aboutsummaryrefslogtreecommitdiff
path: root/fs/btrfs/scrub.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/btrfs/scrub.c')
-rw-r--r--fs/btrfs/scrub.c3128
1 files changed, 2419 insertions, 709 deletions
diff --git a/fs/btrfs/scrub.c b/fs/btrfs/scrub.c
index 9770cc5bfb7..b6d198f5181 100644
--- a/fs/btrfs/scrub.c
+++ b/fs/btrfs/scrub.c
@@ -1,5 +1,5 @@
/*
- * Copyright (C) 2011 STRATO. All rights reserved.
+ * Copyright (C) 2011, 2012 STRATO. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
@@ -25,7 +25,10 @@
#include "transaction.h"
#include "backref.h"
#include "extent_io.h"
+#include "dev-replace.h"
#include "check-integrity.h"
+#include "rcu-string.h"
+#include "raid56.h"
/*
* This is only the first step towards a full-features scrub. It reads all
@@ -36,66 +39,109 @@
* Future enhancements:
* - In case an unrepairable extent is encountered, track which files are
* affected and report them
- * - In case of a read error on files with nodatasum, map the file and read
- * the extent to trigger a writeback of the good copy
* - track and record media errors, throw out bad devices
* - add a mode to also read unallocated space
*/
-struct scrub_bio;
-struct scrub_page;
-struct scrub_dev;
-static void scrub_bio_end_io(struct bio *bio, int err);
-static void scrub_checksum(struct btrfs_work *work);
-static int scrub_checksum_data(struct scrub_dev *sdev,
- struct scrub_page *spag, void *buffer);
-static int scrub_checksum_tree_block(struct scrub_dev *sdev,
- struct scrub_page *spag, u64 logical,
- void *buffer);
-static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer);
-static int scrub_fixup_check(struct scrub_bio *sbio, int ix);
-static void scrub_fixup_end_io(struct bio *bio, int err);
-static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
- struct page *page);
-static void scrub_fixup(struct scrub_bio *sbio, int ix);
-
-#define SCRUB_PAGES_PER_BIO 16 /* 64k per bio */
-#define SCRUB_BIOS_PER_DEV 16 /* 1 MB per device in flight */
+struct scrub_block;
+struct scrub_ctx;
+
+/*
+ * the following three values only influence the performance.
+ * The last one configures the number of parallel and outstanding I/O
+ * operations. The first two values configure an upper limit for the number
+ * of (dynamically allocated) pages that are added to a bio.
+ */
+#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
+#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
+#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
+
+/*
+ * the following value times PAGE_SIZE needs to be large enough to match the
+ * largest node/leaf/sector size that shall be supported.
+ * Values larger than BTRFS_STRIPE_LEN are not supported.
+ */
+#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
struct scrub_page {
+ struct scrub_block *sblock;
+ struct page *page;
+ struct btrfs_device *dev;
u64 flags; /* extent flags */
u64 generation;
- int mirror_num;
- int have_csum;
+ u64 logical;
+ u64 physical;
+ u64 physical_for_dev_replace;
+ atomic_t ref_count;
+ struct {
+ unsigned int mirror_num:8;
+ unsigned int have_csum:1;
+ unsigned int io_error:1;
+ };
u8 csum[BTRFS_CSUM_SIZE];
};
struct scrub_bio {
int index;
- struct scrub_dev *sdev;
+ struct scrub_ctx *sctx;
+ struct btrfs_device *dev;
struct bio *bio;
int err;
u64 logical;
u64 physical;
- struct scrub_page spag[SCRUB_PAGES_PER_BIO];
- u64 count;
+#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
+ struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
+#else
+ struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
+#endif
+ int page_count;
int next_free;
struct btrfs_work work;
};
-struct scrub_dev {
- struct scrub_bio *bios[SCRUB_BIOS_PER_DEV];
- struct btrfs_device *dev;
+struct scrub_block {
+ struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
+ int page_count;
+ atomic_t outstanding_pages;
+ atomic_t ref_count; /* free mem on transition to zero */
+ struct scrub_ctx *sctx;
+ struct {
+ unsigned int header_error:1;
+ unsigned int checksum_error:1;
+ unsigned int no_io_error_seen:1;
+ unsigned int generation_error:1; /* also sets header_error */
+ };
+};
+
+struct scrub_wr_ctx {
+ struct scrub_bio *wr_curr_bio;
+ struct btrfs_device *tgtdev;
+ int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
+ atomic_t flush_all_writes;
+ struct mutex wr_lock;
+};
+
+struct scrub_ctx {
+ struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
+ struct btrfs_root *dev_root;
int first_free;
int curr;
- atomic_t in_flight;
- atomic_t fixup_cnt;
+ atomic_t bios_in_flight;
+ atomic_t workers_pending;
spinlock_t list_lock;
wait_queue_head_t list_wait;
u16 csum_size;
struct list_head csum_list;
atomic_t cancel_req;
int readonly;
+ int pages_per_rd_bio;
+ u32 sectorsize;
+ u32 nodesize;
+ u32 leafsize;
+
+ int is_dev_replace;
+ struct scrub_wr_ctx wr_ctx;
+
/*
* statistics
*/
@@ -104,13 +150,31 @@ struct scrub_dev {
};
struct scrub_fixup_nodatasum {
- struct scrub_dev *sdev;
+ struct scrub_ctx *sctx;
+ struct btrfs_device *dev;
u64 logical;
struct btrfs_root *root;
struct btrfs_work work;
int mirror_num;
};
+struct scrub_nocow_inode {
+ u64 inum;
+ u64 offset;
+ u64 root;
+ struct list_head list;
+};
+
+struct scrub_copy_nocow_ctx {
+ struct scrub_ctx *sctx;
+ u64 logical;
+ u64 len;
+ int mirror_num;
+ u64 physical_for_dev_replace;
+ struct list_head inodes;
+ struct btrfs_work work;
+};
+
struct scrub_warning {
struct btrfs_path *path;
u64 extent_item_size;
@@ -124,103 +188,283 @@ struct scrub_warning {
int scratch_bufsize;
};
-static void scrub_free_csums(struct scrub_dev *sdev)
+
+static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
+static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
+static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
+static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
+static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
+static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
+ struct btrfs_fs_info *fs_info,
+ struct scrub_block *original_sblock,
+ u64 length, u64 logical,
+ struct scrub_block *sblocks_for_recheck);
+static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
+ struct scrub_block *sblock, int is_metadata,
+ int have_csum, u8 *csum, u64 generation,
+ u16 csum_size);
+static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
+ struct scrub_block *sblock,
+ int is_metadata, int have_csum,
+ const u8 *csum, u64 generation,
+ u16 csum_size);
+static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
+ struct scrub_block *sblock_good,
+ int force_write);
+static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
+ struct scrub_block *sblock_good,
+ int page_num, int force_write);
+static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
+static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
+ int page_num);
+static int scrub_checksum_data(struct scrub_block *sblock);
+static int scrub_checksum_tree_block(struct scrub_block *sblock);
+static int scrub_checksum_super(struct scrub_block *sblock);
+static void scrub_block_get(struct scrub_block *sblock);
+static void scrub_block_put(struct scrub_block *sblock);
+static void scrub_page_get(struct scrub_page *spage);
+static void scrub_page_put(struct scrub_page *spage);
+static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
+ struct scrub_page *spage);
+static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
+ u64 physical, struct btrfs_device *dev, u64 flags,
+ u64 gen, int mirror_num, u8 *csum, int force,
+ u64 physical_for_dev_replace);
+static void scrub_bio_end_io(struct bio *bio, int err);
+static void scrub_bio_end_io_worker(struct btrfs_work *work);
+static void scrub_block_complete(struct scrub_block *sblock);
+static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
+ u64 extent_logical, u64 extent_len,
+ u64 *extent_physical,
+ struct btrfs_device **extent_dev,
+ int *extent_mirror_num);
+static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
+ struct scrub_wr_ctx *wr_ctx,
+ struct btrfs_fs_info *fs_info,
+ struct btrfs_device *dev,
+ int is_dev_replace);
+static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
+static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
+ struct scrub_page *spage);
+static void scrub_wr_submit(struct scrub_ctx *sctx);
+static void scrub_wr_bio_end_io(struct bio *bio, int err);
+static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
+static int write_page_nocow(struct scrub_ctx *sctx,
+ u64 physical_for_dev_replace, struct page *page);
+static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
+ struct scrub_copy_nocow_ctx *ctx);
+static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
+ int mirror_num, u64 physical_for_dev_replace);
+static void copy_nocow_pages_worker(struct btrfs_work *work);
+static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
+static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
+
+
+static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
- while (!list_empty(&sdev->csum_list)) {
+ atomic_inc(&sctx->bios_in_flight);
+}
+
+static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
+{
+ atomic_dec(&sctx->bios_in_flight);
+ wake_up(&sctx->list_wait);
+}
+
+static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
+{
+ while (atomic_read(&fs_info->scrub_pause_req)) {
+ mutex_unlock(&fs_info->scrub_lock);
+ wait_event(fs_info->scrub_pause_wait,
+ atomic_read(&fs_info->scrub_pause_req) == 0);
+ mutex_lock(&fs_info->scrub_lock);
+ }
+}
+
+static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
+{
+ atomic_inc(&fs_info->scrubs_paused);
+ wake_up(&fs_info->scrub_pause_wait);
+
+ mutex_lock(&fs_info->scrub_lock);
+ __scrub_blocked_if_needed(fs_info);
+ atomic_dec(&fs_info->scrubs_paused);
+ mutex_unlock(&fs_info->scrub_lock);
+
+ wake_up(&fs_info->scrub_pause_wait);
+}
+
+/*
+ * used for workers that require transaction commits (i.e., for the
+ * NOCOW case)
+ */
+static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
+{
+ struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
+
+ /*
+ * increment scrubs_running to prevent cancel requests from
+ * completing as long as a worker is running. we must also
+ * increment scrubs_paused to prevent deadlocking on pause
+ * requests used for transactions commits (as the worker uses a
+ * transaction context). it is safe to regard the worker
+ * as paused for all matters practical. effectively, we only
+ * avoid cancellation requests from completing.
+ */
+ mutex_lock(&fs_info->scrub_lock);
+ atomic_inc(&fs_info->scrubs_running);
+ atomic_inc(&fs_info->scrubs_paused);
+ mutex_unlock(&fs_info->scrub_lock);
+
+ /*
+ * check if @scrubs_running=@scrubs_paused condition
+ * inside wait_event() is not an atomic operation.
+ * which means we may inc/dec @scrub_running/paused
+ * at any time. Let's wake up @scrub_pause_wait as
+ * much as we can to let commit transaction blocked less.
+ */
+ wake_up(&fs_info->scrub_pause_wait);
+
+ atomic_inc(&sctx->workers_pending);
+}
+
+/* used for workers that require transaction commits */
+static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
+{
+ struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
+
+ /*
+ * see scrub_pending_trans_workers_inc() why we're pretending
+ * to be paused in the scrub counters
+ */
+ mutex_lock(&fs_info->scrub_lock);
+ atomic_dec(&fs_info->scrubs_running);
+ atomic_dec(&fs_info->scrubs_paused);
+ mutex_unlock(&fs_info->scrub_lock);
+ atomic_dec(&sctx->workers_pending);
+ wake_up(&fs_info->scrub_pause_wait);
+ wake_up(&sctx->list_wait);
+}
+
+static void scrub_free_csums(struct scrub_ctx *sctx)
+{
+ while (!list_empty(&sctx->csum_list)) {
struct btrfs_ordered_sum *sum;
- sum = list_first_entry(&sdev->csum_list,
+ sum = list_first_entry(&sctx->csum_list,
struct btrfs_ordered_sum, list);
list_del(&sum->list);
kfree(sum);
}
}
-static void scrub_free_bio(struct bio *bio)
+static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
{
int i;
- struct page *last_page = NULL;
- if (!bio)
+ if (!sctx)
return;
- for (i = 0; i < bio->bi_vcnt; ++i) {
- if (bio->bi_io_vec[i].bv_page == last_page)
- continue;
- last_page = bio->bi_io_vec[i].bv_page;
- __free_page(last_page);
- }
- bio_put(bio);
-}
+ scrub_free_wr_ctx(&sctx->wr_ctx);
-static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
-{
- int i;
+ /* this can happen when scrub is cancelled */
+ if (sctx->curr != -1) {
+ struct scrub_bio *sbio = sctx->bios[sctx->curr];
- if (!sdev)
- return;
+ for (i = 0; i < sbio->page_count; i++) {
+ WARN_ON(!sbio->pagev[i]->page);
+ scrub_block_put(sbio->pagev[i]->sblock);
+ }
+ bio_put(sbio->bio);
+ }
- for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
- struct scrub_bio *sbio = sdev->bios[i];
+ for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
+ struct scrub_bio *sbio = sctx->bios[i];
if (!sbio)
break;
-
- scrub_free_bio(sbio->bio);
kfree(sbio);
}
- scrub_free_csums(sdev);
- kfree(sdev);
+ scrub_free_csums(sctx);
+ kfree(sctx);
}
static noinline_for_stack
-struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
+struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
{
- struct scrub_dev *sdev;
+ struct scrub_ctx *sctx;
int i;
struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
+ int pages_per_rd_bio;
+ int ret;
- sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
- if (!sdev)
+ /*
+ * the setting of pages_per_rd_bio is correct for scrub but might
+ * be wrong for the dev_replace code where we might read from
+ * different devices in the initial huge bios. However, that
+ * code is able to correctly handle the case when adding a page
+ * to a bio fails.
