diff options
Diffstat (limited to 'fs/bio.c')
| -rw-r--r-- | fs/bio.c | 1694 | 
1 files changed, 0 insertions, 1694 deletions
diff --git a/fs/bio.c b/fs/bio.c deleted file mode 100644 index 4bd454fa844..00000000000 --- a/fs/bio.c +++ /dev/null @@ -1,1694 +0,0 @@ -/* - * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public Licens - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111- - * - */ -#include <linux/mm.h> -#include <linux/swap.h> -#include <linux/bio.h> -#include <linux/blkdev.h> -#include <linux/slab.h> -#include <linux/init.h> -#include <linux/kernel.h> -#include <linux/module.h> -#include <linux/mempool.h> -#include <linux/workqueue.h> -#include <scsi/sg.h>		/* for struct sg_iovec */ - -#include <trace/events/block.h> - -/* - * Test patch to inline a certain number of bi_io_vec's inside the bio - * itself, to shrink a bio data allocation from two mempool calls to one - */ -#define BIO_INLINE_VECS		4 - -static mempool_t *bio_split_pool __read_mostly; - -/* - * if you change this list, also change bvec_alloc or things will - * break badly! cannot be bigger than what you can fit into an - * unsigned short - */ -#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } -struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { -	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), -}; -#undef BV - -/* - * fs_bio_set is the bio_set containing bio and iovec memory pools used by - * IO code that does not need private memory pools. - */ -struct bio_set *fs_bio_set; - -/* - * Our slab pool management - */ -struct bio_slab { -	struct kmem_cache *slab; -	unsigned int slab_ref; -	unsigned int slab_size; -	char name[8]; -}; -static DEFINE_MUTEX(bio_slab_lock); -static struct bio_slab *bio_slabs; -static unsigned int bio_slab_nr, bio_slab_max; - -static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) -{ -	unsigned int sz = sizeof(struct bio) + extra_size; -	struct kmem_cache *slab = NULL; -	struct bio_slab *bslab; -	unsigned int i, entry = -1; - -	mutex_lock(&bio_slab_lock); - -	i = 0; -	while (i < bio_slab_nr) { -		bslab = &bio_slabs[i]; - -		if (!bslab->slab && entry == -1) -			entry = i; -		else if (bslab->slab_size == sz) { -			slab = bslab->slab; -			bslab->slab_ref++; -			break; -		} -		i++; -	} - -	if (slab) -		goto out_unlock; - -	if (bio_slab_nr == bio_slab_max && entry == -1) { -		bio_slab_max <<= 1; -		bio_slabs = krealloc(bio_slabs, -				     bio_slab_max * sizeof(struct bio_slab), -				     GFP_KERNEL); -		if (!bio_slabs) -			goto out_unlock; -	} -	if (entry == -1) -		entry = bio_slab_nr++; - -	bslab = &bio_slabs[entry]; - -	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); -	slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL); -	if (!slab) -		goto out_unlock; - -	printk("bio: create slab <%s> at %d\n", bslab->name, entry); -	bslab->slab = slab; -	bslab->slab_ref = 1; -	bslab->slab_size = sz; -out_unlock: -	mutex_unlock(&bio_slab_lock); -	return slab; -} - -static void bio_put_slab(struct bio_set *bs) -{ -	struct bio_slab *bslab = NULL; -	unsigned int i; - -	mutex_lock(&bio_slab_lock); - -	for (i = 0; i < bio_slab_nr; i++) { -		if (bs->bio_slab == bio_slabs[i].slab) { -			bslab = &bio_slabs[i]; -			break; -		} -	} - -	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) -		goto out; - -	WARN_ON(!bslab->slab_ref); - -	if (--bslab->slab_ref) -		goto out; - -	kmem_cache_destroy(bslab->slab); -	bslab->slab = NULL; - -out: -	mutex_unlock(&bio_slab_lock); -} - -unsigned int bvec_nr_vecs(unsigned short idx) -{ -	return bvec_slabs[idx].nr_vecs; -} - -void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx) -{ -	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS); - -	if (idx == BIOVEC_MAX_IDX) -		mempool_free(bv, bs->bvec_pool); -	else { -		struct biovec_slab *bvs = bvec_slabs + idx; - -		kmem_cache_free(bvs->slab, bv); -	} -} - -struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, -			      struct bio_set *bs) -{ -	struct bio_vec *bvl; - -	/* -	 * see comment near bvec_array define! -	 */ -	switch (nr) { -	case 1: -		*idx = 0; -		break; -	case 2 ... 4: -		*idx = 1; -		break; -	case 5 ... 16: -		*idx = 2; -		break; -	case 17 ... 64: -		*idx = 3; -		break; -	case 65 ... 128: -		*idx = 4; -		break; -	case 129 ... BIO_MAX_PAGES: -		*idx = 5; -		break; -	default: -		return NULL; -	} - -	/* -	 * idx now points to the pool we want to allocate from. only the -	 * 1-vec entry pool is mempool backed. -	 */ -	if (*idx == BIOVEC_MAX_IDX) { -fallback: -		bvl = mempool_alloc(bs->bvec_pool, gfp_mask); -	} else { -		struct biovec_slab *bvs = bvec_slabs + *idx; -		gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO); - -		/* -		 * Make this allocation restricted and don't dump info on -		 * allocation failures, since we'll fallback to the mempool -		 * in case of failure. -		 */ -		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; - -		/* -		 * Try a slab allocation. If this fails and __GFP_WAIT -		 * is set, retry with the 1-entry mempool -		 */ -		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); -		if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) { -			*idx = BIOVEC_MAX_IDX; -			goto fallback; -		} -	} - -	return