diff options
Diffstat (limited to 'drivers/net/ethernet/intel/e1000e/phy.c')
| -rw-r--r-- | drivers/net/ethernet/intel/e1000e/phy.c | 3237 | 
1 files changed, 3237 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/e1000e/phy.c b/drivers/net/ethernet/intel/e1000e/phy.c new file mode 100644 index 00000000000..b2005e13fb0 --- /dev/null +++ b/drivers/net/ethernet/intel/e1000e/phy.c @@ -0,0 +1,3237 @@ +/* Intel PRO/1000 Linux driver + * Copyright(c) 1999 - 2014 Intel Corporation. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for + * more details. + * + * The full GNU General Public License is included in this distribution in + * the file called "COPYING". + * + * Contact Information: + * Linux NICS <linux.nics@intel.com> + * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + */ + +#include "e1000.h" + +static s32 e1000_wait_autoneg(struct e1000_hw *hw); +static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, +					  u16 *data, bool read, bool page_set); +static u32 e1000_get_phy_addr_for_hv_page(u32 page); +static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, +					  u16 *data, bool read); + +/* Cable length tables */ +static const u16 e1000_m88_cable_length_table[] = { +	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED +}; + +#define M88E1000_CABLE_LENGTH_TABLE_SIZE \ +		ARRAY_SIZE(e1000_m88_cable_length_table) + +static const u16 e1000_igp_2_cable_length_table[] = { +	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, +	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, +	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, +	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, +	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, +	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, +	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, +	124 +}; + +#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ +		ARRAY_SIZE(e1000_igp_2_cable_length_table) + +/** + *  e1000e_check_reset_block_generic - Check if PHY reset is blocked + *  @hw: pointer to the HW structure + * + *  Read the PHY management control register and check whether a PHY reset + *  is blocked.  If a reset is not blocked return 0, otherwise + *  return E1000_BLK_PHY_RESET (12). + **/ +s32 e1000e_check_reset_block_generic(struct e1000_hw *hw) +{ +	u32 manc; + +	manc = er32(MANC); + +	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0; +} + +/** + *  e1000e_get_phy_id - Retrieve the PHY ID and revision + *  @hw: pointer to the HW structure + * + *  Reads the PHY registers and stores the PHY ID and possibly the PHY + *  revision in the hardware structure. + **/ +s32 e1000e_get_phy_id(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val = 0; +	u16 phy_id; +	u16 retry_count = 0; + +	if (!phy->ops.read_reg) +		return 0; + +	while (retry_count < 2) { +		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id); +		if (ret_val) +			return ret_val; + +		phy->id = (u32)(phy_id << 16); +		usleep_range(20, 40); +		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id); +		if (ret_val) +			return ret_val; + +		phy->id |= (u32)(phy_id & PHY_REVISION_MASK); +		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); + +		if (phy->id != 0 && phy->id != PHY_REVISION_MASK) +			return 0; + +		retry_count++; +	} + +	return 0; +} + +/** + *  e1000e_phy_reset_dsp - Reset PHY DSP + *  @hw: pointer to the HW structure + * + *  Reset the digital signal processor. + **/ +s32 e1000e_phy_reset_dsp(struct e1000_hw *hw) +{ +	s32 ret_val; + +	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); +	if (ret_val) +		return ret_val; + +	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0); +} + +/** + *  e1000e_read_phy_reg_mdic - Read MDI control register + *  @hw: pointer to the HW structure + *  @offset: register offset to be read + *  @data: pointer to the read data + * + *  Reads the MDI control register in the PHY at offset and stores the + *  information read to data. + **/ +s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) +{ +	struct e1000_phy_info *phy = &hw->phy; +	u32 i, mdic = 0; + +	if (offset > MAX_PHY_REG_ADDRESS) { +		e_dbg("PHY Address %d is out of range\n", offset); +		return -E1000_ERR_PARAM; +	} + +	/* Set up Op-code, Phy Address, and register offset in the MDI +	 * Control register.  The MAC will take care of interfacing with the +	 * PHY to retrieve the desired data. +	 */ +	mdic = ((offset << E1000_MDIC_REG_SHIFT) | +		(phy->addr << E1000_MDIC_PHY_SHIFT) | +		(E1000_MDIC_OP_READ)); + +	ew32(MDIC, mdic); + +	/* Poll the ready bit to see if the MDI read completed +	 * Increasing the time out as testing showed failures with +	 * the lower time out +	 */ +	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { +		udelay(50); +		mdic = er32(MDIC); +		if (mdic & E1000_MDIC_READY) +			break; +	} +	if (!(mdic & E1000_MDIC_READY)) { +		e_dbg("MDI Read did not complete\n"); +		return -E1000_ERR_PHY; +	} +	if (mdic & E1000_MDIC_ERROR) { +		e_dbg("MDI Error\n"); +		return -E1000_ERR_PHY; +	} +	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { +		e_dbg("MDI Read offset error - requested %d, returned %d\n", +		      offset, +		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); +		return -E1000_ERR_PHY; +	} +	*data = (u16)mdic; + +	/* Allow some time after each MDIC transaction to avoid +	 * reading duplicate data in the next MDIC transaction. +	 */ +	if (hw->mac.type == e1000_pch2lan) +		udelay(100); + +	return 0; +} + +/** + *  e1000e_write_phy_reg_mdic - Write MDI control register + *  @hw: pointer to the HW structure + *  @offset: register offset to write to + *  @data: data to write to register at offset + * + *  Writes data to MDI control register in the PHY at offset. + **/ +s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) +{ +	struct e1000_phy_info *phy = &hw->phy; +	u32 i, mdic = 0; + +	if (offset > MAX_PHY_REG_ADDRESS) { +		e_dbg("PHY Address %d is out of range\n", offset); +		return -E1000_ERR_PARAM; +	} + +	/* Set up Op-code, Phy Address, and register offset in the MDI +	 * Control register.  The MAC will take care of interfacing with the +	 * PHY to retrieve the desired data. +	 */ +	mdic = (((u32)data) | +		(offset << E1000_MDIC_REG_SHIFT) | +		(phy->addr << E1000_MDIC_PHY_SHIFT) | +		(E1000_MDIC_OP_WRITE)); + +	ew32(MDIC, mdic); + +	/* Poll the ready bit to see if the MDI read completed +	 * Increasing the time out as testing showed failures with +	 * the lower time out +	 */ +	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { +		udelay(50); +		mdic = er32(MDIC); +		if (mdic & E1000_MDIC_READY) +			break; +	} +	if (!(mdic & E1000_MDIC_READY)) { +		e_dbg("MDI Write did not complete\n"); +		return -E1000_ERR_PHY; +	} +	if (mdic & E1000_MDIC_ERROR) { +		e_dbg("MDI Error\n"); +		return -E1000_ERR_PHY; +	} +	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { +		e_dbg("MDI Write offset error - requested %d, returned %d\n", +		      offset, +		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); +		return -E1000_ERR_PHY; +	} + +	/* Allow some time after each MDIC transaction to avoid +	 * reading duplicate data in the next MDIC transaction. +	 */ +	if (hw->mac.type == e1000_pch2lan) +		udelay(100); + +	return 0; +} + +/** + *  e1000e_read_phy_reg_m88 - Read m88 PHY register + *  @hw: pointer to the HW structure + *  @offset: register offset to be read + *  @data: pointer to the read data + * + *  Acquires semaphore, if necessary, then reads the PHY register at offset + *  and storing the retrieved information in data.  Release any acquired + *  semaphores before exiting. + **/ +s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) +{ +	s32 ret_val; + +	ret_val = hw->phy.ops.acquire(hw); +	if (ret_val) +		return ret_val; + +	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, +					   data); + +	hw->phy.ops.release(hw); + +	return ret_val; +} + +/** + *  e1000e_write_phy_reg_m88 - Write m88 PHY register + *  @hw: pointer to the HW structure + *  @offset: register offset to write to + *  @data: data to write at register offset + * + *  Acquires semaphore, if necessary, then writes the data to PHY register + *  at the offset.  Release any acquired semaphores before exiting. + **/ +s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) +{ +	s32 ret_val; + +	ret_val = hw->phy.ops.acquire(hw); +	if (ret_val) +		return ret_val; + +	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, +					    data); + +	hw->phy.ops.release(hw); + +	return ret_val; +} + +/** + *  e1000_set_page_igp - Set page as on IGP-like PHY(s) + *  @hw: pointer to the HW structure + *  @page: page to set (shifted left when necessary) + * + *  Sets PHY page required for PHY register access.  Assumes semaphore is + *  already acquired.  Note, this function sets phy.addr to 1 so the caller + *  must set it appropriately (if necessary) after this function returns. + **/ +s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page) +{ +	e_dbg("Setting page 0x%x\n", page); + +	hw->phy.addr = 1; + +	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page); +} + +/** + *  __e1000e_read_phy_reg_igp - Read igp PHY register + *  @hw: pointer to the HW structure + *  @offset: register offset to be read + *  @data: pointer to the read data + *  @locked: semaphore has already been acquired or not + * + *  Acquires semaphore, if necessary, then reads the PHY register at offset + *  and stores the retrieved information in data.  Release any acquired + *  semaphores before exiting. + **/ +static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, +				     bool locked) +{ +	s32 ret_val = 0; + +	if (!locked) { +		if (!hw->phy.ops.acquire) +			return 0; + +		ret_val = hw->phy.ops.acquire(hw); +		if (ret_val) +			return ret_val; +	} + +	if (offset > MAX_PHY_MULTI_PAGE_REG) +		ret_val = e1000e_write_phy_reg_mdic(hw, +						    IGP01E1000_PHY_PAGE_SELECT, +						    (u16)offset); +	if (!ret_val) +		ret_val = e1000e_read_phy_reg_mdic(hw, +						   MAX_PHY_REG_ADDRESS & offset, +						   data); +	if (!locked) +		hw->phy.ops.release(hw); + +	return ret_val; +} + +/** + *  e1000e_read_phy_reg_igp - Read igp PHY register + *  @hw: pointer to the HW structure + *  @offset: register offset to be read + *  @data: pointer to the read data + * + *  Acquires semaphore then reads the PHY register at offset and stores the + *  retrieved information in data. + *  Release the acquired semaphore before exiting. + **/ +s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) +{ +	return __e1000e_read_phy_reg_igp(hw, offset, data, false); +} + +/** + *  e1000e_read_phy_reg_igp_locked - Read igp PHY register + *  @hw: pointer to the HW structure + *  @offset: register offset to be read + *  @data: pointer to the read data + * + *  Reads the PHY register at offset and stores the retrieved information + *  in data.  Assumes semaphore already acquired. + **/ +s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) +{ +	return __e1000e_read_phy_reg_igp(hw, offset, data, true); +} + +/** + *  e1000e_write_phy_reg_igp - Write igp PHY register + *  @hw: pointer to the HW structure + *  @offset: register offset to write to + *  @data: data to write at register offset + *  @locked: semaphore has already been acquired or not + * + *  Acquires semaphore, if necessary, then writes the data to PHY register + *  at the offset.  