diff options
Diffstat (limited to 'drivers/net/e1000e/phy.c')
| -rw-r--r-- | drivers/net/e1000e/phy.c | 3261 | 
1 files changed, 0 insertions, 3261 deletions
diff --git a/drivers/net/e1000e/phy.c b/drivers/net/e1000e/phy.c deleted file mode 100644 index 3d3dc0c8235..00000000000 --- a/drivers/net/e1000e/phy.c +++ /dev/null @@ -1,3261 +0,0 @@ -/******************************************************************************* - -  Intel PRO/1000 Linux driver -  Copyright(c) 1999 - 2010 Intel Corporation. - -  This program is free software; you can redistribute it and/or modify it -  under the terms and conditions of the GNU General Public License, -  version 2, as published by the Free Software Foundation. - -  This program is distributed in the hope it will be useful, but WITHOUT -  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or -  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for -  more details. - -  You should have received a copy of the GNU General Public License along with -  this program; if not, write to the Free Software Foundation, Inc., -  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - -  The full GNU General Public License is included in this distribution in -  the file called "COPYING". - -  Contact Information: -  Linux NICS <linux.nics@intel.com> -  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> -  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#include <linux/delay.h> - -#include "e1000.h" - -static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); -static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); -static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); -static s32 e1000_wait_autoneg(struct e1000_hw *hw); -static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg); -static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, -					  u16 *data, bool read); -static u32 e1000_get_phy_addr_for_hv_page(u32 page); -static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, -                                          u16 *data, bool read); - -/* Cable length tables */ -static const u16 e1000_m88_cable_length_table[] = -	{ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; -#define M88E1000_CABLE_LENGTH_TABLE_SIZE \ -		ARRAY_SIZE(e1000_m88_cable_length_table) - -static const u16 e1000_igp_2_cable_length_table[] = -	{ 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, -	  6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, -	  26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, -	  44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, -	  66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, -	  87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, -	  100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, -	  124}; -#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ -		ARRAY_SIZE(e1000_igp_2_cable_length_table) - -#define BM_PHY_REG_PAGE(offset) \ -	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF)) -#define BM_PHY_REG_NUM(offset) \ -	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\ -	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\ -		~MAX_PHY_REG_ADDRESS))) - -#define HV_INTC_FC_PAGE_START             768 -#define I82578_ADDR_REG                   29 -#define I82577_ADDR_REG                   16 -#define I82577_CFG_REG                    22 -#define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15) -#define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */ -#define I82577_CTRL_REG                   23 - -/* 82577 specific PHY registers */ -#define I82577_PHY_CTRL_2            18 -#define I82577_PHY_STATUS_2          26 -#define I82577_PHY_DIAG_STATUS       31 - -/* I82577 PHY Status 2 */ -#define I82577_PHY_STATUS2_REV_POLARITY   0x0400 -#define I82577_PHY_STATUS2_MDIX           0x0800 -#define I82577_PHY_STATUS2_SPEED_MASK     0x0300 -#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200 - -/* I82577 PHY Control 2 */ -#define I82577_PHY_CTRL2_AUTO_MDIX        0x0400 -#define I82577_PHY_CTRL2_FORCE_MDI_MDIX   0x0200 - -/* I82577 PHY Diagnostics Status */ -#define I82577_DSTATUS_CABLE_LENGTH       0x03FC -#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2 - -/* BM PHY Copper Specific Control 1 */ -#define BM_CS_CTRL1                       16 - -#define HV_MUX_DATA_CTRL               PHY_REG(776, 16) -#define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400 -#define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004 - -/** - *  e1000e_check_reset_block_generic - Check if PHY reset is blocked - *  @hw: pointer to the HW structure - * - *  Read the PHY management control register and check whether a PHY reset - *  is blocked.  If a reset is not blocked return 0, otherwise - *  return E1000_BLK_PHY_RESET (12). - **/ -s32 e1000e_check_reset_block_generic(struct e1000_hw *hw) -{ -	u32 manc; - -	manc = er32(MANC); - -	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? -	       E1000_BLK_PHY_RESET : 0; -} - -/** - *  e1000e_get_phy_id - Retrieve the PHY ID and revision - *  @hw: pointer to the HW structure - * - *  Reads the PHY registers and stores the PHY ID and possibly the PHY - *  revision in the hardware structure. - **/ -s32 e1000e_get_phy_id(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val = 0; -	u16 phy_id; -	u16 retry_count = 0; - -	if (!(phy->ops.read_reg)) -		goto out; - -	while (retry_count < 2) { -		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id); -		if (ret_val) -			goto out; - -		phy->id = (u32)(phy_id << 16); -		udelay(20); -		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id); -		if (ret_val) -			goto out; - -		phy->id |= (u32)(phy_id & PHY_REVISION_MASK); -		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); - -		if (phy->id != 0 && phy->id != PHY_REVISION_MASK) -			goto out; - -		retry_count++; -	} -out: -	return ret_val; -} - -/** - *  e1000e_phy_reset_dsp - Reset PHY DSP - *  @hw: pointer to the HW structure - * - *  Reset the digital signal processor. - **/ -s32 e1000e_phy_reset_dsp(struct e1000_hw *hw) -{ -	s32 ret_val; - -	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); -	if (ret_val) -		return ret_val; - -	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0); -} - -/** - *  e1000e_read_phy_reg_mdic - Read MDI control register - *  @hw: pointer to the HW structure - *  @offset: register offset to be read - *  @data: pointer to the read data - * - *  Reads the MDI control register in the PHY at offset and stores the - *  information read to data. - **/ -s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) -{ -	struct e1000_phy_info *phy = &hw->phy; -	u32 i, mdic = 0; - -	if (offset > MAX_PHY_REG_ADDRESS) { -		e_dbg("PHY Address %d is out of range\n", offset); -		return -E1000_ERR_PARAM; -	} - -	/* -	 * Set up Op-code, Phy Address, and register offset in the MDI -	 * Control register.  The MAC will take care of interfacing with the -	 * PHY to retrieve the desired data. -	 */ -	mdic = ((offset << E1000_MDIC_REG_SHIFT) | -		(phy->addr << E1000_MDIC_PHY_SHIFT) | -		(E1000_MDIC_OP_READ)); - -	ew32(MDIC, mdic); - -	/* -	 * Poll the ready bit to see if the MDI read completed -	 * Increasing the time out as testing showed failures with -	 * the lower time out -	 */ -	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { -		udelay(50); -		mdic = er32(MDIC); -		if (mdic & E1000_MDIC_READY) -			break; -	} -	if (!(mdic & E1000_MDIC_READY)) { -		e_dbg("MDI Read did not complete\n"); -		return -E1000_ERR_PHY; -	} -	if (mdic & E1000_MDIC_ERROR) { -		e_dbg("MDI Error\n"); -		return -E1000_ERR_PHY; -	} -	*data = (u16) mdic; - -	return 0; -} - -/** - *  e1000e_write_phy_reg_mdic - Write MDI control register - *  @hw: pointer to the HW structure - *  @offset: register offset to write to - *  @data: data to write to register at offset - * - *  Writes data to MDI control register in the PHY at offset. - **/ -s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) -{ -	struct e1000_phy_info *phy = &hw->phy; -	u32 i, mdic = 0; - -	if (offset > MAX_PHY_REG_ADDRESS) { -		e_dbg("PHY Address %d is out of range\n", offset); -		return -E1000_ERR_PARAM; -	} - -	/* -	 * Set up Op-code, Phy Address, and register offset in the MDI -	 * Control register.  The MAC will take care of interfacing with the -	 * PHY to retrieve the desired data. -	 */ -	mdic = (((u32)data) | -		(offset << E1000_MDIC_REG_SHIFT) | -		(phy->addr << E1000_MDIC_PHY_SHIFT) | -		(E1000_MDIC_OP_WRITE)); - -	ew32(MDIC, mdic); - -	/* -	 * Poll the ready bit to see if the MDI read completed -	 * Increasing the time out as testing showed failures with -	 * the lower time out -	 */ -	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { -		udelay(50); -		mdic = er32(MDIC); -		if (mdic & E1000_MDIC_READY) -			break; -	} -	if (!(mdic & E1000_MDIC_READY)) { -		e_dbg("MDI Write did not complete\n"); -		return -E1000_ERR_PHY; -	} -	if (mdic & E1000_MDIC_ERROR) { -		e_dbg("MDI Error\n"); -		return -E1000_ERR_PHY; -	} - -	return 0; -} - -/** - *  e1000e_read_phy_reg_m88 - Read m88 PHY register - *  @hw: pointer to the HW structure - *  @offset: register offset to be read - *  @data: pointer to the read data - * - *  Acquires semaphore, if necessary, then reads the PHY register at offset - *  and storing the retrieved information in data.  Release any acquired - *  semaphores before exiting. - **/ -s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) -{ -	s32 ret_val; - -	ret_val = hw->phy.ops.acquire(hw); -	if (ret_val) -		return ret_val; - -	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, -					   data); - -	hw->phy.ops.release(hw); - -	return ret_val; -} - -/** - *  e1000e_write_phy_reg_m88 - Write m88 PHY register - *  @hw: pointer to the HW structure - *  @offset: register offset to write to - *  @data: data to write at register offset - * - *  Acquires semaphore, if necessary, then writes the data to PHY register - *  at the offset.  Release any acquired semaphores before exiting. - **/ -s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) -{ -	s32 ret_val; - -	ret_val = hw->phy.ops.acquire(hw); -	if (ret_val) -		return ret_val; - -	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, -					    data); - -	hw->phy.ops.release(hw); - -	return ret_val; -} - -/** - *  __e1000e_read_phy_reg_igp - Read igp PHY register - *  @hw: pointer to the HW structure - *  @offset: register offset to be read - *  @data: pointer to the read data - *  @locked: semaphore has already been acquired or not - * - *  Acquires semaphore, if necessary, then reads the PHY register at offset - *  and stores the retrieved information in data.  Release any acquired - *  semaphores before exiting. - **/ -static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, -                                    bool locked) -{ -	s32 ret_val = 0; - -	if (!locked) { -		if (!