diff options
Diffstat (limited to 'fs/bio.c')
| -rw-r--r-- | fs/bio.c | 1207 |
1 files changed, 0 insertions, 1207 deletions
diff --git a/fs/bio.c b/fs/bio.c deleted file mode 100644 index 553b5b7960a..00000000000 --- a/fs/bio.c +++ /dev/null @@ -1,1207 +0,0 @@ -/* - * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public Licens - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- - * - */ -#include <linux/mm.h> -#include <linux/swap.h> -#include <linux/bio.h> -#include <linux/blkdev.h> -#include <linux/slab.h> -#include <linux/init.h> -#include <linux/kernel.h> -#include <linux/module.h> -#include <linux/mempool.h> -#include <linux/workqueue.h> -#include <linux/blktrace_api.h> -#include <scsi/sg.h> /* for struct sg_iovec */ - -#define BIO_POOL_SIZE 2 - -static struct kmem_cache *bio_slab __read_mostly; - -#define BIOVEC_NR_POOLS 6 - -/* - * a small number of entries is fine, not going to be performance critical. - * basically we just need to survive - */ -#define BIO_SPLIT_ENTRIES 2 -mempool_t *bio_split_pool __read_mostly; - -struct biovec_slab { - int nr_vecs; - char *name; - struct kmem_cache *slab; -}; - -/* - * if you change this list, also change bvec_alloc or things will - * break badly! cannot be bigger than what you can fit into an - * unsigned short - */ - -#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } -static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { - BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), -}; -#undef BV - -/* - * bio_set is used to allow other portions of the IO system to - * allocate their own private memory pools for bio and iovec structures. - * These memory pools in turn all allocate from the bio_slab - * and the bvec_slabs[]. - */ -struct bio_set { - mempool_t *bio_pool; - mempool_t *bvec_pools[BIOVEC_NR_POOLS]; -}; - -/* - * fs_bio_set is the bio_set containing bio and iovec memory pools used by - * IO code that does not need private memory pools. - */ -static struct bio_set *fs_bio_set; - -static inline struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs) -{ - struct bio_vec *bvl; - - /* - * see comment near bvec_array define! - */ - switch (nr) { - case 1 : *idx = 0; break; - case 2 ... 4: *idx = 1; break; - case 5 ... 16: *idx = 2; break; - case 17 ... 64: *idx = 3; break; - case 65 ... 128: *idx = 4; break; - case 129 ... BIO_MAX_PAGES: *idx = 5; break; - default: - return NULL; - } - /* - * idx now points to the pool we want to allocate from - */ - - bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask); - if (bvl) { - struct biovec_slab *bp = bvec_slabs + *idx; - - memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec)); - } - - return bvl; -} - -void bio_free(struct bio *bio, struct bio_set *bio_set) -{ - if (bio->bi_io_vec) { - const int pool_idx = BIO_POOL_IDX(bio); - - BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS); - - mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]); - } - - mempool_free(bio, bio_set->bio_pool); -} - -/* - * default destructor for a bio allocated with bio_alloc_bioset() - */ -static void bio_fs_destructor(struct bio *bio) -{ - bio_free(bio, fs_bio_set); -} - -void bio_init(struct bio *bio) -{ - memset(bio, 0, sizeof(*bio)); - bio->bi_flags = 1 << BIO_UPTODATE; - atomic_set(&bio->bi_cnt, 1); -} - -/** - * bio_alloc_bioset - allocate a bio for I/O - * @gfp_mask: the GFP_ mask given to the slab allocator - * @nr_iovecs: number of iovecs to pre-allocate - * @bs: the bio_set to allocate from - * - * Description: - * bio_alloc_bioset will first try it's on mempool to satisfy the allocation. - * If %__GFP_WAIT is set then we will block on