diff options
Diffstat (limited to 'drivers/net/sfc/rx.c')
| -rw-r--r-- | drivers/net/sfc/rx.c | 722 |
1 files changed, 0 insertions, 722 deletions
diff --git a/drivers/net/sfc/rx.c b/drivers/net/sfc/rx.c deleted file mode 100644 index a97c923b560..00000000000 --- a/drivers/net/sfc/rx.c +++ /dev/null @@ -1,722 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005-2006 Fen Systems Ltd. - * Copyright 2005-2009 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#include <linux/socket.h> -#include <linux/in.h> -#include <linux/ip.h> -#include <linux/tcp.h> -#include <linux/udp.h> -#include <net/ip.h> -#include <net/checksum.h> -#include "net_driver.h" -#include "efx.h" -#include "nic.h" -#include "selftest.h" -#include "workarounds.h" - -/* Number of RX descriptors pushed at once. */ -#define EFX_RX_BATCH 8 - -/* Size of buffer allocated for skb header area. */ -#define EFX_SKB_HEADERS 64u - -/* - * rx_alloc_method - RX buffer allocation method - * - * This driver supports two methods for allocating and using RX buffers: - * each RX buffer may be backed by an skb or by an order-n page. - * - * When LRO is in use then the second method has a lower overhead, - * since we don't have to allocate then free skbs on reassembled frames. - * - * Values: - * - RX_ALLOC_METHOD_AUTO = 0 - * - RX_ALLOC_METHOD_SKB = 1 - * - RX_ALLOC_METHOD_PAGE = 2 - * - * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count - * controlled by the parameters below. - * - * - Since pushing and popping descriptors are separated by the rx_queue - * size, so the watermarks should be ~rxd_size. - * - The performance win by using page-based allocation for LRO is less - * than the performance hit of using page-based allocation of non-LRO, - * so the watermarks should reflect this. - * - * Per channel we maintain a single variable, updated by each channel: - * - * rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO : - * RX_ALLOC_FACTOR_SKB) - * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which - * limits the hysteresis), and update the allocation strategy: - * - * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ? - * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB) - */ -static int rx_alloc_method = RX_ALLOC_METHOD_AUTO; - -#define RX_ALLOC_LEVEL_LRO 0x2000 -#define RX_ALLOC_LEVEL_MAX 0x3000 -#define RX_ALLOC_FACTOR_LRO 1 -#define RX_ALLOC_FACTOR_SKB (-2) - -/* This is the percentage fill level below which new RX descriptors - * will be added to the RX descriptor ring. - */ -static unsigned int rx_refill_threshold = 90; - -/* This is the percentage fill level to which an RX queue will be refilled - * when the "RX refill threshold" is reached. - */ -static unsigned int rx_refill_limit = 95; - -/* - * RX maximum head room required. - * - * This must be at least 1 to prevent overflow and at least 2 to allow - * pipelined receives. - */ -#define EFX_RXD_HEAD_ROOM 2 - -static inline unsigned int efx_rx_buf_offset(struct efx_rx_buffer *buf) -{ - /* Offset is always within one page, so we don't need to consider - * the page order. - */ - return (__force unsigned long) buf->data & (PAGE_SIZE - 1); -} -static inline unsigned int efx_rx_buf_size(struct efx_nic *efx) -{ - return PAGE_SIZE << efx->rx_buffer_order; -} - - -/** - * efx_init_rx_buffer_skb - create new RX buffer using skb-based allocation - * - * @rx_queue: Efx RX queue - * @rx_buf: RX buffer structure to populate - * - * This allocates memory for a new receive buffer, maps it for DMA, - * and populates a