Release any acquired semaphores before exiting. + **/ +static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, +				      bool locked) +{ +	s32 ret_val = 0; + +	if (!locked) { +		if (!hw->phy.ops.acquire) +			return 0; + +		ret_val = hw->phy.ops.acquire(hw); +		if (ret_val) +			return ret_val; +	} + +	if (offset > MAX_PHY_MULTI_PAGE_REG) +		ret_val = e1000e_write_phy_reg_mdic(hw, +						    IGP01E1000_PHY_PAGE_SELECT, +						    (u16)offset); +	if (!ret_val) +		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & +						    offset, data); +	if (!locked) +		hw->phy.ops.release(hw); + +	return ret_val; +} + +/** + *  e1000e_write_phy_reg_igp - Write igp PHY register + *  @hw: pointer to the HW structure + *  @offset: register offset to write to + *  @data: data to write at register offset + * + *  Acquires semaphore then writes the data to PHY register + *  at the offset.  Release any acquired semaphores before exiting. + **/ +s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) +{ +	return __e1000e_write_phy_reg_igp(hw, offset, data, false); +} + +/** + *  e1000e_write_phy_reg_igp_locked - Write igp PHY register + *  @hw: pointer to the HW structure + *  @offset: register offset to write to + *  @data: data to write at register offset + * + *  Writes the data to PHY register at the offset. + *  Assumes semaphore already acquired. + **/ +s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) +{ +	return __e1000e_write_phy_reg_igp(hw, offset, data, true); +} + +/** + *  __e1000_read_kmrn_reg - Read kumeran register + *  @hw: pointer to the HW structure + *  @offset: register offset to be read + *  @data: pointer to the read data + *  @locked: semaphore has already been acquired or not + * + *  Acquires semaphore, if necessary.  Then reads the PHY register at offset + *  using the kumeran interface.  The information retrieved is stored in data. + *  Release any acquired semaphores before exiting. + **/ +static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, +				 bool locked) +{ +	u32 kmrnctrlsta; + +	if (!locked) { +		s32 ret_val = 0; + +		if (!hw->phy.ops.acquire) +			return 0; + +		ret_val = hw->phy.ops.acquire(hw); +		if (ret_val) +			return ret_val; +	} + +	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & +		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; +	ew32(KMRNCTRLSTA, kmrnctrlsta); +	e1e_flush(); + +	udelay(2); + +	kmrnctrlsta = er32(KMRNCTRLSTA); +	*data = (u16)kmrnctrlsta; + +	if (!locked) +		hw->phy.ops.release(hw); + +	return 0; +} + +/** + *  e1000e_read_kmrn_reg -  Read kumeran register + *  @hw: pointer to the HW structure + *  @offset: register offset to be read + *  @data: pointer to the read data + * + *  Acquires semaphore then reads the PHY register at offset using the + *  kumeran interface.  The information retrieved is stored in data. + *  Release the acquired semaphore before exiting. + **/ +s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) +{ +	return __e1000_read_kmrn_reg(hw, offset, data, false); +} + +/** + *  e1000e_read_kmrn_reg_locked -  Read kumeran register + *  @hw: pointer to the HW structure + *  @offset: register offset to be read + *  @data: pointer to the read data + * + *  Reads the PHY register at offset using the kumeran interface.  The + *  information retrieved is stored in data. + *  Assumes semaphore already acquired. + **/ +s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) +{ +	return __e1000_read_kmrn_reg(hw, offset, data, true); +} + +/** + *  __e1000_write_kmrn_reg - Write kumeran register + *  @hw: pointer to the HW structure + *  @offset: register offset to write to + *  @data: data to write at register offset + *  @locked: semaphore has already been acquired or not + * + *  Acquires semaphore, if necessary.  Then write the data to PHY register + *  at the offset using the kumeran interface.  Release any acquired semaphores + *  before exiting. + **/ +static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, +				  bool locked) +{ +	u32 kmrnctrlsta; + +	if (!locked) { +		s32 ret_val = 0; + +		if (!hw->phy.ops.acquire) +			return 0; + +		ret_val = hw->phy.ops.acquire(hw); +		if (ret_val) +			return ret_val; +	} + +	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & +		       E1000_KMRNCTRLSTA_OFFSET) | data; +	ew32(KMRNCTRLSTA, kmrnctrlsta); +	e1e_flush(); + +	udelay(2); + +	if (!locked) +		hw->phy.ops.release(hw); + +	return 0; +} + +/** + *  e1000e_write_kmrn_reg -  Write kumeran register + *  @hw: pointer to the HW structure + *  @offset: register offset to write to + *  @data: data to write at register offset + * + *  Acquires semaphore then writes the data to the PHY register at the offset + *  using the kumeran interface.  Release the acquired semaphore before exiting. + **/ +s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) +{ +	return __e1000_write_kmrn_reg(hw, offset, data, false); +} + +/** + *  e1000e_write_kmrn_reg_locked -  Write kumeran register + *  @hw: pointer to the HW structure + *  @offset: register offset to write to + *  @data: data to write at register offset + * + *  Write the data to PHY register at the offset using the kumeran interface. + *  Assumes semaphore already acquired. + **/ +s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) +{ +	return __e1000_write_kmrn_reg(hw, offset, data, true); +} + +/** + *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode + *  @hw: pointer to the HW structure + * + *  Sets up Master/slave mode + **/ +static s32 e1000_set_master_slave_mode(struct e1000_hw *hw) +{ +	s32 ret_val; +	u16 phy_data; + +	/* Resolve Master/Slave mode */ +	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data); +	if (ret_val) +		return ret_val; + +	/* load defaults for future use */ +	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ? +	    ((phy_data & CTL1000_AS_MASTER) ? +	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto; + +	switch (hw->phy.ms_type) { +	case e1000_ms_force_master: +		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); +		break; +	case e1000_ms_force_slave: +		phy_data |= CTL1000_ENABLE_MASTER; +		phy_data &= ~(CTL1000_AS_MASTER); +		break; +	case e1000_ms_auto: +		phy_data &= ~CTL1000_ENABLE_MASTER; +		/* fall-through */ +	default: +		break; +	} + +	return e1e_wphy(hw, MII_CTRL1000, phy_data); +} + +/** + *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link + *  @hw: pointer to the HW structure + * + *  Sets up Carrier-sense on Transmit and downshift values. + **/ +s32 e1000_copper_link_setup_82577(struct e1000_hw *hw) +{ +	s32 ret_val; +	u16 phy_data; + +	/* Enable CRS on Tx. This must be set for half-duplex operation. */ +	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data); +	if (ret_val) +		return ret_val; + +	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; + +	/* Enable downshift */ +	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; + +	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data); +	if (ret_val) +		return ret_val; + +	/* Set MDI/MDIX mode */ +	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data); +	if (ret_val) +		return ret_val; +	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK; +	/* Options: +	 *   0 - Auto (default) +	 *   1 - MDI mode +	 *   2 - MDI-X mode +	 */ +	switch (hw->phy.mdix) { +	case 1: +		break; +	case 2: +		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX; +		break; +	case 0: +	default: +		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX; +		break; +	} +	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data); +	if (ret_val) +		return ret_val; + +	return e1000_set_master_slave_mode(hw); +} + +/** + *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link + *  @hw: pointer to the HW structure + * + *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock + *  and downshift values are set also. + **/ +s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u16 phy_data; + +	/* Enable CRS on Tx. This must be set for half-duplex operation. */ +	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); +	if (ret_val) +		return ret_val; + +	/* For BM PHY this bit is downshift enable */ +	if (phy->type != e1000_phy_bm) +		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + +	/* Options: +	 *   MDI/MDI-X = 0 (default) +	 *   0 - Auto for all speeds +	 *   1 - MDI mode +	 *   2 - MDI-X mode +	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) +	 */ +	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + +	switch (phy->mdix) { +	case 1: +		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; +		break; +	case 2: +		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; +		break; +	case 3: +		phy_data |= M88E1000_PSCR_AUTO_X_1000T; +		break; +	case 0: +	default: +		phy_data |= M88E1000_PSCR_AUTO_X_MODE; +		break; +	} + +	/* Options: +	 *   disable_polarity_correction = 0 (default) +	 *       Automatic Correction for Reversed Cable Polarity +	 *   0 - Disabled +	 *   1 - Enabled +	 */ +	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; +	if (phy->disable_polarity_correction) +		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; + +	/* Enable downshift on BM (disabled by default) */ +	if (phy->type == e1000_phy_bm) { +		/* For 82574/82583, first disable then enable downshift */ +		if (phy->id == BME1000_E_PHY_ID_R2) { +			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT; +			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, +					   phy_data); +			if (ret_val) +				return ret_val; +			/* Commit the changes. */ +			ret_val = phy->ops.commit(hw); +			if (ret_val) { +				e_dbg("Error committing the PHY changes\n"); +				return ret_val; +			} +		} + +		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; +	} + +	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); +	if (ret_val) +		return ret_val; + +	if ((phy->type == e1000_phy_m88) && +	    (phy->revision < E1000_REVISION_4) && +	    (phy->id != BME1000_E_PHY_ID_R2)) { +		/* Force TX_CLK in the Extended PHY Specific Control Register +		 * to 25MHz clock. +		 */ +		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); +		if (ret_val) +			return ret_val; + +		phy_data |= M88E1000_EPSCR_TX_CLK_25; + +		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) { +			/* 82573L PHY - set the downshift counter to 5x. */ +			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; +			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; +		} else { +			/* Configure Master and Slave downshift values */ +			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | +				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); +			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | +				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); +		} +		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); +		if (ret_val) +			return ret_val; +	} + +	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) { +		/* Set PHY page 0, register 29 to 0x0003 */ +		ret_val = e1e_wphy(hw, 29, 0x0003); +		if (ret_val) +			return ret_val; + +		/* Set PHY page 0, register 30 to 0x0000 */ +		ret_val = e1e_wphy(hw, 30, 0x0000); +		if (ret_val) +			return ret_val; +	} + +	/* Commit the changes. */ +	if (phy->ops.commit) { +		ret_val = phy->ops.commit(hw); +		if (ret_val) { +			e_dbg("Error committing the PHY changes\n"); +			return ret_val; +		} +	} + +	if (phy->type == e1000_phy_82578) { +		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); +		if (ret_val) +			return ret_val; + +		/* 82578 PHY - set the downshift count to 1x. */ +		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE; +		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK; +		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); +		if (ret_val) +			return ret_val; +	} + +	return 0; +} + +/** + *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link + *  @hw: pointer to the HW structure + * + *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for + *  igp PHY's. + **/ +s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u16 data; + +	ret_val = e1000_phy_hw_reset(hw); +	if (ret_val) { +		e_dbg("Error resetting the PHY.