the internal pool waiting - * for a &struct bio to become free. - * - * allocate bio and iovecs from the memory pools specified by the - * bio_set structure. - **/ -struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) -{ - struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask); - - if (likely(bio)) { - struct bio_vec *bvl = NULL; - - bio_init(bio); - if (likely(nr_iovecs)) { - unsigned long idx = 0; /* shut up gcc */ - - bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs); - if (unlikely(!bvl)) { - mempool_free(bio, bs->bio_pool); - bio = NULL; - goto out; - } - bio->bi_flags |= idx << BIO_POOL_OFFSET; - bio->bi_max_vecs = bvec_slabs[idx].nr_vecs; - } - bio->bi_io_vec = bvl; - } -out: - return bio; -} - -struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs) -{ - struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set); - - if (bio) - bio->bi_destructor = bio_fs_destructor; - - return bio; -} - -void zero_fill_bio(struct bio *bio) -{ - unsigned long flags; - struct bio_vec *bv; - int i; - - bio_for_each_segment(bv, bio, i) { - char *data = bvec_kmap_irq(bv, &flags); - memset(data, 0, bv->bv_len); - flush_dcache_page(bv->bv_page); - bvec_kunmap_irq(data, &flags); - } -} -EXPORT_SYMBOL(zero_fill_bio); - -/** - * bio_put - release a reference to a bio - * @bio: bio to release reference to - * - * Description: - * Put a reference to a &struct bio, either one you have gotten with - * bio_alloc or bio_get. The last put of a bio will free it. - **/ -void bio_put(struct bio *bio) -{ - BIO_BUG_ON(!atomic_read(&bio->bi_cnt)); - - /* - * last put frees it - */ - if (atomic_dec_and_test(&bio->bi_cnt)) { - bio->bi_next = NULL; - bio->bi_destructor(bio); - } -} - -inline int bio_phys_segments(struct request_queue *q, struct bio *bio) -{ - if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) - blk_recount_segments(q, bio); - - return bio->bi_phys_segments; -} - -inline int bio_hw_segments(struct request_queue *q, struct bio *bio) -{ - if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) - blk_recount_segments(q, bio); - - return bio->bi_hw_segments; -} - -/** - * __bio_clone - clone a bio - * @bio: destination bio - * @bio_src: bio to clone - * - * Clone a &bio. Caller will own the returned bio, but not - * the actual data it points to. Reference count of returned - * bio will be one. - */ -void __bio_clone(struct bio *bio, struct bio *bio_src) -{ - memcpy(bio->bi_io_vec, bio_src->bi_io_vec, - bio_src->bi_max_vecs * sizeof(struct bio_vec)); - - /* - * most users will be overriding ->bi_bdev with a new target, - * so we don't set nor calculate new physical/hw segment counts here - */ - bio->bi_sector = bio_src->bi_sector; - bio->bi_bdev = bio_src->bi_bdev; - bio->bi_flags |= 1 << BIO_CLONED; - bio->bi_rw = bio_src->bi_rw; - bio->bi_vcnt = bio_src->bi_vcnt; - bio->bi_size = bio_src->bi_size; - bio->bi_idx = bio_src->bi_idx; -} - -/** - * bio_clone - clone a bio - * @bio: bio to clone - * @gfp_mask: allocation priority - * - * Like __bio_clone, only also allocates the returned bio - */ -struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask) -{ - struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set); - - if (b) { - b->bi_destructor = bio_fs_destructor; - __bio_clone(b, bio); - } - - return b; -} - -/** - * bio_get_nr_vecs - return approx number of vecs - * @bdev: I/O target - * - * Return the approximate number of pages we can send to this target. - * There's no guarantee that you will be able to fit this number of pages - * into a bio, it does not account for dynamic restrictions that vary - * on offset. - */ -int bio_get_nr_vecs(struct