diff options
Diffstat (limited to 'drivers/mtd')
250 files changed, 49214 insertions, 31164 deletions
diff --git a/drivers/mtd/Kconfig b/drivers/mtd/Kconfig index f8210bf2d24..94b821042d9 100644 --- a/drivers/mtd/Kconfig +++ b/drivers/mtd/Kconfig @@ -1,6 +1,6 @@ menuconfig MTD tristate "Memory Technology Device (MTD) support" - depends on HAS_IOMEM + depends on GENERIC_IO help Memory Technology Devices are flash, RAM and similar chips, often used for solid state file systems on embedded devices. This option @@ -12,50 +12,19 @@ menuconfig MTD if MTD -config MTD_DEBUG - bool "Debugging" - help - This turns on low-level debugging for the entire MTD sub-system. - Normally, you should say 'N'. - -config MTD_DEBUG_VERBOSE - int "Debugging verbosity (0 = quiet, 3 = noisy)" - depends on MTD_DEBUG - default "0" - help - Determines the verbosity level of the MTD debugging messages. - config MTD_TESTS - tristate "MTD tests support" + tristate "MTD tests support (DANGEROUS)" depends on m help This option includes various MTD tests into compilation. The tests should normally be compiled as kernel modules. The modules perform various checks and verifications when loaded. -config MTD_CONCAT - tristate "MTD concatenating support" - help - Support for concatenating several MTD devices into a single - (virtual) one. This allows you to have -for example- a JFFS(2) - file system spanning multiple physical flash chips. If unsure, - say 'Y'. - -config MTD_PARTITIONS - bool "MTD partitioning support" - help - If you have a device which needs to divide its flash chip(s) up - into multiple 'partitions', each of which appears to the user as - a separate MTD device, you require this option to be enabled. If - unsure, say 'Y'. - - Note, however, that you don't need this option for the DiskOnChip - devices. Partitioning on NFTL 'devices' is a different - that's the - 'normal' form of partitioning used on a block device. + WARNING: some of the tests will ERASE entire MTD device which they + test. Do not use these tests unless you really know what you do. config MTD_REDBOOT_PARTS tristate "RedBoot partition table parsing" - depends on MTD_PARTITIONS ---help--- RedBoot is a ROM monitor and bootloader which deals with multiple 'images' in flash devices by putting a table one of the erase @@ -72,9 +41,10 @@ config MTD_REDBOOT_PARTS SA1100 map driver (CONFIG_MTD_SA1100) has an option for this, for example. +if MTD_REDBOOT_PARTS + config MTD_REDBOOT_DIRECTORY_BLOCK int "Location of RedBoot partition table" - depends on MTD_REDBOOT_PARTS default "-1" ---help--- This option is the Linux counterpart to the @@ -91,21 +61,21 @@ config MTD_REDBOOT_DIRECTORY_BLOCK config MTD_REDBOOT_PARTS_UNALLOCATED bool "Include unallocated flash regions" - depends on MTD_REDBOOT_PARTS help If you need to register each unallocated flash region as a MTD 'partition', enable this option. config MTD_REDBOOT_PARTS_READONLY bool "Force read-only for RedBoot system images" - depends on MTD_REDBOOT_PARTS help If you need to force read-only for 'RedBoot', 'RedBoot Config' and 'FIS directory' images, enable this option. +endif # MTD_REDBOOT_PARTS + config MTD_CMDLINE_PARTS - bool "Command line partition table parsing" - depends on MTD_PARTITIONS = "y" && MTD = "y" + tristate "Command line partition table parsing" + depends on MTD ---help--- Allow generic configuration of the MTD partition tables via the kernel command line. Multiple flash resources are supported for hardware where @@ -142,7 +112,7 @@ config MTD_CMDLINE_PARTS config MTD_AFS_PARTS tristate "ARM Firmware Suite partition parsing" - depends on ARM && MTD_PARTITIONS + depends on ARM ---help--- The ARM Firmware Suite allows the user to divide flash devices into multiple 'images'. Each such image has a header containing its name @@ -154,42 +124,44 @@ config MTD_AFS_PARTS You will still need the parsing functions to be called by the driver for your particular device. It won't happen automatically. The - 'armflash' map driver (CONFIG_MTD_ARM_INTEGRATOR) does this, for - example. + 'physmap' map driver (CONFIG_MTD_PHYSMAP) does this, for example. config MTD_OF_PARTS - tristate "Flash partition map based on OF description" - depends on (MICROBLAZE || PPC_OF) && MTD_PARTITIONS + tristate "OpenFirmware partitioning information support" + default y + depends on OF help This provides a partition parsing function which derives the partition map from the children of the flash node, - as described in Documentation/powerpc/booting-without-of.txt. + as described in Documentation/devicetree/booting-without-of.txt. config MTD_AR7_PARTS tristate "TI AR7 partitioning support" - depends on MTD_PARTITIONS ---help--- TI AR7 partitioning support -comment "User Modules And Translation Layers" - -config MTD_CHAR - tristate "Direct char device access to MTD devices" +config MTD_BCM63XX_PARTS + tristate "BCM63XX CFE partitioning support" + depends on BCM63XX + select CRC32 help - This provides a character device for each MTD device present in - the system, allowing the user to read and write directly to the - memory chips, and also use ioctl() to obtain information about - the device, or to erase parts of it. + This provides partions parsing for BCM63xx devices with CFE + bootloaders. -config HAVE_MTD_OTP - bool +config MTD_BCM47XX_PARTS + tristate "BCM47XX partitioning support" + depends on BCM47XX || ARCH_BCM_5301X help - Enable access to OTP regions using MTD_CHAR. + This provides partitions parser for devices based on BCM47xx + boards. +comment "User Modules And Translation Layers" + +# +# MTD block device support is select'ed if needed +# config MTD_BLKDEVS - tristate "Common interface to block layer for MTD 'translation layers'" - depends on BLOCK - default n + tristate config MTD_BLOCK tristate "Caching block device access to MTD devices" @@ -307,26 +279,35 @@ config SSFDC config SM_FTL tristate "SmartMedia/xD new translation layer" - depends on EXPERIMENTAL && BLOCK + depends on BLOCK select MTD_BLKDEVS select MTD_NAND_ECC help - This enables new and very EXPERMENTAL support for SmartMedia/xD + This enables EXPERIMENTAL R/W support for SmartMedia/xD FTL (Flash translation layer). - Write support isn't yet well tested, therefore this code IS likely to - eat your card, so please don't use it together with valuable data. - Use readonly driver (CONFIG_SSFDC) instead. + Write support is only lightly tested, therefore this driver + isn't recommended to use with valuable data (anyway if you have + valuable data, do backups regardless of software/hardware you + use, because you never know what will eat your data...) + If you only need R/O access, you can use older R/O driver + (CONFIG_SSFDC) config MTD_OOPS tristate "Log panic/oops to an MTD buffer" - depends on MTD help This enables panic and oops messages to be logged to a circular buffer in a flash partition where it can be read back at some later point. - To use, add console=ttyMTDx to the kernel command line, - where x is the MTD device number to use. +config MTD_SWAP + tristate "Swap on MTD device support" + depends on MTD && SWAP + select MTD_BLKDEVS + help + Provides volatile block device driver on top of mtd partition + suitable for swapping. The mapping of written blocks is not saved. + The driver provides wear leveling by storing erase counter into the + OOB. source "drivers/mtd/chips/Kconfig" @@ -340,6 +321,8 @@ source "drivers/mtd/onenand/Kconfig" source "drivers/mtd/lpddr/Kconfig" +source "drivers/mtd/spi-nor/Kconfig" + source "drivers/mtd/ubi/Kconfig" endif # MTD diff --git a/drivers/mtd/Makefile b/drivers/mtd/Makefile index 760abc53339..99bb9a1f6e1 100644 --- a/drivers/mtd/Makefile +++ b/drivers/mtd/Makefile @@ -4,18 +4,17 @@ # Core functionality. obj-$(CONFIG_MTD) += mtd.o -mtd-y := mtdcore.o mtdsuper.o -mtd-$(CONFIG_MTD_PARTITIONS) += mtdpart.o +mtd-y := mtdcore.o mtdsuper.o mtdconcat.o mtdpart.o mtdchar.o -obj-$(CONFIG_MTD_CONCAT) += mtdconcat.o +obj-$(CONFIG_MTD_OF_PARTS) += ofpart.o obj-$(CONFIG_MTD_REDBOOT_PARTS) += redboot.o obj-$(CONFIG_MTD_CMDLINE_PARTS) += cmdlinepart.o obj-$(CONFIG_MTD_AFS_PARTS) += afs.o obj-$(CONFIG_MTD_AR7_PARTS) += ar7part.o -obj-$(CONFIG_MTD_OF_PARTS) += ofpart.o +obj-$(CONFIG_MTD_BCM63XX_PARTS) += bcm63xxpart.o +obj-$(CONFIG_MTD_BCM47XX_PARTS) += bcm47xxpart.o # 'Users' - code which presents functionality to userspace. -obj-$(CONFIG_MTD_CHAR) += mtdchar.o obj-$(CONFIG_MTD_BLKDEVS) += mtd_blkdevs.o obj-$(CONFIG_MTD_BLOCK) += mtdblock.o obj-$(CONFIG_MTD_BLOCK_RO) += mtdblock_ro.o @@ -26,10 +25,12 @@ obj-$(CONFIG_RFD_FTL) += rfd_ftl.o obj-$(CONFIG_SSFDC) += ssfdc.o obj-$(CONFIG_SM_FTL) += sm_ftl.o obj-$(CONFIG_MTD_OOPS) += mtdoops.o +obj-$(CONFIG_MTD_SWAP) += mtdswap.o nftl-objs := nftlcore.o nftlmount.o inftl-objs := inftlcore.o inftlmount.o obj-y += chips/ lpddr/ maps/ devices/ nand/ onenand/ tests/ +obj-$(CONFIG_MTD_SPI_NOR) += spi-nor/ obj-$(CONFIG_MTD_UBI) += ubi/ diff --git a/drivers/mtd/afs.c b/drivers/mtd/afs.c index cec7ab98b2a..96a33e3f7b0 100644 --- a/drivers/mtd/afs.c +++ b/drivers/mtd/afs.c @@ -2,7 +2,7 @@ drivers/mtd/afs.c: ARM Flash Layout/Partitioning - Copyright (C) 2000 ARM Limited + Copyright © 2000 ARM Limited This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -75,7 +75,7 @@ afs_read_footer(struct mtd_info *mtd, u_int *img_start, u_int *iis_start, size_t sz; int ret; - ret = mtd->read(mtd, ptr, sizeof(fs), &sz, (u_char *) &fs); + ret = mtd_read(mtd, ptr, sizeof(fs), &sz, (u_char *)&fs); if (ret >= 0 && sz != sizeof(fs)) ret = -EINVAL; @@ -132,7 +132,7 @@ afs_read_iis(struct mtd_info *mtd, struct image_info_struct *iis, u_int ptr) int ret, i; memset(iis, 0, sizeof(*iis)); - ret = mtd->read(mtd, ptr, sizeof(*iis), &sz, (u_char *) iis); + ret = mtd_read(mtd, ptr, sizeof(*iis), &sz, (u_char *)iis); if (ret < 0) goto failed; @@ -162,8 +162,8 @@ afs_read_iis(struct mtd_info *mtd, struct image_info_struct *iis, u_int ptr) } static int parse_afs_partitions(struct mtd_info *mtd, - struct mtd_partition **pparts, - unsigned long origin) + struct mtd_partition **pparts, + struct mtd_part_parser_data *data) { struct mtd_partition *parts; u_int mask, off, idx, sz; @@ -264,7 +264,8 @@ static struct mtd_part_parser afs_parser = { static int __init afs_parser_init(void) { - return