+ */
+ if (dev->bdev)
+ pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
+ bio_get_nr_vecs(dev->bdev));
+ else
+ pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
+ sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
+ if (!sctx)
goto nomem;
- sdev->dev = dev;
- for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
+ sctx->is_dev_replace = is_dev_replace;
+ sctx->pages_per_rd_bio = pages_per_rd_bio;
+ sctx->curr = -1;
+ sctx->dev_root = dev->dev_root;
+ for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
struct scrub_bio *sbio;
sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
if (!sbio)
goto nomem;
- sdev->bios[i] = sbio;
+ sctx->bios[i] = sbio;
sbio->index = i;
- sbio->sdev = sdev;
- sbio->count = 0;
- sbio->work.func = scrub_checksum;
+ sbio->sctx = sctx;
+ sbio->page_count = 0;
+ btrfs_init_work(&sbio->work, scrub_bio_end_io_worker,
+ NULL, NULL);
- if (i != SCRUB_BIOS_PER_DEV-1)
- sdev->bios[i]->next_free = i + 1;
+ if (i != SCRUB_BIOS_PER_SCTX - 1)
+ sctx->bios[i]->next_free = i + 1;
else
- sdev->bios[i]->next_free = -1;
+ sctx->bios[i]->next_free = -1;
}
- sdev->first_free = 0;
- sdev->curr = -1;
- atomic_set(&sdev->in_flight, 0);
- atomic_set(&sdev->fixup_cnt, 0);
- atomic_set(&sdev->cancel_req, 0);
- sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
- INIT_LIST_HEAD(&sdev->csum_list);
-
- spin_lock_init(&sdev->list_lock);
- spin_lock_init(&sdev->stat_lock);
- init_waitqueue_head(&sdev->list_wait);
- return sdev;
+ sctx->first_free = 0;
+ sctx->nodesize = dev->dev_root->nodesize;
+ sctx->leafsize = dev->dev_root->leafsize;
+ sctx->sectorsize = dev->dev_root->sectorsize;
+ atomic_set(&sctx->bios_in_flight, 0);
+ atomic_set(&sctx->workers_pending, 0);
+ atomic_set(&sctx->cancel_req, 0);
+ sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
+ INIT_LIST_HEAD(&sctx->csum_list);
+
+ spin_lock_init(&sctx->list_lock);
+ spin_lock_init(&sctx->stat_lock);
+ init_waitqueue_head(&sctx->list_wait);
+
+ ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
+ fs_info->dev_replace.tgtdev, is_dev_replace);
+ if (ret) {
+ scrub_free_ctx(sctx);
+ return ERR_PTR(ret);
+ }
+ return sctx;
nomem:
- scrub_free_dev(sdev);
+ scrub_free_ctx(sctx);
return ERR_PTR(-ENOMEM);
}
-static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
+static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
+ void *warn_ctx)
{
u64 isize;
u32 nlink;
@@ -228,7 +472,7 @@ static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
int i;
struct extent_buffer *eb;
struct btrfs_inode_item *inode_item;
- struct scrub_warning *swarn = ctx;
+ struct scrub_warning *swarn = warn_ctx;
struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
struct inode_fs_paths *ipath = NULL;
struct btrfs_root *local_root;
@@ -272,10 +516,10 @@ static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
* hold all of the paths here
*/
for (i = 0; i < ipath->fspath->elem_cnt; ++i)
- printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
+ printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
"%s, sector %llu, root %llu, inode %llu, offset %llu, "
"length %llu, links %u (path: %s)\n", swarn->errstr,
- swarn->logical, swarn->dev->name,
+ swarn->logical, rcu_str_deref(swarn->dev->name),
(unsigned long long)swarn->sector, root, inum, offset,
min(isize - offset, (u64)PAGE_SIZE), nlink,
(char *)(unsigned long)ipath->fspath->val[i]);
@@ -284,49 +528,54 @@ static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
return 0;
err:
- printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
+ printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
"resolving failed with ret=%d\n", swarn->errstr,
- swarn->logical, swarn->dev->name,
+ swarn->logical, rcu_str_deref(swarn->dev->name),
(unsigned long long)swarn->sector, root, inum, offset, ret);
free_ipath(ipath);
return 0;
}
-static void scrub_print_warning(const char *errstr, struct scrub_bio *sbio,
- int ix)
+static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
{
- struct btrfs_device *dev = sbio->sdev->dev;
- struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
+ struct btrfs_device *dev;
+ struct btrfs_fs_info *fs_info;
struct btrfs_path *path;
struct btrfs_key found_key;
struct extent_buffer *eb;
struct btrfs_extent_item *ei;
struct scrub_warning swarn;
- u32 item_size;
- int ret;
+ unsigned long ptr = 0;
+ u64 extent_item_pos;
+ u64 flags = 0;
u64 ref_root;
+ u32 item_size;
u8 ref_level;
- unsigned long ptr = 0;
const int bufsize = 4096;
- u64 extent_item_pos;
+ int ret;
+
+ WARN_ON(sblock->page_count < 1);
+ dev = sblock->pagev[0]->dev;
+ fs_info = sblock->sctx->dev_root->fs_info;
path = btrfs_alloc_path();
swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
- swarn.sector = (sbio->physical + ix * PAGE_SIZE) >> 9;
- swarn.logical = sbio->logical + ix * PAGE_SIZE;
+ swarn.sector = (sblock->pagev[0]->physical) >> 9;
+ swarn.logical = sblock->pagev[0]->logical;
swarn.errstr = errstr;
- swarn.dev = dev;
+ swarn.dev = NULL;
swarn.msg_bufsize = bufsize;
swarn.scratch_bufsize = bufsize;
if (!path || !swarn.scratch_buf || !swarn.msg_buf)
goto out;
- ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
+ ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
+ &flags);
if (ret < 0)
goto out;
@@ -336,24 +585,29 @@ static void scrub_print_warning(const char *errstr, struct scrub_bio *sbio,
eb = path->nodes[0];
ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
item_size = btrfs_item_size_nr(eb, path->slots[0]);
- btrfs_release_path(path);
- if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
+ if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
do {
- ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
- &ref_root, &ref_level);
- printk(KERN_WARNING "%s at logical %llu on dev %s, "
+ ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
+ item_size, &ref_root,
+ &ref_level);
+ printk_in_rcu(KERN_WARNING
+ "BTRFS: %s at logical %llu on dev %s, "
"sector %llu: metadata %s (level %d) in tree "
- "%llu\n", errstr, swarn.logical, dev->name,
+ "%llu\n", errstr, swarn.logical,
+ rcu_str_deref(dev->name),
(unsigned long long)swarn.sector,
ref_level ? "node" : "leaf",
ret < 0 ? -1 : ref_level,
ret < 0 ? -1 : ref_root);
} while (ret != 1);
+ btrfs_release_path(path);
} else {
+ btrfs_release_path(path);
swarn.path = path;
- iterate_extent_inodes(fs_info, path, found_key.objectid,
- extent_item_pos,
+ swarn.dev = dev;
+ iterate_extent_inodes(fs_info, found_key.objectid,
+ extent_item_pos, 1,
scrub_print_warning_inode, &swarn);
}
@@ -363,29 +617,38 @@ out:
kfree(swarn.msg_buf);
}
-static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
+static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
{
struct page *page = NULL;
unsigned long index;
- struct scrub_fixup_nodatasum *fixup = ctx;
+ struct scrub_fixup_nodatasum *fixup = fixup_ctx;
int ret;
int corrected = 0;
struct btrfs_key key;
struct inode *inode = NULL;
+ struct btrfs_fs_info *fs_info;
u64 end = offset + PAGE_SIZE - 1;
struct btrfs_root *local_root;
+ int srcu_index;
key.objectid = root;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = (u64)-1;
- local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
- if (IS_ERR(local_root))
+
+ fs_info = fixup->root->fs_info;
+ srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
+
+ local_root = btrfs_read_fs_root_no_name(fs_info, &key);
+ if (IS_ERR(local_root)) {
+ srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
return PTR_ERR(local_root);
+ }
key.type = BTRFS_INODE_ITEM_KEY;
key.objectid = inum;
key.offset = 0;
- inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
+ inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
+ srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
if (IS_ERR(inode))
return PTR_ERR(inode);
@@ -398,7 +661,6 @@ static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
}
if (PageUptodate(page)) {
- struct btrfs_mapping_tree *map_tree;
if (PageDirty(page)) {
/*
* we need to write the data to the defect sector. the
@@ -419,8 +681,8 @@ static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
ret = -EIO;
goto out;
}
- map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
- ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
+ fs_info = BTRFS_I(inode)->root->fs_info;
+ ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
fixup->logical, page,
fixup->mirror_num);
unlock_page(page);
@@ -456,8 +718,8 @@ static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
out:
if (page)
put_page(page);
- if (inode)
- iput(inode);
+
+ iput(inode);
if (ret < 0)
return ret;
@@ -477,21 +739,19 @@ static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
int ret;
struct scrub_fixup_nodatasum *fixup;
- struct scrub_dev *sdev;
+ struct scrub_ctx *sctx;
struct btrfs_trans_handle *trans = NULL;
- struct btrfs_fs_info *fs_info;
struct btrfs_path *path;
int uncorrectable = 0;
fixup = container_of(work, struct scrub_fixup_nodatasum, work);
- sdev = fixup->sdev;
- fs_info = fixup->root->fs_info;
+ sctx = fixup->sctx;
path = btrfs_alloc_path();
if (!path) {
- spin_lock(&sdev->stat_lock);
- ++sdev->stat.malloc_errors;
- spin_unlock(&sdev->stat_lock);
+ spin_lock(&sctx->stat_lock);
+ ++sctx->stat.malloc_errors;
+ spin_unlock(&sctx->stat_lock);
uncorrectable = 1;
goto out;
}
@@ -520,364 +780,974 @@ static void scrub_fixup_nodatasum(struct btrfs_work *work)
}
WARN_ON(ret != 1);
- spin_lock(&sdev->stat_lock);
- ++sdev->stat.corrected_errors;
- spin_unlock(&sdev->stat_lock);
+ spin_lock(&sctx->stat_lock);
+ ++sctx->stat.corrected_errors;
+ spin_unlock(&sctx->stat_lock);
out:
if (trans && !IS_ERR(trans))
btrfs_end_transaction(trans, fixup->root);
if (uncorrectable) {
- spin_lock(&sdev->stat_lock);
- ++sdev->stat.uncorrectable_errors;
- spin_unlock(&sdev->stat_lock);
- printk_ratelimited(KERN_ERR "btrfs: unable to fixup "
- "(nodatasum) error at logical %llu\n",
- fixup->logical);
+ spin_lock(&sctx->stat_lock);
+ ++sctx->stat.uncorrectable_errors;
+ spin_unlock(&sctx->stat_lock);
+ btrfs_dev_replace_stats_inc(
+ &sctx->dev_root->fs_info->dev_replace.
+ num_uncorrectable_read_errors);
+ printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
+ "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
+ fixup->logical, rcu_str_deref(fixup->dev->name));
}
btrfs_free_path(path);
kfree(fixup);
- /* see caller why we're pretending to be paused in the scrub counters */
- mutex_lock(&fs_info->scrub_lock);
- atomic_dec(&fs_info->scrubs_running);
- atomic_dec(&fs_info->scrubs_paused);
- mutex_unlock(&fs_info->scrub_lock);
- atomic_dec(&sdev->fixup_cnt);
- wake_up(&fs_info->scrub_pause_wait);
- wake_up(&sdev->list_wait);
+ scrub_pending_trans_workers_dec(sctx);
}
/*
- * scrub_recheck_error gets called when either verification of the page
- * failed or the bio failed to read, e.g. with EIO. In the latter case,
- * recheck_error gets called for every page in the bio, even though only
- * one may be bad
+ * scrub_handle_errored_block gets called when either verification of the
+ * pages failed or the bio failed to read, e.g. with EIO. In the latter
+ * case, this function handles all pages in the bio, even though only one
+ * may be bad.
+ * The goal of this function is to repair the errored block by using the
+ * contents of one of the mirrors.
*/
-static int scrub_recheck_error(struct scrub_bio *sbio, int ix)
+static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
{
- struct scrub_dev *sdev = sbio->sdev;
- u64 sector = (sbio->physical + ix * PAGE_SIZE) >> 9;
+ struct scrub_ctx *sctx = sblock_to_check->sctx;
+ struct btrfs_device *dev;
+ struct btrfs_fs_info *fs_info;
+ u64 length;
+ u64 logical;
+ u64 generation;
+ unsigned int failed_mirror_index;
+ unsigned int is_metadata;
+ unsigned int have_csum;
+ u8 *csum;
+ struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
+ struct scrub_block *sblock_bad;
+ int ret;
+ int mirror_index;
+ int page_num;
+ int success;
static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
- DEFAULT_RATELIMIT_BURST);
+ DEFAULT_RATELIMIT_BURST);
- if (sbio->err) {
- if (scrub_fixup_io(READ, sbio->sdev->dev->bdev, sector,
- sbio->bio->bi_io_vec[ix].bv_page) == 0) {
- if (scrub_fixup_check(sbio, ix) == 0)
- return 0;
- }
+ BUG_ON(sblock_to_check->page_count < 1);
+ fs_info = sctx->dev_root->fs_info;
+ if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
+ /*
+ * if we find an error in a super block, we just report it.
+ * They will get written with the next transaction commit
+ * anyway
+ */
+ spin_lock(&sctx->stat_lock);
+ ++sctx->stat.super_errors;
+ spin_unlock(&sctx->stat_lock);
+ return 0;
+ }
+ length = sblock_to_check->page_count * PAGE_SIZE;
+ logical = sblock_to_check->pagev[0]->logical;
+ generation = sblock_to_check->pagev[0]->generation;
+ BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
+ failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
+ is_metadata = !(sblock_to_check->pagev[0]->flags &
+ BTRFS_EXTENT_FLAG_DATA);
+ have_csum = sblock_to_check->pagev[0]->have_csum;
+ csum = sblock_to_check->pagev[0]->csum;
+ dev = sblock_to_check->pagev[0]->dev;
+
+ if (sctx->is_dev_replace && !is_metadata && !have_csum) {
+ sblocks_for_recheck = NULL;
+ goto nodatasum_case;
+ }
+
+ /*
+ * read all mirrors one after the other. This includes to
+ * re-read the extent or metadata block that failed (that was
+ * the cause that this fixup code is called) another time,
+ * page by page this time in order to know which pages
+ * caused I/O errors and which ones are good (for all mirrors).
+ * It is the goal to handle the situation when more than one
+ * mirror contains I/O errors, but the errors do not
+ * overlap, i.e. the data can be repaired by selecting the
+ * pages from those mirrors without I/O error on the
+ * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
+ * would be that mirror #1 has an I/O error on the first page,
+ * the second page is good, and mirror #2 has an I/O error on
+ * the second page, but the first page is good.
+ * Then the first page of the first mirror can be repaired by
+ * taking the first page of the second mirror, and the
+ * second page of the second mirror can be repaired by
+ * copying the contents of the 2nd page of the 1st mirror.
+ * One more note: if the pages of one mirror contain I/O
+ * errors, the checksum cannot be verified. In order to get
+ * the best data for repairing, the first attempt is to find
+ * a mirror without I/O errors and with a validated checksum.
+ * Only if this is not possible, the pages are picked from
+ * mirrors with I/O errors without considering the checksum.
+ * If the latter is the case, at the end, the checksum of the
+ * repaired area is verified in order to correctly maintain
+ * the statistics.
