aboutsummaryrefslogtreecommitdiff
path: root/fs/reiserfs/tail_conversion.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/reiserfs/tail_conversion.c')
-rw-r--r--fs/reiserfs/tail_conversion.c260
1 files changed, 149 insertions, 111 deletions
diff --git a/fs/reiserfs/tail_conversion.c b/fs/reiserfs/tail_conversion.c
index c92e124f628..f41e19b4bb4 100644
--- a/fs/reiserfs/tail_conversion.c
+++ b/fs/reiserfs/tail_conversion.c
@@ -1,45 +1,59 @@
/*
- * Copyright 1999 Hans Reiser, see reiserfs/README for licensing and copyright details
+ * Copyright 1999 Hans Reiser, see reiserfs/README for licensing and copyright
+ * details
*/
-#include <linux/config.h>
#include <linux/time.h>
#include <linux/pagemap.h>
#include <linux/buffer_head.h>
-#include <linux/reiserfs_fs.h>
+#include "reiserfs.h"
-/* access to tail : when one is going to read tail it must make sure, that is not running.
- direct2indirect and indirect2direct can not run concurrently */
+/*
+ * access to tail : when one is going to read tail it must make sure, that is
+ * not running. direct2indirect and indirect2direct can not run concurrently
+ */
-/* Converts direct items to an unformatted node. Panics if file has no
- tail. -ENOSPC if no disk space for conversion */
-/* path points to first direct item of the file regarless of how many of
- them are there */
+/*
+ * Converts direct items to an unformatted node. Panics if file has no
+ * tail. -ENOSPC if no disk space for conversion
+ */
+/*
+ * path points to first direct item of the file regardless of how many of
+ * them are there
+ */
int direct2indirect(struct reiserfs_transaction_handle *th, struct inode *inode,
- struct path *path, struct buffer_head *unbh,
+ struct treepath *path, struct buffer_head *unbh,
loff_t tail_offset)
{
struct super_block *sb = inode->i_sb;
struct buffer_head *up_to_date_bh;
- struct item_head *p_le_ih = PATH_PITEM_HEAD(path);
+ struct item_head *p_le_ih = tp_item_head(path);
unsigned long total_tail = 0;
- struct cpu_key end_key; /* Key to search for the last byte of the
- converted item. */
- struct item_head ind_ih; /* new indirect item to be inserted or
- key of unfm pointer to be pasted */
- int n_blk_size, n_retval; /* returned value for reiserfs_insert_item and clones */
- unp_t unfm_ptr; /* Handle on an unformatted node
- that will be inserted in the
- tree. */
+
+ /* Key to search for the last byte of the converted item. */
+ struct cpu_key end_key;
+
+ /*
+ * new indirect item to be inserted or key
+ * of unfm pointer to be pasted
+ */
+ struct item_head ind_ih;
+ int blk_size;
+ /* returned value for reiserfs_insert_item and clones */
+ int retval;
+ /* Handle on an unformatted node that will be inserted in the tree. */
+ unp_t unfm_ptr;
BUG_ON(!th->t_trans_id);
REISERFS_SB(sb)->s_direct2indirect++;
- n_blk_size = sb->s_blocksize;
+ blk_size = sb->s_blocksize;
- /* and key to search for append or insert pointer to the new
- unformatted node. */
+ /*
+ * and key to search for append or insert pointer to the new
+ * unformatted node.