register_mtd_parser(&afs_parser); + register_mtd_parser(&afs_parser); + return 0; } static void __exit afs_parser_exit(void) diff --git a/drivers/mtd/ar7part.c b/drivers/mtd/ar7part.c index 6697a1ec72d..7c9172ad262 100644 --- a/drivers/mtd/ar7part.c +++ b/drivers/mtd/ar7part.c @@ -26,7 +26,9 @@ #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #include <linux/bootmem.h> -#include <linux/magic.h> +#include <linux/module.h> + +#include <uapi/linux/magic.h> #define AR7_PARTS 4 #define ROOT_OFFSET 0xe0000 @@ -34,10 +36,6 @@ #define LOADER_MAGIC1 le32_to_cpu(0xfeedfa42) #define LOADER_MAGIC2 le32_to_cpu(0xfeed1281) -#ifndef SQUASHFS_MAGIC -#define SQUASHFS_MAGIC 0x73717368 -#endif - struct ar7_bin_rec { unsigned int checksum; unsigned int length; @@ -46,7 +44,7 @@ struct ar7_bin_rec { static int create_mtd_partitions(struct mtd_info *master, struct mtd_partition **pparts, - unsigned long origin) + struct mtd_part_parser_data *data) { struct ar7_bin_rec header; unsigned int offset; @@ -72,8 +70,8 @@ static int create_mtd_partitions(struct mtd_info *master, do { /* Try 10 blocks starting from master->erasesize */ offset = pre_size; - master->read(master, offset, - sizeof(header), &len, (uint8_t *)&header); + mtd_read(master, offset, sizeof(header), &len, + (uint8_t *)&header); if (!strncmp((char *)&header, "TIENV0.8", 8)) ar7_parts[1].offset = pre_size; if (header.checksum == LOADER_MAGIC1) @@ -94,16 +92,16 @@ static int create_mtd_partitions(struct mtd_info *master, case LOADER_MAGIC1: while (header.length) { offset += sizeof(header) + header.length; - master->read(master, offset, sizeof(header), - &len, (uint8_t *)&header); + mtd_read(master, offset, sizeof(header), &len, + (uint8_t *)&header); } root_offset = offset + sizeof(header) + 4; break; case LOADER_MAGIC2: while (header.length) { offset += sizeof(header) + header.length; - master->read(master, offset, sizeof(header), - &len, (uint8_t *)&header); + mtd_read(master, offset, sizeof(header), &len, + (uint8_t *)&header); } root_offset = offset + sizeof(header) + 4 + 0xff; root_offset &= ~(uint32_t)0xff; @@ -113,8 +111,7 @@ static int create_mtd_partitions(struct mtd_info *master, break; } - master->read(master, root_offset, - sizeof(header), &len, (u8 *)&header); + mtd_read(master, root_offset, sizeof(header), &len, (u8 *)&header); if (header.checksum != SQUASHFS_MAGIC) { root_offset += master->erasesize - 1; root_offset &= ~(master->erasesize - 1); @@ -142,10 +139,17 @@ static struct mtd_part_parser ar7_parser = { static int __init ar7_parser_init(void) { - return register_mtd_parser(&ar7_parser); + register_mtd_parser(&ar7_parser); + return 0; +} + +static void __exit ar7_parser_exit(void) +{ + deregister_mtd_parser(&ar7_parser); } module_init(ar7_parser_init); +module_exit(ar7_parser_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR( "Felix Fietkau <nbd@openwrt.org>, " diff --git a/drivers/mtd/bcm47xxpart.c b/drivers/mtd/bcm47xxpart.c new file mode 100644 index 00000000000..adfa74c1bc4 --- /dev/null +++ b/drivers/mtd/bcm47xxpart.c @@ -0,0 +1,282 @@ +/* + * BCM47XX MTD partitioning + * + * Copyright © 2012 Rafał Miłecki <zajec5@gmail.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> + +/* 10 parts were found on sflash on Netgear WNDR4500 */ +#define BCM47XXPART_MAX_PARTS 12 + +/* + * Amount of bytes we read when analyzing each block of flash memory. + * Set it big enough to allow detecting partition and reading important data. + */ +#define BCM47XXPART_BYTES_TO_READ 0x4e8 + +/* Magics */ +#define BOARD_DATA_MAGIC 0x5246504D /* MPFR */ +#define BOARD_DATA_MAGIC2 0xBD0D0BBD +#define CFE_MAGIC 0x43464531 /* 1EFC */ +#define FACTORY_MAGIC 0x59544346 /* FCTY */ +#define NVRAM_HEADER 0x48534C46 /* FLSH */ +#define POT_MAGIC1 0x54544f50 /* POTT */ +#define POT_MAGIC2 0x504f /* OP */ +#define ML_MAGIC1 0x39685a42 +#define ML_MAGIC2 0x26594131 +#define TRX_MAGIC 0x30524448 +#define SQSH_MAGIC 0x71736873 /* shsq */ + +struct trx_header { + uint32_t magic; + uint32_t length; + uint32_t crc32; + uint16_t flags; + uint16_t version; + uint32_t offset[3]; +} __packed; + +static void bcm47xxpart_add_part(struct mtd_partition *part, char *name, + u64 offset, uint32_t mask_flags) +{ + part->name = name; + part->offset = offset; + part->mask_flags = mask_flags; +} + +static int bcm47xxpart_parse(struct mtd_info *master, + struct mtd_partition **pparts, + struct mtd_part_parser_data *data) +{ + struct mtd_partition *parts; + uint8_t i, curr_part = 0; + uint32_t *buf; + size_t bytes_read; + uint32_t offset; + uint32_t blocksize = master->erasesize; + struct trx_header *trx; + int trx_part = -1; + int last_trx_part = -1; + int possible_nvram_sizes[] = { 0x8000, 0xF000, 0x10000, }; + + if (blocksize <= 0x10000) + blocksize = 0x10000; + + /* Alloc */ + parts = kzalloc(sizeof(struct mtd_partition) * BCM47XXPART_MAX_PARTS, + GFP_KERNEL); + if (!parts) + return -ENOMEM; + + buf = kzalloc(BCM47XXPART_BYTES_TO_READ, GFP_KERNEL); + if (!buf) { + kfree(parts); + return -ENOMEM; + } + + /* Parse block by block looking for magics */ + for (offset = 0; offset <= master->size - blocksize; + offset += blocksize) { + /* Nothing more in higher memory */ + if (offset >= 0x2000000) + break; + + if (curr_part >= BCM47XXPART_MAX_PARTS) { + pr_warn("Reached maximum number of partitions, scanning stopped!\n"); + break; + } + + /* Read beginning of the block */ + if (mtd_read(master, offset, BCM47XXPART_BYTES_TO_READ, + &bytes_read, (uint8_t *)buf) < 0) { + pr_err("mtd_read error while parsing (offset: 0x%X)!\n", + offset); + continue; + } + + /* Magic or small NVRAM at 0x400 */ + if ((buf[0x4e0 / 4] == CFE_MAGIC && buf[0x4e4 / 4] == CFE_MAGIC) || + (buf[0x400 / 4] == NVRAM_HEADER)) { + bcm47xxpart_add_part(&parts[curr_part++], "boot", + offset, MTD_WRITEABLE); + continue; + } + + /* + * board_data starts with board_id which differs across boards, + * but we can use 'MPFR' (hopefully) magic at 0x100 + */ + if (buf[0x100 / 4] == BOARD_DATA_MAGIC) { + bcm47xxpart_add_part(&parts[curr_part++], "board_data", + offset, MTD_WRITEABLE); + continue; + } + + /* Found on Huawei E970 */ + if (buf[0x000 / 4] == FACTORY_MAGIC) { + bcm47xxpart_add_part(&parts[curr_part++], "factory", + offset, MTD_WRITEABLE); + continue; + } + + /* POT(TOP) */ + if (buf[0x000 / 4] == POT_MAGIC1 && + (buf[0x004 / 4] & 0xFFFF) == POT_MAGIC2) { + bcm47xxpart_add_part(&parts[curr_part++], "POT", offset, + MTD_WRITEABLE); + continue; + } + + /* ML */ + if (buf[0x010 / 4] == ML_MAGIC1 && + buf[0x014 / 4] == ML_MAGIC2) { + bcm47xxpart_add_part(&parts[curr_part++], "ML", offset, + MTD_WRITEABLE); + continue; + } + + /* TRX */ + if (buf[0x000 / 4] == TRX_MAGIC) { + if (BCM47XXPART_MAX_PARTS - curr_part < 4) { + pr_warn("Not enough partitions left to register trx, scanning stopped!\n"); + break; + } + + trx = (struct trx_header *)buf; + + trx_part = curr_part; + bcm47xxpart_add_part(&parts[curr_part++], "firmware", + offset, 0); + + i = 0; + /* We have LZMA loader if offset[2] points to sth */ + if (trx->offset[2]) { + bcm47xxpart_add_part(&parts[curr_part++], + "loader", + offset + trx->offset[i], + 0); + i++; + } + + bcm47xxpart_add_part(&parts[curr_part++], "linux", + offset + trx->offset[i], 0); + i++; + + /* + * Pure rootfs size is known and can be calculated as: + * trx->length - trx->offset[i]. We don't fill it as + * we want to have jffs2 (overlay) in the same mtd. + */ + bcm47xxpart_add_part(&parts[curr_part++], "rootfs", + offset + trx->offset[i], 0); + i++; + + last_trx_part = curr_part - 1; + + /* + * We have whole TRX scanned, skip to the next part. Use + * roundown (not roundup), as the loop will increase + * offset in next step. + */ + offset = rounddown(offset + trx->length, blocksize); + continue; + } + + /* Squashfs on devices not using TRX */ + if (buf[0x000 / 4] == SQSH_MAGIC) { + bcm47xxpart_add_part(&parts[curr_part++], "rootfs", + offset, 0); + continue; + } + + /* Read middle of the block */ + if (mtd_read(master, offset + 0x8000, 0x4, + &bytes_read, (uint8_t *)buf) < 0) { + pr_err("mtd_read error while parsing (offset: 0x%X)!\n", + offset); + continue; + } + + /* Some devices (ex. WNDR3700v3) don't have a standard 'MPFR' */ + if (buf[0x000 / 4] == BOARD_DATA_MAGIC2) { + bcm47xxpart_add_part(&parts[curr_part++], "board_data", + offset, MTD_WRITEABLE); + continue; + } + } + + /* Look for NVRAM at the end of the last block. */ + for (i = 0; i < ARRAY_SIZE(possible_nvram_sizes); i++) { + if (curr_part >= BCM47XXPART_MAX_PARTS) { + pr_warn("Reached maximum number of partitions, scanning stopped!\n"); + break; + } + + offset = master->size - possible_nvram_sizes[i]; + if (mtd_read(master, offset, 0x4, &bytes_read, + (uint8_t *)buf) < 0) { + pr_err("mtd_read error while reading at offset 0x%X!\n", + offset); + continue; + } + + /* Standard NVRAM */ + if (buf[0] == NVRAM_HEADER) { + bcm47xxpart_add_part(&parts[curr_part++], "nvram", + master->size - blocksize, 0); + break; + } + } + + kfree(buf); + + /* + * Assume that partitions end at the beginning of the one they are + * followed by. + */ + for (i = 0; i < curr_part; i++) { + u64 next_part_offset = (i < curr_part - 1) ? + parts[i + 1].offset : master->size; + + parts[i].size = next_part_offset - parts[i].offset; + if (i == last_trx_part && trx_part >= 0) + parts[trx_part].size = next_part_offset - + parts[trx_part].offset; + } + + *pparts = parts; + return curr_part; +}; + +static struct mtd_part_parser bcm47xxpart_mtd_parser = { + .owner = THIS_MODULE, + .parse_fn = bcm47xxpart_parse, + .name = "bcm47xxpart", +}; + +static int __init bcm47xxpart_init(void) +{ + register_mtd_parser(&bcm47xxpart_mtd_parser); + return 0; +} + +static void __exit bcm47xxpart_exit(void) +{ + deregister_mtd_parser(&bcm47xxpart_mtd_parser); +} + +module_init(bcm47xxpart_init); +module_exit(bcm47xxpart_exit); + +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("MTD partitioning for BCM47XX flash memories"); diff --git a/drivers/mtd/bcm63xxpart.c b/drivers/mtd/bcm63xxpart.c new file mode 100644 index 00000000000..b2443f7031c --- /dev/null +++ b/drivers/mtd/bcm63xxpart.c @@ -0,0 +1,241 @@ +/* + * BCM63XX CFE image tag parser + * + * Copyright © 2006-2008 Florian Fainelli <florian@openwrt.org> + * Mike Albon <malbon@openwrt.org> + * Copyright © 2009-2010 Daniel Dickinson <openwrt@cshore.neomailbox.net> + * Copyright © 2011-2013 Jonas Gorski <jonas.gorski@gmail.