+ */
+
+ sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
+ sizeof(*sblocks_for_recheck),
+ GFP_NOFS);
+ if (!sblocks_for_recheck) {
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.malloc_errors++;
+ sctx->stat.read_errors++;
+ sctx->stat.uncorrectable_errors++;
+ spin_unlock(&sctx->stat_lock);
+ btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
+ goto out;
+ }
+
+ /* setup the context, map the logical blocks and alloc the pages */
+ ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
+ logical, sblocks_for_recheck);
+ if (ret) {
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.read_errors++;
+ sctx->stat.uncorrectable_errors++;
+ spin_unlock(&sctx->stat_lock);
+ btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
+ goto out;
+ }
+ BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
+ sblock_bad = sblocks_for_recheck + failed_mirror_index;
+
+ /* build and submit the bios for the failed mirror, check checksums */
+ scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
+ csum, generation, sctx->csum_size);
+
+ if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
+ sblock_bad->no_io_error_seen) {
+ /*
+ * the error disappeared after reading page by page, or
+ * the area was part of a huge bio and other parts of the
+ * bio caused I/O errors, or the block layer merged several
+ * read requests into one and the error is caused by a
+ * different bio (usually one of the two latter cases is
+ * the cause)
+ */
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.unverified_errors++;
+ spin_unlock(&sctx->stat_lock);
+
+ if (sctx->is_dev_replace)
+ scrub_write_block_to_dev_replace(sblock_bad);
+ goto out;
+ }
+
+ if (!sblock_bad->no_io_error_seen) {
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.read_errors++;
+ spin_unlock(&sctx->stat_lock);
if (__ratelimit(&_rs))
- scrub_print_warning("i/o error", sbio, ix);
- } else {
+ scrub_print_warning("i/o error", sblock_to_check);
+ btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
+ } else if (sblock_bad->checksum_error) {
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.csum_errors++;
+ spin_unlock(&sctx->stat_lock);
if (__ratelimit(&_rs))
- scrub_print_warning("checksum error", sbio, ix);
+ scrub_print_warning("checksum error", sblock_to_check);
+ btrfs_dev_stat_inc_and_print(dev,
+ BTRFS_DEV_STAT_CORRUPTION_ERRS);
+ } else if (sblock_bad->header_error) {
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.verify_errors++;
+ spin_unlock(&sctx->stat_lock);
+ if (__ratelimit(&_rs))
+ scrub_print_warning("checksum/header error",
+ sblock_to_check);
+ if (sblock_bad->generation_error)
+ btrfs_dev_stat_inc_and_print(dev,
+ BTRFS_DEV_STAT_GENERATION_ERRS);
+ else
+ btrfs_dev_stat_inc_and_print(dev,
+ BTRFS_DEV_STAT_CORRUPTION_ERRS);
}
- spin_lock(&sdev->stat_lock);
- ++sdev->stat.read_errors;
- spin_unlock(&sdev->stat_lock);
+ if (sctx->readonly) {
+ ASSERT(!sctx->is_dev_replace);
+ goto out;
+ }
- scrub_fixup(sbio, ix);
- return 1;
-}
+ if (!is_metadata && !have_csum) {
+ struct scrub_fixup_nodatasum *fixup_nodatasum;
-static int scrub_fixup_check(struct scrub_bio *sbio, int ix)
-{
- int ret = 1;
- struct page *page;
- void *buffer;
- u64 flags = sbio->spag[ix].flags;
+nodatasum_case:
+ WARN_ON(sctx->is_dev_replace);
- page = sbio->bio->bi_io_vec[ix].bv_page;
- buffer = kmap_atomic(page, KM_USER0);
- if (flags & BTRFS_EXTENT_FLAG_DATA) {
- ret = scrub_checksum_data(sbio->sdev,
- sbio->spag + ix, buffer);
- } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
- ret = scrub_checksum_tree_block(sbio->sdev,
- sbio->spag + ix,
- sbio->logical + ix * PAGE_SIZE,
- buffer);
+ /*
+ * !is_metadata and !have_csum, this means that the data
+ * might not be COW'ed, that it might be modified
+ * concurrently. The general strategy to work on the
+ * commit root does not help in the case when COW is not
+ * used.
+ */
+ fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
+ if (!fixup_nodatasum)
+ goto did_not_correct_error;
+ fixup_nodatasum->sctx = sctx;
+ fixup_nodatasum->dev = dev;
+ fixup_nodatasum->logical = logical;
+ fixup_nodatasum->root = fs_info->extent_root;
+ fixup_nodatasum->mirror_num = failed_mirror_index + 1;
+ scrub_pending_trans_workers_inc(sctx);
+ btrfs_init_work(&fixup_nodatasum->work, scrub_fixup_nodatasum,
+ NULL, NULL);
+ btrfs_queue_work(fs_info->scrub_workers,
+ &fixup_nodatasum->work);
+ goto out;
+ }
+
+ /*
+ * now build and submit the bios for the other mirrors, check
+ * checksums.
+ * First try to pick the mirror which is completely without I/O
+ * errors and also does not have a checksum error.
+ * If one is found, and if a checksum is present, the full block
+ * that is known to contain an error is rewritten. Afterwards
+ * the block is known to be corrected.
+ * If a mirror is found which is completely correct, and no
+ * checksum is present, only those pages are rewritten that had
+ * an I/O error in the block to be repaired, since it cannot be
+ * determined, which copy of the other pages is better (and it
+ * could happen otherwise that a correct page would be
+ * overwritten by a bad one).
+ */
+ for (mirror_index = 0;
+ mirror_index < BTRFS_MAX_MIRRORS &&
+ sblocks_for_recheck[mirror_index].page_count > 0;
+ mirror_index++) {
+ struct scrub_block *sblock_other;
+
+ if (mirror_index == failed_mirror_index)
+ continue;
+ sblock_other = sblocks_for_recheck + mirror_index;
+
+ /* build and submit the bios, check checksums */
+ scrub_recheck_block(fs_info, sblock_other, is_metadata,
+ have_csum, csum, generation,
+ sctx->csum_size);
+
+ if (!sblock_other->header_error &&
+ !sblock_other->checksum_error &&
+ sblock_other->no_io_error_seen) {
+ if (sctx->is_dev_replace) {
+ scrub_write_block_to_dev_replace(sblock_other);
+ } else {
+ int force_write = is_metadata || have_csum;
+
+ ret = scrub_repair_block_from_good_copy(
+ sblock_bad, sblock_other,
+ force_write);
+ }
+ if (0 == ret)
+ goto corrected_error;
+ }
+ }
+
+ /*
+ * for dev_replace, pick good pages and write to the target device.
+ */
+ if (sctx->is_dev_replace) {
+ success = 1;
+ for (page_num = 0; page_num < sblock_bad->page_count;
+ page_num++) {
+ int sub_success;
+
+ sub_success = 0;
+ for (mirror_index = 0;
+ mirror_index < BTRFS_MAX_MIRRORS &&
+ sblocks_for_recheck[mirror_index].page_count > 0;
+ mirror_index++) {
+ struct scrub_block *sblock_other =
+ sblocks_for_recheck + mirror_index;
+ struct scrub_page *page_other =
+ sblock_other->pagev[page_num];
+
+ if (!page_other->io_error) {
+ ret = scrub_write_page_to_dev_replace(
+ sblock_other, page_num);
+ if (ret == 0) {
+ /* succeeded for this page */
+ sub_success = 1;
+ break;
+ } else {
+ btrfs_dev_replace_stats_inc(
+ &sctx->dev_root->
+ fs_info->dev_replace.
+ num_write_errors);
+ }
+ }
+ }
+
+ if (!sub_success) {
+ /*
+ * did not find a mirror to fetch the page
+ * from. scrub_write_page_to_dev_replace()
+ * handles this case (page->io_error), by
+ * filling the block with zeros before
+ * submitting the write request
+ */
+ success = 0;
+ ret = scrub_write_page_to_dev_replace(
+ sblock_bad, page_num);
+ if (ret)
+ btrfs_dev_replace_stats_inc(
+ &sctx->dev_root->fs_info->
+ dev_replace.num_write_errors);
+ }
+ }
+
+ goto out;
+ }
+
+ /*
+ * for regular scrub, repair those pages that are errored.
+ * In case of I/O errors in the area that is supposed to be
+ * repaired, continue by picking good copies of those pages.
+ * Select the good pages from mirrors to rewrite bad pages from
+ * the area to fix. Afterwards verify the checksum of the block
+ * that is supposed to be repaired. This verification step is
+ * only done for the purpose of statistic counting and for the
+ * final scrub report, whether errors remain.
+ * A perfect algorithm could make use of the checksum and try
+ * all possible combinations of pages from the different mirrors
+ * until the checksum verification succeeds. For example, when
+ * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
+ * of mirror #2 is readable but the final checksum test fails,
+ * then the 2nd page of mirror #3 could be tried, whether now
+ * the final checksum succeedes. But this would be a rare
+ * exception and is therefore not implemented. At least it is
+ * avoided that the good copy is overwritten.
+ * A more useful improvement would be to pick the sectors
+ * without I/O error based on sector sizes (512 bytes on legacy
+ * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
+ * mirror could be repaired by taking 512 byte of a different
+ * mirror, even if other 512 byte sectors in the same PAGE_SIZE
+ * area are unreadable.
+ */
+
+ /* can only fix I/O errors from here on */
+ if (sblock_bad->no_io_error_seen)
+ goto did_not_correct_error;
+
+ success = 1;
+ for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
+ struct scrub_page *page_bad = sblock_bad->pagev[page_num];
+
+ if (!page_bad->io_error)
+ continue;
+
+ for (mirror_index = 0;
+ mirror_index < BTRFS_MAX_MIRRORS &&
+ sblocks_for_recheck[mirror_index].page_count > 0;
+ mirror_index++) {
+ struct scrub_block *sblock_other = sblocks_for_recheck +
+ mirror_index;
+ struct scrub_page *page_other = sblock_other->pagev[
+ page_num];
+
+ if (!page_other->io_error) {
+ ret = scrub_repair_page_from_good_copy(
+ sblock_bad, sblock_other, page_num, 0);
+ if (0 == ret) {
+ page_bad->io_error = 0;
+ break; /* succeeded for this page */
+ }
+ }
+ }
+
+ if (page_bad->io_error) {
+ /* did not find a mirror to copy the page from */
+ success = 0;
+ }
+ }
+
+ if (success) {
+ if (is_metadata || have_csum) {
+ /*
+ * need to verify the checksum now that all
+ * sectors on disk are repaired (the write
+ * request for data to be repaired is on its way).
+ * Just be lazy and use scrub_recheck_block()
+ * which re-reads the data before the checksum
+ * is verified, but most likely the data comes out
+ * of the page cache.
+ */
+ scrub_recheck_block(fs_info, sblock_bad,
+ is_metadata, have_csum, csum,
+ generation, sctx->csum_size);
+ if (!sblock_bad->header_error &&
+ !sblock_bad->checksum_error &&
+ sblock_bad->no_io_error_seen)
+ goto corrected_error;
+ else
+ goto did_not_correct_error;
+ } else {
+corrected_error:
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.corrected_errors++;
+ spin_unlock(&sctx->stat_lock);
+ printk_ratelimited_in_rcu(KERN_ERR
+ "BTRFS: fixed up error at logical %llu on dev %s\n",
+ logical, rcu_str_deref(dev->name));
+ }
} else {
- WARN_ON(1);
+did_not_correct_error:
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.uncorrectable_errors++;
+ spin_unlock(&sctx->stat_lock);
+ printk_ratelimited_in_rcu(KERN_ERR
+ "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
+ logical, rcu_str_deref(dev->name));
}
- kunmap_atomic(buffer, KM_USER0);
- return ret;
-}
+out:
+ if (sblocks_for_recheck) {
+ for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
+ mirror_index++) {
+ struct scrub_block *sblock = sblocks_for_recheck +
+ mirror_index;
+ int page_index;
+
+ for (page_index = 0; page_index < sblock->page_count;
+ page_index++) {
+ sblock->pagev[page_index]->sblock = NULL;
+ scrub_page_put(sblock->pagev[page_index]);
+ }
+ }
+ kfree(sblocks_for_recheck);
+ }
-static void scrub_fixup_end_io(struct bio *bio, int err)
-{
- complete((struct completion *)bio->bi_private);
+ return 0;
}
-static void scrub_fixup(struct scrub_bio *sbio, int ix)
+static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
+ struct btrfs_fs_info *fs_info,
+ struct scrub_block *original_sblock,
+ u64 length, u64 logical,
+ struct scrub_block *sblocks_for_recheck)
{
- struct scrub_dev *sdev = sbio->sdev;
- struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
- struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
- struct btrfs_bio *bbio = NULL;
- struct scrub_fixup_nodatasum *fixup;
- u64 logical = sbio->logical + ix * PAGE_SIZE;
- u64 length;
- int i;
+ int page_index;
+ int mirror_index;
int ret;
- DECLARE_COMPLETION_ONSTACK(complete);
-
- if ((sbio->spag[ix].flags & BTRFS_EXTENT_FLAG_DATA) &&
- (sbio->spag[ix].have_csum == 0)) {
- fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
- if (!fixup)
- goto uncorrectable;
- fixup->sdev = sdev;
- fixup->logical = logical;
- fixup->root = fs_info->extent_root;
- fixup->mirror_num = sbio->spag[ix].mirror_num;
+
+ /*
+ * note: the two members ref_count and outstanding_pages
+ * are not used (and not set) in the blocks that are used for
+ * the recheck procedure
+ */
+
+ page_index = 0;
+ while (length > 0) {
+ u64 sublen = min_t(u64, length, PAGE_SIZE);
+ u64 mapped_length = sublen;
+ struct btrfs_bio *bbio = NULL;
+
/*
- * increment scrubs_running to prevent cancel requests from
- * completing as long as a fixup worker is running. we must also
- * increment scrubs_paused to prevent deadlocking on pause
- * requests used for transactions commits (as the worker uses a
- * transaction context). it is safe to regard the fixup worker
- * as paused for all matters practical. effectively, we only
- * avoid cancellation requests from completing.
+ * with a length of PAGE_SIZE, each returned stripe
+ * represents one mirror
*/
- mutex_lock(&fs_info->scrub_lock);
- atomic_inc(&fs_info->scrubs_running);
- atomic_inc(&fs_info->scrubs_paused);
- mutex_unlock(&fs_info->scrub_lock);
- atomic_inc(&sdev->fixup_cnt);
- fixup->work.func = scrub_fixup_nodatasum;
- btrfs_queue_worker(&fs_info->scrub_workers, &fixup->work);
- return;
- }
+ ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
+ &mapped_length, &bbio, 0);
+ if (ret || !bbio || mapped_length < sublen) {
+ kfree(bbio);
+ return -EIO;
+ }
- length = PAGE_SIZE;
- ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length,
- &bbio, 0);
- if (ret || !bbio || length < PAGE_SIZE) {
- printk(KERN_ERR
- "scrub_fixup: btrfs_map_block failed us for %llu\n",
- (unsigned long long)logical);
- WARN_ON(1);
+ BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
+ for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
+ mirror_index++) {
+ struct scrub_block *sblock;
+ struct scrub_page *page;
+
+ if (mirror_index >= BTRFS_MAX_MIRRORS)
+ continue;
+
+ sblock = sblocks_for_recheck + mirror_index;
+ sblock->sctx = sctx;
+ page = kzalloc(sizeof(*page), GFP_NOFS);
+ if (!page) {
+leave_nomem:
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.malloc_errors++;
+ spin_unlock(&sctx->stat_lock);
+ kfree(bbio);
+ return -ENOMEM;
+ }
+ scrub_page_get(page);
+ sblock->pagev[page_index] = page;
+ page->logical = logical;
+ page->physical = bbio->stripes[mirror_index].physical;
+ BUG_ON(page_index >= original_sblock->page_count);
+ page->physical_for_dev_replace =
+ original_sblock->pagev[page_index]->
+ physical_for_dev_replace;
+ /* for missing devices, dev->bdev is NULL */
+ page->dev = bbio->stripes[mirror_index].dev;
+ page->mirror_num = mirror_index + 1;
+ sblock->page_count++;
+ page->page = alloc_page(GFP_NOFS);
+ if (!page->page)
+ goto leave_nomem;
+ }
kfree(bbio);
- return;
+ length -= sublen;
+ logical += sublen;
+ page_index++;
}
- if (bbio->num_stripes == 1)
- /* there aren't any replicas */
- goto uncorrectable;
+ return 0;
+}
- /*
- * first find a good copy
- */
- for (i = 0; i < bbio->num_stripes; ++i) {
- if (i + 1 == sbio->spag[ix].mirror_num)
+/*
+ * this function will check the on disk data for checksum errors, header
+ * errors and read I/O errors. If any I/O errors happen, the exact pages
+ * which are errored are marked as being bad. The goal is to enable scrub
+ * to take those pages that are not errored from all the mirrors so that
+ * the pages that are errored in the just handled mirror can be repaired.
