diff options
Diffstat (limited to 'fs/reiserfs/reiserfs.h')
| -rw-r--r-- | fs/reiserfs/reiserfs.h | 3404 | 
1 files changed, 3404 insertions, 0 deletions
diff --git a/fs/reiserfs/reiserfs.h b/fs/reiserfs/reiserfs.h new file mode 100644 index 00000000000..bf53888c7f5 --- /dev/null +++ b/fs/reiserfs/reiserfs.h @@ -0,0 +1,3404 @@ +/* + * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for + * licensing and copyright details + */ + +#include <linux/reiserfs_fs.h> + +#include <linux/slab.h> +#include <linux/interrupt.h> +#include <linux/sched.h> +#include <linux/bug.h> +#include <linux/workqueue.h> +#include <asm/unaligned.h> +#include <linux/bitops.h> +#include <linux/proc_fs.h> +#include <linux/buffer_head.h> + +/* the 32 bit compat definitions with int argument */ +#define REISERFS_IOC32_UNPACK		_IOW(0xCD, 1, int) +#define REISERFS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS +#define REISERFS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS +#define REISERFS_IOC32_GETVERSION	FS_IOC32_GETVERSION +#define REISERFS_IOC32_SETVERSION	FS_IOC32_SETVERSION + +struct reiserfs_journal_list; + +/* bitmasks for i_flags field in reiserfs-specific part of inode */ +typedef enum { +	/* +	 * this says what format of key do all items (but stat data) of +	 * an object have.  If this is set, that format is 3.6 otherwise - 3.5 +	 */ +	i_item_key_version_mask = 0x0001, + +	/* +	 * If this is unset, object has 3.5 stat data, otherwise, +	 * it has 3.6 stat data with 64bit size, 32bit nlink etc. +	 */ +	i_stat_data_version_mask = 0x0002, + +	/* file might need tail packing on close */ +	i_pack_on_close_mask = 0x0004, + +	/* don't pack tail of file */ +	i_nopack_mask = 0x0008, + +	/* +	 * If either of these are set, "safe link" was created for this +	 * file during truncate or unlink. Safe link is used to avoid +	 * leakage of disk space on crash with some files open, but unlinked. +	 */ +	i_link_saved_unlink_mask = 0x0010, +	i_link_saved_truncate_mask = 0x0020, + +	i_has_xattr_dir = 0x0040, +	i_data_log = 0x0080, +} reiserfs_inode_flags; + +struct reiserfs_inode_info { +	__u32 i_key[4];		/* key is still 4 32 bit integers */ + +	/* +	 * transient inode flags that are never stored on disk. Bitmasks +	 * for this field are defined above. +	 */ +	__u32 i_flags; + +	/* offset of first byte stored in direct item. */ +	__u32 i_first_direct_byte; + +	/* copy of persistent inode flags read from sd_attrs. */ +	__u32 i_attrs; + +	/* first unused block of a sequence of unused blocks */ +	int i_prealloc_block; +	int i_prealloc_count;	/* length of that sequence */ + +	/* per-transaction list of inodes which  have preallocated blocks */ +	struct list_head i_prealloc_list; + +	/* +	 * new_packing_locality is created; new blocks for the contents +	 * of this directory should be displaced +	 */ +	unsigned new_packing_locality:1; + +	/* +	 * we use these for fsync or O_SYNC to decide which transaction +	 * needs to be committed in order for this inode to be properly +	 * flushed +	 */ +	unsigned int i_trans_id; + +	struct reiserfs_journal_list *i_jl; +	atomic_t openers; +	struct mutex tailpack; +#ifdef CONFIG_REISERFS_FS_XATTR +	struct rw_semaphore i_xattr_sem; +#endif +	struct inode vfs_inode; +}; + +typedef enum { +	reiserfs_attrs_cleared = 0x00000001, +} reiserfs_super_block_flags; + +/* + * struct reiserfs_super_block accessors/mutators since this is a disk + * structure, it will always be in little endian format. + */ +#define sb_block_count(sbp)         (le32_to_cpu((sbp)->s_v1.s_block_count)) +#define set_sb_block_count(sbp,v)   ((sbp)->s_v1.s_block_count = cpu_to_le32(v)) +#define sb_free_blocks(sbp)         (le32_to_cpu((sbp)->s_v1.s_free_blocks)) +#define set_sb_free_blocks(sbp,v)   ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v)) +#define sb_root_block(sbp)          (le32_to_cpu((sbp)->s_v1.s_root_block)) +#define set_sb_root_block(sbp,v)    ((sbp)->s_v1.s_root_block = cpu_to_le32(v)) + +#define sb_jp_journal_1st_block(sbp)  \ +              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block)) +#define set_sb_jp_journal_1st_block(sbp,v) \ +              ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v)) +#define sb_jp_journal_dev(sbp) \ +              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev)) +#define set_sb_jp_journal_dev(sbp,v) \ +              ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v)) +#define sb_jp_journal_size(sbp) \ +              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size)) +#define set_sb_jp_journal_size(sbp,v) \ +              ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v)) +#define sb_jp_journal_trans_max(sbp) \ +              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max)) +#define set_sb_jp_journal_trans_max(sbp,v) \ +              ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v)) +#define sb_jp_journal_magic(sbp) \ +              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic)) +#define set_sb_jp_journal_magic(sbp,v) \ +              ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v)) +#define sb_jp_journal_max_batch(sbp) \ +              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch)) +#define set_sb_jp_journal_max_batch(sbp,v) \ +              ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v)) +#define sb_jp_jourmal_max_commit_age(sbp) \ +              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age)) +#define set_sb_jp_journal_max_commit_age(sbp,v) \ +              ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v)) + +#define sb_blocksize(sbp)          (le16_to_cpu((sbp)->s_v1.s_blocksize)) +#define set_sb_blocksize(sbp,v)    ((sbp)->s_v1.s_blocksize = cpu_to_le16(v)) +#define sb_oid_maxsize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_maxsize)) +#define set_sb_oid_maxsize(sbp,v)  ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v)) +#define sb_oid_cursize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_cursize)) +#define set_sb_oid_cursize(sbp,v)  ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v)) +#define sb_umount_state(sbp)       (le16_to_cpu((sbp)->s_v1.s_umount_state)) +#define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v)) +#define sb_fs_state(sbp)           (le16_to_cpu((sbp)->s_v1.s_fs_state)) +#define set_sb_fs_state(sbp,v)     ((sbp)->s_v1.s_fs_state = cpu_to_le16(v)) +#define sb_hash_function_code(sbp) \ +              (le32_to_cpu((sbp)->s_v1.s_hash_function_code)) +#define set_sb_hash_function_code(sbp,v) \ +              ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v)) +#define sb_tree_height(sbp)        (le16_to_cpu((sbp)->s_v1.s_tree_height)) +#define set_sb_tree_height(sbp,v)  ((sbp)->s_v1.s_tree_height = cpu_to_le16(v)) +#define sb_bmap_nr(sbp)            (le16_to_cpu((sbp)->s_v1.s_bmap_nr)) +#define set_sb_bmap_nr(sbp,v)      ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v)) +#define sb_version(sbp)            (le16_to_cpu((sbp)->s_v1.s_version)) +#define set_sb_version(sbp,v)      ((sbp)->s_v1.s_version = cpu_to_le16(v)) + +#define sb_mnt_count(sbp)	   (le16_to_cpu((sbp)->s_mnt_count)) +#define set_sb_mnt_count(sbp, v)   ((sbp)->s_mnt_count = cpu_to_le16(v)) + +#define sb_reserved_for_journal(sbp) \ +              (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal)) +#define set_sb_reserved_for_journal(sbp,v) \ +              ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v)) + +/* LOGGING -- */ + +/* + * These all interelate for performance. + * + * If the journal block count is smaller than n transactions, you lose speed. + * I don't know what n is yet, I'm guessing 8-16. + * + * typical transaction size depends on the application, how often fsync is + * called, and how many metadata blocks you dirty in a 30 second period. + * The more small files (<16k) you use, the larger your transactions will + * be. + * + * If your journal fills faster than dirty buffers get flushed to disk, it + * must flush them before allowing the journal to wrap, which slows things + * down.  If you need high speed meta data updates, the journal should be + * big enough to prevent wrapping before dirty meta blocks get to disk. + * + * If the batch max is smaller than the transaction max, you'll waste space + * at the end of the journal because journal_end sets the next transaction + * to start at 0 if the next transaction has any chance of wrapping. + * + * The large the batch max age, the better the speed, and the more meta + * data changes you'll lose after a crash. + */ + +/* don't mess with these for a while */ +/* we have a node size define somewhere in reiserfs_fs.h. -Hans */ +#define JOURNAL_BLOCK_SIZE  4096	/* BUG gotta get rid of this */ +#define JOURNAL_MAX_CNODE   1500	/* max cnodes to allocate. */ +#define JOURNAL_HASH_SIZE 8192 + +/* number of copies of the bitmaps to have floating.  Must be >= 2 */ +#define JOURNAL_NUM_BITMAPS 5 + +/* + * One of these for every block in every transaction + * Each one is in two hash tables.  First, a hash of the current transaction, + * and after journal_end, a hash of all the in memory transactions. + * next and prev are used by the current transaction (journal_hash). + * hnext and hprev are used by journal_list_hash.  If a block is in more + * than one transaction, the journal_list_hash links it in multiple times. + * This allows flush_journal_list to remove just the cnode belonging to a + * given transaction. + */ +struct reiserfs_journal_cnode { +	struct buffer_head *bh;	/* real buffer head */ +	struct super_block *sb;	/* dev of real buffer head */ + +	/* block number of real buffer head, == 0 when buffer on disk */ +	__u32 blocknr; + +	unsigned long state; + +	/* journal list this cnode lives in */ +	struct reiserfs_journal_list *jlist; + +	struct reiserfs_journal_cnode *next;	/* next in transaction list */ +	struct reiserfs_journal_cnode *prev;	/* prev in transaction list */ +	struct reiserfs_journal_cnode *hprev;	/* prev in hash list */ +	struct reiserfs_journal_cnode *hnext;	/* next in hash list */ +}; + +struct reiserfs_bitmap_node { +	int id; +	char *data; +	struct list_head list; +}; + +struct reiserfs_list_bitmap { +	struct reiserfs_journal_list *journal_list; +	struct reiserfs_bitmap_node **bitmaps; +}; + +/* + * one of these for each transaction.  The most important part here is the + * j_realblock.  this list of cnodes is used to hash all the blocks in all + * the commits, to mark all the real buffer heads dirty once all the commits + * hit the disk, and to make sure every real block in a transaction is on + * disk before allowing the log area to be overwritten + */ +struct reiserfs_journal_list { +	unsigned long j_start; +	unsigned long j_state; +	unsigned long j_len; +	atomic_t j_nonzerolen; +	atomic_t j_commit_left; + +	/* all commits older than this on disk */ +	atomic_t j_older_commits_done; + +	struct mutex j_commit_mutex; +	unsigned int j_trans_id; +	time_t j_timestamp; +	struct reiserfs_list_bitmap *j_list_bitmap; +	struct buffer_head *j_commit_bh;	/* commit buffer head */ +	struct reiserfs_journal_cnode *j_realblock; +	struct reiserfs_journal_cnode *j_freedlist;	/* list of buffers that were freed during this trans.  free each of these on flush */ +	/* time ordered list of all active transactions */ +	struct list_head j_list; + +	/* +	 * time ordered list of all transactions we haven't tried +	 * to flush yet +	 */ +	struct list_head j_working_list; + +	/* list of tail conversion targets in need of flush before commit */ +	struct list_head j_tail_bh_list; + +	/* list of data=ordered buffers in need of flush before commit */ +	struct list_head j_bh_list; +	int j_refcount; +}; + +struct reiserfs_journal { +	struct buffer_head **j_ap_blocks;	/* journal blocks on disk */ +	/* newest journal block */ +	struct reiserfs_journal_cnode *j_last; + +	/* oldest journal block.  start here for traverse */ +	struct reiserfs_journal_cnode *j_first; + +	struct block_device *j_dev_bd; +	fmode_t j_dev_mode; + +	/* first block on s_dev of reserved area journal */ +	int j_1st_reserved_block; + +	unsigned long j_state; +	unsigned int j_trans_id; +	unsigned long j_mount_id; + +	/* start of current waiting commit (index into j_ap_blocks) */ +	unsigned long j_start; +	unsigned long j_len;	/* length of current waiting commit */ + +	/* number of buffers requested by journal_begin() */ +	unsigned long j_len_alloc; + +	atomic_t j_wcount;	/* count of writers for current commit */ + +	/* batch count. allows turning X transactions into 1 */ +	unsigned long j_bcount; + +	/* first unflushed transactions offset */ +	unsigned long j_first_unflushed_offset; + +	/* last fully flushed journal timestamp */ +	unsigned j_last_flush_trans_id; + +	struct buffer_head *j_header_bh; + +	time_t j_trans_start_time;	/* time this transaction started */ +	struct mutex j_mutex; +	struct mutex j_flush_mutex; + +	/* wait for current transaction to finish before starting new one */ +	wait_queue_head_t j_join_wait; + +	atomic_t j_jlock;		/* lock for j_join_wait */ +	int j_list_bitmap_index;	/* number of next list bitmap to use */ + +	/* no more journal begins allowed. MUST sleep on j_join_wait */ +	int j_must_wait; + +	/* next journal_end will flush all journal list */ +	int j_next_full_flush; + +	/* next journal_end will flush all async commits */ +	int j_next_async_flush; + +	int j_cnode_used;	/* number of cnodes on the used list */ +	int j_cnode_free;	/* number of cnodes on the free list */ + +	/* max number of blocks in a transaction.  */ +	unsigned int j_trans_max; + +	/* max number of blocks to batch into a trans */ +	unsigned int j_max_batch; + +	/* in seconds, how old can an async commit be */ +	unsigned int j_max_commit_age; + +	/* in seconds, how old can a transaction be */ +	unsigned int j_max_trans_age; + +	/* the default for the max commit age */ +	unsigned int j_default_max_commit_age; + +	struct reiserfs_journal_cnode *j_cnode_free_list; + +	/* orig pointer returned from vmalloc */ +	struct reiserfs_journal_cnode *j_cnode_free_orig; + +	struct reiserfs_journal_list *j_current_jl; +	int j_free_bitmap_nodes; +	int j_used_bitmap_nodes; + +	int j_num_lists;	/* total number of active transactions */ +	int j_num_work_lists;	/* number that need attention from kreiserfsd */ + +	/* debugging to make sure things are flushed in order */ +	unsigned int j_last_flush_id; + +	/* debugging to make sure things are committed in order */ +	unsigned int j_last_commit_id; + +	struct list_head j_bitmap_nodes; +	struct list_head j_dirty_buffers; +	spinlock_t j_dirty_buffers_lock;	/* protects j_dirty_buffers */ + +	/* list of all active transactions */ +	struct list_head j_journal_list; + +	/* lists that haven't been touched by writeback attempts */ +	struct list_head j_working_list; + +	/* hash table for real buffer heads in current trans */ +	struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE]; + +	/* hash table for all the real buffer heads in all the transactions */ +	struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE]; + +	/* array of bitmaps to record the deleted blocks */ +	struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS]; + +	/* list of inodes which have preallocated blocks */ +	struct list_head j_prealloc_list; +	int j_persistent_trans; +	unsigned long j_max_trans_size; +	unsigned long j_max_batch_size; + +	int j_errno; + +	/* when flushing ordered buffers, throttle new ordered writers */ +	struct delayed_work j_work; +	struct super_block *j_work_sb; +	atomic_t j_async_throttle; +}; + +enum journal_state_bits { +	J_WRITERS_BLOCKED = 1,	/* set when new writers not allowed */ +	J_WRITERS_QUEUED,    /* set when log is full due to too many writers */ +	J_ABORTED,           /* set when log is aborted */ +}; + +/* ick.  magic string to find desc blocks in the journal */ +#define JOURNAL_DESC_MAGIC "ReIsErLB" + +typedef __u32(*hashf_t) (const signed char *, int); + +struct reiserfs_bitmap_info { +	__u32 free_count; +}; + +struct proc_dir_entry; + +#if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO ) +typedef unsigned long int stat_cnt_t; +typedef struct reiserfs_proc_info_data { +	spinlock_t lock; +	int exiting; +	int max_hash_collisions; + +	stat_cnt_t breads; +	stat_cnt_t bread_miss; +	stat_cnt_t search_by_key; +	stat_cnt_t search_by_key_fs_changed; +	stat_cnt_t search_by_key_restarted; + +	stat_cnt_t insert_item_restarted; +	stat_cnt_t paste_into_item_restarted; +	stat_cnt_t cut_from_item_restarted; +	stat_cnt_t delete_solid_item_restarted; +	stat_cnt_t delete_item_restarted; + +	stat_cnt_t leaked_oid; +	stat_cnt_t leaves_removable; + +	/* +	 * balances per level. +	 * Use explicit 5 as MAX_HEIGHT is not visible yet. +	 */ +	stat_cnt_t balance_at[5];	/* XXX */ +	/* sbk == search_by_key */ +	stat_cnt_t sbk_read_at[5];	/* XXX */ +	stat_cnt_t sbk_fs_changed[5]; +	stat_cnt_t sbk_restarted[5]; +	stat_cnt_t items_at[5];	/* XXX */ +	stat_cnt_t free_at[5];	/* XXX */ +	stat_cnt_t can_node_be_removed[5];	/* XXX */ +	long int lnum[5];	/* XXX */ +	long int rnum[5];	/* XXX */ +	long int lbytes[5];	/* XXX */ +	long int rbytes[5];	/* XXX */ +	stat_cnt_t get_neighbors[5]; +	stat_cnt_t get_neighbors_restart[5]; +	stat_cnt_t need_l_neighbor[5]; +	stat_cnt_t need_r_neighbor[5]; + +	stat_cnt_t free_block; +	struct __scan_bitmap_stats { +		stat_cnt_t call; +		stat_cnt_t wait; +		stat_cnt_t bmap; +		stat_cnt_t retry; +		stat_cnt_t in_journal_hint; +		stat_cnt_t in_journal_nohint; +		stat_cnt_t stolen; +	} scan_bitmap; +	struct __journal_stats { +		stat_cnt_t in_journal; +		stat_cnt_t in_journal_bitmap; +		stat_cnt_t in_journal_reusable; +		stat_cnt_t lock_journal; +		stat_cnt_t lock_journal_wait; +		stat_cnt_t journal_being; +		stat_cnt_t journal_relock_writers; +		stat_cnt_t journal_relock_wcount; +		stat_cnt_t mark_dirty; +		stat_cnt_t mark_dirty_already; +		stat_cnt_t mark_dirty_notjournal; +		stat_cnt_t restore_prepared; +		stat_cnt_t prepare; +		stat_cnt_t prepare_retry; +	} journal; +} reiserfs_proc_info_data_t; +#else +typedef struct reiserfs_proc_info_data { +} reiserfs_proc_info_data_t; +#endif + +/* reiserfs union of in-core super block data */ +struct reiserfs_sb_info { +	/* Buffer containing the super block */ +	struct buffer_head *s_sbh; + +	/* Pointer to the on-disk super block in the buffer */ +	struct reiserfs_super_block *s_rs; +	struct reiserfs_bitmap_info *s_ap_bitmap; + +	/* pointer to journal information */ +	struct reiserfs_journal *s_journal; + +	unsigned short s_mount_state;	/* reiserfs state (valid, invalid) */ + +	/* Serialize writers access, replace the old bkl */ +	struct mutex lock; + +	/* Owner of the lock (can be recursive) */ +	struct task_struct *lock_owner; + +	/* Depth of the lock, start from -1 like the bkl */ +	int lock_depth; + +	struct workqueue_struct *commit_wq; + +	/* Comment? -Hans */ +	void (*end_io_handler) (struct buffer_head *, int); + +	/* +	 * pointer to function which is used to sort names in directory. +	 * Set on mount +	 */ +	hashf_t s_hash_function; + +	/* reiserfs's mount options are set here */ +	unsigned long s_mount_opt; + +	/* This is a structure that describes block allocator options */ +	struct { +		/* Bitfield for enable/disable kind of options */ +		unsigned long bits; + +		/* +		 * size started from which we consider file +		 * to be a large one (in blocks) +		 */ +		unsigned long large_file_size; + +		int border;	/* percentage of disk, border takes */ + +		/* +		 * Minimal file size (in blocks) starting +		 * from which we do preallocations +		 */ +		int preallocmin; + +		/* +		 * Number of blocks we try to prealloc when file +		 * reaches preallocmin size (in blocks) or prealloc_list +		 is empty. +		 */ +		int preallocsize; +	} s_alloc_options; + +	/* Comment? -Hans */ +	wait_queue_head_t s_wait; +	/* increased by one every time the  tree gets re-balanced */ +	atomic_t s_generation_counter; + +	/* File system properties. Currently holds on-disk FS format */ +	unsigned long s_properties; + +	/* session statistics */ +	int s_disk_reads; +	int s_disk_writes; +	int s_fix_nodes; +	int s_do_balance; +	int s_unneeded_left_neighbor; +	int s_good_search_by_key_reada; +	int s_bmaps; +	int s_bmaps_without_search; +	int s_direct2indirect; +	int s_indirect2direct; + +	/* +	 * set up when it's ok for reiserfs_read_inode2() to read from +	 * disk inode with nlink==0. Currently this is only used during +	 * finish_unfinished() processing at mount time +	 */ +	int s_is_unlinked_ok; + +	reiserfs_proc_info_data_t s_proc_info_data; +	struct proc_dir_entry *procdir; + +	/* amount of blocks reserved for further allocations */ +	int reserved_blocks; + + +	/* this lock on now only used to protect reserved_blocks variable */ +	spinlock_t bitmap_lock; +	struct dentry *priv_root;	/* root of /.reiserfs_priv */ +	struct dentry *xattr_root;	/* root of /.reiserfs_priv/xattrs */ +	int j_errno; + +	int work_queued;              /* non-zero delayed work is queued */ +	struct delayed_work old_work; /* old transactions flush delayed work */ +	spinlock_t old_work_lock;     /* protects old_work and work_queued */ + +#ifdef CONFIG_QUOTA +	char *s_qf_names[MAXQUOTAS]; +	int s_jquota_fmt; +#endif +	char *s_jdev;		/* Stored jdev for mount option showing */ +#ifdef CONFIG_REISERFS_CHECK + +	/* +	 * Detects whether more than one copy of tb exists per superblock +	 * as a means of checking whether do_balance is executing +	 * concurrently against another tree reader/writer on a same +	 * mount point. +	 */ +	struct tree_balance *cur_tb; +#endif +}; + +/* Definitions of reiserfs on-disk properties: */ +#define REISERFS_3_5 0 +#define REISERFS_3_6 1 +#define REISERFS_OLD_FORMAT 2 + +/* Mount options */ +enum reiserfs_mount_options { +	/* large tails will be created in a session */ +	REISERFS_LARGETAIL, +	/* +	 * small (for files less than block size) tails will +	 * be created in a session +	 */ +	REISERFS_SMALLTAIL, + +	/* replay journal and return 0. Use by fsck */ +	REPLAYONLY, + +	/* +	 * -o conv: causes conversion of old format super block to the +	 * new format. If not specified - old partition will be dealt +	 * with in a manner of 3.5.x +	 */ +	REISERFS_CONVERT, + +	/* +	 * -o hash={tea, rupasov, r5, detect} is meant for properly mounting +	 * reiserfs disks from 3.5.19 or earlier.  99% of the time, this +	 * option is not required.  If the normal autodection code can't +	 * determine which hash to use (because both hashes had the same +	 * value for a file) use this option to force a specific hash. +	 * It won't allow you to override the existing hash on the FS, so +	 * if you have a tea hash disk, and mount with -o hash=rupasov, +	 * the mount will fail. +	 */ +	FORCE_TEA_HASH,		/* try to force tea hash on mount */ +	FORCE_RUPASOV_HASH,	/* try to force rupasov hash on mount */ +	FORCE_R5_HASH,		/* try to force rupasov hash on mount */ +	FORCE_HASH_DETECT,	/* try to detect hash function on mount */ + +	REISERFS_DATA_LOG, +	REISERFS_DATA_ORDERED, +	REISERFS_DATA_WRITEBACK, + +	/* +	 * used for testing experimental features, makes benchmarking new +	 * features with and without more convenient, should never be used by +	 * users in any code shipped to users (ideally) +	 */ + +	REISERFS_NO_BORDER, +	REISERFS_NO_UNHASHED_RELOCATION, +	REISERFS_HASHED_RELOCATION, +	REISERFS_ATTRS, +	REISERFS_XATTRS_USER, +	REISERFS_POSIXACL, +	REISERFS_EXPOSE_PRIVROOT, +	REISERFS_BARRIER_NONE, +	REISERFS_BARRIER_FLUSH, + +	/* Actions on error */ +	REISERFS_ERROR_PANIC, +	REISERFS_ERROR_RO, +	REISERFS_ERROR_CONTINUE, + +	REISERFS_USRQUOTA,	/* User quota option specified */ +	REISERFS_GRPQUOTA,	/* Group quota option specified */ + +	REISERFS_TEST1, +	REISERFS_TEST2, +	REISERFS_TEST3, +	REISERFS_TEST4, +	REISERFS_UNSUPPORTED_OPT, +}; + +#define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH)) +#define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH)) +#define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH)) +#define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT)) +#define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER)) +#define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION)) +#define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION)) +#define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4)) + +#define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL)) +#define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL)) +#define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY)) +#define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS)) +#define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5)) +#define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT)) +#define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG)) +#define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED)) +#define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK)) +#define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER)) +#define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL)) +#define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT)) +#define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s)) +#define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE)) +#define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH)) + +#define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC)) +#define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO)) + +void reiserfs_file_buffer(struct buffer_head *bh, int list); +extern struct file_system_type reiserfs_fs_type; +int reiserfs_resize(struct super_block *, unsigned long); + +#define CARRY_ON                0 +#define SCHEDULE_OCCURRED       1 + +#define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh) +#define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal) +#define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block) +#define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free) +#define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap) + +#define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->) + +#define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal))) +static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal +						*journal) +{ +	return test_bit(J_ABORTED, &journal->j_state); +} + +/* + * Locking primitives. The write lock is a per superblock + * special mutex that has properties close to the Big Kernel Lock + * which was used in the previous locking scheme. + */ +void reiserfs_write_lock(struct super_block *s); +void reiserfs_write_unlock(struct super_block *s); +int __must_check reiserfs_write_unlock_nested(struct super_block *s); +void reiserfs_write_lock_nested(struct super_block *s, int depth); + +#ifdef CONFIG_REISERFS_CHECK +void reiserfs_lock_check_recursive(struct super_block *s); +#else +static inline void reiserfs_lock_check_recursive(struct super_block *s) { } +#endif + +/* + * Several mutexes depend on the write lock. + * However sometimes we want to relax the write lock while we hold + * these mutexes, according to the release/reacquire on schedule() + * properties of the Bkl that were used. + * Reiserfs performances and locking were based on this scheme. + * Now that the write lock is a mutex and not the bkl anymore, doing so + * may result in a deadlock: + * + * A acquire write_lock + * A acquire j_commit_mutex + * A release write_lock and wait for something + * B acquire write_lock + * B can't acquire j_commit_mutex and sleep + * A can't acquire write lock anymore + * deadlock + * + * What we do here is avoiding such deadlock by playing the same game + * than the Bkl: if we can't acquire a mutex that depends on the write lock, + * we release the write lock, wait a bit and then retry. + * + * The mutexes concerned by this hack are: + * - The commit mutex of a journal list + * - The flush mutex + * - The journal lock + * - The inode mutex + */ +static inline void reiserfs_mutex_lock_safe(struct mutex *m, +					    struct super_block *s) +{ +	int depth; + +	depth = reiserfs_write_unlock_nested(s); +	mutex_lock(m); +	reiserfs_write_lock_nested(s, depth); +} + +static inline void +reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass, +				struct super_block *s) +{ +	int depth; + +	depth = reiserfs_write_unlock_nested(s); +	mutex_lock_nested(m, subclass); +	reiserfs_write_lock_nested(s, depth); +} + +static inline void +reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s) +{ +       int depth; +       depth = reiserfs_write_unlock_nested(s); +       down_read(sem); +       reiserfs_write_lock_nested(s, depth); +} + +/* + * When we schedule, we usually want to also release the write lock, + * according to the previous bkl based locking scheme of reiserfs. + */ +static inline void reiserfs_cond_resched(struct super_block *s) +{ +	if (need_resched()) { +		int depth; + +		depth = reiserfs_write_unlock_nested(s); +		schedule(); +		reiserfs_write_lock_nested(s, depth); +	} +} + +struct fid; + +/* + * in reading the #defines, it may help to understand that they employ + *  the following abbreviations: + * + *  B = Buffer + *  I = Item header + *  H = Height within the tree (should be changed to LEV) + *  N = Number of the item in the node + *  STAT = stat data + *  DEH = Directory Entry Header + *  EC = Entry Count + *  E = Entry number + *  UL = Unsigned Long + *  BLKH = BLocK Header + *  UNFM = UNForMatted node + *  DC = Disk Child + *  P = Path + * + *  These #defines are named by concatenating these abbreviations, + *  where first comes the arguments, and last comes the return value, + *  of the macro. + */ + +#define USE_INODE_GENERATION_COUNTER + +#define REISERFS_PREALLOCATE +#define DISPLACE_NEW_PACKING_LOCALITIES +#define PREALLOCATION_SIZE 9 + +/* n must be power of 2 */ +#define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u)) + +/* + * to be ok for alpha and others we have to align structures to 8 byte + * boundary. + * FIXME: do not change 4 by anything else: there is code which relies on that + */ +#define ROUND_UP(x) _ROUND_UP(x,8LL) + +/* + * debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug + * messages. + */ +#define REISERFS_DEBUG_CODE 5	/* extra messages to help find/debug errors */ + +void __reiserfs_warning(struct super_block *s, const char *id, +			 const char *func, const char *fmt, ...); +#define reiserfs_warning(s, id, fmt, args...) \ +	 __reiserfs_warning(s, id, __func__, fmt, ##args) +/* assertions handling */ + +/* always check a condition and panic if it's false. */ +#define __RASSERT(cond, scond, format, args...)			