\n"); +		return ret_val; +	} + +	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid +	 * timeout issues when LFS is enabled. +	 */ +	msleep(100); + +	/* disable lplu d0 during driver init */ +	if (hw->phy.ops.set_d0_lplu_state) { +		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false); +		if (ret_val) { +			e_dbg("Error Disabling LPLU D0\n"); +			return ret_val; +		} +	} +	/* Configure mdi-mdix settings */ +	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data); +	if (ret_val) +		return ret_val; + +	data &= ~IGP01E1000_PSCR_AUTO_MDIX; + +	switch (phy->mdix) { +	case 1: +		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; +		break; +	case 2: +		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; +		break; +	case 0: +	default: +		data |= IGP01E1000_PSCR_AUTO_MDIX; +		break; +	} +	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data); +	if (ret_val) +		return ret_val; + +	/* set auto-master slave resolution settings */ +	if (hw->mac.autoneg) { +		/* when autonegotiation advertisement is only 1000Mbps then we +		 * should disable SmartSpeed and enable Auto MasterSlave +		 * resolution as hardware default. +		 */ +		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { +			/* Disable SmartSpeed */ +			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, +					   &data); +			if (ret_val) +				return ret_val; + +			data &= ~IGP01E1000_PSCFR_SMART_SPEED; +			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, +					   data); +			if (ret_val) +				return ret_val; + +			/* Set auto Master/Slave resolution process */ +			ret_val = e1e_rphy(hw, MII_CTRL1000, &data); +			if (ret_val) +				return ret_val; + +			data &= ~CTL1000_ENABLE_MASTER; +			ret_val = e1e_wphy(hw, MII_CTRL1000, data); +			if (ret_val) +				return ret_val; +		} + +		ret_val = e1000_set_master_slave_mode(hw); +	} + +	return ret_val; +} + +/** + *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation + *  @hw: pointer to the HW structure + * + *  Reads the MII auto-neg advertisement register and/or the 1000T control + *  register and if the PHY is already setup for auto-negotiation, then + *  return successful.  Otherwise, setup advertisement and flow control to + *  the appropriate values for the wanted auto-negotiation. + **/ +static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u16 mii_autoneg_adv_reg; +	u16 mii_1000t_ctrl_reg = 0; + +	phy->autoneg_advertised &= phy->autoneg_mask; + +	/* Read the MII Auto-Neg Advertisement Register (Address 4). */ +	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg); +	if (ret_val) +		return ret_val; + +	if (phy->autoneg_mask & ADVERTISE_1000_FULL) { +		/* Read the MII 1000Base-T Control Register (Address 9). */ +		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg); +		if (ret_val) +			return ret_val; +	} + +	/* Need to parse both autoneg_advertised and fc and set up +	 * the appropriate PHY registers.  First we will parse for +	 * autoneg_advertised software override.  Since we can advertise +	 * a plethora of combinations, we need to check each bit +	 * individually. +	 */ + +	/* First we clear all the 10/100 mb speed bits in the Auto-Neg +	 * Advertisement Register (Address 4) and the 1000 mb speed bits in +	 * the  1000Base-T Control Register (Address 9). +	 */ +	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL | +				 ADVERTISE_100HALF | +				 ADVERTISE_10FULL | ADVERTISE_10HALF); +	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL); + +	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); + +	/* Do we want to advertise 10 Mb Half Duplex? */ +	if (phy->autoneg_advertised & ADVERTISE_10_HALF) { +		e_dbg("Advertise 10mb Half duplex\n"); +		mii_autoneg_adv_reg |= ADVERTISE_10HALF; +	} + +	/* Do we want to advertise 10 Mb Full Duplex? */ +	if (phy->autoneg_advertised & ADVERTISE_10_FULL) { +		e_dbg("Advertise 10mb Full duplex\n"); +		mii_autoneg_adv_reg |= ADVERTISE_10FULL; +	} + +	/* Do we want to advertise 100 Mb Half Duplex? */ +	if (phy->autoneg_advertised & ADVERTISE_100_HALF) { +		e_dbg("Advertise 100mb Half duplex\n"); +		mii_autoneg_adv_reg |= ADVERTISE_100HALF; +	} + +	/* Do we want to advertise 100 Mb Full Duplex? */ +	if (phy->autoneg_advertised & ADVERTISE_100_FULL) { +		e_dbg("Advertise 100mb Full duplex\n"); +		mii_autoneg_adv_reg |= ADVERTISE_100FULL; +	} + +	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */ +	if (phy->autoneg_advertised & ADVERTISE_1000_HALF) +		e_dbg("Advertise 1000mb Half duplex request denied!\n"); + +	/* Do we want to advertise 1000 Mb Full Duplex? */ +	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { +		e_dbg("Advertise 1000mb Full duplex\n"); +		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL; +	} + +	/* Check for a software override of the flow control settings, and +	 * setup the PHY advertisement registers accordingly.  If +	 * auto-negotiation is enabled, then software will have to set the +	 * "PAUSE" bits to the correct value in the Auto-Negotiation +	 * Advertisement Register (MII_ADVERTISE) and re-start auto- +	 * negotiation. +	 * +	 * The possible values of the "fc" parameter are: +	 *      0:  Flow control is completely disabled +	 *      1:  Rx flow control is enabled (we can receive pause frames +	 *          but not send pause frames). +	 *      2:  Tx flow control is enabled (we can send pause frames +	 *          but we do not support receiving pause frames). +	 *      3:  Both Rx and Tx flow control (symmetric) are enabled. +	 *  other:  No software override.  The flow control configuration +	 *          in the EEPROM is used. +	 */ +	switch (hw->fc.current_mode) { +	case e1000_fc_none: +		/* Flow control (Rx & Tx) is completely disabled by a +		 * software over-ride. +		 */ +		mii_autoneg_adv_reg &= +		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); +		break; +	case e1000_fc_rx_pause: +		/* Rx Flow control is enabled, and Tx Flow control is +		 * disabled, by a software over-ride. +		 * +		 * Since there really isn't a way to advertise that we are +		 * capable of Rx Pause ONLY, we will advertise that we +		 * support both symmetric and asymmetric Rx PAUSE.  Later +		 * (in e1000e_config_fc_after_link_up) we will disable the +		 * hw's ability to send PAUSE frames. +		 */ +		mii_autoneg_adv_reg |= +		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); +		break; +	case e1000_fc_tx_pause: +		/* Tx Flow control is enabled, and Rx Flow control is +		 * disabled, by a software over-ride. +		 */ +		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM; +		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP; +		break; +	case e1000_fc_full: +		/* Flow control (both Rx and Tx) is enabled by a software +		 * over-ride. +		 */ +		mii_autoneg_adv_reg |= +		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); +		break; +	default: +		e_dbg("Flow control param set incorrectly\n"); +		return -E1000_ERR_CONFIG; +	} + +	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg); +	if (ret_val) +		return ret_val; + +	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); + +	if (phy->autoneg_mask & ADVERTISE_1000_FULL) +		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg); + +	return ret_val; +} + +/** + *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link + *  @hw: pointer to the HW structure + * + *  Performs initial bounds checking on autoneg advertisement parameter, then + *  configure to advertise the full capability.  Setup the PHY to autoneg + *  and restart the negotiation process between the link partner.  If + *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting. + **/ +static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u16 phy_ctrl; + +	/* Perform some bounds checking on the autoneg advertisement +	 * parameter. +	 */ +	phy->autoneg_advertised &= phy->autoneg_mask; + +	/* If autoneg_advertised is zero, we assume it was not defaulted +	 * by the calling code so we set to advertise full capability. +	 */ +	if (!phy->autoneg_advertised) +		phy->autoneg_advertised = phy->autoneg_mask; + +	e_dbg("Reconfiguring auto-neg advertisement params\n"); +	ret_val = e1000_phy_setup_autoneg(hw); +	if (ret_val) { +		e_dbg("Error Setting up Auto-Negotiation\n"); +		return ret_val; +	} +	e_dbg("Restarting Auto-Neg\n"); + +	/* Restart auto-negotiation by setting the Auto Neg Enable bit and +	 * the Auto Neg Restart bit in the PHY control register. +	 */ +	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl); +	if (ret_val) +		return ret_val; + +	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART); +	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl); +	if (ret_val) +		return ret_val; + +	/* Does the user want to wait for Auto-Neg to complete here, or +	 * check at a later time (for example, callback routine). +	 */ +	if (phy->autoneg_wait_to_complete) { +		ret_val = e1000_wait_autoneg(hw); +		if (ret_val) { +			e_dbg("Error while waiting for autoneg to complete\n"); +			return ret_val; +		} +	} + +	hw->mac.get_link_status = true; + +	return ret_val; +} + +/** + *  e1000e_setup_copper_link - Configure copper link settings + *  @hw: pointer to the HW structure + * + *  Calls the appropriate function to configure the link for auto-neg or forced + *  speed and duplex.  Then we check for link, once link is established calls + *  to configure collision distance and flow control are called.  If link is + *  not established, we return -E1000_ERR_PHY (-2). + **/ +s32 e1000e_setup_copper_link(struct e1000_hw *hw) +{ +	s32 ret_val; +	bool link; + +	if (hw->mac.autoneg) { +		/* Setup autoneg and flow control advertisement and perform +		 * autonegotiation. +		 */ +		ret_val = e1000_copper_link_autoneg(hw); +		if (ret_val) +			return ret_val; +	} else { +		/* PHY will be set to 10H, 10F, 100H or 100F +		 * depending on user settings. +		 */ +		e_dbg("Forcing Speed and Duplex\n"); +		ret_val = hw->phy.ops.force_speed_duplex(hw); +		if (ret_val) { +			e_dbg("Error Forcing Speed and Duplex\n"); +			return ret_val; +		} +	} + +	/* Check link status. Wait up to 100 microseconds for link to become +	 * valid. +	 */ +	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10, +					      &link); +	if (ret_val) +		return ret_val; + +	if (link) { +		e_dbg("Valid link established!!!\n"); +		hw->mac.ops.config_collision_dist(hw); +		ret_val = e1000e_config_fc_after_link_up(hw); +	} else { +		e_dbg("Unable to establish link!!!