diff options
Diffstat (limited to 'drivers/net/ethernet/intel/igb/e1000_mac.c')
| -rw-r--r-- | drivers/net/ethernet/intel/igb/e1000_mac.c | 1606 | 
1 files changed, 1606 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/igb/e1000_mac.c b/drivers/net/ethernet/intel/igb/e1000_mac.c new file mode 100644 index 00000000000..2a88595f956 --- /dev/null +++ b/drivers/net/ethernet/intel/igb/e1000_mac.c @@ -0,0 +1,1606 @@ +/* Intel(R) Gigabit Ethernet Linux driver + * Copyright(c) 2007-2014 Intel Corporation. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, see <http://www.gnu.org/licenses/>. + * + * The full GNU General Public License is included in this distribution in + * the file called "COPYING". + * + * Contact Information: + * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + */ + +#include <linux/if_ether.h> +#include <linux/delay.h> +#include <linux/pci.h> +#include <linux/netdevice.h> +#include <linux/etherdevice.h> + +#include "e1000_mac.h" + +#include "igb.h" + +static s32 igb_set_default_fc(struct e1000_hw *hw); +static s32 igb_set_fc_watermarks(struct e1000_hw *hw); + +/** + *  igb_get_bus_info_pcie - Get PCIe bus information + *  @hw: pointer to the HW structure + * + *  Determines and stores the system bus information for a particular + *  network interface.  The following bus information is determined and stored: + *  bus speed, bus width, type (PCIe), and PCIe function. + **/ +s32 igb_get_bus_info_pcie(struct e1000_hw *hw) +{ +	struct e1000_bus_info *bus = &hw->bus; +	s32 ret_val; +	u32 reg; +	u16 pcie_link_status; + +	bus->type = e1000_bus_type_pci_express; + +	ret_val = igb_read_pcie_cap_reg(hw, +					PCI_EXP_LNKSTA, +					&pcie_link_status); +	if (ret_val) { +		bus->width = e1000_bus_width_unknown; +		bus->speed = e1000_bus_speed_unknown; +	} else { +		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) { +		case PCI_EXP_LNKSTA_CLS_2_5GB: +			bus->speed = e1000_bus_speed_2500; +			break; +		case PCI_EXP_LNKSTA_CLS_5_0GB: +			bus->speed = e1000_bus_speed_5000; +			break; +		default: +			bus->speed = e1000_bus_speed_unknown; +			break; +		} + +		bus->width = (enum e1000_bus_width)((pcie_link_status & +						     PCI_EXP_LNKSTA_NLW) >> +						     PCI_EXP_LNKSTA_NLW_SHIFT); +	} + +	reg = rd32(E1000_STATUS); +	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; + +	return 0; +} + +/** + *  igb_clear_vfta - Clear VLAN filter table + *  @hw: pointer to the HW structure + * + *  Clears the register array which contains the VLAN filter table by + *  setting all the values to 0. + **/ +void igb_clear_vfta(struct e1000_hw *hw) +{ +	u32 offset; + +	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { +		array_wr32(E1000_VFTA, offset, 0); +		wrfl(); +	} +} + +/** + *  igb_write_vfta - Write value to VLAN filter table + *  @hw: pointer to the HW structure + *  @offset: register offset in VLAN filter table + *  @value: register value written to VLAN filter table + * + *  Writes value at the given offset in the register array which stores + *  the VLAN filter table. + **/ +static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) +{ +	array_wr32(E1000_VFTA, offset, value); +	wrfl(); +} + +/* Due to a hw errata, if the host tries to  configure the VFTA register + * while performing queries from the BMC or DMA, then the VFTA in some + * cases won't be written. + */ + +/** + *  igb_clear_vfta_i350 - Clear VLAN filter table + *  @hw: pointer to the HW structure + * + *  Clears the register array which contains the VLAN filter table by + *  setting all the values to 0. + **/ +void igb_clear_vfta_i350(struct e1000_hw *hw) +{ +	u32 offset; +	int i; + +	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { +		for (i = 0; i < 10; i++) +			array_wr32(E1000_VFTA, offset, 0); + +		wrfl(); +	} +} + +/** + *  igb_write_vfta_i350 - Write value to VLAN filter table + *  @hw: pointer to the HW structure + *  @offset: register offset in VLAN filter table + *  @value: register value written to VLAN filter table + * + *  Writes value at the given offset in the register array which stores + *  the VLAN filter table. + **/ +static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value) +{ +	int i; + +	for (i = 0; i < 10; i++) +		array_wr32(E1000_VFTA, offset, value); + +	wrfl(); +} + +/** + *  igb_init_rx_addrs - Initialize receive address's + *  @hw: pointer to the HW structure + *  @rar_count: receive address registers + * + *  Setups the receive address registers by setting the base receive address + *  register to the devices MAC address and clearing all the other receive + *  address registers to 0. + **/ +void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) +{ +	u32 i; +	u8 mac_addr[ETH_ALEN] = {0}; + +	/* Setup the receive address */ +	hw_dbg("Programming MAC Address into RAR[0]\n"); + +	hw->mac.ops.rar_set(hw, hw->mac.addr, 0); + +	/* Zero out the other (rar_entry_count - 1) receive addresses */ +	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1); +	for (i = 1; i < rar_count; i++) +		hw->mac.ops.rar_set(hw, mac_addr, i); +} + +/** + *  igb_vfta_set - enable or disable vlan in VLAN filter table + *  @hw: pointer to the HW structure + *  @vid: VLAN id to add or remove + *  @add: if true add filter, if false remove + * + *  Sets or clears a bit in the VLAN filter table array based on VLAN id + *  and if we are adding or removing the filter + **/ +s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add) +{ +	u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK; +	u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK); +	u32 vfta; +	struct igb_adapter *adapter = hw->back; +	s32 ret_val = 0; + +	vfta = adapter->shadow_vfta[index]; + +	/* bit was set/cleared before we started */ +	if ((!!(vfta & mask)) == add) { +		ret_val = -E1000_ERR_CONFIG; +	} else { +		if (add) +			vfta |= mask; +		else +			vfta &= ~mask; +	} +	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354)) +		igb_write_vfta_i350(hw, index, vfta); +	else +		igb_write_vfta(hw, index, vfta); +	adapter->shadow_vfta[index] = vfta; + +	return ret_val; +} + +/** + *  igb_check_alt_mac_addr - Check for alternate MAC addr + *  @hw: pointer to the HW structure + * + *  Checks the nvm for an alternate MAC address.  