\ +do {									\ +	if (!(cond))							\ +		reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \ +			       __FILE__ ":%i:%s: " format "\n",		\ +			       in_interrupt() ? -1 : task_pid_nr(current), \ +			       __LINE__, __func__ , ##args);		\ +} while (0) + +#define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args) + +#if defined( CONFIG_REISERFS_CHECK ) +#define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args) +#else +#define RFALSE( cond, format, args... ) do {;} while( 0 ) +#endif + +#define CONSTF __attribute_const__ +/* + * Disk Data Structures + */ + +/*************************************************************************** + *                             SUPER BLOCK                                 * + ***************************************************************************/ + +/* + * Structure of super block on disk, a version of which in RAM is often + * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger + * structure containing fields never written to disk. + */ +#define UNSET_HASH 0	/* Detect hash on disk */ +#define TEA_HASH  1 +#define YURA_HASH 2 +#define R5_HASH   3 +#define DEFAULT_HASH R5_HASH + +struct journal_params { +	/* where does journal start from on its * device */ +	__le32 jp_journal_1st_block; + +	/* journal device st_rdev */ +	__le32 jp_journal_dev; + +	/* size of the journal */ +	__le32 jp_journal_size; + +	/* max number of blocks in a transaction. */ +	__le32 jp_journal_trans_max; + +	/* +	 * random value made on fs creation +	 * (this was sb_journal_block_count) +	 */ +	__le32 jp_journal_magic; + +	/* max number of blocks to batch into a trans */ +	__le32 jp_journal_max_batch; + +	/* in seconds, how old can an async  commit be */ +	__le32 jp_journal_max_commit_age; + +	/* in seconds, how old can a transaction be */ +	__le32 jp_journal_max_trans_age; +}; + +/* this is the super from 3.5.X, where X >= 10 */ +struct reiserfs_super_block_v1 { +	__le32 s_block_count;	/* blocks count         */ +	__le32 s_free_blocks;	/* free blocks count    */ +	__le32 s_root_block;	/* root block number    */ +	struct journal_params s_journal; +	__le16 s_blocksize;	/* block size */ + +	/* max size of object id array, see get_objectid() commentary  */ +	__le16 s_oid_maxsize; +	__le16 s_oid_cursize;	/* current size of object id array */ + +	/* this is set to 1 when filesystem was umounted, to 2 - when not */ +	__le16 s_umount_state; + +	/* +	 * reiserfs magic string indicates that file system is reiserfs: +	 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" +	 */ +	char s_magic[10]; + +	/* +	 * it is set to used by fsck to mark which +	 * phase of rebuilding is done +	 */ +	__le16 s_fs_state; +	/* +	 * indicate, what hash function is being use +	 * to sort names in a directory +	 */ +	__le32 s_hash_function_code; +	__le16 s_tree_height;	/* height of disk tree */ + +	/* +	 * amount of bitmap blocks needed to address +	 * each block of file system +	 */ +	__le16 s_bmap_nr; + +	/* +	 * this field is only reliable on filesystem with non-standard journal +	 */ +	__le16 s_version; + +	/* +	 * size in blocks of journal area on main device, we need to +	 * keep after making fs with non-standard journal +	 */ +	__le16 s_reserved_for_journal; +} __attribute__ ((__packed__)); + +#define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1)) + +/* this is the on disk super block */ +struct reiserfs_super_block { +	struct reiserfs_super_block_v1 s_v1; +	__le32 s_inode_generation; + +	/* Right now used only by inode-attributes, if enabled */ +	__le32 s_flags; + +	unsigned char s_uuid[16];	/* filesystem unique identifier */ +	unsigned char s_label[16];	/* filesystem volume label */ +	__le16 s_mnt_count;		/* Count of mounts since last fsck */ +	__le16 s_max_mnt_count;		/* Maximum mounts before check */ +	__le32 s_lastcheck;		/* Timestamp of last fsck */ +	__le32 s_check_interval;	/* Interval between checks */ + +	/* +	 * zero filled by mkreiserfs and reiserfs_convert_objectid_map_v1() +	 * so any additions must be updated there as well. */ +	char s_unused[76]; +} __attribute__ ((__packed__)); + +#define SB_SIZE (sizeof(struct reiserfs_super_block)) + +#define REISERFS_VERSION_1 0 +#define REISERFS_VERSION_2 2 + +/* on-disk super block fields converted to cpu form */ +#define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs) +#define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1)) +#define SB_BLOCKSIZE(s) \ +        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize)) +#define SB_BLOCK_COUNT(s) \ +        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count)) +#define SB_FREE_BLOCKS(s) \ +        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks)) +#define SB_REISERFS_MAGIC(s) \ +        (SB_V1_DISK_SUPER_BLOCK(s)->s_magic) +#define SB_ROOT_BLOCK(s) \ +        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block)) +#define SB_TREE_HEIGHT(s) \ +        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height)) +#define SB_REISERFS_STATE(s) \ +        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state)) +#define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version)) +#define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr)) + +#define PUT_SB_BLOCK_COUNT(s, val) \ +   do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0) +#define PUT_SB_FREE_BLOCKS(s, val) \ +   do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0) +#define PUT_SB_ROOT_BLOCK(s, val) \ +   do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0) +#define PUT_SB_TREE_HEIGHT(s, val) \ +   do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0) +#define PUT_SB_REISERFS_STATE(s, val) \ +   do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) +#define PUT_SB_VERSION(s, val) \ +   do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0) +#define PUT_SB_BMAP_NR(s, val) \ +   do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0) + +#define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal) +#define SB_ONDISK_JOURNAL_SIZE(s) \ +         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size)) +#define SB_ONDISK_JOURNAL_1st_BLOCK(s) \ +         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block)) +#define SB_ONDISK_JOURNAL_DEVICE(s) \ +         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev)) +#define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \ +         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal)) + +#define is_block_in_log_or_reserved_area(s, block) \ +         block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \ +         && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \ +         ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \ +         SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) + +int is_reiserfs_3_5(struct reiserfs_super_block *rs); +int is_reiserfs_3_6(struct reiserfs_super_block *rs); +int is_reiserfs_jr(struct reiserfs_super_block *rs); + +/* + * ReiserFS leaves the first 64k unused, so that partition labels have + * enough space.  If someone wants to write a fancy bootloader that + * needs more than 64k, let us know, and this will be increased in size. + * This number must be larger than than the largest block size on any + * platform, or code will break.  -Hans + */ +#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024) +#define REISERFS_FIRST_BLOCK unused_define +#define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES + +/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */ +#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024) + +/* reiserfs internal error code (used by search_by_key and fix_nodes)) */ +#define CARRY_ON      0 +#define REPEAT_SEARCH -1 +#define IO_ERROR      -2 +#define NO_DISK_SPACE -3 +#define NO_BALANCING_NEEDED  (-4) +#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5) +#define QUOTA_EXCEEDED -6 + +typedef __u32 b_blocknr_t; +typedef __le32 unp_t; + +struct unfm_nodeinfo { +	unp_t unfm_nodenum; +	unsigned short unfm_freespace; +}; + +/* there are two formats of keys: 3.5 and 3.6 */ +#define KEY_FORMAT_3_5 0 +#define KEY_FORMAT_3_6 1 + +/* there are two stat datas */ +#define STAT_DATA_V1 0 +#define STAT_DATA_V2 1 + +static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode) +{ +	return container_of(inode, struct reiserfs_inode_info, vfs_inode); +} + +static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb) +{ +	return sb->s_fs_info; +} + +/* + * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16 + * which overflows on large file systems. + */ +static inline __u32 reiserfs_bmap_count(struct super_block *sb) +{ +	return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1; +} + +static inline int bmap_would_wrap(unsigned bmap_nr) +{ +	return bmap_nr > ((1LL << 16) - 1); +} + +/* + * this says about version of key of all items (but stat data) the + * object consists of + */ +#define get_inode_item_key_version( inode )                                    \ +    ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5) + +#define set_inode_item_key_version( inode, version )                           \ +         ({ if((version)==KEY_FORMAT_3_6)                                      \ +                REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \ +            else                                                               \ +                REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; }) + +#define get_inode_sd_version(inode)                                            \ +    ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1) + +#define set_inode_sd_version(inode, version)                                   \ +         ({ if((version)==STAT_DATA_V2)                                        \ +                REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \ +            else                                                               \ +                REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; }) + +/* + * This is an aggressive tail suppression policy, I am hoping it + * improves our benchmarks. The principle behind it is that percentage + * space saving is what matters, not absolute space saving.  This is + * non-intuitive, but it helps to understand it if you consider that the + * cost to access 4 blocks is not much more than the cost to access 1 + * block, if you have to do a seek and rotate.  A tail risks a + * non-linear disk access that is significant as a percentage of total + * time cost for a 4 block file and saves an amount of space that is + * less significant as a percentage of space, or so goes the hypothesis. + * -Hans + */ +#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \ +(\ +  (!(n_tail_size)) || \ +  (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \ +   ( (n_file_size) >= (n_block_size) * 4 ) || \ +   ( ( (n_file_size) >= (n_block_size) * 3 ) && \ +     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \ +   ( ( (n_file_size) >= (n_block_size) * 2 ) && \ +     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \ +   ( ( (n_file_size) >= (n_block_size) ) && \ +     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \ +) + +/* + * Another strategy for tails, this one means only create a tail if all the + * file would fit into one DIRECT item. + * Primary intention for this one is to increase performance by decreasing + * seeking. +*/ +#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \ +(\ +  (!(n_tail_size)) || \ +  (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \ +) + +/* + * values for s_umount_state field + */ +#define REISERFS_VALID_FS    1 +#define REISERFS_ERROR_FS    2 + +/* + * there are 5 item types currently + */ +#define TYPE_STAT_DATA 0 +#define TYPE_INDIRECT 1 +#define TYPE_DIRECT 2 +#define TYPE_DIRENTRY 3 +#define TYPE_MAXTYPE 3 +#define TYPE_ANY 15		/* FIXME: comment is required */ + +/*************************************************************************** + *                       KEY & ITEM HEAD                                   * + ***************************************************************************/ + +/* * directories use this key as well as old files */ +struct offset_v1 { +	__le32 k_offset; +	__le32 k_uniqueness; +} __attribute__ ((__packed__)); + +struct offset_v2 { +	__le64 v; +} __attribute__ ((__packed__)); + +static inline __u16 offset_v2_k_type(const struct offset_v2 *v2) +{ +	__u8 type = le64_to_cpu(v2->v) >> 60; +	return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY; +} + +static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type) +{ +	v2->v = +	    (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60); +} + +static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2) +{ +	return le64_to_cpu(v2->v) & (~0ULL >> 4); +} + +static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset) +{ +	offset &= (~0ULL >> 4); +	v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset); +} + +/* + * Key of an item determines its location in the S+tree, and + * is composed of 4 components + */ +struct reiserfs_key { +	/* packing locality: by default parent directory object id */ +	__le32 k_dir_id; + +	__le32 k_objectid;	/* object identifier */ +	union { +		struct offset_v1 k_offset_v1; +		struct offset_v2 k_offset_v2; +	} __attribute__ ((__packed__)) u; +} __attribute__ ((__packed__)); + +struct in_core_key { +	/* packing locality: by default parent directory object id */ +	__u32 k_dir_id; +	__u32 k_objectid;	/* object identifier */ +	__u64 k_offset; +	__u8 k_type; +}; + +struct cpu_key { +	struct in_core_key on_disk_key; +	int version; +	/* 3 in all cases but direct2indirect and indirect2direct conversion */ +	int key_length; +}; + +/* + * Our function for comparing keys can compare keys of different + * lengths.  It takes as a parameter the length of the keys it is to + * compare.  