struct efx_rx_buffer with the relevant - * information. Return a negative error code or 0 on success. - */ -static int efx_init_rx_buffer_skb(struct efx_rx_queue *rx_queue, - struct efx_rx_buffer *rx_buf) -{ - struct efx_nic *efx = rx_queue->efx; - struct net_device *net_dev = efx->net_dev; - int skb_len = efx->rx_buffer_len; - - rx_buf->skb = netdev_alloc_skb(net_dev, skb_len); - if (unlikely(!rx_buf->skb)) - return -ENOMEM; - - /* Adjust the SKB for padding and checksum */ - skb_reserve(rx_buf->skb, NET_IP_ALIGN); - rx_buf->len = skb_len - NET_IP_ALIGN; - rx_buf->data = (char *)rx_buf->skb->data; - rx_buf->skb->ip_summed = CHECKSUM_UNNECESSARY; - - rx_buf->dma_addr = pci_map_single(efx->pci_dev, - rx_buf->data, rx_buf->len, - PCI_DMA_FROMDEVICE); - - if (unlikely(pci_dma_mapping_error(efx->pci_dev, rx_buf->dma_addr))) { - dev_kfree_skb_any(rx_buf->skb); - rx_buf->skb = NULL; - return -EIO; - } - - return 0; -} - -/** - * efx_init_rx_buffer_page - create new RX buffer using page-based allocation - * - * @rx_queue: Efx RX queue - * @rx_buf: RX buffer structure to populate - * - * This allocates memory for a new receive buffer, maps it for DMA, - * and populates a struct efx_rx_buffer with the relevant - * information. Return a negative error code or 0 on success. - */ -static int efx_init_rx_buffer_page(struct efx_rx_queue *rx_queue, - struct efx_rx_buffer *rx_buf) -{ - struct efx_nic *efx = rx_queue->efx; - int bytes, space, offset; - - bytes = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN; - - /* If there is space left in the previously allocated page, - * then use it. Otherwise allocate a new one */ - rx_buf->page = rx_queue->buf_page; - if (rx_buf->page == NULL) { - dma_addr_t dma_addr; - - rx_buf->page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC, - efx->rx_buffer_order); - if (unlikely(rx_buf->page == NULL)) - return -ENOMEM; - - dma_addr = pci_map_page(efx->pci_dev, rx_buf->page, - 0, efx_rx_buf_size(efx), - PCI_DMA_FROMDEVICE); - - if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) { - __free_pages(rx_buf->page, efx->rx_buffer_order); - rx_buf->page = NULL; - return -EIO; - } - - rx_queue->buf_page = rx_buf->page; - rx_queue->buf_dma_addr = dma_addr; - rx_queue->buf_data = (page_address(rx_buf->page) + - EFX_PAGE_IP_ALIGN); - } - - rx_buf->len = bytes; - rx_buf->data = rx_queue->buf_data; - offset = efx_rx_buf_offset(rx_buf); - rx_buf->dma_addr = rx_queue->buf_dma_addr + offset; - - /* Try to pack multiple buffers per page */ - if (efx->rx_buffer_order == 0) { - /* The next buffer starts on the next 512 byte boundary */ - rx_queue->buf_data += ((bytes + 0x1ff) & ~0x1ff); - offset += ((bytes + 0x1ff) & ~0x1ff); - - space = efx_rx_buf_size(efx) - offset; - if (space >= bytes) { - /* Refs dropped on kernel releasing each skb */ - get_page(rx_queue->buf_page); - goto out; - } - } - - /* This is the final RX buffer for this page, so mark it for - * unmapping */ - rx_queue->buf_page = NULL; - rx_buf->unmap_addr = rx_queue->buf_dma_addr; - - out: - return 0; -} - -/* This allocates memory for a new receive buffer, maps it for DMA, - * and populates a struct efx_rx_buffer with the relevant - * information. - */ -static int efx_init_rx_buffer(struct efx_rx_queue *rx_queue, - struct efx_rx_buffer *new_rx_buf) -{ - int rc = 0; - - if (rx_queue->channel->rx_alloc_push_pages) { - new_rx_buf->skb = NULL; - rc = efx_init_rx_buffer_page(rx_queue, new_rx_buf); - rx_queue->alloc_page_count++; - } else { - new_rx_buf->page = NULL; - rc = efx_init_rx_buffer_skb(rx_queue, new_rx_buf); - rx_queue->alloc_skb_count++; - } - - if (unlikely(rc < 0)) - EFX_LOG_RL(rx_queue->efx, "%s RXQ[%d] =%d\n", __func__, - rx_queue->queue, rc); - return rc; -} - -static void efx_unmap_rx_buffer(struct efx_nic *efx, - struct efx_rx_buffer *rx_buf) -{ - if (rx_buf->page) { - EFX_BUG_ON_PARANOID(rx_buf->skb); - if (rx_buf->unmap_addr) { - pci_unmap_page(efx->pci_dev, rx_buf->unmap_addr, - efx_rx_buf_size(efx), - PCI_DMA_FROMDEVICE); - rx_buf->unmap_addr = 0; - } - } else if (likely(rx_buf->skb)) { - pci_unmap_single(efx->pci_dev, rx_buf->dma_addr, - rx_buf->len, PCI_DMA_FROMDEVICE); - } -} - -static void efx_free_rx_buffer(struct efx_nic *efx, - struct efx_rx_buffer *rx_buf) -{ - if (rx_buf->page) { - __free_pages(rx_buf->page, efx->rx_buffer_order); - rx_buf->page = NULL; - } else if (likely(rx_buf->skb)) { - dev_kfree_skb_any(rx_buf->skb); - rx_buf->skb = NULL; - } -} - -static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, - struct efx_rx_buffer *rx_buf) -{ - efx_unmap_rx_buffer(rx_queue->efx, rx_buf); - efx_free_rx_buffer(rx_queue->efx, rx_buf); -} - -/** - * efx_fast_push_rx_descriptors - push new RX descriptors quickly - * @rx_queue: RX descriptor queue - * @retry: Recheck the fill level - * This will aim to fill the RX descriptor queue up to - * @rx_queue->@fast_fill_limit. If there is insufficient atomic - * memory to do so, the caller should retry. - */ -static int __efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, - int retry) -{ - struct efx_rx_buffer *rx_buf; - unsigned fill_level, index; - int i, space, rc = 0; - - /* Calculate current fill level. Do this outside the lock, - * because most of the time we'll end up not wanting to do the - * fill anyway. - */ - fill_level = (rx_queue->added_count - rx_queue->removed_count); - EFX_BUG_ON_PARANOID(fill_level > EFX_RXQ_SIZE); - - /* Don't fill if we don't need to */ - if (fill_level >= rx_queue->fast_fill_trigger) - return 0; - - /* Record minimum fill level */ - if (unlikely(fill_level < rx_queue->min_fill)) { - if (fill_level) - rx_queue->min_fill = fill_level; - } - - /* Acquire RX add lock. If this lock is contended, then a fast - * fill must already be in progress (e.g. in the refill - * tasklet), so we don't need to do anything - */ - if (!spin_trylock_bh(&rx_queue->add_lock)) - return -1; - - retry: - /* Recalculate current fill level now that we have the lock */ - fill_level = (rx_queue->added_count - rx_queue->removed_count); - EFX_BUG_ON_PARANOID(fill_level > EFX_RXQ_SIZE); - space = rx_queue->fast_fill_limit - fill_level; - if (space < EFX_RX_BATCH) - goto out_unlock; - - EFX_TRACE(rx_queue->efx, "RX queue %d fast-filling descriptor ring from" - " level %d to level %d using %s allocation\n", - rx_queue->queue, fill_level, rx_queue->fast_fill_limit, - rx_queue->channel->rx_alloc_push_pages ? "page" : "skb"); - - do { - for (i = 0; i < EFX_RX_BATCH; ++i) { - index = rx_queue->added_count & EFX_RXQ_MASK; - rx_buf = efx_rx_buffer(rx_queue, index); - rc = efx_init_rx_buffer(rx_queue, rx_buf); - if (unlikely(rc)) - goto out; - ++rx_queue->added_count; - } - } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH); - - EFX_TRACE(rx_queue->efx, "RX queue %d fast-filled descriptor ring " - "to level %d\n", rx_queue->queue, - rx_queue->added_count - rx_queue->removed_count); - - out: - /* Send write pointer to card. */ - efx_nic_notify_rx_desc(rx_queue); - - /* If the fast fill is running inside from the refill tasklet, then - * for SMP systems it may be running on a different CPU to - * RX event processing, which means that the fill level may now be - * out of date. */ - if (unlikely(retry && (rc == 0))) - goto retry; - - out_unlock: - spin_unlock_bh(&rx_queue->add_lock); - - return rc; -} - -/** - * efx_fast_push_rx_descriptors - push new RX descriptors quickly - * @rx_queue: RX descriptor queue - * - * This will aim to fill the RX descriptor queue up to - * @rx_queue->@fast_fill_limit. If there is insufficient memory to do so, - * it will schedule a work item to immediately continue the fast fill - */ -void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue) -{ - int rc; - - rc = __efx_fast_push_rx_descriptors(rx_queue, 0); - if (unlikely(rc)) { - /* Schedule the work item to run immediately. The hope is - * that work is immediately pending to free some memory - * (e.g. an RX event or TX completion) - */ - efx_schedule_slow_fill(rx_queue, 0); - } -} - -void efx_rx_work(struct work_struct *data) -{ - struct efx_rx_queue *rx_queue; - int rc; - - rx_queue = container_of(data, struct efx_rx_queue, work.work); - - if (unlikely(!rx_queue->channel->enabled)) - return; - - EFX_TRACE(rx_queue->efx, "RX queue %d worker thread executing on CPU " - "%d\n", rx_queue->queue, raw_smp_processor_id()); - - ++rx_queue->slow_fill_count; - /* Push new RX descriptors, allowing at least 1 jiffy for - * the kernel to free some more memory. */ - rc = __efx_fast_push_rx_descriptors(rx_queue, 1); - if (rc) - efx_schedule_slow_fill(rx_queue, 1); -} - -static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue, - struct efx_rx_buffer *rx_buf, - int len, bool *discard, - bool *leak_packet) -{ - struct efx_nic *efx = rx_queue->efx; - unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; - - if (likely(len <= max_len)) - return; - - /* The packet must be discarded, but this is only a fatal error - * if the caller indicated it was - */ - *discard = true; - - if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) { - EFX_ERR_RL(efx, " RX queue %d seriously overlength " - "RX event (0x%x > 0x%x+0x%x). Leaking\n", - rx_queue->queue, len, max_len, - efx->type->rx_buffer_padding); - /* If this buffer was skb-allocated, then the meta - * data at the end of the skb will be trashed. So - * we have no choice but to leak the fragment. - */ - *leak_packet = (rx_buf->skb != NULL); - efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY); - } else { - EFX_ERR_RL(efx, " RX queue %d overlength RX event " - "(0x%x > 0x%x)\n", rx_queue->queue, len, max_len); - } - - rx_queue->channel->n_rx_overlength++; -} - -/* Pass a received packet up through the generic LRO stack - * - * Handles driverlink veto, and passes the fragment up via - * the appropriate LRO method - */ -static void efx_rx_packet_lro(struct efx_channel *channel, - struct efx_rx_buffer *rx_buf, - bool checksummed) -{ - struct napi_struct *napi = &channel->napi_str; - gro_result_t gro_result; - - /* Pass the skb/page into the LRO engine */ - if (rx_buf->page) { - struct page *page = rx_buf->page; - struct sk_buff *skb; - - EFX_BUG_ON_PARANOID(rx_buf->skb); - rx_buf->page = NULL; - - skb = napi_get_frags(napi); - if (!skb) { - put_page(page); - return; - } - - skb_shinfo(skb)->frags[0].page = page; - skb_shinfo(skb)->frags[0].page_offset = - efx_rx_buf_offset(rx_buf); - skb_shinfo(skb)->frags[0].size = rx_buf->len; - skb_shinfo(skb)->nr_frags = 1; - - skb->len = rx_buf->len; - skb->data_len = rx_buf->len; - skb->truesize += rx_buf->len; - skb->ip_summed = - checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE; - - skb_record_rx_queue(skb, channel->channel); - - gro_result = napi_gro_frags(napi); - } else { - struct sk_buff *skb = rx_buf->skb; - - EFX_BUG_ON_PARANOID(!skb); - EFX_BUG_ON_PARANOID(!checksummed); - rx_buf->skb = NULL; - - gro_result = napi_gro_receive(napi, skb); - } - - if (gro_result == GRO_NORMAL) { - channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB; - } else if (gro_result != GRO_DROP) { - channel->rx_alloc_level += RX_ALLOC_FACTOR_LRO; - channel->irq_mod_score += 2; - } -} - -void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, - unsigned int len, bool checksummed, bool discard) -{ - struct efx_nic *efx = rx_queue->efx; - struct efx_rx_buffer *rx_buf; - bool leak_packet = false; - - rx_buf = efx_rx_buffer(rx_queue, index); - EFX_BUG_ON_PARANOID(!rx_buf->data); - EFX_BUG_ON_PARANOID(rx_buf->skb && rx_buf->page); - EFX_BUG_ON_PARANOID(!(rx_buf->skb || rx_buf->page)); - - /* This allows the refill path to post another buffer. - * EFX_RXD_HEAD_ROOM ensures that the slot we are using - * isn't overwritten yet. - */ - rx_queue->removed_count++; - - /* Validate the length encoded in the event vs the descriptor pushed */ - efx_rx_packet__check_len(rx_queue, rx_buf, len, - &discard, &leak_packet); - - EFX_TRACE(efx, "RX queue %d received id %x at %llx+%x %s%s\n", - rx_queue->queue, index, - (unsigned long long)rx_buf->dma_addr, len, - (checksummed ? " [SUMMED]" : ""), - (discard ? " [DISCARD]" : "")); - - /* Discard packet, if instructed to do so */ - if (unlikely(discard)) { - if (unlikely(leak_packet)) - rx_queue->channel->n_skbuff_leaks++; - else - /* We haven't called efx_unmap_rx_buffer yet, - * so fini the entire rx_buffer here */ - efx_fini_rx_buffer(rx_queue, rx_buf); - return; - } - - /* Release card resources - assumes all RX buffers consumed in-order - * per RX queue - */ - efx_unmap_rx_buffer(efx, rx_buf); - - /* Prefetch nice and early so data will (hopefully) be in cache by - * the time we look at it. - */ - prefetch(rx_buf->data); - - /* Pipeline receives so that we give time for packet headers to be - * prefetched into cache. - */ - rx_buf->len = len; - if (rx_queue->channel->rx_pkt) - __efx_rx_packet(rx_queue->channel, - rx_queue->channel->rx_pkt, - rx_queue->channel->rx_pkt_csummed); - rx_queue->channel->rx_pkt = rx_buf; - rx_queue->channel->rx_pkt_csummed = checksummed; -} - -/* Handle a received packet. Second half: Touches packet payload. */ -void __efx_rx_packet(struct efx_channel *channel, - struct efx_rx_buffer *rx_buf, bool checksummed) -{ - struct efx_nic *efx = channel->efx; - struct sk_buff *skb; - - /* If we're in loopback test, then pass the packet directly to the - * loopback layer, and free the rx_buf here - */ - if (unlikely(efx->loopback_selftest)) { - efx_loopback_rx_packet(efx, rx_buf->data, rx_buf->len); - efx_free_rx_buffer(efx, rx_buf); - return; - } - - if (rx_buf->skb) { - prefetch(skb_shinfo(rx_buf->skb)); - - skb_put(rx_buf->skb, rx_buf->len); - - /* Move past the ethernet header. rx_buf->data still points - * at the ethernet header */ - rx_buf->skb->protocol = eth_type_trans(rx_buf->skb, - efx->net_dev); - - skb_record_rx_queue(rx_buf->skb, channel->channel); - } - - if (likely(checksummed || rx_buf->page)) { - efx_rx_packet_lro(channel, rx_buf, checksummed); - return; - } - - /* We now own the SKB */ - skb = rx_buf->skb; - rx_buf->skb = NULL; - EFX_BUG_ON_PARANOID(!skb); - - /* Set the SKB flags */ - skb->ip_summed = CHECKSUM_NONE; - - /* Pass the packet up */ - netif_receive_skb(skb); - - /* Update allocation strategy method */ - channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB; -} - -void efx_rx_strategy(struct efx_channel *channel) -{ - enum efx_rx_alloc_method method = rx_alloc_method; - - /* Only makes sense to use page based allocation if LRO is enabled */ - if (!