(hw->phy.ops.acquire)) -			goto out; - -		ret_val = hw->phy.ops.acquire(hw); -		if (ret_val) -			goto out; -	} - -	if (offset > MAX_PHY_MULTI_PAGE_REG) { -		ret_val = e1000e_write_phy_reg_mdic(hw, -						    IGP01E1000_PHY_PAGE_SELECT, -						    (u16)offset); -		if (ret_val) -			goto release; -	} - -	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, -	                                  data); - -release: -	if (!locked) -		hw->phy.ops.release(hw); -out: -	return ret_val; -} - -/** - *  e1000e_read_phy_reg_igp - Read igp PHY register - *  @hw: pointer to the HW structure - *  @offset: register offset to be read - *  @data: pointer to the read data - * - *  Acquires semaphore then reads the PHY register at offset and stores the - *  retrieved information in data. - *  Release the acquired semaphore before exiting. - **/ -s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) -{ -	return __e1000e_read_phy_reg_igp(hw, offset, data, false); -} - -/** - *  e1000e_read_phy_reg_igp_locked - Read igp PHY register - *  @hw: pointer to the HW structure - *  @offset: register offset to be read - *  @data: pointer to the read data - * - *  Reads the PHY register at offset and stores the retrieved information - *  in data.  Assumes semaphore already acquired. - **/ -s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) -{ -	return __e1000e_read_phy_reg_igp(hw, offset, data, true); -} - -/** - *  e1000e_write_phy_reg_igp - Write igp PHY register - *  @hw: pointer to the HW structure - *  @offset: register offset to write to - *  @data: data to write at register offset - *  @locked: semaphore has already been acquired or not - * - *  Acquires semaphore, if necessary, then writes the data to PHY register - *  at the offset.  Release any acquired semaphores before exiting. - **/ -static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, -                                     bool locked) -{ -	s32 ret_val = 0; - -	if (!locked) { -		if (!(hw->phy.ops.acquire)) -			goto out; - -		ret_val = hw->phy.ops.acquire(hw); -		if (ret_val) -			goto out; -	} - -	if (offset > MAX_PHY_MULTI_PAGE_REG) { -		ret_val = e1000e_write_phy_reg_mdic(hw, -						    IGP01E1000_PHY_PAGE_SELECT, -						    (u16)offset); -		if (ret_val) -			goto release; -	} - -	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, -					    data); - -release: -	if (!locked) -		hw->phy.ops.release(hw); - -out: -	return ret_val; -} - -/** - *  e1000e_write_phy_reg_igp - Write igp PHY register - *  @hw: pointer to the HW structure - *  @offset: register offset to write to - *  @data: data to write at register offset - * - *  Acquires semaphore then writes the data to PHY register - *  at the offset.  Release any acquired semaphores before exiting. - **/ -s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) -{ -	return __e1000e_write_phy_reg_igp(hw, offset, data, false); -} - -/** - *  e1000e_write_phy_reg_igp_locked - Write igp PHY register - *  @hw: pointer to the HW structure - *  @offset: register offset to write to - *  @data: data to write at register offset - * - *  Writes the data to PHY register at the offset. - *  Assumes semaphore already acquired. - **/ -s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) -{ -	return __e1000e_write_phy_reg_igp(hw, offset, data, true); -} - -/** - *  __e1000_read_kmrn_reg - Read kumeran register - *  @hw: pointer to the HW structure - *  @offset: register offset to be read - *  @data: pointer to the read data - *  @locked: semaphore has already been acquired or not - * - *  Acquires semaphore, if necessary.  Then reads the PHY register at offset - *  using the kumeran interface.  The information retrieved is stored in data. - *  Release any acquired semaphores before exiting. - **/ -static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, -                                 bool locked) -{ -	u32 kmrnctrlsta; -	s32 ret_val = 0; - -	if (!locked) { -		if (!(hw->phy.ops.acquire)) -			goto out; - -		ret_val = hw->phy.ops.acquire(hw); -		if (ret_val) -			goto out; -	} - -	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & -		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; -	ew32(KMRNCTRLSTA, kmrnctrlsta); - -	udelay(2); - -	kmrnctrlsta = er32(KMRNCTRLSTA); -	*data = (u16)kmrnctrlsta; - -	if (!locked) -		hw->phy.ops.release(hw); - -out: -	return ret_val; -} - -/** - *  e1000e_read_kmrn_reg -  Read kumeran register - *  @hw: pointer to the HW structure - *  @offset: register offset to be read - *  @data: pointer to the read data - * - *  Acquires semaphore then reads the PHY register at offset using the - *  kumeran interface.  The information retrieved is stored in data. - *  Release the acquired semaphore before exiting. - **/ -s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) -{ -	return __e1000_read_kmrn_reg(hw, offset, data, false); -} - -/** - *  e1000e_read_kmrn_reg_locked -  Read kumeran register - *  @hw: pointer to the HW structure - *  @offset: register offset to be read - *  @data: pointer to the read data - * - *  Reads the PHY register at offset using the kumeran interface.  The - *  information retrieved is stored in data. - *  Assumes semaphore already acquired. - **/ -s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) -{ -	return __e1000_read_kmrn_reg(hw, offset, data, true); -} - -/** - *  __e1000_write_kmrn_reg - Write kumeran register - *  @hw: pointer to the HW structure - *  @offset: register offset to write to - *  @data: data to write at register offset - *  @locked: semaphore has already been acquired or not - * - *  Acquires semaphore, if necessary.  Then write the data to PHY register - *  at the offset using the kumeran interface.  Release any acquired semaphores - *  before exiting. - **/ -static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, -                                  bool locked) -{ -	u32 kmrnctrlsta; -	s32 ret_val = 0; - -	if (!locked) { -		if (!(hw->phy.ops.acquire)) -			goto out; - -		ret_val = hw->phy.ops.acquire(hw); -		if (ret_val) -			goto out; -	} - -	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & -		       E1000_KMRNCTRLSTA_OFFSET) | data; -	ew32(KMRNCTRLSTA, kmrnctrlsta); - -	udelay(2); - -	if (!locked) -		hw->phy.ops.release(hw); - -out: -	return ret_val; -} - -/** - *  e1000e_write_kmrn_reg -  Write kumeran register - *  @hw: pointer to the HW structure - *  @offset: register offset to write to - *  @data: data to write at register offset - * - *  Acquires semaphore then writes the data to the PHY register at the offset - *  using the kumeran interface.  Release the acquired semaphore before exiting. - **/ -s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) -{ -	return __e1000_write_kmrn_reg(hw, offset, data, false); -} - -/** - *  e1000e_write_kmrn_reg_locked -  Write kumeran register - *  @hw: pointer to the HW structure - *  @offset: register offset to write to - *  @data: data to write at register offset - * - *  Write the data to PHY register at the offset using the kumeran interface. - *  Assumes semaphore already acquired. - **/ -s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) -{ -	return __e1000_write_kmrn_reg(hw, offset, data, true); -} - -/** - *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link - *  @hw: pointer to the HW structure - * - *  Sets up Carrier-sense on Transmit and downshift values. - **/ -s32 e1000_copper_link_setup_82577(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u16 phy_data; - -	/* Enable CRS on TX. This must be set for half-duplex operation. */ -	ret_val = phy->ops.read_reg(hw, I82577_CFG_REG, &phy_data); -	if (ret_val) -		goto out; - -	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; - -	/* Enable downshift */ -	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; - -	ret_val = phy->ops.write_reg(hw, I82577_CFG_REG, phy_data); - -out: -	return ret_val; -} - -/** - *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link - *  @hw: pointer to the HW structure - * - *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock - *  and downshift values are set also. - **/ -s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u16 phy_data; - -	/* Enable CRS on Tx. This must be set for half-duplex operation. */ -	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); -	if (ret_val) -		return ret_val; - -	/* For BM PHY this bit is downshift enable */ -	if (phy->type != e1000_phy_bm) -		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - -	/* -	 * Options: -	 *   MDI/MDI-X = 0 (default) -	 *   0 - Auto for all speeds -	 *   1 - MDI mode -	 *   2 - MDI-X mode -	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) -	 */ -	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - -	switch (phy->mdix) { -	case 1: -		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; -		break; -	case 2: -		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; -		break; -	case 3: -		phy_data |= M88E1000_PSCR_AUTO_X_1000T; -		break; -	case 0: -	default: -		phy_data |= M88E1000_PSCR_AUTO_X_MODE; -		break; -	} - -	/* -	 * Options: -	 *   disable_polarity_correction = 0 (default) -	 *       Automatic Correction for Reversed Cable Polarity -	 *   0 - Disabled -	 *   1 - Enabled -	 */ -	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; -	if (phy->disable_polarity_correction == 1) -		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; - -	/* Enable downshift on BM (disabled by default) */ -	if (phy->type == e1000_phy_bm) -		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; - -	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); -	if (ret_val) -		return ret_val; - -	if ((phy->type == e1000_phy_m88) && -	    (phy->revision < E1000_REVISION_4) && -	    (phy->id != BME1000_E_PHY_ID_R2)) { -		/* -		 * Force TX_CLK in the Extended PHY Specific Control Register -		 * to 25MHz clock. -		 */ -		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); -		if (ret_val) -			return ret_val; - -		phy_data |= M88E1000_EPSCR_TX_CLK_25; - -		if ((phy->revision == 2) && -		    (phy->id == M88E1111_I_PHY_ID)) { -			/* 82573L PHY - set the downshift counter to 5x. */ -			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; -			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; -		} else { -			/* Configure Master and Slave downshift values */ -			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | -				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); -			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | -				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); -		} -		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); -		if (ret_val) -			return ret_val; -	} - -	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) { -		/* Set PHY page 0, register 29 to 0x0003 */ -		ret_val = e1e_wphy(hw, 29, 0x0003); -		if (ret_val) -			return ret_val; - -		/* Set PHY page 0, register 30 to 0x0000 */ -		ret_val = e1e_wphy(hw, 30, 0x0000); -		if (ret_val) -			return ret_val; -	} - -	/* Commit the changes. */ -	ret_val = e1000e_commit_phy(hw); -	if (ret_val) { -		e_dbg("Error committing the PHY changes\n"); -		return ret_val; -	} - -	if (phy->type == e1000_phy_82578) { -		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, -		                            &phy_data); -		if (ret_val) -			return ret_val; - -		/* 82578 PHY - set the downshift count to 1x. */ -		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE; -		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK; -		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, -		                             phy_data); -		if (ret_val) -			return ret_val; -	} - -	return 0; -} - -/** - *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link - *  @hw: pointer to the HW structure - * - *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for - *  igp PHY's. - **/ -s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u16 data; - -	ret_val = e1000_phy_hw_reset(hw); -	if (ret_val) { -		e_dbg("Error resetting the PHY.