These defines are used in determining what is to be passed + * to it as that parameter. + */ +#define REISERFS_FULL_KEY_LEN     4 +#define REISERFS_SHORT_KEY_LEN    2 + +/* The result of the key compare */ +#define FIRST_GREATER 1 +#define SECOND_GREATER -1 +#define KEYS_IDENTICAL 0 +#define KEY_FOUND 1 +#define KEY_NOT_FOUND 0 + +#define KEY_SIZE (sizeof(struct reiserfs_key)) +#define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32)) + +/* return values for search_by_key and clones */ +#define ITEM_FOUND 1 +#define ITEM_NOT_FOUND 0 +#define ENTRY_FOUND 1 +#define ENTRY_NOT_FOUND 0 +#define DIRECTORY_NOT_FOUND -1 +#define REGULAR_FILE_FOUND -2 +#define DIRECTORY_FOUND -3 +#define BYTE_FOUND 1 +#define BYTE_NOT_FOUND 0 +#define FILE_NOT_FOUND -1 + +#define POSITION_FOUND 1 +#define POSITION_NOT_FOUND 0 + +/* return values for reiserfs_find_entry and search_by_entry_key */ +#define NAME_FOUND 1 +#define NAME_NOT_FOUND 0 +#define GOTO_PREVIOUS_ITEM 2 +#define NAME_FOUND_INVISIBLE 3 + +/* + * Everything in the filesystem is stored as a set of items.  The + * item head contains the key of the item, its free space (for + * indirect items) and specifies the location of the item itself + * within the block. + */ + +struct item_head { +	/* +	 * Everything in the tree is found by searching for it based on +	 * its key. +	 */ +	struct reiserfs_key ih_key; +	union { +		/* +		 * The free space in the last unformatted node of an +		 * indirect item if this is an indirect item.  This +		 * equals 0xFFFF iff this is a direct item or stat data +		 * item. Note that the key, not this field, is used to +		 * determine the item type, and thus which field this +		 * union contains. +		 */ +		__le16 ih_free_space_reserved; + +		/* +		 * Iff this is a directory item, this field equals the +		 * number of directory entries in the directory item. +		 */ +		__le16 ih_entry_count; +	} __attribute__ ((__packed__)) u; +	__le16 ih_item_len;	/* total size of the item body */ + +	/* an offset to the item body within the block */ +	__le16 ih_item_location; + +	/* +	 * 0 for all old items, 2 for new ones. Highest bit is set by fsck +	 * temporary, cleaned after all done +	 */ +	__le16 ih_version; +} __attribute__ ((__packed__)); +/* size of item header     */ +#define IH_SIZE (sizeof(struct item_head)) + +#define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved) +#define ih_version(ih)               le16_to_cpu((ih)->ih_version) +#define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count) +#define ih_location(ih)              le16_to_cpu((ih)->ih_item_location) +#define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len) + +#define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0) +#define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0) +#define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0) +#define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0) +#define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0) + +#define unreachable_item(ih) (ih_version(ih) & (1 << 15)) + +#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih)) +#define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val))) + +/* + * these operate on indirect items, where you've got an array of ints + * at a possibly unaligned location.  These are a noop on ia32 + * + * p is the array of __u32, i is the index into the array, v is the value + * to store there. + */ +#define get_block_num(p, i) get_unaligned_le32((p) + (i)) +#define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i)) + +/* * in old version uniqueness field shows key type */ +#define V1_SD_UNIQUENESS 0 +#define V1_INDIRECT_UNIQUENESS 0xfffffffe +#define V1_DIRECT_UNIQUENESS 0xffffffff +#define V1_DIRENTRY_UNIQUENESS 500 +#define V1_ANY_UNIQUENESS 555	/* FIXME: comment is required */ + +/* here are conversion routines */ +static inline int uniqueness2type(__u32 uniqueness) CONSTF; +static inline int uniqueness2type(__u32 uniqueness) +{ +	switch ((int)uniqueness) { +	case V1_SD_UNIQUENESS: +		return TYPE_STAT_DATA; +	case V1_INDIRECT_UNIQUENESS: +		return TYPE_INDIRECT; +	case V1_DIRECT_UNIQUENESS: +		return TYPE_DIRECT; +	case V1_DIRENTRY_UNIQUENESS: +		return TYPE_DIRENTRY; +	case V1_ANY_UNIQUENESS: +	default: +		return TYPE_ANY; +	} +} + +static inline __u32 type2uniqueness(int type) CONSTF; +static inline __u32 type2uniqueness(int type) +{ +	switch (type) { +	case TYPE_STAT_DATA: +		return V1_SD_UNIQUENESS; +	case TYPE_INDIRECT: +		return V1_INDIRECT_UNIQUENESS; +	case TYPE_DIRECT: +		return V1_DIRECT_UNIQUENESS; +	case TYPE_DIRENTRY: +		return V1_DIRENTRY_UNIQUENESS; +	case TYPE_ANY: +	default: +		return V1_ANY_UNIQUENESS; +	} +} + +/* + * key is pointer to on disk key which is stored in le, result is cpu, + * there is no way to get version of object from key, so, provide + * version to these defines + */ +static inline loff_t le_key_k_offset(int version, +				     const struct reiserfs_key *key) +{ +	return (version == KEY_FORMAT_3_5) ? +	    le32_to_cpu(key->u.k_offset_v1.k_offset) : +	    offset_v2_k_offset(&(key->u.k_offset_v2)); +} + +static inline loff_t le_ih_k_offset(const struct item_head *ih) +{ +	return le_key_k_offset(ih_version(ih), &(ih->ih_key)); +} + +static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key) +{ +	if (version == KEY_FORMAT_3_5) { +		loff_t val = le32_to_cpu(key->u.k_offset_v1.k_uniqueness); +		return uniqueness2type(val); +	} else +		return offset_v2_k_type(&(key->u.k_offset_v2)); +} + +static inline loff_t le_ih_k_type(const struct item_head *ih) +{ +	return le_key_k_type(ih_version(ih), &(ih->ih_key)); +} + +static inline void set_le_key_k_offset(int version, struct reiserfs_key *key, +				       loff_t offset) +{ +	if (version == KEY_FORMAT_3_5) +		key->u.k_offset_v1.k_offset = cpu_to_le32(offset); +	else +		set_offset_v2_k_offset(&key->u.k_offset_v2, offset); +} + +static inline void add_le_key_k_offset(int version, struct reiserfs_key *key, +				       loff_t offset) +{ +	set_le_key_k_offset(version, key, +			    le_key_k_offset(version, key) + offset); +} + +static inline void add_le_ih_k_offset(struct item_head *ih, loff_t offset) +{ +	add_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); +} + +static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset) +{ +	set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); +} + +static inline void set_le_key_k_type(int version, struct reiserfs_key *key, +				     int type) +{ +	if (version == KEY_FORMAT_3_5) { +		type = type2uniqueness(type); +		key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type); +	} else +	       set_offset_v2_k_type(&key->u.k_offset_v2, type); +} + +static inline void set_le_ih_k_type(struct item_head *ih, int type) +{ +	set_le_key_k_type(ih_version(ih), &(ih->ih_key), type); +} + +static inline int is_direntry_le_key(int version, struct reiserfs_key *key) +{ +	return le_key_k_type(version, key) == TYPE_DIRENTRY; +} + +static inline int is_direct_le_key(int version, struct reiserfs_key *key) +{ +	return le_key_k_type(version, key) == TYPE_DIRECT; +} + +static inline int is_indirect_le_key(int version, struct reiserfs_key *key) +{ +	return le_key_k_type(version, key) == TYPE_INDIRECT; +} + +static inline int is_statdata_le_key(int version, struct reiserfs_key *key) +{ +	return le_key_k_type(version, key) == TYPE_STAT_DATA; +} + +/* item header has version.  */ +static inline int is_direntry_le_ih(struct item_head *ih) +{ +	return is_direntry_le_key(ih_version(ih), &ih->ih_key); +} + +static inline int is_direct_le_ih(struct item_head *ih) +{ +	return is_direct_le_key(ih_version(ih), &ih->ih_key); +} + +static inline int is_indirect_le_ih(struct item_head *ih) +{ +	return is_indirect_le_key(ih_version(ih), &ih->ih_key); +} + +static inline int is_statdata_le_ih(struct item_head *ih) +{ +	return is_statdata_le_key(ih_version(ih), &ih->ih_key); +} + +/* key is pointer to cpu key, result is cpu */ +static inline loff_t cpu_key_k_offset(const struct cpu_key *key) +{ +	return key->on_disk_key.k_offset; +} + +static inline loff_t cpu_key_k_type(const struct cpu_key *key) +{ +	return key->on_disk_key.k_type; +} + +static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset) +{ +	key->on_disk_key.k_offset = offset; +} + +static inline void set_cpu_key_k_type(struct cpu_key *key, int type) +{ +	key->on_disk_key.k_type = type; +} + +static inline void cpu_key_k_offset_dec(struct cpu_key *key) +{ +	key->on_disk_key.k_offset--; +} + +#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY) +#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT) +#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT) +#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA) + +/* are these used ? */ +#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key))) +#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key))) +#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key))) +#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key))) + +#define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \ +    (!COMP_SHORT_KEYS(ih, key) && \ +	  I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize)) + +/* maximal length of item */ +#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE) +#define MIN_ITEM_LEN 1 + +/* object identifier for root dir */ +#define REISERFS_ROOT_OBJECTID 2 +#define REISERFS_ROOT_PARENT_OBJECTID 1 + +extern struct reiserfs_key root_key; + +/* + * Picture represents a leaf of the S+tree + *  ______________________________________________________ + * |      |  Array of     |                   |           | + * |Block |  Object-Item  |      F r e e      |  Objects- | + * | head |  Headers      |     S p a c e     |   Items   | + * |______|_______________|___________________|___________| + */ + +/* + * Header of a disk block.  More precisely, header of a formatted leaf + * or internal node, and not the header of an unformatted node. + */ +struct block_head { +	__le16 blk_level;	/* Level of a block in the tree. */ +	__le16 blk_nr_item;	/* Number of keys/items in a block. */ +	__le16 blk_free_space;	/* Block free space in bytes. */ +	__le16 blk_reserved; +	/* dump this in v4/planA */ + +	/* kept only for compatibility */ +	struct reiserfs_key blk_right_delim_key; +}; + +#define BLKH_SIZE                     (sizeof(struct block_head)) +#define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level)) +#define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item)) +#define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space)) +#define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved)) +#define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val)) +#define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val)) +#define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val)) +#define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val)) +#define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key) +#define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val) + +/* values for blk_level field of the struct block_head */ + +/* + * When node gets removed from the tree its blk_level is set to FREE_LEVEL. + * It is then  used to see whether the node is still in the tree + */ +#define FREE_LEVEL 0 + +#define DISK_LEAF_NODE_LEVEL  1	/* Leaf node level. */ + +/* + * Given the buffer head of a formatted node, resolve to the + * block head of that node. + */ +#define B_BLK_HEAD(bh)			((struct block_head *)((bh)->b_data)) +/* Number of items that are in buffer. */ +#define B_NR_ITEMS(bh)			(blkh_nr_item(B_BLK_HEAD(bh))) +#define B_LEVEL(bh)			(blkh_level(B_BLK_HEAD(bh))) +#define B_FREE_SPACE(bh)		(blkh_free_space(B_BLK_HEAD(bh))) + +#define PUT_B_NR_ITEMS(bh, val)		do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0) +#define PUT_B_LEVEL(bh, val)		do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0) +#define PUT_B_FREE_SPACE(bh, val)	do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0) + +/* Get right delimiting key. -- little endian */ +#define B_PRIGHT_DELIM_KEY(bh)		(&(blk_right_delim_key(B_BLK_HEAD(bh)))) + +/* Does the buffer contain a disk leaf. */ +#define B_IS_ITEMS_LEVEL(bh)		(B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL) + +/* Does the buffer contain a disk internal node */ +#define B_IS_KEYS_LEVEL(bh)      (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \ +					    && B_LEVEL(bh) <= MAX_HEIGHT) + +/*************************************************************************** + *                             STAT DATA                                   * + ***************************************************************************/ + +/* + * old stat data is 32 bytes long. We are going to distinguish new one by + * different size +*/ +struct stat_data_v1 { +	__le16 sd_mode;		/* file type, permissions */ +	__le16 sd_nlink;	/* number of hard links */ +	__le16 sd_uid;		/* owner */ +	__le16 sd_gid;		/* group */ +	__le32 sd_size;		/* file size */ +	__le32 sd_atime;	/* time of last access */ +	__le32 sd_mtime;	/* time file was last modified  */ + +	/* +	 * time inode (stat data) was last changed +	 * (except changes to sd_atime and sd_mtime) +	 */ +	__le32 sd_ctime; +	union { +		__le32 sd_rdev; +		__le32 sd_blocks;	/* number of blocks file uses */ +	} __attribute__ ((__packed__)) u; + +	/* +	 * first byte of file which is stored in a direct item: except that if +	 * it equals 1 it is a symlink and if it equals ~(__u32)0 there is no +	 * direct item.  The existence of this field really grates on me. +	 * Let's replace it with a macro based on sd_size and our tail +	 * suppression policy.  Someday.  -Hans +	 */ +	__le32 sd_first_direct_byte; +} __attribute__ ((__packed__)); + +#define SD_V1_SIZE              (sizeof(struct stat_data_v1)) +#define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5) +#define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode)) +#define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v)) +#define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink)) +#define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v)) +#define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid)) +#define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v)) +#define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid)) +#define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v)) +#define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size)) +#define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v)) +#define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime)) +#define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v)) +#define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime)) +#define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v)) +#define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime)) +#define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v)) +#define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev)) +#define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v)) +#define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks)) +#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v)) +#define sd_v1_first_direct_byte(sdp) \ +                                (le32_to_cpu((sdp)->sd_first_direct_byte)) +#define set_sd_v1_first_direct_byte(sdp,v) \ +                                ((sdp)->sd_first_direct_byte = cpu_to_le32(v)) + +/* inode flags stored in sd_attrs (nee sd_reserved) */ + +/* + * we want common flags to have the same values as in ext2, + * so chattr(1) will work without problems + */ +#define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL +#define REISERFS_APPEND_FL    FS_APPEND_FL +#define REISERFS_SYNC_FL      FS_SYNC_FL +#define REISERFS_NOATIME_FL   FS_NOATIME_FL +#define REISERFS_NODUMP_FL    FS_NODUMP_FL +#define REISERFS_SECRM_FL     FS_SECRM_FL +#define REISERFS_UNRM_FL      FS_UNRM_FL +#define REISERFS_COMPR_FL     FS_COMPR_FL +#define REISERFS_NOTAIL_FL    FS_NOTAIL_FL + +/* persistent flags that file inherits from the parent directory */ +#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL |	\ +				REISERFS_SYNC_FL |	\ +				REISERFS_NOATIME_FL |	\ +				REISERFS_NODUMP_FL |	\ +				REISERFS_SECRM_FL |	\ +				REISERFS_COMPR_FL |	\ +				REISERFS_NOTAIL_FL ) + +/* + * Stat Data on disk (reiserfs version of UFS disk inode minus the + * address blocks) + */ +struct stat_data { +	__le16 sd_mode;		/* file type, permissions */ +	__le16 sd_attrs;	/* persistent inode flags */ +	__le32 sd_nlink;	/* number of hard links */ +	__le64 sd_size;		/* file size */ +	__le32 sd_uid;		/* owner */ +	__le32 sd_gid;		/* group */ +	__le32 sd_atime;	/* time of last access */ +	__le32 sd_mtime;	/* time file was last modified  */ + +	/* +	 * time inode (stat data) was last changed +	 * (except changes to sd_atime and sd_mtime) +	 */ +	__le32 sd_ctime; +	__le32 sd_blocks; +	union { +		__le32 sd_rdev; +		__le32 sd_generation; +	} __attribute__ ((__packed__)) u; +} __attribute__ ((__packed__)); + +/* this is 44 bytes long */ +#define SD_SIZE (sizeof(struct stat_data)) +#define SD_V2_SIZE              SD_SIZE +#define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6) +#define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode)) +#define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v)) +/* sd_reserved */ +/* set_sd_reserved */ +#define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink)) +#define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v)) +#define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size)) +#define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v)) +#define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid)) +#define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v)) +#define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid)) +#define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v)) +#define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime)) +#define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v)) +#define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime)) +#define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v)) +#define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime)) +#define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v)) +#define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks)) +#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v)) +#define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev)) +#define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v)) +#define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation)) +#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v)) +#define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs)) +#define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v)) + +/*************************************************************************** + *                      DIRECTORY STRUCTURE                                * + ***************************************************************************/ +/* + * Picture represents the structure of directory items + * ________________________________________________ + * |  Array of     |   |     |        |       |   | + * | directory     |N-1| N-2 | ....   |   1st |0th| + * | entry headers |   |     |        |       |   | + * |_______________|___|_____|________|_______|___| + *                  <----   directory entries         ------> + * + * First directory item has k_offset component 1. We store "." and ".." + * in one item, always, we never split "." and ".." into differing + * items.  This makes, among other things, the code for removing + * directories simpler. + */ +#define SD_OFFSET  0 +#define SD_UNIQUENESS 0 +#define DOT_OFFSET 1 +#define DOT_DOT_OFFSET 2 +#define DIRENTRY_UNIQUENESS 500 + +#define FIRST_ITEM_OFFSET 1 + +/* + * Q: How to get key of object pointed to by entry from entry? + * + * A: Each directory entry has its header. This header has deh_dir_id + *    and deh_objectid fields, those are key of object, entry points to + */ + +/* + * NOT IMPLEMENTED: + * Directory will someday contain stat data of object + */ + +struct reiserfs_de_head { +	__le32 deh_offset;	/* third component of the directory entry key */ + +	/* +	 * objectid of the parent directory of the object, that is referenced +	 * by directory entry +	 */ +	__le32 deh_dir_id; + +	/* objectid of the object, that is referenced by directory entry */ +	__le32 deh_objectid; +	__le16 deh_location;	/* offset of name in the whole item */ + +	/* +	 * whether 1) entry contains stat data (for future), and +	 * 2) whether entry is hidden (unlinked) +	 */ +	__le16 deh_state; +} __attribute__ ((__packed__)); +#define DEH_SIZE                  sizeof(struct reiserfs_de_head) +#define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset)) +#define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id)) +#define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid)) +#define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location)) +#define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state)) + +#define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v))) +#define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v))) +#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v))) +#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v))) +#define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v))) + +/* empty directory contains two entries "." and ".." and their headers */ +#define EMPTY_DIR_SIZE \ +(DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen (".."))) + +/* old format directories have this size when empty */ +#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3) + +#define DEH_Statdata 0		/* not used now */ +#define DEH_Visible 2 + +/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */ +#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__) +#   define ADDR_UNALIGNED_BITS  (3) +#endif + +/* + * These are only used to manipulate deh_state. + * Because of this, we'll use the ext2_ bit routines, + * since they are little endian + */ +#ifdef ADDR_UNALIGNED_BITS + +#   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1))) +#   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3) + +#   define set_bit_unaligned(nr, addr)	\ +	__test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) +#   define clear_bit_unaligned(nr, addr)	\ +	__test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) +#   define test_bit_unaligned(nr, addr)	\ +	test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) + +#else + +#   define set_bit_unaligned(nr, addr)	__test_and_set_bit_le(nr, addr) +#   define clear_bit_unaligned(nr, addr)	__test_and_clear_bit_le(nr, addr) +#   define test_bit_unaligned(nr, addr)	test_bit_le(nr, addr) + +#endif + +#define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) +#define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) +#define mark_de_visible(deh)	    set_bit_unaligned (DEH_Visible, &((deh)->deh_state)) +#define mark_de_hidden(deh)	    clear_bit_unaligned (DEH_Visible, &((deh)->deh_state)) + +#define de_with_sd(deh)		    test_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) +#define de_visible(deh)	    	    test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) +#define de_hidden(deh)	    	    !test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) + +extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid, +				   __le32 par_dirid, __le32 par_objid); +extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid, +				__le32 par_dirid, __le32 par_objid); + +/* two entries per block (at least) */ +#define REISERFS_MAX_NAME(block_size) 255 + +/* + * this structure is used for operations on directory entries. It is + * not a disk structure. + * + * When reiserfs_find_entry or search_by_entry_key find directory + * entry, they return filled reiserfs_dir_entry structure + */ +struct reiserfs_dir_entry { +	struct buffer_head *de_bh; +	int de_item_num; +	struct item_head *de_ih; +	int de_entry_num; +	struct reiserfs_de_head *de_deh; +	int de_entrylen; +	int de_namelen; +	char *de_name; +	unsigned long *de_gen_number_bit_string; + +	__u32 de_dir_id; +	__u32 de_objectid; + +	struct cpu_key de_entry_key; +}; + +/* + * these defines are useful when a particular member of + * a reiserfs_dir_entry is needed + */ + +/* pointer to file name, stored in entry */ +#define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh) \ +				(ih_item_body(bh, ih) + deh_location(deh)) + +/* length of name */ +#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \ +(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0)) + +/* hash value occupies bits from 7 up to 30 */ +#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL) +/* generation number occupies 7 bits starting from 0 up to 6 */ +#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL) +#define MAX_GENERATION_NUMBER  127 + +#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number)) + +/* + * Picture represents an internal node of the reiserfs tree + *  ______________________________________________________ + * |      |  Array of     |  Array of         |  Free     | + * |block |    keys       |  pointers         | space     | + * | head |      N        |      N+1          |           | + * |______|_______________|___________________|___________| + */ + +/*************************************************************************** + *                      DISK CHILD                                         * + ***************************************************************************/ +/* + * Disk child pointer: + * The pointer from an internal node of the tree to a node that is on disk. + */ +struct disk_child { +	__le32 dc_block_number;	/* Disk child's block number. */ +	__le16 dc_size;		/* Disk child's used space.   */ +	__le16 dc_reserved; +}; + +#define DC_SIZE (sizeof(struct disk_child)) +#define dc_block_number(dc_p)	(le32_to_cpu((dc_p)->dc_block_number)) +#define dc_size(dc_p)		(le16_to_cpu((dc_p)->dc_size)) +#define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0) +#define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0) + +/* Get disk child by buffer header and position in the tree node. */ +#define B_N_CHILD(bh, n_pos)  ((struct disk_child *)\ +((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos))) + +/* Get disk child number by buffer header and position in the tree node. */ +#define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos))) +#define PUT_B_N_CHILD_NUM(bh, n_pos, val) \ +				(put_dc_block_number(B_N_CHILD(bh, n_pos), val)) + + /* maximal value of field child_size in structure disk_child */ + /* child size is the combined size of all items and their headers */ +#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE )) + +/* amount of used space in buffer (not including block head) */ +#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur))) + +/* max and min number of keys in internal node */ +#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) ) +#define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2) + +/*************************************************************************** + *                      PATH STRUCTURES AND DEFINES                        * + ***************************************************************************/ + +/* + * search_by_key fills up the path from the root to the leaf as it descends + * the tree looking for the key.  It uses reiserfs_bread to try to find + * buffers in the cache given their block number.  If it does not find + * them in the cache it reads them from disk.  For each node search_by_key + * finds using reiserfs_bread it then uses bin_search to look through that + * node.  bin_search will find the position of the block_number of the next + * node if it is looking through an internal node.  If it is looking through + * a leaf node bin_search will find the position of the item which has key + * either equal to given key, or which is the maximal key less than the + * given key. + */ + +struct path_element { +	/* Pointer to the buffer at the path in the tree. */ +	struct buffer_head *pe_buffer; +	/* Position in the tree node which is placed in the buffer above. */ +	int pe_position; +}; + +/* + * maximal height of a tree. don't change this without + * changing JOURNAL_PER_BALANCE_CNT + */ +#define MAX_HEIGHT 5 + +/* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */ +#define EXTENDED_MAX_HEIGHT         7 + +/* Must be equal to at least 2. */ +#define FIRST_PATH_ELEMENT_OFFSET   2 + +/* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */ +#define ILLEGAL_PATH_ELEMENT_OFFSET 1 + +/* this MUST be MAX_HEIGHT + 1. See about FEB below */ +#define MAX_FEB_SIZE 6 + +/* + * We need to keep track of who the ancestors of nodes are.  When we + * perform a search we record which nodes were visited while + * descending the tree looking for the node we searched for. This list + * of nodes is called the path.  This information is used while + * performing balancing.  Note that this path information may become + * invalid, and this means we must check it when using it to see if it + * is still valid. You'll need to read search_by_key and the comments + * in it, especially about decrement_counters_in_path(), to understand + * this structure. + * + * Paths make the code so much harder to work with and debug.... An + * enormous number of bugs are due to them, and trying to write or modify + * code that uses them just makes my head hurt.  They are based on an + * excessive effort to avoid disturbing the precious VFS code.:-( The + * gods only know how we are going to SMP the code that uses them. + * znodes are the way! + */ + +#define PATH_READA	0x1	/* do read ahead */ +#define PATH_READA_BACK 0x2	/* read backwards */ + +struct treepath { +	int path_length;	/* Length of the array above.   */ +	int reada; +	/* Array of the path elements.  */ +	struct path_element path_elements[EXTENDED_MAX_HEIGHT]; +	int pos_in_item; +}; + +#define pos_in_item(path) ((path)->pos_in_item) + +#define INITIALIZE_PATH(var) \ +struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,} + +/* Get path element by path and path position. */ +#define PATH_OFFSET_PELEMENT(path, n_offset)  ((path)->path_elements + (n_offset)) + +/* Get buffer header at the path by path and path position. */ +#define PATH_OFFSET_PBUFFER(path, n_offset)   (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer) + +/* Get position in the element at the path by path and path position. */ +#define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position) + +#define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length)) + +/* + * you know, to the person who didn't write this the macro name does not + * at first suggest what it does.  Maybe POSITION_FROM_PATH_END? Or + * maybe we should just focus on dumping paths... -Hans + */ +#define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length)) + +/* + * in do_balance leaf has h == 0 in contrast with path structure, + * where root has level == 0. That is why we need these defines + */ + +/* tb->S[h] */ +#define PATH_H_PBUFFER(path, h) \ +			PATH_OFFSET_PBUFFER(path, path->path_length - (h)) + +/* tb->F[h] or tb->S[0]->b_parent */ +#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER(path, (h) + 1) + +#define PATH_H_POSITION(path, h) \ +			PATH_OFFSET_POSITION(path, path->path_length - (h)) + +/* tb->S[h]->b_item_order */ +#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) + +#define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h)) + +static inline void *reiserfs_node_data(const struct buffer_head *bh) +{ +	return bh->b_data + sizeof(struct block_head); +} + +/* get key from internal node */ +static inline struct reiserfs_key *internal_key(struct buffer_head *bh, +						int item_num) +{ +	struct reiserfs_key *key = reiserfs_node_data(bh); + +	return &key[item_num]; +} + +/* get the item header from leaf node */ +static inline struct item_head *item_head(const struct buffer_head *bh, +					  int item_num) +{ +	struct item_head *ih = reiserfs_node_data(bh); + +	return &ih[item_num]; +} + +/* get the key from leaf node */ +static inline struct reiserfs_key *leaf_key(const struct buffer_head *bh, +					    int item_num) +{ +	return &item_head(bh, item_num)->ih_key; +} + +static inline void *ih_item_body(const struct buffer_head *bh, +				 const struct item_head *ih) +{ +	return bh->b_data + ih_location(ih); +} + +/* get item body from leaf node */ +static inline void *item_body(const struct buffer_head *bh, int item_num) +{ +	return ih_item_body(bh, item_head(bh, item_num)); +} + +static inline struct item_head *tp_item_head(const struct treepath *path) +{ +	return item_head(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)); +} + +static inline void *tp_item_body(const struct treepath *path) +{ +	return item_body(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)); +} + +#define get_last_bh(path) PATH_PLAST_BUFFER(path) +#define get_item_pos(path) PATH_LAST_POSITION(path) +#define item_moved(ih,path) comp_items(ih, path) +#define path_changed(ih,path) comp_items (ih, path) + +/* array of the entry headers */ + /* get item body */ +#define B_I_DEH(bh, ih) ((struct reiserfs_de_head *)(ih_item_body(bh, ih))) + +/* + * length of the directory entry in directory item. This define + * calculates length of i-th directory entry using directory entry + * locations from dir entry head. When it calculates length of 0-th + * directory entry, it uses length of whole item in place of entry + * location of the non-existent following entry in the calculation. + * See picture above. + */ +static inline int entry_length(const struct buffer_head *bh, +			       const struct item_head *ih, int pos_in_item) +{ +	struct reiserfs_de_head *deh; + +	deh = B_I_DEH(bh, ih) + pos_in_item; +	if (pos_in_item) +		return deh_location(deh - 1) - deh_location(deh); + +	return ih_item_len(ih) - deh_location(deh); +} + +/*************************************************************************** + *                       MISC                                              * + ***************************************************************************/ + +/* Size of pointer to the unformatted node. */ +#define UNFM_P_SIZE (sizeof(unp_t)) +#define UNFM_P_SHIFT 2 + +/* in in-core inode key is stored on le form */ +#define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key)) + +#define MAX_UL_INT 0xffffffff +#define MAX_INT    0x7ffffff +#define MAX_US_INT 0xffff + +// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset +static inline loff_t max_reiserfs_offset(struct inode *inode) +{ +	if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5) +		return (loff_t) U32_MAX; + +	return (loff_t) ((~(__u64) 0) >> 4); +} + +#define MAX_KEY_OBJECTID	MAX_UL_INT + +#define MAX_B_NUM  MAX_UL_INT +#define MAX_FC_NUM MAX_US_INT + +/* the purpose is to detect overflow of an unsigned short */ +#define REISERFS_LINK_MAX (MAX_US_INT - 1000) + +/* + * The following defines are used in reiserfs_insert_item + * and reiserfs_append_item + */ +#define REISERFS_KERNEL_MEM		0	/* kernel memory mode */ +#define REISERFS_USER_MEM		1	/* user memory mode */ + +#define fs_generation(s) (REISERFS_SB(s)->s_generation_counter) +#define get_generation(s) atomic_read (&fs_generation(s)) +#define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen) +#define __fs_changed(gen,s) (gen != get_generation (s)) +#define fs_changed(gen,s)		\ +({					\ +	reiserfs_cond_resched(s);	\ +	__fs_changed(gen, s);		\ +}) + +/*************************************************************************** + *                  FIXATE NODES                                           * + ***************************************************************************/ + +#define VI_TYPE_LEFT_MERGEABLE 1 +#define VI_TYPE_RIGHT_MERGEABLE 2 + +/* + * To make any changes in the tree we always first find node, that + * contains item to be changed/deleted or place to insert a new + * item. We call this node S. To do balancing we need to decide what + * we will shift to left/right neighbor, or to a new node, where new + * item will be etc. To make this analysis simpler we build virtual + * node. Virtual node is an array of items, that will replace items of + * node S. (For instance if we are going to delete an item, virtual + * node does not contain it). Virtual node keeps information about + * item sizes and types, mergeability of first and last items, sizes + * of all entries in directory item. We use this array of items when + * calculating what we can shift to neighbors and how many nodes we + * have to have if we do not any shiftings, if we shift to left/right + * neighbor or to both. + */ +struct virtual_item { +	int vi_index;		/* index in the array of item operations */ +	unsigned short vi_type;	/* left/right mergeability */ + +	/* length of item that it will have after balancing */ +	unsigned short vi_item_len; + +	struct item_head *vi_ih; +	const char *vi_item;	/* body of item (old or new) */ +	const void *vi_new_data;	/* 0 always but paste mode */ +	void *vi_uarea;		/* item specific area */ +}; + +struct virtual_node { +	/* this is a pointer to the free space in the buffer */ +	char *vn_free_ptr; + +	unsigned short vn_nr_item;	/* number of items in virtual node */ + +	/* +	 * size of node , that node would have if it has +	 * unlimited size and no balancing is performed +	 */ +	short vn_size; + +	/* mode of balancing (paste, insert, delete, cut) */ +	short vn_mode; + +	short vn_affected_item_num; +	short vn_pos_in_item; + +	/* item header of inserted item, 0 for other modes */ +	struct item_head *vn_ins_ih; +	const void *vn_data; + +	/* array of items (including a new one, excluding item to be deleted) */ +	struct virtual_item *vn_vi; +}; + +/* used by directory items when creating virtual nodes */ +struct direntry_uarea { +	int flags; +	__u16 entry_count; +	__u16 entry_sizes[1]; +} __attribute__ ((__packed__)); + +/*************************************************************************** + *                  TREE BALANCE                                           * + ***************************************************************************/ + +/* + * This temporary structure is used in tree balance algorithms, and + * constructed as we go to the extent that its various parts are + * needed.  It contains arrays of nodes that can potentially be + * involved in the balancing of node S, and parameters that define how + * each of the nodes must be balanced.  Note that in these algorithms + * for balancing the worst case is to need to balance the current node + * S and the left and right neighbors and all of their parents plus + * create a new node.  We implement S1 balancing for the leaf nodes + * and S0 balancing for the internal nodes (S1 and S0 are defined in + * our papers.) + */ + +/* size of the array of buffers to free at end of do_balance */ +#define MAX_FREE_BLOCK 7 + +/* maximum number of FEB blocknrs on a single level */ +#define MAX_AMOUNT_NEEDED 2 + +/* someday somebody will prefix every field in this struct with tb_ */ +struct tree_balance { +	int tb_mode; +	int need_balance_dirty; +	struct super_block *tb_sb; +	struct reiserfs_transaction_handle *transaction_handle; +	struct treepath *tb_path; + +	/* array of left neighbors of nodes in the path */ +	struct buffer_head *L[MAX_HEIGHT]; + +	/* array of right neighbors of nodes in the path */ +	struct buffer_head *R[MAX_HEIGHT]; + +	/* array of fathers of the left neighbors */ +	struct buffer_head *FL[MAX_HEIGHT]; + +	/* array of fathers of the right neighbors */ +	struct buffer_head *FR[MAX_HEIGHT]; +	/* array of common parents of center node and its left neighbor */ +	struct buffer_head *CFL[MAX_HEIGHT]; + +	/* array of common parents of center node and its right neighbor */ +	struct buffer_head *CFR[MAX_HEIGHT]; + +	/* +	 * array of empty buffers. Number of buffers in array equals +	 * cur_blknum. +	 */ +	struct buffer_head *FEB[MAX_FEB_SIZE]; +	struct buffer_head *used[MAX_FEB_SIZE]; +	struct buffer_head *thrown[MAX_FEB_SIZE]; + +	/* +	 * array of number of items which must be shifted to the left in +	 * order to balance the current node; for leaves includes item that +	 * will be partially shifted; for internal nodes, it is the number +	 * of child pointers rather than items. It includes the new item +	 * being created. The code sometimes subtracts one to get the +	 * number of wholly shifted items for other purposes. +	 */ +	int lnum[MAX_HEIGHT]; + +	/* substitute right for left in comment above */ +	int rnum[MAX_HEIGHT]; + +	/* +	 * array indexed by height h mapping the key delimiting L[h] and +	 * S[h] to its item number within the node CFL[h] +	 */ +	int lkey[MAX_HEIGHT]; + +	/* substitute r for l in comment above */ +	int rkey[MAX_HEIGHT]; + +	/* +	 * the number of bytes by we are trying to add or remove from +	 * S[h]. A negative value means removing. +	 */ +	int insert_size[MAX_HEIGHT]; + +	/* +	 * number of nodes that will replace node S[h] after balancing +	 * on the level h of the tree.  If 0 then S is being deleted, +	 * if 1 then S is remaining and no new nodes are being created, +	 * if 2 or 3 then 1 or 2 new nodes is being created +	 */ +	int blknum[MAX_HEIGHT]; + +	/* fields that are used only for balancing leaves of the tree */ + +	/* number of empty blocks having been already allocated */ +	int cur_blknum; + +	/* number of items that fall into left most node when S[0] splits */ +	int s0num; + +	/* +	 * number of bytes which can flow to the left neighbor from the left +	 * most liquid item that cannot be shifted from S[0] entirely +	 * if -1 then nothing will be partially shifted +	 */ +	int lbytes; + +	/* +	 * number of bytes which will flow to the right neighbor from the right +	 * most liquid item that cannot be shifted from S[0] entirely +	 * if -1 then nothing will be partially shifted +	 */ +	int rbytes; + + +	/* +	 * index into the array of item headers in +	 * S[0] of the affected item +	 */ +	int item_pos; + +	/* new nodes allocated to hold what could not fit into S */ +	struct buffer_head *S_new[2]; + +	/* +	 * number of items that will be placed into nodes in S_new +	 * when S[0] splits +	 */ +	int snum[2]; + +	/* +	 * number of bytes which flow to nodes in S_new when S[0] splits +	 * note: if S[0] splits into 3 nodes, then items do not need to be cut +	 */ +	int sbytes[2]; + +	int pos_in_item; +	int zeroes_num; + +	/* +	 * buffers which are to be freed after do_balance finishes +	 * by unfix_nodes +	 */ +	struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; + +	/* +	 * kmalloced memory. Used to create virtual node and keep +	 * map of dirtied bitmap blocks +	 */ +	char *vn_buf; + +	int vn_buf_size;	/* size of the vn_buf */ + +	/* VN starts after bitmap of bitmap blocks */ +	struct virtual_node *tb_vn; + +	/* +	 * saved value of `reiserfs_generation' counter see +	 * FILESYSTEM_CHANGED() macro in reiserfs_fs.h +	 */ +	int fs_gen; + +#ifdef DISPLACE_NEW_PACKING_LOCALITIES +	/* +	 * key pointer, to pass to block allocator or +	 * another low-level subsystem +	 */ +	struct in_core_key key; +#endif +}; + +/* These are modes of balancing */ + +/* When inserting an item. */ +#define M_INSERT	'i' +/* + * When inserting into (directories only) or appending onto an already + * existent item. + */ +#define M_PASTE		'p' +/* When deleting an item. */ +#define M_DELETE	'd' +/* When truncating an item or removing an entry from a (directory) item. */ +#define M_CUT		'c' + +/* used when balancing on leaf level skipped (in reiserfsck) */ +#define M_INTERNAL	'n' + +/* + * When further balancing is not needed, then do_balance does not need + * to be called. + */ +#define M_SKIP_BALANCING		's' +#define M_CONVERT	'v' + +/* modes of leaf_move_items */ +#define LEAF_FROM_S_TO_L 0 +#define LEAF_FROM_S_TO_R 1 +#define LEAF_FROM_R_TO_L 2 +#define LEAF_FROM_L_TO_R 3 +#define LEAF_FROM_S_TO_SNEW 4 + +#define FIRST_TO_LAST 0 +#define LAST_TO_FIRST 1 + +/* + * used in do_balance for passing parent of node information that has + * been gotten from tb struct + */ +struct buffer_info { +	struct tree_balance *tb; +	struct buffer_head *bi_bh; +	struct buffer_head *bi_parent; +	int bi_position; +}; + +static inline struct super_block *sb_from_tb(struct tree_balance *tb) +{ +	return tb ? tb->tb_sb : NULL; +} + +static inline struct super_block *sb_from_bi(struct buffer_info *bi) +{ +	return bi ? sb_from_tb(bi->tb) : NULL; +} + +/* + * there are 4 types of items: stat data, directory item, indirect, direct. + * +-------------------+------------+--------------+------------+ + * |                   |  k_offset  | k_uniqueness | mergeable? | + * +-------------------+------------+--------------+------------+ + * |     stat data     |     0      |      0       |   no       | + * +-------------------+------------+--------------+------------+ + * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. |   no       | + * | non 1st directory | hash value | UNIQUENESS   |   yes      | + * |     item          |            |              |            | + * +-------------------+------------+--------------+------------+ + * | indirect item     | offset + 1 |TYPE_INDIRECT |    [1]	