\n"); +	} + +	return ret_val; +} + +/** + *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY + *  @hw: pointer to the HW structure + * + *  Calls the PHY setup function to force speed and duplex.  Clears the + *  auto-crossover to force MDI manually.  Waits for link and returns + *  successful if link up is successful, else -E1000_ERR_PHY (-2). + **/ +s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u16 phy_data; +	bool link; + +	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); +	if (ret_val) +		return ret_val; + +	e1000e_phy_force_speed_duplex_setup(hw, &phy_data); + +	ret_val = e1e_wphy(hw, MII_BMCR, phy_data); +	if (ret_val) +		return ret_val; + +	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI +	 * forced whenever speed and duplex are forced. +	 */ +	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); +	if (ret_val) +		return ret_val; + +	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; +	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + +	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); +	if (ret_val) +		return ret_val; + +	e_dbg("IGP PSCR: %X\n", phy_data); + +	udelay(1); + +	if (phy->autoneg_wait_to_complete) { +		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n"); + +		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, +						      100000, &link); +		if (ret_val) +			return ret_val; + +		if (!link) +			e_dbg("Link taking longer than expected.\n"); + +		/* Try once more */ +		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, +						      100000, &link); +	} + +	return ret_val; +} + +/** + *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY + *  @hw: pointer to the HW structure + * + *  Calls the PHY setup function to force speed and duplex.  Clears the + *  auto-crossover to force MDI manually.  Resets the PHY to commit the + *  changes.  If time expires while waiting for link up, we reset the DSP. + *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon + *  successful completion, else return corresponding error code. + **/ +s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u16 phy_data; +	bool link; + +	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI +	 * forced whenever speed and duplex are forced. +	 */ +	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); +	if (ret_val) +		return ret_val; + +	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; +	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); +	if (ret_val) +		return ret_val; + +	e_dbg("M88E1000 PSCR: %X\n", phy_data); + +	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); +	if (ret_val) +		return ret_val; + +	e1000e_phy_force_speed_duplex_setup(hw, &phy_data); + +	ret_val = e1e_wphy(hw, MII_BMCR, phy_data); +	if (ret_val) +		return ret_val; + +	/* Reset the phy to commit changes. */ +	if (hw->phy.ops.commit) { +		ret_val = hw->phy.ops.commit(hw); +		if (ret_val) +			return ret_val; +	} + +	if (phy->autoneg_wait_to_complete) { +		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n"); + +		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, +						      100000, &link); +		if (ret_val) +			return ret_val; + +		if (!link) { +			if (hw->phy.type != e1000_phy_m88) { +				e_dbg("Link taking longer than expected.\n"); +			} else { +				/* We didn't get link. +				 * Reset the DSP and cross our fingers. +				 */ +				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, +						   0x001d); +				if (ret_val) +					return ret_val; +				ret_val = e1000e_phy_reset_dsp(hw); +				if (ret_val) +					return ret_val; +			} +		} + +		/* Try once more */ +		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, +						      100000, &link); +		if (ret_val) +			return ret_val; +	} + +	if (hw->phy.type != e1000_phy_m88) +		return 0; + +	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); +	if (ret_val) +		return ret_val; + +	/* Resetting the phy means we need to re-force TX_CLK in the +	 * Extended PHY Specific Control Register to 25MHz clock from +	 * the reset value of 2.5MHz. +	 */ +	phy_data |= M88E1000_EPSCR_TX_CLK_25; +	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); +	if (ret_val) +		return ret_val; + +	/* In addition, we must re-enable CRS on Tx for both half and full +	 * duplex. +	 */ +	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); +	if (ret_val) +		return ret_val; + +	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; +	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + +	return ret_val; +} + +/** + *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex + *  @hw: pointer to the HW structure + * + *  Forces the speed and duplex settings of the PHY. + *  This is a function pointer entry point only called by + *  PHY setup routines. + **/ +s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u16 data; +	bool link; + +	ret_val = e1e_rphy(hw, MII_BMCR, &data); +	if (ret_val) +		return ret_val; + +	e1000e_phy_force_speed_duplex_setup(hw, &data); + +	ret_val = e1e_wphy(hw, MII_BMCR, data); +	if (ret_val) +		return ret_val; + +	/* Disable MDI-X support for 10/100 */ +	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); +	if (ret_val) +		return ret_val; + +	data &= ~IFE_PMC_AUTO_MDIX; +	data &= ~IFE_PMC_FORCE_MDIX; + +	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data); +	if (ret_val) +		return ret_val; + +	e_dbg("IFE PMC: %X\n", data); + +	udelay(1); + +	if (phy->autoneg_wait_to_complete) { +		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n"); + +		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, +						      100000, &link); +		if (ret_val) +			return ret_val; + +		if (!link) +			e_dbg("Link taking longer than expected.\n"); + +		/* Try once more */ +		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, +						      100000, &link); +		if (ret_val) +			return ret_val; +	} + +	return 0; +} + +/** + *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex + *  @hw: pointer to the HW structure + *  @phy_ctrl: pointer to current value of MII_BMCR + * + *  Forces speed and duplex on the PHY by doing the following: disable flow + *  control, force speed/duplex on the MAC, disable auto speed detection, + *  disable auto-negotiation, configure duplex, configure speed, configure + *  the collision distance, write configuration to CTRL register.  The + *  caller must write to the MII_BMCR register for these settings to + *  take affect. + **/ +void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) +{ +	struct e1000_mac_info *mac = &hw->mac; +	u32 ctrl; + +	/* Turn off flow control when forcing speed/duplex */ +	hw->fc.current_mode = e1000_fc_none; + +	/* Force speed/duplex on the mac */ +	ctrl = er32(CTRL); +	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); +	ctrl &= ~E1000_CTRL_SPD_SEL; + +	/* Disable Auto Speed Detection */ +	ctrl &= ~E1000_CTRL_ASDE; + +	/* Disable autoneg on the phy */ +	*phy_ctrl &= ~BMCR_ANENABLE; + +	/* Forcing Full or Half Duplex? */ +	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { +		ctrl &= ~E1000_CTRL_FD; +		*phy_ctrl &= ~BMCR_FULLDPLX; +		e_dbg("Half Duplex\n"); +	} else { +		ctrl |= E1000_CTRL_FD; +		*phy_ctrl |= BMCR_FULLDPLX; +		e_dbg("Full Duplex\n"); +	} + +	/* Forcing 10mb or 100mb? */ +	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { +		ctrl |= E1000_CTRL_SPD_100; +		*phy_ctrl |= BMCR_SPEED100; +		*phy_ctrl &= ~BMCR_SPEED1000; +		e_dbg("Forcing 100mb\n"); +	} else { +		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); +		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100); +		e_dbg("Forcing 10mb\n"); +	} + +	hw->mac.ops.config_collision_dist(hw); + +	ew32(CTRL, ctrl); +} + +/** + *  e1000e_set_d3_lplu_state - Sets low power link up state for D3 + *  @hw: pointer to the HW structure + *  @active: boolean used to enable/disable lplu + * + *  Success returns 0, Failure returns 1 + * + *  The low power link up (lplu) state is set to the power management level D3 + *  and SmartSpeed is disabled when active is true, else clear lplu for D3 + *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU + *  is used during Dx states where the power conservation is most important. + *  During driver activity, SmartSpeed should be enabled so performance is + *  maintained. + **/ +s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u16 data; + +	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); +	if (ret_val) +		return ret_val; + +	if (!active) { +		data &= ~IGP02E1000_PM_D3_LPLU; +		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); +		if (ret_val) +			return ret_val; +		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used +		 * during Dx states where the power conservation is most +		 * important.  During driver activity we should enable +		 * SmartSpeed, so performance is maintained. +		 */ +		if (phy->smart_speed == e1000_smart_speed_on) { +			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, +					   &data); +			if (ret_val) +				return ret_val; + +			data |= IGP01E1000_PSCFR_SMART_SPEED; +			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, +					   data); +			if (ret_val) +				return ret_val; +		} else if (phy->smart_speed == e1000_smart_speed_off) { +			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, +					   &data); +			if (ret_val) +				return ret_val; + +			data &= ~IGP01E1000_PSCFR_SMART_SPEED; +			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, +					   data); +			if (ret_val) +				return ret_val; +		} +	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || +		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || +		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { +		data |= IGP02E1000_PM_D3_LPLU; +		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); +		if (ret_val) +			return ret_val; + +		/* When LPLU is enabled, we should disable SmartSpeed */ +		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); +		if (ret_val) +			return ret_val; + +		data &= ~IGP01E1000_PSCFR_SMART_SPEED; +		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); +	} + +	return ret_val; +} + +/** + *  e1000e_check_downshift - Checks whether a downshift in speed occurred + *  @hw: pointer to the HW structure + * + *  Success returns 0, Failure returns 1 + * + *  A downshift is detected by querying the PHY link health. + **/ +s32 e1000e_check_downshift(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u16 phy_data, offset, mask; + +	switch (phy->type) { +	case e1000_phy_m88: +	case e1000_phy_gg82563: +	case e1000_phy_bm: +	case e1000_phy_82578: +		offset = M88E1000_PHY_SPEC_STATUS; +		mask = M88E1000_PSSR_DOWNSHIFT; +		break; +	case e1000_phy_igp_2: +	case e1000_phy_igp_3: +		offset = IGP01E1000_PHY_LINK_HEALTH; +		mask = IGP01E1000_PLHR_SS_DOWNGRADE; +		break; +	default: +		/* speed downshift not supported */ +		phy->speed_downgraded = false; +		return 0; +	} + +	ret_val = e1e_rphy(hw, offset, &phy_data); + +	if (!ret_val) +		phy->speed_downgraded = !!