\n"); -		return ret_val; -	} - -	/* -	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid -	 * timeout issues when LFS is enabled. -	 */ -	msleep(100); - -	/* disable lplu d0 during driver init */ -	ret_val = e1000_set_d0_lplu_state(hw, false); -	if (ret_val) { -		e_dbg("Error Disabling LPLU D0\n"); -		return ret_val; -	} -	/* Configure mdi-mdix settings */ -	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data); -	if (ret_val) -		return ret_val; - -	data &= ~IGP01E1000_PSCR_AUTO_MDIX; - -	switch (phy->mdix) { -	case 1: -		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; -		break; -	case 2: -		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; -		break; -	case 0: -	default: -		data |= IGP01E1000_PSCR_AUTO_MDIX; -		break; -	} -	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data); -	if (ret_val) -		return ret_val; - -	/* set auto-master slave resolution settings */ -	if (hw->mac.autoneg) { -		/* -		 * when autonegotiation advertisement is only 1000Mbps then we -		 * should disable SmartSpeed and enable Auto MasterSlave -		 * resolution as hardware default. -		 */ -		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { -			/* Disable SmartSpeed */ -			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, -					   &data); -			if (ret_val) -				return ret_val; - -			data &= ~IGP01E1000_PSCFR_SMART_SPEED; -			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, -					   data); -			if (ret_val) -				return ret_val; - -			/* Set auto Master/Slave resolution process */ -			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data); -			if (ret_val) -				return ret_val; - -			data &= ~CR_1000T_MS_ENABLE; -			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data); -			if (ret_val) -				return ret_val; -		} - -		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data); -		if (ret_val) -			return ret_val; - -		/* load defaults for future use */ -		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? -			((data & CR_1000T_MS_VALUE) ? -			e1000_ms_force_master : -			e1000_ms_force_slave) : -			e1000_ms_auto; - -		switch (phy->ms_type) { -		case e1000_ms_force_master: -			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); -			break; -		case e1000_ms_force_slave: -			data |= CR_1000T_MS_ENABLE; -			data &= ~(CR_1000T_MS_VALUE); -			break; -		case e1000_ms_auto: -			data &= ~CR_1000T_MS_ENABLE; -		default: -			break; -		} -		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data); -	} - -	return ret_val; -} - -/** - *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation - *  @hw: pointer to the HW structure - * - *  Reads the MII auto-neg advertisement register and/or the 1000T control - *  register and if the PHY is already setup for auto-negotiation, then - *  return successful.  Otherwise, setup advertisement and flow control to - *  the appropriate values for the wanted auto-negotiation. - **/ -static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u16 mii_autoneg_adv_reg; -	u16 mii_1000t_ctrl_reg = 0; - -	phy->autoneg_advertised &= phy->autoneg_mask; - -	/* Read the MII Auto-Neg Advertisement Register (Address 4). */ -	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); -	if (ret_val) -		return ret_val; - -	if (phy->autoneg_mask & ADVERTISE_1000_FULL) { -		/* Read the MII 1000Base-T Control Register (Address 9). */ -		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); -		if (ret_val) -			return ret_val; -	} - -	/* -	 * Need to parse both autoneg_advertised and fc and set up -	 * the appropriate PHY registers.  First we will parse for -	 * autoneg_advertised software override.  Since we can advertise -	 * a plethora of combinations, we need to check each bit -	 * individually. -	 */ - -	/* -	 * First we clear all the 10/100 mb speed bits in the Auto-Neg -	 * Advertisement Register (Address 4) and the 1000 mb speed bits in -	 * the  1000Base-T Control Register (Address 9). -	 */ -	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | -				 NWAY_AR_100TX_HD_CAPS | -				 NWAY_AR_10T_FD_CAPS   | -				 NWAY_AR_10T_HD_CAPS); -	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); - -	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); - -	/* Do we want to advertise 10 Mb Half Duplex? */ -	if (phy->autoneg_advertised & ADVERTISE_10_HALF) { -		e_dbg("Advertise 10mb Half duplex\n"); -		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; -	} - -	/* Do we want to advertise 10 Mb Full Duplex? */ -	if (phy->autoneg_advertised & ADVERTISE_10_FULL) { -		e_dbg("Advertise 10mb Full duplex\n"); -		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; -	} - -	/* Do we want to advertise 100 Mb Half Duplex? */ -	if (phy->autoneg_advertised & ADVERTISE_100_HALF) { -		e_dbg("Advertise 100mb Half duplex\n"); -		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; -	} - -	/* Do we want to advertise 100 Mb Full Duplex? */ -	if (phy->autoneg_advertised & ADVERTISE_100_FULL) { -		e_dbg("Advertise 100mb Full duplex\n"); -		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; -	} - -	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */ -	if (phy->autoneg_advertised & ADVERTISE_1000_HALF) -		e_dbg("Advertise 1000mb Half duplex request denied!\n"); - -	/* Do we want to advertise 1000 Mb Full Duplex? */ -	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { -		e_dbg("Advertise 1000mb Full duplex\n"); -		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; -	} - -	/* -	 * Check for a software override of the flow control settings, and -	 * setup the PHY advertisement registers accordingly.  If -	 * auto-negotiation is enabled, then software will have to set the -	 * "PAUSE" bits to the correct value in the Auto-Negotiation -	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- -	 * negotiation. -	 * -	 * The possible values of the "fc" parameter are: -	 *      0:  Flow control is completely disabled -	 *      1:  Rx flow control is enabled (we can receive pause frames -	 *	  but not send pause frames). -	 *      2:  Tx flow control is enabled (we can send pause frames -	 *	  but we do not support receiving pause frames). -	 *      3:  Both Rx and Tx flow control (symmetric) are enabled. -	 *  other:  No software override.  The flow control configuration -	 *	  in the EEPROM is used. -	 */ -	switch (hw->fc.current_mode) { -	case e1000_fc_none: -		/* -		 * Flow control (Rx & Tx) is completely disabled by a -		 * software over-ride. -		 */ -		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); -		break; -	case e1000_fc_rx_pause: -		/* -		 * Rx Flow control is enabled, and Tx Flow control is -		 * disabled, by a software over-ride. -		 * -		 * Since there really isn't a way to advertise that we are -		 * capable of Rx Pause ONLY, we will advertise that we -		 * support both symmetric and asymmetric Rx PAUSE.  Later -		 * (in e1000e_config_fc_after_link_up) we will disable the -		 * hw's ability to send PAUSE frames. -		 */ -		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); -		break; -	case e1000_fc_tx_pause: -		/* -		 * Tx Flow control is enabled, and Rx Flow control is -		 * disabled, by a software over-ride. -		 */ -		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; -		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; -		break; -	case e1000_fc_full: -		/* -		 * Flow control (both Rx and Tx) is enabled by a software -		 * over-ride. -		 */ -		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); -		break; -	default: -		e_dbg("Flow control param set incorrectly\n"); -		ret_val = -E1000_ERR_CONFIG; -		return ret_val; -	} - -	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); -	if (ret_val) -		return ret_val; - -	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); - -	if (phy->autoneg_mask & ADVERTISE_1000_FULL) { -		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); -	} - -	return ret_val; -} - -/** - *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link - *  @hw: pointer to the HW structure - * - *  Performs initial bounds checking on autoneg advertisement parameter, then - *  configure to advertise the full capability.  Setup the PHY to autoneg - *  and restart the negotiation process between the link partner.  If - *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting. - **/ -static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u16 phy_ctrl; - -	/* -	 * Perform some bounds checking on the autoneg advertisement -	 * parameter. -	 */ -	phy->autoneg_advertised &= phy->autoneg_mask; - -	/* -	 * If autoneg_advertised is zero, we assume it was not defaulted -	 * by the calling code so we set to advertise full capability. -	 */ -	if (phy->autoneg_advertised == 0) -		phy->autoneg_advertised = phy->autoneg_mask; - -	e_dbg("Reconfiguring auto-neg advertisement params\n"); -	ret_val = e1000_phy_setup_autoneg(hw); -	if (ret_val) { -		e_dbg("Error Setting up Auto-Negotiation\n"); -		return ret_val; -	} -	e_dbg("Restarting Auto-Neg\n"); - -	/* -	 * Restart auto-negotiation by setting the Auto Neg Enable bit and -	 * the Auto Neg Restart bit in the PHY control register. -	 */ -	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl); -	if (ret_val) -		return ret_val; - -	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); -	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl); -	if (ret_val) -		return ret_val; - -	/* -	 * Does the user want to wait for Auto-Neg to complete here, or -	 * check at a later time (for example, callback routine). -	 */ -	if (phy->autoneg_wait_to_complete) { -		ret_val = e1000_wait_autoneg(hw); -		if (ret_val) { -			e_dbg("Error while waiting for " -				 "autoneg to complete\n"); -			return ret_val; -		} -	} - -	hw->mac.get_link_status = 1; - -	return ret_val; -} - -/** - *  e1000e_setup_copper_link - Configure copper link settings - *  @hw: pointer to the HW structure - * - *  Calls the appropriate function to configure the link for auto-neg or forced - *  speed and duplex.  Then we check for link, once link is established calls - *  to configure collision distance and flow control are called.  If link is - *  not established, we return -E1000_ERR_PHY (-2). - **/ -s32 e1000e_setup_copper_link(struct e1000_hw *hw) -{ -	s32 ret_val; -	bool link; - -	if (hw->mac.autoneg) { -		/* -		 * Setup autoneg and flow control advertisement and perform -		 * autonegotiation. -		 */ -		ret_val = e1000_copper_link_autoneg(hw); -		if (ret_val) -			return ret_val; -	} else { -		/* -		 * PHY will be set to 10H, 10F, 100H or 100F -		 * depending on user settings. -		 */ -		e_dbg("Forcing Speed and Duplex\n"); -		ret_val = e1000_phy_force_speed_duplex(hw); -		if (ret_val) { -			e_dbg("Error Forcing Speed and Duplex\n"); -			return ret_val; -		} -	} - -	/* -	 * Check link status. Wait up to 100 microseconds for link to become -	 * valid. -	 */ -	ret_val = e1000e_phy_has_link_generic(hw, -					     COPPER_LINK_UP_LIMIT, -					     10, -					     &link); -	if (ret_val) -		return ret_val; - -	if (link) { -		e_dbg("Valid link established!!!\n"); -		e1000e_config_collision_dist(hw); -		ret_val = e1000e_config_fc_after_link_up(hw); -	} else { -		e_dbg("Unable to establish link!!!\n"); -	} - -	return ret_val; -} - -/** - *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY - *  @hw: pointer to the HW structure - * - *  Calls the PHY setup function to force speed and duplex.  