| + * +-------------------+------------+--------------+------------+ + * | direct item       | offset + 1 |TYPE_DIRECT   |    [2]     | + * +-------------------+------------+--------------+------------+ + * + * [1] if this is not the first indirect item of the object + * [2] if this is not the first direct item of the object +*/ + +struct item_operations { +	int (*bytes_number) (struct item_head * ih, int block_size); +	void (*decrement_key) (struct cpu_key *); +	int (*is_left_mergeable) (struct reiserfs_key * ih, +				  unsigned long bsize); +	void (*print_item) (struct item_head *, char *item); +	void (*check_item) (struct item_head *, char *item); + +	int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, +			  int is_affected, int insert_size); +	int (*check_left) (struct virtual_item * vi, int free, +			   int start_skip, int end_skip); +	int (*check_right) (struct virtual_item * vi, int free); +	int (*part_size) (struct virtual_item * vi, int from, int to); +	int (*unit_num) (struct virtual_item * vi); +	void (*print_vi) (struct virtual_item * vi); +}; + +extern struct item_operations *item_ops[TYPE_ANY + 1]; + +#define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize) +#define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize) +#define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item) +#define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item) +#define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size) +#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip) +#define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free) +#define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to) +#define op_unit_num(vi)				     item_ops[(vi)->vi_index]->unit_num (vi) +#define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi) + +#define COMP_SHORT_KEYS comp_short_keys + +/* number of blocks pointed to by the indirect item */ +#define I_UNFM_NUM(ih)	(ih_item_len(ih) / UNFM_P_SIZE) + +/* + * the used space within the unformatted node corresponding + * to pos within the item pointed to by ih + */ +#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size)) + +/* + * number of bytes contained by the direct item or the + * unformatted nodes the indirect item points to + */ + +/* following defines use reiserfs buffer header and item header */ + +/* get stat-data */ +#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) ) + +/* this is 3976 for size==4096 */ +#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE) + +/* + * indirect items consist of entries which contain blocknrs, pos + * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the + * blocknr contained by the entry pos points to + */ +#define B_I_POS_UNFM_POINTER(bh, ih, pos)				\ +	le32_to_cpu(*(((unp_t *)ih_item_body(bh, ih)) + (pos))) +#define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val)			\ +	(*(((unp_t *)ih_item_body(bh, ih)) + (pos)) = cpu_to_le32(val)) + +struct reiserfs_iget_args { +	__u32 objectid; +	__u32 dirid; +}; + +/*************************************************************************** + *                    FUNCTION DECLARATIONS                                * + ***************************************************************************/ + +#define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12) + +#define journal_trans_half(blocksize) \ +	((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32)) + +/* journal.c see journal.c for all the comments here */ + +/* first block written in a commit.  */ +struct reiserfs_journal_desc { +	__le32 j_trans_id;	/* id of commit */ + +	/* length of commit. len +1 is the commit block */ +	__le32 j_len; + +	__le32 j_mount_id;	/* mount id of this trans */ +	__le32 j_realblock[1];	/* real locations for each block */ +}; + +#define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id) +#define get_desc_trans_len(d)  le32_to_cpu((d)->j_len) +#define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id) + +#define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0) +#define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0) +#define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0) + +/* last block written in a commit */ +struct reiserfs_journal_commit { +	__le32 j_trans_id;	/* must match j_trans_id from the desc block */ +	__le32 j_len;		/* ditto */ +	__le32 j_realblock[1];	/* real locations for each block */ +}; + +#define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id) +#define get_commit_trans_len(c)        le32_to_cpu((c)->j_len) +#define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id) + +#define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0) +#define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0) + +/* + * this header block gets written whenever a transaction is considered + * fully flushed, and is more recent than the last fully flushed transaction. + * fully flushed means all the log blocks and all the real blocks are on + * disk, and this transaction does not need to be replayed. + */ +struct reiserfs_journal_header { +	/* id of last fully flushed transaction */ +	__le32 j_last_flush_trans_id; + +	/* offset in the log of where to start replay after a crash */ +	__le32 j_first_unflushed_offset; + +	__le32 j_mount_id; +	/* 12 */ struct journal_params jh_journal; +}; + +/* biggest tunable defines are right here */ +#define JOURNAL_BLOCK_COUNT 8192	/* number of blocks in the journal */ + +/* biggest possible single transaction, don't change for now (8/3/99) */ +#define JOURNAL_TRANS_MAX_DEFAULT 1024 +#define JOURNAL_TRANS_MIN_DEFAULT 256 + +/* + * max blocks to batch into one transaction, + * don't make this any bigger than 900 + */ +#define JOURNAL_MAX_BATCH_DEFAULT   900 +#define JOURNAL_MIN_RATIO 2 +#define JOURNAL_MAX_COMMIT_AGE 30 +#define JOURNAL_MAX_TRANS_AGE 30 +#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9) +#define JOURNAL_BLOCKS_PER_OBJECT(sb)  (JOURNAL_PER_BALANCE_CNT * 3 + \ +					 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \ +					      REISERFS_QUOTA_TRANS_BLOCKS(sb))) + +#ifdef CONFIG_QUOTA +#define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA)) +/* We need to update data and inode (atime) */ +#define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0) +/* 1 balancing, 1 bitmap, 1 data per write + stat data update */ +#define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ +(DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0) +/* same as with INIT */ +#define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ +(DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0) +#else +#define REISERFS_QUOTA_TRANS_BLOCKS(s) 0 +#define REISERFS_QUOTA_INIT_BLOCKS(s) 0 +#define REISERFS_QUOTA_DEL_BLOCKS(s) 0 +#endif + +/* + * both of these can be as low as 1, or as high as you want.  The min is the + * number of 4k bitmap nodes preallocated on mount. New nodes are allocated + * as needed, and released when transactions are committed.  On release, if + * the current number of nodes is > max, the node is freed, otherwise, + * it is put on a free list for faster use later. +*/ +#define REISERFS_MIN_BITMAP_NODES 10 +#define REISERFS_MAX_BITMAP_NODES 100 + +/* these are based on journal hash size of 8192 */ +#define JBH_HASH_SHIFT 13 +#define JBH_HASH_MASK 8191 + +#define _jhashfn(sb,block)	\ +	(((unsigned long)sb>>L1_CACHE_SHIFT) ^ \ +	 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12)))) +#define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK]) + +/* We need these to make journal.c code more readable */ +#define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) +#define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) +#define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) + +enum reiserfs_bh_state_bits { +	BH_JDirty = BH_PrivateStart,	/* buffer is in current transaction */ +	BH_JDirty_wait, +	/* +	 * disk block was taken off free list before being in a +	 * finished transaction, or written to disk. Can be reused immed. +	 */ +	BH_JNew, +	BH_JPrepared, +	BH_JRestore_dirty, +	BH_JTest,		/* debugging only will go away */ +}; + +BUFFER_FNS(JDirty, journaled); +TAS_BUFFER_FNS(JDirty, journaled); +BUFFER_FNS(JDirty_wait, journal_dirty); +TAS_BUFFER_FNS(JDirty_wait, journal_dirty); +BUFFER_FNS(JNew, journal_new); +TAS_BUFFER_FNS(JNew, journal_new); +BUFFER_FNS(JPrepared, journal_prepared); +TAS_BUFFER_FNS(JPrepared, journal_prepared); +BUFFER_FNS(JRestore_dirty, journal_restore_dirty); +TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty); +BUFFER_FNS(JTest, journal_test); +TAS_BUFFER_FNS(JTest, journal_test); + +/* transaction handle which is passed around for all journal calls */ +struct reiserfs_transaction_handle { +	/* +	 * super for this FS when journal_begin was called. saves calls to +	 * reiserfs_get_super also used by nested transactions to make +	 * sure they are nesting on the right FS _must_ be first +	 * in the handle +	 */ +	struct super_block *t_super; + +	int t_refcount; +	int t_blocks_logged;	/* number of blocks this writer has logged */ +	int t_blocks_allocated;	/* number of blocks this writer allocated */ + +	/* sanity check, equals the current trans id */ +	unsigned int t_trans_id; + +	void *t_handle_save;	/* save existing current->journal_info */ + +	/* +	 * if new block allocation occurres, that block +	 * should be displaced from others +	 */ +	unsigned displace_new_blocks:1; + +	struct list_head t_list; +}; + +/* + * used to keep track of ordered and tail writes, attached to the buffer + * head through b_journal_head. + */ +struct reiserfs_jh { +	struct reiserfs_journal_list *jl; +	struct buffer_head *bh; +	struct list_head list; +}; + +void reiserfs_free_jh(struct buffer_head *bh); +int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh); +int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh); +int journal_mark_dirty(struct reiserfs_transaction_handle *, +		       struct buffer_head *bh); + +static inline int reiserfs_file_data_log(struct inode *inode) +{ +	if (reiserfs_data_log(inode->i_sb) || +	    (REISERFS_I(inode)->i_flags & i_data_log)) +		return 1; +	return 0; +} + +static inline int reiserfs_transaction_running(struct super_block *s) +{ +	struct reiserfs_transaction_handle *th = current->journal_info; +	if (th && th->t_super == s) +		return 1; +	if (th && th->t_super == NULL) +		BUG(); +	return 0; +} + +static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th) +{ +	return th->t_blocks_allocated - th->t_blocks_logged; +} + +struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct +								    super_block +								    *, +								    int count); +int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *); +void reiserfs_vfs_truncate_file(struct inode *inode); +int reiserfs_commit_page(struct inode *inode, struct page *page, +			 unsigned from, unsigned to); +void reiserfs_flush_old_commits(struct super_block *); +int reiserfs_commit_for_inode(struct inode *); +int reiserfs_inode_needs_commit(struct inode *); +void reiserfs_update_inode_transaction(struct inode *); +void reiserfs_wait_on_write_block(struct super_block *s); +void reiserfs_block_writes(struct reiserfs_transaction_handle *th); +void reiserfs_allow_writes(struct super_block *s); +void reiserfs_check_lock_depth(struct super_block *s, char *caller); +int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, +				 int wait); +void reiserfs_restore_prepared_buffer(struct super_block *, +				      struct buffer_head *bh); +int journal_init(struct super_block *, const char *j_dev_name, int old_format, +		 unsigned int); +int journal_release(struct reiserfs_transaction_handle *, struct super_block *); +int journal_release_error(struct reiserfs_transaction_handle *, +			  struct super_block *); +int journal_end(struct reiserfs_transaction_handle *); +int journal_end_sync(struct reiserfs_transaction_handle *); +int journal_mark_freed(struct reiserfs_transaction_handle *, +		       struct super_block *, b_blocknr_t blocknr); +int journal_transaction_should_end(struct reiserfs_transaction_handle *, int); +int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr, +			 int bit_nr, int searchall, b_blocknr_t *next); +int journal_begin(struct reiserfs_transaction_handle *, +		  struct super_block *sb, unsigned long); +int journal_join_abort(struct reiserfs_transaction_handle *, +		       struct super_block *sb); +void reiserfs_abort_journal(struct super_block *sb, int errno); +void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...); +int reiserfs_allocate_list_bitmaps(struct super_block *s, +				   struct reiserfs_list_bitmap *, unsigned int); + +void reiserfs_schedule_old_flush(struct super_block *s); +void add_save_link(struct reiserfs_transaction_handle *th, +		   struct inode *inode, int truncate); +int remove_save_link(struct inode *inode, int truncate); + +/* objectid.c */ +__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th); +void reiserfs_release_objectid(struct reiserfs_transaction_handle *th, +			       __u32 objectid_to_release); +int reiserfs_convert_objectid_map_v1(struct super_block *); + +/* stree.c */ +int B_IS_IN_TREE(const struct buffer_head *); +extern void copy_item_head(struct item_head *to, +			   const struct item_head *from); + +/* first key is in cpu form, second - le */ +extern int comp_short_keys(const struct reiserfs_key *le_key, +			   const struct cpu_key *cpu_key); +extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from); + +/* both are in le form */ +extern int comp_le_keys(const struct reiserfs_key *, +			const struct reiserfs_key *); +extern int comp_short_le_keys(const struct reiserfs_key *, +			      const struct reiserfs_key *); + +/* * get key version from on disk key - kludge */ +static inline int le_key_version(const struct reiserfs_key *key) +{ +	int type; + +	type = offset_v2_k_type(&(key->u.k_offset_v2)); +	if (type != TYPE_DIRECT && type != TYPE_INDIRECT +	    && type != TYPE_DIRENTRY) +		return KEY_FORMAT_3_5; + +	return KEY_FORMAT_3_6; + +} + +static inline void copy_key(struct reiserfs_key *to, +			    const struct reiserfs_key *from) +{ +	memcpy(to, from, KEY_SIZE); +} + +int comp_items(const struct item_head *stored_ih, const struct treepath *path); +const struct reiserfs_key *get_rkey(const struct treepath *chk_path, +				    const struct super_block *sb); +int search_by_key(struct super_block *, const struct cpu_key *, +		  struct treepath *, int); +#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL) +int search_for_position_by_key(struct super_block *sb, +			       const struct cpu_key *cpu_key, +			       struct treepath *search_path); +extern void decrement_bcount(struct buffer_head *bh); +void decrement_counters_in_path(struct treepath *search_path); +void pathrelse(struct treepath *search_path); +int reiserfs_check_path(struct treepath *p); +void pathrelse_and_restore(struct super_block *s, struct treepath *search_path); + +int reiserfs_insert_item(struct reiserfs_transaction_handle *th, +			 struct treepath *path, +			 const struct cpu_key *key, +			 struct item_head *ih, +			 struct inode *inode, const char *body); + +int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, +			     struct treepath *path, +			     const struct cpu_key *key, +			     struct inode *inode, +			     const char *body, int paste_size); + +int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, +			   struct treepath *path, +			   struct cpu_key *key, +			   struct inode *inode, +			   struct page *page, loff_t new_file_size); + +int reiserfs_delete_item(struct reiserfs_transaction_handle *th, +			 struct treepath *path, +			 const struct cpu_key *key, +			 struct inode *inode, struct buffer_head *un_bh); + +void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, +				struct inode *inode, struct reiserfs_key *key); +int reiserfs_delete_object(struct reiserfs_transaction_handle *th, +			   struct inode *inode); +int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, +			 struct inode *inode, struct page *, +			 int update_timestamps); + +#define i_block_size(inode) ((inode)->i_sb->s_blocksize) +#define file_size(inode) ((inode)->i_size) +#define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1)) + +#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\ +!