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/crc32.h> +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/sizes.h> +#include <linux/slab.h> +#include <linux/vmalloc.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> + +#include <asm/mach-bcm63xx/bcm63xx_nvram.h> +#include <asm/mach-bcm63xx/bcm963xx_tag.h> +#include <asm/mach-bcm63xx/board_bcm963xx.h> + +#define BCM63XX_EXTENDED_SIZE 0xBFC00000 /* Extended flash address */ + +#define BCM63XX_CFE_BLOCK_SIZE SZ_64K /* always at least 64KiB */ + +#define BCM63XX_CFE_MAGIC_OFFSET 0x4e0 + +static int bcm63xx_detect_cfe(struct mtd_info *master) +{ + char buf[9]; + int ret; + size_t retlen; + + ret = mtd_read(master, BCM963XX_CFE_VERSION_OFFSET, 5, &retlen, + (void *)buf); + buf[retlen] = 0; + + if (ret) + return ret; + + if (strncmp("cfe-v", buf, 5) == 0) + return 0; + + /* very old CFE's do not have the cfe-v string, so check for magic */ + ret = mtd_read(master, BCM63XX_CFE_MAGIC_OFFSET, 8, &retlen, + (void *)buf); + buf[retlen] = 0; + + return strncmp("CFE1CFE1", buf, 8); +} + +static int bcm63xx_parse_cfe_partitions(struct mtd_info *master, + struct mtd_partition **pparts, + struct mtd_part_parser_data *data) +{ + /* CFE, NVRAM and global Linux are always present */ + int nrparts = 3, curpart = 0; + struct bcm_tag *buf; + struct mtd_partition *parts; + int ret; + size_t retlen; + unsigned int rootfsaddr, kerneladdr, spareaddr; + unsigned int rootfslen, kernellen, sparelen, totallen; + unsigned int cfelen, nvramlen; + unsigned int cfe_erasesize; + int i; + u32 computed_crc; + bool rootfs_first = false; + + if (bcm63xx_detect_cfe(master)) + return -EINVAL; + + cfe_erasesize = max_t(uint32_t, master->erasesize, + BCM63XX_CFE_BLOCK_SIZE); + + cfelen = cfe_erasesize; + nvramlen = bcm63xx_nvram_get_psi_size() * SZ_1K; + nvramlen = roundup(nvramlen, cfe_erasesize); + + /* Allocate memory for buffer */ + buf = vmalloc(sizeof(struct bcm_tag)); + if (!buf) + return -ENOMEM; + + /* Get the tag */ + ret = mtd_read(master, cfelen, sizeof(struct bcm_tag), &retlen, + (void *)buf); + + if (retlen != sizeof(struct bcm_tag)) { + vfree(buf); + return -EIO; + } + + computed_crc = crc32_le(IMAGETAG_CRC_START, (u8 *)buf, + offsetof(struct bcm_tag, header_crc)); + if (computed_crc == buf->header_crc) { + char *boardid = &(buf->board_id[0]); + char *tagversion = &(buf->tag_version[0]); + + sscanf(buf->flash_image_start, "%u", &rootfsaddr); + sscanf(buf->kernel_address, "%u", &kerneladdr); + sscanf(buf->kernel_length, "%u", &kernellen); + sscanf(buf->total_length, "%u", &totallen); + + pr_info("CFE boot tag found with version %s and board type %s\n", + tagversion, boardid); + + kerneladdr = kerneladdr - BCM63XX_EXTENDED_SIZE; + rootfsaddr = rootfsaddr - BCM63XX_EXTENDED_SIZE; + spareaddr = roundup(totallen, master->erasesize) + cfelen; + + if (rootfsaddr < kerneladdr) { + /* default Broadcom layout */ + rootfslen = kerneladdr - rootfsaddr; + rootfs_first = true; + } else { + /* OpenWrt layout */ + rootfsaddr = kerneladdr + kernellen; + rootfslen = spareaddr - rootfsaddr; + } + } else { + pr_warn("CFE boot tag CRC invalid (expected %08x, actual %08x)\n", + buf->header_crc, computed_crc); + kernellen = 0; + rootfslen = 0; + rootfsaddr = 0; + spareaddr = cfelen; + } + sparelen = master->size - spareaddr - nvramlen; + + /* Determine number of partitions */ + if (rootfslen > 0) + nrparts++; + + if (kernellen > 0) + nrparts++; + + /* Ask kernel for more memory */ + parts = kzalloc(sizeof(*parts) * nrparts + 10 * nrparts, GFP_KERNEL); + if (!parts) { + vfree(buf); + return -ENOMEM; + } + + /* Start building partition list */ + parts[curpart].name = "CFE"; + parts[curpart].offset = 0; + parts[curpart].size = cfelen; + curpart++; + + if (kernellen > 0) { + int kernelpart = curpart; + + if (rootfslen > 0 && rootfs_first) + kernelpart++; + parts[kernelpart].name = "kernel"; + parts[kernelpart].offset = kerneladdr; + parts[kernelpart].size = kernellen; + curpart++; + } + + if (rootfslen > 0) { + int rootfspart = curpart; + + if (kernellen > 0 && rootfs_first) + rootfspart--; + parts[rootfspart].name = "rootfs"; + parts[rootfspart].offset = rootfsaddr; + parts[rootfspart].size = rootfslen; + if (sparelen > 0 && !rootfs_first) + parts[rootfspart].size += sparelen; + curpart++; + } + + parts[curpart].name = "nvram"; + parts[curpart].offset = master->size - nvramlen; + parts[curpart].size = nvramlen; + curpart++; + + /* Global partition "linux" to make easy firmware upgrade */ + parts[curpart].name = "linux"; + parts[curpart].offset = cfelen; + parts[curpart].size = master->size - cfelen - nvramlen; + + for (i = 0; i < nrparts; i++) + pr_info("Partition %d is %s offset %llx and length %llx\n", i, + parts[i].name, parts[i].offset, parts[i].size); + + pr_info("Spare partition is offset %x and length %x\n", spareaddr, + sparelen); + + *pparts = parts; + vfree(buf); + + return nrparts; +}; + +static struct mtd_part_parser bcm63xx_cfe_parser = { + .owner = THIS_MODULE, + .parse_fn = bcm63xx_parse_cfe_partitions, + .name = "bcm63xxpart", +}; + +static int __init bcm63xx_cfe_parser_init(void) +{ + register_mtd_parser(&bcm63xx_cfe_parser); + return 0; +} + +static void __exit bcm63xx_cfe_parser_exit(void) +{ + deregister_mtd_parser(&bcm63xx_cfe_parser); +} + +module_init(bcm63xx_cfe_parser_init); +module_exit(bcm63xx_cfe_parser_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Daniel Dickinson <openwrt@cshore.neomailbox.net>"); +MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>"); +MODULE_AUTHOR("Mike Albon <malbon@openwrt.org>"); +MODULE_AUTHOR("Jonas Gorski <jonas.gorski@gmail.com"); +MODULE_DESCRIPTION("MTD partitioning for BCM63XX CFE bootloaders"); diff --git a/drivers/mtd/chips/Kconfig b/drivers/mtd/chips/Kconfig index 35c6a23b183..9f02c28c020 100644 --- a/drivers/mtd/chips/Kconfig +++ b/drivers/mtd/chips/Kconfig @@ -19,7 +19,7 @@ config MTD_JEDECPROBE help This option enables JEDEC-style probing of flash chips which are not compatible with the Common Flash Interface, but will use the common - CFI-targetted flash drivers for any chips which are identified which + CFI-targeted flash drivers for any chips which are identified which are in fact compatible in all but the probe method. This actually covers most AMD/Fujitsu-compatible chips and also non-CFI Intel chips. @@ -43,9 +43,6 @@ choice prompt "Flash cmd/query data swapping" depends on MTD_CFI_ADV_OPTIONS default MTD_CFI_NOSWAP - -config MTD_CFI_NOSWAP - bool "NO" ---help--- This option defines the way in which the CPU attempts to arrange data bits when writing the 'magic' commands to the chips. Saying @@ -55,12 +52,8 @@ config MTD_CFI_NOSWAP Specific arrangements are possible with the BIG_ENDIAN_BYTE and LITTLE_ENDIAN_BYTE, if the bytes are reversed. - If you have a LART, on which the data (and address) lines were - connected in a fashion which ensured that the nets were as short - as possible, resulting in a bit-shuffling which seems utterly - random to the untrained eye, you need the LART_ENDIAN_BYTE option. - - Yes, there really exists something sicker than PDP-endian :) +config MTD_CFI_NOSWAP + bool "NO" config MTD_CFI_BE_BYTE_SWAP bool "BIG_ENDIAN_BYTE" @@ -153,7 +146,6 @@ config MTD_CFI_I8 config MTD_OTP bool "Protection Registers aka one-time programmable (OTP) bits" depends on MTD_CFI_ADV_OPTIONS - select HAVE_MTD_OTP default n help This enables support for reading, writing and locking so called @@ -177,33 +169,33 @@ config MTD_OTP in the programming of OTP bits will waste them. config MTD_CFI_INTELEXT - tristate "Support for Intel/Sharp flash chips" + tristate "Support for CFI command set 0001 (Intel/Sharp chips)" depends on MTD_GEN_PROBE select MTD_CFI_UTIL help The Common Flash Interface defines a number of different command sets which a CFI-compliant chip may claim to implement. This code - provides support for one of those command sets, used on Intel - StrataFlash and other parts. + provides support for command set 0001, used on Intel StrataFlash + and other parts. config MTD_CFI_AMDSTD - tristate "Support for AMD/Fujitsu/Spansion flash chips" + tristate "Support for CFI command set 0002 (AMD/Fujitsu/Spansion chips)" depends on MTD_GEN_PROBE select MTD_CFI_UTIL help The Common Flash Interface defines a number of different command sets which a CFI-compliant chip may claim to implement. This code - provides support for one of those command sets, used on chips - including the AMD Am29LV320. + provides support for command set 0002, used on chips including + the AMD Am29LV320. config MTD_CFI_STAA - tristate "Support for ST (Advanced Architecture) flash chips" + tristate "Support for CFI command set 0020 (ST (Advanced Architecture) chips)" depends on MTD_GEN_PROBE select MTD_CFI_UTIL help The Common Flash Interface defines a number of different command sets which a CFI-compliant chip may claim to implement. This code - provides support for one of those command sets. + provides support for command set 0020. config MTD_CFI_UTIL tristate @@ -232,7 +224,7 @@ config MTD_ABSENT config MTD_XIP bool "XIP aware MTD support" - depends on !SMP && (MTD_CFI_INTELEXT || MTD_CFI_AMDSTD) && EXPERIMENTAL && ARCH_MTD_XIP + depends on !SMP && (MTD_CFI_INTELEXT || MTD_CFI_AMDSTD) && ARCH_MTD_XIP default y if XIP_KERNEL help This allows MTD support to work with flash memory which is also diff --git a/drivers/mtd/chips/cfi_cmdset_0001.c b/drivers/mtd/chips/cfi_cmdset_0001.c index 62f3ea9de84..a7543ba3e19 100644 --- a/drivers/mtd/chips/cfi_cmdset_0001.c +++ b/drivers/mtd/chips/cfi_cmdset_0001.c @@ -21,7 +21,6 @@ #include <linux/types.h> #include <linux/kernel.h> #include <linux/sched.h> -#include <linux/init.h> #include <asm/io.h> #include <asm/byteorder.h> @@ -34,7 +33,6 @@ #include <linux/mtd/xip.h> #include <linux/mtd/map.h> #include <linux/mtd/mtd.h> -#include <linux/mtd/compatmac.h> #include <linux/mtd/cfi.h> /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */ @@ -54,6 +52,11 @@ /* Atmel chips */ #define AT49BV640D 0x02de #define AT49BV640DT 0x02db +/* Sharp chips */ +#define LH28F640BFHE_PTTL90 0x00b0 +#define LH28F640BFHE_PBTL90 0x00b1 +#define LH28F640BFHE_PTTL70A 0x00b2 +#define LH28F640BFHE_PBTL70A 0x00b3 