+ */
copy_item_head(&ind_ih, p_le_ih);
set_le_ih_k_offset(&ind_ih, tail_offset);
set_le_ih_k_type(&ind_ih, TYPE_INDIRECT);
@@ -47,16 +61,16 @@ int direct2indirect(struct reiserfs_transaction_handle *th, struct inode *inode,
/* Set the key to search for the place for new unfm pointer */
make_cpu_key(&end_key, inode, tail_offset, TYPE_INDIRECT, 4);
- // FIXME: we could avoid this
+ /* FIXME: we could avoid this */
if (search_for_position_by_key(sb, &end_key, path) == POSITION_FOUND) {
- reiserfs_warning(sb, "PAP-14030: direct2indirect: "
- "pasted or inserted byte exists in the tree %K. "
- "Use fsck to repair.", &end_key);
+ reiserfs_error(sb, "PAP-14030",
+ "pasted or inserted byte exists in "
+ "the tree %K. Use fsck to repair.", &end_key);
pathrelse(path);
return -EIO;
}
- p_le_ih = PATH_PITEM_HEAD(path);
+ p_le_ih = tp_item_head(path);
unfm_ptr = cpu_to_le32(unbh->b_blocknr);
@@ -65,49 +79,55 @@ int direct2indirect(struct reiserfs_transaction_handle *th, struct inode *inode,
set_ih_free_space(&ind_ih, 0); /* delete at nearest future */
put_ih_item_len(&ind_ih, UNFM_P_SIZE);
PATH_LAST_POSITION(path)++;
- n_retval =
+ retval =
reiserfs_insert_item(th, path, &end_key, &ind_ih, inode,
(char *)&unfm_ptr);
} else {
/* Paste into last indirect item of an object. */
- n_retval = reiserfs_paste_into_item(th, path, &end_key, inode,
+ retval = reiserfs_paste_into_item(th, path, &end_key, inode,
(char *)&unfm_ptr,
UNFM_P_SIZE);
}
- if (n_retval) {
- return n_retval;
+ if (retval) {
+ return retval;
}
- // note: from here there are two keys which have matching first
- // three key components. They only differ by the fourth one.
+ /*
+ * note: from here there are two keys which have matching first
+ * three key components. They only differ by the fourth one.
+ */
/* Set the key to search for the direct items of the file */
make_cpu_key(&end_key, inode, max_reiserfs_offset(inode), TYPE_DIRECT,
4);
- /* Move bytes from the direct items to the new unformatted node
- and delete them. */
+ /*
+ * Move bytes from the direct items to the new unformatted node
+ * and delete them.
+ */
while (1) {
int tail_size;
- /* end_key.k_offset is set so, that we will always have found
- last item of the file */
+ /*
+ * end_key.k_offset is set so, that we will always have found
+ * last item of the file
+ */
if (search_for_position_by_key(sb, &end_key, path) ==
POSITION_FOUND)
- reiserfs_panic(sb,
- "PAP-14050: direct2indirect: "
+ reiserfs_panic(sb, "PAP-14050",
"direct item (%K) not found", &end_key);
- p_le_ih = PATH_PITEM_HEAD(path);
+ p_le_ih = tp_item_head(path);
RFALSE(!is_direct_le_ih(p_le_ih),
"vs-14055: direct item expected(%K), found %h",
&end_key, p_le_ih);
- tail_size = (le_ih_k_offset(p_le_ih) & (n_blk_size - 1))
+ tail_size = (le_ih_k_offset(p_le_ih) & (blk_size - 1))
+ ih_item_len(p_le_ih) - 1;
- /* we only send the unbh pointer if the buffer is not up to date.
- ** this avoids overwriting good data from writepage() with old data
- ** from the disk or buffer cache
- ** Special case: unbh->b_page will be NULL if we are coming through
- ** DIRECT_IO handler here.
+ /*
+ * we only send the unbh pointer if the buffer is not
+ * up to date. this avoids overwriting good data from
+ * writepage() with old data from the disk or buffer cache
+ * Special case: unbh->b_page will be NULL if we are coming
+ * through DIRECT_IO handler here.