Clears the - *  auto-crossover to force MDI manually.  Waits for link and returns - *  successful if link up is successful, else -E1000_ERR_PHY (-2). - **/ -s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u16 phy_data; -	bool link; - -	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); -	if (ret_val) -		return ret_val; - -	e1000e_phy_force_speed_duplex_setup(hw, &phy_data); - -	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); -	if (ret_val) -		return ret_val; - -	/* -	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI -	 * forced whenever speed and duplex are forced. -	 */ -	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); -	if (ret_val) -		return ret_val; - -	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; -	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - -	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); -	if (ret_val) -		return ret_val; - -	e_dbg("IGP PSCR: %X\n", phy_data); - -	udelay(1); - -	if (phy->autoneg_wait_to_complete) { -		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n"); - -		ret_val = e1000e_phy_has_link_generic(hw, -						     PHY_FORCE_LIMIT, -						     100000, -						     &link); -		if (ret_val) -			return ret_val; - -		if (!link) -			e_dbg("Link taking longer than expected.\n"); - -		/* Try once more */ -		ret_val = e1000e_phy_has_link_generic(hw, -						     PHY_FORCE_LIMIT, -						     100000, -						     &link); -		if (ret_val) -			return ret_val; -	} - -	return ret_val; -} - -/** - *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY - *  @hw: pointer to the HW structure - * - *  Calls the PHY setup function to force speed and duplex.  Clears the - *  auto-crossover to force MDI manually.  Resets the PHY to commit the - *  changes.  If time expires while waiting for link up, we reset the DSP. - *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon - *  successful completion, else return corresponding error code. - **/ -s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u16 phy_data; -	bool link; - -	/* -	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI -	 * forced whenever speed and duplex are forced. -	 */ -	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); -	if (ret_val) -		return ret_val; - -	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; -	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); -	if (ret_val) -		return ret_val; - -	e_dbg("M88E1000 PSCR: %X\n", phy_data); - -	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); -	if (ret_val) -		return ret_val; - -	e1000e_phy_force_speed_duplex_setup(hw, &phy_data); - -	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); -	if (ret_val) -		return ret_val; - -	/* Reset the phy to commit changes. */ -	ret_val = e1000e_commit_phy(hw); -	if (ret_val) -		return ret_val; - -	if (phy->autoneg_wait_to_complete) { -		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n"); - -		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, -						     100000, &link); -		if (ret_val) -			return ret_val; - -		if (!link) { -			if (hw->phy.type != e1000_phy_m88) { -				e_dbg("Link taking longer than expected.\n"); -			} else { -				/* -				 * We didn't get link. -				 * Reset the DSP and cross our fingers. -				 */ -				ret_val = e1e_wphy(hw, -						M88E1000_PHY_PAGE_SELECT, -						0x001d); -				if (ret_val) -					return ret_val; -				ret_val = e1000e_phy_reset_dsp(hw); -				if (ret_val) -					return ret_val; -			} -		} - -		/* Try once more */ -		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, -						     100000, &link); -		if (ret_val) -			return ret_val; -	} - -	if (hw->phy.type != e1000_phy_m88) -		return 0; - -	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); -	if (ret_val) -		return ret_val; - -	/* -	 * Resetting the phy means we need to re-force TX_CLK in the -	 * Extended PHY Specific Control Register to 25MHz clock from -	 * the reset value of 2.5MHz. -	 */ -	phy_data |= M88E1000_EPSCR_TX_CLK_25; -	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); -	if (ret_val) -		return ret_val; - -	/* -	 * In addition, we must re-enable CRS on Tx for both half and full -	 * duplex. -	 */ -	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); -	if (ret_val) -		return ret_val; - -	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; -	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - -	return ret_val; -} - -/** - *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex - *  @hw: pointer to the HW structure - * - *  Forces the speed and duplex settings of the PHY. - *  This is a function pointer entry point only called by - *  PHY setup routines. - **/ -s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u16 data; -	bool link; - -	ret_val = e1e_rphy(hw, PHY_CONTROL, &data); -	if (ret_val) -		goto out; - -	e1000e_phy_force_speed_duplex_setup(hw, &data); - -	ret_val = e1e_wphy(hw, PHY_CONTROL, data); -	if (ret_val) -		goto out; - -	/* Disable MDI-X support for 10/100 */ -	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); -	if (ret_val) -		goto out; - -	data &= ~IFE_PMC_AUTO_MDIX; -	data &= ~IFE_PMC_FORCE_MDIX; - -	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data); -	if (ret_val) -		goto out; - -	e_dbg("IFE PMC: %X\n", data); - -	udelay(1); - -	if (phy->autoneg_wait_to_complete) { -		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n"); - -		ret_val = e1000e_phy_has_link_generic(hw, -		                                     PHY_FORCE_LIMIT, -		                                     100000, -		                                     &link); -		if (ret_val) -			goto out; - -		if (!link) -			e_dbg("Link taking longer than expected.\n"); - -		/* Try once more */ -		ret_val = e1000e_phy_has_link_generic(hw, -		                                     PHY_FORCE_LIMIT, -		                                     100000, -		                                     &link); -		if (ret_val) -			goto out; -	} - -out: -	return ret_val; -} - -/** - *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex - *  @hw: pointer to the HW structure - *  @phy_ctrl: pointer to current value of PHY_CONTROL - * - *  Forces speed and duplex on the PHY by doing the following: disable flow - *  control, force speed/duplex on the MAC, disable auto speed detection, - *  disable auto-negotiation, configure duplex, configure speed, configure - *  the collision distance, write configuration to CTRL register.  The - *  caller must write to the PHY_CONTROL register for these settings to - *  take affect. - **/ -void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) -{ -	struct e1000_mac_info *mac = &hw->mac; -	u32 ctrl; - -	/* Turn off flow control when forcing speed/duplex */ -	hw->fc.current_mode = e1000_fc_none; - -	/* Force speed/duplex on the mac */ -	ctrl = er32(CTRL); -	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); -	ctrl &= ~E1000_CTRL_SPD_SEL; - -	/* Disable Auto Speed Detection */ -	ctrl &= ~E1000_CTRL_ASDE; - -	/* Disable autoneg on the phy */ -	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN; - -	/* Forcing Full or Half Duplex? */ -	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { -		ctrl &= ~E1000_CTRL_FD; -		*phy_ctrl &= ~MII_CR_FULL_DUPLEX; -		e_dbg("Half Duplex\n"); -	} else { -		ctrl |= E1000_CTRL_FD; -		*phy_ctrl |= MII_CR_FULL_DUPLEX; -		e_dbg("Full Duplex\n"); -	} - -	/* Forcing 10mb or 100mb? */ -	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { -		ctrl |= E1000_CTRL_SPD_100; -		*phy_ctrl |= MII_CR_SPEED_100; -		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); -		e_dbg("Forcing 100mb\n"); -	} else { -		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); -		*phy_ctrl |= MII_CR_SPEED_10; -		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); -		e_dbg("Forcing 10mb\n"); -	} - -	e1000e_config_collision_dist(hw); - -	ew32(CTRL, ctrl); -} - -/** - *  e1000e_set_d3_lplu_state - Sets low power link up state for D3 - *  @hw: pointer to the HW structure - *  @active: boolean used to enable/disable lplu - * - *  Success returns 0, Failure returns 1 - * - *  The low power link up (lplu) state is set to the power management level D3 - *  and SmartSpeed is disabled when active is true, else clear lplu for D3 - *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU - *  is used during Dx states where the power conservation is most important. - *  During driver activity, SmartSpeed should be enabled so performance is - *  maintained. - **/ -s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u16 data; - -	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); -	if (ret_val) -		return ret_val; - -	if (!active) { -		data &= ~IGP02E1000_PM_D3_LPLU; -		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); -		if (ret_val) -			return ret_val; -		/* -		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used -		 * during Dx states where the power conservation is most -		 * important.  During driver activity we should enable -		 * SmartSpeed, so performance is maintained. -		 */ -		if (phy->smart_speed == e1000_smart_speed_on) { -			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, -					   &data); -			if (ret_val) -				return ret_val; - -			data |= IGP01E1000_PSCFR_SMART_SPEED; -			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, -					   data); -			if (ret_val) -				return ret_val; -		} else if (phy->smart_speed == e1000_smart_speed_off) { -			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, -					   &data); -			if (ret_val) -				return ret_val; - -			data &= ~IGP01E1000_PSCFR_SMART_SPEED; -			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, -					   data); -			if (ret_val) -				return ret_val; -		} -	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || -		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || -		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { -		data |= IGP02E1000_PM_D3_LPLU; -		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); -		if (ret_val) -			return ret_val; - -		/* When LPLU is enabled, we should disable SmartSpeed */ -		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); -		if (ret_val) -			return ret_val; - -		data &= ~IGP01E1000_PSCFR_SMART_SPEED; -		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); -	} - -	return ret_val; -} - -/** - *  e1000e_check_downshift - Checks whether a downshift in speed occurred - *  @hw: pointer to the HW structure - * - *  Success returns 0, Failure returns 1 - * - *  A downshift is detected by querying the PHY link health. - **/ -s32 e1000e_check_downshift(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u16 phy_data, offset, mask; - -	switch (phy->type) { -	case e1000_phy_m88: -	case e1000_phy_gg82563: -	case e1000_phy_bm: -	case e1000_phy_82578: -		offset	= M88E1000_PHY_SPEC_STATUS; -		mask	= M88E1000_PSSR_DOWNSHIFT; -		break; -	case e1000_phy_igp_2: -	case e1000_phy_igp_3: -		offset	= IGP01E1000_PHY_LINK_HEALTH; -		mask	= IGP01E1000_PLHR_SS_DOWNGRADE; -		break; -	default: -		/* speed downshift not supported */ -		phy->speed_downgraded = false; -		return 0; -	} - -	ret_val = e1e_rphy(hw, offset, &phy_data); - -	if (!ret_val) -		phy->speed_downgraded = (phy_data & mask); - -	return ret_val; -} - -/** - *  e1000_check_polarity_m88 - Checks the polarity. - *  @hw: pointer to the HW structure - * - *  Success returns 0, Failure returns -E1000_ERR_PHY (-2) - * - *  Polarity