diff options
Diffstat (limited to 'drivers/spi/spi-pxa2xx-dma.c')
| -rw-r--r-- | drivers/spi/spi-pxa2xx-dma.c | 376 | 
1 files changed, 376 insertions, 0 deletions
diff --git a/drivers/spi/spi-pxa2xx-dma.c b/drivers/spi/spi-pxa2xx-dma.c new file mode 100644 index 00000000000..c41ff148a2b --- /dev/null +++ b/drivers/spi/spi-pxa2xx-dma.c @@ -0,0 +1,376 @@ +/* + * PXA2xx SPI DMA engine support. + * + * Copyright (C) 2013, Intel Corporation + * Author: Mika Westerberg <mika.westerberg@linux.intel.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#include <linux/device.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/pxa2xx_ssp.h> +#include <linux/scatterlist.h> +#include <linux/sizes.h> +#include <linux/spi/spi.h> +#include <linux/spi/pxa2xx_spi.h> + +#include "spi-pxa2xx.h" + +static int pxa2xx_spi_map_dma_buffer(struct driver_data *drv_data, +				     enum dma_data_direction dir) +{ +	int i, nents, len = drv_data->len; +	struct scatterlist *sg; +	struct device *dmadev; +	struct sg_table *sgt; +	void *buf, *pbuf; + +	if (dir == DMA_TO_DEVICE) { +		dmadev = drv_data->tx_chan->device->dev; +		sgt = &drv_data->tx_sgt; +		buf = drv_data->tx; +		drv_data->tx_map_len = len; +	} else { +		dmadev = drv_data->rx_chan->device->dev; +		sgt = &drv_data->rx_sgt; +		buf = drv_data->rx; +		drv_data->rx_map_len = len; +	} + +	nents = DIV_ROUND_UP(len, SZ_2K); +	if (nents != sgt->nents) { +		int ret; + +		sg_free_table(sgt); +		ret = sg_alloc_table(sgt, nents, GFP_ATOMIC); +		if (ret) +			return ret; +	} + +	pbuf = buf; +	for_each_sg(sgt->sgl, sg, sgt->nents, i) { +		size_t bytes = min_t(size_t, len, SZ_2K); + +		if (buf) +			sg_set_buf(sg, pbuf, bytes); +		else +			sg_set_buf(sg, drv_data->dummy, bytes); + +		pbuf += bytes; +		len -= bytes; +	} + +	nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir); +	if (!nents) +		return -ENOMEM; + +	return nents; +} + +static void pxa2xx_spi_unmap_dma_buffer(struct driver_data *drv_data, +					enum dma_data_direction dir) +{ +	struct device *dmadev; +	struct sg_table *sgt; + +	if (dir == DMA_TO_DEVICE) { +		dmadev = drv_data->tx_chan->device->dev; +		sgt = &drv_data->tx_sgt; +	} else { +		dmadev = drv_data->rx_chan->device->dev; +		sgt = &drv_data->rx_sgt; +	} + +	dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir); +} + +static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data) +{ +	if (!drv_data->dma_mapped) +		return; + +	pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE); +	pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE); + +	drv_data->dma_mapped = 0; +} + +static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data, +					     bool error) +{ +	struct spi_message *msg = drv_data->cur_msg; + +	/* +	 * It is possible that one CPU is handling ROR interrupt and other +	 * just gets DMA completion. Calling pump_transfers() twice for the +	 * same transfer leads to problems thus we prevent concurrent calls +	 * by using ->dma_running. +	 */ +	if (atomic_dec_and_test(&drv_data->dma_running)) { +		void __iomem *reg = drv_data->ioaddr; + +		/* +		 * If the other CPU is still handling the ROR interrupt we +		 * might not know about the error yet. So we re-check the +		 * ROR bit here before we clear the status register. +		 */ +		if (!error) { +			u32 status = read_SSSR(reg) & drv_data->mask_sr; +			error = status & SSSR_ROR; +		} + +		/* Clear status & disable interrupts */ +		write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg); +		write_SSSR_CS(drv_data, drv_data->clear_sr); +		if (!pxa25x_ssp_comp(drv_data)) +			write_SSTO(0, reg); + +		if (!error) { +			pxa2xx_spi_unmap_dma_buffers(drv_data); + +			drv_data->tx += drv_data->tx_map_len; +			drv_data->rx += drv_data->rx_map_len; + +			msg->actual_length += drv_data->len; +			msg->state = pxa2xx_spi_next_transfer(drv_data); +		} else { +			/* In case we got an error we disable the SSP now */ +			write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); + +			msg->state = ERROR_STATE; +		} + +		tasklet_schedule(&drv_data->pump_transfers); +	} +} + +static void pxa2xx_spi_dma_callback(void *data) +{ +	pxa2xx_spi_dma_transfer_complete(data, false); +} + +static struct dma_async_tx_descriptor * +pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data, +			   enum dma_transfer_direction dir) +{ +	struct pxa2xx_spi_master *pdata = drv_data->master_info; +	struct chip_data *chip = drv_data->cur_chip; +	enum dma_slave_buswidth width; +	struct dma_slave_config cfg; +	struct dma_chan *chan; +	struct sg_table *sgt; +	int nents, ret; + +	switch (drv_data->n_bytes) { +	case 1: +		width = DMA_SLAVE_BUSWIDTH_1_BYTE; +		break; +	case 2: +		width = DMA_SLAVE_BUSWIDTH_2_BYTES; +		break; +	default: +		width = DMA_SLAVE_BUSWIDTH_4_BYTES; +		break; +	} + +	memset(&cfg, 0, sizeof(cfg)); +	cfg.direction = dir; + +	if (dir == DMA_MEM_TO_DEV) { +		cfg.dst_addr = drv_data->ssdr_physical; +		