bvl; -} - -void bio_free(struct bio *bio, struct bio_set *bs) -{ -	void *p; - -	if (bio_has_allocated_vec(bio)) -		bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio)); - -	if (bio_integrity(bio)) -		bio_integrity_free(bio, bs); - -	/* -	 * If we have front padding, adjust the bio pointer before freeing -	 */ -	p = bio; -	if (bs->front_pad) -		p -= bs->front_pad; - -	mempool_free(p, bs->bio_pool); -} -EXPORT_SYMBOL(bio_free); - -void bio_init(struct bio *bio) -{ -	memset(bio, 0, sizeof(*bio)); -	bio->bi_flags = 1 << BIO_UPTODATE; -	bio->bi_comp_cpu = -1; -	atomic_set(&bio->bi_cnt, 1); -} -EXPORT_SYMBOL(bio_init); - -/** - * bio_alloc_bioset - allocate a bio for I/O - * @gfp_mask:   the GFP_ mask given to the slab allocator - * @nr_iovecs:	number of iovecs to pre-allocate - * @bs:		the bio_set to allocate from. - * - * Description: - *   bio_alloc_bioset will try its own mempool to satisfy the allocation. - *   If %__GFP_WAIT is set then we will block on the internal pool waiting - *   for a &struct bio to become free. - * - *   Note that the caller must set ->bi_destructor on successful return - *   of a bio, to do the appropriate freeing of the bio once the reference - *   count drops to zero. - **/ -struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) -{ -	unsigned long idx = BIO_POOL_NONE; -	struct bio_vec *bvl = NULL; -	struct bio *bio; -	void *p; - -	p = mempool_alloc(bs->bio_pool, gfp_mask); -	if (unlikely(!p)) -		return NULL; -	bio = p + bs->front_pad; - -	bio_init(bio); - -	if (unlikely(!nr_iovecs)) -		goto out_set; - -	if (nr_iovecs <= BIO_INLINE_VECS) { -		bvl = bio->bi_inline_vecs; -		nr_iovecs = BIO_INLINE_VECS; -	} else { -		bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs); -		if (unlikely(!bvl)) -			goto err_free; - -		nr_iovecs = bvec_nr_vecs(idx); -	} -out_set: -	bio->bi_flags |= idx << BIO_POOL_OFFSET; -	bio->bi_max_vecs = nr_iovecs; -	bio->bi_io_vec = bvl; -	return bio; - -err_free: -	mempool_free(p, bs->bio_pool); -	return NULL; -} -EXPORT_SYMBOL(bio_alloc_bioset); - -static void bio_fs_destructor(struct bio *bio) -{ -	bio_free(bio, fs_bio_set); -} - -/** - *	bio_alloc - allocate a new bio, memory pool backed - *	@gfp_mask: allocation mask to use - *	@nr_iovecs: number of iovecs - * - *	bio_alloc will allocate a bio and associated bio_vec array that can hold - *	at least @nr_iovecs entries. Allocations will be done from the - *	fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc. - * - *	If %__GFP_WAIT is set, then bio_alloc will always be able to allocate - *	a bio. This is due to the mempool guarantees. To make this work, callers - *	must never allocate more than 1 bio at a time from this pool. Callers - *	that need to allocate more than 1 bio must always submit the previously - *	allocated bio for IO before attempting to allocate a new one. Failure to - *	do so can cause livelocks under memory pressure. - * - *	RETURNS: - *	Pointer to new bio on success, NULL on failure. - */ -struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs) -{ -	struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set); - -	if (bio) -		bio->bi_destructor = bio_fs_destructor; - -	return bio; -} -EXPORT_SYMBOL(bio_alloc); - -static void bio_kmalloc_destructor(struct bio *bio) -{ -	if (bio_integrity(bio)) -		bio_integrity_free(bio, fs_bio_set); -	kfree(bio); -} - -/** - * bio_kmalloc - allocate a bio for I/O using kmalloc() - * @gfp_mask:   the GFP_ mask given to the slab allocator - * @nr_iovecs:	number of iovecs to pre-allocate - * - * Description: - *   Allocate a new bio with @nr_iovecs bvecs.  If @gfp_mask contains - *   %__GFP_WAIT, the allocation is guaranteed to succeed. - * - **/ -struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs) -{ -	struct bio *bio; - -	if (nr_iovecs > UIO_MAXIOV) -		return NULL; - -	bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec), -		      gfp_mask); -	if (unlikely(!bio)) -		return NULL; - -	bio_init(bio); -	bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET; -	bio->bi_max_vecs = nr_iovecs; -	bio->bi_io_vec = bio->bi_inline_vecs; -	bio->bi_destructor = bio_kmalloc_destructor; - -	return bio; -} -EXPORT_SYMBOL(bio_kmalloc); - -void zero_fill_bio(struct bio *bio) -{ -	unsigned long flags; -	struct bio_vec *bv; -	int i; - -	bio_for_each_segment(bv, bio, i) { -		char *data = bvec_kmap_irq(bv, &flags); -		memset(data, 0, bv->bv_len); -		flush_dcache_page(bv->bv_page); -		bvec_kunmap_irq(data, &flags); -	} -} -EXPORT_SYMBOL(zero_fill_bio); - -/** - * bio_put - release a reference to a bio - * @bio:   bio to release reference to - * - * Description: - *   Put a reference to a &struct bio, either one you have gotten with - *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it. - **/ -void bio_put(struct bio *bio) -{ -	BIO_BUG_ON(!atomic_read(&bio->bi_cnt)); - -	/* -	 * last put frees it -	 */ -	if (atomic_dec_and_test(&bio->bi_cnt)) { -		bio->bi_next = NULL; -		bio->bi_destructor(bio); -	} -} -EXPORT_SYMBOL(bio_put); - -inline int bio_phys_segments(struct request_queue *q, struct bio *bio) -{ -	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) -		blk_recount_segments(q, bio); - -	return