is determined based on the PHY specific status register. - **/ -s32 e1000_check_polarity_m88(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u16 data; - -	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data); - -	if (!ret_val) -		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) -				      ? e1000_rev_polarity_reversed -				      : e1000_rev_polarity_normal; - -	return ret_val; -} - -/** - *  e1000_check_polarity_igp - Checks the polarity. - *  @hw: pointer to the HW structure - * - *  Success returns 0, Failure returns -E1000_ERR_PHY (-2) - * - *  Polarity is determined based on the PHY port status register, and the - *  current speed (since there is no polarity at 100Mbps). - **/ -s32 e1000_check_polarity_igp(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u16 data, offset, mask; - -	/* -	 * Polarity is determined based on the speed of -	 * our connection. -	 */ -	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); -	if (ret_val) -		return ret_val; - -	if ((data & IGP01E1000_PSSR_SPEED_MASK) == -	    IGP01E1000_PSSR_SPEED_1000MBPS) { -		offset	= IGP01E1000_PHY_PCS_INIT_REG; -		mask	= IGP01E1000_PHY_POLARITY_MASK; -	} else { -		/* -		 * This really only applies to 10Mbps since -		 * there is no polarity for 100Mbps (always 0). -		 */ -		offset	= IGP01E1000_PHY_PORT_STATUS; -		mask	= IGP01E1000_PSSR_POLARITY_REVERSED; -	} - -	ret_val = e1e_rphy(hw, offset, &data); - -	if (!ret_val) -		phy->cable_polarity = (data & mask) -				      ? e1000_rev_polarity_reversed -				      : e1000_rev_polarity_normal; - -	return ret_val; -} - -/** - *  e1000_check_polarity_ife - Check cable polarity for IFE PHY - *  @hw: pointer to the HW structure - * - *  Polarity is determined on the polarity reversal feature being enabled. - **/ -s32 e1000_check_polarity_ife(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u16 phy_data, offset, mask; - -	/* -	 * Polarity is determined based on the reversal feature being enabled. -	 */ -	if (phy->polarity_correction) { -		offset = IFE_PHY_EXTENDED_STATUS_CONTROL; -		mask = IFE_PESC_POLARITY_REVERSED; -	} else { -		offset = IFE_PHY_SPECIAL_CONTROL; -		mask = IFE_PSC_FORCE_POLARITY; -	} - -	ret_val = e1e_rphy(hw, offset, &phy_data); - -	if (!ret_val) -		phy->cable_polarity = (phy_data & mask) -		                       ? e1000_rev_polarity_reversed -		                       : e1000_rev_polarity_normal; - -	return ret_val; -} - -/** - *  e1000_wait_autoneg - Wait for auto-neg completion - *  @hw: pointer to the HW structure - * - *  Waits for auto-negotiation to complete or for the auto-negotiation time - *  limit to expire, which ever happens first. - **/ -static s32 e1000_wait_autoneg(struct e1000_hw *hw) -{ -	s32 ret_val = 0; -	u16 i, phy_status; - -	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ -	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { -		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); -		if (ret_val) -			break; -		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); -		if (ret_val) -			break; -		if (phy_status & MII_SR_AUTONEG_COMPLETE) -			break; -		msleep(100); -	} - -	/* -	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation -	 * has completed. -	 */ -	return ret_val; -} - -/** - *  e1000e_phy_has_link_generic - Polls PHY for link - *  @hw: pointer to the HW structure - *  @iterations: number of times to poll for link - *  @usec_interval: delay between polling attempts - *  @success: pointer to whether polling was successful or not - * - *  Polls the PHY status register for link, 'iterations' number of times. - **/ -s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, -			       u32 usec_interval, bool *success) -{ -	s32 ret_val = 0; -	u16 i, phy_status; - -	for (i = 0; i < iterations; i++) { -		/* -		 * Some PHYs require the PHY_STATUS register to be read -		 * twice due to the link bit being sticky.  No harm doing -		 * it across the board. -		 */ -		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); -		if (ret_val) -			/* -			 * If the first read fails, another entity may have -			 * ownership of the resources, wait and try again to -			 * see if they have relinquished the resources yet. -			 */ -			udelay(usec_interval); -		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); -		if (ret_val) -			break; -		if (phy_status & MII_SR_LINK_STATUS) -			break; -		if (usec_interval >= 1000) -			mdelay(usec_interval/1000); -		else -			udelay(usec_interval); -	} - -	*success = (i < iterations); - -	return ret_val; -} - -/** - *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY - *  @hw: pointer to the HW structure - * - *  Reads the PHY specific status register to retrieve the cable length - *  information.  The cable length is determined by averaging the minimum and - *  maximum values to get the "average" cable length.  The m88 PHY has four - *  possible cable length values, which are: - *	Register Value		Cable Length - *	0			< 50 meters - *	1			50 - 80 meters - *	2			80 - 110 meters - *	3			110 - 140 meters - *	4			> 140 meters - **/ -s32 e1000e_get_cable_length_m88(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u16 phy_data, index; - -	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); -	if (ret_val) -		goto out; - -	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> -	        M88E1000_PSSR_CABLE_LENGTH_SHIFT; -	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) { -		ret_val = -E1000_ERR_PHY; -		goto out; -	} - -	phy->min_cable_length = e1000_m88_cable_length_table[index]; -	phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; - -	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; - -out: -	return ret_val; -} - -/** - *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY - *  @hw: pointer to the HW structure - * - *  The automatic gain control (agc) normalizes the amplitude of the - *  received signal, adjusting for the attenuation produced by the - *  cable.  By reading the AGC registers, which represent the - *  combination of coarse and fine gain value, the value can be put - *  into a lookup table to obtain the approximate cable length - *  for each channel. - **/ -s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u16 phy_data, i, agc_value = 0; -	u16 cur_agc_index, max_agc_index = 0; -	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; -	u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = -							 {IGP02E1000_PHY_AGC_A, -							  IGP02E1000_PHY_AGC_B, -							  IGP02E1000_PHY_AGC_C, -							  IGP02E1000_PHY_AGC_D}; - -	/* Read the AGC registers for all channels */ -	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { -		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data); -		if (ret_val) -			return ret_val; - -		/* -		 * Getting bits 15:9, which represent the combination of -		 * coarse and fine gain values.  The result is a number -		 * that can be put into the lookup table to obtain the -		 * approximate cable length. -		 */ -		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & -				IGP02E1000_AGC_LENGTH_MASK; - -		/* Array index bound check. */ -		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || -		    (cur_agc_index == 0)) -			return -E1000_ERR_PHY; - -		/* Remove min & max AGC values from calculation. */ -		if (e1000_igp_2_cable_length_table[min_agc_index] > -		    e1000_igp_2_cable_length_table[cur_agc_index]) -			min_agc_index = cur_agc_index; -		if (e1000_igp_2_cable_length_table[max_agc_index] < -		    e1000_igp_2_cable_length_table[cur_agc_index]) -			max_agc_index = cur_agc_index; - -		agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; -	} - -	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + -		      e1000_igp_2_cable_length_table[max_agc_index]); -	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); - -	/* Calculate cable length with the error range of +/- 10 meters. */ -	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? -				 (agc_value - IGP02E1000_AGC_RANGE) : 0; -	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; - -	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; - -	return ret_val; -} - -/** - *  e1000e_get_phy_info_m88 - Retrieve PHY information - *  @hw: pointer to the HW structure - * - *  Valid for only copper links.  Read the PHY status register (sticky read) - *  to verify that link is up.  Read the PHY special control register to - *  determine the polarity and 10base-T extended distance.  Read the PHY - *  special status register to determine MDI/MDIx and current speed.  If - *  speed is 1000, then determine cable length, local and remote receiver. - **/ -s32 e1000e_get_phy_info_m88(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32  ret_val; -	u16 phy_data; -	bool link; - -	if (phy->media_type != e1000_media_type_copper) { -		e_dbg("Phy info is only valid for copper media\n"); -		return -E1000_ERR_CONFIG; -	} - -	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); -	if (ret_val) -		return ret_val; - -	if (!link) { -		e_dbg("Phy info is only valid if link is up\n"); -		return -E1000_ERR_CONFIG; -	} - -	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); -	if (ret_val) -		return ret_val; - -	phy->polarity_correction = (phy_data & -				    M88E1000_PSCR_POLARITY_REVERSAL); - -	ret_val = e1000_check_polarity_m88(hw); -	if (ret_val) -		return ret_val; - -	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); -	if (ret_val) -		return ret_val; - -	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX); - -	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { -		ret_val = e1000_get_cable_length(hw); -		if (ret_val) -			return ret_val; - -		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data); -		if (ret_val) -			return ret_val; - -		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) -				? e1000_1000t_rx_status_ok -				: e1000_1000t_rx_status_not_ok; - -		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) -				 ? e1000_1000t_rx_status_ok -				 : e1000_1000t_rx_status_not_ok; -	} else { -		/* Set values to "undefined" */ -		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; -		phy->local_rx = e1000_1000t_rx_status_undefined; -		phy->remote_rx = e1000_1000t_rx_status_undefined; -	} - -	return ret_val; -} - -/** - *  e1000e_get_phy_info_igp - Retrieve igp PHY information - *  @hw: pointer to the HW structure - * - *  Read PHY status to determine if link is up.  If link is up, then - *  set/determine 10base-T extended distance and polarity correction.  Read - *  PHY port status to determine MDI/MDIx and speed.  