(channel->efx->net_dev->features & NETIF_F_GRO)) { - method = RX_ALLOC_METHOD_SKB; - } else if (method == RX_ALLOC_METHOD_AUTO) { - /* Constrain the rx_alloc_level */ - if (channel->rx_alloc_level < 0) - channel->rx_alloc_level = 0; - else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX) - channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX; - - /* Decide on the allocation method */ - method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_LRO) ? - RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB); - } - - /* Push the option */ - channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE); -} - -int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) -{ - struct efx_nic *efx = rx_queue->efx; - unsigned int rxq_size; - int rc; - - EFX_LOG(efx, "creating RX queue %d\n", rx_queue->queue); - - /* Allocate RX buffers */ - rxq_size = EFX_RXQ_SIZE * sizeof(*rx_queue->buffer); - rx_queue->buffer = kzalloc(rxq_size, GFP_KERNEL); - if (!rx_queue->buffer) - return -ENOMEM; - - rc = efx_nic_probe_rx(rx_queue); - if (rc) { - kfree(rx_queue->buffer); - rx_queue->buffer = NULL; - } - return rc; -} - -void efx_init_rx_queue(struct efx_rx_queue *rx_queue) -{ - unsigned int max_fill, trigger, limit; - - EFX_LOG(rx_queue->efx, "initialising RX queue %d\n", rx_queue->queue); - - /* Initialise ptr fields */ - rx_queue->added_count = 0; - rx_queue->notified_count = 0; - rx_queue->removed_count = 0; - rx_queue->min_fill = -1U; - rx_queue->min_overfill = -1U; - - /* Initialise limit fields */ - max_fill = EFX_RXQ_SIZE - EFX_RXD_HEAD_ROOM; - trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; - limit = max_fill * min(rx_refill_limit, 100U) / 100U; - - rx_queue->max_fill = max_fill; - rx_queue->fast_fill_trigger = trigger; - rx_queue->fast_fill_limit = limit; - - /* Set up RX descriptor ring */ - efx_nic_init_rx(rx_queue); -} - -void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) -{ - int i; - struct efx_rx_buffer *rx_buf; - - EFX_LOG(rx_queue->efx, "shutting down RX queue %d\n", rx_queue->queue); - - efx_nic_fini_rx(rx_queue); - - /* Release RX buffers NB start at index 0 not current HW ptr */ - if (rx_queue->buffer) { - for (i = 0; i <= EFX_RXQ_MASK; i++) { - rx_buf = efx_rx_buffer(rx_queue, i); - efx_fini_rx_buffer(rx_queue, rx_buf); - } - } - - /* For a page that is part-way through splitting into RX buffers */ - if (rx_queue->buf_page != NULL) { - pci_unmap_page(rx_queue->efx->pci_dev, rx_queue->buf_dma_addr, - efx_rx_buf_size(rx_queue->efx), - PCI_DMA_FROMDEVICE); - __free_pages(rx_queue->buf_page, - rx_queue->efx->rx_buffer_order); - rx_queue->buf_page = NULL; - } -} - -void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) -{ - EFX_LOG(rx_queue->efx, "destroying RX queue %d\n", rx_queue->queue); - - efx_nic_remove_rx(rx_queue); - - kfree(rx_queue->buffer); - rx_queue->buffer = NULL; -} - - -module_param(rx_alloc_method, int, 0644); -MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers"); - -module_param(rx_refill_threshold, uint, 0444); -MODULE_PARM_DESC(rx_refill_threshold, - "RX descriptor ring fast/slow fill threshold (%)"); - |