static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); @@ -63,15 +66,17 @@ static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *); static void cfi_intelext_sync (struct mtd_info *); static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); +static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs, + uint64_t len); #ifdef CONFIG_MTD_OTP static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t); -static int cfi_intelext_get_fact_prot_info (struct mtd_info *, - struct otp_info *, size_t); -static int cfi_intelext_get_user_prot_info (struct mtd_info *, - struct otp_info *, size_t); +static int cfi_intelext_get_fact_prot_info(struct mtd_info *, size_t, + size_t *, struct otp_info *); +static int cfi_intelext_get_user_prot_info(struct mtd_info *, size_t, + size_t *, struct otp_info *); #endif static int cfi_intelext_suspend (struct mtd_info *); static void cfi_intelext_resume (struct mtd_info *); @@ -86,7 +91,7 @@ static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private ** static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, void **virt, resource_size_t *phys); -static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len); +static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len); static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode); static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode); @@ -161,7 +166,7 @@ static void cfi_tell_features(struct cfi_pri_intelext *extp) #endif /* Atmel chips don't use the same PRI format as Intel chips */ -static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param) +static void fixup_convert_atmel_pri(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; @@ -201,7 +206,7 @@ static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param) cfi->cfiq->BufWriteTimeoutMax = 0; } -static void fixup_at49bv640dx_lock(struct mtd_info *mtd, void *param) +static void fixup_at49bv640dx_lock(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; @@ -213,7 +218,7 @@ static void fixup_at49bv640dx_lock(struct mtd_info *mtd, void *param) #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */ -static void fixup_intel_strataflash(struct mtd_info *mtd, void* param) +static void fixup_intel_strataflash(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; @@ -226,7 +231,7 @@ static void fixup_intel_strataflash(struct mtd_info *mtd, void* param) #endif #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND -static void fixup_no_write_suspend(struct mtd_info *mtd, void* param) +static void fixup_no_write_suspend(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; @@ -239,7 +244,7 @@ static void fixup_no_write_suspend(struct mtd_info *mtd, void* param) } #endif -static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param) +static void fixup_st_m28w320ct(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; @@ -248,7 +253,7 @@ static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param) cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */ } -static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param) +static void fixup_st_m28w320cb(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; @@ -258,30 +263,60 @@ static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param) (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e; }; -static void fixup_use_point(struct mtd_info *mtd, void *param) +static int is_LH28F640BF(struct cfi_private *cfi) +{ + /* Sharp LH28F640BF Family */ + if (cfi->mfr == CFI_MFR_SHARP && ( + cfi->id == LH28F640BFHE_PTTL90 || cfi->id == LH28F640BFHE_PBTL90 || + cfi->id == LH28F640BFHE_PTTL70A || cfi->id == LH28F640BFHE_PBTL70A)) + return 1; + return 0; +} + +static void fixup_LH28F640BF(struct mtd_info *mtd) { struct map_info *map = mtd->priv; - if (!mtd->point && map_is_linear(map)) { - mtd->point = cfi_intelext_point; - mtd->unpoint = cfi_intelext_unpoint; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *extp = cfi->cmdset_priv; + + /* Reset the Partition Configuration Register on LH28F640BF + * to a single partition (PCR = 0x000): PCR is embedded into A0-A15. */ + if (is_LH28F640BF(cfi)) { + printk(KERN_INFO "Reset Partition Config. Register: 1 Partition of 4 planes\n"); + map_write(map, CMD(0x60), 0); + map_write(map, CMD(0x04), 0); + + /* We have set one single partition thus + * Simultaneous Operations are not allowed */ + printk(KERN_INFO "cfi_cmdset_0001: Simultaneous Operations disabled\n"); + extp->FeatureSupport &= ~512; } } -static void fixup_use_write_buffers(struct mtd_info *mtd, void *param) +static void fixup_use_point(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + if (!mtd->_point && map_is_linear(map)) { + mtd->_point = cfi_intelext_point; + mtd->_unpoint = cfi_intelext_unpoint; + } +} + +static void fixup_use_write_buffers(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; if (cfi->cfiq->BufWriteTimeoutTyp) { printk(KERN_INFO "Using buffer write method\n" ); - mtd->write = cfi_intelext_write_buffers; - mtd->writev = cfi_intelext_writev; + mtd->_write = cfi_intelext_write_buffers; + mtd->_writev = cfi_intelext_writev; } } /* * Some chips power-up with all sectors locked by default. */ -static void fixup_unlock_powerup_lock(struct mtd_info *mtd, void *param) +static void fixup_unlock_powerup_lock(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; @@ -294,31 +329,33 @@ static void fixup_unlock_powerup_lock(struct mtd_info *mtd, void *param) } static struct cfi_fixup cfi_fixup_table[] = { - { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL }, - { CFI_MFR_ATMEL, AT49BV640D, fixup_at49bv640dx_lock, NULL }, - { CFI_MFR_ATMEL, AT49BV640DT, fixup_at49bv640dx_lock, NULL }, + { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri }, + { CFI_MFR_ATMEL, AT49BV640D, fixup_at49bv640dx_lock }, + { CFI_MFR_ATMEL, AT49BV640DT, fixup_at49bv640dx_lock }, #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE - { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL }, + { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash }, #endif #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND - { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL }, + { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend }, #endif #if !FORCE_WORD_WRITE - { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL }, + { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers }, #endif - { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL }, - { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL }, - { CFI_MFR_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock, NULL, }, - { 0, 0, NULL, NULL } + { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct }, + { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb }, + { CFI_MFR_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock }, + { CFI_MFR_SHARP, CFI_ID_ANY, fixup_unlock_powerup_lock }, + { CFI_MFR_SHARP, CFI_ID_ANY, fixup_LH28F640BF }, + { 0, 0, NULL } }; static struct cfi_fixup jedec_fixup_table[] = { - { CFI_MFR_INTEL, I82802AB, fixup_use_fwh_lock, NULL, }, - { CFI_MFR_INTEL, I82802AC, fixup_use_fwh_lock, NULL, }, - { CFI_MFR_ST, M50LPW080, fixup_use_fwh_lock, NULL, }, - { CFI_MFR_ST, M50FLW080A, fixup_use_fwh_lock, NULL, }, - { CFI_MFR_ST, M50FLW080B, fixup_use_fwh_lock, NULL, }, - { 0, 0, NULL, NULL } + { CFI_MFR_INTEL, I82802AB, fixup_use_fwh_lock }, + { CFI_MFR_INTEL, I82802AC, fixup_use_fwh_lock }, + { CFI_MFR_ST, M50LPW080, fixup_use_fwh_lock }, + { CFI_MFR_ST, M50FLW080A, fixup_use_fwh_lock }, + { CFI_MFR_ST, M50FLW080B, fixup_use_fwh_lock }, + { 0, 0, NULL } }; static struct cfi_fixup fixup_table[] = { /* The CFI vendor ids and the JEDEC vendor IDs appear @@ -326,8 +363,8 @@ static struct cfi_fixup fixup_table[] = { * well. This table is to pick all cases where * we know that is the case. */ - { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL }, - { 0, 0, NULL, NULL } + { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point }, + { 0, 0, NULL } }; static void cfi_fixup_major_minor(struct cfi_private *cfi, @@ -434,25 +471,25 @@ struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary) int i; mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); - if (!mtd) { - printk(KERN_ERR "Failed to allocate memory for MTD device\n"); + if (!mtd) return NULL; - } mtd->priv = map; mtd->type = MTD_NORFLASH; /* Fill in the default mtd operations */ - mtd->erase = cfi_intelext_erase_varsize; - mtd->read = cfi_intelext_read; - mtd->write = cfi_intelext_write_words; - mtd->sync = cfi_intelext_sync; - mtd->lock = cfi_intelext_lock; - mtd->unlock = cfi_intelext_unlock; - mtd->suspend = cfi_intelext_suspend; - mtd->resume = cfi_intelext_resume; + mtd->_erase = cfi_intelext_erase_varsize; + mtd->_read = cfi_intelext_read; + mtd->_write = cfi_intelext_write_words; + mtd->_sync = cfi_intelext_sync; + mtd->_lock = cfi_intelext_lock; + mtd->_unlock = cfi_intelext_unlock; + mtd->_is_locked = cfi_intelext_is_locked; + mtd->_suspend = cfi_intelext_suspend; + mtd->_resume = cfi_intelext_resume; mtd->flags = MTD_CAP_NORFLASH; mtd->name = map->name; mtd->writesize = 1; + mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; mtd->reboot_notifier.notifier_call = cfi_intelext_reboot; @@ -561,10 +598,8 @@ static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd) mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) * mtd->numeraseregions, GFP_KERNEL); - if (!mtd->eraseregions) { - printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n"); + if (!mtd->eraseregions) goto setup_err; - } for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { unsigned long ernum, ersize; @@ -597,12 +632,12 @@ static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd) } #ifdef CONFIG_MTD_OTP - mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg; - mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg; - mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg; - mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg; - mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info; - mtd->get_user_prot_info = cfi_intelext_get_user_prot_info; + mtd->_read_fact_prot_reg = cfi_intelext_read_fact_prot_reg; + mtd->_read_user_prot_reg = cfi_intelext_read_user_prot_reg; + mtd->_write_user_prot_reg = cfi_intelext_write_user_prot_reg; + mtd->_lock_user_prot_reg = cfi_intelext_lock_user_prot_reg; + mtd->_get_fact_prot_info = cfi_intelext_get_fact_prot_info; + mtd->_get_user_prot_info = cfi_intelext_get_user_prot_info; #endif /* This function has the potential to distort the reality @@ -717,7 +752,7 @@ static int cfi_intelext_partition_fixup(struct mtd_info *mtd, chip = &newcfi->chips[0]; for (i = 0; i < cfi->numchips; i++) { shared[i].writing = shared[i].erasing = NULL; - spin_lock_init(&shared[i].lock); + mutex_init(&shared[i].lock); for (j = 0; j < numparts; j++) { *chip = cfi->chips[i]; chip->start += j << partshift; @@ -809,12 +844,9 @@ static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long break; if (time_after(jiffies, timeo)) { - /* Urgh. Resume and pretend we weren't here. */ - map_write(map, CMD(0xd0), adr); - /* Make sure we're in 'read status' mode if it had finished */ - map_write(map, CMD(0x70), adr); - chip->state = FL_ERASING; - chip->oldstate = FL_READY; + /* Urgh. Resume and pretend we weren't here. + * Make sure we're in 'read status' mode if it had finished */ + put_chip(map, chip, adr); printk(KERN_ERR "%s: Chip not ready after erase " "suspended: status = 0x%lx\n", map->name, status.x[0]); return -EIO; @@ -886,7 +918,7 @@ static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr */ struct flchip_shared *shared = chip->priv; struct flchip *contender; - spin_lock(&shared->lock); + mutex_lock(&shared->lock); contender = shared->writing; if (contender && contender != chip) { /* @@ -899,7 +931,7 @@ static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr * get_chip returns success we're clear to go ahead. */ ret = mutex_trylock(&contender->mutex); - spin_unlock(&shared->lock); + mutex_unlock(&shared->lock); if (!ret) goto retry; mutex_unlock(&chip->mutex); @@ -914,7 +946,7 @@ static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr mutex_unlock(&contender->mutex); return ret; } - spin_lock(&shared->lock); + mutex_lock(&shared->lock); /* We should not own chip if it is already * in FL_SYNCING state. Put contender and retry. */ @@ -930,7 +962,7 @@ static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr * on this chip. Sleep. */ if (mode == FL_ERASING && shared->erasing && shared->erasing->oldstate == FL_ERASING) { - spin_unlock(&shared->lock); + mutex_unlock(&shared->lock); set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&chip->wq, &wait); mutex_unlock(&chip->mutex); @@ -944,7 +976,7 @@ static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr shared->writing = chip; if (mode == FL_ERASING) shared->erasing = chip; - spin_unlock(&shared->lock); + mutex_unlock(&shared->lock); } ret = chip_ready(map, chip, adr, mode); if (ret == -EAGAIN) @@ -959,7 +991,7 @@ static void put_chip(struct map_info *map, struct flchip *chip, unsigned long ad if (chip->priv) { struct flchip_shared *shared = chip->priv; - spin_lock(&shared->lock); + mutex_lock(&shared->lock); if (shared->writing == chip && chip->oldstate == FL_READY) { /* We own the ability to write, but we're done */ shared->writing = shared->erasing; @@ -967,7 +999,7 @@ static void put_chip(struct map_info *map, struct flchip *chip, unsigned long ad /* give back ownership to who we loaned it from */ struct flchip *loaner = shared->writing; mutex_lock(&loaner->mutex); - spin_unlock(&shared->lock); + mutex_unlock(&shared->lock); mutex_unlock(&chip->mutex); put_chip(map, loaner, loaner->start); mutex_lock(&chip->mutex); @@ -985,16 +1017,15 @@ static void put_chip(struct map_info *map, struct flchip *chip, unsigned long ad * Don't let the switch below mess things up since * we don't have ownership to resume anything. */ - spin_unlock(&shared->lock); + mutex_unlock(&shared->lock); wake_up(&chip->wq); return; } - spin_unlock(&shared->lock); + mutex_unlock(&shared->lock); } switch(chip->oldstate) { case FL_ERASING: - chip->state = chip->oldstate; /* What if one interleaved chip has finished and the other hasn't? The old code would leave the finished one in READY mode. That's bad, and caused -EROFS @@ -1018,8 +1049,6 @@ static void put_chip(struct map_info *map, struct flchip *chip, unsigned long ad case FL_READY: case FL_STATUS: case FL_JEDEC_QUERY: - /* We should really make set_vpp() count, rather than doing this */ - DISABLE_VPP(map); break; default: printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate); @@ -1227,10 +1256,32 @@ static int inval_cache_and_wait_for_operation( sleep_time = chip_op_time / 2; for (;;) { + if (chip->state != chip_state) { + /* Someone's suspended the operation: sleep */ + DECLARE_WAITQUEUE(wait, current); + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + mutex_lock(&chip->mutex); + continue; + } + status = map_read(map, cmd_adr); if (map_word_andequal(map, status, status_OK, status_OK)) break; + if (chip->erase_suspended && chip_state == FL_ERASING) { + /* Erase suspend occurred while sleep: reset timeout */ + timeo = reset_timeo; + chip->erase_suspended = 0; + } + if (chip->write_suspended && chip_state == FL_WRITING) { + /* Write suspend occurred while sleep: reset timeout */ + timeo = reset_timeo; + chip->write_suspended = 0; + } if (!timeo) { map_write(map, CMD(0x70), cmd_adr); chip->state = FL_STATUS; @@ -1254,27 +1305,6 @@ static int inval_cache_and_wait_for_operation( timeo--; } mutex_lock(&chip->mutex); - - while (chip->state != chip_state) { - /* Someone's suspended the operation: sleep */ - DECLARE_WAITQUEUE(wait, current); - set_current_state(TASK_UNINTERRUPTIBLE); - add_wait_queue(&chip->wq, &wait); - mutex_unlock(&chip->mutex); - schedule(); - remove_wait_queue(&chip->wq, &wait); - mutex_lock(&chip->mutex); - } - if (chip->erase_suspended && chip_state == FL_ERASING) { - /* Erase suspend occured while sleep: reset timeout */ - timeo = reset_timeo; - chip->erase_suspended = 0; - } - if (chip->write_suspended && chip_state == FL_WRITING) { - /* Write suspend occured while sleep: reset timeout */ - timeo = reset_timeo; - chip->write_suspended = 0; - } } /* Done and happy. */ @@ -1324,7 +1354,7 @@ static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len, int chipnum; int ret = 0; - if (!map->virt || (from + len > mtd->size)) + if (!map->virt) return -EINVAL; /* Now lock the chip(s) to POINT state */ @@ -1334,7 +1364,6 @@ static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len, ofs = from - (chipnum << cfi->chipshift); *virt = map->virt + cfi->chips[chipnum].start + ofs; - *retlen = 0; if (phys) *phys = map->phys + cfi->chips[chipnum].start + ofs; @@ -1369,12 +1398,12 @@ static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len, return 0; } -static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len) +static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; unsigned long ofs; - int chipnum; + int chipnum, err = 0; /* Now unlock the chip(s) POINT state */ @@ -1382,7 +1411,7 @@ static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len) chipnum = (from >> cfi->chipshift); ofs = from - (chipnum << cfi->chipshift); - while (len) { + while (len && !err) { unsigned long thislen; struct flchip *chip; @@ -1400,8 +1429,10 @@ static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len) chip->ref_point_counter--; if(chip->ref_point_counter == 0) chip->state = FL_READY; - } else - printk(KERN_ERR "%s: Warning: unpoint called on non pointed region\n", map->name); /* Should this give an error? */ + } else { + printk(KERN_ERR "%s: Error: unpoint called on non pointed region\n", map->name); + err = -EINVAL; + } put_chip(map, chip, chip->start); mutex_unlock(&chip->mutex); @@ -1410,6 +1441,8 @@ static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len) ofs = 0; chipnum++; } + + return err; } static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) @@ -1456,8 +1489,6 @@ static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, siz chipnum = (from >> cfi->chipshift); ofs = from - (chipnum << cfi->chipshift); - *retlen = 0; - while (len) { unsigned long thislen; @@ -1494,7 +1525,7 @@ static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, switch (mode) { case FL_WRITING: - write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0x40) : CMD(0x41); + write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0x40) : CMD(0x41); break; case FL_OTP_WRITE: write_cmd = CMD(0xc0); @@ -1551,7 +1582,8 @@ static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, } xip_enable(map, chip, adr); - out: put_chip(map, chip, adr); + out: DISABLE_VPP(map); + put_chip(map, chip, adr); mutex_unlock(&chip->mutex); return ret; } @@ -1565,10 +1597,6 @@ static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t le int chipnum; unsigned long ofs; - *retlen = 0; - if (!len) - return 0; - chipnum = to >> cfi->chipshift; ofs = to - (chipnum << cfi->chipshift); @@ -1658,8 +1686,14 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, initial_adr = adr; cmd_adr = adr & ~(wbufsize-1); + /* Sharp LH28F640BF chips need the first address for the + * Page Buffer Program command. See Table 5 of + * LH28F320BF, LH28F640BF, LH28F128BF Series (Appendix FUM00701) */ + if (is_LH28F640BF(cfi)) + cmd_adr = adr; + /* Let's determine this according to the interleave only once */ - write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0xe8) : CMD(0xe9); + write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0xe8) : CMD(0xe9); mutex_lock(&chip->mutex); ret = get_chip(map, chip, cmd_adr, FL_WRITING); @@ -1794,7 +1828,8 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, } xip_enable(map, chip, cmd_adr); - out: put_chip(map, chip, cmd_adr); + out: DISABLE_VPP(map); + put_chip(map, chip, cmd_adr); mutex_unlock(&chip->mutex); return ret; } @@ -1813,7 +1848,6 @@ static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs, for (i = 0; i < count; i++) len += vecs[i].iov_len; - *retlen = 0; if (!len) return 0; @@ -1932,6 +1966,7 @@ static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, ret = -EIO; } else if (chipstatus & 0x20 && retries--) { printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus); + DISABLE_VPP(map); put_chip(map, chip, adr); mutex_unlock(&chip->mutex); goto retry; @@ -1944,7 +1979,8 @@ static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, } xip_enable(map, chip, adr); - out: put_chip(map, chip, adr); + out: DISABLE_VPP(map); + put_chip(map, chip, adr); mutex_unlock(&chip->mutex); return ret; } @@ -2045,7 +2081,7 @@ static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip { struct cfi_private *cfi = map->fldrv_priv; struct cfi_pri_intelext *extp = cfi->cmdset_priv; - int udelay; + int mdelay; int ret; adr += chip->start; @@ -2074,9 +2110,17 @@ static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip * If Instant Individual Block Locking supported then no need * to delay. */ - udelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1000000/HZ : 0; + /* + * Unlocking may take up to 1.4 seconds on some Intel flashes. So + * lets use a max of 1.5 seconds (1500ms) as timeout. + * + * See "Clear Block Lock-Bits Time" on page 40 in + * "3 Volt Intel StrataFlash Memory" 28F128J3,28F640J3,28F320J3 manual + * from February 2003 + */ + mdelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1500 : 0; - ret = WAIT_TIMEOUT(map, chip, adr, udelay, udelay * 100); + ret = WAIT_TIMEOUT(map, chip, adr, mdelay, mdelay * 1000); if (ret) { map_write(map, CMD(0x70), adr); chip->state = FL_STATUS; @@ -2086,7 +2130,8 @@ static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip } xip_enable(map, chip, adr); -out: put_chip(map, chip, adr); + out: DISABLE_VPP(map); + put_chip(map, chip, adr); mutex_unlock(&chip->mutex); return ret; } @@ -2139,6 +2184,13 @@ static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) return ret; } +static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs, + uint64_t len) +{ + return cfi_varsize_frob(mtd, do_getlockstatus_oneblock, + ofs, len, NULL) ? 