Based on the speed, - *  determine on the cable length, local and remote receiver. - **/ -s32 e1000e_get_phy_info_igp(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u16 data; -	bool link; - -	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); -	if (ret_val) -		return ret_val; - -	if (!link) { -		e_dbg("Phy info is only valid if link is up\n"); -		return -E1000_ERR_CONFIG; -	} - -	phy->polarity_correction = true; - -	ret_val = e1000_check_polarity_igp(hw); -	if (ret_val) -		return ret_val; - -	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); -	if (ret_val) -		return ret_val; - -	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX); - -	if ((data & IGP01E1000_PSSR_SPEED_MASK) == -	    IGP01E1000_PSSR_SPEED_1000MBPS) { -		ret_val = e1000_get_cable_length(hw); -		if (ret_val) -			return ret_val; - -		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data); -		if (ret_val) -			return ret_val; - -		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) -				? e1000_1000t_rx_status_ok -				: e1000_1000t_rx_status_not_ok; - -		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) -				 ? e1000_1000t_rx_status_ok -				 : e1000_1000t_rx_status_not_ok; -	} else { -		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; -		phy->local_rx = e1000_1000t_rx_status_undefined; -		phy->remote_rx = e1000_1000t_rx_status_undefined; -	} - -	return ret_val; -} - -/** - *  e1000_get_phy_info_ife - Retrieves various IFE PHY states - *  @hw: pointer to the HW structure - * - *  Populates "phy" structure with various feature states. - **/ -s32 e1000_get_phy_info_ife(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u16 data; -	bool link; - -	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); -	if (ret_val) -		goto out; - -	if (!link) { -		e_dbg("Phy info is only valid if link is up\n"); -		ret_val = -E1000_ERR_CONFIG; -		goto out; -	} - -	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data); -	if (ret_val) -		goto out; -	phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE) -	                           ? false : true; - -	if (phy->polarity_correction) { -		ret_val = e1000_check_polarity_ife(hw); -		if (ret_val) -			goto out; -	} else { -		/* Polarity is forced */ -		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY) -		                      ? e1000_rev_polarity_reversed -		                      : e1000_rev_polarity_normal; -	} - -	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); -	if (ret_val) -		goto out; - -	phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false; - -	/* The following parameters are undefined for 10/100 operation. */ -	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; -	phy->local_rx = e1000_1000t_rx_status_undefined; -	phy->remote_rx = e1000_1000t_rx_status_undefined; - -out: -	return ret_val; -} - -/** - *  e1000e_phy_sw_reset - PHY software reset - *  @hw: pointer to the HW structure - * - *  Does a software reset of the PHY by reading the PHY control register and - *  setting/write the control register reset bit to the PHY. - **/ -s32 e1000e_phy_sw_reset(struct e1000_hw *hw) -{ -	s32 ret_val; -	u16 phy_ctrl; - -	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl); -	if (ret_val) -		return ret_val; - -	phy_ctrl |= MII_CR_RESET; -	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl); -	if (ret_val) -		return ret_val; - -	udelay(1); - -	return ret_val; -} - -/** - *  e1000e_phy_hw_reset_generic - PHY hardware reset - *  @hw: pointer to the HW structure - * - *  Verify the reset block is not blocking us from resetting.  Acquire - *  semaphore (if necessary) and read/set/write the device control reset - *  bit in the PHY.  Wait the appropriate delay time for the device to - *  reset and release the semaphore (if necessary). - **/ -s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u32 ctrl; - -	ret_val = e1000_check_reset_block(hw); -	if (ret_val) -		return 0; - -	ret_val = phy->ops.acquire(hw); -	if (ret_val) -		return ret_val; - -	ctrl = er32(CTRL); -	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); -	e1e_flush(); - -	udelay(phy->reset_delay_us); - -	ew32(CTRL, ctrl); -	e1e_flush(); - -	udelay(150); - -	phy->ops.release(hw); - -	return e1000_get_phy_cfg_done(hw); -} - -/** - *  e1000e_get_cfg_done - Generic configuration done - *  @hw: pointer to the HW structure - * - *  Generic function to wait 10 milli-seconds for configuration to complete - *  and return success. - **/ -s32 e1000e_get_cfg_done(struct e1000_hw *hw) -{ -	mdelay(10); -	return 0; -} - -/** - *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY - *  @hw: pointer to the HW structure - * - *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present. - **/ -s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw) -{ -	e_dbg("Running IGP 3 PHY init script\n"); - -	/* PHY init IGP 3 */ -	/* Enable rise/fall, 10-mode work in class-A */ -	e1e_wphy(hw, 0x2F5B, 0x9018); -	/* Remove all caps from Replica path filter */ -	e1e_wphy(hw, 0x2F52, 0x0000); -	/* Bias trimming for ADC, AFE and Driver (Default) */ -	e1e_wphy(hw, 0x2FB1, 0x8B24); -	/* Increase Hybrid poly bias */ -	e1e_wphy(hw, 0x2FB2, 0xF8F0); -	/* Add 4% to Tx amplitude in Gig mode */ -	e1e_wphy(hw, 0x2010, 0x10B0); -	/* Disable trimming (TTT) */ -	e1e_wphy(hw, 0x2011, 0x0000); -	/* Poly DC correction to 94.6% + 2% for all channels */ -	e1e_wphy(hw, 0x20DD, 0x249A); -	/* ABS DC correction to 95.9% */ -	e1e_wphy(hw, 0x20DE, 0x00D3); -	/* BG temp curve trim */ -	e1e_wphy(hw, 0x28B4, 0x04CE); -	/* Increasing ADC OPAMP stage 1 currents to max */ -	e1e_wphy(hw, 0x2F70, 0x29E4); -	/* Force 1000 ( required for enabling PHY regs configuration) */ -	e1e_wphy(hw, 0x0000, 0x0140); -	/* Set upd_freq to 6 */ -	e1e_wphy(hw, 0x1F30, 0x1606); -	/* Disable NPDFE */ -	e1e_wphy(hw, 0x1F31, 0xB814); -	/* Disable adaptive fixed FFE (Default) */ -	e1e_wphy(hw, 0x1F35, 0x002A); -	/* Enable FFE hysteresis */ -	e1e_wphy(hw, 0x1F3E, 0x0067); -	/* Fixed FFE for short cable lengths */ -	e1e_wphy(hw, 0x1F54, 0x0065); -	/* Fixed FFE for medium cable lengths */ -	e1e_wphy(hw, 0x1F55, 0x002A); -	/* Fixed FFE for long cable lengths */ -	e1e_wphy(hw, 0x1F56, 0x002A); -	/* Enable Adaptive Clip Threshold */ -	e1e_wphy(hw, 0x1F72, 0x3FB0); -	/* AHT reset limit to 1 */ -	e1e_wphy(hw, 0x1F76, 0xC0FF); -	/* Set AHT master delay to 127 msec */ -	e1e_wphy(hw, 0x1F77, 0x1DEC); -	/* Set scan bits for AHT */ -	e1e_wphy(hw, 0x1F78, 0xF9EF); -	/* Set AHT Preset bits */ -	e1e_wphy(hw, 0x1F79, 0x0210); -	/* Change integ_factor of channel A to 3 */ -	e1e_wphy(hw, 0x1895, 0x0003); -	/* Change prop_factor of channels BCD to 8 */ -	e1e_wphy(hw, 0x1796, 0x0008); -	/* Change cg_icount + enable integbp for channels BCD */ -	e1e_wphy(hw, 0x1798, 0xD008); -	/* -	 * Change cg_icount + enable integbp + change prop_factor_master -	 * to 8 for channel A -	 */ -	e1e_wphy(hw, 0x1898, 0xD918); -	/* Disable AHT in Slave mode on channel A */ -	e1e_wphy(hw, 0x187A, 0x0800); -	/* -	 * Enable LPLU and disable AN to 1000 in non-D0a states, -	 * Enable SPD+B2B -	 */ -	e1e_wphy(hw, 0x0019, 0x008D); -	/* Enable restart AN on an1000_dis change */ -	e1e_wphy(hw, 0x001B, 0x2080); -	/* Enable wh_fifo read clock in 10/100 modes */ -	e1e_wphy(hw, 0x0014, 0x0045); -	/* Restart AN, Speed selection is 1000 */ -	e1e_wphy(hw, 0x0000, 0x1340); - -	return 0; -} - -/* Internal function pointers */ - -/** - *  e1000_get_phy_cfg_done - Generic PHY configuration done - *  @hw: pointer to the HW structure - * - *  Return success if silicon family did not implement a family specific - *  get_cfg_done function. - **/ -static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) -{ -	if (hw->phy.ops.get_cfg_done) -		return hw->phy.ops.get_cfg_done(hw); - -	return 0; -} - -/** - *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex - *  @hw: pointer to the HW structure - * - *  When the silicon family has not implemented a forced speed/duplex - *  function for the PHY, simply return 0. - **/ -static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) -{ -	if (hw->phy.ops.force_speed_duplex) -		return hw->phy.ops.force_speed_duplex(hw); - -	return 0; -} - -/** - *  e1000e_get_phy_type_from_id - Get PHY type from id - *  @phy_id: phy_id read from the phy - * - *  Returns the phy type from the id. - **/ -enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id) -{ -	enum e1000_phy_type phy_type = e1000_phy_unknown; - -	switch (phy_id) { -	case M88E1000_I_PHY_ID: -	case M88E1000_E_PHY_ID: -	case M88E1111_I_PHY_ID: -	case M88E1011_I_PHY_ID: -		phy_type = e1000_phy_m88; -		break; -	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ -		phy_type = e1000_phy_igp_2; -		break; -	case GG82563_E_PHY_ID: -		phy_type = e1000_phy_gg82563; -		break; -	case IGP03E1000_E_PHY_ID: -		phy_type = e1000_phy_igp_3; -		break; -	case IFE_E_PHY_ID: -	case IFE_PLUS_E_PHY_ID: -	case IFE_C_E_PHY_ID: -		phy_type = e1000_phy_ife; -		break; -	case BME1000_E_PHY_ID: -	case BME1000_E_PHY_ID_R2: -		phy_type = e1000_phy_bm; -		break; -	case I82578_E_PHY_ID: -		phy_type = e1000_phy_82578; -		break; -	case I82577_E_PHY_ID: -		phy_type = e1000_phy_82577; -		break; -	case I82579_E_PHY_ID: -		phy_type = e1000_phy_82579; -		break; -	default: -		phy_type = e1000_phy_unknown; -		break; -	} -	return phy_type; -} - -/** - *  e1000e_determine_phy_address - Determines PHY address. - *  @hw: pointer to the HW structure - * - *  This uses a trial and error method to loop through possible PHY - *  addresses. It tests each by reading the PHY ID registers and - *  checking for a match. - **/ -s32 e1000e_determine_phy_address(struct e1000_hw *hw) -{ -	s32 ret_val = -E1000_ERR_PHY_TYPE; -	u32 phy_addr = 0; -	u32 i; -	enum e1000_phy_type phy_type = e1000_phy_unknown; - -	hw->phy.id = phy_type; - -	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { -		hw->phy.addr = phy_addr; -		i = 0; - -		do { -			e1000e_get_phy_id(hw); -			phy_type = e1000e_get_phy_type_from_id(hw->phy.id); - -			/* -			 * If phy_type is valid, break - we found our -			 * PHY address -			 */ -			if (phy_type  != e1000_phy_unknown) { -				ret_val = 0; -				goto out; -			} -			msleep(1); -			i++; -		} while (i < 10); -	} - -out: -	return ret_val; -} - -/** - *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address - *  @page: page to access - * - *  Returns the phy address for the page requested. - **/ -static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg) -{ -	u32 phy_addr = 2; - -	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31)) -		phy_addr = 1; - -	return phy_addr; -} - -/** - *  e1000e_write_phy_reg_bm - Write BM PHY register - *  @hw: pointer to the HW structure - *  @offset: register offset to write to - *  @data: data to write at register offset - * - *  Acquires semaphore, if necessary, then writes the data to PHY register - *  at the offset.  Release any acquired semaphores before exiting. - **/ -s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data) -{ -	s32 ret_val; -	u32 page_select = 0; -	u32 page = offset >> IGP_PAGE_SHIFT; -	u32 page_shift = 0; - -	ret_val = hw->phy.ops.acquire(hw); -	if (ret_val) -		return ret_val; - -	/* Page 800 works differently than the rest so it has its own func */ -	if (page == BM_WUC_PAGE) { -		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, -							 false); -		goto out; -	} - -	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); - -	if (offset > MAX_PHY_MULTI_PAGE_REG) { -		/* -		 * Page select is register 31 for phy address 1 and 22 for -		 * phy address 2 and 3. Page select is shifted only for -		 * phy address 1. -		 */ -		if (hw->phy.addr == 1) { -			page_shift = IGP_PAGE_SHIFT; -			page_select = IGP01E1000_PHY_PAGE_SELECT; -		} else { -			page_shift = 0; -			page_select = BM_PHY_PAGE_SELECT; -		} - -		/* Page is shifted left, PHY expects (page x 32) */ -		ret_val = e1000e_write_phy_reg_mdic(hw, page_select, -		                                    (page << page_shift)); -		if (ret_val) -			goto out; -	} - -	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, -	                                    data); - -out: -	hw->phy.ops.release(hw); -	return ret_val; -} - -/** - *  e1000e_read_phy_reg_bm - Read BM PHY register - *  @hw: pointer to the HW structure - *  @offset: register offset to be read - *  @data: pointer to the read data - * - *  Acquires semaphore, if necessary, then reads the PHY register at offset - *  and storing the retrieved information in data.  