cfg.dst_addr_width = width; +		cfg.dst_maxburst = chip->dma_burst_size; +		cfg.slave_id = pdata->tx_slave_id; + +		sgt = &drv_data->tx_sgt; +		nents = drv_data->tx_nents; +		chan = drv_data->tx_chan; +	} else { +		cfg.src_addr = drv_data->ssdr_physical; +		cfg.src_addr_width = width; +		cfg.src_maxburst = chip->dma_burst_size; +		cfg.slave_id = pdata->rx_slave_id; + +		sgt = &drv_data->rx_sgt; +		nents = drv_data->rx_nents; +		chan = drv_data->rx_chan; +	} + +	ret = dmaengine_slave_config(chan, &cfg); +	if (ret) { +		dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n"); +		return NULL; +	} + +	return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, +				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK); +} + +static bool pxa2xx_spi_dma_filter(struct dma_chan *chan, void *param) +{ +	const struct pxa2xx_spi_master *pdata = param; + +	return chan->chan_id == pdata->tx_chan_id || +	       chan->chan_id == pdata->rx_chan_id; +} + +bool pxa2xx_spi_dma_is_possible(size_t len) +{ +	return len <= MAX_DMA_LEN; +} + +int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data) +{ +	const struct chip_data *chip = drv_data->cur_chip; +	int ret; + +	if (!chip->enable_dma) +		return 0; + +	/* Don't bother with DMA if we can't do even a single burst */ +	if (drv_data->len < chip->dma_burst_size) +		return 0; + +	ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE); +	if (ret <= 0) { +		dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n"); +		return 0; +	} + +	drv_data->tx_nents = ret; + +	ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE); +	if (ret <= 0) { +		pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE); +		dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n"); +		return 0; +	} + +	drv_data->rx_nents = ret; +	return 1; +} + +irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data) +{ +	u32 status; + +	status = read_SSSR(drv_data->ioaddr) & drv_data->mask_sr; +	if (status & SSSR_ROR) { +		dev_err(&drv_data->pdev->dev, "FIFO overrun\n"); + +		dmaengine_terminate_all(drv_data->rx_chan); +		dmaengine_terminate_all(drv_data->tx_chan); + +		pxa2xx_spi_dma_transfer_complete(drv_data, true); +		return IRQ_HANDLED; +	} + +	return IRQ_NONE; +} + +int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst) +{ +	struct dma_async_tx_descriptor *tx_desc, *rx_desc; + +	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV); +	if (!tx_desc) { +		dev_err(&drv_data->pdev->dev, +			"failed to get DMA TX descriptor\n"); +		return -EBUSY; +	} + +	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM); +	if (!rx_desc) { +		dev_err(&drv_data->pdev->dev, +			"failed to get DMA RX descriptor\n"); +		return -EBUSY; +	} + +	/* We are ready when RX completes */ +	rx_desc->callback = pxa2xx_spi_dma_callback; +	rx_desc->callback_param = drv_data; + +	dmaengine_submit(rx_desc); +	dmaengine_submit(tx_desc); +	return 0; +} + +void pxa2xx_spi_dma_start(struct driver_data *drv_data) +{ +	dma_async_issue_pending(drv_data->rx_chan); +	dma_async_issue_pending(drv_data->tx_chan); + +	atomic_set(&drv_data->dma_running, 1); +} + +int pxa2xx_spi_dma_setup(struct driver_data *drv_data) +{ +	struct pxa2xx_spi_master *pdata = drv_data->master_info; +	struct device *dev = &drv_data->pdev->dev; +	dma_cap_mask_t mask; + +	dma_cap_zero(mask); +	dma_cap_set(DMA_SLAVE, mask); + +	drv_data->dummy = devm_kzalloc(dev, SZ_2K, GFP_KERNEL); +	if (!drv_data->dummy) +		return -ENOMEM; + +	drv_data->tx_chan = dma_request_slave_channel_compat(mask, +				pxa2xx_spi_dma_filter, pdata, dev, "tx"); +	if (!drv_data->tx_chan) +		return -ENODEV; + +	drv_data->rx_chan = dma_request_slave_channel_compat(mask, +				pxa2xx_spi_dma_filter, pdata, dev, "rx"); +	if (!drv_data->rx_chan) { +		dma_release_channel(drv_data->tx_chan); +		drv_data->tx_chan = NULL; +		return -ENODEV; +	} + +	return 0; +} + +void pxa2xx_spi_dma_release(struct driver_data *drv_data) +{ +	if (drv_data->rx_chan) { +		dmaengine_terminate_all(drv_data->rx_chan); +		dma_release_channel(drv_data->rx_chan); +		sg_free_table(&drv_data->rx_sgt); +		drv_data->rx_chan = NULL; +	} +	if (drv_data->tx_chan) { +		dmaengine_terminate_all(drv_data->tx_chan); +		dma_release_channel(drv_data->tx_chan); +		sg_free_table(&drv_data->tx_sgt); +		drv_data->tx_chan = NULL; +	} +} + +void pxa2xx_spi_dma_resume(struct driver_data *drv_data) +{ +} + +int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip, +					   struct spi_device *spi, +					   u8 bits_per_word, u32 *burst_code, +					   u32 *threshold) +{ +	struct pxa2xx_spi_chip *chip_info = spi->controller_data; + +	/* +	 * If the DMA burst size is given in chip_info we use that, +	 * otherwise we use the default. Also we use the default FIFO +	 * thresholds for now. +	 */ +	*burst_code = chip_info ? chip_info->dma_burst_size : 1; +	*threshold = SSCR1_RxTresh(RX_THRESH_DFLT) +		   | SSCR1_TxTresh(TX_THRESH_DFLT); + +	return 0; +}  | 