bio->bi_phys_segments; -} -EXPORT_SYMBOL(bio_phys_segments); - -/** - * 	__bio_clone	-	clone a bio - * 	@bio: destination bio - * 	@bio_src: bio to clone - * - *	Clone a &bio. Caller will own the returned bio, but not - *	the actual data it points to. Reference count of returned - * 	bio will be one. - */ -void __bio_clone(struct bio *bio, struct bio *bio_src) -{ -	memcpy(bio->bi_io_vec, bio_src->bi_io_vec, -		bio_src->bi_max_vecs * sizeof(struct bio_vec)); - -	/* -	 * most users will be overriding ->bi_bdev with a new target, -	 * so we don't set nor calculate new physical/hw segment counts here -	 */ -	bio->bi_sector = bio_src->bi_sector; -	bio->bi_bdev = bio_src->bi_bdev; -	bio->bi_flags |= 1 << BIO_CLONED; -	bio->bi_rw = bio_src->bi_rw; -	bio->bi_vcnt = bio_src->bi_vcnt; -	bio->bi_size = bio_src->bi_size; -	bio->bi_idx = bio_src->bi_idx; -} -EXPORT_SYMBOL(__bio_clone); - -/** - *	bio_clone	-	clone a bio - *	@bio: bio to clone - *	@gfp_mask: allocation priority - * - * 	Like __bio_clone, only also allocates the returned bio - */ -struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask) -{ -	struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set); - -	if (!b) -		return NULL; - -	b->bi_destructor = bio_fs_destructor; -	__bio_clone(b, bio); - -	if (bio_integrity(bio)) { -		int ret; - -		ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set); - -		if (ret < 0) { -			bio_put(b); -			return NULL; -		} -	} - -	return b; -} -EXPORT_SYMBOL(bio_clone); - -/** - *	bio_get_nr_vecs		- return approx number of vecs - *	@bdev:  I/O target - * - *	Return the approximate number of pages we can send to this target. - *	There's no guarantee that you will be able to fit this number of pages - *	into a bio, it does not account for dynamic restrictions that vary - *	on offset. - */ -int bio_get_nr_vecs(struct block_device *bdev) -{ -	struct request_queue *q = bdev_get_queue(bdev); -	int nr_pages; - -	nr_pages = ((queue_max_sectors(q) << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT; -	if (nr_pages > queue_max_segments(q)) -		nr_pages = queue_max_segments(q); - -	return nr_pages; -} -EXPORT_SYMBOL(bio_get_nr_vecs); - -static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page -			  *page, unsigned int len, unsigned int offset, -			  unsigned short max_sectors) -{ -	int retried_segments = 0; -	struct bio_vec *bvec; - -	/* -	 * cloned bio must not modify vec list -	 */ -	if (unlikely(bio_flagged(bio, BIO_CLONED))) -		return 0; - -	if (((bio->bi_size + len) >> 9) > max_sectors) -		return 0; - -	/* -	 * For filesystems with a blocksize smaller than the pagesize -	 * we will often be called with the same page as last time and -	 * a consecutive offset.  Optimize this special case. -	 */ -	if (bio->bi_vcnt > 0) { -		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; - -		if (page == prev->bv_page && -		    offset == prev->bv_offset + prev->bv_len) { -			unsigned int prev_bv_len = prev->bv_len; -			prev->bv_len += len; - -			if (q->merge_bvec_fn) { -				struct bvec_merge_data bvm = { -					/* prev_bvec is already charged in -					   bi_size, discharge it in order to -					   simulate merging updated prev_bvec -					   as new bvec. */ -					.bi_bdev = bio->bi_bdev, -					.bi_sector = bio->bi_sector, -					.bi_size = bio->bi_size - prev_bv_len, -					.bi_rw = bio->bi_rw, -				}; - -				if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) { -					prev->bv_len -= len; -					return 0; -				} -			} - -			goto done; -		} -	} - -	if (bio->bi_vcnt >= bio->bi_max_vecs) -		return 0; - -	/* -	 * we might lose a segment or two here, but rather that than -	 * make this too complex. -	 */ - -	while (bio->bi_phys_segments >= queue_max_segments(q)) { - -		if (retried_segments) -			return 0; - -		retried_segments = 1; -		blk_recount_segments(q, bio); -	} - -	/* -	 * setup the new entry, we might clear it again later if we -	 * cannot add the page -	 */ -	bvec = &bio->bi_io_vec[bio->bi_vcnt]; -	bvec->bv_page = page; -	bvec->bv_len = len; -	bvec->bv_offset = offset; - -	/* -	 * if queue has other restrictions (eg varying max sector size -	 * depending on offset), it can specify a merge_bvec_fn in the -	 * queue to get further control -	 */ -	if (q->merge_bvec_fn) { -		struct bvec_merge_data bvm = { -			.bi_bdev = bio->bi_bdev, -			.bi_sector = bio->bi_sector, -			.bi_size = bio->bi_size, -			.bi_rw = bio->bi_rw, -		}; - -		/* -		 * merge_bvec_fn() returns number of bytes it can accept -		 * at this offset -		 */ -		if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) { -			bvec->bv_page = NULL; -			bvec->bv_len = 0; -			bvec->bv_offset = 0; -			return 0; -		} -	} - -	/* If we may be able to merge these biovecs, force a recount */ -	if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) -		bio->bi_flags &= ~(1 << BIO_SEG_VALID); - -	bio->bi_vcnt++; -	bio->bi_phys_segments++; - done: -	bio->bi_size += len; -	return len; -} - -/** - *	bio_add_pc_page	-	attempt to add page to bio - *	@q: the target queue - *	@bio: destination bio - *	@page: page to add - *	@len: vec entry length - *	@offset: vec entry offset - * - *	Attempt to add a page to the bio_vec maplist. This can fail for a - *	number of reasons, such