An alternate MAC address + *  can be setup by pre-boot software and must be treated like a permanent + *  address and must override the actual permanent MAC address.  If an + *  alternate MAC address is found it is saved in the hw struct and + *  programmed into RAR0 and the function returns success, otherwise the + *  function returns an error. + **/ +s32 igb_check_alt_mac_addr(struct e1000_hw *hw) +{ +	u32 i; +	s32 ret_val = 0; +	u16 offset, nvm_alt_mac_addr_offset, nvm_data; +	u8 alt_mac_addr[ETH_ALEN]; + +	/* Alternate MAC address is handled by the option ROM for 82580 +	 * and newer. SW support not required. +	 */ +	if (hw->mac.type >= e1000_82580) +		goto out; + +	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, +				 &nvm_alt_mac_addr_offset); +	if (ret_val) { +		hw_dbg("NVM Read Error\n"); +		goto out; +	} + +	if ((nvm_alt_mac_addr_offset == 0xFFFF) || +	    (nvm_alt_mac_addr_offset == 0x0000)) +		/* There is no Alternate MAC Address */ +		goto out; + +	if (hw->bus.func == E1000_FUNC_1) +		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; +	if (hw->bus.func == E1000_FUNC_2) +		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2; + +	if (hw->bus.func == E1000_FUNC_3) +		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3; +	for (i = 0; i < ETH_ALEN; i += 2) { +		offset = nvm_alt_mac_addr_offset + (i >> 1); +		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); +		if (ret_val) { +			hw_dbg("NVM Read Error\n"); +			goto out; +		} + +		alt_mac_addr[i] = (u8)(nvm_data & 0xFF); +		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); +	} + +	/* if multicast bit is set, the alternate address will not be used */ +	if (is_multicast_ether_addr(alt_mac_addr)) { +		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n"); +		goto out; +	} + +	/* We have a valid alternate MAC address, and we want to treat it the +	 * same as the normal permanent MAC address stored by the HW into the +	 * RAR. Do this by mapping this address into RAR0. +	 */ +	hw->mac.ops.rar_set(hw, alt_mac_addr, 0); + +out: +	return ret_val; +} + +/** + *  igb_rar_set - Set receive address register + *  @hw: pointer to the HW structure + *  @addr: pointer to the receive address + *  @index: receive address array register + * + *  Sets the receive address array register at index to the address passed + *  in by addr. + **/ +void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) +{ +	u32 rar_low, rar_high; + +	/* HW expects these in little endian so we reverse the byte order +	 * from network order (big endian) to little endian +	 */ +	rar_low = ((u32) addr[0] | +		   ((u32) addr[1] << 8) | +		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); + +	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); + +	/* If MAC address zero, no need to set the AV bit */ +	if (rar_low || rar_high) +		rar_high |= E1000_RAH_AV; + +	/* Some bridges will combine consecutive 32-bit writes into +	 * a single burst write, which will malfunction on some parts. +	 * The flushes avoid this. +	 */ +	wr32(E1000_RAL(index), rar_low); +	wrfl(); +	wr32(E1000_RAH(index), rar_high); +	wrfl(); +} + +/** + *  igb_mta_set - Set multicast filter table address + *  @hw: pointer to the HW structure + *  @hash_value: determines the MTA register and bit to set + * + *  The multicast table address is a register array of 32-bit registers. + *  The hash_value is used to determine what register the bit is in, the + *  current value is read, the new bit is OR'd in and the new value is + *  written back into the register. + **/ +void igb_mta_set(struct e1000_hw *hw, u32 hash_value) +{ +	u32 hash_bit, hash_reg, mta; + +	/* The MTA is a register array of 32-bit registers. It is +	 * treated like an array of (32*mta_reg_count) bits.  We want to +	 * set bit BitArray[hash_value]. So we figure out what register +	 * the bit is in, read it, OR in the new bit, then write +	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a +	 * mask to bits 31:5 of the hash value which gives us the +	 * register we're modifying.  The hash bit within that register +	 * is determined by the lower 5 bits of the hash value. +	 */ +	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); +	hash_bit = hash_value & 0x1F; + +	mta = array_rd32(E1000_MTA, hash_reg); + +	mta |= (1 << hash_bit); + +	array_wr32(E1000_MTA, hash_reg, mta); +	wrfl(); +} + +/** + *  igb_hash_mc_addr - Generate a multicast hash value + *  @hw: pointer to the HW structure + *  @mc_addr: pointer to a multicast address + * + *  Generates a multicast address hash value which is used to determine + *  the multicast filter table array address and new table value.  See + *  igb_mta_set() + **/ +static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) +{ +	u32 hash_value, hash_mask; +	u8 bit_shift = 0; + +	/* Register count multiplied by bits per register */ +	hash_mask = (hw->mac.mta_reg_count * 32) - 1; + +	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts +	 * where 0xFF would still fall within the hash mask. +	 */ +	while (hash_mask >> bit_shift != 0xFF) +		bit_shift++; + +	/* The portion of the address that is used for the hash table +	 * is determined by the mc_filter_type setting. +	 * The algorithm is such that there is a total of 8 bits of shifting. +	 * The bit_shift for a mc_filter_type of 0 represents the number of +	 * left-shifts where the MSB of mc_addr[5] would still fall within +	 * the hash_mask.  Case 0 does this exactly.  Since there are a total +	 * of 8 bits of shifting, then mc_addr[4] will shift right the +	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the +	 * cases are a variation of this algorithm...essentially raising the +	 * number of bits to shift mc_addr[5] left, while still keeping the +	 * 8-bit shifting total. +	 * +	 * For example, given the following Destination MAC Address and an +	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), +	 * we can see that the bit_shift for case 0 is 4.  