(phy_data & mask); + +	return ret_val; +} + +/** + *  e1000_check_polarity_m88 - Checks the polarity. + *  @hw: pointer to the HW structure + * + *  Success returns 0, Failure returns -E1000_ERR_PHY (-2) + * + *  Polarity is determined based on the PHY specific status register. + **/ +s32 e1000_check_polarity_m88(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u16 data; + +	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data); + +	if (!ret_val) +		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY) +				       ? e1000_rev_polarity_reversed +				       : e1000_rev_polarity_normal); + +	return ret_val; +} + +/** + *  e1000_check_polarity_igp - Checks the polarity. + *  @hw: pointer to the HW structure + * + *  Success returns 0, Failure returns -E1000_ERR_PHY (-2) + * + *  Polarity is determined based on the PHY port status register, and the + *  current speed (since there is no polarity at 100Mbps). + **/ +s32 e1000_check_polarity_igp(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u16 data, offset, mask; + +	/* Polarity is determined based on the speed of +	 * our connection. +	 */ +	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); +	if (ret_val) +		return ret_val; + +	if ((data & IGP01E1000_PSSR_SPEED_MASK) == +	    IGP01E1000_PSSR_SPEED_1000MBPS) { +		offset = IGP01E1000_PHY_PCS_INIT_REG; +		mask = IGP01E1000_PHY_POLARITY_MASK; +	} else { +		/* This really only applies to 10Mbps since +		 * there is no polarity for 100Mbps (always 0). +		 */ +		offset = IGP01E1000_PHY_PORT_STATUS; +		mask = IGP01E1000_PSSR_POLARITY_REVERSED; +	} + +	ret_val = e1e_rphy(hw, offset, &data); + +	if (!ret_val) +		phy->cable_polarity = ((data & mask) +				       ? e1000_rev_polarity_reversed +				       : e1000_rev_polarity_normal); + +	return ret_val; +} + +/** + *  e1000_check_polarity_ife - Check cable polarity for IFE PHY + *  @hw: pointer to the HW structure + * + *  Polarity is determined on the polarity reversal feature being enabled. + **/ +s32 e1000_check_polarity_ife(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u16 phy_data, offset, mask; + +	/* Polarity is determined based on the reversal feature being enabled. +	 */ +	if (phy->polarity_correction) { +		offset = IFE_PHY_EXTENDED_STATUS_CONTROL; +		mask = IFE_PESC_POLARITY_REVERSED; +	} else { +		offset = IFE_PHY_SPECIAL_CONTROL; +		mask = IFE_PSC_FORCE_POLARITY; +	} + +	ret_val = e1e_rphy(hw, offset, &phy_data); + +	if (!ret_val) +		phy->cable_polarity = ((phy_data & mask) +				       ? e1000_rev_polarity_reversed +				       : e1000_rev_polarity_normal); + +	return ret_val; +} + +/** + *  e1000_wait_autoneg - Wait for auto-neg completion + *  @hw: pointer to the HW structure + * + *  Waits for auto-negotiation to complete or for the auto-negotiation time + *  limit to expire, which ever happens first. + **/ +static s32 e1000_wait_autoneg(struct e1000_hw *hw) +{ +	s32 ret_val = 0; +	u16 i, phy_status; + +	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ +	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { +		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); +		if (ret_val) +			break; +		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); +		if (ret_val) +			break; +		if (phy_status & BMSR_ANEGCOMPLETE) +			break; +		msleep(100); +	} + +	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation +	 * has completed. +	 */ +	return ret_val; +} + +/** + *  e1000e_phy_has_link_generic - Polls PHY for link + *  @hw: pointer to the HW structure + *  @iterations: number of times to poll for link + *  @usec_interval: delay between polling attempts + *  @success: pointer to whether polling was successful or not + * + *  Polls the PHY status register for link, 'iterations' number of times. + **/ +s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, +				u32 usec_interval, bool *success) +{ +	s32 ret_val = 0; +	u16 i, phy_status; + +	for (i = 0; i < iterations; i++) { +		/* Some PHYs require the MII_BMSR register to be read +		 * twice due to the link bit being sticky.  No harm doing +		 * it across the board. +		 */ +		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); +		if (ret_val) { +			/* If the first read fails, another entity may have +			 * ownership of the resources, wait and try again to +			 * see if they have relinquished the resources yet. +			 */ +			if (usec_interval >= 1000) +				msleep(usec_interval / 1000); +			else +				udelay(usec_interval); +		} +		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); +		if (ret_val) +			break; +		if (phy_status & BMSR_LSTATUS) +			break; +		if (usec_interval >= 1000) +			msleep(usec_interval / 1000); +		else +			udelay(usec_interval); +	} + +	*success = (i < iterations); + +	return ret_val; +} + +/** + *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY + *  @hw: pointer to the HW structure + * + *  Reads the PHY specific status register to retrieve the cable length + *  information.  The cable length is determined by averaging the minimum and + *  maximum values to get the "average" cable length.  The m88 PHY has four + *  possible cable length values, which are: + *	Register Value		Cable Length + *	0			< 50 meters + *	1			50 - 80 meters + *	2			80 - 110 meters + *	3			110 - 140 meters + *	4			> 140 meters + **/ +s32 e1000e_get_cable_length_m88(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u16 phy_data, index; + +	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); +	if (ret_val) +		return ret_val; + +	index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> +		 M88E1000_PSSR_CABLE_LENGTH_SHIFT); + +	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) +		return -E1000_ERR_PHY; + +	phy->min_cable_length = e1000_m88_cable_length_table[index]; +	phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; + +	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; + +	return 0; +} + +/** + *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY + *  @hw: pointer to the HW structure + * + *  The automatic gain control (agc) normalizes the amplitude of the + *  received signal, adjusting for the attenuation produced by the + *  cable.  By reading the AGC registers, which represent the + *  combination of coarse and fine gain value, the value can be put + *  into a lookup table to obtain the approximate cable length + *  for each channel. + **/ +s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u16 phy_data, i, agc_value = 0; +	u16 cur_agc_index, max_agc_index = 0; +	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; +	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { +		IGP02E1000_PHY_AGC_A, +		IGP02E1000_PHY_AGC_B, +		IGP02E1000_PHY_AGC_C, +		IGP02E1000_PHY_AGC_D +	}; + +	/* Read the AGC registers for all channels */ +	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { +		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data); +		if (ret_val) +			return ret_val; + +		/* Getting bits 15:9, which represent the combination of +		 * coarse and fine gain values.  The result is a number +		 * that can be put into the lookup table to obtain the +		 * approximate cable length. +		 */ +		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & +				 IGP02E1000_AGC_LENGTH_MASK); + +		/* Array index bound check. */ +		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || +		    (cur_agc_index == 0)) +			return -E1000_ERR_PHY; + +		/* Remove min & max AGC values from calculation. */ +		if (e1000_igp_2_cable_length_table[min_agc_index] > +		    e1000_igp_2_cable_length_table[cur_agc_index]) +			min_agc_index = cur_agc_index; +		if (e1000_igp_2_cable_length_table[max_agc_index] < +		    e1000_igp_2_cable_length_table[cur_agc_index]) +			max_agc_index = cur_agc_index; + +		agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; +	} + +	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + +		      e1000_igp_2_cable_length_table[max_agc_index]); +	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); + +	/* Calculate cable length with the error range of +/- 10 meters. */ +	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ? +				 (agc_value - IGP02E1000_AGC_RANGE) : 0); +	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; + +	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; + +	return 0; +} + +/** + *  e1000e_get_phy_info_m88 - Retrieve PHY information + *  @hw: pointer to the HW structure + * + *  Valid for only copper links.  Read the PHY status register (sticky read) + *  to verify that link is up.  Read the PHY special control register to + *  determine the polarity and 10base-T extended distance.  Read the PHY + *  special status register to determine MDI/MDIx and current speed.  If + *  speed is 1000, then determine cable length, local and remote receiver. + **/ +s32 e1000e_get_phy_info_m88(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u16 phy_data; +	bool link; + +	if (phy->media_type != e1000_media_type_copper) { +		e_dbg("Phy info is only valid for copper media\n"); +		return -E1000_ERR_CONFIG; +	} + +	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); +	if (ret_val) +		return ret_val; + +	if (!link) { +		e_dbg("Phy info is only valid if link is up\n"); +		return -E1000_ERR_CONFIG; +	} + +	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); +	if (ret_val) +		return ret_val; + +	phy->polarity_correction = !!(phy_data & +				      M88E1000_PSCR_POLARITY_REVERSAL); + +	ret_val = e1000_check_polarity_m88(hw); +	if (ret_val) +		return ret_val; + +	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); +	if (ret_val) +		return ret_val; + +	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX); + +	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { +		ret_val = hw->phy.ops.get_cable_length(hw); +		if (ret_val) +			return ret_val; + +		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data); +		if (ret_val) +			return ret_val; + +		phy->local_rx = (phy_data & LPA_1000LOCALRXOK) +		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; + +		phy->remote_rx = (phy_data & LPA_1000REMRXOK) +		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; +	} else { +		/* Set values to "undefined" */ +		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; +		phy->local_rx = e1000_1000t_rx_status_undefined; +		phy->remote_rx = e1000_1000t_rx_status_undefined; +	} + +	return ret_val; +} + +/** + *  e1000e_get_phy_info_igp - Retrieve igp PHY information + *  @hw: pointer to the HW structure + * + *  Read PHY status to determine if link is up.  If link is up, then + *  set/determine 10base-T extended distance and polarity correction.  Read + *  PHY port status to determine MDI/MDIx and speed.  