block_device *bdev) -{ - struct request_queue *q = bdev_get_queue(bdev); - int nr_pages; - - nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT; - if (nr_pages > q->max_phys_segments) - nr_pages = q->max_phys_segments; - if (nr_pages > q->max_hw_segments) - nr_pages = q->max_hw_segments; - - return nr_pages; -} - -static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page - *page, unsigned int len, unsigned int offset, - unsigned short max_sectors) -{ - int retried_segments = 0; - struct bio_vec *bvec; - - /* - * cloned bio must not modify vec list - */ - if (unlikely(bio_flagged(bio, BIO_CLONED))) - return 0; - - if (((bio->bi_size + len) >> 9) > max_sectors) - return 0; - - /* - * For filesystems with a blocksize smaller than the pagesize - * we will often be called with the same page as last time and - * a consecutive offset. Optimize this special case. - */ - if (bio->bi_vcnt > 0) { - struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; - - if (page == prev->bv_page && - offset == prev->bv_offset + prev->bv_len) { - prev->bv_len += len; - if (q->merge_bvec_fn && - q->merge_bvec_fn(q, bio, prev) < len) { - prev->bv_len -= len; - return 0; - } - - goto done; - } - } - - if (bio->bi_vcnt >= bio->bi_max_vecs) - return 0; - - /* - * we might lose a segment or two here, but rather that than - * make this too complex. - */ - - while (bio->bi_phys_segments >= q->max_phys_segments - || bio->bi_hw_segments >= q->max_hw_segments - || BIOVEC_VIRT_OVERSIZE(bio->bi_size)) { - - if (retried_segments) - return 0; - - retried_segments = 1; - blk_recount_segments(q, bio); - } - - /* - * setup the new entry, we might clear it again later if we - * cannot add the page - */ - bvec = &bio->bi_io_vec[bio->bi_vcnt]; - bvec->bv_page = page; - bvec->bv_len = len; - bvec->bv_offset = offset; - - /* - * if queue has other restrictions (eg varying max sector size - * depending on offset), it can specify a merge_bvec_fn in the - * queue to get further control - */ - if (q->merge_bvec_fn) { - /* - * merge_bvec_fn() returns number of bytes it can accept - * at this offset - */ - if (q->merge_bvec_fn(q, bio, bvec) < len) { - bvec->bv_page = NULL; - bvec->bv_len = 0; - bvec->bv_offset = 0; - return 0; - } - } - - /* If we may be able to merge these biovecs, force a recount */ - if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec) || - BIOVEC_VIRT_MERGEABLE(bvec-1, bvec))) - bio->bi_flags &= ~(1 << BIO_SEG_VALID); - - bio->bi_vcnt++; - bio->bi_phys_segments++; - bio->bi_hw_segments++; - done: - bio->bi_size += len; - return len; -} - -/** - * bio_add_pc_page - attempt to add page to bio - * @q: the target queue - * @bio: destination bio - * @page: page to add - * @len: vec entry length - * @offset: vec entry offset - * - * Attempt to add a page to the bio_vec maplist. This can fail for a - * number of reasons, such as the bio being full or target block - * device limitations. The target block device must allow bio's - * smaller than PAGE_SIZE, so it is always possible to add a single - * page to an empty bio. This should only be used by REQ_PC bios. - */ -int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page, - unsigned int len, unsigned int offset) -{ - return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors); -} - -/** - * bio_add_page - attempt to add page to bio - * @bio: destination bio - * @page: page to add - * @len: vec entry length - * @offset: vec entry offset - * - * Attempt to add a page to the bio_vec maplist. This can fail for a - * number of reasons, such as the bio being full or target block - * device limitations. The target block