mount, m_inode_shrink); - if (nr_to_scan) { - if (!(gfp_mask & __GFP_FS)) - return -1; - - xfs_inode_ag_iterator(mp, xfs_reclaim_inode, 0, - XFS_ICI_RECLAIM_TAG, 1, &nr_to_scan); - /* if we don't exhaust the scan, don't bother coming back */ - if (nr_to_scan > 0) - return -1; - } - - reclaimable = 0; - ag = 0; - while ((pag = xfs_inode_ag_iter_next_pag(mp, &ag, - XFS_ICI_RECLAIM_TAG))) { - reclaimable += pag->pag_ici_reclaimable; - xfs_perag_put(pag); - } - return reclaimable; -} - -void -xfs_inode_shrinker_register( - struct xfs_mount *mp) -{ - mp->m_inode_shrink.shrink = xfs_reclaim_inode_shrink; - mp->m_inode_shrink.seeks = DEFAULT_SEEKS; - register_shrinker(&mp->m_inode_shrink); -} - -void -xfs_inode_shrinker_unregister( - struct xfs_mount *mp) -{ - unregister_shrinker(&mp->m_inode_shrink); -} |