Based on the speed, + *  determine on the cable length, local and remote receiver. + **/ +s32 e1000e_get_phy_info_igp(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u16 data; +	bool link; + +	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); +	if (ret_val) +		return ret_val; + +	if (!link) { +		e_dbg("Phy info is only valid if link is up\n"); +		return -E1000_ERR_CONFIG; +	} + +	phy->polarity_correction = true; + +	ret_val = e1000_check_polarity_igp(hw); +	if (ret_val) +		return ret_val; + +	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); +	if (ret_val) +		return ret_val; + +	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX); + +	if ((data & IGP01E1000_PSSR_SPEED_MASK) == +	    IGP01E1000_PSSR_SPEED_1000MBPS) { +		ret_val = phy->ops.get_cable_length(hw); +		if (ret_val) +			return ret_val; + +		ret_val = e1e_rphy(hw, MII_STAT1000, &data); +		if (ret_val) +			return ret_val; + +		phy->local_rx = (data & LPA_1000LOCALRXOK) +		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; + +		phy->remote_rx = (data & LPA_1000REMRXOK) +		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; +	} else { +		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; +		phy->local_rx = e1000_1000t_rx_status_undefined; +		phy->remote_rx = e1000_1000t_rx_status_undefined; +	} + +	return ret_val; +} + +/** + *  e1000_get_phy_info_ife - Retrieves various IFE PHY states + *  @hw: pointer to the HW structure + * + *  Populates "phy" structure with various feature states. + **/ +s32 e1000_get_phy_info_ife(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u16 data; +	bool link; + +	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); +	if (ret_val) +		return ret_val; + +	if (!link) { +		e_dbg("Phy info is only valid if link is up\n"); +		return -E1000_ERR_CONFIG; +	} + +	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data); +	if (ret_val) +		return ret_val; +	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE); + +	if (phy->polarity_correction) { +		ret_val = e1000_check_polarity_ife(hw); +		if (ret_val) +			return ret_val; +	} else { +		/* Polarity is forced */ +		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY) +				       ? e1000_rev_polarity_reversed +				       : e1000_rev_polarity_normal); +	} + +	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); +	if (ret_val) +		return ret_val; + +	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS); + +	/* The following parameters are undefined for 10/100 operation. */ +	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; +	phy->local_rx = e1000_1000t_rx_status_undefined; +	phy->remote_rx = e1000_1000t_rx_status_undefined; + +	return 0; +} + +/** + *  e1000e_phy_sw_reset - PHY software reset + *  @hw: pointer to the HW structure + * + *  Does a software reset of the PHY by reading the PHY control register and + *  setting/write the control register reset bit to the PHY. + **/ +s32 e1000e_phy_sw_reset(struct e1000_hw *hw) +{ +	s32 ret_val; +	u16 phy_ctrl; + +	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl); +	if (ret_val) +		return ret_val; + +	phy_ctrl |= BMCR_RESET; +	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl); +	if (ret_val) +		return ret_val; + +	udelay(1); + +	return ret_val; +} + +/** + *  e1000e_phy_hw_reset_generic - PHY hardware reset + *  @hw: pointer to the HW structure + * + *  Verify the reset block is not blocking us from resetting.  Acquire + *  semaphore (if necessary) and read/set/write the device control reset + *  bit in the PHY.  Wait the appropriate delay time for the device to + *  reset and release the semaphore (if necessary). + **/ +s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u32 ctrl; + +	if (phy->ops.check_reset_block) { +		ret_val = phy->ops.check_reset_block(hw); +		if (ret_val) +			return 0; +	} + +	ret_val = phy->ops.acquire(hw); +	if (ret_val) +		return ret_val; + +	ctrl = er32(CTRL); +	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); +	e1e_flush(); + +	udelay(phy->reset_delay_us); + +	ew32(CTRL, ctrl); +	e1e_flush(); + +	usleep_range(150, 300); + +	phy->ops.release(hw); + +	return phy->ops.get_cfg_done(hw); +} + +/** + *  e1000e_get_cfg_done_generic - Generic configuration done + *  @hw: pointer to the HW structure + * + *  Generic function to wait 10 milli-seconds for configuration to complete + *  and return success. + **/ +s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw) +{ +	mdelay(10); + +	return 0; +} + +/** + *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY + *  @hw: pointer to the HW structure + * + *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present. + **/ +s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw) +{ +	e_dbg("Running IGP 3 PHY init script\n"); + +	/* PHY init IGP 3 */ +	/* Enable rise/fall, 10-mode work in class-A */ +	e1e_wphy(hw, 0x2F5B, 0x9018); +	/* Remove all caps from Replica path filter */ +	e1e_wphy(hw, 0x2F52, 0x0000); +	/* Bias trimming for ADC, AFE and Driver (Default) */ +	e1e_wphy(hw, 0x2FB1, 0x8B24); +	/* Increase Hybrid poly bias */ +	e1e_wphy(hw, 0x2FB2, 0xF8F0); +	/* Add 4% to Tx amplitude in Gig mode */ +	e1e_wphy(hw, 0x2010, 0x10B0); +	/* Disable trimming (TTT) */ +	e1e_wphy(hw, 0x2011, 0x0000); +	/* Poly DC correction to 94.6% + 2% for all channels */ +	e1e_wphy(hw, 0x20DD, 0x249A); +	/* ABS DC correction to 95.9% */ +	e1e_wphy(hw, 0x20DE, 0x00D3); +	/* BG temp curve trim */ +	e1e_wphy(hw, 0x28B4, 0x04CE); +	/* Increasing ADC OPAMP stage 1 currents to max */ +	e1e_wphy(hw, 0x2F70, 0x29E4); +	/* Force 1000 ( required for enabling PHY regs configuration) */ +	e1e_wphy(hw, 0x0000, 0x0140); +	/* Set upd_freq to 6 */ +	e1e_wphy(hw, 0x1F30, 0x1606); +	/* Disable NPDFE */ +	e1e_wphy(hw, 0x1F31, 0xB814); +	/* Disable adaptive fixed FFE (Default) */ +	e1e_wphy(hw, 0x1F35, 0x002A); +	/* Enable FFE hysteresis */ +	e1e_wphy(hw, 0x1F3E, 0x0067); +	/* Fixed FFE for short cable lengths */ +	e1e_wphy(hw, 0x1F54, 0x0065); +	/* Fixed FFE for medium cable lengths */ +	e1e_wphy(hw, 0x1F55, 0x002A); +	/* Fixed FFE for long cable lengths */ +	e1e_wphy(hw, 0x1F56, 0x002A); +	/* Enable Adaptive Clip Threshold */ +	e1e_wphy(hw, 0x1F72, 0x3FB0); +	/* AHT reset limit to 1 */ +	e1e_wphy(hw, 0x1F76, 0xC0FF); +	/* Set AHT master delay to 127 msec */ +	e1e_wphy(hw, 0x1F77, 0x1DEC); +	/* Set scan bits for AHT */ +	e1e_wphy(hw, 0x1F78, 0xF9EF); +	/* Set AHT Preset bits */ +	e1e_wphy(hw, 0x1F79, 0x0210); +	/* Change integ_factor of channel A to 3 */ +	e1e_wphy(hw, 0x1895, 0x0003); +	/* Change prop_factor of channels BCD to 8 */ +	e1e_wphy(hw, 0x1796, 0x0008); +	/* Change cg_icount + enable integbp for channels BCD */ +	e1e_wphy(hw, 0x1798, 0xD008); +	/* Change cg_icount + enable integbp + change prop_factor_master +	 * to 8 for channel A +	 */ +	e1e_wphy(hw, 0x1898, 0xD918); +	/* Disable AHT in Slave mode on channel A */ +	e1e_wphy(hw, 0x187A, 0x0800); +	/* Enable LPLU and disable AN to 1000 in non-D0a states, +	 * Enable SPD+B2B +	 */ +	e1e_wphy(hw, 0x0019, 0x008D); +	/* Enable restart AN on an1000_dis change */ +	e1e_wphy(hw, 0x001B, 0x2080); +	/* Enable wh_fifo read clock in 10/100 modes */ +	e1e_wphy(hw, 0x0014, 0x0045); +	/* Restart AN, Speed selection is 1000 */ +	e1e_wphy(hw, 0x0000, 0x1340); + +	return 0; +} + +/** + *  e1000e_get_phy_type_from_id - Get PHY type from id + *  @phy_id: phy_id read from the phy + * + *  Returns the phy type from the id. + **/ +enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id) +{ +	enum e1000_phy_type phy_type = e1000_phy_unknown; + +	switch (phy_id) { +	case M88E1000_I_PHY_ID: +	case M88E1000_E_PHY_ID: +	case M88E1111_I_PHY_ID: +	case M88E1011_I_PHY_ID: +		phy_type = e1000_phy_m88; +		break; +	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */ +		phy_type = e1000_phy_igp_2; +		break; +	case GG82563_E_PHY_ID: +		phy_type = e1000_phy_gg82563; +		break; +	case IGP03E1000_E_PHY_ID: +		phy_type = e1000_phy_igp_3; +		break; +	case IFE_E_PHY_ID: +	case IFE_PLUS_E_PHY_ID: +	case IFE_C_E_PHY_ID: +		phy_type = e1000_phy_ife; +		break; +	case BME1000_E_PHY_ID: +	case BME1000_E_PHY_ID_R2: +		phy_type = e1000_phy_bm; +		break; +	case I82578_E_PHY_ID: +		phy_type = e1000_phy_82578; +		break; +	case I82577_E_PHY_ID: +		phy_type = e1000_phy_82577; +		break; +	case I82579_E_PHY_ID: +		phy_type = e1000_phy_82579; +		break; +	case I217_E_PHY_ID: +		phy_type = e1000_phy_i217; +		break; +	default: +		phy_type = e1000_phy_unknown; +		break; +	} +	return phy_type; +} + +/** + *  e1000e_determine_phy_address - Determines PHY address. + *  @hw: pointer to the HW structure + * + *  This uses a trial and error method to loop through possible PHY + *  addresses. It tests each by reading the PHY ID registers and + *  checking for a match. + **/ +s32 e1000e_determine_phy_address(struct e1000_hw *hw) +{ +	u32 phy_addr = 0; +	u32 i; +	enum e1000_phy_type phy_type = e1000_phy_unknown; + +	hw->phy.id = phy_type; + +	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { +		hw->phy.addr = phy_addr; +		i = 0; + +		do { +			e1000e_get_phy_id(hw); +			phy_type = e1000e_get_phy_type_from_id(hw->phy.id); + +			/* If phy_type is valid, break - we found our +			 * PHY address +			 */ +			if (phy_type != e1000_phy_unknown) +				return 0; + +			usleep_range(1000, 2000); +			i++; +		} while (i < 10); +	} + +	return -E1000_ERR_PHY_TYPE; +} + +/** + *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address + *  @page: page to access + * + *  Returns the phy address for the page requested. + **/ +static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg) +{ +	u32 phy_addr = 2; + +	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31)) +		phy_addr = 1; + +	return phy_addr; +} + +/** + *  e1000e_write_phy_reg_bm - Write BM PHY register + *  @hw: pointer to the HW structure + *  @offset: register offset to write to + *  @data: data to write at register offset + * + *  Acquires semaphore, if necessary, then writes the data to PHY register + *  at the offset.  Release any acquired semaphores before exiting. + **/ +s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data) +{ +	s32 ret_val; +	u32 page = offset >> IGP_PAGE_SHIFT; + +	ret_val = hw->phy.ops.acquire(hw); +	if (ret_val) +		return ret_val; + +	/* Page 800 works differently than the rest so it has its own func */ +	if (page == BM_WUC_PAGE) { +		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, +							 false, false); +		goto release; +	} + +	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); + +	if (offset > MAX_PHY_MULTI_PAGE_REG) { +		u32 page_shift, page_select; + +		/* Page select is register 31 for phy address 1 and 22 for +		 * phy address 2 and 3. Page select is shifted only for +		 * phy address 1. +		 */ +		if (hw->phy.addr == 1) { +			page_shift = IGP_PAGE_SHIFT; +			page_select = IGP01E1000_PHY_PAGE_SELECT; +		} else { +			page_shift = 0; +			page_select = BM_PHY_PAGE_SELECT; +		} + +		/* Page is shifted left, PHY expects (page x 32) */ +		ret_val = e1000e_write_phy_reg_mdic(hw, page_select, +						    (page << page_shift)); +		if (ret_val) +			goto release; +	} + +	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, +					    data); + +release: +	hw->phy.ops.release(hw); +	return ret_val; +} + +/** + *  e1000e_read_phy_reg_bm - Read BM PHY register + *  @hw: pointer to the HW structure + *  @offset: register offset to be read + *  @data: pointer to the read data + * + *  Acquires semaphore, if necessary, then reads the PHY register at offset + *  and storing the retrieved information in data.  