device must allow bio's - * smaller than PAGE_SIZE, so it is always possible to add a single - * page to an empty bio. - */ -int bio_add_page(struct bio *bio, struct page *page, unsigned int len, - unsigned int offset) -{ - struct request_queue *q = bdev_get_queue(bio->bi_bdev); - return __bio_add_page(q, bio, page, len, offset, q->max_sectors); -} - -struct bio_map_data { - struct bio_vec *iovecs; - void __user *userptr; -}; - -static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio) -{ - memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt); - bio->bi_private = bmd; -} - -static void bio_free_map_data(struct bio_map_data *bmd) -{ - kfree(bmd->iovecs); - kfree(bmd); -} - -static struct bio_map_data *bio_alloc_map_data(int nr_segs) -{ - struct bio_map_data *bmd = kmalloc(sizeof(*bmd), GFP_KERNEL); - - if (!bmd) - return NULL; - - bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, GFP_KERNEL); - if (bmd->iovecs) - return bmd; - - kfree(bmd); - return NULL; -} - -/** - * bio_uncopy_user - finish previously mapped bio - * @bio: bio being terminated - * - * Free pages allocated from bio_copy_user() and write back data - * to user space in case of a read. - */ -int bio_uncopy_user(struct bio *bio) -{ - struct bio_map_data *bmd = bio->bi_private; - const int read = bio_data_dir(bio) == READ; - struct bio_vec *bvec; - int i, ret = 0; - - __bio_for_each_segment(bvec, bio, i, 0) { - char *addr = page_address(bvec->bv_page); - unsigned int len = bmd->iovecs[i].bv_len; - - if (read && !ret && copy_to_user(bmd->userptr, addr, len)) - ret = -EFAULT; - - __free_page(bvec->bv_page); - bmd->userptr += len; - } - bio_free_map_data(bmd); - bio_put(bio); - return ret; -} - -/** - * bio_copy_user - copy user data to bio - * @q: destination block queue - * @uaddr: start of user address - * @len: length in bytes - * @write_to_vm: bool indicating writing to pages or not - * - * Prepares and returns a bio for indirect user io, bouncing data - * to/from kernel pages as necessary. Must be paired with - * call bio_uncopy_user() on io completion. - */ -struct bio *bio_copy_user(struct request_queue *q, unsigned long uaddr, - unsigned int len, int write_to_vm) -{ - unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; - unsigned long start = uaddr >> PAGE_SHIFT; - struct bio_map_data *bmd; - struct bio_vec *bvec; - struct page *page; - struct bio *bio; - int i, ret; - - bmd = bio_alloc_map_data(end - start); - if (!bmd) - return ERR_PTR(-ENOMEM); - - bmd->userptr = (void __user *) uaddr; - - ret = -ENOMEM; - bio = bio_alloc(GFP_KERNEL, end - start); - if (!bio) - goto out_bmd; - - bio->bi_rw |= (!write_to_vm << BIO_RW); - - ret = 0; - while (len) { - unsigned int bytes = PAGE_SIZE; - - if (bytes > len) - bytes = len; - - page = alloc_page(q->bounce_gfp | GFP_KERNEL); - if (!page) { - ret = -ENOMEM; - break; - } - - if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) - break; - - len -= bytes; - } - - if (ret) - goto cleanup; - - /* - * success - */ - if (!write_to_vm) { - char __user *p = (char __user *) uaddr; - - /* - * for a write, copy in data to kernel pages - */ - ret = -EFAULT; - bio_for_each_segment(bvec, bio, i) { - char *addr = page_address(bvec->bv_page); - - if (copy_from_user(addr, p, bvec->bv_len)) - goto cleanup; - p += bvec->bv_len; - } - } - - bio_set_map_data(bmd, bio); - return bio; -cleanup: - bio_for_each_segment(bvec, bio, i) - __free_page(bvec->bv_page); - - bio_put(bio); -out_bmd: - bio_free_map_data(bmd); - return ERR_PTR(ret); -} - -static struct bio *__bio_map_user_iov(struct request_queue *q, - struct block_device *bdev, - struct sg_iovec *iov, int iov_count, - int write_to_vm) -{ - int i, j; - int nr_pages = 0; - struct page **pages; - struct bio *bio; - int cur_page = 0; - int ret, offset; - - for (i = 0; i < iov_count; i++) { - unsigned long uaddr = (unsigned long)iov[i].iov_base; - unsigned long len = iov[i].iov_len; - unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; - unsigned long start = uaddr >> PAGE_SHIFT; - - nr_pages += end - start; - /* - * buffer must be aligned to at least hardsector size for now - */ - if (uaddr & queue_dma_alignment(q)) - return ERR_PTR(-EINVAL); - } - - if (!nr_pages) - return ERR_PTR(-EINVAL); - - bio = bio_alloc(GFP_KERNEL, nr_pages); - if (!bio) - return ERR_PTR(-ENOMEM); - - ret = -ENOMEM; - pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); - if (!pages) - goto out; - - for (i = 0; i < iov_count; i++) { - unsigned long uaddr = (unsigned long)iov[i].iov_base; - unsigned long len = iov[i].iov_len; - unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; - unsigned long start = uaddr >> PAGE_SHIFT; - const int local_nr_pages = end - start; - const int page_limit = cur_page + local_nr_pages; - - down_read(¤t->mm->mmap_sem); - ret = get_user_pages(current, current->mm, uaddr, - local_nr_pages, - write_to_vm, 0, &pages[cur_page], NULL); - up_read(¤t->mm->mmap_sem); - - if (ret < local_nr_pages) { - ret = -EFAULT; - goto out_unmap; - } - - offset = uaddr & ~PAGE_MASK; - for (j = cur_page; j < page_limit; j++) { - unsigned int bytes = PAGE_SIZE - offset; - - if (len <= 0) - break; - - if (bytes > len) - bytes = len; - - /* - * sorry... - */ - if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < - bytes) - break; - - len -= bytes; - offset = 0; - } - - cur_page = j; - /* - * release the pages we didn't map into the bio, if any - */ - while (j < page_limit) - page_cache_release(pages[j++]); - } - - kfree(pages); - - /* - * set data direction, and check if mapped pages need bouncing - */ - if (!write_to_vm) - bio->bi_rw |= (1 << BIO_RW); - - bio->bi_bdev = bdev; - bio->bi_flags |= (1 << BIO_USER_MAPPED); - return bio; - - out_unmap: - for (i = 0; i < nr_pages; i++) { - if(!pages[i]) - break; - page_cache_release(pages[i]); - } - out: - kfree(pages); - bio_put(bio); - return ERR_PTR(ret); -} - -/** - * bio_map_user - map user address into bio - * @q: the struct request_queue for the bio - * @bdev: destination block device - * @uaddr: start of user address - * @len: length in bytes - * @write_to_vm: bool indicating writing to pages or not - * - * Map the user space address into a bio suitable for io to a block - * device. Returns an error pointer in case of error. - */ -struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev, - unsigned long uaddr, unsigned int len, int write_to_vm) -{ - struct sg_iovec iov; - - iov.iov_base = (void __user *)uaddr; - iov.iov_len = len; - - return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm); -} - -/** - * bio_map_user_iov - map user sg_iovec table into bio - * @q: the struct request_queue for the bio - * @bdev: destination block device - * @iov: the iovec. - * @iov_count: number of elements in the iovec - * @write_to_vm: bool indicating writing to pages or not - * - * Map the user space address into a bio suitable for io to a block - * device. Returns an error pointer in case of error. - */ -struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev, - struct sg_iovec *iov, int iov_count, - int write_to_vm) -{ - struct bio *bio; - - bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm); - - if (IS_ERR(bio)) - return bio; - - /* - * subtle -- if __bio_map_user() ended up bouncing a bio, - * it would