diff options
Diffstat (limited to 'drivers/net/ethernet/intel/igb/e1000_nvm.c')
| -rw-r--r-- | drivers/net/ethernet/intel/igb/e1000_nvm.c | 801 | 
1 files changed, 801 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/igb/e1000_nvm.c b/drivers/net/ethernet/intel/igb/e1000_nvm.c new file mode 100644 index 00000000000..e8280d0d7f0 --- /dev/null +++ b/drivers/net/ethernet/intel/igb/e1000_nvm.c @@ -0,0 +1,801 @@ +/* Intel(R) Gigabit Ethernet Linux driver + * Copyright(c) 2007-2014 Intel Corporation. + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, see <http://www.gnu.org/licenses/>. + * + * The full GNU General Public License is included in this distribution in + * the file called "COPYING". + * + * Contact Information: + * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + */ + +#include <linux/if_ether.h> +#include <linux/delay.h> + +#include "e1000_mac.h" +#include "e1000_nvm.h" + +/** + *  igb_raise_eec_clk - Raise EEPROM clock + *  @hw: pointer to the HW structure + *  @eecd: pointer to the EEPROM + * + *  Enable/Raise the EEPROM clock bit. + **/ +static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) +{ +	*eecd = *eecd | E1000_EECD_SK; +	wr32(E1000_EECD, *eecd); +	wrfl(); +	udelay(hw->nvm.delay_usec); +} + +/** + *  igb_lower_eec_clk - Lower EEPROM clock + *  @hw: pointer to the HW structure + *  @eecd: pointer to the EEPROM + * + *  Clear/Lower the EEPROM clock bit. + **/ +static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) +{ +	*eecd = *eecd & ~E1000_EECD_SK; +	wr32(E1000_EECD, *eecd); +	wrfl(); +	udelay(hw->nvm.delay_usec); +} + +/** + *  igb_shift_out_eec_bits - Shift data bits our to the EEPROM + *  @hw: pointer to the HW structure + *  @data: data to send to the EEPROM + *  @count: number of bits to shift out + * + *  We need to shift 'count' bits out to the EEPROM.  So, the value in the + *  "data" parameter will be shifted out to the EEPROM one bit at a time. + *  In order to do this, "data" must be broken down into bits. + **/ +static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) +{ +	struct e1000_nvm_info *nvm = &hw->nvm; +	u32 eecd = rd32(E1000_EECD); +	u32 mask; + +	mask = 0x01 << (count - 1); +	if (nvm->type == e1000_nvm_eeprom_spi) +		eecd |= E1000_EECD_DO; + +	do { +		eecd &= ~E1000_EECD_DI; + +		if (data & mask) +			eecd |= E1000_EECD_DI; + +		wr32(E1000_EECD, eecd); +		wrfl(); + +		udelay(nvm->delay_usec); + +		igb_raise_eec_clk(hw, &eecd); +		igb_lower_eec_clk(hw, &eecd); + +		mask >>= 1; +	} while (mask); + +	eecd &= ~E1000_EECD_DI; +	wr32(E1000_EECD, eecd); +} + +/** + *  igb_shift_in_eec_bits - Shift data bits in from the EEPROM + *  @hw: pointer to the HW structure + *  @count: number of bits to shift in + * + *  In order to read a register from the EEPROM, we need to shift 'count' bits + *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to + *  the EEPROM (setting the SK bit), and then reading the value of the data out + *  "DO" bit.  During this "shifting in" process the data in "DI" bit should + *  always be clear. + **/ +static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count) +{ +	u32 eecd; +	u32 i; +	u16 data; + +	eecd = rd32(E1000_EECD); + +	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); +	data = 0; + +	for (i = 0; i < count; i++) { +		data <<= 1; +		igb_raise_eec_clk(hw, &eecd); + +		eecd = rd32(E1000_EECD); + +		eecd &= ~E1000_EECD_DI; +		if (eecd & E1000_EECD_DO) +			data |= 1; + +		igb_lower_eec_clk(hw, &eecd); +	} + +	return data; +} + +/** + *  igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion + *  @hw: pointer to the HW structure + *  @ee_reg: EEPROM flag for polling + * + *  Polls the EEPROM status bit for either read or write completion based + *  upon the value of 'ee_reg'. + **/ +static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) +{ +	u32 attempts = 100000; +	u32 i, reg = 0; +	s32 ret_val = -E1000_ERR_NVM; + +	for (i = 0; i < attempts; i++) { +		if (ee_reg == E1000_NVM_POLL_READ) +			reg = rd32(E1000_EERD); +		else +			reg = rd32(E1000_EEWR); + +		if (reg & E1000_NVM_RW_REG_DONE) { +			ret_val = 0; +			break; +		} + +		udelay(5); +	} + +	return ret_val; +} + +/** + *  