Release any acquired + *  semaphores before exiting. + **/ +s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data) +{ +	s32 ret_val; +	u32 page = offset >> IGP_PAGE_SHIFT; + +	ret_val = hw->phy.ops.acquire(hw); +	if (ret_val) +		return ret_val; + +	/* Page 800 works differently than the rest so it has its own func */ +	if (page == BM_WUC_PAGE) { +		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, +							 true, false); +		goto release; +	} + +	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); + +	if (offset > MAX_PHY_MULTI_PAGE_REG) { +		u32 page_shift, page_select; + +		/* Page select is register 31 for phy address 1 and 22 for +		 * phy address 2 and 3. Page select is shifted only for +		 * phy address 1. +		 */ +		if (hw->phy.addr == 1) { +			page_shift = IGP_PAGE_SHIFT; +			page_select = IGP01E1000_PHY_PAGE_SELECT; +		} else { +			page_shift = 0; +			page_select = BM_PHY_PAGE_SELECT; +		} + +		/* Page is shifted left, PHY expects (page x 32) */ +		ret_val = e1000e_write_phy_reg_mdic(hw, page_select, +						    (page << page_shift)); +		if (ret_val) +			goto release; +	} + +	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, +					   data); +release: +	hw->phy.ops.release(hw); +	return ret_val; +} + +/** + *  e1000e_read_phy_reg_bm2 - Read BM PHY register + *  @hw: pointer to the HW structure + *  @offset: register offset to be read + *  @data: pointer to the read data + * + *  Acquires semaphore, if necessary, then reads the PHY register at offset + *  and storing the retrieved information in data.  Release any acquired + *  semaphores before exiting. + **/ +s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data) +{ +	s32 ret_val; +	u16 page = (u16)(offset >> IGP_PAGE_SHIFT); + +	ret_val = hw->phy.ops.acquire(hw); +	if (ret_val) +		return ret_val; + +	/* Page 800 works differently than the rest so it has its own func */ +	if (page == BM_WUC_PAGE) { +		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, +							 true, false); +		goto release; +	} + +	hw->phy.addr = 1; + +	if (offset > MAX_PHY_MULTI_PAGE_REG) { +		/* Page is shifted left, PHY expects (page x 32) */ +		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, +						    page); + +		if (ret_val) +			goto release; +	} + +	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, +					   data); +release: +	hw->phy.ops.release(hw); +	return ret_val; +} + +/** + *  e1000e_write_phy_reg_bm2 - Write BM PHY register + *  @hw: pointer to the HW structure + *  @offset: register offset to write to + *  @data: data to write at register offset + * + *  Acquires semaphore, if necessary, then writes the data to PHY register + *  at the offset.  Release any acquired semaphores before exiting. + **/ +s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data) +{ +	s32 ret_val; +	u16 page = (u16)(offset >> IGP_PAGE_SHIFT); + +	ret_val = hw->phy.ops.acquire(hw); +	if (ret_val) +		return ret_val; + +	/* Page 800 works differently than the rest so it has its own func */ +	if (page == BM_WUC_PAGE) { +		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, +							 false, false); +		goto release; +	} + +	hw->phy.addr = 1; + +	if (offset > MAX_PHY_MULTI_PAGE_REG) { +		/* Page is shifted left, PHY expects (page x 32) */ +		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, +						    page); + +		if (ret_val) +			goto release; +	} + +	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, +					    data); + +release: +	hw->phy.ops.release(hw); +	return ret_val; +} + +/** + *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers + *  @hw: pointer to the HW structure + *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG + * + *  Assumes semaphore already acquired and phy_reg points to a valid memory + *  address to store contents of the BM_WUC_ENABLE_REG register. + **/ +s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) +{ +	s32 ret_val; +	u16 temp; + +	/* All page select, port ctrl and wakeup registers use phy address 1 */ +	hw->phy.addr = 1; + +	/* Select Port Control Registers page */ +	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); +	if (ret_val) { +		e_dbg("Could not set Port Control page\n"); +		return ret_val; +	} + +	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); +	if (ret_val) { +		e_dbg("Could not read PHY register %d.%d\n", +		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); +		return ret_val; +	} + +	/* Enable both PHY wakeup mode and Wakeup register page writes. +	 * Prevent a power state change by disabling ME and Host PHY wakeup. +	 */ +	temp = *phy_reg; +	temp |= BM_WUC_ENABLE_BIT; +	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT); + +	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp); +	if (ret_val) { +		e_dbg("Could not write PHY register %d.%d\n", +		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); +		return ret_val; +	} + +	/* Select Host Wakeup Registers page - caller now able to write +	 * registers on the Wakeup registers page +	 */ +	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT)); +} + +/** + *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs + *  @hw: pointer to the HW structure + *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG + * + *  Restore BM_WUC_ENABLE_REG to its original value. + * + *  Assumes semaphore already acquired and *phy_reg is the contents of the + *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by + *  caller. + **/ +s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) +{ +	s32 ret_val; + +	/* Select Port Control Registers page */ +	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); +	if (ret_val) { +		e_dbg("Could not set Port Control page\n"); +		return ret_val; +	} + +	/* Restore 769.17 to its original value */ +	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg); +	if (ret_val) +		e_dbg("Could not restore PHY register %d.%d\n", +		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); + +	return ret_val; +} + +/** + *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register + *  @hw: pointer to the HW structure + *  @offset: register offset to be read or written + *  @data: pointer to the data to read or write + *  @read: determines if operation is read or write + *  @page_set: BM_WUC_PAGE already set and access enabled + * + *  Read the PHY register at offset and store the retrieved information in + *  data, or write data to PHY register at offset.  Note the procedure to + *  access the PHY wakeup registers is different than reading the other PHY + *  registers. It works as such: + *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1 + *  2) Set page to 800 for host (801 if we were manageability) + *  3) Write the address using the address opcode (0x11) + *  4) Read or write the data using the data opcode (0x12) + *  5) Restore 769.17.2 to its original value + * + *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and + *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm(). + * + *  Assumes semaphore is already acquired.  When page_set==true, assumes + *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack + *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()). + **/ +static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, +					  u16 *data, bool read, bool page_set) +{ +	s32 ret_val; +	u16 reg = BM_PHY_REG_NUM(offset); +	u16 page = BM_PHY_REG_PAGE(offset); +	u16 phy_reg = 0; + +	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */ +	if ((hw->mac.type == e1000_pchlan) && +	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE))) +		e_dbg("Attempting to access page %d while gig enabled.\n", +		      page); + +	if (!page_set) { +		/* Enable access to PHY wakeup registers */ +		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); +		if (ret_val) { +			e_dbg("Could not enable PHY wakeup reg access\n"); +			return ret_val; +		} +	} + +	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg); + +	/* Write the Wakeup register page offset value using opcode 0x11 */ +	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg); +	if (ret_val) { +		e_dbg("Could not write address opcode to page %d\n", page); +		return ret_val; +	} + +	if (read) { +		/* Read the Wakeup register page value using opcode 0x12 */ +		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, +						   data); +	} else { +		/* Write the Wakeup register page value using opcode 0x12 */ +		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, +						    *data); +	} + +	if (ret_val) { +		e_dbg("Could not access PHY reg %d.%d\n", page, reg); +		return ret_val; +	} + +	if (!page_set) +		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); + +	return ret_val; +} + +/** + * e1000_power_up_phy_copper - Restore copper link in case of PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, restore the link to previous + * settings. + **/ +void e1000_power_up_phy_copper(struct e1000_hw *hw) +{ +	u16 mii_reg = 0; + +	/* The PHY will retain its settings across a power down/up cycle */ +	e1e_rphy(hw, MII_BMCR, &mii_reg); +	mii_reg &= ~BMCR_PDOWN; +	e1e_wphy(hw, MII_BMCR, mii_reg); +} + +/** + * e1000_power_down_phy_copper - Restore copper link in case of PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, restore the link to previous + * settings. + **/ +void e1000_power_down_phy_copper(struct e1000_hw *hw) +{ +	u16 mii_reg = 0; + +	/* The PHY will retain its settings across a power down/up cycle */ +	e1e_rphy(hw, MII_BMCR, &mii_reg); +	mii_reg |= BMCR_PDOWN; +	e1e_wphy(hw, MII_BMCR, mii_reg); +	usleep_range(1000, 2000); +} + +/** + *  __e1000_read_phy_reg_hv -  Read HV PHY register + *  @hw: pointer to the HW structure + *  @offset: register offset to be read + *  @data: pointer to the read data + *  @locked: semaphore has already been acquired or not + * + *  Acquires semaphore, if necessary, then reads the PHY register at offset + *  and stores the retrieved information in data.  Release any acquired + *  semaphore before exiting. + **/ +static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data, +				   bool locked, bool page_set) +{ +	s32 ret_val; +	u16 page = BM_PHY_REG_PAGE(offset); +	u16 reg = BM_PHY_REG_NUM(offset); +	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); + +	if (!locked) { +		ret_val = hw->phy.ops.acquire(hw); +		if (ret_val) +			return ret_val; +	} + +	/* Page 800 works differently than the rest so it has its own func */ +	if (page == BM_WUC_PAGE) { +		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, +							 true, page_set); +		goto out; +	} + +	if (page > 0 && page < HV_INTC_FC_PAGE_START) { +		ret_val = e1000_access_phy_debug_regs_hv(hw, offset, +							 data, true); +		goto out; +	} + +	if (!page_set) { +		if (page == HV_INTC_FC_PAGE_START) +			page = 0; + +		if (reg > MAX_PHY_MULTI_PAGE_REG) { +			/* Page is shifted left, PHY expects (page x 32) */ +			ret_val = e1000_set_page_igp(hw, +						     (page << IGP_PAGE_SHIFT)); + +			hw->phy.addr = phy_addr; + +			if (ret_val) +				goto out; +		} +	} + +	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page, +	      page << IGP_PAGE_SHIFT, reg); + +	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data); +out: +	if (!locked) +		hw->phy.ops.release(hw); + +	return ret_val; +} + +/** + *  e1000_read_phy_reg_hv -  Read HV PHY register + *  @hw: pointer to the HW structure + *  @offset: register offset to be read + *  @data: pointer to the read data + * + *  Acquires semaphore then reads the PHY register at offset and stores + *  the retrieved information in data.  Release the acquired semaphore + *  before exiting. + **/ +s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data) +{ +	return __e1000_read_phy_reg_hv(hw, offset, data, false, false); +} + +/** + *  e1000_read_phy_reg_hv_locked -  Read HV PHY register + *  @hw: pointer to the HW structure + *  @offset: register offset to be read + *  @data: pointer to the read data + * + *  Reads the PHY register at offset and stores the retrieved information + *  in data.  