normally disappear when its bi_end_io is run. - * however, we need it for the unmap, so grab an extra - * reference to it - */ - bio_get(bio); - - return bio; -} - -static void __bio_unmap_user(struct bio *bio) -{ - struct bio_vec *bvec; - int i; - - /* - * make sure we dirty pages we wrote to - */ - __bio_for_each_segment(bvec, bio, i, 0) { - if (bio_data_dir(bio) == READ) - set_page_dirty_lock(bvec->bv_page); - - page_cache_release(bvec->bv_page); - } - - bio_put(bio); -} - -/** - * bio_unmap_user - unmap a bio - * @bio: the bio being unmapped - * - * Unmap a bio previously mapped by bio_map_user(). Must be called with - * a process context. - * - * bio_unmap_user() may sleep. - */ -void bio_unmap_user(struct bio *bio) -{ - __bio_unmap_user(bio); - bio_put(bio); -} - -static void bio_map_kern_endio(struct bio *bio, int err) -{ - bio_put(bio); -} - - -static struct bio *__bio_map_kern(struct request_queue *q, void *data, - unsigned int len, gfp_t gfp_mask) -{ - unsigned long kaddr = (unsigned long)data; - unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; - unsigned long start = kaddr >> PAGE_SHIFT; - const int nr_pages = end - start; - int offset, i; - struct bio *bio; - - bio = bio_alloc(gfp_mask, nr_pages); - if (!bio) - return ERR_PTR(-ENOMEM); - - offset = offset_in_page(kaddr); - for (i = 0; i < nr_pages; i++) { - unsigned int bytes = PAGE_SIZE - offset; - - if (len <= 0) - break; - - if (bytes > len) - bytes = len; - - if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, - offset) < bytes) - break; - - data += bytes; - len -= bytes; - offset = 0; - } - - bio->bi_end_io = bio_map_kern_endio; - return bio; -} - -/** - * bio_map_kern - map kernel address into bio - * @q: the struct request_queue for the bio - * @data: pointer to buffer to map - * @len: length in bytes - * @gfp_mask: allocation flags for bio allocation - * - * Map the kernel address into a bio suitable for io to a block - * device. Returns an error pointer in case of error. - */ -struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, - gfp_t gfp_mask) -{ - struct bio *bio; - - bio = __bio_map_kern(q, data, len, gfp_mask); - if (IS_ERR(bio)) - return bio; - - if (bio->bi_size == len) - return bio; - - /* - * Don't support partial mappings. - */ - bio_put(bio); - return ERR_PTR(-EINVAL); -} - -/* - * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions - * for performing direct-IO in BIOs. - * - * The problem is that we cannot run set_page_dirty() from interrupt context - * because the required locks are not interrupt-safe. So what we can do is to - * mark the pages dirty _before_ performing IO. And in interrupt context, - * check that the pages are still dirty. If so, fine. If not, redirty them - * in process context. - * - * We special-case compound pages here: normally this means reads into hugetlb - * pages. The logic in here doesn't really work right for compound pages - * because the VM does not uniformly chase down the head page in all cases. - * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't - * handle them at all. So we skip compound pages here at an early stage. - * - * Note that this code is very hard to test under normal circumstances because - * direct-io pins the pages with get_user_pages(). This makes - * is_page_cache_freeable return false, and the VM will not clean the pages. - * But other code (eg, pdflush) could clean the pages if they are mapped - * pagecache. - * - * Simply disabling the call to bio_set_pages_dirty() is a good way to test the - * deferred bio dirtying paths. - */ - -/* - * bio_set_pages_dirty() will mark all the bio's pages as