These are the hash +	 * values resulting from each mc_filter_type... +	 * [0] [1] [2] [3] [4] [5] +	 * 01  AA  00  12  34  56 +	 * LSB                 MSB +	 * +	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 +	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 +	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 +	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 +	 */ +	switch (hw->mac.mc_filter_type) { +	default: +	case 0: +		break; +	case 1: +		bit_shift += 1; +		break; +	case 2: +		bit_shift += 2; +		break; +	case 3: +		bit_shift += 4; +		break; +	} + +	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | +				  (((u16) mc_addr[5]) << bit_shift))); + +	return hash_value; +} + +/** + *  igb_update_mc_addr_list - Update Multicast addresses + *  @hw: pointer to the HW structure + *  @mc_addr_list: array of multicast addresses to program + *  @mc_addr_count: number of multicast addresses to program + * + *  Updates entire Multicast Table Array. + *  The caller must have a packed mc_addr_list of multicast addresses. + **/ +void igb_update_mc_addr_list(struct e1000_hw *hw, +			     u8 *mc_addr_list, u32 mc_addr_count) +{ +	u32 hash_value, hash_bit, hash_reg; +	int i; + +	/* clear mta_shadow */ +	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); + +	/* update mta_shadow from mc_addr_list */ +	for (i = 0; (u32) i < mc_addr_count; i++) { +		hash_value = igb_hash_mc_addr(hw, mc_addr_list); + +		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); +		hash_bit = hash_value & 0x1F; + +		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); +		mc_addr_list += (ETH_ALEN); +	} + +	/* replace the entire MTA table */ +	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) +		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]); +	wrfl(); +} + +/** + *  igb_clear_hw_cntrs_base - Clear base hardware counters + *  @hw: pointer to the HW structure + * + *  Clears the base hardware counters by reading the counter registers. + **/ +void igb_clear_hw_cntrs_base(struct e1000_hw *hw) +{ +	rd32(E1000_CRCERRS); +	rd32(E1000_SYMERRS); +	rd32(E1000_MPC); +	rd32(E1000_SCC); +	rd32(E1000_ECOL); +	rd32(E1000_MCC); +	rd32(E1000_LATECOL); +	rd32(E1000_COLC); +	rd32(E1000_DC); +	rd32(E1000_SEC); +	rd32(E1000_RLEC); +	rd32(E1000_XONRXC); +	rd32(E1000_XONTXC); +	rd32(E1000_XOFFRXC); +	rd32(E1000_XOFFTXC); +	rd32(E1000_FCRUC); +	rd32(E1000_GPRC); +	rd32(E1000_BPRC); +	rd32(E1000_MPRC); +	rd32(E1000_GPTC); +	rd32(E1000_GORCL); +	rd32(E1000_GORCH); +	rd32(E1000_GOTCL); +	rd32(E1000_GOTCH); +	rd32(E1000_RNBC); +	rd32(E1000_RUC); +	rd32(E1000_RFC); +	rd32(E1000_ROC); +	rd32(E1000_RJC); +	rd32(E1000_TORL); +	rd32(E1000_TORH); +	rd32(E1000_TOTL); +	rd32(E1000_TOTH); +	rd32(E1000_TPR); +	rd32(E1000_TPT); +	rd32(E1000_MPTC); +	rd32(E1000_BPTC); +} + +/** + *  igb_check_for_copper_link - Check for link (Copper) + *  @hw: pointer to the HW structure + * + *  Checks to see of the link status of the hardware has changed.  If a + *  change in link status has been detected, then we read the PHY registers + *  to get the current speed/duplex if link exists. + **/ +s32 igb_check_for_copper_link(struct e1000_hw *hw) +{ +	struct e1000_mac_info *mac = &hw->mac; +	s32 ret_val; +	bool link; + +	/* We only want to go out to the PHY registers to see if Auto-Neg +	 * has completed and/or if our link status has changed.  The +	 * get_link_status flag is set upon receiving a Link Status +	 * Change or Rx Sequence Error interrupt. +	 */ +	if (!mac->get_link_status) { +		ret_val = 0; +		goto out; +	} + +	/* First we want to see if the MII Status Register reports +	 * link.  If so, then we want to get the current speed/duplex +	 * of the PHY. +	 */ +	ret_val = igb_phy_has_link(hw, 1, 0, &link); +	if (ret_val) +		goto out; + +	if (!link) +		goto out; /* No link detected */ + +	mac->get_link_status = false; + +	/* Check if there was DownShift, must be checked +	 * immediately after link-up +	 */ +	igb_check_downshift(hw); + +	/* If we are forcing speed/duplex, then we simply return since +	 * we have already determined whether we have link or not. +	 */ +	if (!mac->autoneg) { +		ret_val = -E1000_ERR_CONFIG; +		goto out; +	} + +	/* Auto-Neg is enabled.  Auto Speed Detection takes care +	 * of MAC speed/duplex configuration.  So we only need to +	 * configure Collision Distance in the MAC. +	 */ +	igb_config_collision_dist(hw); + +	/* Configure Flow Control now that Auto-Neg has completed. +	 * First, we need to restore the desired flow control +	 * settings because we may have had to re-autoneg with a +	 * different link partner. +	 */ +	ret_val = igb_config_fc_after_link_up(hw); +	if (ret_val) +		hw_dbg("Error configuring flow control\n"); + +out: +	return ret_val; +} + +/** + *  igb_setup_link - Setup flow control and link settings + *  @hw: pointer to the HW structure + * + *  Determines which flow control settings to use, then configures flow + *  control.  Calls the appropriate media-specific link configuration + *  function.  Assuming the adapter has a valid link partner, a valid link + *  should be established.  Assumes the hardware has previously been reset + *  and the transmitter and receiver are not enabled. + **/ +s32 igb_setup_link(struct e1000_hw *hw) +{ +	s32 ret_val = 0; + +	/* In the case of the phy reset being blocked, we already have a link. +	 * We do not need to set it up again. +	 */ +	if (igb_check_reset_block(hw)) +		goto out; + +	/* If requested flow control is set to default, set flow control +	 * based on the EEPROM flow control settings. +	 */ +	if (hw->fc.requested_mode == e1000_fc_default) { +		ret_val = igb_set_default_fc(hw); +		if (ret_val) +			goto out; +	} + +	/* We want to save off the original Flow Control configuration just +	 * in case we get disconnected and then reconnected into a different +	 * hub or switch with different Flow Control capabilities. +	 */ +	hw->fc.current_mode = hw->fc.requested_mode; + +	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); + +	/* Call the necessary media_type subroutine to configure the link. */ +	ret_val = hw->mac.ops.setup_physical_interface(hw); +	if (ret_val) +		goto out; + +	/* Initialize the flow control address, type, and PAUSE timer +	 * registers to their default values.  