1 : 0; +} + #ifdef CONFIG_MTD_OTP typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip, @@ -2385,24 +2437,19 @@ static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd, NULL, do_otp_lock, 1); } -static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd, - struct otp_info *buf, size_t len) -{ - size_t retlen; - int ret; +static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) - ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0); - return ret ? : retlen; +{ + return cfi_intelext_otp_walk(mtd, 0, len, retlen, (u_char *)buf, + NULL, 0); } -static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd, - struct otp_info *buf, size_t len) +static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) { - size_t retlen; - int ret; - - ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1); - return ret ? : retlen; + return cfi_intelext_otp_walk(mtd, 0, len, retlen, (u_char *)buf, + NULL, 1); } #endif @@ -2476,7 +2523,7 @@ static int cfi_intelext_suspend(struct mtd_info *mtd) allowed to. Or should we return -EAGAIN, because the upper layers ought to have already shut down anything which was using the device anyway? The latter for now. */ - printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate); + printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->state); ret = -EAGAIN; case FL_PM_SUSPENDED: break; @@ -2519,12 +2566,10 @@ static void cfi_intelext_restore_locks(struct mtd_info *mtd) if (!region->lockmap) continue; - for (block = 0; block < region->numblocks; block++) { + for_each_clear_bit(block, region->lockmap, region->numblocks) { len = region->erasesize; adr = region->offset + block * len; - - if (!test_bit(block, region->lockmap)) - cfi_intelext_unlock(mtd, adr, len); + cfi_intelext_unlock(mtd, adr, len); } } } diff --git a/drivers/mtd/chips/cfi_cmdset_0002.c b/drivers/mtd/chips/cfi_cmdset_0002.c index d81079ef91a..e21fde9d4d7 100644 --- a/drivers/mtd/chips/cfi_cmdset_0002.c +++ b/drivers/mtd/chips/cfi_cmdset_0002.c @@ -24,7 +24,6 @@ #include <linux/types.h> #include <linux/kernel.h> #include <linux/sched.h> -#include <linux/init.h> #include <asm/io.h> #include <asm/byteorder.h> @@ -33,7 +32,8 @@ #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/reboot.h> -#include <linux/mtd/compatmac.h> +#include <linux/of.h> +#include <linux/of_platform.h> #include <linux/mtd/map.h> #include <linux/mtd/mtd.h> #include <linux/mtd/cfi.h> @@ -60,6 +60,9 @@ static void cfi_amdstd_resume (struct mtd_info *); static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *); static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); +static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf); + static void cfi_amdstd_destroy(struct mtd_info *); struct mtd_info *cfi_cmdset_0002(struct map_info *, int); @@ -72,6 +75,10 @@ static void put_chip(struct map_info *map, struct flchip *chip, unsigned long ad static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); +static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); +static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); +static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len); + static struct mtd_chip_driver cfi_amdstd_chipdrv = { .probe = NULL, /* Not usable directly */ .destroy = cfi_amdstd_destroy, @@ -135,7 +142,7 @@ static void cfi_tell_features(struct cfi_pri_amdstd *extp) #ifdef AMD_BOOTLOC_BUG /* Wheee. Bring me the head of someone at AMD. */ -static void fixup_amd_bootblock(struct mtd_info *mtd, void* param) +static void fixup_amd_bootblock(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; @@ -146,8 +153,7 @@ static void fixup_amd_bootblock(struct mtd_info *mtd, void* param) if (((major << 8) | minor) < 0x3131) { /* CFI version 1.0 => don't trust bootloc */ - DEBUG(MTD_DEBUG_LEVEL1, - "%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n", + pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n", map->name, cfi->mfr, cfi->id); /* AFAICS all 29LV400 with a bottom boot block have a device ID @@ -167,8 +173,7 @@ static void fixup_amd_bootblock(struct mtd_info *mtd, void* param) * the 8-bit device ID. */ (cfi->mfr == CFI_MFR_MACRONIX)) { - DEBUG(MTD_DEBUG_LEVEL1, - "%s: Macronix MX29LV400C with bottom boot block" + pr_debug("%s: Macronix MX29LV400C with bottom boot block" " detected\n", map->name); extp->TopBottom = 2; /* bottom boot */ } else @@ -179,26 +184,25 @@ static void fixup_amd_bootblock(struct mtd_info *mtd, void* param) extp->TopBottom = 2; /* bottom boot */ } - DEBUG(MTD_DEBUG_LEVEL1, - "%s: AMD CFI PRI V%c.%c has no boot block field;" + pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;" " deduced %s from Device ID\n", map->name, major, minor, extp->TopBottom == 2 ? "bottom" : "top"); } } #endif -static void fixup_use_write_buffers(struct mtd_info *mtd, void *param) +static void fixup_use_write_buffers(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; if (cfi->cfiq->BufWriteTimeoutTyp) { - DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" ); - mtd->write = cfi_amdstd_write_buffers; + pr_debug("Using buffer write method\n" ); + mtd->_write = cfi_amdstd_write_buffers; } } /* Atmel chips don't use the same PRI format as AMD chips */ -static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param) +static void fixup_convert_atmel_pri(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; @@ -229,20 +233,20 @@ static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param) cfi->cfiq->BufWriteTimeoutMax = 0; } -static void fixup_use_secsi(struct mtd_info *mtd, void *param) +static void fixup_use_secsi(struct mtd_info *mtd) { /* Setup for chips with a secsi area */ - mtd->read_user_prot_reg = cfi_amdstd_secsi_read; - mtd->read_fact_prot_reg = cfi_amdstd_secsi_read; + mtd->_read_user_prot_reg = cfi_amdstd_secsi_read; + mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read; } -static void fixup_use_erase_chip(struct mtd_info *mtd, void *param) +static void fixup_use_erase_chip(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; if ((cfi->cfiq->NumEraseRegions == 1) && ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) { - mtd->erase = cfi_amdstd_erase_chip; + mtd->_erase = cfi_amdstd_erase_chip; } } @@ -251,10 +255,10 @@ static void fixup_use_erase_chip(struct mtd_info *mtd, void *param) * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors * locked by default. */ -static void fixup_use_atmel_lock(struct mtd_info *mtd, void *param) +static void fixup_use_atmel_lock(struct mtd_info *mtd) { - mtd->lock = cfi_atmel_lock; - mtd->unlock = cfi_atmel_unlock; + mtd->_lock = cfi_atmel_lock; + mtd->_unlock = cfi_atmel_unlock; mtd->flags |= MTD_POWERUP_LOCK; } @@ -264,7 +268,7 @@ static void fixup_old_sst_eraseregion(struct mtd_info *mtd) struct cfi_private *cfi = map->fldrv_priv; /* - * These flashes report two seperate eraseblock regions based on the + * These flashes report two separate eraseblock regions based on the * sector_erase-size and block_erase-size, although they both operate on the * same memory. This is not allowed according to CFI, so we just pick the * sector_erase-size. @@ -272,7 +276,7 @@ static void fixup_old_sst_eraseregion(struct mtd_info *mtd) cfi->cfiq->NumEraseRegions = 1; } -static void fixup_sst39vf(struct mtd_info *mtd, void *param) +static void fixup_sst39vf(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; @@ -283,7 +287,7 @@ static void fixup_sst39vf(struct mtd_info *mtd, void *param) cfi->addr_unlock2 = 0x2AAA; } -static void fixup_sst39vf_rev_b(struct mtd_info *mtd, void *param) +static void fixup_sst39vf_rev_b(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; @@ -292,69 +296,105 @@ static void fixup_sst39vf_rev_b(struct mtd_info *mtd, void *param) cfi->addr_unlock1 = 0x555; cfi->addr_unlock2 = 0x2AA; + + cfi->sector_erase_cmd = CMD(0x50); } -static void fixup_s29gl064n_sectors(struct mtd_info *mtd, void *param) +static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + fixup_sst39vf_rev_b(mtd); + + /* + * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where + * it should report a size of 8KBytes (0x0020*256). + */ + cfi->cfiq->EraseRegionInfo[0] = 0x002003ff; + pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name); +} + +static void fixup_s29gl064n_sectors(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) { cfi->cfiq->EraseRegionInfo[0] |= 0x0040; - pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd->name); + pr_warning("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n", mtd->name); } } -static void fixup_s29gl032n_sectors(struct mtd_info *mtd, void *param) +static void fixup_s29gl032n_sectors(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) { cfi->cfiq->EraseRegionInfo[1] &= ~0x0040; - pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd->name); + pr_warning("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n", mtd->name); } } +static