igb_acquire_nvm - Generic request for access to EEPROM + *  @hw: pointer to the HW structure + * + *  Set the EEPROM access request bit and wait for EEPROM access grant bit. + *  Return successful if access grant bit set, else clear the request for + *  EEPROM access and return -E1000_ERR_NVM (-1). + **/ +s32 igb_acquire_nvm(struct e1000_hw *hw) +{ +	u32 eecd = rd32(E1000_EECD); +	s32 timeout = E1000_NVM_GRANT_ATTEMPTS; +	s32 ret_val = 0; + + +	wr32(E1000_EECD, eecd | E1000_EECD_REQ); +	eecd = rd32(E1000_EECD); + +	while (timeout) { +		if (eecd & E1000_EECD_GNT) +			break; +		udelay(5); +		eecd = rd32(E1000_EECD); +		timeout--; +	} + +	if (!timeout) { +		eecd &= ~E1000_EECD_REQ; +		wr32(E1000_EECD, eecd); +		hw_dbg("Could not acquire NVM grant\n"); +		ret_val = -E1000_ERR_NVM; +	} + +	return ret_val; +} + +/** + *  igb_standby_nvm - Return EEPROM to standby state + *  @hw: pointer to the HW structure + * + *  Return the EEPROM to a standby state. + **/ +static void igb_standby_nvm(struct e1000_hw *hw) +{ +	struct e1000_nvm_info *nvm = &hw->nvm; +	u32 eecd = rd32(E1000_EECD); + +	if (nvm->type == e1000_nvm_eeprom_spi) { +		/* Toggle CS to flush commands */ +		eecd |= E1000_EECD_CS; +		wr32(E1000_EECD, eecd); +		wrfl(); +		udelay(nvm->delay_usec); +		eecd &= ~E1000_EECD_CS; +		wr32(E1000_EECD, eecd); +		wrfl(); +		udelay(nvm->delay_usec); +	} +} + +/** + *  e1000_stop_nvm - Terminate EEPROM command + *  @hw: pointer to the HW structure + * + *  Terminates the current command by inverting the EEPROM's chip select pin. + **/ +static void e1000_stop_nvm(struct e1000_hw *hw) +{ +	u32 eecd; + +	eecd = rd32(E1000_EECD); +	if (hw->nvm.type == e1000_nvm_eeprom_spi) { +		/* Pull CS high */ +		eecd |= E1000_EECD_CS; +		igb_lower_eec_clk(hw, &eecd); +	} +} + +/** + *  igb_release_nvm - Release exclusive access to EEPROM + *  @hw: pointer to the HW structure + * + *  Stop any current commands to the EEPROM and clear the EEPROM request bit. + **/ +void igb_release_nvm(struct e1000_hw *hw) +{ +	u32 eecd; + +	e1000_stop_nvm(hw); + +	eecd = rd32(E1000_EECD); +	eecd &= ~E1000_EECD_REQ; +	wr32(E1000_EECD, eecd); +} + +/** + *  igb_ready_nvm_eeprom - Prepares EEPROM for read/write + *  @hw: pointer to the HW structure + * + *  Setups the EEPROM for reading and writing. + **/ +static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw) +{ +	struct e1000_nvm_info *nvm = &hw->nvm; +	u32 eecd = rd32(E1000_EECD); +	s32 ret_val = 0; +	u16 timeout = 0; +	u8 spi_stat_reg; + + +	if (nvm->type == e1000_nvm_eeprom_spi) { +		/* Clear SK and CS */ +		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); +		wr32(E1000_EECD, eecd); +		wrfl(); +		udelay(1); +		timeout = NVM_MAX_RETRY_SPI; + +		/* Read "Status Register" repeatedly until the LSB is cleared. +		 * The EEPROM will signal that the command has been completed +		 * by clearing bit 0 of the internal status register.  If it's +		 * not cleared within 'timeout', then error out. +		 */ +		while (timeout) { +			igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, +					       hw->nvm.opcode_bits); +			spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8); +			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) +				break; + +			udelay(5); +			igb_standby_nvm(hw); +			timeout--; +		} + +		if (!timeout) { +			hw_dbg("SPI NVM Status error\n"); +			ret_val = -E1000_ERR_NVM; +			goto out; +		} +	} + +out: +	return ret_val; +} + +/** + *  igb_read_nvm_spi - Read EEPROM's using SPI + *  @hw: pointer to the HW structure + *  @offset: offset of word in the EEPROM to read + *  @words: number of words to read + *  @data: word read from the EEPROM + * + *  Reads a 16 bit word from the EEPROM. + **/ +s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ +	struct e1000_nvm_info *nvm = &hw->nvm; +	u32 i = 0; +	s32 ret_val; +	u16 word_in; +	u8 read_opcode = NVM_READ_OPCODE_SPI; + +	/* A check for invalid values:  offset too large, too many words, +	 * and not enough words. +	 */ +	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || +	    (words == 0)) { +		hw_dbg("nvm parameter(s) out of bounds\n"); +		ret_val = -E1000_ERR_NVM; +		goto out; +	} + +	ret_val = nvm->ops.acquire(hw); +	if (ret_val) +		goto out; + +	ret_val = igb_ready_nvm_eeprom(hw); +	if (ret_val) +		goto release; + +	igb_standby_nvm(hw); + +	if ((nvm->address_bits == 8) && (offset >= 128)) +		read_opcode |= NVM_A8_OPCODE_SPI; + +	/* Send the READ command (opcode + addr) */ +	igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); +	igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); + +	/* Read the data.  