This is done even if flow +	 * control is disabled, because it does not hurt anything to +	 * initialize these registers. +	 */ +	hw_dbg("Initializing the Flow Control address, type and timer regs\n"); +	wr32(E1000_FCT, FLOW_CONTROL_TYPE); +	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); +	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); + +	wr32(E1000_FCTTV, hw->fc.pause_time); + +	ret_val = igb_set_fc_watermarks(hw); + +out: + +	return ret_val; +} + +/** + *  igb_config_collision_dist - Configure collision distance + *  @hw: pointer to the HW structure + * + *  Configures the collision distance to the default value and is used + *  during link setup. Currently no func pointer exists and all + *  implementations are handled in the generic version of this function. + **/ +void igb_config_collision_dist(struct e1000_hw *hw) +{ +	u32 tctl; + +	tctl = rd32(E1000_TCTL); + +	tctl &= ~E1000_TCTL_COLD; +	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; + +	wr32(E1000_TCTL, tctl); +	wrfl(); +} + +/** + *  igb_set_fc_watermarks - Set flow control high/low watermarks + *  @hw: pointer to the HW structure + * + *  Sets the flow control high/low threshold (watermark) registers.  If + *  flow control XON frame transmission is enabled, then set XON frame + *  tansmission as well. + **/ +static s32 igb_set_fc_watermarks(struct e1000_hw *hw) +{ +	s32 ret_val = 0; +	u32 fcrtl = 0, fcrth = 0; + +	/* Set the flow control receive threshold registers.  Normally, +	 * these registers will be set to a default threshold that may be +	 * adjusted later by the driver's runtime code.  However, if the +	 * ability to transmit pause frames is not enabled, then these +	 * registers will be set to 0. +	 */ +	if (hw->fc.current_mode & e1000_fc_tx_pause) { +		/* We need to set up the Receive Threshold high and low water +		 * marks as well as (optionally) enabling the transmission of +		 * XON frames. +		 */ +		fcrtl = hw->fc.low_water; +		if (hw->fc.send_xon) +			fcrtl |= E1000_FCRTL_XONE; + +		fcrth = hw->fc.high_water; +	} +	wr32(E1000_FCRTL, fcrtl); +	wr32(E1000_FCRTH, fcrth); + +	return ret_val; +} + +/** + *  igb_set_default_fc - Set flow control default values + *  @hw: pointer to the HW structure + * + *  Read the EEPROM for the default values for flow control and store the + *  values. + **/ +static s32 igb_set_default_fc(struct e1000_hw *hw) +{ +	s32 ret_val = 0; +	u16 lan_offset; +	u16 nvm_data; + +	/* Read and store word 0x0F of the EEPROM. This word contains bits +	 * that determine the hardware's default PAUSE (flow control) mode, +	 * a bit that determines whether the HW defaults to enabling or +	 * disabling auto-negotiation, and the direction of the +	 * SW defined pins. If there is no SW over-ride of the flow +	 * control setting, then the variable hw->fc will +	 * be initialized based on a value in the EEPROM. +	 */ +	if (hw->mac.type == e1000_i350) { +		lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func); +		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG +					   + lan_offset, 1, &nvm_data); +	 } else { +		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, +					   1, &nvm_data); +	 } + +	if (ret_val) { +		hw_dbg("NVM Read Error\n"); +		goto out; +	} + +	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) +		hw->fc.requested_mode = e1000_fc_none; +	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == +		 NVM_WORD0F_ASM_DIR) +		hw->fc.requested_mode = e1000_fc_tx_pause; +	else +		hw->fc.requested_mode = e1000_fc_full; + +out: +	return ret_val; +} + +/** + *  igb_force_mac_fc - Force the MAC's flow control settings + *  @hw: pointer to the HW structure + * + *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the + *  device control register to reflect the adapter settings.  TFCE and RFCE + *  need to be explicitly set by software when a copper PHY is used because + *  autonegotiation is managed by the PHY rather than the MAC.  Software must + *  also configure these bits when link is forced on a fiber connection. + **/ +s32 igb_force_mac_fc(struct e1000_hw *hw) +{ +	u32 ctrl; +	s32 ret_val = 0; + +	ctrl = rd32(E1000_CTRL); + +	/* Because we didn't get link via the internal auto-negotiation +	 * mechanism (we either forced link or we got link via PHY +	 * auto-neg), we have to manually enable/disable transmit an +	 * receive flow control. +	 * +	 * The "Case" statement below enables/disable flow control +	 * according to the "hw->fc.current_mode" parameter. +	 * +	 * The possible values of the "fc" parameter are: +	 *      0:  Flow control is completely disabled +	 *      1:  Rx flow control is enabled (we can receive pause +	 *          frames but not send pause frames). +	 *      2:  Tx flow control is enabled (we can send pause frames +	 *          frames but we do not receive pause frames). +	 *      3:  Both Rx and TX flow control (symmetric) is enabled. +	 *  other:  No other values should be possible at this point. +	 */ +	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); + +	switch (hw->fc.current_mode) { +	case e1000_fc_none: +		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); +		break; +	case e1000_fc_rx_pause: +		ctrl &= (~E1000_CTRL_TFCE); +		ctrl |= E1000_CTRL_RFCE; +		break; +	case e1000_fc_tx_pause: +		ctrl &= (~E1000_CTRL_RFCE); +		ctrl |= E1000_CTRL_TFCE; +		break; +	case e1000_fc_full: +		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); +		break; +	default: +		hw_dbg("Flow control param set incorrectly\n"); +		ret_val = -E1000_ERR_CONFIG; +		goto out; +	} + +	wr32(E1000_CTRL, ctrl); + +out: +	return ret_val; +} + +/** + *  igb_config_fc_after_link_up - Configures flow control after link + *  @hw: pointer to the HW structure + * + *  Checks the status of auto-negotiation after link up to ensure that the + *  speed and duplex were not forced.  