void fixup_s29ns512p_sectors(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + /* + * S29NS512P flash uses more than 8bits to report number of sectors, + * which is not permitted by CFI. + */ + cfi->cfiq->EraseRegionInfo[0] = 0x020001ff; + pr_warning("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n", mtd->name); +} + /* Used to fix CFI-Tables of chips without Extended Query Tables */ static struct cfi_fixup cfi_nopri_fixup_table[] = { - { CFI_MFR_SST, 0x234A, fixup_sst39vf, NULL, }, // SST39VF1602 - { CFI_MFR_SST, 0x234B, fixup_sst39vf, NULL, }, // SST39VF1601 - { CFI_MFR_SST, 0x235A, fixup_sst39vf, NULL, }, // SST39VF3202 - { CFI_MFR_SST, 0x235B, fixup_sst39vf, NULL, }, // SST39VF3201 - { CFI_MFR_SST, 0x235C, fixup_sst39vf_rev_b, NULL, }, // SST39VF3202B - { CFI_MFR_SST, 0x235D, fixup_sst39vf_rev_b, NULL, }, // SST39VF3201B - { CFI_MFR_SST, 0x236C, fixup_sst39vf_rev_b, NULL, }, // SST39VF6402B - { CFI_MFR_SST, 0x236D, fixup_sst39vf_rev_b, NULL, }, // SST39VF6401B - { 0, 0, NULL, NULL } + { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */ + { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */ + { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */ + { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */ + { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */ + { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */ + { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */ + { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */ + { 0, 0, NULL } }; static struct cfi_fixup cfi_fixup_table[] = { - { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL }, + { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri }, #ifdef AMD_BOOTLOC_BUG - { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL }, - { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock, NULL }, + { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock }, + { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock }, + { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock }, #endif - { CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, }, - { CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, }, - { CFI_MFR_AMD, 0x0055, fixup_use_secsi, NULL, }, - { CFI_MFR_AMD, 0x0056, fixup_use_secsi, NULL, }, - { CFI_MFR_AMD, 0x005C, fixup_use_secsi, NULL, }, - { CFI_MFR_AMD, 0x005F, fixup_use_secsi, NULL, }, - { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors, NULL, }, - { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors, NULL, }, - { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors, NULL, }, - { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors, NULL, }, + { CFI_MFR_AMD, 0x0050, fixup_use_secsi }, + { CFI_MFR_AMD, 0x0053, fixup_use_secsi }, + { CFI_MFR_AMD, 0x0055, fixup_use_secsi }, + { CFI_MFR_AMD, 0x0056, fixup_use_secsi }, + { CFI_MFR_AMD, 0x005C, fixup_use_secsi }, + { CFI_MFR_AMD, 0x005F, fixup_use_secsi }, + { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors }, + { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors }, + { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors }, + { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors }, + { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors }, + { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */ + { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */ + { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */ + { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */ #if !FORCE_WORD_WRITE - { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL, }, + { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers }, #endif - { 0, 0, NULL, NULL } + { 0, 0, NULL } }; static struct cfi_fixup jedec_fixup_table[] = { - { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock, NULL, }, - { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock, NULL, }, - { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock, NULL, }, - { 0, 0, NULL, NULL } + { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock }, + { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock }, + { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock }, + { 0, 0, NULL } }; static struct cfi_fixup fixup_table[] = { @@ -363,45 +403,130 @@ static struct cfi_fixup fixup_table[] = { * well. This table is to pick all cases where * we know that is the case. */ - { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip, NULL }, - { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock, NULL }, - { 0, 0, NULL, NULL } + { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip }, + { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock }, + { 0, 0, NULL } }; static void cfi_fixup_major_minor(struct cfi_private *cfi, struct cfi_pri_amdstd *extp) { - if (cfi->mfr == CFI_MFR_SAMSUNG && cfi->id == 0x257e && - extp->MajorVersion == '0') + if (cfi->mfr == CFI_MFR_SAMSUNG) { + if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') || + (extp->MajorVersion == '3' && extp->MinorVersion == '3')) { + /* + * Samsung K8P2815UQB and K8D6x16UxM chips + * report major=0 / minor=0. + * K8D3x16UxC chips report major=3 / minor=3. + */ + printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu" + " Extended Query version to 1.%c\n", + extp->MinorVersion); + extp->MajorVersion = '1'; + } + } + + /* + * SST 38VF640x chips report major=0xFF / minor=0xFF. + */ + if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) { extp->MajorVersion = '1'; + extp->MinorVersion = '0'; + } +} + +static int is_m29ew(struct cfi_private *cfi) +{ + if (cfi->mfr == CFI_MFR_INTEL && + ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) || + (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e))) + return 1; + return 0; +} + +/* + * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20: + * Some revisions of the M29EW suffer from erase suspend hang ups. In + * particular, it can occur when the sequence + * Erase Confirm -> Suspend -> Program -> Resume + * causes a lockup due to internal timing issues. The consequence is that the + * erase cannot be resumed without inserting a dummy command after programming + * and prior to resuming. [...] The work-around is to issue a dummy write cycle + * that writes an F0 command code before the RESUME command. + */ +static void cfi_fixup_m29ew_erase_suspend(struct map_info *map, + unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */ + if (is_m29ew(cfi)) + map_write(map, CMD(0xF0), adr); +} + +/* + * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22: + * + * Some revisions of the M29EW (for example, A1 and A2 step revisions) + * are affected by a problem that could cause a hang up when an ERASE SUSPEND + * command is issued after an ERASE RESUME operation without waiting for a + * minimum delay. The result is that once the ERASE seems to be completed + * (no bits are toggling), the contents of the Flash memory block on which + * the erase was ongoing could be inconsistent with the expected values + * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84 + * values), causing a consequent failure of the ERASE operation. + * The occurrence of this issue could be high, especially when file system + * operations on the Flash are intensive. As a result, it is recommended + * that a patch be applied. Intensive file system operations can cause many + * calls to the garbage routine to free Flash space (also by erasing physical + * Flash blocks) and as a result, many consecutive SUSPEND and RESUME + * commands can occur. The problem disappears when a delay is inserted after + * the RESUME command by using the udelay() function available in Linux. + * The DELAY value must be tuned based on the customer's platform. + * The maximum value that fixes the problem in all cases is 500us. + * But, in our experience, a delay of 30 µs to 50 µs is sufficient + * in most cases. + * We have chosen 500µs because this latency is acceptable. + */ +static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi) +{ + /* + * Resolving the Delay After Resume Issue see Micron TN-13-07 + * Worst case delay must be 500µs but 30-50µs should be ok as well + */ + if (is_m29ew(cfi)) + cfi_udelay(500); } struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary) { struct cfi_private *cfi = map->fldrv_priv; + struct device_node __maybe_unused *np = map->device_node; struct mtd_info *mtd; int i; mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); - if (!mtd) { - printk(KERN_WARNING "Failed to allocate memory for MTD device\n"); + if (!mtd) return NULL; - } mtd->priv = map; mtd->type = MTD_NORFLASH; /* Fill in the default mtd operations */ - mtd->erase = cfi_amdstd_erase_varsize; - mtd->write = cfi_amdstd_write_words; - mtd->read = cfi_amdstd_read; - mtd->sync = cfi_amdstd_sync; - mtd->suspend = cfi_amdstd_suspend; - mtd->resume = cfi_amdstd_resume; + mtd->_erase = cfi_amdstd_erase_varsize; + mtd->_write = cfi_amdstd_write_words; + mtd->_read = cfi_amdstd_read; + mtd->_sync = cfi_amdstd_sync; + mtd->_suspend = cfi_amdstd_suspend; + mtd->_resume = cfi_amdstd_resume; mtd->flags = MTD_CAP_NORFLASH; mtd->name = map->name; mtd->writesize = 1; + mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; + + pr_debug("MTD %s(): write buffer size %d\n", __func__, + mtd->writebufsize); + mtd->_panic_write = cfi_amdstd_panic_write; mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot; if (cfi->cfi_mode==CFI_MODE_CFI){ @@ -417,16 +542,27 @@ struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary) */ cfi_fixup_major_minor(cfi, extp); + /* + * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 + * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19 + * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf + * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf + * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf + */ if (extp->MajorVersion != '1' || - (extp->MinorVersion < '0' || extp->MinorVersion > '4')) { + (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) { printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query " - "version %c.%c.\n", extp->MajorVersion, - extp->MinorVersion); + "version %c.%c (%#02x/%#02x).