Release any acquired - *  semaphores before exiting. - **/ -s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data) -{ -	s32 ret_val; -	u32 page_select = 0; -	u32 page = offset >> IGP_PAGE_SHIFT; -	u32 page_shift = 0; - -	ret_val = hw->phy.ops.acquire(hw); -	if (ret_val) -		return ret_val; - -	/* Page 800 works differently than the rest so it has its own func */ -	if (page == BM_WUC_PAGE) { -		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, -							 true); -		goto out; -	} - -	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); - -	if (offset > MAX_PHY_MULTI_PAGE_REG) { -		/* -		 * Page select is register 31 for phy address 1 and 22 for -		 * phy address 2 and 3. Page select is shifted only for -		 * phy address 1. -		 */ -		if (hw->phy.addr == 1) { -			page_shift = IGP_PAGE_SHIFT; -			page_select = IGP01E1000_PHY_PAGE_SELECT; -		} else { -			page_shift = 0; -			page_select = BM_PHY_PAGE_SELECT; -		} - -		/* Page is shifted left, PHY expects (page x 32) */ -		ret_val = e1000e_write_phy_reg_mdic(hw, page_select, -		                                    (page << page_shift)); -		if (ret_val) -			goto out; -	} - -	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, -	                                   data); -out: -	hw->phy.ops.release(hw); -	return ret_val; -} - -/** - *  e1000e_read_phy_reg_bm2 - Read BM PHY register - *  @hw: pointer to the HW structure - *  @offset: register offset to be read - *  @data: pointer to the read data - * - *  Acquires semaphore, if necessary, then reads the PHY register at offset - *  and storing the retrieved information in data.  Release any acquired - *  semaphores before exiting. - **/ -s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data) -{ -	s32 ret_val; -	u16 page = (u16)(offset >> IGP_PAGE_SHIFT); - -	ret_val = hw->phy.ops.acquire(hw); -	if (ret_val) -		return ret_val; - -	/* Page 800 works differently than the rest so it has its own func */ -	if (page == BM_WUC_PAGE) { -		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, -							 true); -		goto out; -	} - -	hw->phy.addr = 1; - -	if (offset > MAX_PHY_MULTI_PAGE_REG) { - -		/* Page is shifted left, PHY expects (page x 32) */ -		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, -						    page); - -		if (ret_val) -			goto out; -	} - -	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, -					   data); -out: -	hw->phy.ops.release(hw); -	return ret_val; -} - -/** - *  e1000e_write_phy_reg_bm2 - Write BM PHY register - *  @hw: pointer to the HW structure - *  @offset: register offset to write to - *  @data: data to write at register offset - * - *  Acquires semaphore, if necessary, then writes the data to PHY register - *  at the offset.  Release any acquired semaphores before exiting. - **/ -s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data) -{ -	s32 ret_val; -	u16 page = (u16)(offset >> IGP_PAGE_SHIFT); - -	ret_val = hw->phy.ops.acquire(hw); -	if (ret_val) -		return ret_val; - -	/* Page 800 works differently than the rest so it has its own func */ -	if (page == BM_WUC_PAGE) { -		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, -							 false); -		goto out; -	} - -	hw->phy.addr = 1; - -	if (offset > MAX_PHY_MULTI_PAGE_REG) { -		/* Page is shifted left, PHY expects (page x 32) */ -		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, -						    page); - -		if (ret_val) -			goto out; -	} - -	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, -					    data); - -out: -	hw->phy.ops.release(hw); -	return ret_val; -} - -/** - *  e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register - *  @hw: pointer to the HW structure - *  @offset: register offset to be read or written - *  @data: pointer to the data to read or write - *  @read: determines if operation is read or write - * - *  Acquires semaphore, if necessary, then reads the PHY register at offset - *  and storing the retrieved information in data.  Release any acquired - *  semaphores before exiting. Note that procedure to read the wakeup - *  registers are different. It works as such: - *  1) Set page 769, register 17, bit 2 = 1 - *  2) Set page to 800 for host (801 if we were manageability) - *  3) Write the address using the address opcode (0x11) - *  4) Read or write the data using the data opcode (0x12) - *  5) Restore 769_17.2 to its original value - * - *  Assumes semaphore already acquired. - **/ -static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, -					  u16 *data, bool read) -{ -	s32 ret_val; -	u16 reg = BM_PHY_REG_NUM(offset); -	u16 phy_reg = 0; - -	/* Gig must be disabled for MDIO accesses to page 800 */ -	if ((hw->mac.type == e1000_pchlan) && -	   (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE))) -		e_dbg("Attempting to access page 800 while gig enabled.\n"); - -	/* All operations in this function are phy address 1 */ -	hw->phy.addr = 1; - -	/* Set page 769 */ -	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, -	                          (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); - -	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg); -	if (ret_val) { -		e_dbg("Could not read PHY page 769\n"); -		goto out; -	} - -	/* First clear bit 4 to avoid a power state change */ -	phy_reg &= ~(BM_WUC_HOST_WU_BIT); -	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); -	if (ret_val) { -		e_dbg("Could not clear PHY page 769 bit 4\n"); -		goto out; -	} - -	/* Write bit 2 = 1, and clear bit 4 to 769_17 */ -	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, -	                                    phy_reg | BM_WUC_ENABLE_BIT); -	if (ret_val) { -		e_dbg("Could not write PHY page 769 bit 2\n"); -		goto out; -	} - -	/* Select page 800 */ -	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, -	                                    (BM_WUC_PAGE << IGP_PAGE_SHIFT)); - -	/* Write the page 800 offset value using opcode 0x11 */ -	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg); -	if (ret_val) { -		e_dbg("Could not write address opcode to page 800\n"); -		goto out; -	} - -	if (read) { -	        /* Read the page 800 value using opcode 0x12 */ -		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, -		                                   data); -	} else { -	        /* Write the page 800 value using opcode 0x12 */ -		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, -						    *data); -	} - -	if (ret_val) { -		e_dbg("Could not access data value from page 800\n"); -		goto out; -	} - -	/* -	 * Restore 769_17.2 to its original value -	 * Set page 769 -	 */ -	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, -	                          (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); - -	/* Clear 769_17.2 */ -	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); -	if (ret_val) { -		e_dbg("Could not clear PHY page 769 bit 2\n"); -		goto out; -	} - -out: -	return ret_val; -} - -/** - * e1000_power_up_phy_copper - Restore copper link in case of PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, restore the link to previous - * settings. - **/ -void e1000_power_up_phy_copper(struct e1000_hw *hw) -{ -	u16 mii_reg = 0; - -	/* The PHY will retain its settings across a power down/up cycle */ -	e1e_rphy(hw, PHY_CONTROL, &mii_reg); -	mii_reg &= ~MII_CR_POWER_DOWN; -	e1e_wphy(hw, PHY_CONTROL, mii_reg); -} - -/** - * e1000_power_down_phy_copper - Restore copper link in case of PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, restore the link to previous - * settings. - **/ -void e1000_power_down_phy_copper(struct e1000_hw *hw) -{ -	u16 mii_reg = 0; - -	/* The PHY will retain its settings across a power down/up cycle */ -	e1e_rphy(hw, PHY_CONTROL, &mii_reg); -	mii_reg |= MII_CR_POWER_DOWN; -	e1e_wphy(hw, PHY_CONTROL, mii_reg); -	msleep(1); -} - -/** - *  e1000e_commit_phy - Soft PHY reset - *  @hw: pointer to the HW structure - * - *  Performs a soft PHY reset on those that apply. This is a function pointer - *  entry point called by drivers. - **/ -s32 e1000e_commit_phy(struct e1000_hw *hw) -{ -	if (hw->phy.ops.commit) -		return hw->phy.ops.commit(hw); - -	return 0; -} - -/** - *  e1000_set_d0_lplu_state - Sets low power link up state for D0 - *  @hw: pointer to the HW structure - *  @active: boolean used to enable/disable lplu - * - *  Success returns 0, Failure returns 1 - * - *  The low power link up (lplu) state is set to the power management level D0 - *  and SmartSpeed is disabled when active is true, else clear lplu for D0 - *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU - *  is used during Dx states where the power conservation is most important. - *  During driver activity, SmartSpeed should be enabled so performance is - *  maintained.  This is a function pointer entry point called by drivers. - **/ -static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) -{ -	if (hw->phy.ops.set_d0_lplu_state) -		return hw->phy.ops.set_d0_lplu_state(hw, active); - -	return 0; -} - -/** - *  __e1000_read_phy_reg_hv -  Read HV PHY register - *  @hw: pointer to the HW structure - *  @offset: register offset to be read - *  @data: pointer to the read data - *  @locked: semaphore has already been acquired or not - * - *  Acquires semaphore, if necessary, then reads the PHY register at offset - *  and stores the retrieved information in data.  Release any acquired - *  semaphore before exiting. - **/ -static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data, -                                   bool locked) -{ -	s32 ret_val; -	u16 page = BM_PHY_REG_PAGE(offset); -	u16 reg = BM_PHY_REG_NUM(offset); - -	if (!locked) { -		ret_val = hw->phy.ops.acquire(hw); -		if (ret_val) -			return ret_val; -	} - -	/* Page 800 works differently than the rest so it has its own func */ -	if (page == BM_WUC_PAGE) { -		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, -		                                         data, true); -		goto out; -	} - -	if (page > 0 && page < HV_INTC_FC_PAGE_START) { -		ret_val = e1000_access_phy_debug_regs_hv(hw, offset, -		                                         data, true); -		goto out; -	} - -	hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); - -	if (page == HV_INTC_FC_PAGE_START) -		page = 0; - -	if (reg > MAX_PHY_MULTI_PAGE_REG) { -		u32 phy_addr = hw->phy.addr; - -		hw->phy.addr = 1; - -		/* Page is shifted left, PHY expects (page x 32) */ -		ret_val = e1000e_write_phy_reg_mdic(hw, -					     IGP01E1000_PHY_PAGE_SELECT, -					     (page << IGP_PAGE_SHIFT)); -		hw->phy.addr = phy_addr; - -		if (ret_val) -			goto out; -	} - -	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, -	                                  data); -out: -	if (!locked) -		hw->phy.ops.release(hw); - -	return ret_val; -} - -/** - *  e1000_read_phy_reg_hv -  Read HV PHY register - *  @hw: pointer to the HW structure - *  @offset: register offset to be read - *  @data: pointer to the read data - * - *  Acquires semaphore then reads the PHY register at offset and stores - *  the retrieved information in data.  