If the link needed to be forced, then + *  flow control needs to be forced also.  If auto-negotiation is enabled + *  and did not fail, then we configure flow control based on our link + *  partner. + **/ +s32 igb_config_fc_after_link_up(struct e1000_hw *hw) +{ +	struct e1000_mac_info *mac = &hw->mac; +	s32 ret_val = 0; +	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg; +	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; +	u16 speed, duplex; + +	/* Check for the case where we have fiber media and auto-neg failed +	 * so we had to force link.  In this case, we need to force the +	 * configuration of the MAC to match the "fc" parameter. +	 */ +	if (mac->autoneg_failed) { +		if (hw->phy.media_type == e1000_media_type_internal_serdes) +			ret_val = igb_force_mac_fc(hw); +	} else { +		if (hw->phy.media_type == e1000_media_type_copper) +			ret_val = igb_force_mac_fc(hw); +	} + +	if (ret_val) { +		hw_dbg("Error forcing flow control settings\n"); +		goto out; +	} + +	/* Check for the case where we have copper media and auto-neg is +	 * enabled.  In this case, we need to check and see if Auto-Neg +	 * has completed, and if so, how the PHY and link partner has +	 * flow control configured. +	 */ +	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { +		/* Read the MII Status Register and check to see if AutoNeg +		 * has completed.  We read this twice because this reg has +		 * some "sticky" (latched) bits. +		 */ +		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, +						   &mii_status_reg); +		if (ret_val) +			goto out; +		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, +						   &mii_status_reg); +		if (ret_val) +			goto out; + +		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { +			hw_dbg("Copper PHY and Auto Neg has not completed.\n"); +			goto out; +		} + +		/* The AutoNeg process has completed, so we now need to +		 * read both the Auto Negotiation Advertisement +		 * Register (Address 4) and the Auto_Negotiation Base +		 * Page Ability Register (Address 5) to determine how +		 * flow control was negotiated. +		 */ +		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, +					    &mii_nway_adv_reg); +		if (ret_val) +			goto out; +		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, +					    &mii_nway_lp_ability_reg); +		if (ret_val) +			goto out; + +		/* Two bits in the Auto Negotiation Advertisement Register +		 * (Address 4) and two bits in the Auto Negotiation Base +		 * Page Ability Register (Address 5) determine flow control +		 * for both the PHY and the link partner.  The following +		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, +		 * 1999, describes these PAUSE resolution bits and how flow +		 * control is determined based upon these settings. +		 * NOTE:  DC = Don't Care +		 * +		 *   LOCAL DEVICE  |   LINK PARTNER +		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution +		 *-------|---------|-------|---------|-------------------- +		 *   0   |    0    |  DC   |   DC    | e1000_fc_none +		 *   0   |    1    |   0   |   DC    | e1000_fc_none +		 *   0   |    1    |   1   |    0    | e1000_fc_none +		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause +		 *   1   |    0    |   0   |   DC    | e1000_fc_none +		 *   1   |   DC    |   1   |   DC    | e1000_fc_full +		 *   1   |    1    |   0   |    0    | e1000_fc_none +		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause +		 * +		 * Are both PAUSE bits set to 1?  If so, this implies +		 * Symmetric Flow Control is enabled at both ends.  The +		 * ASM_DIR bits are irrelevant per the spec. +		 * +		 * For Symmetric Flow Control: +		 * +		 *   LOCAL DEVICE  |   LINK PARTNER +		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result +		 *-------|---------|-------|---------|-------------------- +		 *   1   |   DC    |   1   |   DC    | E1000_fc_full +		 * +		 */ +		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && +		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { +			/* Now we need to check if the user selected RX ONLY +			 * of pause frames.  In this case, we had to advertise +			 * FULL flow control because we could not advertise RX +			 * ONLY. Hence, we must now check to see if we need to +			 * turn OFF  the TRANSMISSION of PAUSE frames. +			 */ +			if (hw->fc.requested_mode == e1000_fc_full) { +				hw->fc.current_mode = e1000_fc_full; +				hw_dbg("Flow Control = FULL.\n"); +			} else { +				hw->fc.current_mode = e1000_fc_rx_pause; +				hw_dbg("Flow Control = RX PAUSE frames only.\n"); +			} +		} +		/* For receiving PAUSE frames ONLY. +		 * +		 *   LOCAL DEVICE  |   LINK PARTNER +		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result +		 *-------|---------|-------|---------|-------------------- +		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause +		 */ +		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && +			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && +			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && +			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { +			hw->fc.current_mode = e1000_fc_tx_pause; +			hw_dbg("Flow Control = TX PAUSE frames only.\n"); +		} +		/* For transmitting PAUSE frames ONLY. +		 * +		 *   LOCAL DEVICE  |   LINK PARTNER +		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result +		 *-------|---------|-------|---------|-------------------- +		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause +		 */ +		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && +			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && +			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && +			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { +			hw->fc.current_mode = e1000_fc_rx_pause; +			hw_dbg("Flow Control = RX PAUSE frames only.\n"); +		} +		/* Per the IEEE spec, at this point flow control should be +		 * disabled.  