+ */
+static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
+ struct scrub_block *sblock, int is_metadata,
+ int have_csum, u8 *csum, u64 generation,
+ u16 csum_size)
+{
+ int page_num;
+
+ sblock->no_io_error_seen = 1;
+ sblock->header_error = 0;
+ sblock->checksum_error = 0;
+
+ for (page_num = 0; page_num < sblock->page_count; page_num++) {
+ struct bio *bio;
+ struct scrub_page *page = sblock->pagev[page_num];
+
+ if (page->dev->bdev == NULL) {
+ page->io_error = 1;
+ sblock->no_io_error_seen = 0;
continue;
+ }
- if (scrub_fixup_io(READ, bbio->stripes[i].dev->bdev,
- bbio->stripes[i].physical >> 9,
- sbio->bio->bi_io_vec[ix].bv_page)) {
- /* I/O-error, this is not a good copy */
+ WARN_ON(!page->page);
+ bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
+ if (!bio) {
+ page->io_error = 1;
+ sblock->no_io_error_seen = 0;
continue;
}
+ bio->bi_bdev = page->dev->bdev;
+ bio->bi_iter.bi_sector = page->physical >> 9;
+
+ bio_add_page(bio, page->page, PAGE_SIZE, 0);
+ if (btrfsic_submit_bio_wait(READ, bio))
+ sblock->no_io_error_seen = 0;
+
+ bio_put(bio);
+ }
+
+ if (sblock->no_io_error_seen)
+ scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
+ have_csum, csum, generation,
+ csum_size);
+
+ return;
+}
+
+static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
+ struct scrub_block *sblock,
+ int is_metadata, int have_csum,
+ const u8 *csum, u64 generation,
+ u16 csum_size)
+{
+ int page_num;
+ u8 calculated_csum[BTRFS_CSUM_SIZE];
+ u32 crc = ~(u32)0;
+ void *mapped_buffer;
+
+ WARN_ON(!sblock->pagev[0]->page);
+ if (is_metadata) {
+ struct btrfs_header *h;
+
+ mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
+ h = (struct btrfs_header *)mapped_buffer;
+
+ if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
+ memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
+ memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
+ BTRFS_UUID_SIZE)) {
+ sblock->header_error = 1;
+ } else if (generation != btrfs_stack_header_generation(h)) {
+ sblock->header_error = 1;
+ sblock->generation_error = 1;
+ }
+ csum = h->csum;
+ } else {
+ if (!have_csum)
+ return;
- if (scrub_fixup_check(sbio, ix) == 0)
+ mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
+ }
+
+ for (page_num = 0;;) {
+ if (page_num == 0 && is_metadata)
+ crc = btrfs_csum_data(
+ ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
+ crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
+ else
+ crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
+
+ kunmap_atomic(mapped_buffer);
+ page_num++;
+ if (page_num >= sblock->page_count)
break;
+ WARN_ON(!sblock->pagev[page_num]->page);
+
+ mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
}
- if (i == bbio->num_stripes)
- goto uncorrectable;
- if (!sdev->readonly) {
- /*
- * bi_io_vec[ix].bv_page now contains good data, write it back
- */
- if (scrub_fixup_io(WRITE, sdev->dev->bdev,
- (sbio->physical + ix * PAGE_SIZE) >> 9,
- sbio->bio->bi_io_vec[ix].bv_page)) {
- /* I/O-error, writeback failed, give up */
- goto uncorrectable;
+ btrfs_csum_final(crc, calculated_csum);
+ if (memcmp(calculated_csum, csum, csum_size))
+ sblock->checksum_error = 1;
+}
+
+static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
+ struct scrub_block *sblock_good,
+ int force_write)
+{
+ int page_num;
+ int ret = 0;
+
+ for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
+ int ret_sub;
+
+ ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
+ sblock_good,
+ page_num,
+ force_write);
+ if (ret_sub)
+ ret = ret_sub;
+ }
+
+ return ret;
+}
+
+static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
+ struct scrub_block *sblock_good,
+ int page_num, int force_write)
+{
+ struct scrub_page *page_bad = sblock_bad->pagev[page_num];
+ struct scrub_page *page_good = sblock_good->pagev[page_num];
+
+ BUG_ON(page_bad->page == NULL);
+ BUG_ON(page_good->page == NULL);
+ if (force_write || sblock_bad->header_error ||
+ sblock_bad->checksum_error || page_bad->io_error) {
+ struct bio *bio;
+ int ret;
+
+ if (!page_bad->dev->bdev) {
+ printk_ratelimited(KERN_WARNING "BTRFS: "
+ "scrub_repair_page_from_good_copy(bdev == NULL) "
+ "is unexpected!\n");
+ return -EIO;
}
+
+ bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
+ if (!bio)
+ return -EIO;
+ bio->bi_bdev = page_bad->dev->bdev;
+ bio->bi_iter.bi_sector = page_bad->physical >> 9;
+
+ ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
+ if (PAGE_SIZE != ret) {
+ bio_put(bio);
+ return -EIO;
+ }
+
+ if (btrfsic_submit_bio_wait(WRITE, bio)) {
+ btrfs_dev_stat_inc_and_print(page_bad->dev,
+ BTRFS_DEV_STAT_WRITE_ERRS);
+ btrfs_dev_replace_stats_inc(
+ &sblock_bad->sctx->dev_root->fs_info->
+ dev_replace.num_write_errors);
+ bio_put(bio);
+ return -EIO;
+ }
+ bio_put(bio);
}
- kfree(bbio);
- spin_lock(&sdev->stat_lock);
- ++sdev->stat.corrected_errors;
- spin_unlock(&sdev->stat_lock);
+ return 0;
+}
- printk_ratelimited(KERN_ERR "btrfs: fixed up error at logical %llu\n",
- (unsigned long long)logical);
- return;
+static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
+{
+ int page_num;
-uncorrectable:
- kfree(bbio);
- spin_lock(&sdev->stat_lock);
- ++sdev->stat.uncorrectable_errors;
- spin_unlock(&sdev->stat_lock);
+ for (page_num = 0; page_num < sblock->page_count; page_num++) {
+ int ret;
- printk_ratelimited(KERN_ERR "btrfs: unable to fixup (regular) error at "
- "logical %llu\n", (unsigned long long)logical);
+ ret = scrub_write_page_to_dev_replace(sblock, page_num);
+ if (ret)
+ btrfs_dev_replace_stats_inc(
+ &sblock->sctx->dev_root->fs_info->dev_replace.
+ num_write_errors);
+ }
}
-static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
- struct page *page)
+static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
+ int page_num)
{
- struct bio *bio = NULL;
+ struct scrub_page *spage = sblock->pagev[page_num];
+
+ BUG_ON(spage->page == NULL);
+ if (spage->io_error) {
+ void *mapped_buffer = kmap_atomic(spage->page);
+
+ memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
+ flush_dcache_page(spage->page);
+ kunmap_atomic(mapped_buffer);
+ }
+ return scrub_add_page_to_wr_bio(sblock->sctx, spage);
+}
+
+static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
+ struct scrub_page *spage)
+{
+ struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
+ struct scrub_bio *sbio;
int ret;
- DECLARE_COMPLETION_ONSTACK(complete);
- bio = bio_alloc(GFP_NOFS, 1);
- bio->bi_bdev = bdev;
- bio->bi_sector = sector;
- bio_add_page(bio, page, PAGE_SIZE, 0);
- bio->bi_end_io = scrub_fixup_end_io;
- bio->bi_private = &complete;
- btrfsic_submit_bio(rw, bio);
+ mutex_lock(&wr_ctx->wr_lock);
+again:
+ if (!wr_ctx->wr_curr_bio) {
+ wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
+ GFP_NOFS);
+ if (!wr_ctx->wr_curr_bio) {
+ mutex_unlock(&wr_ctx->wr_lock);
+ return -ENOMEM;
+ }
+ wr_ctx->wr_curr_bio->sctx = sctx;
+ wr_ctx->wr_curr_bio->page_count = 0;
+ }
+ sbio = wr_ctx->wr_curr_bio;
+ if (sbio->page_count == 0) {
+ struct bio *bio;
- /* this will also unplug the queue */
- wait_for_completion(&complete);
+ sbio->physical = spage->physical_for_dev_replace;
+ sbio->logical = spage->logical;
+ sbio->dev = wr_ctx->tgtdev;
+ bio = sbio->bio;
+ if (!bio) {
+ bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
+ if (!bio) {
+ mutex_unlock(&wr_ctx->wr_lock);
+ return -ENOMEM;
+ }
+ sbio->bio = bio;
+ }
- ret = !test_bit(BIO_UPTODATE, &bio->bi_flags);
- bio_put(bio);
- return ret;
+ bio->bi_private = sbio;
+ bio->bi_end_io = scrub_wr_bio_end_io;
+ bio->bi_bdev = sbio->dev->bdev;
+ bio->bi_iter.bi_sector = sbio->physical >> 9;
+ sbio->err = 0;
+ } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
+ spage->physical_for_dev_replace ||
+ sbio->logical + sbio->page_count * PAGE_SIZE !=
+ spage->logical) {
+ scrub_wr_submit(sctx);
+ goto again;
+ }
+
+ ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
+ if (ret != PAGE_SIZE) {
+ if (sbio->page_count < 1) {
+ bio_put(sbio->bio);
+ sbio->bio = NULL;
+ mutex_unlock(&wr_ctx->wr_lock);
+ return -EIO;
+ }
+ scrub_wr_submit(sctx);
+ goto again;
+ }
+
+ sbio->pagev[sbio->page_count] = spage;
+ scrub_page_get(spage);
+ sbio->page_count++;
+ if (sbio->page_count == wr_ctx->pages_per_wr_bio)
+ scrub_wr_submit(sctx);
+ mutex_unlock(&wr_ctx->wr_lock);
+
+ return 0;
}
-static void scrub_bio_end_io(struct bio *bio, int err)
+static void scrub_wr_submit(struct scrub_ctx *sctx)
+{
+ struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
+ struct scrub_bio *sbio;
+
+ if (!wr_ctx->wr_curr_bio)
+ return;
+
+ sbio = wr_ctx->wr_curr_bio;
+ wr_ctx->wr_curr_bio = NULL;
+ WARN_ON(!sbio->bio->bi_bdev);
+ scrub_pending_bio_inc(sctx);
+ /* process all writes in a single worker thread. Then the block layer
+ * orders the requests before sending them to the driver which
+ * doubled the write performance on spinning disks when measured
+ * with Linux 3.5 */
+ btrfsic_submit_bio(WRITE, sbio->bio);
+}
+
+static void scrub_wr_bio_end_io(struct bio *bio, int err)
{
struct scrub_bio *sbio = bio->bi_private;
- struct scrub_dev *sdev = sbio->sdev;
- struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
+ struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
sbio->err = err;
sbio->bio = bio;
- btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
+ btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
+ btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
}
-static void scrub_checksum(struct btrfs_work *work)
+static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
- struct scrub_dev *sdev = sbio->sdev;
- struct page *page;
- void *buffer;
+ struct scrub_ctx *sctx = sbio->sctx;
int i;
- u64 flags;
- u64 logical;
- int ret;
+ WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
if (sbio->err) {
- ret = 0;
- for (i = 0; i < sbio->count; ++i)
- ret |= scrub_recheck_error(sbio, i);
- if (!ret) {
- spin_lock(&sdev->stat_lock);
- ++sdev->stat.unverified_errors;
- spin_unlock(&sdev->stat_lock);
- }
+ struct btrfs_dev_replace *dev_replace =
+ &sbio->sctx->dev_root->fs_info->dev_replace;
- sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
- sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
- sbio->bio->bi_phys_segments = 0;
- sbio->bio->bi_idx = 0;
+ for (i = 0; i < sbio->page_count; i++) {
+ struct scrub_page *spage = sbio->pagev[i];
- for (i = 0; i < sbio->count; i++) {
- struct bio_vec *bi;
- bi = &sbio->bio->bi_io_vec[i];
- bi->bv_offset = 0;
- bi->bv_len = PAGE_SIZE;
- }
- goto out;
- }
- for (i = 0; i < sbio->count; ++i) {
- page = sbio->bio->bi_io_vec[i].bv_page;
- buffer = kmap_atomic(page, KM_USER0);
- flags = sbio->spag[i].flags;
- logical = sbio->logical + i * PAGE_SIZE;
- ret = 0;
- if (flags & BTRFS_EXTENT_FLAG_DATA) {
- ret = scrub_checksum_data(sdev, sbio->spag + i, buffer);
- } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
- ret = scrub_checksum_tree_block(sdev, sbio->spag + i,
- logical, buffer);
- } else if (flags & BTRFS_EXTENT_FLAG_SUPER) {
- BUG_ON(i);
- (void)scrub_checksum_super(sbio, buffer);
- } else {
- WARN_ON(1);
- }
- kunmap_atomic(buffer, KM_USER0);
- if (ret) {
- ret = scrub_recheck_error(sbio, i);
- if (!ret) {
- spin_lock(&sdev->stat_lock);
- ++sdev->stat.unverified_errors;
- spin_unlock(&sdev->stat_lock);
- }
+ spage->io_error = 1;
+ btrfs_dev_replace_stats_inc(&dev_replace->
+ num_write_errors);
}
}
-out:
- scrub_free_bio(sbio->bio);
- sbio->bio = NULL;
- spin_lock(&sdev->list_lock);
- sbio->next_free = sdev->first_free;
- sdev->first_free = sbio->index;
- spin_unlock(&sdev->list_lock);
- atomic_dec(&sdev->in_flight);
- wake_up(&sdev->list_wait);
+ for (i = 0; i < sbio->page_count; i++)
+ scrub_page_put(sbio->pagev[i]);
+
+ bio_put(sbio->bio);
+ kfree(sbio);
+ scrub_pending_bio_dec(sctx);
+}
+
+static int scrub_checksum(struct scrub_block *sblock)
+{
+ u64 flags;
+ int ret;
+
+ WARN_ON(sblock->page_count < 1);
+ flags = sblock->pagev[0]->flags;
+ ret = 0;
+ if (flags & BTRFS_EXTENT_FLAG_DATA)
+ ret = scrub_checksum_data(sblock);
+ else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
+ ret = scrub_checksum_tree_block(sblock);
+ else if (flags & BTRFS_EXTENT_FLAG_SUPER)
+ (void)scrub_checksum_super(sblock);
+ else
+ WARN_ON(1);
+ if (ret)
+ scrub_handle_errored_block(sblock);
+
+ return ret;
}
-static int scrub_checksum_data(struct scrub_dev *sdev,
- struct scrub_page *spag, void *buffer)
+static int scrub_checksum_data(struct scrub_block *sblock)
{
+ struct scrub_ctx *sctx = sblock->sctx;
u8 csum[BTRFS_CSUM_SIZE];
+ u8 *on_disk_csum;
+ struct page *page;
+ void *buffer;
u32 crc = ~(u32)0;
int fail = 0;
- struct btrfs_root *root = sdev->dev->dev_root;
+ u64 len;
+ int index;
- if (!spag->have_csum)
+ BUG_ON(sblock->page_count < 1);
+ if (!sblock->pagev[0]->have_csum)
return 0;
- crc = btrfs_csum_data(root, buffer, crc, PAGE_SIZE);
+ on_disk_csum = sblock->pagev[0]->csum;
+ page = sblock->pagev[0]->page;
+ buffer = kmap_atomic(page);
+
+ len = sctx->sectorsize;
+ index = 0;
+ for (;;) {
+ u64 l = min_t(u64, len, PAGE_SIZE);
+
+ crc = btrfs_csum_data(buffer, crc, l);
+ kunmap_atomic(buffer);
+ len -= l;
+ if (len == 0)
+ break;
+ index++;
+ BUG_ON(index >= sblock->page_count);
+ BUG_ON(!sblock->pagev[index]->page);
+ page = sblock->pagev[index]->page;
+ buffer = kmap_atomic(page);
+ }
+
btrfs_csum_final(crc, csum);
- if (memcmp(csum, spag->csum, sdev->csum_size))
+ if (memcmp(csum, on_disk_csum, sctx->csum_size))
fail = 1;
- spin_lock(&sdev->stat_lock);
- ++sdev->stat.data_extents_scrubbed;
- sdev->stat.data_bytes_scrubbed += PAGE_SIZE;
- if (fail)
- ++sdev->stat.csum_errors;
- spin_unlock(&sdev->stat_lock);
-
return fail;
}
-static int scrub_checksum_tree_block(struct scrub_dev *sdev,
- struct scrub_page *spag, u64 logical,
- void *buffer)
+static int scrub_checksum_tree_block(struct scrub_block *sblock)
{
+ struct scrub_ctx *sctx = sblock->sctx;
struct btrfs_header *h;