dirty. - */ -void bio_set_pages_dirty(struct bio *bio) -{ - struct bio_vec *bvec = bio->bi_io_vec; - int i; - - for (i = 0; i < bio->bi_vcnt; i++) { - struct page *page = bvec[i].bv_page; - - if (page && !PageCompound(page)) - set_page_dirty_lock(page); - } -} - -static void bio_release_pages(struct bio *bio) -{ - struct bio_vec *bvec = bio->bi_io_vec; - int i; - - for (i = 0; i < bio->bi_vcnt; i++) { - struct page *page = bvec[i].bv_page; - - if (page) - put_page(page); - } -} - -/* - * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. - * If they are, then fine. If, however, some pages are clean then they must - * have been written out during the direct-IO read. So we take another ref on - * the BIO and the offending pages and re-dirty the pages in process context. - * - * It is expected that bio_check_pages_dirty() will wholly own the BIO from - * here on. It will run one page_cache_release() against each page and will - * run one bio_put() against the BIO. - */ - -static void bio_dirty_fn(struct work_struct *work); - -static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); -static DEFINE_SPINLOCK(bio_dirty_lock); -static struct bio *bio_dirty_list; - -/* - * This runs in process context - */ -static void bio_dirty_fn(struct work_struct *work) -{ - unsigned long flags; - struct bio *bio; - - spin_lock_irqsave(&bio_dirty_lock, flags); - bio = bio_dirty_list; - bio_dirty_list = NULL; - spin_unlock_irqrestore(&bio_dirty_lock, flags); - - while (bio) { - struct bio *next = bio->bi_private; - - bio_set_pages_dirty(bio); - bio_release_pages(bio); - bio_put(bio); - bio = next; - } -} - -void bio_check_pages_dirty(struct bio *bio) -{ - struct bio_vec *bvec = bio->bi_io_vec; - int nr_clean_pages = 0; - int i; - - for (i = 0; i < bio->bi_vcnt; i++) { - struct page *page = bvec[i].bv_page; - - if (PageDirty(page) || PageCompound(page)) { - page_cache_release(page); - bvec[i].bv_page = NULL; - } else { - nr_clean_pages++; - } - } - - if (nr_clean_pages) { - unsigned long flags; - - spin_lock_irqsave(&bio_dirty_lock, flags); - bio->bi_private = bio_dirty_list; - bio_dirty_list = bio; - spin_unlock_irqrestore(&bio_dirty_lock, flags); - schedule_work(&bio_dirty_work); - } else { - bio_put(bio); - } -} - -/** - * bio_endio - end I/O on a bio - * @bio: bio - * @error: error, if any - * - * Description: - * bio_endio() will end I/O on the whole bio. bio_endio() is the - * preferred way to end I/O on a bio, it takes care of clearing - * BIO_UPTODATE on error. @error is 0 on success, and and one of the - * established -Exxxx (-EIO, for instance) error values in case - * something went wrong. Noone should call bi_end_io() directly on a - * bio unless they own it and thus know that it has an end_io - * function. - **/ -void bio_endio(struct bio *bio, int error) -{ - if (error) - clear_bit(BIO_UPTODATE, &bio->bi_flags); - else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) - error = -EIO; - - if (bio->bi_end_io) - bio->bi_end_io(bio, error); -} - -void bio_pair_release(struct bio_pair *bp) -{ - if (atomic_dec_and_test(&bp->cnt)) { - struct bio *master = bp->bio1.bi_private; - - bio_endio(master, bp->error); - mempool_free(bp, bp->bio2.bi_private); - } -} - -static void bio_pair_end_1(struct bio *bi, int err) -{ - struct bio_pair *bp = container_of(bi, struct bio_pair, bio1); - - if (err) - bp->error = err; - - bio_pair_release(bp); -} - -static void bio_pair_end_2(struct bio *bi, int err) -{ - struct bio_pair *bp = container_of(bi, struct bio_pair, bio2); - - if (err) - bp->error = err; - - bio_pair_release(bp); -} - -/* - * split a bio - only worry about a bio with