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 ) + +void padd_item(char *item, int total_length, int length); + +/* inode.c */ +/* args for the create parameter of reiserfs_get_block */ +#define GET_BLOCK_NO_CREATE 0	 /* don't create new blocks or convert tails */ +#define GET_BLOCK_CREATE 1	 /* add anything you need to find block */ +#define GET_BLOCK_NO_HOLE 2	 /* return -ENOENT for file holes */ +#define GET_BLOCK_READ_DIRECT 4	 /* read the tail if indirect item not found */ +#define GET_BLOCK_NO_IMUX     8	 /* i_mutex is not held, don't preallocate */ +#define GET_BLOCK_NO_DANGLE   16 /* don't leave any transactions running */ + +void reiserfs_read_locked_inode(struct inode *inode, +				struct reiserfs_iget_args *args); +int reiserfs_find_actor(struct inode *inode, void *p); +int reiserfs_init_locked_inode(struct inode *inode, void *p); +void reiserfs_evict_inode(struct inode *inode); +int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc); +int reiserfs_get_block(struct inode *inode, sector_t block, +		       struct buffer_head *bh_result, int create); +struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, +				     int fh_len, int fh_type); +struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, +				     int fh_len, int fh_type); +int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp, +		       struct inode *parent); + +int reiserfs_truncate_file(struct inode *, int update_timestamps); +void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset, +		  int type, int key_length); +void make_le_item_head(struct item_head *ih, const struct cpu_key *key, +		       int version, +		       loff_t offset, int type, int length, int entry_count); +struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key); + +struct reiserfs_security_handle; +int reiserfs_new_inode(struct reiserfs_transaction_handle *th, +		       struct inode *dir, umode_t mode, +		       const char *symname, loff_t i_size, +		       struct dentry *dentry, struct inode *inode, +		       struct reiserfs_security_handle *security); + +void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, +			     struct inode *inode, loff_t size); + +static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th, +				      struct inode *inode) +{ +	reiserfs_update_sd_size(th, inode, inode->i_size); +} + +void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode); +void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs); +int reiserfs_setattr(struct dentry *dentry, struct iattr *attr); + +int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len); + +/* namei.c */ +void set_de_name_and_namelen(struct reiserfs_dir_entry *de); +int search_by_entry_key(struct super_block *sb, const struct cpu_key *key, +			struct treepath *path, struct reiserfs_dir_entry *de); +struct dentry *reiserfs_get_parent(struct dentry *); + +#ifdef CONFIG_REISERFS_PROC_INFO +int reiserfs_proc_info_init(struct super_block *sb); +int reiserfs_proc_info_done(struct super_block *sb); +int reiserfs_proc_info_global_init(void); +int reiserfs_proc_info_global_done(void); + +#define PROC_EXP( e )   e + +#define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data +#define PROC_INFO_MAX( sb, field, value )								\ +    __PINFO( sb ).field =												\ +        max( REISERFS_SB( sb ) -> s_proc_info_data.field, value ) +#define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) ) +#define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) ) +#define PROC_INFO_BH_STAT( sb, bh, level )							\ +    PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );						\ +    PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );	\ +    PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) ) +#else +static inline int reiserfs_proc_info_init(struct super_block *sb) +{ +	return 0; +} + +static inline int reiserfs_proc_info_done(struct super_block *sb) +{ +	return 0; +} + +static inline int reiserfs_proc_info_global_init(void) +{ +	return 0; +} + +static inline int reiserfs_proc_info_global_done(void) +{ +	return 0; +} + +#define PROC_EXP( e ) +#define VOID_V ( ( void ) 0 ) +#define PROC_INFO_MAX( sb, field, value ) VOID_V +#define PROC_INFO_INC( sb, field ) VOID_V +#define PROC_INFO_ADD( sb, field, val ) VOID_V +#define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V +#endif + +/* dir.c */ +extern const struct inode_operations reiserfs_dir_inode_operations; +extern const struct inode_operations reiserfs_symlink_inode_operations; +extern const struct inode_operations reiserfs_special_inode_operations; +extern const struct file_operations reiserfs_dir_operations; +int reiserfs_readdir_inode(struct inode *, struct dir_context *); + +/* tail_conversion.c */ +int direct2indirect(struct reiserfs_transaction_handle *, struct inode *, +		    struct treepath *, struct buffer_head *, loff_t); +int indirect2direct(struct reiserfs_transaction_handle *, struct inode *, +		    struct page *, struct treepath *, const struct cpu_key *, +		    loff_t, char *); +void reiserfs_unmap_buffer(struct buffer_head *); + +/* file.c */ +extern const struct inode_operations reiserfs_file_inode_operations; +extern const struct file_operations reiserfs_file_operations; +extern const struct address_space_operations reiserfs_address_space_operations; + +/* fix_nodes.c */ + +int fix_nodes(int n_op_mode, struct tree_balance *tb, +	      struct item_head *ins_ih, const void *); +void unfix_nodes(struct tree_balance *); + +/* prints.c */ +void __reiserfs_panic(struct super_block *s, const char *id, +		      const char *function, const char *fmt, ...) +    __attribute__ ((noreturn)); +#define reiserfs_panic(s, id, fmt, args...) \ +	__reiserfs_panic(s, id, __func__, fmt, ##args) +void __reiserfs_error(struct super_block *s, const char *id, +		      const char *function, const char *fmt, ...); +#define reiserfs_error(s, id, fmt, args...) \ +	 __reiserfs_error(s, id, __func__, fmt, ##args) +void reiserfs_info(struct super_block *s, const char *fmt, ...); +void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...); +void print_indirect_item(struct buffer_head *bh, int item_num); +void store_print_tb(struct tree_balance *tb); +void print_cur_tb(char *mes); +void print_de(struct reiserfs_dir_entry *de); +void print_bi(struct buffer_info *bi, char *mes); +#define PRINT_LEAF_ITEMS 1	/* print all items */ +#define PRINT_DIRECTORY_ITEMS 2	/* print directory items */ +#define PRINT_DIRECT_ITEMS 4	/* print contents of direct items */ +void print_block(struct buffer_head *bh, ...); +void print_bmap(struct super_block *s, int silent); +void print_bmap_block(int i, char *data, int size, int silent); +/*void print_super_block (struct super_block * s, char * mes);*/ +void print_objectid_map(struct super_block *s); +void print_block_head(struct buffer_head *bh, char *mes); +void check_leaf(struct buffer_head *bh); +void check_internal(struct buffer_head *bh); +void print_statistics(struct super_block *s); +char *reiserfs_hashname(int code); + +/* lbalance.c */ +int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num, +		    int mov_bytes, struct buffer_head *Snew); +int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes); +int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes); +void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first, +		       int del_num, int del_bytes); +void leaf_insert_into_buf(struct buffer_info *bi, int before, +			  struct item_head *inserted_item_ih, +			  const char *inserted_item_body, int zeros_number); +void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num, +			  int pos_in_item, int paste_size, const char *body, +			  int zeros_number); +void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num, +			  int pos_in_item, int cut_size); +void leaf_paste_entries(struct buffer_info *bi, int item_num, int before, +			int new_entry_count, struct reiserfs_de_head *new_dehs, +			const char *records, int paste_size); +/* ibalance.c */ +int balance_internal(struct tree_balance *, int, int, struct item_head *, +		     struct buffer_head **); + +/* do_balance.c */ +void do_balance_mark_leaf_dirty(struct tree_balance *tb, +				struct buffer_head *bh, int flag); +#define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty +#define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty + +void do_balance(struct tree_balance *tb, struct item_head *ih, +		const char *body, int flag); +void reiserfs_invalidate_buffer(struct tree_balance *tb, +				struct buffer_head *bh); + +int get_left_neighbor_position(struct tree_balance *tb, int h); +int get_right_neighbor_position(struct tree_balance *tb, int h); +void replace_key(struct tree_balance *tb, struct buffer_head *, int, +		 struct buffer_head *, int); +void make_empty_node(struct buffer_info *); +struct buffer_head *get_FEB(struct tree_balance *); + +/* bitmap.c */ + +/* + * structure contains hints for block allocator, and it is a container for + * arguments, such as node, search path, transaction_handle, etc. + */ +struct __reiserfs_blocknr_hint { +	/* inode passed to allocator, if we allocate unf. nodes */ +	struct inode *inode; + +	sector_t block;		/* file offset, in blocks */ +	struct in_core_key key; + +	/* +	 * search path, used by allocator to deternine search_start by +	 * various ways +	 */ +	struct treepath *path; + +	/* +	 * transaction handle is needed to log super blocks +	 * and bitmap blocks changes +	 */ +	struct reiserfs_transaction_handle *th; + +	b_blocknr_t beg, end; + +	/* +	 * a field used to transfer search start value (block number) +	 * between different block allocator procedures +	 * (determine_search_start() and others) +	 */ +	b_blocknr_t search_start; + +	/* +	 * is set in determine_prealloc_size() function, +	 * used by underlayed function that do actual allocation +	 */ +	int prealloc_size; + +	/* +	 * the allocator uses different polices for getting disk +	 * space for formatted/unformatted blocks with/without preallocation +	 */ +	unsigned formatted_node:1; +	unsigned preallocate:1; +}; + +typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t; + +int reiserfs_parse_alloc_options(struct super_block *, char *); +void reiserfs_init_alloc_options(struct super_block *s); + +/* + * given a directory, this will tell you what packing locality + * to use for a new object underneat it.  The locality is returned + * in disk byte order (le). + */ +__le32 reiserfs_choose_packing(struct inode *dir); + +void show_alloc_options(struct seq_file *seq, struct super_block *s); +int reiserfs_init_bitmap_cache(struct super_block *sb); +void reiserfs_free_bitmap_cache(struct super_block *sb); +void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info); +struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap); +int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value); +void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *, +			 b_blocknr_t, int for_unformatted); +int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int, +			       int); +static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb, +					     b_blocknr_t * new_blocknrs, +					     int amount_needed) +{ +	reiserfs_blocknr_hint_t hint = { +		.th = tb->transaction_handle, +		.path = tb->tb_path, +		.inode = NULL, +		.key = tb->key, +		.block = 0, +		.formatted_node = 1 +	}; +	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, +					  0); +} + +static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle +					    *th, struct inode *inode, +					    b_blocknr_t * new_blocknrs, +					    struct treepath *path, +					    sector_t block) +{ +	reiserfs_blocknr_hint_t hint = { +		.th = th, +		.path = path, +		.inode = inode, +		.block = block, +		.formatted_node = 0, +		.preallocate = 0 +	}; +	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); +} + +#ifdef REISERFS_PREALLOCATE +static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle +					     *th, struct inode *inode, +					     b_blocknr_t * new_blocknrs, +					     struct treepath *path, +					     sector_t block) +{ +	reiserfs_blocknr_hint_t hint = { +		.th = th, +		.path = path, +		.inode = inode, +		.block = block, +		.formatted_node = 0, +		.preallocate = 1 +	}; +	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); +} + +void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th, +			       struct inode *inode); +void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th); +#endif + +/* hashes.c */ +__u32 keyed_hash(const signed char *msg, int len); +__u32 yura_hash(const signed char *msg, int len); +__u32 r5_hash(const signed char *msg, int len); + +#define reiserfs_set_le_bit		__set_bit_le +#define reiserfs_test_and_set_le_bit	__test_and_set_bit_le +#define reiserfs_clear_le_bit		__clear_bit_le +#define reiserfs_test_and_clear_le_bit	__test_and_clear_bit_le +#define reiserfs_test_le_bit		test_bit_le +#define reiserfs_find_next_zero_le_bit	find_next_zero_bit_le + +/* + * sometimes reiserfs_truncate may require to allocate few new blocks + * to perform indirect2direct conversion. People probably used to + * think, that truncate should work without problems on a filesystem + * without free disk space. They may complain that they can not + * truncate due to lack of free disk space. This spare space allows us + * to not worry about it. 500 is probably too much, but it should be + * absolutely safe + */ +#define SPARE_SPACE 500 + +/* prototypes from ioctl.c */ +long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); +long reiserfs_compat_ioctl(struct file *filp, +		   unsigned int cmd, unsigned long arg); +int reiserfs_unpack(struct inode *inode, struct file *filp);  | 