Assumes semaphore already acquired. + **/ +s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data) +{ +	return __e1000_read_phy_reg_hv(hw, offset, data, true, false); +} + +/** + *  e1000_read_phy_reg_page_hv - Read HV PHY register + *  @hw: pointer to the HW structure + *  @offset: register offset to write to + *  @data: data to write at register offset + * + *  Reads the PHY register at offset and stores the retrieved information + *  in data.  Assumes semaphore already acquired and page already set. + **/ +s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data) +{ +	return __e1000_read_phy_reg_hv(hw, offset, data, true, true); +} + +/** + *  __e1000_write_phy_reg_hv - Write HV PHY register + *  @hw: pointer to the HW structure + *  @offset: register offset to write to + *  @data: data to write at register offset + *  @locked: semaphore has already been acquired or not + * + *  Acquires semaphore, if necessary, then writes the data to PHY register + *  at the offset.  Release any acquired semaphores before exiting. + **/ +static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data, +				    bool locked, bool page_set) +{ +	s32 ret_val; +	u16 page = BM_PHY_REG_PAGE(offset); +	u16 reg = BM_PHY_REG_NUM(offset); +	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); + +	if (!locked) { +		ret_val = hw->phy.ops.acquire(hw); +		if (ret_val) +			return ret_val; +	} + +	/* Page 800 works differently than the rest so it has its own func */ +	if (page == BM_WUC_PAGE) { +		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, +							 false, page_set); +		goto out; +	} + +	if (page > 0 && page < HV_INTC_FC_PAGE_START) { +		ret_val = e1000_access_phy_debug_regs_hv(hw, offset, +							 &data, false); +		goto out; +	} + +	if (!page_set) { +		if (page == HV_INTC_FC_PAGE_START) +			page = 0; + +		/* Workaround MDIO accesses being disabled after entering IEEE +		 * Power Down (when bit 11 of the PHY Control register is set) +		 */ +		if ((hw->phy.type == e1000_phy_82578) && +		    (hw->phy.revision >= 1) && +		    (hw->phy.addr == 2) && +		    !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) { +			u16 data2 = 0x7EFF; + +			ret_val = e1000_access_phy_debug_regs_hv(hw, +								 (1 << 6) | 0x3, +								 &data2, false); +			if (ret_val) +				goto out; +		} + +		if (reg > MAX_PHY_MULTI_PAGE_REG) { +			/* Page is shifted left, PHY expects (page x 32) */ +			ret_val = e1000_set_page_igp(hw, +						     (page << IGP_PAGE_SHIFT)); + +			hw->phy.addr = phy_addr; + +			if (ret_val) +				goto out; +		} +	} + +	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page, +	      page << IGP_PAGE_SHIFT, reg); + +	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, +					    data); + +out: +	if (!locked) +		hw->phy.ops.release(hw); + +	return ret_val; +} + +/** + *  e1000_write_phy_reg_hv - Write HV PHY register + *  @hw: pointer to the HW structure + *  @offset: register offset to write to + *  @data: data to write at register offset + * + *  Acquires semaphore then writes the data to PHY register at the offset. + *  Release the acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data) +{ +	return __e1000_write_phy_reg_hv(hw, offset, data, false, false); +} + +/** + *  e1000_write_phy_reg_hv_locked - Write HV PHY register + *  @hw: pointer to the HW structure + *  @offset: register offset to write to + *  @data: data to write at register offset + * + *  Writes the data to PHY register at the offset.  Assumes semaphore + *  already acquired. + **/ +s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data) +{ +	return __e1000_write_phy_reg_hv(hw, offset, data, true, false); +} + +/** + *  e1000_write_phy_reg_page_hv - Write HV PHY register + *  @hw: pointer to the HW structure + *  @offset: register offset to write to + *  @data: data to write at register offset + * + *  Writes the data to PHY register at the offset.  Assumes semaphore + *  already acquired and page already set. + **/ +s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data) +{ +	return __e1000_write_phy_reg_hv(hw, offset, data, true, true); +} + +/** + *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page + *  @page: page to be accessed + **/ +static u32 e1000_get_phy_addr_for_hv_page(u32 page) +{ +	u32 phy_addr = 2; + +	if (page >= HV_INTC_FC_PAGE_START) +		phy_addr = 1; + +	return phy_addr; +} + +/** + *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers + *  @hw: pointer to the HW structure + *  @offset: register offset to be read or written + *  @data: pointer to the data to be read or written + *  @read: determines if operation is read or write + * + *  Reads the PHY register at offset and stores the retreived information + *  in data.  Assumes semaphore already acquired.  Note that the procedure + *  to access these regs uses the address port and data port to read/write. + *  These accesses done with PHY address 2 and without using pages. + **/ +static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, +					  u16 *data, bool read) +{ +	s32 ret_val; +	u32 addr_reg; +	u32 data_reg; + +	/* This takes care of the difference with desktop vs mobile phy */ +	addr_reg = ((hw->phy.type == e1000_phy_82578) ? +		    I82578_ADDR_REG : I82577_ADDR_REG); +	data_reg = addr_reg + 1; + +	/* All operations in this function are phy address 2 */ +	hw->phy.addr = 2; + +	/* masking with 0x3F to remove the page from offset */ +	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F); +	if (ret_val) { +		e_dbg("Could not write the Address Offset port register\n"); +		return ret_val; +	} + +	/* Read or write the data value next */ +	if (read) +		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data); +	else +		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data); + +	if (ret_val) +		e_dbg("Could not access the Data port register\n"); + +	return ret_val; +} + +/** + *  e1000_link_stall_workaround_hv - Si workaround + *  @hw: pointer to the HW structure + * + *  This function works around a Si bug where the link partner can get + *  a link up indication before the PHY does.  If small packets are sent + *  by the link partner they can be placed in the packet buffer without + *  being properly accounted for by the PHY and will stall preventing + *  further packets from being received.  The workaround is to clear the + *  packet buffer after the PHY detects link up. + **/ +s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw) +{ +	s32 ret_val = 0; +	u16 data; + +	if (hw->phy.type != e1000_phy_82578) +		return 0; + +	/* Do not apply workaround if in PHY loopback bit 14 set */ +	e1e_rphy(hw, MII_BMCR, &data); +	if (data & BMCR_LOOPBACK) +		return 0; + +	/* check if link is up and at 1Gbps */ +	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data); +	if (ret_val) +		return ret_val; + +	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | +		 BM_CS_STATUS_SPEED_MASK); + +	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | +		     BM_CS_STATUS_SPEED_1000)) +		return 0; + +	msleep(200); + +	/* flush the packets in the fifo buffer */ +	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, +			   (HV_MUX_DATA_CTRL_GEN_TO_MAC | +			    HV_MUX_DATA_CTRL_FORCE_SPEED)); +	if (ret_val) +		return ret_val; + +	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC); +} + +/** + *  e1000_check_polarity_82577 - Checks the polarity. + *  @hw: pointer to the HW structure + * + *  Success returns 0, Failure returns -E1000_ERR_PHY (-2) + * + *  Polarity is determined based on the PHY specific status register. + **/ +s32 e1000_check_polarity_82577(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u16 data; + +	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); + +	if (!ret_val) +		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY) +				       ? e1000_rev_polarity_reversed +				       : e1000_rev_polarity_normal); + +	return ret_val; +} + +/** + *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY + *  @hw: pointer to the HW structure + * + *  Calls the PHY setup function to force speed and duplex. + **/ +s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u16 phy_data; +	bool link; + +	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); +	if (ret_val) +		return ret_val; + +	e1000e_phy_force_speed_duplex_setup(hw, &phy_data); + +	ret_val = e1e_wphy(hw, MII_BMCR, phy_data); +	if (ret_val) +		return ret_val; + +	udelay(1); + +	if (phy->autoneg_wait_to_complete) { +		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n"); + +		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, +						      100000, &link); +		if (ret_val) +			return ret_val; + +		if (!link) +			e_dbg("Link taking longer than expected.\n"); + +		/* Try once more */ +		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, +						      100000, &link); +	} + +	return ret_val; +} + +/** + *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information + *  @hw: pointer to the HW structure + * + *  Read PHY status to determine if link is up.  If link is up, then + *  set/determine 10base-T extended distance and polarity correction.  Read + *  PHY port status to determine MDI/MDIx and speed.  Based on the speed, + *  determine on the cable length, local and remote receiver. + **/ +s32 e1000_get_phy_info_82577(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u16 data; +	bool link; + +	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); +	if (ret_val) +		return ret_val; + +	if (!link) { +		e_dbg("Phy info is only valid if link is up\n"); +		return -E1000_ERR_CONFIG; +	} + +	phy->polarity_correction = true; + +	ret_val = e1000_check_polarity_82577(hw); +	if (ret_val) +		return ret_val; + +	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); +	if (ret_val) +		return ret_val; + +	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX); + +	if ((data & I82577_PHY_STATUS2_SPEED_MASK) == +	    I82577_PHY_STATUS2_SPEED_1000MBPS) { +		ret_val = hw->phy.ops.get_cable_length(hw); +		if (ret_val) +			return ret_val; + +		ret_val = e1e_rphy(hw, MII_STAT1000, &data); +		if (ret_val) +			return ret_val; + +		phy->local_rx = (data & LPA_1000LOCALRXOK) +		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; + +		phy->remote_rx = (data & LPA_1000REMRXOK) +		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; +	} else { +		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; +		phy->local_rx = e1000_1000t_rx_status_undefined; +		phy->remote_rx = e1000_1000t_rx_status_undefined; +	} + +	return 0; +} + +/** + *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY + *  @hw: pointer to the HW structure + * + * Reads the diagnostic status register and verifies result is valid before + * placing it in the phy_cable_length field. + **/ +s32 e1000_get_cable_length_82577(struct e1000_hw *hw) +{ +	struct e1000_phy_info *phy = &hw->phy; +	s32 ret_val; +	u16 phy_data, length; + +	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data); +	if (ret_val) +		return ret_val; + +	length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >> +		  I82577_DSTATUS_CABLE_LENGTH_SHIFT); + +	if (length == E1000_CABLE_LENGTH_UNDEFINED) +		return -E1000_ERR_PHY; + +	phy->cable_length = length; + +	return 0; +}  | 