as the bio being full or target block - *	device limitations. The target block device must allow bio's - *      smaller than PAGE_SIZE, so it is always possible to add a single - *      page to an empty bio. This should only be used by REQ_PC bios. - */ -int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page, -		    unsigned int len, unsigned int offset) -{ -	return __bio_add_page(q, bio, page, len, offset, -			      queue_max_hw_sectors(q)); -} -EXPORT_SYMBOL(bio_add_pc_page); - -/** - *	bio_add_page	-	attempt to add page to bio - *	@bio: destination bio - *	@page: page to add - *	@len: vec entry length - *	@offset: vec entry offset - * - *	Attempt to add a page to the bio_vec maplist. This can fail for a - *	number of reasons, such as the bio being full or target block - *	device limitations. The target block device must allow bio's - *      smaller than PAGE_SIZE, so it is always possible to add a single - *      page to an empty bio. - */ -int bio_add_page(struct bio *bio, struct page *page, unsigned int len, -		 unsigned int offset) -{ -	struct request_queue *q = bdev_get_queue(bio->bi_bdev); -	return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q)); -} -EXPORT_SYMBOL(bio_add_page); - -struct bio_map_data { -	struct bio_vec *iovecs; -	struct sg_iovec *sgvecs; -	int nr_sgvecs; -	int is_our_pages; -}; - -static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio, -			     struct sg_iovec *iov, int iov_count, -			     int is_our_pages) -{ -	memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt); -	memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count); -	bmd->nr_sgvecs = iov_count; -	bmd->is_our_pages = is_our_pages; -	bio->bi_private = bmd; -} - -static void bio_free_map_data(struct bio_map_data *bmd) -{ -	kfree(bmd->iovecs); -	kfree(bmd->sgvecs); -	kfree(bmd); -} - -static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count, -					       gfp_t gfp_mask) -{ -	struct bio_map_data *bmd; - -	if (iov_count > UIO_MAXIOV) -		return NULL; - -	bmd = kmalloc(sizeof(*bmd), gfp_mask); -	if (!bmd) -		return NULL; - -	bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask); -	if (!bmd->iovecs) { -		kfree(bmd); -		return NULL; -	} - -	bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask); -	if (bmd->sgvecs) -		return bmd; - -	kfree(bmd->iovecs); -	kfree(bmd); -	return NULL; -} - -static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs, -			  struct sg_iovec *iov, int iov_count, -			  int to_user, int from_user, int do_free_page) -{ -	int ret = 0, i; -	struct bio_vec *bvec; -	int iov_idx = 0; -	unsigned int iov_off = 0; - -	__bio_for_each_segment(bvec, bio, i, 0) { -		char *bv_addr = page_address(bvec->bv_page); -		unsigned int bv_len = iovecs[i].bv_len; - -		while (bv_len && iov_idx < iov_count) { -			unsigned int bytes; -			char __user *iov_addr; - -			bytes = min_t(unsigned int, -				      iov[iov_idx].iov_len - iov_off, bv_len); -			iov_addr = iov[iov_idx].iov_base + iov_off; - -			if (!ret) { -				if (to_user) -					ret = copy_to_user(iov_addr, bv_addr, -							   bytes); - -				if (from_user) -					ret = copy_from_user(bv_addr, iov_addr, -							     bytes); - -				if (ret) -					ret = -EFAULT; -			} - -			bv_len -= bytes; -			bv_addr += bytes; -			iov_addr += bytes; -			iov_off += bytes; - -			if (iov[iov_idx].iov_len == iov_off) { -				iov_idx++; -				iov_off = 0; -			} -		} - -		if (do_free_page) -			__free_page(bvec->bv_page); -	} - -	return ret; -} - -/** - *	bio_uncopy_user	-	finish previously mapped bio - *	@bio: bio being terminated - * - *	Free pages allocated from bio_copy_user() and write back data - *	to user space in case of a read. - */ -int bio_uncopy_user(struct bio *bio) -{ -	struct bio_map_data *bmd = bio->bi_private; -	int ret = 0; - -	if (!bio_flagged(bio, BIO_NULL_MAPPED)) -		ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs, -				     bmd->nr_sgvecs, bio_data_dir(bio) == READ, -				     0, bmd->is_our_pages); -	bio_free_map_data(bmd); -	bio_put(bio); -	return ret; -} -EXPORT_SYMBOL(bio_uncopy_user); - -/** - *	bio_copy_user_iov	-	copy user data to bio - *	@q: destination block queue - *	@map_data: pointer to the rq_map_data holding pages (if necessary) - *	@iov:	the iovec. - *	@iov_count: number of elements in the iovec - *	@write_to_vm: bool indicating writing to pages or not - *	@gfp_mask: memory allocation flags - * - *	Prepares and returns a bio for indirect user io, bouncing data - *	to/from kernel pages as necessary. Must be paired with - *	call bio_uncopy_user() on io completion. - */ -struct bio *bio_copy_user_iov(struct request_queue *q, -			      struct rq_map_data *map_data, -			      struct sg_iovec *iov, int iov_count, -			      int write_to_vm, gfp_t gfp_mask) -{ -	struct bio_map_data *bmd; -	struct bio_vec *bvec; -	struct page *page; -	struct bio *bio; -	int i, ret; -	int nr_pages = 0; -	unsigned int len = 0; -	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0; - -	for (i = 0; i < iov_count; i++) { -		unsigned long uaddr; -		unsigned long end; -		unsigned long start; - -		uaddr = (unsigned long)iov[i].iov_base; -		end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT; -		start = uaddr >> PAGE_SHIFT; - -		/* -		 * Overflow, abort -		 */ -		if (end < start) -			return ERR_PTR(-EINVAL); - -		nr_pages += end - start; -		len += iov[i].iov_len; -	} - -	if (offset) -		nr_pages++; - -	bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask); -	if (!bmd) -		return ERR_PTR(-ENOMEM); - -	ret = -ENOMEM; -	bio = bio_kmalloc(gfp_mask, nr_pages); -	if (!bio) -		goto out_bmd; - -	if (!write_to_vm) -		bio->bi_rw |= REQ_WRITE; - -	ret = 0; - -	if (map_data) { -		nr_pages = 1 << map_data->page_order; -		i = map_data->offset / PAGE_SIZE; -	} -	while (len) { -		unsigned int bytes = PAGE_SIZE; - -		bytes -= offset; - -		if (bytes > len) -			bytes = len; - -		if (map_data) { -			if (i == map_data->nr_entries * nr_pages) { -				ret = -ENOMEM; -				break; -			} - -			page = map_data->pages[i / nr_pages]; -			page += (i % nr_pages); - -			i++; -		} else { -			page = alloc_page(q->bounce_gfp | gfp_mask); -			if (!page) { -				ret = -ENOMEM; -				break; -			} -		} - -		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) -			break; - -		len -= bytes; -		offset = 0; -	} - -	if (ret) -		goto cleanup; - -	/* -	 * success -	 */ -	if ((!write_to_vm && (!map_data || !map_data->null_mapped)) || -	    (map_data && map_data->from_user)) { -		ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0); -		if (ret) -			goto cleanup; -	} - -	bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1); -	return bio; -cleanup: -	if (!map_data) -		bio_for_each_segment(bvec, bio, i) -			__free_page(bvec->bv_page); - -	bio_put(bio); -out_bmd: -	bio_free_map_data(bmd); -	return ERR_PTR(ret); -} - -/** - *	bio_copy_user	-	copy user data to bio - *	@q: destination block queue - *	@map_data: pointer to the rq_map_data holding pages (if necessary) - *	@uaddr: start of user address - *	@len: length in bytes - *	@write_to_vm: bool indicating writing to pages or not - *	@gfp_mask: memory allocation flags - * - *	Prepares and returns a bio for indirect user io, bouncing data - *	to/from kernel pages as necessary. Must be paired with - *	call bio_uncopy_user() on io completion. - */ -struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data, -			  unsigned long uaddr, unsigned int len, -			  int write_to_vm, gfp_t gfp_mask) -{ -	struct sg_iovec iov; - -	iov.iov_base = (void __user *)uaddr; -	iov.iov_len = len; - -	return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask); -} -EXPORT_SYMBOL(bio_copy_user); - -static struct bio *__bio_map_user_iov(struct request_queue *q, -				      struct block_device *bdev, -				      struct sg_iovec *iov, int iov_count, -				      int write_to_vm, gfp_t gfp_mask) -{ -	int i, j; -	int nr_pages = 0; -	struct page **pages; -	struct bio *bio; -	int cur_page = 0; -	int ret, offset; - -	for (i = 0; i < iov_count; i++) { -		unsigned long uaddr = (unsigned long)iov[i].iov_base; -		unsigned long len = iov[i].iov_len; -		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; -		unsigned long start = uaddr >> PAGE_SHIFT; - -		/* -		 * Overflow, abort -		 */ -		if (end < start) -			return ERR_PTR(-EINVAL); - -		nr_pages += end - start; -		/* -		 * buffer must be aligned to at least hardsector size for now -		 */ -		if (uaddr & queue_dma_alignment(q)) -			return ERR_PTR(-EINVAL); -	} - -	if (!nr_pages) -		return ERR_PTR(-EINVAL); - -	bio = bio_kmalloc(gfp_mask, nr_pages); -	if (!bio) -		return ERR_PTR(-ENOMEM); - -	ret = -ENOMEM; -	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); -	if (!pages) -		goto out; - -	for (i = 0; i < iov_count; i++) { -		unsigned long uaddr = (unsigned long)iov[i].iov_base; -		unsigned long len = iov[i].iov_len; -		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; -		unsigned long start = uaddr >> PAGE_SHIFT; -		const int local_nr_pages = end - start; -		const int page_limit = cur_page + local_nr_pages; - -		ret = get_user_pages_fast(uaddr, local_nr_pages, -				write_to_vm, &pages[cur_page]); -		if (ret < local_nr_pages) { -			ret = -EFAULT; -			goto out_unmap; -		} - -		offset = uaddr & ~PAGE_MASK; -		for (j = cur_page; j < page_limit; j++) { -			unsigned int bytes = PAGE_SIZE - offset; - -			if (len <= 0) -				break; -			 -			if (bytes > len) -				bytes = len; - -			/* -			 * sorry... -			 */ -			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < -					    bytes) -				break; - -			len -= bytes; -			offset = 0; -		} - -		cur_page = j; -		/* -		 * release the pages we didn't map into the bio, if any -		 */ -		while (j < page_limit) -			page_cache_release(pages[j++]); -	} - -	kfree(pages); - -	/* -	 * set data direction, and check if mapped pages need bouncing -	 */ -	if (!write_to_vm) -		bio->bi_rw |= REQ_WRITE; - -	bio->bi_bdev = bdev; -	bio->bi_flags |= (1 << BIO_USER_MAPPED); -	return bio; - - out_unmap: -	for (i = 0; i < nr_pages; i++) { -		if(!pages[i]) -			break; -		page_cache_release(pages[i]); -	} - out: -	kfree(pages); -	bio_put(bio); -	return ERR_PTR(ret); -} - -/** - *	bio_map_user	-	map user address into bio - *	@q: the struct request_queue for the bio - *	@bdev: destination block device - *	@uaddr: start of user address - *	@len: length in bytes - *	@write_to_vm: bool indicating writing to pages or not - *	@gfp_mask: memory