However, we want to consider that we could +		 * be connected to a legacy switch that doesn't advertise +		 * desired flow control, but can be forced on the link +		 * partner.  So if we advertised no flow control, that is +		 * what we will resolve to.  If we advertised some kind of +		 * receive capability (Rx Pause Only or Full Flow Control) +		 * and the link partner advertised none, we will configure +		 * ourselves to enable Rx Flow Control only.  We can do +		 * this safely for two reasons:  If the link partner really +		 * didn't want flow control enabled, and we enable Rx, no +		 * harm done since we won't be receiving any PAUSE frames +		 * anyway.  If the intent on the link partner was to have +		 * flow control enabled, then by us enabling RX only, we +		 * can at least receive pause frames and process them. +		 * This is a good idea because in most cases, since we are +		 * predominantly a server NIC, more times than not we will +		 * be asked to delay transmission of packets than asking +		 * our link partner to pause transmission of frames. +		 */ +		else if ((hw->fc.requested_mode == e1000_fc_none) || +			 (hw->fc.requested_mode == e1000_fc_tx_pause) || +			 (hw->fc.strict_ieee)) { +			hw->fc.current_mode = e1000_fc_none; +			hw_dbg("Flow Control = NONE.\n"); +		} else { +			hw->fc.current_mode = e1000_fc_rx_pause; +			hw_dbg("Flow Control = RX PAUSE frames only.\n"); +		} + +		/* Now we need to do one last check...  If we auto- +		 * negotiated to HALF DUPLEX, flow control should not be +		 * enabled per IEEE 802.3 spec. +		 */ +		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex); +		if (ret_val) { +			hw_dbg("Error getting link speed and duplex\n"); +			goto out; +		} + +		if (duplex == HALF_DUPLEX) +			hw->fc.current_mode = e1000_fc_none; + +		/* Now we call a subroutine to actually force the MAC +		 * controller to use the correct flow control settings. +		 */ +		ret_val = igb_force_mac_fc(hw); +		if (ret_val) { +			hw_dbg("Error forcing flow control settings\n"); +			goto out; +		} +	} +	/* Check for the case where we have SerDes media and auto-neg is +	 * enabled.  In this case, we need to check and see if Auto-Neg +	 * has completed, and if so, how the PHY and link partner has +	 * flow control configured. +	 */ +	if ((hw->phy.media_type == e1000_media_type_internal_serdes) +		&& mac->autoneg) { +		/* Read the PCS_LSTS and check to see if AutoNeg +		 * has completed. +		 */ +		pcs_status_reg = rd32(E1000_PCS_LSTAT); + +		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) { +			hw_dbg("PCS Auto Neg has not completed.\n"); +			return ret_val; +		} + +		/* The AutoNeg process has completed, so we now need to +		 * read both the Auto Negotiation Advertisement +		 * Register (PCS_ANADV) and the Auto_Negotiation Base +		 * Page Ability Register (PCS_LPAB) to determine how +		 * flow control was negotiated. +		 */ +		pcs_adv_reg = rd32(E1000_PCS_ANADV); +		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB); + +		/* Two bits in the Auto Negotiation Advertisement Register +		 * (PCS_ANADV) and two bits in the Auto Negotiation Base +		 * Page Ability Register (PCS_LPAB) determine flow control +		 * for both the PHY and the link partner.  The following +		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, +		 * 1999, describes these PAUSE resolution bits and how flow +		 * control is determined based upon these settings. +		 * NOTE:  DC = Don't Care +		 * +		 *   LOCAL DEVICE  |   LINK PARTNER +		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution +		 *-------|---------|-------|---------|-------------------- +		 *   0   |    0    |  DC   |   DC    | e1000_fc_none +		 *   0   |    1    |   0   |   DC    | e1000_fc_none +		 *   0   |    1    |   1   |    0    | e1000_fc_none +		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause +		 *   1   |    0    |   0   |   DC    | e1000_fc_none +		 *   1   |   DC    |   1   |   DC    | e1000_fc_full +		 *   1   |    1    |   0   |    0    | e1000_fc_none +		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause +		 * +		 * Are both PAUSE bits set to 1?  If so, this implies +		 * Symmetric Flow Control is enabled at both ends.  The +		 * ASM_DIR bits are irrelevant per the spec. +		 * +		 * For Symmetric Flow Control: +		 * +		 *   LOCAL DEVICE  |   LINK PARTNER +		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result +		 *-------|---------|-------|---------|-------------------- +		 *   1   |   DC    |   1   |   DC    | e1000_fc_full +		 * +		 */ +		if ((pcs_adv_reg & E1000_TXCW_PAUSE) && +		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) { +			/* Now we need to check if the user selected Rx ONLY +			 * of pause frames.  In this case, we had to advertise +			 * FULL flow control because we could not advertise Rx +			 * ONLY. Hence, we must now check to see if we need to +			 * turn OFF the TRANSMISSION of PAUSE frames. +			 */ +			if (hw->fc.requested_mode == e1000_fc_full) { +				hw->fc.current_mode = e1000_fc_full; +				hw_dbg("Flow Control = FULL.\n"); +			} else { +				hw->fc.current_mode = e1000_fc_rx_pause; +				hw_dbg("Flow Control = Rx PAUSE frames only.\n"); +			} +		} +		/* For receiving PAUSE frames ONLY. +		 * +		 *   LOCAL DEVICE  |   LINK PARTNER +		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result +		 *-------|---------|-------|---------|-------------------- +		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause +		 */ +		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) && +			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) && +			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) && +			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { +			hw->fc.current_mode = e1000_fc_tx_pause; +			hw_dbg("Flow Control = Tx PAUSE frames only.