*/
if (!unbh->b_page || buffer_uptodate(unbh)
|| PageUptodate(unbh->b_page)) {
@@ -115,24 +135,26 @@ int direct2indirect(struct reiserfs_transaction_handle *th, struct inode *inode,
} else {
up_to_date_bh = unbh;
}
- n_retval = reiserfs_delete_item(th, path, &end_key, inode,
+ retval = reiserfs_delete_item(th, path, &end_key, inode,
up_to_date_bh);
- total_tail += n_retval;
- if (tail_size == n_retval)
- // done: file does not have direct items anymore
+ total_tail += retval;
+
+ /* done: file does not have direct items anymore */
+ if (tail_size == retval)
break;
}
- /* if we've copied bytes from disk into the page, we need to zero
- ** out the unused part of the block (it was not up to date before)
+ /*
+ * if we've copied bytes from disk into the page, we need to zero
+ * out the unused part of the block (it was not up to date before)
*/
if (up_to_date_bh) {
unsigned pgoff =
(tail_offset + total_tail - 1) & (PAGE_CACHE_SIZE - 1);
- char *kaddr = kmap_atomic(up_to_date_bh->b_page, KM_USER0);
- memset(kaddr + pgoff, 0, n_blk_size - total_tail);
- kunmap_atomic(kaddr, KM_USER0);
+ char *kaddr = kmap_atomic(up_to_date_bh->b_page);
+ memset(kaddr + pgoff, 0, blk_size - total_tail);
+ kunmap_atomic(kaddr);
}
REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
@@ -148,9 +170,11 @@ void reiserfs_unmap_buffer(struct buffer_head *bh)
BUG();
}
clear_buffer_dirty(bh);
- /* Remove the buffer from whatever list it belongs to. We are mostly
- interested in removing it from per-sb j_dirty_buffers list, to avoid
- BUG() on attempt to write not mapped buffer */
+ /*
+ * Remove the buffer from whatever list it belongs to. We are mostly
+ * interested in removing it from per-sb j_dirty_buffers list, to avoid
+ * BUG() on attempt to write not mapped buffer
+ */
if ((!list_empty(&bh->b_assoc_buffers) || bh->b_private) && bh->b_page) {
struct inode *inode = bh->b_page->mapping->host;
struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
@@ -166,20 +190,26 @@ void reiserfs_unmap_buffer(struct buffer_head *bh)
unlock_buffer(bh);
}
-/* this first locks inode (neither reads nor sync are permitted),
- reads tail through page cache, insert direct item. When direct item
- inserted successfully inode is left locked. Return value is always
- what we expect from it (number of cut bytes). But when tail remains
- in the unformatted node, we set mode to SKIP_BALANCING and unlock
- inode */
-int indirect2direct(struct reiserfs_transaction_handle *th, struct inode *p_s_inode, struct page *page, struct path *p_s_path, /* path to the indirect item. */
- const struct cpu_key *p_s_item_key, /* Key to look for unformatted node pointer to be cut. */
+/*
+ * this first locks inode (neither reads nor sync are permitted),
+ * reads tail through page cache, insert direct item. When direct item
+ * inserted successfully inode is left locked. Return value is always
+ * what we expect from it (number of cut bytes). But when tail remains
+ * in the unformatted node, we set mode to SKIP_BALANCING and unlock
+ * inode
+ */
+int indirect2direct(struct reiserfs_transaction_handle *th,
+ struct inode *inode, struct page *page,
+ struct treepath *path, /* path to the indirect item. */
+ const struct cpu_key *item_key, /* Key to look for
+ * unformatted node
+ * pointer to be cut. */
loff_t n_new_file_size, /* New file size. */
- char *p_c_mode)
+ char *mode)
{
- struct super_block *p_s_sb = p_s_inode->i_sb;
+ struct super_block *sb = inode->i_sb;
struct item_head s_ih;
- unsigned long n_block_size = p_s_sb->s_blocksize;
+ unsigned long block_size = sb->s_blocksize;
char *tail;
int tail_len, round_tail_len;
loff_t pos, pos1; /* position of first byte of the tail */
@@ -187,93 +217,101 @@ int indirect2direct(struct reiserfs_transaction_handle *th, struct inode *p_s_in
BUG_ON(!th->t_trans_id);
- REISERFS_SB(p_s_sb)->s_indirect2direct++;
+ REISERFS_SB(sb)->s_indirect2direct++;
- *p_c_mode = M_SKIP_BALANCING;
+ *mode = M_SKIP_BALANCING;
/* store item head path points to. */
- copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path));
+ copy_item_head(&s_ih, tp_item_head(path));
- tail_len = (n_new_file_size & (n_block_size - 1));
- if (get_inode_sd_version(p_s_inode) == STAT_DATA_V2)
+ tail_len = (n_new_file_size & (block_size - 1));
+ if (get_inode_sd_version(inode) == STAT_DATA_V2)
round_tail_len = ROUND_UP(tail_len);