a single page - * in it's iovec - */ -struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors) -{ - struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO); - - if (!bp) - return bp; - - blk_add_trace_pdu_int(bdev_get_queue(bi->bi_bdev), BLK_TA_SPLIT, bi, - bi->bi_sector + first_sectors); - - BUG_ON(bi->bi_vcnt != 1); - BUG_ON(bi->bi_idx != 0); - atomic_set(&bp->cnt, 3); - bp->error = 0; - bp->bio1 = *bi; - bp->bio2 = *bi; - bp->bio2.bi_sector += first_sectors; - bp->bio2.bi_size -= first_sectors << 9; - bp->bio1.bi_size = first_sectors << 9; - - bp->bv1 = bi->bi_io_vec[0]; - bp->bv2 = bi->bi_io_vec[0]; - bp->bv2.bv_offset += first_sectors << 9; - bp->bv2.bv_len -= first_sectors << 9; - bp->bv1.bv_len = first_sectors << 9; - - bp->bio1.bi_io_vec = &bp->bv1; - bp->bio2.bi_io_vec = &bp->bv2; - - bp->bio1.bi_max_vecs = 1; - bp->bio2.bi_max_vecs = 1; - - bp->bio1.bi_end_io = bio_pair_end_1; - bp->bio2.bi_end_io = bio_pair_end_2; - - bp->bio1.bi_private = bi; - bp->bio2.bi_private = pool; - - return bp; -} - - -/* - * create memory pools for biovec's in a bio_set. - * use the global biovec slabs created for general use. - */ -static int biovec_create_pools(struct bio_set *bs, int pool_entries) -{ - int i; - - for (i = 0; i < BIOVEC_NR_POOLS; i++) { - struct biovec_slab *bp = bvec_slabs + i; - mempool_t **bvp = bs->bvec_pools + i; - - *bvp = mempool_create_slab_pool(pool_entries, bp->slab); - if (!*bvp) - return -ENOMEM; - } - return 0; -} - -static void biovec_free_pools(struct bio_set *bs) -{ - int i; - - for (i = 0; i < BIOVEC_NR_POOLS; i++) { - mempool_t *bvp = bs->bvec_pools[i]; - - if (bvp) - mempool_destroy(bvp); - } - -} - -void bioset_free(struct bio_set *bs) -{ - if (bs->bio_pool) - mempool_destroy(bs->bio_pool); - - biovec_free_pools(bs); - - kfree(bs); -} - -struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size) -{ - struct bio_set *bs = kzalloc(sizeof(*bs), GFP_KERNEL); - - if (!bs) - return NULL; - - bs->bio_pool = mempool_create_slab_pool(bio_pool_size, bio_slab); - if (!bs->bio_pool) - goto bad; - - if (!biovec_create_pools(bs, bvec_pool_size)) - return bs; - -bad: - bioset_free(bs); - return NULL; -} - -static void __init biovec_init_slabs(void) -{ - int i; - - for (i = 0; i < BIOVEC_NR_POOLS; i++) { - int size; - struct biovec_slab *bvs = bvec_slabs + i; - - size = bvs->nr_vecs * sizeof(struct bio_vec); - bvs->slab = kmem_cache_create(bvs->name, size, 0, - SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); - } -} - -static int __init init_bio(void) -{ - bio_slab = KMEM_CACHE(bio, SLAB_HWCACHE_ALIGN|SLAB_PANIC); - - biovec_init_slabs(); - - fs_bio_set = bioset_create(BIO_POOL_SIZE, 2); - if (!fs_bio_set) - panic("bio: can't allocate bios\n"); - - bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES, - sizeof(struct bio_pair)); - if (!bio_split_pool) - panic("bio: can't create split pool\n"); - - return 0; -} - -subsys_initcall(init_bio); - -EXPORT_SYMBOL(bio_alloc); -EXPORT_SYMBOL(bio_put); -EXPORT_SYMBOL(bio_free); -EXPORT_SYMBOL(bio_endio); -EXPORT_SYMBOL(bio_init); -EXPORT_SYMBOL(__bio_clone); -EXPORT_SYMBOL(bio_clone); -EXPORT_SYMBOL(bio_phys_segments); -EXPORT_SYMBOL(bio_hw_segments); -EXPORT_SYMBOL(bio_add_page); -EXPORT_SYMBOL(bio_add_pc_page); -EXPORT_SYMBOL(bio_get_nr_vecs); -EXPORT_SYMBOL(bio_map_user); -EXPORT_SYMBOL(bio_unmap_user); -EXPORT_SYMBOL(bio_map_kern); -EXPORT_SYMBOL(bio_pair_release); -EXPORT_SYMBOL(bio_split); -EXPORT_SYMBOL(bio_split_pool); -EXPORT_SYMBOL(bio_copy_user); -EXPORT_SYMBOL(bio_uncopy_user); -EXPORT_SYMBOL(bioset_create); -EXPORT_SYMBOL(bioset_free); -EXPORT_SYMBOL(bio_alloc_bioset); |