\n"); +		} +		/* For transmitting PAUSE frames ONLY. +		 * +		 *   LOCAL DEVICE  |   LINK PARTNER +		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result +		 *-------|---------|-------|---------|-------------------- +		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause +		 */ +		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) && +			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) && +			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) && +			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { +			hw->fc.current_mode = e1000_fc_rx_pause; +			hw_dbg("Flow Control = Rx PAUSE frames only.\n"); +		} else { +			/* Per the IEEE spec, at this point flow control +			 * should be disabled. +			 */ +			hw->fc.current_mode = e1000_fc_none; +			hw_dbg("Flow Control = NONE.\n"); +		} + +		/* Now we call a subroutine to actually force the MAC +		 * controller to use the correct flow control settings. +		 */ +		pcs_ctrl_reg = rd32(E1000_PCS_LCTL); +		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL; +		wr32(E1000_PCS_LCTL, pcs_ctrl_reg); + +		ret_val = igb_force_mac_fc(hw); +		if (ret_val) { +			hw_dbg("Error forcing flow control settings\n"); +			return ret_val; +		} +	} + +out: +	return ret_val; +} + +/** + *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex + *  @hw: pointer to the HW structure + *  @speed: stores the current speed + *  @duplex: stores the current duplex + * + *  Read the status register for the current speed/duplex and store the current + *  speed and duplex for copper connections. + **/ +s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, +				      u16 *duplex) +{ +	u32 status; + +	status = rd32(E1000_STATUS); +	if (status & E1000_STATUS_SPEED_1000) { +		*speed = SPEED_1000; +		hw_dbg("1000 Mbs, "); +	} else if (status & E1000_STATUS_SPEED_100) { +		*speed = SPEED_100; +		hw_dbg("100 Mbs, "); +	} else { +		*speed = SPEED_10; +		hw_dbg("10 Mbs, "); +	} + +	if (status & E1000_STATUS_FD) { +		*duplex = FULL_DUPLEX; +		hw_dbg("Full Duplex\n"); +	} else { +		*duplex = HALF_DUPLEX; +		hw_dbg("Half Duplex\n"); +	} + +	return 0; +} + +/** + *  igb_get_hw_semaphore - Acquire hardware semaphore + *  @hw: pointer to the HW structure + * + *  Acquire the HW semaphore to access the PHY or NVM + **/ +s32 igb_get_hw_semaphore(struct e1000_hw *hw) +{ +	u32 swsm; +	s32 ret_val = 0; +	s32 timeout = hw->nvm.word_size + 1; +	s32 i = 0; + +	/* Get the SW semaphore */ +	while (i < timeout) { +		swsm = rd32(E1000_SWSM); +		if (!(swsm & E1000_SWSM_SMBI)) +			break; + +		udelay(50); +		i++; +	} + +	if (i == timeout) { +		hw_dbg("Driver can't access device - SMBI bit is set.\n"); +		ret_val = -E1000_ERR_NVM; +		goto out; +	} + +	/* Get the FW semaphore. */ +	for (i = 0; i < timeout; i++) { +		swsm = rd32(E1000_SWSM); +		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI); + +		/* Semaphore acquired if bit latched */ +		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI) +			break; + +		udelay(50); +	} + +	if (i == timeout) { +		/* Release semaphores */ +		igb_put_hw_semaphore(hw); +		hw_dbg("Driver can't access the NVM\n"); +		ret_val = -E1000_ERR_NVM; +		goto out; +	} + +out: +	return ret_val; +} + +/** + *  igb_put_hw_semaphore - Release hardware semaphore + *  @hw: pointer to the HW structure + * + *  Release hardware semaphore used to access the PHY or NVM + **/ +void igb_put_hw_semaphore(struct e1000_hw *hw) +{ +	u32 swsm; + +	swsm = rd32(E1000_SWSM); + +	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); + +	wr32(E1000_SWSM, swsm); +} + +/** + *  igb_get_auto_rd_done - Check for auto read completion + *  @hw: pointer to the HW structure + * + *  Check EEPROM for Auto Read done bit. + **/ +s32 igb_get_auto_rd_done(struct e1000_hw *hw) +{ +	s32 i = 0; +	s32 ret_val = 0; + + +	while (i < AUTO_READ_DONE_TIMEOUT) { +		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD) +			break; +		usleep_range(1000, 2000); +		i++; +	} + +	if (i == AUTO_READ_DONE_TIMEOUT) { +		hw_dbg("Auto read by HW from NVM has not completed.\n"); +		ret_val = -E1000_ERR_RESET; +		goto out; +	} + +out: +	return ret_val; +} + +/** + *  igb_valid_led_default - Verify a valid default LED config + *  @hw: pointer to the HW structure + *  @data: pointer to the NVM (EEPROM) + * + *  Read the EEPROM for the current default LED configuration.  If the + *  LED configuration is not valid, set to a valid LED configuration. + **/ +static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data) +{ +	s32 ret_val; + +	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); +	if (ret_val) { +		hw_dbg("NVM Read Error\n"); +		goto out; +	} + +	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { +		switch (hw->phy.media_type) { +		case e1000_media_type_internal_serdes: +			*data = ID_LED_DEFAULT_82575_SERDES; +			break; +		case e1000_media_type_copper: +		default: +			*data = ID_LED_DEFAULT; +			break; +		} +	} +out: +	return ret_val; +} + +/** + *  igb_id_led_init - + *  @hw: pointer to the HW structure + * + **/ +s32 igb_id_led_init(struct e1000_hw *hw) +{ +	struct e1000_mac_info *mac = &hw->mac; +	s32 ret_val; +	const u32 ledctl_mask = 0x000000FF; +	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; +	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; +	u16 data, i, temp; +	const u16 led_mask = 0x0F; + +	/* i210 and i211 devices have different LED mechanism */ +	if ((hw->mac.type == e1000_i210) || +	    (hw->mac.type == e1000_i211)) +		ret_val = igb_valid_led_default_i210(hw, &data); +	else +		ret_val = igb_valid_led_default(hw, &data); + +	if (ret_val) +		goto out; + +	mac->ledctl_default = rd32(E1000_LEDCTL); +	mac->ledctl_mode1 = mac->ledctl_default; +	mac->ledctl_mode2 = mac->ledctl_default; + +	for (i = 0; i < 4; i++) { +		temp = (data >> (i << 2)) & led_mask; +		switch (temp) { +		case ID_LED_ON1_DEF2: +		case ID_LED_ON1_ON2: +		case ID_LED_ON1_OFF2: +			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); +			mac->ledctl_mode1 |= ledctl_on << (i << 3); +			break; +		case ID_LED_OFF1_DEF2: +		case ID_LED_OFF1_ON2: +		case ID_LED_OFF1_OFF2: +			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); +			mac->ledctl_mode1 |= ledctl_off << (i << 3); +			break; +		default: +			/* Do nothing */ +			break; +		} +		switch (temp) { +		case ID_LED_DEF1_ON2: +		case ID_LED_ON1_ON2: +		case