allocation flags - * - *	Map the user space address into a bio suitable for io to a block - *	device. Returns an error pointer in case of error. - */ -struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev, -			 unsigned long uaddr, unsigned int len, int write_to_vm, -			 gfp_t gfp_mask) -{ -	struct sg_iovec iov; - -	iov.iov_base = (void __user *)uaddr; -	iov.iov_len = len; - -	return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask); -} -EXPORT_SYMBOL(bio_map_user); - -/** - *	bio_map_user_iov - map user sg_iovec table into bio - *	@q: the struct request_queue for the bio - *	@bdev: destination block device - *	@iov:	the iovec. - *	@iov_count: number of elements in the iovec - *	@write_to_vm: bool indicating writing to pages or not - *	@gfp_mask: memory allocation flags - * - *	Map the user space address into a bio suitable for io to a block - *	device. Returns an error pointer in case of error. - */ -struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev, -			     struct sg_iovec *iov, int iov_count, -			     int write_to_vm, gfp_t gfp_mask) -{ -	struct bio *bio; - -	bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm, -				 gfp_mask); -	if (IS_ERR(bio)) -		return bio; - -	/* -	 * subtle -- if __bio_map_user() ended up bouncing a bio, -	 * it would normally disappear when its bi_end_io is run. -	 * however, we need it for the unmap, so grab an extra -	 * reference to it -	 */ -	bio_get(bio); - -	return bio; -} - -static void __bio_unmap_user(struct bio *bio) -{ -	struct bio_vec *bvec; -	int i; - -	/* -	 * make sure we dirty pages we wrote to -	 */ -	__bio_for_each_segment(bvec, bio, i, 0) { -		if (bio_data_dir(bio) == READ) -			set_page_dirty_lock(bvec->bv_page); - -		page_cache_release(bvec->bv_page); -	} - -	bio_put(bio); -} - -/** - *	bio_unmap_user	-	unmap a bio - *	@bio:		the bio being unmapped - * - *	Unmap a bio previously mapped by bio_map_user(). Must be called with - *	a process context. - * - *	bio_unmap_user() may sleep. - */ -void bio_unmap_user(struct bio *bio) -{ -	__bio_unmap_user(bio); -	bio_put(bio); -} -EXPORT_SYMBOL(bio_unmap_user); - -static void bio_map_kern_endio(struct bio *bio, int err) -{ -	bio_put(bio); -} - -static struct bio *__bio_map_kern(struct request_queue *q, void *data, -				  unsigned int len, gfp_t gfp_mask) -{ -	unsigned long kaddr = (unsigned long)data; -	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; -	unsigned long start = kaddr >> PAGE_SHIFT; -	const int nr_pages = end - start; -	int offset, i; -	struct bio *bio; - -	bio = bio_kmalloc(gfp_mask, nr_pages); -	if (!bio) -		return ERR_PTR(-ENOMEM); - -	offset = offset_in_page(kaddr); -	for (i = 0; i < nr_pages; i++) { -		unsigned int bytes = PAGE_SIZE - offset; - -		if (len <= 0) -			break; - -		if (bytes > len) -			bytes = len; - -		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, -				    offset) < bytes) -			break; - -		data += bytes; -		len -= bytes; -		offset = 0; -	} - -	bio->bi_end_io = bio_map_kern_endio; -	return bio; -} - -/** - *	bio_map_kern	-	map kernel address into bio - *	@q: the struct request_queue for the bio - *	@data: pointer to buffer to map - *	@len: length in bytes - *	@gfp_mask: allocation flags for bio allocation - * - *	Map the kernel address into a bio suitable for io to a block - *	device. Returns an error pointer in case of error. - */ -struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, -			 gfp_t gfp_mask) -{ -	struct bio *bio; - -	bio = __bio_map_kern(q, data, len, gfp_mask); -	if (IS_ERR(bio)) -		return bio; - -	if (bio->bi_size == len) -		return bio; - -	/* -	 * Don't support partial mappings. -	 */ -	bio_put(bio); -	return ERR_PTR(-EINVAL); -} -EXPORT_SYMBOL(bio_map_kern); - -static void bio_copy_kern_endio(struct bio *bio, int err) -{ -	struct bio_vec *bvec; -	const int read = bio_data_dir(bio) == READ; -	struct bio_map_data *bmd = bio->bi_private; -	int i; -	char *p = bmd->sgvecs[0].iov_base; - -	__bio_for_each_segment(bvec, bio, i, 0) { -		char *addr = page_address(bvec->bv_page); -		int len = bmd->iovecs[i].bv_len; - -		if (read) -			memcpy(p, addr, len); - -		__free_page(bvec->bv_page); -		p += len; -	} - -	bio_free_map_data(bmd); -	bio_put(bio); -} - -/** - *	bio_copy_kern	-	copy kernel address into bio - *	@q: the struct request_queue for the bio - *	@data: pointer to buffer to copy - *	@len: length in bytes - *	@gfp_mask: allocation flags for bio and page allocation - *	@reading: data direction is READ - * - *	copy the kernel address into a bio suitable for io to a block - *	device. Returns an error pointer in case of error. - */ -struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, -			  gfp_t gfp_mask, int reading) -{ -	struct bio *bio; -	struct bio_vec *bvec; -	int i; - -	bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask); -	if (IS_ERR(bio)) -		return bio; - -	if (!reading) { -		void *p = data; - -		bio_for_each_segment(bvec, bio, i) { -			char *addr = page_address(bvec->bv_page); - -			memcpy(addr, p, bvec->bv_len); -			p += bvec->bv_len; -		} -	} - -	bio->bi_end_io = bio_copy_kern_endio; - -	return bio; -} -EXPORT_SYMBOL(bio_copy_kern); - -/* - * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions - * for performing direct-IO in BIOs. - * - * The problem is that we cannot run set_page_dirty() from interrupt context - * because the required locks are not interrupt-safe.  