- struct btrfs_root *root = sdev->dev->dev_root;
+ struct btrfs_root *root = sctx->dev_root;
struct btrfs_fs_info *fs_info = root->fs_info;
- u8 csum[BTRFS_CSUM_SIZE];
+ u8 calculated_csum[BTRFS_CSUM_SIZE];
+ u8 on_disk_csum[BTRFS_CSUM_SIZE];
+ struct page *page;
+ void *mapped_buffer;
+ u64 mapped_size;
+ void *p;
u32 crc = ~(u32)0;
int fail = 0;
int crc_fail = 0;
+ u64 len;
+ int index;
+
+ BUG_ON(sblock->page_count < 1);
+ page = sblock->pagev[0]->page;
+ mapped_buffer = kmap_atomic(page);
+ h = (struct btrfs_header *)mapped_buffer;
+ memcpy(on_disk_csum, h->csum, sctx->csum_size);
/*
* we don't use the getter functions here, as we
* a) don't have an extent buffer and
* b) the page is already kmapped
*/
- h = (struct btrfs_header *)buffer;
- if (logical != le64_to_cpu(h->bytenr))
+ if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
++fail;
- if (spag->generation != le64_to_cpu(h->generation))
+ if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
++fail;
if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
@@ -887,184 +1757,411 @@ static int scrub_checksum_tree_block(struct scrub_dev *sdev,
BTRFS_UUID_SIZE))
++fail;
- crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
- PAGE_SIZE - BTRFS_CSUM_SIZE);
- btrfs_csum_final(crc, csum);
- if (memcmp(csum, h->csum, sdev->csum_size))
- ++crc_fail;
+ WARN_ON(sctx->nodesize != sctx->leafsize);
+ len = sctx->nodesize - BTRFS_CSUM_SIZE;
+ mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
+ p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
+ index = 0;
+ for (;;) {
+ u64 l = min_t(u64, len, mapped_size);
- spin_lock(&sdev->stat_lock);
- ++sdev->stat.tree_extents_scrubbed;
- sdev->stat.tree_bytes_scrubbed += PAGE_SIZE;
- if (crc_fail)
- ++sdev->stat.csum_errors;
- if (fail)
- ++sdev->stat.verify_errors;
- spin_unlock(&sdev->stat_lock);
+ crc = btrfs_csum_data(p, crc, l);
+ kunmap_atomic(mapped_buffer);
+ len -= l;
+ if (len == 0)
+ break;
+ index++;
+ BUG_ON(index >= sblock->page_count);
+ BUG_ON(!sblock->pagev[index]->page);
+ page = sblock->pagev[index]->page;
+ mapped_buffer = kmap_atomic(page);
+ mapped_size = PAGE_SIZE;
+ p = mapped_buffer;
+ }
+
+ btrfs_csum_final(crc, calculated_csum);
+ if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
+ ++crc_fail;
return fail || crc_fail;
}
-static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer)
+static int scrub_checksum_super(struct scrub_block *sblock)
{
struct btrfs_super_block *s;
- u64 logical;
- struct scrub_dev *sdev = sbio->sdev;
- struct btrfs_root *root = sdev->dev->dev_root;
+ struct scrub_ctx *sctx = sblock->sctx;
+ struct btrfs_root *root = sctx->dev_root;
struct btrfs_fs_info *fs_info = root->fs_info;
- u8 csum[BTRFS_CSUM_SIZE];
+ u8 calculated_csum[BTRFS_CSUM_SIZE];
+ u8 on_disk_csum[BTRFS_CSUM_SIZE];
+ struct page *page;
+ void *mapped_buffer;
+ u64 mapped_size;
+ void *p;
u32 crc = ~(u32)0;
- int fail = 0;
+ int fail_gen = 0;
+ int fail_cor = 0;
+ u64 len;
+ int index;
- s = (struct btrfs_super_block *)buffer;
- logical = sbio->logical;
+ BUG_ON(sblock->page_count < 1);
+ page = sblock->pagev[0]->page;
+ mapped_buffer = kmap_atomic(page);
+ s = (struct btrfs_super_block *)mapped_buffer;
+ memcpy(on_disk_csum, s->csum, sctx->csum_size);
- if (logical != le64_to_cpu(s->bytenr))
- ++fail;
+ if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
+ ++fail_cor;
- if (sbio->spag[0].generation != le64_to_cpu(s->generation))
- ++fail;
+ if (sblock->pagev[0]->generation != btrfs_super_generation(s))
+ ++fail_gen;
if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
- ++fail;
+ ++fail_cor;
- crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
- PAGE_SIZE - BTRFS_CSUM_SIZE);
- btrfs_csum_final(crc, csum);
- if (memcmp(csum, s->csum, sbio->sdev->csum_size))
- ++fail;
+ len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
+ mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
+ p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
+ index = 0;
+ for (;;) {
+ u64 l = min_t(u64, len, mapped_size);
+
+ crc = btrfs_csum_data(p, crc, l);
+ kunmap_atomic(mapped_buffer);
+ len -= l;
+ if (len == 0)
+ break;
+ index++;
+ BUG_ON(index >= sblock->page_count);
+ BUG_ON(!sblock->pagev[index]->page);
+ page = sblock->pagev[index]->page;
+ mapped_buffer = kmap_atomic(page);
+ mapped_size = PAGE_SIZE;
+ p = mapped_buffer;
+ }
+
+ btrfs_csum_final(crc, calculated_csum);
+ if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
+ ++fail_cor;
- if (fail) {
+ if (fail_cor + fail_gen) {
/*
* if we find an error in a super block, we just report it.
* They will get written with the next transaction commit
* anyway
*/
- spin_lock(&sdev->stat_lock);
- ++sdev->stat.super_errors;
- spin_unlock(&sdev->stat_lock);
+ spin_lock(&sctx->stat_lock);
+ ++sctx->stat.super_errors;
+ spin_unlock(&sctx->stat_lock);
+ if (fail_cor)
+ btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
+ BTRFS_DEV_STAT_CORRUPTION_ERRS);
+ else
+ btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
+ BTRFS_DEV_STAT_GENERATION_ERRS);
}
- return fail;
+ return fail_cor + fail_gen;
}
-static int scrub_submit(struct scrub_dev *sdev)
+static void scrub_block_get(struct scrub_block *sblock)
{
- struct scrub_bio *sbio;
+ atomic_inc(&sblock->ref_count);
+}
- if (sdev->curr == -1)
- return 0;
+static void scrub_block_put(struct scrub_block *sblock)
+{
+ if (atomic_dec_and_test(&sblock->ref_count)) {
+ int i;
- sbio = sdev->bios[sdev->curr];
- sbio->err = 0;
- sdev->curr = -1;
- atomic_inc(&sdev->in_flight);
+ for (i = 0; i < sblock->page_count; i++)
+ scrub_page_put(sblock->pagev[i]);
+ kfree(sblock);
+ }
+}
- btrfsic_submit_bio(READ, sbio->bio);
+static void scrub_page_get(struct scrub_page *spage)
+{
+ atomic_inc(&spage->ref_count);
+}
- return 0;
+static void scrub_page_put(struct scrub_page *spage)
+{
+ if (atomic_dec_and_test(&spage->ref_count)) {
+ if (spage->page)
+ __free_page(spage->page);
+ kfree(spage);
+ }
}
-static int scrub_page(struct scrub_dev *sdev, u64 logical, u64 len,
- u64 physical, u64 flags, u64 gen, int mirror_num,
- u8 *csum, int force)
+static void scrub_submit(struct scrub_ctx *sctx)
{
struct scrub_bio *sbio;
- struct page *page;
+
+ if (sctx->curr == -1)
+ return;
+
+ sbio = sctx->bios[sctx->curr];
+ sctx->curr = -1;
+ scrub_pending_bio_inc(sctx);
+
+ if (!sbio->bio->bi_bdev) {
+ /*
+ * this case should not happen. If btrfs_map_block() is
+ * wrong, it could happen for dev-replace operations on
+ * missing devices when no mirrors are available, but in
+ * this case it should already fail the mount.
+ * This case is handled correctly (but _very_ slowly).
+ */
+ printk_ratelimited(KERN_WARNING
+ "BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
+ bio_endio(sbio->bio, -EIO);
+ } else {
+ btrfsic_submit_bio(READ, sbio->bio);
+ }
+}
+
+static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
+ struct scrub_page *spage)
+{
+ struct scrub_block *sblock = spage->sblock;
+ struct scrub_bio *sbio;
int ret;
again:
/*
* grab a fresh bio or wait for one to become available
*/
- while (sdev->curr == -1) {
- spin_lock(&sdev->list_lock);
- sdev->curr = sdev->first_free;
- if (sdev->curr != -1) {
- sdev->first_free = sdev->bios[sdev->curr]->next_free;
- sdev->bios[sdev->curr]->next_free = -1;
- sdev->bios[sdev->curr]->count = 0;
- spin_unlock(&sdev->list_lock);
+ while (sctx->curr == -1) {
+ spin_lock(&sctx->list_lock);
+ sctx->curr = sctx->first_free;
+ if (sctx->curr != -1) {
+ sctx->first_free = sctx->bios[sctx->curr]->next_free;
+ sctx->bios[sctx->curr]->next_free = -1;
+ sctx->bios[sctx->curr]->page_count = 0;
+ spin_unlock(&sctx->list_lock);
} else {
- spin_unlock(&sdev->list_lock);
- wait_event(sdev->list_wait, sdev->first_free != -1);
+ spin_unlock(&sctx->list_lock);
+ wait_event(sctx->list_wait, sctx->first_free != -1);
}
}
- sbio = sdev->bios[sdev->curr];
- if (sbio->count == 0) {
+ sbio = sctx->bios[sctx->curr];
+ if (sbio->page_count == 0) {
struct bio *bio;
- sbio->physical = physical;
- sbio->logical = logical;
- bio = bio_alloc(GFP_NOFS, SCRUB_PAGES_PER_BIO);
- if (!bio)
- return -ENOMEM;
+ sbio->physical = spage->physical;
+ sbio->logical = spage->logical;
+ sbio->dev = spage->dev;
+ bio = sbio->bio;
+ if (!bio) {
+ bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
+ if (!bio)
+ return -ENOMEM;
+ sbio->bio = bio;
+ }
bio->bi_private = sbio;
bio->bi_end_io = scrub_bio_end_io;
- bio->bi_bdev = sdev->dev->bdev;
- bio->bi_sector = sbio->physical >> 9;
+ bio->bi_bdev = sbio->dev->bdev;
+ bio->bi_iter.bi_sector = sbio->physical >> 9;
sbio->err = 0;
- sbio->bio = bio;
- } else if (sbio->physical + sbio->count * PAGE_SIZE != physical ||
- sbio->logical + sbio->count * PAGE_SIZE != logical) {
- ret = scrub_submit(sdev);
- if (ret)
- return ret;
+ } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
+ spage->physical ||
+ sbio->logical + sbio->page_count * PAGE_SIZE !=
+ spage->logical ||
+ sbio->dev != spage->dev) {
+ scrub_submit(sctx);
goto again;
}
- sbio->spag[sbio->count].flags = flags;
- sbio->spag[sbio->count].generation = gen;
- sbio->spag[sbio->count].have_csum = 0;
- sbio->spag[sbio->count].mirror_num = mirror_num;
-
- page = alloc_page(GFP_NOFS);
- if (!page)
- return -ENOMEM;
- ret = bio_add_page(sbio->bio, page, PAGE_SIZE, 0);
- if (!ret) {
- __free_page(page);
- ret = scrub_submit(sdev);
- if (ret)
- return ret;
+ sbio->pagev[sbio->page_count] = spage;
+ ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
+ if (ret != PAGE_SIZE) {
+ if (sbio->page_count < 1) {
+ bio_put(sbio->bio);
+ sbio->bio = NULL;
+ return -EIO;
+ }
+ scrub_submit(sctx);
goto again;
}
- if (csum) {
- sbio->spag[sbio->count].have_csum = 1;
- memcpy(sbio->spag[sbio->count].csum, csum, sdev->csum_size);
+ scrub_block_get(sblock); /* one for the page added to the bio */
+ atomic_inc(&sblock->outstanding_pages);
+ sbio->page_count++;
+ if (sbio->page_count == sctx->pages_per_rd_bio)
+ scrub_submit(sctx);
+
+ return 0;
+}
+
+static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
+ u64 physical, struct btrfs_device *dev, u64 flags,
+ u64 gen, int mirror_num, u8 *csum, int force,
+ u64 physical_for_dev_replace)
+{
+ struct scrub_block *sblock;
+ int index;
+
+ sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
+ if (!sblock) {
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.malloc_errors++;
+ spin_unlock(&sctx->stat_lock);
+ return -ENOMEM;
+ }
+
+ /* one ref inside this function, plus one for each page added to
+ * a bio later on */
+ atomic_set(&sblock->ref_count, 1);
+ sblock->sctx = sctx;
+ sblock->no_io_error_seen = 1;
+
+ for (index = 0; len > 0; index++) {
+ struct scrub_page *spage;
+ u64 l = min_t(u64, len, PAGE_SIZE);
+
+ spage = kzalloc(sizeof(*spage), GFP_NOFS);
+ if (!spage) {
+leave_nomem:
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.malloc_errors++;
+ spin_unlock(&sctx->stat_lock);
+ scrub_block_put(sblock);
+ return -ENOMEM;
+ }
+ BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
+ scrub_page_get(spage);
+ sblock->pagev[index] = spage;
+ spage->sblock = sblock;
+ spage->dev = dev;
+ spage->flags = flags;
+ spage->generation = gen;
+ spage->logical = logical;
+ spage->physical = physical;
+ spage->physical_for_dev_replace = physical_for_dev_replace;
+ spage->mirror_num = mirror_num;
+ if (csum) {
+ spage->have_csum = 1;
+ memcpy(spage->csum, csum, sctx->csum_size);
+ } else {
+ spage->have_csum = 0;
+ }
+ sblock->page_count++;
+ spage->page = alloc_page(GFP_NOFS);
+ if (!spage->page)
+ goto leave_nomem;
+ len -= l;
+ logical += l;
+ physical += l;
+ physical_for_dev_replace += l;
}
- ++sbio->count;
- if (sbio->count == SCRUB_PAGES_PER_BIO || force) {
+
+ WARN_ON(sblock->page_count == 0);
+ for (index = 0; index < sblock->page_count; index++) {
+ struct scrub_page *spage = sblock->pagev[index];
int ret;
- ret = scrub_submit(sdev);
- if (ret)
+ ret = scrub_add_page_to_rd_bio(sctx, spage);
+ if (ret) {
+ scrub_block_put(sblock);
return ret;
+ }
}
+ if (force)
+ scrub_submit(sctx);
+
+ /* last one frees, either here or in bio completion for last page */
+ scrub_block_put(sblock);
return 0;
}
-static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
+static void scrub_bio_end_io(struct bio *bio, int err)
+{
+ struct scrub_bio *sbio = bio->bi_private;
+ struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
+
+ sbio->err = err;
+ sbio->bio = bio;
+
+ btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
+}
+
+static void scrub_bio_end_io_worker(struct btrfs_work *work)
+{
+ struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
+ struct scrub_ctx *sctx = sbio->sctx;
+ int i;
+
+ BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
+ if (sbio->err) {
+ for (i = 0; i < sbio->page_count; i++) {
+ struct scrub_page *spage = sbio->pagev[i];
+
+ spage->io_error = 1;
+ spage->sblock->no_io_error_seen = 0;
+ }
+ }
+
+ /* now complete the scrub_block items that have all pages completed */
+ for (i = 0; i < sbio->page_count; i++) {
+ struct scrub_page *spage = sbio->pagev[i];
+ struct scrub_block *sblock = spage->sblock;
+
+ if (atomic_dec_and_test(&sblock->outstanding_pages))
+ scrub_block_complete(sblock);
+ scrub_block_put(sblock);
+ }
+
+ bio_put(sbio->bio);
+ sbio->bio = NULL;
+ spin_lock(&sctx->list_lock);
+ sbio->next_free = sctx->first_free;
+ sctx->first_free = sbio->index;
+ spin_unlock(&sctx->list_lock);
+
+ if (sctx->is_dev_replace &&
+ atomic_read(&sctx->wr_ctx.flush_all_writes)) {
+ mutex_lock(&sctx->wr_ctx.wr_lock);
+ scrub_wr_submit(sctx);
+ mutex_unlock(&sctx->wr_ctx.wr_lock);
+ }
+
+ scrub_pending_bio_dec(sctx);
+}
+
+static void scrub_block_complete(struct scrub_block *sblock)
+{
+ if (!sblock->no_io_error_seen) {
+ scrub_handle_errored_block(sblock);
+ } else {
+ /*
+ * if has checksum error, write via repair mechanism in
+ * dev replace case, otherwise write here in dev replace
+ * case.