Release the acquired semaphore - *  before exiting. - **/ -s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data) -{ -	return __e1000_read_phy_reg_hv(hw, offset, data, false); -} - -/** - *  e1000_read_phy_reg_hv_locked -  Read HV PHY register - *  @hw: pointer to the HW structure - *  @offset: register offset to be read - *  @data: pointer to the read data - * - *  Reads the PHY register at offset and stores the retrieved information - *  in data.  Assumes semaphore already acquired. - **/ -s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data) -{ -	return __e1000_read_phy_reg_hv(hw, offset, data, true); -} - -/** - *  __e1000_write_phy_reg_hv - Write HV PHY register - *  @hw: pointer to the HW structure - *  @offset: register offset to write to - *  @data: data to write at register offset - *  @locked: semaphore has already been acquired or not - * - *  Acquires semaphore, if necessary, then writes the data to PHY register - *  at the offset.  Release any acquired semaphores before exiting. - **/ -static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data, -                                    bool locked) -{ -	s32 ret_val; -	u16 page = BM_PHY_REG_PAGE(offset); -	u16 reg = BM_PHY_REG_NUM(offset); - -	if (!locked) { -		ret_val = hw->phy.ops.acquire(hw); -		if (ret_val) -			return ret_val; -	} - -	/* Page 800 works differently than the rest so it has its own func */ -	if (page == BM_WUC_PAGE) { -		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, -		                                         &data, false); -		goto out; -	} - -	if (page > 0 && page < HV_INTC_FC_PAGE_START) { -		ret_val = e1000_access_phy_debug_regs_hv(hw, offset, -		                                         &data, false); -		goto out; -	} - -	hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); - -	if (page == HV_INTC_FC_PAGE_START) -		page = 0; - -	/* -	 * Workaround MDIO accesses being disabled after entering IEEE Power -	 * Down (whenever bit 11 of the PHY Control register is set) -	 */ -	if ((hw->phy.type == e1000_phy_82578) && -	    (hw->phy.revision >= 1) && -	    (hw->phy.addr == 2) && -	    ((MAX_PHY_REG_ADDRESS & reg) == 0) && -	    (data & (1 << 11))) { -		u16 data2 = 0x7EFF; -		ret_val = e1000_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3, -		                                         &data2, false); -		if (ret_val) -			goto out; -	} - -	if (reg > MAX_PHY_MULTI_PAGE_REG) { -		u32 phy_addr = hw->phy.addr; - -		hw->phy.addr = 1; - -		/* Page is shifted left, PHY expects (page x 32) */ -		ret_val = e1000e_write_phy_reg_mdic(hw, -					     IGP01E1000_PHY_PAGE_SELECT, -					     (page << IGP_PAGE_SHIFT)); -		hw->phy.addr = phy_addr; - -		if (ret_val) -			goto out; -	} - -	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, -	                                  data); - -out: -	if (!locked) -		hw->phy.ops.release(hw); - -	return ret_val; -} - -/** - *  e1000_write_phy_reg_hv - Write HV PHY register - *  @hw: pointer to the HW structure - *  @offset: register offset to write to - *  @data: data to write at register offset - * - *  Acquires semaphore then writes the data to PHY register at the offset. - *  Release the acquired semaphores before exiting. - **/ -s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data) -{ -	return __e1000_write_phy_reg_hv(hw, offset, data, false); -} - -/** - *  e1000_write_phy_reg_hv_locked - Write HV PHY register - *  @hw: pointer to the HW structure - *  @offset: register offset to write to - *  @data: data to write at register offset - * - *  Writes the data to PHY register at the offset.  Assumes semaphore - *  already acquired. - **/ -s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data) -{ -	return __e1000_write_phy_reg_hv(hw, offset, data, true); -} - -/** - *  e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page - *  @page: page to be accessed - **/ -static u32 e1000_get_phy_addr_for_hv_page(u32 page) -{ -	u32 phy_addr = 2; - -	if (page >= HV_INTC_FC_PAGE_START) -		phy_addr = 1; - -	return phy_addr; -} - -/** - *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers - *  @hw: pointer to the HW structure - *  @offset: register offset to be read or written - *  @data: pointer to the data to be read or written - *  @read: determines if operation is read or written - * - *  Reads the PHY register at offset and stores the retreived information - *  in data.  Assumes semaphore already acquired.  Note that the procedure - *  to read these regs uses the address port and data port to read/write. - **/ -static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, -                                          u16 *data, bool read) -{ -	s32 ret_val; -	u32 addr_reg = 0; -	u32 data_reg = 0; - -	/* This takes care of the difference with desktop vs mobile phy */ -	addr_reg = (hw->phy.type == e1000_phy_82578) ? -	           I82578_ADDR_REG : I82577_ADDR_REG; -	data_reg = addr_reg + 1; - -	/* All operations in this function are phy address 2 */ -	hw->phy.addr = 2; - -	/* masking with 0x3F to remove the page from offset */ -	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F); -	if (ret_val) { -		e_dbg("Could not write PHY the HV address register\n"); -		goto out; -	} - -	/* Read or write the data value next */ -	if (read) -		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data); -	else -		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data); - -	if (ret_val) { -		e_dbg("Could not read data value from HV data register\n"); -		goto out; -	} - -out: -	return ret_val; -} - -/** - *  e1000_link_stall_workaround_hv - Si workaround - *  @hw: pointer to the HW structure - * - *  This function works around a Si bug where the link partner can get - *  a link up indication before the PHY does.  If small packets are sent - *  by the link partner they can be placed in the packet buffer without - *  being properly accounted for by the PHY and will stall preventing - *  further packets from being received.  The workaround is to clear the - *  packet buffer after the PHY detects link up. - **/ -s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw) -{ -	s32 ret_val = 0; -	u16 data; - -	if (hw->phy.type != e1000_phy_82578) -		goto out; - -	/* Do not apply workaround if in PHY loopback bit 14 set */ -	hw->phy.ops.read_reg(hw, PHY_CONTROL, &data); -	if (data & PHY_CONTROL_LB) -		goto out; - -	/* check if link is up and at 1Gbps */ -	ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data); -	if (ret_val) -		goto out; - -	data &= BM_CS_STATUS_LINK_UP | -	        BM_CS_STATUS_RESOLVED | -	        BM_CS_STATUS_SPEED_MASK; - -	if (data != (BM_CS_STATUS_LINK_UP | -	             BM_CS_STATUS_RESOLVED | -	             BM_CS_STATUS_SPEED_1000)) -		goto out; - -	mdelay(200); - -	/* flush the packets in the fifo buffer */ -	ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL, -	                                HV_MUX_DATA_CTRL_GEN_TO_MAC | -	                                HV_MUX_DATA_CTRL_FORCE_SPEED); -	if (ret_val) -		goto out; - -	ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL, -	                                HV_MUX_DATA_CTRL_GEN_TO_MAC); - -out: -	return ret_val; -} - -/** - *  e1000_check_polarity_82577 - Checks the polarity. - *  @hw: pointer to the HW structure - * - *  Success returns 0, Failure returns -E1000_ERR_PHY (-2) - * - *  Polarity is determined based on the PHY specific status register. - **/ -s32 e1000_check_polarity_82577(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u16 data; - -	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data); - -	if (!ret_val) -		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY) -		                      ? e1000_rev_polarity_reversed -		                      : e1000_rev_polarity_normal; - -	return ret_val; -} - -/** - *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY - *  @hw: pointer to the HW structure - * - *  Calls the PHY setup function to force speed and duplex. - **/ -s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u16 phy_data; -	bool link; - -	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); -	if (ret_val) -		goto out; - -	e1000e_phy_force_speed_duplex_setup(hw, &phy_data); - -	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); -	if (ret_val) -		goto out; - -	udelay(1); - -	if (phy->autoneg_wait_to_complete) { -		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n"); - -		ret_val = e1000e_phy_has_link_generic(hw, -		                                     PHY_FORCE_LIMIT, -		                                     100000, -		                                     &link); -		if (ret_val) -			goto out; - -		if (!link) -			e_dbg("Link taking longer than expected.\n"); - -		/* Try once more */ -		ret_val = e1000e_phy_has_link_generic(hw, -		                                     PHY_FORCE_LIMIT, -		                                     100000, -		                                     &link); -		if (ret_val) -			goto out; -	} - -out: -	return ret_val; -} - -/** - *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information - *  @hw: pointer to the HW structure - * - *  Read PHY status to determine if link is up.  If link is up, then - *  set/determine 10base-T extended distance and polarity correction.  Read - *  PHY port status to determine MDI/MDIx and speed.  Based on the speed, - *  determine on the cable length, local and remote receiver. - **/ -s32 e1000_get_phy_info_82577(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u16 data; -	bool link; - -	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); -	if (ret_val) -		goto out; - -	if (!link) { -		e_dbg("Phy info is only valid if link is up\n"); -		ret_val = -E1000_ERR_CONFIG; -		goto out; -	} - -	phy->polarity_correction = true; - -	ret_val = e1000_check_polarity_82577(hw); -	if (ret_val) -		goto out; - -	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data); -	if (ret_val) -		goto out; - -	phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false; - -	if ((data & I82577_PHY_STATUS2_SPEED_MASK) == -	    I82577_PHY_STATUS2_SPEED_1000MBPS) { -		ret_val = hw->phy.ops.get_cable_length(hw); -		if (ret_val) -			goto out; - -		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); -		if (ret_val) -			goto out; - -		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) -		                ? e1000_1000t_rx_status_ok -		                : e1000_1000t_rx_status_not_ok; - -		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) -		                 ? e1000_1000t_rx_status_ok -		                 : e1000_1000t_rx_status_not_ok; -	} else { -		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; -		phy->local_rx = e1000_1000t_rx_status_undefined; -		phy->remote_rx = e1000_1000t_rx_status_undefined; -	} - -out: -	return ret_val; -} - -/** - *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY - *  @hw: pointer to the HW structure - * - * Reads the diagnostic status register and verifies result is valid before - * placing it in the phy_cable_length field. - **/ -s32 e1000_get_cable_length_82577(struct e1000_hw *hw) -{ -	struct e1000_phy_info *phy = &hw->phy; -	s32 ret_val; -	u16 phy_data, length; - -	ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data); -	if (ret_val) -		goto out; - -	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >> -	         I82577_DSTATUS_CABLE_LENGTH_SHIFT; - -	if (length == E1000_CABLE_LENGTH_UNDEFINED) -		ret_val = -E1000_ERR_PHY; - -	phy->cable_length = length; - -out: -	return ret_val; -}  | 