So what we can do is to - * mark the pages dirty _before_ performing IO.  And in interrupt context, - * check that the pages are still dirty.   If so, fine.  If not, redirty them - * in process context. - * - * We special-case compound pages here: normally this means reads into hugetlb - * pages.  The logic in here doesn't really work right for compound pages - * because the VM does not uniformly chase down the head page in all cases. - * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't - * handle them at all.  So we skip compound pages here at an early stage. - * - * Note that this code is very hard to test under normal circumstances because - * direct-io pins the pages with get_user_pages().  This makes - * is_page_cache_freeable return false, and the VM will not clean the pages. - * But other code (eg, pdflush) could clean the pages if they are mapped - * pagecache. - * - * Simply disabling the call to bio_set_pages_dirty() is a good way to test the - * deferred bio dirtying paths. - */ - -/* - * bio_set_pages_dirty() will mark all the bio's pages as dirty. - */ -void bio_set_pages_dirty(struct bio *bio) -{ -	struct bio_vec *bvec = bio->bi_io_vec; -	int i; - -	for (i = 0; i < bio->bi_vcnt; i++) { -		struct page *page = bvec[i].bv_page; - -		if (page && !PageCompound(page)) -			set_page_dirty_lock(page); -	} -} - -static void bio_release_pages(struct bio *bio) -{ -	struct bio_vec *bvec = bio->bi_io_vec; -	int i; - -	for (i = 0; i < bio->bi_vcnt; i++) { -		struct page *page = bvec[i].bv_page; - -		if (page) -			put_page(page); -	} -} - -/* - * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. - * If they are, then fine.  If, however, some pages are clean then they must - * have been written out during the direct-IO read.  So we take another ref on - * the BIO and the offending pages and re-dirty the pages in process context. - * - * It is expected that bio_check_pages_dirty() will wholly own the BIO from - * here on.  It will run one page_cache_release() against each page and will - * run one bio_put() against the BIO. - */ - -static void bio_dirty_fn(struct work_struct *work); - -static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); -static DEFINE_SPINLOCK(bio_dirty_lock); -static struct bio *bio_dirty_list; - -/* - * This runs in process context - */ -static void bio_dirty_fn(struct work_struct *work) -{ -	unsigned long flags; -	struct bio *bio; - -	spin_lock_irqsave(&bio_dirty_lock, flags); -	bio = bio_dirty_list; -	bio_dirty_list = NULL; -	spin_unlock_irqrestore(&bio_dirty_lock, flags); - -	while (bio) { -		struct bio *next = bio->bi_private; - -		bio_set_pages_dirty(bio); -		bio_release_pages(bio); -		bio_put(bio); -		bio = next; -	} -} - -void bio_check_pages_dirty(struct bio *bio) -{ -	struct bio_vec *bvec = bio->bi_io_vec; -	int nr_clean_pages = 0; -	int i; - -	for (i = 0; i < bio->bi_vcnt; i++) { -		struct page *page = bvec[i].bv_page; - -		if (PageDirty(page) || PageCompound(page)) { -			page_cache_release(page); -			bvec[i].bv_page = NULL; -		} else { -			nr_clean_pages++; -		} -	} - -	if (nr_clean_pages) { -		unsigned long flags; - -		spin_lock_irqsave(&bio_dirty_lock, flags); -		bio->bi_private = bio_dirty_list; -		bio_dirty_list = bio; -		spin_unlock_irqrestore(&bio_dirty_lock, flags); -		schedule_work(&bio_dirty_work); -	} else { -		bio_put(bio); -	} -} - -#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE -void bio_flush_dcache_pages(struct bio *bi) -{ -	int i; -	struct bio_vec *bvec; - -	bio_for_each_segment(bvec, bi, i) -		flush_dcache_page(bvec->bv_page); -} -EXPORT_SYMBOL(bio_flush_dcache_pages); -#endif - -/** - * bio_endio - end I/O on a bio - * @bio:	bio - * @error:	error, if any - * - * Description: - *   bio_endio() will end I/O on the whole bio. bio_endio() is the - *   preferred way to end I/O on a bio, it takes care of clearing - *   BIO_UPTODATE on error. @error is 0 on success, and and one of the - *   established -Exxxx (-EIO, for instance) error values in case - *   something went wrong. Noone should call bi_end_io() directly on a - *   bio unless they own it and thus know that it has an end_io - *   function. - **/ -void bio_endio(struct bio *bio, int error) -{ -	if (error) -		clear_bit(BIO_UPTODATE, &bio->bi_flags); -	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) -		error = -EIO; - -	if (bio->bi_end_io) -		bio->bi_end_io(bio, error); -} -EXPORT_SYMBOL(bio_endio); - -void bio_pair_release(struct bio_pair *bp) -{ -	if (atomic_dec_and_test(&bp->cnt)) { -		struct bio *master = bp->bio1.bi_private; - -		bio_endio(master, bp->error); -		mempool_free(bp, bp->bio2.bi_private); -	} -} -EXPORT_SYMBOL(bio_pair_release); - -static void bio_pair_end_1(struct bio *bi, int err) -{ -	struct bio_pair *bp = container_of(bi, struct bio_pair, bio1); - -	if (err) -		bp->error = err; - -	bio_pair_release(bp); -} - -static void bio_pair_end_2(struct bio *bi, int err) -{ -	struct bio_pair *bp = container_of(bi, struct bio_pair, bio2); - -	if (err) -		bp->error = err; - -	bio_pair_release(bp); -} - -/* - * split a bio - only worry about a bio with a single page in its iovec - */ -struct bio_pair *bio_split(struct bio *bi, int first_sectors) -{ -	struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO); - -	if (!bp) -		return bp; - -	trace_block_split(bdev_get_queue(bi->bi_bdev), bi, -				bi->bi_sector + first_sectors); - -	BUG_ON(bi->bi_vcnt != 1); -	BUG_ON(bi->bi_idx != 0); -	atomic_set(&bp->cnt, 3); -	bp->error = 0; -	bp->bio1 = *bi; -	bp->bio2 = *bi; -	bp->bio2.bi_sector += first_sectors; -	bp->bio2.bi_size -= first_sectors << 9; -	bp->bio1.bi_size = first_sectors << 9; - -	bp->bv1 = bi->bi_io_vec[0]; -	bp->bv2 = bi->bi_io_vec[0]; -	bp->bv2.bv_offset += first_sectors << 9; -	bp->bv2.bv_len -= first_sectors << 9; -	bp->bv1.bv_len = first_sectors << 9; - -	bp->bio1.bi_io_vec = &bp->bv1; -	bp->bio2.bi_io_vec = &bp->bv2; - -	bp->bio1.bi_max_vecs = 1; -	bp->bio2.bi_max_vecs = 1; - -	bp->bio1.bi_end_io = bio_pair_end_1; -	bp->bio2.bi_end_io = bio_pair_end_2; - -	bp->bio1.bi_private = bi; -	bp->bio2.bi_private = bio_split_pool; - -	if (bio_integrity(bi)) -		bio_integrity_split(bi, bp, first_sectors); - -	return bp; -} -EXPORT_SYMBOL(bio_split); - -/** - *      bio_sector_offset - Find hardware sector offset in bio - *      @bio:           bio to inspect - *      @index:         bio_vec index - *      @offset:        offset in bv_page - * - *      Return the number of hardware sectors between beginning of bio - *      and an end point indicated by a bio_vec index and an offset - *      within that vector's page. - */ -sector_t bio_sector_offset(struct bio *bio, unsigned short index, -			   unsigned int offset) -{ -	unsigned int sector_sz; -	struct bio_vec *bv; -	sector_t sectors; -	int i; - -	sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue); -	sectors = 0; - -	if (index >= bio->bi_idx) -		index = bio->bi_vcnt - 1; - -	__bio_for_each_segment(bv, bio, i, 0) { -		if (i == index) { -			if (offset > bv->bv_offset) -				sectors += (offset - bv->bv_offset) / sector_sz; -			break; -		} - -		sectors += bv->bv_len / sector_sz; -	} - -	return sectors; -} -EXPORT_SYMBOL(bio_sector_offset); - -/* - * create memory pools for biovec's in a bio_set. - * use the global biovec slabs created for general use. - */ -static int biovec_create_pools(struct bio_set *bs, int pool_entries) -{ -	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX; - -	bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab); -	if (!bs->bvec_pool) -		return -ENOMEM; - -	return 0; -} - -static void biovec_free_pools(struct bio_set *bs) -{ -	mempool_destroy(bs->bvec_pool); -} - -void bioset_free(struct bio_set *bs) -{ -	if (bs->bio_pool) -		mempool_destroy(bs->bio_pool); - -	bioset_integrity_free(bs); -	biovec_free_pools(bs); -	bio_put_slab(bs); - -	kfree(bs); -} -EXPORT_SYMBOL(bioset_free); - -/** - * bioset_create  - Create a bio_set - * @pool_size:	Number of bio and bio_vecs to cache in the mempool - * @front_pad:	Number of bytes to allocate in front of the returned bio - * - * Description: - *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller - *    to ask for a number of bytes to be allocated in front of the bio. - *    Front pad allocation is useful for embedding the bio inside - *    another structure, to avoid allocating extra data to go with the bio. - *    Note that the bio must be embedded at the END of that structure always, - *    or things will break badly. - */ -struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) -{ -	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); -	struct bio_set *bs; - -	bs = kzalloc(sizeof(*bs), GFP_KERNEL); -	if (!bs) -		return NULL; - -	bs->front_pad = front_pad; - -	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); -	if (!bs->bio_slab) { -		kfree(bs); -		return NULL; -	} - -	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); -	if (!bs->bio_pool) -		goto bad; - -	if (bioset_integrity_create(bs, pool_size)) -		goto bad; - -	if (!biovec_create_pools(bs, pool_size)) -		return bs; - -bad: -	bioset_free(bs); -	return NULL; -} -EXPORT_SYMBOL(bioset_create); - -static void __init biovec_init_slabs(void) -{ -	int i; - -	for (i = 0; i < BIOVEC_NR_POOLS; i++) { -		int size; -		struct biovec_slab *bvs = bvec_slabs + i; - -#ifndef CONFIG_BLK_DEV_INTEGRITY -		if (bvs->nr_vecs <= BIO_INLINE_VECS) { -			bvs->slab = NULL; -			continue; -		} -#endif - -		size = bvs->nr_vecs * sizeof(struct bio_vec); -		bvs->slab = kmem_cache_create(bvs->name, size, 0, -                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); -	} -} - -static int __init init_bio(void) -{ -	bio_slab_max = 2; -	bio_slab_nr = 0; -	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); -	if (!bio_slabs) -		panic("bio: can't allocate bios\n"); - -	bio_integrity_init(); -	biovec_init_slabs(); - -	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); -	if (!fs_bio_set) -		panic("bio: can't allocate bios\n"); - -	bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES, -						     sizeof(struct bio_pair)); -	if (!bio_split_pool) -		panic("bio: can't create split pool\n"); - -	return 0; -} -subsys_initcall(init_bio);  | 
