diff options
Diffstat (limited to 'drivers/spi/spi-ep93xx.c')
| -rw-r--r-- | drivers/spi/spi-ep93xx.c | 976 | 
1 files changed, 976 insertions, 0 deletions
diff --git a/drivers/spi/spi-ep93xx.c b/drivers/spi/spi-ep93xx.c new file mode 100644 index 00000000000..2f675d32df0 --- /dev/null +++ b/drivers/spi/spi-ep93xx.c @@ -0,0 +1,976 @@ +/* + * Driver for Cirrus Logic EP93xx SPI controller. + * + * Copyright (C) 2010-2011 Mika Westerberg + * + * Explicit FIFO handling code was inspired by amba-pl022 driver. + * + * Chip select support using other than built-in GPIOs by H. Hartley Sweeten. + * + * For more information about the SPI controller see documentation on Cirrus + * Logic web site: + *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#include <linux/io.h> +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/delay.h> +#include <linux/device.h> +#include <linux/dmaengine.h> +#include <linux/bitops.h> +#include <linux/interrupt.h> +#include <linux/module.h> +#include <linux/platform_device.h> +#include <linux/sched.h> +#include <linux/scatterlist.h> +#include <linux/spi/spi.h> + +#include <linux/platform_data/dma-ep93xx.h> +#include <linux/platform_data/spi-ep93xx.h> + +#define SSPCR0			0x0000 +#define SSPCR0_MODE_SHIFT	6 +#define SSPCR0_SCR_SHIFT	8 + +#define SSPCR1			0x0004 +#define SSPCR1_RIE		BIT(0) +#define SSPCR1_TIE		BIT(1) +#define SSPCR1_RORIE		BIT(2) +#define SSPCR1_LBM		BIT(3) +#define SSPCR1_SSE		BIT(4) +#define SSPCR1_MS		BIT(5) +#define SSPCR1_SOD		BIT(6) + +#define SSPDR			0x0008 + +#define SSPSR			0x000c +#define SSPSR_TFE		BIT(0) +#define SSPSR_TNF		BIT(1) +#define SSPSR_RNE		BIT(2) +#define SSPSR_RFF		BIT(3) +#define SSPSR_BSY		BIT(4) +#define SSPCPSR			0x0010 + +#define SSPIIR			0x0014 +#define SSPIIR_RIS		BIT(0) +#define SSPIIR_TIS		BIT(1) +#define SSPIIR_RORIS		BIT(2) +#define SSPICR			SSPIIR + +/* timeout in milliseconds */ +#define SPI_TIMEOUT		5 +/* maximum depth of RX/TX FIFO */ +#define SPI_FIFO_SIZE		8 + +/** + * struct ep93xx_spi - EP93xx SPI controller structure + * @pdev: pointer to platform device + * @clk: clock for the controller + * @regs_base: pointer to ioremap()'d registers + * @sspdr_phys: physical address of the SSPDR register + * @wait: wait here until given transfer is completed + * @current_msg: message that is currently processed (or %NULL if none) + * @tx: current byte in transfer to transmit + * @rx: current byte in transfer to receive + * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one + *              frame decreases this level and sending one frame increases it. + * @dma_rx: RX DMA channel + * @dma_tx: TX DMA channel + * @dma_rx_data: RX parameters passed to the DMA engine + * @dma_tx_data: TX parameters passed to the DMA engine + * @rx_sgt: sg table for RX transfers + * @tx_sgt: sg table for TX transfers + * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by + *            the client + */ +struct ep93xx_spi { +	const struct platform_device	*pdev; +	struct clk			*clk; +	void __iomem			*regs_base; +	unsigned long			sspdr_phys; +	struct completion		wait; +	struct spi_message		*current_msg; +	size_t				tx; +	size_t				rx; +	size_t				fifo_level; +	struct dma_chan			*dma_rx; +	struct dma_chan			*dma_tx; +	struct ep93xx_dma_data		dma_rx_data; +	struct ep93xx_dma_data		dma_tx_data; +	struct sg_table			rx_sgt; +	struct sg_table			tx_sgt; +	void				*zeropage; +}; + +/** + * struct ep93xx_spi_chip - SPI device hardware settings + * @spi: back pointer to the SPI device + * @ops: private chip operations + */ +struct ep93xx_spi_chip { +	const struct spi_device		*spi; +	struct ep93xx_spi_chip_ops	*ops; +}; + +/* converts bits per word to CR0.DSS value */ +#define