SPI NVMs increment the address with each byte +	 * read and will roll over if reading beyond the end.  This allows +	 * us to read the whole NVM from any offset +	 */ +	for (i = 0; i < words; i++) { +		word_in = igb_shift_in_eec_bits(hw, 16); +		data[i] = (word_in >> 8) | (word_in << 8); +	} + +release: +	nvm->ops.release(hw); + +out: +	return ret_val; +} + +/** + *  igb_read_nvm_eerd - Reads EEPROM using EERD register + *  @hw: pointer to the HW structure + *  @offset: offset of word in the EEPROM to read + *  @words: number of words to read + *  @data: word read from the EEPROM + * + *  Reads a 16 bit word from the EEPROM using the EERD register. + **/ +s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ +	struct e1000_nvm_info *nvm = &hw->nvm; +	u32 i, eerd = 0; +	s32 ret_val = 0; + +	/* A check for invalid values:  offset too large, too many words, +	 * and not enough words. +	 */ +	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || +	    (words == 0)) { +		hw_dbg("nvm parameter(s) out of bounds\n"); +		ret_val = -E1000_ERR_NVM; +		goto out; +	} + +	for (i = 0; i < words; i++) { +		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + +			E1000_NVM_RW_REG_START; + +		wr32(E1000_EERD, eerd); +		ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); +		if (ret_val) +			break; + +		data[i] = (rd32(E1000_EERD) >> +			E1000_NVM_RW_REG_DATA); +	} + +out: +	return ret_val; +} + +/** + *  igb_write_nvm_spi - Write to EEPROM using SPI + *  @hw: pointer to the HW structure + *  @offset: offset within the EEPROM to be written to + *  @words: number of words to write + *  @data: 16 bit word(s) to be written to the EEPROM + * + *  Writes data to EEPROM at offset using SPI interface. + * + *  If e1000_update_nvm_checksum is not called after this function , the + *  EEPROM will most likley contain an invalid checksum. + **/ +s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ +	struct e1000_nvm_info *nvm = &hw->nvm; +	s32 ret_val = -E1000_ERR_NVM; +	u16 widx = 0; + +	/* A check for invalid values:  offset too large, too many words, +	 * and not enough words. +	 */ +	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || +	    (words == 0)) { +		hw_dbg("nvm parameter(s) out of bounds\n"); +		return ret_val; +	} + +	while (widx < words) { +		u8 write_opcode = NVM_WRITE_OPCODE_SPI; + +		ret_val = nvm->ops.acquire(hw); +		if (ret_val) +			return ret_val; + +		ret_val = igb_ready_nvm_eeprom(hw); +		if (ret_val) { +			nvm->ops.release(hw); +			return ret_val; +		} + +		igb_standby_nvm(hw); + +		/* Send the WRITE ENABLE command (8 bit opcode) */ +		igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, +					 nvm->opcode_bits); + +		igb_standby_nvm(hw); + +		/* Some SPI eeproms use the 8th address bit embedded in the +		 * opcode +		 */ +		if ((nvm->address_bits == 8) && (offset >= 128)) +			write_opcode |= NVM_A8_OPCODE_SPI; + +		/* Send the Write command (8-bit opcode + addr) */ +		igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); +		igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), +					 nvm->address_bits); + +		/* Loop to allow for up to whole page write of eeprom */ +		while (widx < words) { +			u16 word_out = data[widx]; + +			word_out = (word_out >> 8) | (word_out << 8); +			igb_shift_out_eec_bits(hw, word_out, 16); +			widx++; + +			if ((((offset + widx) * 2) % nvm->page_size) == 0) { +				igb_standby_nvm(hw); +				break; +			} +		} +		usleep_range(1000, 2000); +		nvm->ops.release(hw); +	} + +	return ret_val; +} + +/** + *  igb_read_part_string - Read device part number + *  @hw: pointer to the HW structure + *  @part_num: pointer to device part number + *  @part_num_size: size of part number buffer + * + *  Reads the product board assembly (PBA) number from the EEPROM and stores + *  the value in part_num. + **/ +s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size) +{ +	s32 ret_val; +	u16 nvm_data; +	u16 pointer; +	u16 offset; +	u16 length; + +	if (part_num == NULL) { +		hw_dbg("PBA string buffer was null\n"); +		ret_val = E1000_ERR_INVALID_ARGUMENT; +		goto out; +	} + +	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); +	if (ret_val) { +		hw_dbg("NVM Read Error\n"); +		goto out; +	} + +	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer); +	if (ret_val) { +		hw_dbg("NVM Read Error\n"); +		goto out; +	} + +	/* if nvm_data is not ptr guard the PBA must be in legacy format which +	 * means pointer is actually our second data word for the PBA number +	 * and we can decode it into an ascii string +	 */ +	if (nvm_data != NVM_PBA_PTR_GUARD) { +		hw_dbg("NVM PBA number is not stored as string\n"); + +		/* we will need 11 characters to store the PBA */ +		if (part_num_size < 11) { +			hw_dbg("PBA string buffer too small\n"); +			return E1000_ERR_NO_SPACE; +		} + +		/* extract hex string from data and pointer */ +		part_num[0] = (nvm_data >> 12) & 0xF; +		part_num[1] = (nvm_data >> 8) & 0xF; +		part_num[2] = (nvm_data >> 4) & 0xF; +		part_num[3] = nvm_data & 0xF; +		part_num[4] = (pointer >> 12) & 0xF; +		part_num[5] = (pointer >> 8) & 0xF; +		part_num[6] = '-'; +		part_num[7] = 0; +		part_num[8] = (pointer >> 4) & 0xF; +		part_num[9] = pointer & 0xF; + +		/* put a null character on the end of our string */ +		part_num[10] = '\0'; + +		/* switch all the data but the '-' to hex char */ +		for (offset = 0; offset < 10; offset++) { +			if (part_num[offset] < 0xA) +				part_num[offset] += '0'; +			else if (part_num[offset] < 0x10) +				part_num[offset] += 'A' - 0xA; +		} + +		goto out; +	} + +	ret_val = hw->nvm.ops.read(hw, pointer, 1, &length); +	if (ret_val) { +		hw_dbg("NVM Read Error\n"); +		goto out; +	} + +	if (length == 0xFFFF || length == 0) { +		hw_dbg("NVM PBA number section invalid length\n"); +		ret_val = E1000_ERR_NVM_PBA_SECTION; +		goto out; +	} +	/* check if part_num buffer is big enough */ +	if (part_num_size < (((u32)length * 2) - 1)) { +		hw_dbg("PBA string buffer too small\n"); +		ret_val = E1000_ERR_NO_SPACE; +		goto out; +	} + +	/* trim pba length from start of string */ +	pointer++; +	length--; + +	for (offset = 0; offset < length; offset++) { +		ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data); +		if (ret_val) { +			hw_dbg("NVM Read Error\n"); +			goto out; +		} +		part_num[offset * 2] = (u8)(nvm_data >> 8); +		part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); +	} +	part_num[offset * 2] = '\0'; + +out: +	return ret_val; +} + +/** + *  igb_read_mac_addr - Read device MAC address + *  @hw: pointer to the HW structure + * + *  Reads the device MAC address from the EEPROM and stores the value. + *  Since devices with two ports use the same EEPROM, we increment the + *  last bit in the MAC address for the second port. + **/ +s32 igb_read_mac_addr(struct e1000_hw *hw) +{ +	u32 rar_high; +	u32 rar_low; +	u16 i; + +	rar_high = rd32(E1000_RAH(0)); +	rar_low = rd32(E1000_RAL(0)); + +	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) +		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); + +	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) +		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); + +	for (i = 0; i < ETH_ALEN; i++) +		hw->mac.addr[i] = hw->mac.perm_addr[i]; + +	return 0; +} + +/** + *  igb_validate_nvm_checksum - Validate EEPROM checksum + *  @hw: pointer to the HW structure + * + *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM + *  and then verifies that the sum of the EEPROM is equal to 0xBABA. + **/ +s32 igb_validate_nvm_checksum(struct e1000_hw *hw) +{ +	s32 ret_val = 0; +	u16 checksum = 0; +	u16 i, nvm_data; + +	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { +		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); +		if (ret_val) { +			hw_dbg("NVM Read Error\n"); +			goto out; +		} +		checksum += nvm_data; +	} + +	if (checksum != (u16) NVM_SUM) { +		hw_dbg("NVM Checksum Invalid\n"); +		ret_val = -E1000_ERR_NVM; +		goto out; +	} + +out: +	return ret_val; +} + +/** + *  igb_update_nvm_checksum - Update EEPROM checksum + *  @hw: pointer to the HW structure + * + *  Updates the EEPROM checksum by reading/adding each word of the EEPROM + *  up to the checksum.  