+ */
+ if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
+ scrub_write_block_to_dev_replace(sblock);
+ }
+}
+
+static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
u8 *csum)
{
struct btrfs_ordered_sum *sum = NULL;
- int ret = 0;
- unsigned long i;
+ unsigned long index;
unsigned long num_sectors;
- u32 sectorsize = sdev->dev->dev_root->sectorsize;
- while (!list_empty(&sdev->csum_list)) {
- sum = list_first_entry(&sdev->csum_list,
+ while (!list_empty(&sctx->csum_list)) {
+ sum = list_first_entry(&sctx->csum_list,
struct btrfs_ordered_sum, list);
if (sum->bytenr > logical)
return 0;
if (sum->bytenr + sum->len > logical)
break;
- ++sdev->stat.csum_discards;
+ ++sctx->stat.csum_discards;
list_del(&sum->list);
kfree(sum);
sum = NULL;
@@ -1072,54 +2169,122 @@ static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
if (!sum)
return 0;
- num_sectors = sum->len / sectorsize;
- for (i = 0; i < num_sectors; ++i) {
- if (sum->sums[i].bytenr == logical) {
- memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
- ret = 1;
- break;
- }
- }
- if (ret && i == num_sectors - 1) {
+ index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
+ num_sectors = sum->len / sctx->sectorsize;
+ memcpy(csum, sum->sums + index, sctx->csum_size);
+ if (index == num_sectors - 1) {
list_del(&sum->list);
kfree(sum);
}
- return ret;
+ return 1;
}
/* scrub extent tries to collect up to 64 kB for each bio */
-static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
- u64 physical, u64 flags, u64 gen, int mirror_num)
+static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
+ u64 physical, struct btrfs_device *dev, u64 flags,
+ u64 gen, int mirror_num, u64 physical_for_dev_replace)
{
int ret;
u8 csum[BTRFS_CSUM_SIZE];
+ u32 blocksize;
+
+ if (flags & BTRFS_EXTENT_FLAG_DATA) {
+ blocksize = sctx->sectorsize;
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.data_extents_scrubbed++;
+ sctx->stat.data_bytes_scrubbed += len;
+ spin_unlock(&sctx->stat_lock);
+ } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
+ WARN_ON(sctx->nodesize != sctx->leafsize);
+ blocksize = sctx->nodesize;
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.tree_extents_scrubbed++;
+ sctx->stat.tree_bytes_scrubbed += len;
+ spin_unlock(&sctx->stat_lock);
+ } else {
+ blocksize = sctx->sectorsize;
+ WARN_ON(1);
+ }
while (len) {
- u64 l = min_t(u64, len, PAGE_SIZE);
+ u64 l = min_t(u64, len, blocksize);
int have_csum = 0;
if (flags & BTRFS_EXTENT_FLAG_DATA) {
/* push csums to sbio */
- have_csum = scrub_find_csum(sdev, logical, l, csum);
+ have_csum = scrub_find_csum(sctx, logical, l, csum);
if (have_csum == 0)
- ++sdev->stat.no_csum;
+ ++sctx->stat.no_csum;
+ if (sctx->is_dev_replace && !have_csum) {
+ ret = copy_nocow_pages(sctx, logical, l,
+ mirror_num,
+ physical_for_dev_replace);
+ goto behind_scrub_pages;
+ }
}
- ret = scrub_page(sdev, logical, l, physical, flags, gen,
- mirror_num, have_csum ? csum : NULL, 0);
+ ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
+ mirror_num, have_csum ? csum : NULL, 0,
+ physical_for_dev_replace);
+behind_scrub_pages:
if (ret)
return ret;
len -= l;
logical += l;
physical += l;
+ physical_for_dev_replace += l;
}
return 0;
}
-static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
- struct map_lookup *map, int num, u64 base, u64 length)
+/*
+ * Given a physical address, this will calculate it's
+ * logical offset. if this is a parity stripe, it will return
+ * the most left data stripe's logical offset.
+ *
+ * return 0 if it is a data stripe, 1 means parity stripe.
+ */
+static int get_raid56_logic_offset(u64 physical, int num,
+ struct map_lookup *map, u64 *offset)
+{
+ int i;
+ int j = 0;
+ u64 stripe_nr;
+ u64 last_offset;
+ int stripe_index;
+ int rot;
+
+ last_offset = (physical - map->stripes[num].physical) *
+ nr_data_stripes(map);
+ *offset = last_offset;
+ for (i = 0; i < nr_data_stripes(map); i++) {
+ *offset = last_offset + i * map->stripe_len;
+
+ stripe_nr = *offset;
+ do_div(stripe_nr, map->stripe_len);
+ do_div(stripe_nr, nr_data_stripes(map));
+
+ /* Work out the disk rotation on this stripe-set */
+ rot = do_div(stripe_nr, map->num_stripes);
+ /* calculate which stripe this data locates */
+ rot += i;
+ stripe_index = rot % map->num_stripes;
+ if (stripe_index == num)
+ return 0;
+ if (stripe_index < num)
+ j++;
+ }
+ *offset = last_offset + j * map->stripe_len;
+ return 1;
+}
+
+static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
+ struct map_lookup *map,
+ struct btrfs_device *scrub_dev,
+ int num, u64 base, u64 length,
+ int is_dev_replace)
{
struct btrfs_path *path;
- struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
+ struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
struct btrfs_root *root = fs_info->extent_root;
struct btrfs_root *csum_root = fs_info->csum_root;
struct btrfs_extent_item *extent;
@@ -1127,23 +2292,30 @@ static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
u64 flags;
int ret;
int slot;
- int i;
u64 nstripes;
struct extent_buffer *l;
struct btrfs_key key;
u64 physical;
u64 logical;
+ u64 logic_end;
+ u64 physical_end;
u64 generation;
int mirror_num;
struct reada_control *reada1;
struct reada_control *reada2;
struct btrfs_key key_start;
struct btrfs_key key_end;
-
u64 increment = map->stripe_len;
u64 offset;
+ u64 extent_logical;
+ u64 extent_physical;
+ u64 extent_len;
+ struct btrfs_device *extent_dev;
+ int extent_mirror_num;
+ int stop_loop = 0;
nstripes = length;
+ physical = map->stripes[num].physical;
offset = 0;
do_div(nstripes, map->stripe_len);
if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
@@ -1161,6 +2333,11 @@ static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
increment = map->stripe_len;
mirror_num = num % map->num_stripes + 1;
+ } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
+ BTRFS_BLOCK_GROUP_RAID6)) {
+ get_raid56_logic_offset(physical, num, map, &offset);
+ increment = map->stripe_len * nr_data_stripes(map);
+ mirror_num = 1;
} else {
increment = map->stripe_len;
mirror_num = 1;
@@ -1170,6 +2347,11 @@ static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
if (!path)
return -ENOMEM;
+ /*
+ * work on commit root. The related disk blocks are static as
+ * long as COW is applied. This means, it is save to rewrite
+ * them to repair disk errors without any race conditions
+ */
path->search_commit_root = 1;
path->skip_locking = 1;
@@ -1179,19 +2361,26 @@ static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
* to not hold off transaction commits
*/
logical = base + offset;
-
- wait_event(sdev->list_wait,
- atomic_read(&sdev->in_flight) == 0);
- atomic_inc(&fs_info->scrubs_paused);
- wake_up(&fs_info->scrub_pause_wait);
+ physical_end = physical + nstripes * map->stripe_len;
+ if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
+ BTRFS_BLOCK_GROUP_RAID6)) {
+ get_raid56_logic_offset(physical_end, num,
+ map, &logic_end);
+ logic_end += base;
+ } else {
+ logic_end = logical + increment * nstripes;
+ }
+ wait_event(sctx->list_wait,
+ atomic_read(&sctx->bios_in_flight) == 0);
+ scrub_blocked_if_needed(fs_info);
/* FIXME it might be better to start readahead at commit root */
key_start.objectid = logical;
key_start.type = BTRFS_EXTENT_ITEM_KEY;
key_start.offset = (u64)0;
- key_end.objectid = base + offset + nstripes * increment;
- key_end.type = BTRFS_EXTENT_ITEM_KEY;
- key_end.offset = (u64)0;
+ key_end.objectid = logic_end;
+ key_end.type = BTRFS_METADATA_ITEM_KEY;
+ key_end.offset = (u64)-1;
reada1 = btrfs_reada_add(root, &key_start, &key_end);
key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
@@ -1199,7 +2388,7 @@ static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
key_start.offset = logical;
key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
key_end.type = BTRFS_EXTENT_CSUM_KEY;
- key_end.offset = base + offset + nstripes * increment;
+ key_end.offset = logic_end;
reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
if (!IS_ERR(reada1))
@@ -1207,16 +2396,6 @@ static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
if (!IS_ERR(reada2))
btrfs_reada_wait(reada2);
- mutex_lock(&fs_info->scrub_lock);
- while (atomic_read(&fs_info->scrub_pause_req)) {
- mutex_unlock(&fs_info->scrub_lock);
- wait_event(fs_info->scrub_pause_wait,
- atomic_read(&fs_info->scrub_pause_req) == 0);
- mutex_lock(&fs_info->scrub_lock);
- }
- atomic_dec(&fs_info->scrubs_paused);
- mutex_unlock(&fs_info->scrub_lock);
- wake_up(&fs_info->scrub_pause_wait);
/*
* collect all data csums for the stripe to avoid seeking during
@@ -1227,15 +2406,22 @@ static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
/*
* now find all extents for each stripe and scrub them
*/
- logical = base + offset;
- physical = map->stripes[num].physical;
ret = 0;
- for (i = 0; i < nstripes; ++i) {
+ while (physical < physical_end) {
+ /* for raid56, we skip parity stripe */
+ if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
+ BTRFS_BLOCK_GROUP_RAID6)) {
+ ret = get_raid56_logic_offset(physical, num,
+ map, &logical);
+ logical += base;
+ if (ret)
+ goto skip;
+ }
/*
* canceled?
*/
if (atomic_read(&fs_info->scrub_cancel_req) ||
- atomic_read(&sdev->cancel_req)) {
+ atomic_read(&sctx->cancel_req)) {
ret = -ECANCELED;
goto out;
}
@@ -1244,39 +2430,30 @@ static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
*/
if (atomic_read(&fs_info->scrub_pause_req)) {
/* push queued extents */
- scrub_submit(sdev);
- wait_event(sdev->list_wait,
- atomic_read(&sdev->in_flight) == 0);
- atomic_inc(&fs_info->scrubs_paused);
- wake_up(&fs_info->scrub_pause_wait);
- mutex_lock(&fs_info->scrub_lock);
- while (atomic_read(&fs_info->scrub_pause_req)) {
- mutex_unlock(&fs_info->scrub_lock);
- wait_event(fs_info->scrub_pause_wait,
- atomic_read(&fs_info->scrub_pause_req) == 0);
- mutex_lock(&fs_info->scrub_lock);
- }
- atomic_dec(&fs_info->scrubs_paused);
- mutex_unlock(&fs_info->scrub_lock);
- wake_up(&fs_info->scrub_pause_wait);
+ atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
+ scrub_submit(sctx);
+ mutex_lock(&sctx->wr_ctx.wr_lock);
+ scrub_wr_submit(sctx);
+ mutex_unlock(&sctx->wr_ctx.wr_lock);
+ wait_event(sctx->list_wait,
+ atomic_read(&sctx->bios_in_flight) == 0);
+ atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
+ scrub_blocked_if_needed(fs_info);
}
- ret = btrfs_lookup_csums_range(csum_root, logical,
- logical + map->stripe_len - 1,
- &sdev->csum_list, 1);
- if (ret)
- goto out;
-
+ if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
+ key.type = BTRFS_METADATA_ITEM_KEY;
+ else
+ key.type = BTRFS_EXTENT_ITEM_KEY;
key.objectid = logical;
- key.type = BTRFS_EXTENT_ITEM_KEY;
- key.offset = (u64)0;
+ key.offset = (u64)-1;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto out;
+
if (ret > 0) {
- ret = btrfs_previous_item(root, path, 0,
- BTRFS_EXTENT_ITEM_KEY);
+ ret = btrfs_previous_extent_item(root, path, 0);
if (ret < 0)
goto out;
if (ret > 0) {
@@ -1290,7 +2467,10 @@ static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
}
}
+ stop_loop = 0;
while (1) {
+ u64 bytes;
+
l = path->nodes[0];
slot = path->slots[0];
if (slot >= btrfs_header_nritems(l)) {
@@ -1300,19 +2480,30 @@ static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
if (ret < 0)
goto out;
+ stop_loop = 1;
break;
}
btrfs_item_key_to_cpu(l, &key, slot);
- if (key.objectid + key.offset <= logical)
- goto next;
+ if (key.type == BTRFS_METADATA_ITEM_KEY)
+ bytes = root->leafsize;
+ else
+ bytes = key.offset;
- if (key.objectid >= logical + map->stripe_len)
- break;
+ if (key.objectid + bytes <= logical)
+ goto next;
- if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
+ if (key.type != BTRFS_EXTENT_ITEM_KEY &&
+ key.type != BTRFS_METADATA_ITEM_KEY)
goto next;
+ if (key.objectid >= logical + map->stripe_len) {
+ /* out of this device extent */
+ if (key.objectid >= logic_end)
+ stop_loop = 1;
+ break;
+ }
+
extent = btrfs_item_ptr(l, slot,
struct btrfs_extent_item);
flags = btrfs_extent_flags(l, extent);
@@ -1320,61 +2511,123 @@ static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
if (key.objectid < logical &&
(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
- printk(KERN_ERR
- "btrfs scrub: tree block %llu spanning "
- "stripes, ignored. logical=%llu\n",
- (unsigned long long)key.objectid,
- (unsigned long long)logical);
+ btrfs_err(fs_info,
+ "scrub: tree block %llu spanning "
+ "stripes, ignored. logical=%llu",
+ key.objectid, logical);
goto next;
}
+again:
+ extent_logical = key.objectid;
+ extent_len = bytes;
+
/*
* trim extent to this stripe
*/
- if (key.objectid < logical) {
- key.offset -= logical - key.objectid;
- key.objectid = logical;
+ if (extent_logical < logical) {
+ extent_len -= logical - extent_logical;
+ extent_logical = logical;
}
- if (key.objectid + key.offset >
+ if (extent_logical + extent_len >
logical + map->stripe_len) {
- key.offset = logical + map->stripe_len -
- key.objectid;
+ extent_len = logical + map->stripe_len -
+ extent_logical;
}
- ret = scrub_extent(sdev, key.objectid, key.offset,
- key.objectid - logical + physical,
- flags, generation, mirror_num);
+ extent_physical = extent_logical - logical + physical;
+ extent_dev = scrub_dev;
+ extent_mirror_num = mirror_num;
+ if (is_dev_replace)
+ scrub_remap_extent(fs_info, extent_logical,
+ extent_len, &extent_physical,
+ &extent_dev,
+ &extent_mirror_num);
+
+ ret = btrfs_lookup_csums_range(csum_root, logical,
+ logical + map->stripe_len - 1,
+ &sctx->csum_list, 1);
if (ret)
goto out;
+ ret = scrub_extent(sctx, extent_logical, extent_len,
+ extent_physical, extent_dev, flags,
+ generation, extent_mirror_num,
+ extent_logical - logical + physical);
+ if (ret)
+ goto out;
+
+ scrub_free_csums(sctx);
+ if (extent_logical + extent_len <
+ key.objectid + bytes) {
+ if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
+ BTRFS_BLOCK_GROUP_RAID6)) {
+ /*
+ * loop until we find next data stripe
+ * or we have finished all stripes.