bits_per_word_to_dss(bpw)	((bpw) - 1) + +static void ep93xx_spi_write_u8(const struct ep93xx_spi *espi, +				u16 reg, u8 value) +{ +	writeb(value, espi->regs_base + reg); +} + +static u8 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg) +{ +	return readb(spi->regs_base + reg); +} + +static void ep93xx_spi_write_u16(const struct ep93xx_spi *espi, +				 u16 reg, u16 value) +{ +	writew(value, espi->regs_base + reg); +} + +static u16 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg) +{ +	return readw(spi->regs_base + reg); +} + +static int ep93xx_spi_enable(const struct ep93xx_spi *espi) +{ +	u8 regval; +	int err; + +	err = clk_enable(espi->clk); +	if (err) +		return err; + +	regval = ep93xx_spi_read_u8(espi, SSPCR1); +	regval |= SSPCR1_SSE; +	ep93xx_spi_write_u8(espi, SSPCR1, regval); + +	return 0; +} + +static void ep93xx_spi_disable(const struct ep93xx_spi *espi) +{ +	u8 regval; + +	regval = ep93xx_spi_read_u8(espi, SSPCR1); +	regval &= ~SSPCR1_SSE; +	ep93xx_spi_write_u8(espi, SSPCR1, regval); + +	clk_disable(espi->clk); +} + +static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi) +{ +	u8 regval; + +	regval = ep93xx_spi_read_u8(espi, SSPCR1); +	regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); +	ep93xx_spi_write_u8(espi, SSPCR1, regval); +} + +static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi) +{ +	u8 regval; + +	regval = ep93xx_spi_read_u8(espi, SSPCR1); +	regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); +	ep93xx_spi_write_u8(espi, SSPCR1, regval); +} + +/** + * ep93xx_spi_calc_divisors() - calculates SPI clock divisors + * @espi: ep93xx SPI controller struct + * @rate: desired SPI output clock rate + * @div_cpsr: pointer to return the cpsr (pre-scaler) divider + * @div_scr: pointer to return the scr divider + */ +static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi, +				    u32 rate, u8 *div_cpsr, u8 *div_scr) +{ +	struct spi_master *master = platform_get_drvdata(espi->pdev); +	unsigned long spi_clk_rate = clk_get_rate(espi->clk); +	int cpsr, scr; + +	/* +	 * Make sure that max value is between values supported by the +	 * controller. Note that minimum value is already checked in +	 * ep93xx_spi_transfer_one_message(). +	 */ +	rate = clamp(rate, master->min_speed_hz, master->max_speed_hz); + +	/* +	 * Calculate divisors so that we can get speed according the +	 * following formula: +	 *	rate = spi_clock_rate / (cpsr * (1 + scr)) +	 * +	 * cpsr must be even number and starts from 2, scr can be any number +	 * between 0 and 255. +	 */ +	for (cpsr = 2; cpsr <= 254; cpsr += 2) { +		for (scr = 0; scr <= 255; scr++) { +			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) { +				*div_scr = (u8)scr; +				*div_cpsr = (u8)cpsr; +				return 0; +			} +		} +	} + +	return -EINVAL; +} + +static void ep93xx_spi_cs_control(struct spi_device *spi, bool control) +{ +	struct ep93xx_spi_chip *chip = spi_get_ctldata(spi); +	int value = (spi->mode & SPI_CS_HIGH) ? control : !control; + +	if (chip->ops && chip->ops->cs_control) +		chip->ops->cs_control(spi, value); +} + +/** + * ep93xx_spi_setup() - setup an SPI device + * @spi: SPI device to setup + * + * This function sets up SPI device mode, speed etc. Can be called multiple + * times for a single device. Returns %0 in case of success, negative error in + * case of failure. When this function returns success, the device is + * deselected. + */ +static int ep93xx_spi_setup(struct spi_device *spi) +{ +	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master); +	struct ep93xx_spi_chip *chip; + +	chip = spi_get_ctldata(spi); +	if (!chip) { +		dev_dbg(&espi->pdev->dev, "initial setup for %s\n", +			spi->modalias); + +		chip = kzalloc(sizeof(*chip), GFP_KERNEL); +		if (!chip) +			return -ENOMEM; + +		chip->spi = spi; +		chip->ops = spi->controller_data; + +		if (chip->ops && chip->ops->setup) { +			int ret = chip->ops->setup(spi); +			if (ret) { +				kfree(chip); +				return ret; +			} +		} + +		spi_set_ctldata(spi, chip); +	} + +	ep93xx_spi_cs_control(spi, false); +	return 0; +} + +/** + * ep93xx_spi_cleanup() - cleans up master controller specific state + * @spi: SPI device to cleanup + * + * This function releases master controller specific state for given @spi + * device. + */ +static void ep93xx_spi_cleanup(struct spi_device *spi) +{ +	struct ep93xx_spi_chip *chip; + +	chip = spi_get_ctldata(spi); +	if (chip) { +		if (chip->ops && chip->ops->cleanup) +			chip->ops->cleanup(spi); +		spi_set_ctldata(spi, NULL); +		kfree(chip); +	} +} + +/** + * ep93xx_spi_chip_setup() - configures hardware according to given @chip + * @espi: ep93xx SPI controller struct + * @chip: chip specific settings + * @speed_hz: transfer speed + * @bits_per_word: transfer bits_per_word + */ +static int ep93xx_spi_chip_setup(const struct ep93xx_spi *espi, +				 const struct ep93xx_spi_chip *chip, +				 u32 speed_hz, u8 bits_per_word) +{ +	u8 dss = bits_per_word_to_dss(bits_per_word); +	u8 div_cpsr = 0; +	u8 div_scr = 0; +	u16 cr0; +	int err; + +	err = ep93xx_spi_calc_divisors(espi, speed_hz, &div_cpsr, &div_scr); +	if (err) +		return err; + +	cr0 = div_scr << SSPCR0_SCR_SHIFT; +	cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT; +	cr0 |= dss; + +	dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n", +		chip->spi->mode, div_cpsr, div_scr, dss); +	dev_dbg(&espi->pdev->dev, "setup: cr0 %#x\n", cr0); + +	ep93xx_spi_write_u8(espi, SSPCPSR, div_cpsr); +	ep93xx_spi_write_u16(espi, SSPCR0, cr0); + +	return 0; +} + +static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t) +{ +	if (t->bits_per_word > 8) { +		u16 tx_val = 0; + +		if (t->tx_buf) +			tx_val = ((u16 *)t->tx_buf)[espi->tx]; +		ep93xx_spi_write_u16(espi, SSPDR, tx_val); +		espi->tx += sizeof(tx_val); +	} else { +		u8 tx_val = 0; + +		if (t->tx_buf) +			tx_val = ((u8 *)t->tx_buf)[espi->tx]; +		ep93xx_spi_write_u8(espi, SSPDR, tx_val); +		espi->tx += sizeof(tx_val); +	} +} + +static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t) +{ +	if (t->bits_per_word > 8) { +		u16 rx_val; + +		rx_val = ep93xx_spi_read_u16(espi, SSPDR); +		if (t->rx_buf) +			((u16 *)t->rx_buf)[espi->rx] = rx_val; +		espi->rx += sizeof(rx_val); +	} else { +		u8 rx_val; + +		rx_val = ep93xx_spi_read_u8(espi, SSPDR); +		if (t->rx_buf) +			((u8 *)t->rx_buf)[espi->rx] = rx_val; +		espi->rx += sizeof(rx_val); +	} +} + +/** + * ep93xx_spi_read_write() - perform next RX/TX transfer + * @espi: ep93xx SPI controller struct + * + * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If + * called several times, the whole transfer will be completed. Returns + * %-EINPROGRESS when current transfer was not yet completed otherwise %0. + * + * When this function is finished, RX FIFO should be empty and TX FIFO should be + * full. + */ +static int ep93xx_spi_read_write(struct ep93xx_spi *espi) +{ +	struct spi_message *msg = espi->current_msg; +	struct spi_transfer *t = msg->state; + +	/* read as long as RX FIFO has frames in it */ +	while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) { +		ep93xx_do_read(espi, t); +		espi->fifo_level--; +	} + +	/* write as long as TX FIFO has room */ +	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) { +		ep93xx_do_write(espi, t); +		espi->fifo_level++; +	} + +	if (espi->rx == t->len) +		return 0; + +	return -EINPROGRESS; +} + +static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi) +{ +	/* +	 * Now everything is set up for the current transfer. We prime the TX +	 * FIFO, enable interrupts, and wait for the transfer to complete. +	 */ +	if (ep93xx_spi_read_write(espi)) { +		ep93xx_spi_enable_interrupts(espi); +		wait_for_completion(&espi->wait); +	} +} + +/** + * ep93xx_spi_dma_prepare() - prepares a DMA transfer + * @espi: ep93xx SPI controller struct + * @dir: DMA transfer direction + * + * Function configures the DMA, maps the buffer and prepares the DMA + * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR + * in case of failure. + */ +static struct dma_async_tx_descriptor * +ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir) +{ +	struct spi_transfer *t = espi->current_msg->state; +	struct dma_async_tx_descriptor *txd; +	enum dma_slave_buswidth buswidth; +	struct dma_slave_config conf; +	struct scatterlist *sg; +	struct sg_table *sgt; +	struct dma_chan *chan; +	const void *buf, *pbuf; +	size_t len = t->len; +	int i, ret, nents; + +	if (t->bits_per_word > 8) +		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; +	else +		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; + +	memset(&conf, 0, sizeof(conf)); +	conf.direction = dir; + +	if (dir == DMA_DEV_TO_MEM) { +		chan = espi->dma_rx; +		buf = t->rx_buf; +		sgt = &espi->rx_sgt; + +		conf.src_addr = espi->sspdr_phys; +		conf.src_addr_width = buswidth; +	} else { +		chan = espi->dma_tx; +		buf = t->tx_buf; +		sgt = &espi->tx_sgt; + +		conf.dst_addr = espi->sspdr_phys; +		conf.dst_addr_width = buswidth; +	} + +	ret = dmaengine_slave_config(chan, &conf); +	if (ret) +		return ERR_PTR(ret); + +	/* +	 * We need to split the transfer into PAGE_SIZE'd chunks. This is +	 * because we are using @espi->zeropage to provide a zero RX buffer +	 * for the TX transfers and we have only allocated one page for that. +	 * +	 * For performance reasons we allocate a new sg_table only when +	 * needed. Otherwise we will re-use the current one. Eventually the +	 * last sg_table is released in ep93xx_spi_release_dma(). +	 */ + +	nents = DIV_ROUND_UP(len, PAGE_SIZE); +	if (nents != sgt->nents) { +		sg_free_table(sgt); + +		ret = sg_alloc_table(sgt, nents, GFP_KERNEL); +		if (ret) +			return ERR_PTR(ret); +	} + +	pbuf = buf; +	for_each_sg(sgt->sgl, sg, sgt->nents, i) { +		size_t bytes = min_t(size_t, len, PAGE_SIZE); + +		if (buf) { +			sg_set_page(sg, virt_to_page(pbuf), bytes, +				    offset_in_page(pbuf)); +		} else { +			sg_set_page(sg, virt_to_page(espi->zeropage), +				    bytes, 0); +		} + +		pbuf += bytes; +		len -= bytes; +	} + +	if (WARN_ON(len)) { +		dev_warn(&espi->pdev->dev, "len = %zu expected 0!\n", len); +		return ERR_PTR(-EINVAL); +	} + +	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); +	if (!nents) +		return ERR_PTR(-ENOMEM); + +	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK); +	if (!txd) { +		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); +		return ERR_PTR(-ENOMEM); +	} +	return txd; +} + +/** + * ep93xx_spi_dma_finish() - finishes with a DMA transfer + * @espi: ep93xx SPI controller struct + * @dir: DMA transfer direction + * + * Function finishes with the DMA transfer. After this, the DMA buffer is + * unmapped. + */ +static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi, +				  enum dma_transfer_direction dir) +{ +	struct dma_chan *chan; +	struct sg_table *sgt; + +	if (dir == DMA_DEV_TO_MEM) { +		chan = espi->dma_rx; +		sgt = &espi->rx_sgt; +	} else { +		chan = espi->dma_tx; +		sgt = &espi->tx_sgt; +	} + +	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); +} + +static void ep93xx_spi_dma_callback(void *callback_param) +{ +	complete(callback_param); +} + +static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi) +{ +	struct spi_message *msg = espi->current_msg; +	struct dma_async_tx_descriptor *rxd, *txd; + +	rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM); +	if (IS_ERR(rxd)) { +		dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd)); +		msg->status = PTR_ERR(rxd); +		return; +	} + +	txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV); +	if (IS_ERR(txd)) { +		ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM); +		dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd)); +		msg->status = PTR_ERR(txd); +		return; +	} + +	/* We are ready when RX is done */ +	rxd->callback = ep93xx_spi_dma_callback; +	rxd->callback_param = &espi->wait; + +	/* Now submit both descriptors and wait while they finish */ +	dmaengine_submit(rxd); +	dmaengine_submit(txd); + +	dma_async_issue_pending(espi->dma_rx); +	dma_async_issue_pending(espi->dma_tx); + +	wait_for_completion(&espi->wait); + +	ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV); +	ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM); +} + +/** + * ep93xx_spi_process_transfer() - processes one SPI transfer + * @espi: ep93xx SPI controller struct + * @msg: current message + * @t: transfer to process + * + * This function processes one SPI transfer given in @t. Function waits until + * transfer is complete (may sleep) and updates @msg->status based on whether + * transfer was successfully processed or not. + */ +static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi, +					struct spi_message *msg, +					struct spi_transfer *t) +{ +	struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi); +	int err; + +	msg->state = t; + +	err = ep93xx_spi_chip_setup(espi, chip, t->speed_hz, t->bits_per_word); +	if (err) { +		dev_err(&espi->pdev->dev, +			"failed to setup chip for transfer\n"); +		msg->status = err; +		return; +	} + +	espi->rx = 0; +	espi->tx = 0; + +	/* +	 * There is no point of setting up DMA for the transfers which will +	 * fit into the FIFO and can be transferred with a single interrupt. +	 * So in these cases we will be using PIO and don't bother for DMA. +	 */ +	if (espi->dma_rx && t->len > SPI_FIFO_SIZE) +		ep93xx_spi_dma_transfer(espi); +	else +		ep93xx_spi_pio_transfer(espi); + +	/* +	 * In case of error during transmit, we bail out from processing +	 * the message. +	 */ +	if (msg->status) +		return; + +	msg->actual_length += t->len; + +	/* +	 * After this transfer is finished, perform any possible +	 * post-transfer actions requested by the protocol driver. +	 */ +	if (t->delay_usecs) { +		set_current_state(TASK_UNINTERRUPTIBLE); +		schedule_timeout(usecs_to_jiffies(t->delay_usecs)); +	} +	if (t->cs_change) { +		if (!list_is_last(&t->transfer_list, &msg->transfers)) { +			/* +			 * In case protocol driver is asking us to drop the +			 * chipselect briefly, we let the scheduler to handle +			 * any "delay" here. +			 */ +			ep93xx_spi_cs_control(msg->spi, false); +			cond_resched(); +			ep93xx_spi_cs_control(msg->spi, true); +		} +	} +} + +/* + * ep93xx_spi_process_message() - process one SPI message + * @espi: ep93xx SPI controller struct + * @msg: message to process + * + * This function processes a single SPI message. We go through all transfers in + * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is + * asserted during the whole message (unless per transfer cs_change is set). + * + * @msg->status contains %0 in case of success or negative error code in case of + * failure. + */ +static void ep93xx_spi_process_message(struct ep93xx_spi *espi, +				       struct spi_message *msg) +{ +	unsigned long timeout; +	struct spi_transfer *t; +	int err; + +	/* +	 * Enable the SPI controller and its clock. +	 */ +	err = ep93xx_spi_enable(espi); +	if (err) { +		dev_err(&espi->pdev->dev, "failed to enable SPI controller\n"); +		msg->status = err; +		return; +	} + +	/* +	 * Just to be sure: flush any data from RX FIFO. +	 */ +	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT); +	while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) { +		if (time_after(jiffies, timeout)) { +			dev_warn(&espi->pdev->dev, +				 "timeout while flushing RX FIFO\n"); +			msg->status = -ETIMEDOUT; +			return; +		} +		ep93xx_spi_read_u16(espi, SSPDR); +	} + +	/* +	 * We explicitly handle FIFO level. This way we don't have to check TX +	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns. +	 */ +	espi->fifo_level = 0; + +	/* +	 * Assert the chipselect. +	 */ +	ep93xx_spi_cs_control(msg->spi, true); + +	list_for_each_entry(t, &msg->transfers, transfer_list) { +		ep93xx_spi_process_transfer(espi, msg, t); +		if (msg->status) +			break; +	} + +	/* +	 * Now the whole message is transferred (or failed for some reason). We +	 * deselect the device and disable the SPI controller. +	 */ +	ep93xx_spi_cs_control(msg->spi, false); +	ep93xx_spi_disable(espi); +} + +static int ep93xx_spi_transfer_one_message(struct spi_master *master, +					   struct spi_message *msg) +{ +	struct ep93xx_spi *espi = spi_master_get_devdata(master); + +	msg->state = NULL; +	msg->status = 0; +	msg->actual_length = 0; + +	espi->current_msg = msg; +	ep93xx_spi_process_message(espi, msg); +	espi->current_msg = NULL; + +	spi_finalize_current_message(master); + +	return 0; +} + +static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id) +{ +	struct ep93xx_spi *espi = dev_id; +	u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR); + +	/* +	 * If we got ROR (receive overrun) interrupt we know that something is +	 * wrong. Just abort the message. +	 */ +	if (unlikely(irq_status & SSPIIR_RORIS)) { +		/* clear the overrun interrupt */ +		ep93xx_spi_write_u8(espi, SSPICR, 0); +		dev_warn(&espi->pdev->dev, +			 "receive overrun, aborting the message\n"); +		espi->current_msg->status = -EIO; +	} else { +		/* +		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we +		 * simply execute next data transfer. +		 */ +		if (ep93xx_spi_read_write(espi)) { +			/* +			 * In normal case, there still is some processing left +			 * for current transfer. Let's wait for the next +			 * interrupt then. +			 */ +			return IRQ_HANDLED; +		} +	} + +	/* +	 * Current transfer is finished, either with error or with success. In +	 * any case we disable interrupts and notify the worker to handle +	 * any post-processing of the message. +	 */ +	ep93xx_spi_disable_interrupts(espi); +	complete(&espi->wait); +	return IRQ_HANDLED; +} + +static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param) +{ +	if (ep93xx_dma_chan_is_m2p(chan)) +		return false; + +	chan->private = filter_param; +	return true; +} + +static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi) +{ +	dma_cap_mask_t mask; +	int ret; + +	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL); +	if (!espi->zeropage) +		return -ENOMEM; + +	dma_cap_zero(mask); +	dma_cap_set(DMA_SLAVE, mask); + +	espi->dma_rx_data.port = EP93XX_DMA_SSP; +	espi->dma_rx_data.direction = DMA_DEV_TO_MEM; +	espi->dma_rx_data.name = "ep93xx-spi-rx"; + +	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter, +					   &espi->dma_rx_data); +	if (!espi->dma_rx) { +		ret = -ENODEV; +		goto fail_free_page; +	} + +	espi->dma_tx_data.port = EP93XX_DMA_SSP; +	espi->dma_tx_data.direction = DMA_MEM_TO_DEV; +	espi->dma_tx_data.name = "ep93xx-spi-tx"; + +	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter, +					   &espi->dma_tx_data); +	if (!espi->dma_tx) { +		ret = -ENODEV; +		goto fail_release_rx; +	} + +	return 0; + +fail_release_rx: +	dma_release_channel(espi->dma_rx); +	espi->dma_rx = NULL; +fail_free_page: +	free_page((unsigned long)espi->zeropage); + +	return ret; +} + +static void ep93xx_spi_release_dma(struct ep93xx_spi *espi) +{ +	if (espi->dma_rx) { +		dma_release_channel(espi->dma_rx); +		sg_free_table(&espi->rx_sgt); +	} +	if (espi->dma_tx) { +		dma_release_channel(espi->dma_tx); +		sg_free_table(&espi->tx_sgt); +	} + +	if (espi->zeropage) +		free_page((unsigned long)espi->zeropage); +} + +static int ep93xx_spi_probe(struct platform_device *pdev) +{ +	struct spi_master *master; +	struct ep93xx_spi_info *info; +	struct ep93xx_spi *espi; +	struct resource *res; +	int irq; +	int error; + +	info = dev_get_platdata(&pdev->dev); + +	irq = platform_get_irq(pdev, 0); +	if (irq < 0) { +		dev_err(&pdev->dev, "failed to get irq resources\n"); +		return -EBUSY; +	} + +	res = platform_get_resource(pdev, IORESOURCE_MEM, 0); +	if (!res) { +		dev_err(&pdev->dev, "unable to get iomem resource\n"); +		return -ENODEV; +	} + +	master = spi_alloc_master(&pdev->dev, sizeof(*espi)); +	if (!master) +		return -ENOMEM; + +	master->setup = ep93xx_spi_setup; +	master->transfer_one_message = ep93xx_spi_transfer_one_message; +	master->cleanup = ep93xx_spi_cleanup; +	master->bus_num = pdev->id; +	master->num_chipselect = info->num_chipselect; +	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; +	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); + +	platform_set_drvdata(pdev, master); + +	espi = spi_master_get_devdata(master); + +	espi->clk = devm_clk_get(&pdev->dev, NULL); +	if (IS_ERR(espi->clk)) { +		dev_err(&pdev->dev, "unable to get spi clock\n"); +		error = PTR_ERR(espi->clk); +		goto fail_release_master; +	} + +	init_completion(&espi->wait); + +	/* +	 * Calculate maximum and minimum supported clock rates +	 * for the controller. +	 */ +	master->max_speed_hz = clk_get_rate(espi->clk) / 2; +	master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256); +	espi->pdev = pdev; + +	espi->sspdr_phys = res->start + SSPDR; + +	espi->regs_base = devm_ioremap_resource(&pdev->dev, res); +	if (IS_ERR(espi->regs_base)) { +		error = PTR_ERR(espi->regs_base); +		goto fail_release_master; +	} + +	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt, +				0, "ep93xx-spi", espi); +	if (error) { +		dev_err(&pdev->dev, "failed to request irq\n"); +		goto fail_release_master; +	} + +	if (info->use_dma && ep93xx_spi_setup_dma(espi)) +		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n"); + +	/* make sure that the hardware is disabled */ +	ep93xx_spi_write_u8(espi, SSPCR1, 0); + +	error = devm_spi_register_master(&pdev->dev, master); +	if (error) { +		dev_err(&pdev->dev, "failed to register SPI master\n"); +		goto fail_free_dma; +	} + +	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n", +		 (unsigned long)res->start, irq); + +	return 0; + +fail_free_dma: +	ep93xx_spi_release_dma(espi); +fail_release_master: +	spi_master_put(master); + +	return error; +} + +static int ep93xx_spi_remove(struct platform_device *pdev) +{ +	struct spi_master *master = platform_get_drvdata(pdev); +	struct ep93xx_spi *espi = spi_master_get_devdata(master); + +	ep93xx_spi_release_dma(espi); + +	return 0; +} + +static struct platform_driver ep93xx_spi_driver = { +	.driver		= { +		.name	= "ep93xx-spi", +		.owner	= THIS_MODULE, +	}, +	.probe		= ep93xx_spi_probe, +	.remove		= ep93xx_spi_remove, +}; +module_platform_driver(ep93xx_spi_driver); + +MODULE_DESCRIPTION("EP93xx SPI Controller driver"); +MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>"); +MODULE_LICENSE("GPL"); +MODULE_ALIAS("platform:ep93xx-spi");  | 