else
round_tail_len = tail_len;
pos =
le_ih_k_offset(&s_ih) - 1 + (ih_item_len(&s_ih) / UNFM_P_SIZE -
- 1) * p_s_sb->s_blocksize;
+ 1) * sb->s_blocksize;
pos1 = pos;
- // we are protected by i_sem. The tail can not disapper, not
- // append can be done either
- // we are in truncate or packing tail in file_release
+ /*
+ * we are protected by i_mutex. The tail can not disapper, not
+ * append can be done either
+ * we are in truncate or packing tail in file_release
+ */
tail = (char *)kmap(page); /* this can schedule */
- if (path_changed(&s_ih, p_s_path)) {
+ if (path_changed(&s_ih, path)) {
/* re-search indirect item */
- if (search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path)
+ if (search_for_position_by_key(sb, item_key, path)
== POSITION_NOT_FOUND)
- reiserfs_panic(p_s_sb,
- "PAP-5520: indirect2direct: "
+ reiserfs_panic(sb, "PAP-5520",
"item to be converted %K does not exist",
- p_s_item_key);
- copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path));
+ item_key);
+ copy_item_head(&s_ih, tp_item_head(path));
#ifdef CONFIG_REISERFS_CHECK
pos = le_ih_k_offset(&s_ih) - 1 +
(ih_item_len(&s_ih) / UNFM_P_SIZE -
- 1) * p_s_sb->s_blocksize;
+ 1) * sb->s_blocksize;
if (pos != pos1)
- reiserfs_panic(p_s_sb, "vs-5530: indirect2direct: "
- "tail position changed while we were reading it");
+ reiserfs_panic(sb, "vs-5530", "tail position "
+ "changed while we were reading it");
#endif
}
/* Set direct item header to insert. */
- make_le_item_head(&s_ih, NULL, get_inode_item_key_version(p_s_inode),
+ make_le_item_head(&s_ih, NULL, get_inode_item_key_version(inode),
pos1 + 1, TYPE_DIRECT, round_tail_len,
0xffff /*ih_free_space */ );
- /* we want a pointer to the first byte of the tail in the page.
- ** the page was locked and this part of the page was up to date when
- ** indirect2direct was called, so we know the bytes are still valid
+ /*
+ * we want a pointer to the first byte of the tail in the page.
+ * the page was locked and this part of the page was up to date when
+ * indirect2direct was called, so we know the bytes are still valid
*/
tail = tail + (pos & (PAGE_CACHE_SIZE - 1));
- PATH_LAST_POSITION(p_s_path)++;
+ PATH_LAST_POSITION(path)++;
- key = *p_s_item_key;
+ key = *item_key;
set_cpu_key_k_type(&key, TYPE_DIRECT);
key.key_length = 4;
/* Insert tail as new direct item in the tree */
- if (reiserfs_insert_item(th, p_s_path, &key, &s_ih, p_s_inode,
+ if (reiserfs_insert_item(th, path, &key, &s_ih, inode,
tail ? tail : NULL) < 0) {
- /* No disk memory. So we can not convert last unformatted node
- to the direct item. In this case we used to adjust
- indirect items's ih_free_space. Now ih_free_space is not
- used, it would be ideal to write zeros to corresponding
- unformatted node. For now i_size is considered as guard for
- going out of file size */
+ /*
+ * No disk memory. So we can not convert last unformatted node
+ * to the direct item. In this case we used to adjust
+ * indirect items's ih_free_space. Now ih_free_space is not
+ * used, it would be ideal to write zeros to corresponding
+ * unformatted node. For now i_size is considered as guard for
+ * going out of file size
+ */
kunmap(page);
- return n_block_size - round_tail_len;
+ return block_size - round_tail_len;
}
kunmap(page);
/* make sure to get the i_blocks changes from reiserfs_insert_item */
- reiserfs_update_sd(th, p_s_inode);
+ reiserfs_update_sd(th, inode);
- // note: we have now the same as in above direct2indirect
- // conversion: there are two keys which have matching first three
- // key components. They only differ by the fouhth one.
+ /*
+ * note: we have now the same as in above direct2indirect
+ * conversion: there are two keys which have matching first three
+ * key components. They only differ by the fourth one.
+ */
- /* We have inserted new direct item and must remove last
- unformatted node. */
- *p_c_mode = M_CUT;
+ /*
+ * We have inserted new direct item and must remove last
+ * unformatted node.
+ */
+ *mode = M_CUT;
/* we store position of first direct item in the in-core inode */
- //mark_file_with_tail (p_s_inode, pos1 + 1);
- REISERFS_I(p_s_inode)->i_first_direct_byte = pos1 + 1;
+ /* mark_file_with_tail (inode, pos1 + 1); */
+ REISERFS_I(inode)->i_first_direct_byte = pos1 + 1;
- return n_block_size - round_tail_len;
+ return block_size - round_tail_len;
}