ID_LED_OFF1_ON2: +			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); +			mac->ledctl_mode2 |= ledctl_on << (i << 3); +			break; +		case ID_LED_DEF1_OFF2: +		case ID_LED_ON1_OFF2: +		case ID_LED_OFF1_OFF2: +			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); +			mac->ledctl_mode2 |= ledctl_off << (i << 3); +			break; +		default: +			/* Do nothing */ +			break; +		} +	} + +out: +	return ret_val; +} + +/** + *  igb_cleanup_led - Set LED config to default operation + *  @hw: pointer to the HW structure + * + *  Remove the current LED configuration and set the LED configuration + *  to the default value, saved from the EEPROM. + **/ +s32 igb_cleanup_led(struct e1000_hw *hw) +{ +	wr32(E1000_LEDCTL, hw->mac.ledctl_default); +	return 0; +} + +/** + *  igb_blink_led - Blink LED + *  @hw: pointer to the HW structure + * + *  Blink the led's which are set to be on. + **/ +s32 igb_blink_led(struct e1000_hw *hw) +{ +	u32 ledctl_blink = 0; +	u32 i; + +	if (hw->phy.media_type == e1000_media_type_fiber) { +		/* always blink LED0 for PCI-E fiber */ +		ledctl_blink = E1000_LEDCTL_LED0_BLINK | +		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); +	} else { +		/* Set the blink bit for each LED that's "on" (0x0E) +		 * (or "off" if inverted) in ledctl_mode2.  The blink +		 * logic in hardware only works when mode is set to "on" +		 * so it must be changed accordingly when the mode is +		 * "off" and inverted. +		 */ +		ledctl_blink = hw->mac.ledctl_mode2; +		for (i = 0; i < 32; i += 8) { +			u32 mode = (hw->mac.ledctl_mode2 >> i) & +			    E1000_LEDCTL_LED0_MODE_MASK; +			u32 led_default = hw->mac.ledctl_default >> i; + +			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) && +			     (mode == E1000_LEDCTL_MODE_LED_ON)) || +			    ((led_default & E1000_LEDCTL_LED0_IVRT) && +			     (mode == E1000_LEDCTL_MODE_LED_OFF))) { +				ledctl_blink &= +				    ~(E1000_LEDCTL_LED0_MODE_MASK << i); +				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK | +						 E1000_LEDCTL_MODE_LED_ON) << i; +			} +		} +	} + +	wr32(E1000_LEDCTL, ledctl_blink); + +	return 0; +} + +/** + *  igb_led_off - Turn LED off + *  @hw: pointer to the HW structure + * + *  Turn LED off. + **/ +s32 igb_led_off(struct e1000_hw *hw) +{ +	switch (hw->phy.media_type) { +	case e1000_media_type_copper: +		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1); +		break; +	default: +		break; +	} + +	return 0; +} + +/** + *  igb_disable_pcie_master - Disables PCI-express master access + *  @hw: pointer to the HW structure + * + *  Returns 0 (0) if successful, else returns -10 + *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused + *  the master requests to be disabled. + * + *  Disables PCI-Express master access and verifies there are no pending + *  requests. + **/ +s32 igb_disable_pcie_master(struct e1000_hw *hw) +{ +	u32 ctrl; +	s32 timeout = MASTER_DISABLE_TIMEOUT; +	s32 ret_val = 0; + +	if (hw->bus.type != e1000_bus_type_pci_express) +		goto out; + +	ctrl = rd32(E1000_CTRL); +	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; +	wr32(E1000_CTRL, ctrl); + +	while (timeout) { +		if (!(rd32(E1000_STATUS) & +		      E1000_STATUS_GIO_MASTER_ENABLE)) +			break; +		udelay(100); +		timeout--; +	} + +	if (!timeout) { +		hw_dbg("Master requests are pending.\n"); +		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING; +		goto out; +	} + +out: +	return ret_val; +} + +/** + *  igb_validate_mdi_setting - Verify MDI/MDIx settings + *  @hw: pointer to the HW structure + * + *  Verify that when not using auto-negotitation that MDI/MDIx is correctly + *  set, which is forced to MDI mode only. + **/ +s32 igb_validate_mdi_setting(struct e1000_hw *hw) +{ +	s32 ret_val = 0; + +	/* All MDI settings are supported on 82580 and newer. */ +	if (hw->mac.type >= e1000_82580) +		goto out; + +	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { +		hw_dbg("Invalid MDI setting detected\n"); +		hw->phy.mdix = 1; +		ret_val = -E1000_ERR_CONFIG; +		goto out; +	} + +out: +	return ret_val; +} + +/** + *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register + *  @hw: pointer to the HW structure + *  @reg: 32bit register offset such as E1000_SCTL + *  @offset: register offset to write to + *  @data: data to write at register offset + * + *  Writes an address/data control type register.  There are several of these + *  and they all have the format address << 8 | data and bit 31 is polled for + *  completion. + **/ +s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, +			      u32 offset, u8 data) +{ +	u32 i, regvalue = 0; +	s32 ret_val = 0; + +	/* Set up the address and data */ +	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); +	wr32(reg, regvalue); + +	/* Poll the ready bit to see if the MDI read completed */ +	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { +		udelay(5); +		regvalue = rd32(reg); +		if (regvalue & E1000_GEN_CTL_READY) +			break; +	} +	if (!(regvalue & E1000_GEN_CTL_READY)) { +		hw_dbg("Reg %08x did not indicate ready\n", reg); +		ret_val = -E1000_ERR_PHY; +		goto out; +	} + +out: +	return ret_val; +} + +/** + *  igb_enable_mng_pass_thru - Enable processing of ARP's + *  @hw: pointer to the HW structure + * + *  Verifies the hardware needs to leave interface enabled so that frames can + *  be directed to and from the management interface. + **/ +bool igb_enable_mng_pass_thru(struct e1000_hw *hw) +{ +	u32 manc; +	u32 fwsm, factps; +	bool ret_val = false; + +	if (!hw->mac.asf_firmware_present) +		goto out; + +	manc = rd32(E1000_MANC); + +	if (!(manc & E1000_MANC_RCV_TCO_EN)) +		goto out; + +	if (hw->mac.arc_subsystem_valid) { +		fwsm = rd32(E1000_FWSM); +		factps = rd32(E1000_FACTPS); + +		if (!(factps & E1000_FACTPS_MNGCG) && +		    ((fwsm & E1000_FWSM_MODE_MASK) == +		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { +			ret_val = true; +			goto out; +		} +	} else { +		if ((manc & E1000_MANC_SMBUS_EN) && +		    !(manc & E1000_MANC_ASF_EN)) { +			ret_val = true; +			goto out; +		} +	} + +out: +	return ret_val; +}  | 