Then calculates the EEPROM checksum and writes the + *  value to the EEPROM. + **/ +s32 igb_update_nvm_checksum(struct e1000_hw *hw) +{ +	s32  ret_val; +	u16 checksum = 0; +	u16 i, nvm_data; + +	for (i = 0; i < NVM_CHECKSUM_REG; i++) { +		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); +		if (ret_val) { +			hw_dbg("NVM Read Error while updating checksum.\n"); +			goto out; +		} +		checksum += nvm_data; +	} +	checksum = (u16) NVM_SUM - checksum; +	ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); +	if (ret_val) +		hw_dbg("NVM Write Error while updating checksum.\n"); + +out: +	return ret_val; +} + +/** + *  igb_get_fw_version - Get firmware version information + *  @hw: pointer to the HW structure + *  @fw_vers: pointer to output structure + * + *  unsupported MAC types will return all 0 version structure + **/ +void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers) +{ +	u16 eeprom_verh, eeprom_verl, etrack_test, fw_version; +	u8 q, hval, rem, result; +	u16 comb_verh, comb_verl, comb_offset; + +	memset(fw_vers, 0, sizeof(struct e1000_fw_version)); + +	/* basic eeprom version numbers and bits used vary by part and by tool +	 * used to create the nvm images. Check which data format we have. +	 */ +	hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); +	switch (hw->mac.type) { +	case e1000_i211: +		igb_read_invm_version(hw, fw_vers); +		return; +	case e1000_82575: +	case e1000_82576: +	case e1000_82580: +		/* Use this format, unless EETRACK ID exists, +		 * then use alternate format +		 */ +		if ((etrack_test &  NVM_MAJOR_MASK) != NVM_ETRACK_VALID) { +			hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); +			fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) +					      >> NVM_MAJOR_SHIFT; +			fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK) +					      >> NVM_MINOR_SHIFT; +			fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK); +			goto etrack_id; +		} +		break; +	case e1000_i210: +		if (!(igb_get_flash_presence_i210(hw))) { +			igb_read_invm_version(hw, fw_vers); +			return; +		} +		/* fall through */ +	case e1000_i350: +		/* find combo image version */ +		hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset); +		if ((comb_offset != 0x0) && +		    (comb_offset != NVM_VER_INVALID)) { + +			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset +					 + 1), 1, &comb_verh); +			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset), +					 1, &comb_verl); + +			/* get Option Rom version if it exists and is valid */ +			if ((comb_verh && comb_verl) && +			    ((comb_verh != NVM_VER_INVALID) && +			     (comb_verl != NVM_VER_INVALID))) { + +				fw_vers->or_valid = true; +				fw_vers->or_major = +					comb_verl >> NVM_COMB_VER_SHFT; +				fw_vers->or_build = +					(comb_verl << NVM_COMB_VER_SHFT) +					| (comb_verh >> NVM_COMB_VER_SHFT); +				fw_vers->or_patch = +					comb_verh & NVM_COMB_VER_MASK; +			} +		} +		break; +	default: +		return; +	} +	hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); +	fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) +			      >> NVM_MAJOR_SHIFT; + +	/* check for old style version format in newer images*/ +	if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) { +		eeprom_verl = (fw_version & NVM_COMB_VER_MASK); +	} else { +		eeprom_verl = (fw_version & NVM_MINOR_MASK) +				>> NVM_MINOR_SHIFT; +	} +	/* Convert minor value to hex before assigning to output struct +	 * Val to be converted will not be higher than 99, per tool output +	 */ +	q = eeprom_verl / NVM_HEX_CONV; +	hval = q * NVM_HEX_TENS; +	rem = eeprom_verl % NVM_HEX_CONV; +	result = hval + rem; +	fw_vers->eep_minor = result; + +etrack_id: +	if ((etrack_test &  NVM_MAJOR_MASK) == NVM_ETRACK_VALID) { +		hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl); +		hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh); +		fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) +			| eeprom_verl; +	} +}  | 