+ */
+ do {
+ physical += map->stripe_len;
+ ret = get_raid56_logic_offset(
+ physical, num,
+ map, &logical);
+ logical += base;
+ } while (physical < physical_end && ret);
+ } else {
+ physical += map->stripe_len;
+ logical += increment;
+ }
+ if (logical < key.objectid + bytes) {
+ cond_resched();
+ goto again;
+ }
+
+ if (physical >= physical_end) {
+ stop_loop = 1;
+ break;
+ }
+ }
next:
path->slots[0]++;
}
btrfs_release_path(path);
+skip:
logical += increment;
physical += map->stripe_len;
- spin_lock(&sdev->stat_lock);
- sdev->stat.last_physical = physical;
- spin_unlock(&sdev->stat_lock);
+ spin_lock(&sctx->stat_lock);
+ if (stop_loop)
+ sctx->stat.last_physical = map->stripes[num].physical +
+ length;
+ else
+ sctx->stat.last_physical = physical;
+ spin_unlock(&sctx->stat_lock);
+ if (stop_loop)
+ break;
}
+out:
/* push queued extents */
- scrub_submit(sdev);
+ scrub_submit(sctx);
+ mutex_lock(&sctx->wr_ctx.wr_lock);
+ scrub_wr_submit(sctx);
+ mutex_unlock(&sctx->wr_ctx.wr_lock);
-out:
blk_finish_plug(&plug);
btrfs_free_path(path);
return ret < 0 ? ret : 0;
}
-static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
- u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length)
+static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
+ struct btrfs_device *scrub_dev,
+ u64 chunk_tree, u64 chunk_objectid,
+ u64 chunk_offset, u64 length,
+ u64 dev_offset, int is_dev_replace)
{
struct btrfs_mapping_tree *map_tree =
- &sdev->dev->dev_root->fs_info->mapping_tree;
+ &sctx->dev_root->fs_info->mapping_tree;
struct map_lookup *map;
struct extent_map *em;
int i;
- int ret = -EINVAL;
+ int ret = 0;
read_lock(&map_tree->map_tree.lock);
em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
@@ -1391,8 +2644,11 @@ static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
goto out;
for (i = 0; i < map->num_stripes; ++i) {
- if (map->stripes[i].dev == sdev->dev) {
- ret = scrub_stripe(sdev, map, i, chunk_offset, length);
+ if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
+ map->stripes[i].physical == dev_offset) {
+ ret = scrub_stripe(sctx, map, scrub_dev, i,
+ chunk_offset, length,
+ is_dev_replace);
if (ret)
goto out;
}
@@ -1404,11 +2660,13 @@ out:
}
static noinline_for_stack
-int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
+int scrub_enumerate_chunks(struct scrub_ctx *sctx,
+ struct btrfs_device *scrub_dev, u64 start, u64 end,
+ int is_dev_replace)
{
struct btrfs_dev_extent *dev_extent = NULL;
struct btrfs_path *path;
- struct btrfs_root *root = sdev->dev->dev_root;
+ struct btrfs_root *root = sctx->dev_root;
struct btrfs_fs_info *fs_info = root->fs_info;
u64 length;
u64 chunk_tree;
@@ -1420,6 +2678,7 @@ int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
struct btrfs_key key;
struct btrfs_key found_key;
struct btrfs_block_group_cache *cache;
+ struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
path = btrfs_alloc_path();
if (!path)
@@ -1429,11 +2688,10 @@ int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
path->search_commit_root = 1;
path->skip_locking = 1;
- key.objectid = sdev->dev->devid;
+ key.objectid = scrub_dev->devid;
key.offset = 0ull;
key.type = BTRFS_DEV_EXTENT_KEY;
-
while (1) {
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
@@ -1452,7 +2710,7 @@ int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
btrfs_item_key_to_cpu(l, &found_key, slot);
- if (found_key.objectid != sdev->dev->devid)
+ if (found_key.objectid != scrub_dev->devid)
break;
if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
@@ -1467,11 +2725,8 @@ int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
length = btrfs_dev_extent_length(l, dev_extent);
- if (found_key.offset + length <= start) {
- key.offset = found_key.offset + length;
- btrfs_release_path(path);
- continue;
- }
+ if (found_key.offset + length <= start)
+ goto skip;
chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
@@ -1482,16 +2737,71 @@ int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
* the chunk from going away while we scrub it
*/
cache = btrfs_lookup_block_group(fs_info, chunk_offset);
- if (!cache) {
- ret = -ENOENT;
- break;
- }
- ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
- chunk_offset, length);
+
+ /* some chunks are removed but not committed to disk yet,
+ * continue scrubbing */
+ if (!cache)
+ goto skip;
+
+ dev_replace->cursor_right = found_key.offset + length;
+ dev_replace->cursor_left = found_key.offset;
+ dev_replace->item_needs_writeback = 1;
+ ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
+ chunk_offset, length, found_key.offset,
+ is_dev_replace);
+
+ /*
+ * flush, submit all pending read and write bios, afterwards
+ * wait for them.
+ * Note that in the dev replace case, a read request causes
+ * write requests that are submitted in the read completion
+ * worker. Therefore in the current situation, it is required
+ * that all write requests are flushed, so that all read and
+ * write requests are really completed when bios_in_flight
+ * changes to 0.
+ */
+ atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
+ scrub_submit(sctx);
+ mutex_lock(&sctx->wr_ctx.wr_lock);
+ scrub_wr_submit(sctx);
+ mutex_unlock(&sctx->wr_ctx.wr_lock);
+
+ wait_event(sctx->list_wait,
+ atomic_read(&sctx->bios_in_flight) == 0);
+ atomic_inc(&fs_info->scrubs_paused);
+ wake_up(&fs_info->scrub_pause_wait);
+
+ /*
+ * must be called before we decrease @scrub_paused.
+ * make sure we don't block transaction commit while
+ * we are waiting pending workers finished.
+ */
+ wait_event(sctx->list_wait,
+ atomic_read(&sctx->workers_pending) == 0);
+ atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
+
+ mutex_lock(&fs_info->scrub_lock);
+ __scrub_blocked_if_needed(fs_info);
+ atomic_dec(&fs_info->scrubs_paused);
+ mutex_unlock(&fs_info->scrub_lock);
+ wake_up(&fs_info->scrub_pause_wait);
+
btrfs_put_block_group(cache);
if (ret)
break;
+ if (is_dev_replace &&
+ atomic64_read(&dev_replace->num_write_errors) > 0) {
+ ret = -EIO;
+ break;
+ }
+ if (sctx->stat.malloc_errors > 0) {
+ ret = -ENOMEM;
+ break;
+ }
+ dev_replace->cursor_left = dev_replace->cursor_right;
+ dev_replace->item_needs_writeback = 1;
+skip:
key.offset = found_key.offset + length;
btrfs_release_path(path);
}
@@ -1505,28 +2815,32 @@ int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
return ret < 0 ? ret : 0;
}
-static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
+static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
+ struct btrfs_device *scrub_dev)
{
int i;
u64 bytenr;
u64 gen;
int ret;
- struct btrfs_device *device = sdev->dev;
- struct btrfs_root *root = device->dev_root;
+ struct btrfs_root *root = sctx->dev_root;
+
+ if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
+ return -EIO;
gen = root->fs_info->last_trans_committed;
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
bytenr = btrfs_sb_offset(i);
- if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
+ if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
break;
- ret = scrub_page(sdev, bytenr, PAGE_SIZE, bytenr,
- BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
+ ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
+ scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
+ NULL, 1, bytenr);
if (ret)
return ret;
}
- wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
+ wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
return 0;
}
@@ -1534,127 +2848,201 @@ static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
/*
* get a reference count on fs_info->scrub_workers. start worker if necessary
*/
-static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
+static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
+ int is_dev_replace)
{
- struct btrfs_fs_info *fs_info = root->fs_info;
int ret = 0;
+ int flags = WQ_FREEZABLE | WQ_UNBOUND;
+ int max_active = fs_info->thread_pool_size;
- mutex_lock(&fs_info->scrub_lock);
if (fs_info->scrub_workers_refcnt == 0) {
- btrfs_init_workers(&fs_info->scrub_workers, "scrub",
- fs_info->thread_pool_size, &fs_info->generic_worker);
- fs_info->scrub_workers.idle_thresh = 4;
- ret = btrfs_start_workers(&fs_info->scrub_workers);
- if (ret)
+ if (is_dev_replace)
+ fs_info->scrub_workers =
+ btrfs_alloc_workqueue("btrfs-scrub", flags,
+ 1, 4);
+ else
+ fs_info->scrub_workers =
+ btrfs_alloc_workqueue("btrfs-scrub", flags,
+ max_active, 4);
+ if (!fs_info->scrub_workers) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ fs_info->scrub_wr_completion_workers =
+ btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
+ max_active, 2);
+ if (!fs_info->scrub_wr_completion_workers) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ fs_info->scrub_nocow_workers =
+ btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
+ if (!fs_info->scrub_nocow_workers) {
+ ret = -ENOMEM;
goto out;
+ }
}
++fs_info->scrub_workers_refcnt;
out:
- mutex_unlock(&fs_info->scrub_lock);
-
return ret;
}
-static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
+static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
- struct btrfs_fs_info *fs_info = root->fs_info;
-
- mutex_lock(&fs_info->scrub_lock);
- if (--fs_info->scrub_workers_refcnt == 0)
- btrfs_stop_workers(&fs_info->scrub_workers);
+ if (--fs_info->scrub_workers_refcnt == 0) {
+ btrfs_destroy_workqueue(fs_info->scrub_workers);
+ btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
+ btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
+ }
WARN_ON(fs_info->scrub_workers_refcnt < 0);
- mutex_unlock(&fs_info->scrub_lock);
}
-
-int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
- struct btrfs_scrub_progress *progress, int readonly)
+int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
+ u64 end, struct btrfs_scrub_progress *progress,
+ int readonly, int is_dev_replace)
{
- struct scrub_dev *sdev;
- struct btrfs_fs_info *fs_info = root->fs_info;
+ struct scrub_ctx *sctx;
int ret;
struct btrfs_device *dev;
- if (btrfs_fs_closing(root->fs_info))
+ if (btrfs_fs_closing(fs_info))
return -EINVAL;
/*
* check some assumptions
*/
- if (root->sectorsize != PAGE_SIZE ||
- root->sectorsize != root->leafsize ||
- root->sectorsize != root->nodesize) {
- printk(KERN_ERR "btrfs_scrub: size assumptions fail\n");
+ if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
+ btrfs_err(fs_info,
+ "scrub: size assumption nodesize == leafsize (%d == %d) fails",
+ fs_info->chunk_root->nodesize,
+ fs_info->chunk_root->leafsize);
return -EINVAL;
}
- ret = scrub_workers_get(root);
- if (ret)
- return ret;
+ if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
+ /*
+ * in this case scrub is unable to calculate the checksum
+ * the way scrub is implemented. Do not handle this
+ * situation at all because it won't ever happen.
+ */
+ btrfs_err(fs_info,
+ "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
+ fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
+ return -EINVAL;
+ }
- mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
- dev = btrfs_find_device(root, devid, NULL, NULL);
- if (!dev || dev->missing) {
- mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
- scrub_workers_put(root);
+ if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
+ /* not supported for data w/o checksums */
+ btrfs_err(fs_info,
+ "scrub: size assumption sectorsize != PAGE_SIZE "
+ "(%d != %lu) fails",
+ fs_info->chunk_root->sectorsize, PAGE_SIZE);
+ return -EINVAL;
+ }
+
+ if (fs_info->chunk_root->nodesize >
+ PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
+ fs_info->chunk_root->sectorsize >
+ PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
+ /*
+ * would exhaust the array bounds of pagev member in
+ * struct scrub_block
+ */
+ btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
+ "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
+ fs_info->chunk_root->nodesize,
+ SCRUB_MAX_PAGES_PER_BLOCK,
+ fs_info->chunk_root->sectorsize,
+ SCRUB_MAX_PAGES_PER_BLOCK);
+ return -EINVAL;
+ }
+
+
+ mutex_lock(&fs_info->fs_devices->device_list_mutex);
+ dev = btrfs_find_device(fs_info, devid, NULL, NULL);
+ if (!dev || (dev->missing && !is_dev_replace)) {
+ mutex_unlock(&fs_info->fs_devices->device_list_mutex);
return -ENODEV;
}
- mutex_lock(&fs_info->scrub_lock);
- if (!dev->in_fs_metadata) {
+ mutex_lock(&fs_info->scrub_lock);
+ if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
mutex_unlock(&fs_info->scrub_lock);
- mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
- scrub_workers_put(root);
- return -ENODEV;
+ mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+ return -EIO;
}
- if (dev->scrub_device) {
+ btrfs_dev_replace_lock(&fs_info->dev_replace);
+ if (dev->scrub_device ||
+ (!is_dev_replace &&
+ btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
+ btrfs_dev_replace_unlock(&fs_info->dev_replace);
mutex_unlock(&fs_info->scrub_lock);
- mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
- scrub_workers_put(root);
+ mutex_unlock(&fs_info->fs_devices->device_list_mutex);
return -EINPROGRESS;
}
- sdev = scrub_setup_dev(dev);
- if (IS_ERR(sdev)) {
+ btrfs_dev_replace_unlock(&fs_info->dev_replace);
+
+ ret = scrub_workers_get(fs_info, is_dev_replace);
+ if (ret) {
mutex_unlock(&fs_info->scrub_lock);
- mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
- scrub_workers_put(root);
- return PTR_ERR(sdev);
+ mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+ return ret;
}
- sdev->readonly = readonly;
- dev->scrub_device = sdev;
+ sctx = scrub_setup_ctx(dev, is_dev_replace);
+ if (IS_ERR(sctx)) {
+ mutex_unlock(&fs_info->scrub_lock);
+ mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+ scrub_workers_put(fs_info);
+ return PTR_ERR(sctx);
+ }
+ sctx->readonly = readonly;
+ dev->scrub_device = sctx;
+ mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+
+ /*
+ * checking @scrub_pause_req here, we can avoid
+ * race between committing transaction and scrubbing.
+ */
+ __scrub_blocked_if_needed(fs_info);
atomic_inc(&fs_info->scrubs_running);
mutex_unlock(&fs_info->scrub_lock);
- mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
- down_read(&fs_info->scrub_super_lock);
- ret = scrub_supers(sdev);
- up_read(&fs_info->scrub_super_lock);
+ if (!is_dev_replace) {
+ /*
+ * by holding device list mutex, we can
+ * kick off writing super in log tree sync.
+ */
+ mutex_lock(&fs_info->fs_devices->device_list_mutex);
+ ret = scrub_supers(sctx, dev);
+ mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+ }
if (!ret)
- ret = scrub_enumerate_chunks(sdev, start, end);
+ ret = scrub_enumerate_chunks(sctx, dev, start, end,
+ is_dev_replace);
- wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
+ wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
atomic_dec(&fs_info->scrubs_running);
wake_up(&fs_info->scrub_pause_wait);
- wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
+ wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
if (progress)
- memcpy(progress, &sdev->stat, sizeof(*progress));
+ memcpy(progress, &sctx->stat, sizeof(*progress));
mutex_lock(&fs_info->scrub_lock);
dev->scrub_device = NULL;
+ scrub_workers_put(fs_info);
mutex_unlock(&fs_info->scrub_lock);
- scrub_free_dev(sdev);
- scrub_workers_put(root);
+ scrub_free_ctx(sctx);
return ret;
}
-int btrfs_scrub_pause(struct btrfs_root *root)
+void btrfs_scrub_pause(struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
@@ -1669,35 +3057,18 @@ int btrfs_scrub_pause(struct btrfs_root *root)
mutex_lock(&fs_info->scrub_lock);
}
mutex_unlock(&fs_info->scrub_lock);
-
- return 0;
}
-int btrfs_scrub_continue(struct btrfs_root *root)
+void btrfs_scrub_continue(struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
atomic_dec(&fs_info->scrub_pause_req);
wake_up(&fs_info->scrub_pause_wait);
- return 0;
-}
-
-int btrfs_scrub_pause_super(struct btrfs_root *root)
-{
- down_write(&root->fs_info->scrub_super_lock);
- return 0;
}
-int btrfs_scrub_continue_super(struct btrfs_root *root)
+int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
{
- up_write(&root->fs_info->scrub_super_lock);
- return 0;
-}
-
-int btrfs_scrub_cancel(struct btrfs_root *root)
-{
- struct btrfs_fs_info *fs_info = root->fs_info;
-
mutex_lock(&fs_info->scrub_lock);
if (!atomic_read(&fs_info->scrubs_running)) {
mutex_unlock(&fs_info->scrub_lock);
@@ -1717,18 +3088,18 @@ int btrfs_scrub_cancel(struct btrfs_root *root)
return 0;
}
-int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
+int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
+ struct btrfs_device *dev)
{
- struct btrfs_fs_info *fs_info = root->fs_info;
- struct scrub_dev *sdev;
+ struct scrub_ctx *sctx;
mutex_lock(&fs_info->scrub_lock);
- sdev = dev->scrub_device;
- if (!sdev) {
+ sctx = dev->scrub_device;
+ if (!sctx) {
mutex_unlock(&fs_info->scrub_lock);
return -ENOTCONN;
}
- atomic_inc(&sdev->cancel_req);
+ atomic_inc(&sctx->cancel_req);
while (dev->scrub_device) {
mutex_unlock(&fs_info->scrub_lock);
wait_event(fs_info->scrub_pause_wait,
@@ -1739,41 +3110,380 @@ int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
return 0;
}
-int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
+
+int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
+ struct btrfs_scrub_progress *progress)
{
- struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_device *dev;
+ struct scrub_ctx *sctx = NULL;
+
+ mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
+ dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
+ if (dev)
+ sctx = dev->scrub_device;
+ if (sctx)
+ memcpy(progress, &sctx->stat, sizeof(*progress));
+ mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
+
+ return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
+}
+
+static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
+ u64 extent_logical, u64 extent_len,
+ u64 *extent_physical,
+ struct btrfs_device **extent_dev,
+ int *extent_mirror_num)
+{
+ u64 mapped_length;
+ struct btrfs_bio *bbio = NULL;
int ret;
+ mapped_length = extent_len;
+ ret = btrfs_map_block(fs_info, READ, extent_logical,
+ &mapped_length, &bbio, 0);
+ if (ret || !bbio || mapped_length < extent_len ||
+ !bbio->stripes[0].dev->bdev) {
+ kfree(bbio);
+ return;
+ }
+
+ *extent_physical = bbio->stripes[0].physical;
+ *extent_mirror_num = bbio->mirror_num;
+ *extent_dev = bbio->stripes[0].dev;
+ kfree(bbio);
+}
+
+static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
+ struct scrub_wr_ctx *wr_ctx,
+ struct btrfs_fs_info *fs_info,
+ struct btrfs_device *dev,
+ int is_dev_replace)
+{
+ WARN_ON(wr_ctx->wr_curr_bio != NULL);
+
+ mutex_init(&wr_ctx->wr_lock);
+ wr_ctx->wr_curr_bio = NULL;
+ if (!is_dev_replace)
+ return 0;
+
+ WARN_ON(!dev->bdev);
+ wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
+ bio_get_nr_vecs(dev->bdev));
+ wr_ctx->tgtdev = dev;
+ atomic_set(&wr_ctx->flush_all_writes, 0);
+ return 0;
+}
+
+static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
+{
+ mutex_lock(&wr_ctx->wr_lock);
+ kfree(wr_ctx->wr_curr_bio);
+ wr_ctx->wr_curr_bio = NULL;
+ mutex_unlock(&wr_ctx->wr_lock);
+}
+
+static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
+ int mirror_num, u64 physical_for_dev_replace)
+{
+ struct scrub_copy_nocow_ctx *nocow_ctx;
+ struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
+
+ nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
+ if (!nocow_ctx) {
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.malloc_errors++;
+ spin_unlock(&sctx->stat_lock);
+ return -ENOMEM;
+ }
+
+ scrub_pending_trans_workers_inc(sctx);
+
+ nocow_ctx->sctx = sctx;
+ nocow_ctx->logical = logical;
+ nocow_ctx->len = len;
+ nocow_ctx->mirror_num = mirror_num;
+ nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
+ btrfs_init_work(&nocow_ctx->work, copy_nocow_pages_worker, NULL, NULL);
+ INIT_LIST_HEAD(&nocow_ctx->inodes);
+ btrfs_queue_work(fs_info->scrub_nocow_workers,
+ &nocow_ctx->work);
+
+ return 0;
+}
+
+static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
+{
+ struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
+ struct scrub_nocow_inode *nocow_inode;
+
+ nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
+ if (!nocow_inode)
+ return -ENOMEM;
+ nocow_inode->inum = inum;
+ nocow_inode->offset = offset;
+ nocow_inode->root = root;
+ list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
+ return 0;
+}
+
+#define COPY_COMPLETE 1
+
+static void copy_nocow_pages_worker(struct btrfs_work *work)
+{
+ struct scrub_copy_nocow_ctx *nocow_ctx =
+ container_of(work, struct scrub_copy_nocow_ctx, work);
+ struct scrub_ctx *sctx = nocow_ctx->sctx;
+ u64 logical = nocow_ctx->logical;
+ u64 len = nocow_ctx->len;
+ int mirror_num = nocow_ctx->mirror_num;
+ u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
+ int ret;
+ struct btrfs_trans_handle *trans = NULL;
+ struct btrfs_fs_info *fs_info;
+ struct btrfs_path *path;
+ struct btrfs_root *root;
+ int not_written = 0;
+
+ fs_info = sctx->dev_root->fs_info;
+ root = fs_info->extent_root;
+
+ path = btrfs_alloc_path();
+ if (!path) {
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.malloc_errors++;
+ spin_unlock(&sctx->stat_lock);
+ not_written = 1;
+ goto out;
+ }
+
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans)) {
+ not_written = 1;
+ goto out;
+ }
+
+ ret = iterate_inodes_from_logical(logical, fs_info, path,
+ record_inode_for_nocow, nocow_ctx);
+ if (ret != 0 && ret != -ENOENT) {
+ btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
+ "phys %llu, len %llu, mir %u, ret %d",
+ logical, physical_for_dev_replace, len, mirror_num,
+ ret);
+ not_written = 1;
+ goto out;
+ }
+
+ btrfs_end_transaction(trans, root);
+ trans = NULL;
+ while (!list_empty(&nocow_ctx->inodes)) {
+ struct scrub_nocow_inode *entry;
+ entry = list_first_entry(&nocow_ctx->inodes,
+ struct scrub_nocow_inode,
+ list);
+ list_del_init(&entry->list);
+ ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
+ entry->root, nocow_ctx);
+ kfree(entry);
+ if (ret == COPY_COMPLETE) {
+ ret = 0;
+ break;
+ } else if (ret) {
+ break;
+ }
+ }
+out:
+ while (!list_empty(&nocow_ctx->inodes)) {
+ struct scrub_nocow_inode *entry;
+ entry = list_first_entry(&nocow_ctx->inodes,
+ struct scrub_nocow_inode,
+ list);
+ list_del_init(&entry->list);
+ kfree(entry);
+ }
+ if (trans && !IS_ERR(trans))
+ btrfs_end_transaction(trans, root);
+ if (not_written)
+ btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
+ num_uncorrectable_read_errors);
+
+ btrfs_free_path(path);
+ kfree(nocow_ctx);
+
+ scrub_pending_trans_workers_dec(sctx);
+}
+
+static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
+ struct scrub_copy_nocow_ctx *nocow_ctx)
+{
+ struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
+ struct btrfs_key key;
+ struct inode *inode;
+ struct page *page;
+ struct btrfs_root *local_root;
+ struct btrfs_ordered_extent *ordered;
+ struct extent_map *em;
+ struct extent_state *cached_state = NULL;
+ struct extent_io_tree *io_tree;
+ u64 physical_for_dev_replace;
+ u64 len = nocow_ctx->len;
+ u64 lockstart = offset, lockend = offset + len - 1;
+ unsigned long index;
+ int srcu_index;
+ int ret = 0;
+ int err = 0;
+
+ key.objectid = root;
+ key.type = BTRFS_ROOT_ITEM_KEY;
+ key.offset = (u64)-1;
+
+ srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
+
+ local_root = btrfs_read_fs_root_no_name(fs_info, &key);
+ if (IS_ERR(local_root)) {
+ srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
+ return PTR_ERR(local_root);
+ }
+
+ key.type = BTRFS_INODE_ITEM_KEY;
+ key.objectid = inum;
+ key.offset = 0;
+ inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
+ srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
+ if (IS_ERR(inode))
+ return PTR_ERR(inode);
+
+ /* Avoid truncate/dio/punch hole.. */
+ mutex_lock(&inode->i_mutex);
+ inode_dio_wait(inode);
+
+ physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
+ io_tree = &BTRFS_I(inode)->io_tree;
+
+ lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
+ ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
+ if (ordered) {
+ btrfs_put_ordered_extent(ordered);
+ goto out_unlock;
+ }
+
+ em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
+ if (IS_ERR(em)) {
+ ret = PTR_ERR(em);
+ goto out_unlock;
+ }
+
/*
- * we have to hold the device_list_mutex here so the device
- * does not go away in cancel_dev. FIXME: find a better solution
+ * This extent does not actually cover the logical extent anymore,
+ * move on to the next inode.
*/
- mutex_lock(&fs_info->fs_devices->device_list_mutex);
- dev = btrfs_find_device(root, devid, NULL, NULL);
- if (!dev) {
- mutex_unlock(&fs_info->fs_devices->device_list_mutex);
- return -ENODEV;
+ if (em->block_start > nocow_ctx->logical ||
+ em->block_start + em->block_len < nocow_ctx->logical + len) {
+ free_extent_map(em);
+ goto out_unlock;
}
- ret = btrfs_scrub_cancel_dev(root, dev);
- mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+ free_extent_map(em);
+
+ while (len >= PAGE_CACHE_SIZE) {
+ index = offset >> PAGE_CACHE_SHIFT;
+again:
+ page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
+ if (!page) {
+ btrfs_err(fs_info, "find_or_create_page() failed");
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ if (PageUptodate(page)) {
+ if (PageDirty(page))
+ goto next_page;
+ } else {
+ ClearPageError(page);
+ err = extent_read_full_page_nolock(io_tree, page,
+ btrfs_get_extent,
+ nocow_ctx->mirror_num);
+ if (err) {
+ ret = err;
+ goto next_page;
+ }
+ lock_page(page);
+ /*
+ * If the page has been remove from the page cache,
+ * the data on it is meaningless, because it may be
+ * old one, the new data may be written into the new
+ * page in the page cache.
+ */
+ if (page->mapping != inode->i_mapping) {
+ unlock_page(page);
+ page_cache_release(page);
+ goto again;
+ }
+ if (!PageUptodate(page)) {
+ ret = -EIO;
+ goto next_page;
+ }
+ }
+ err = write_page_nocow(nocow_ctx->sctx,
+ physical_for_dev_replace, page);
+ if (err)
+ ret = err;
+next_page:
+ unlock_page(page);
+ page_cache_release(page);
+
+ if (ret)
+ break;
+
+ offset += PAGE_CACHE_SIZE;
+ physical_for_dev_replace += PAGE_CACHE_SIZE;
+ len -= PAGE_CACHE_SIZE;
+ }
+ ret = COPY_COMPLETE;
+out_unlock:
+ unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
+ GFP_NOFS);
+out:
+ mutex_unlock(&inode->i_mutex);
+ iput(inode);
return ret;
}
-int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
- struct btrfs_scrub_progress *progress)
+static int write_page_nocow(struct scrub_ctx *sctx,
+ u64 physical_for_dev_replace, struct page *page)
{
+ struct bio *bio;
struct btrfs_device *dev;
- struct scrub_dev *sdev = NULL;
+ int ret;
- mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
- dev = btrfs_find_device(root, devid, NULL, NULL);
- if (dev)
- sdev = dev->scrub_device;
- if (sdev)
- memcpy(progress, &sdev->stat, sizeof(*progress));
- mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
+ dev = sctx->wr_ctx.tgtdev;
+ if (!dev)
+ return -EIO;
+ if (!dev->bdev) {
+ printk_ratelimited(KERN_WARNING
+ "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
+ return -EIO;
+ }
+ bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
+ if (!bio) {
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.malloc_errors++;
+ spin_unlock(&sctx->stat_lock);
+ return -ENOMEM;
+ }
+ bio->bi_iter.bi_size = 0;
+ bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
+ bio->bi_bdev = dev->bdev;
+ ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
+ if (ret != PAGE_CACHE_SIZE) {
+leave_with_eio:
+ bio_put(bio);
+ btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
+ return -EIO;
+ }
- return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
+ if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
+ goto leave_with_eio;
+
+ bio_put(bio);
+ return 0;
}