\n", + extp->MajorVersion, extp->MinorVersion, + extp->MajorVersion, extp->MinorVersion); kfree(extp); kfree(mtd); return NULL; } + printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n", + extp->MajorVersion, extp->MinorVersion); + /* Install our own private info structure */ cfi->cmdset_priv = extp; @@ -438,6 +574,17 @@ struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary) cfi_tell_features(extp); #endif +#ifdef CONFIG_OF + if (np && of_property_read_bool( + np, "use-advanced-sector-protection") + && extp->BlkProtUnprot == 8) { + printk(KERN_INFO " Advanced Sector Protection (PPB Locking) supported\n"); + mtd->_lock = cfi_ppb_lock; + mtd->_unlock = cfi_ppb_unlock; + mtd->_is_locked = cfi_ppb_is_locked; + } +#endif + bootloc = extp->TopBottom; if ((bootloc < 2) || (bootloc > 5)) { printk(KERN_WARNING "%s: CFI contains unrecognised boot " @@ -511,10 +658,8 @@ static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd) mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) * mtd->numeraseregions, GFP_KERNEL); - if (!mtd->eraseregions) { - printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n"); + if (!mtd->eraseregions) goto setup_err; - } for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { unsigned long ernum, ersize; @@ -536,15 +681,6 @@ static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd) printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); goto setup_err; } -#if 0 - // debug - for (i=0; i<mtd->numeraseregions;i++){ - printk("%d: offset=0x%x,size=0x%x,blocks=%d\n", - i,mtd->eraseregions[i].offset, - mtd->eraseregions[i].erasesize, - mtd->eraseregions[i].numblocks); - } -#endif __module_get(THIS_MODULE); register_reboot_notifier(&mtd->reboot_notifier); @@ -566,8 +702,8 @@ static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd) * * Note that anything more complicated than checking if no bits are toggling * (including checking DQ5 for an error status) is tricky to get working - * correctly and is therefore not done (particulary with interleaved chips - * as each chip must be checked independantly of the others). + * correctly and is therefore not done (particularly with interleaved chips + * as each chip must be checked independently of the others). */ static int __xipram chip_ready(struct map_info *map, unsigned long addr) { @@ -590,8 +726,8 @@ static int __xipram chip_ready(struct map_info *map, unsigned long addr) * * Note that anything more complicated than checking if no bits are toggling * (including checking DQ5 for an error status) is tricky to get working - * correctly and is therefore not done (particulary with interleaved chips - * as each chip must be checked independantly of the others). + * correctly and is therefore not done (particularly with interleaved chips + * as each chip must be checked independently of the others). * */ static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected) @@ -665,9 +801,7 @@ static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr * there was an error (so leave the erase * routine to recover from it) or we trying to * use the erase-in-progress sector. */ - map_write(map, CMD(0x30), chip->in_progress_block_addr); - chip->state = FL_ERASING; - chip->oldstate = FL_READY; + put_chip(map, chip, adr); printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__); return -EIO; } @@ -717,8 +851,10 @@ static void put_chip(struct map_info *map, struct flchip *chip, unsigned long ad switch(chip->oldstate) { case FL_ERASING: - chip->state = chip->oldstate; - map_write(map, CMD(0x30), chip->in_progress_block_addr); + cfi_fixup_m29ew_erase_suspend(map, + chip->in_progress_block_addr); + map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr); + cfi_fixup_m29ew_delay_after_resume(cfi); chip->oldstate = FL_READY; chip->state = FL_ERASING; break; @@ -730,8 +866,6 @@ static void put_chip(struct map_info *map, struct flchip *chip, unsigned long ad case FL_READY: case FL_STATUS: - /* We should really make set_vpp() count, rather than doing this */ - DISABLE_VPP(map); break; default: printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate); @@ -860,8 +994,10 @@ static void __xipram xip_udelay(struct map_info *map, struct flchip *chip, /* Disallow XIP again */ local_irq_disable(); + /* Correct Erase Suspend Hangups for M29EW */ + cfi_fixup_m29ew_erase_suspend(map, adr); /* Resume the write or erase operation */ - map_write(map, CMD(0x30), adr); + map_write(map, cfi->sector_erase_cmd, adr); chip->state = oldstate; start = xip_currtime(); } else if (usec >= 1000000/HZ) { @@ -973,13 +1109,9 @@ static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_ int ret = 0; /* ofs: offset within the first chip that the first read should start */ - chipnum = (from >> cfi->chipshift); ofs = from - (chipnum << cfi->chipshift); - - *retlen = 0; - while (len) { unsigned long thislen; @@ -1016,9 +1148,6 @@ static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chi mutex_lock(&chip->mutex); if (chip->state != FL_READY){ -#if 0 - printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state); -#endif set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&chip->wq, &wait); @@ -1026,10 +1155,6 @@ static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chi schedule(); remove_wait_queue(&chip->wq, &wait); -#if 0 - if(signal_pending(current)) - return -EINTR; -#endif timeo = jiffies + HZ; goto retry; @@ -1064,16 +1189,11 @@ static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, int chipnum; int ret = 0; - /* ofs: offset within the first chip that the first read should start */ - /* 8 secsi bytes per chip */ chipnum=from>>3; ofs=from & 7; - - *retlen = 0; - while (len) { unsigned long thislen; @@ -1127,7 +1247,7 @@ static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, return ret; } - DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", + pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", __func__, adr, datum.x[0] ); /* @@ -1138,7 +1258,7 @@ static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, */ oldd = map_read(map, adr); if (map_word_equal(map, oldd, datum)) { - DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n", + pr_debug("MTD %s(): NOP\n", __func__); goto op_done; } @@ -1201,6 +1321,7 @@ static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, xip_enable(map, chip, adr); op_done: chip->state = FL_READY; + DISABLE_VPP(map); put_chip(map, chip, adr); mutex_unlock(&chip->mutex); @@ -1218,10 +1339,6 @@ static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len, unsigned long ofs, chipstart; DECLARE_WAITQUEUE(wait, current); - *retlen = 0; - if (!len) - return 0; - chipnum = to >> cfi->chipshift; ofs = to - (chipnum << cfi->chipshift); chipstart = cfi->chips[chipnum].start; @@ -1237,9 +1354,6 @@ static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len, mutex_lock(&cfi->chips[chipnum].mutex); if (cfi->chips[chipnum].state != FL_READY) { -#if 0 - printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state); -#endif set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&cfi->chips[chipnum].wq, &wait); @@ -1247,10 +1361,6 @@ static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len, schedule(); remove_wait_queue(&cfi->chips[chipnum].wq, &wait); -#if 0 - if(signal_pending(current)) - return -EINTR; -#endif goto retry; } @@ -1315,9 +1425,6 @@ static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len, mutex_lock(&cfi->chips[chipnum].mutex); if (cfi->chips[chipnum].state != FL_READY) { -#if 0 - printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state); -#endif set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&cfi->chips[chipnum].wq, &wait); @@ -1325,10 +1432,6 @@ static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len, schedule(); remove_wait_queue(&cfi->chips[chipnum].wq, &wait); -#if 0 - if(signal_pending(current)) - return -EINTR; -#endif goto retry1; } @@ -1378,7 +1481,7 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, datum = map_word_load(map, buf); - DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", + pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", __func__, adr, datum.x[0] ); XIP_INVAL_CACHED_RANGE(map, adr, len); @@ -1387,7 +1490,6 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); - //cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); /* Write Buffer Load */ map_write(map, CMD(0x25), cmd_adr); @@ -1447,17 +1549,30 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, UDELAY(map, chip, adr, 1); } - /* reset on all failures. */ - map_write( map, CMD(0xF0), chip->start ); + /* + * Recovery from write-buffer programming failures requires + * the write-to-buffer-reset sequence. Since the last part + * of the sequence also works as a normal reset, we can run + * the same commands regardless of why we are here. + * See e.g. + * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf + */ + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); xip_enable(map, chip, adr); /* FIXME - should have reset delay before continuing */ - printk(KERN_WARNING "MTD %s(): software timeout\n", - __func__ ); + printk(KERN_WARNING "MTD %s(): software timeout, address:0x%.8lx.\n", + __func__, adr); ret = -EIO; op_done: chip->state = FL_READY; + DISABLE_VPP(map); put_chip(map, chip, adr); mutex_unlock(&chip->mutex); @@ -1475,10 +1590,6 @@ static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len, int chipnum; unsigned long ofs; - *retlen = 0; - if (!len) - return 0; - chipnum = to >> cfi->chipshift; ofs = to - (chipnum << cfi->chipshift); @@ -1544,6 +1655,238 @@ static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len, return 0; } +/* + * Wait for the flash chip to become ready to write data + * + * This is only called during the panic_write() path. When panic_write() + * is called, the kernel is in the process of a panic, and will soon be + * dead. Therefore we don't take any locks, and attempt to get access + * to the chip as soon as possible. + */ +static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip, + unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + int retries = 10; + int i; + + /* + * If the driver thinks the chip is idle, and no toggle bits + * are changing, then the chip is actually idle for sure. + */ + if (chip->state == FL_READY && chip_ready(map, adr)) + return 0; + + /* + * Try several times to reset the chip and then wait for it + * to become idle. The upper limit of a few milliseconds of + * delay isn't a big problem: the kernel is dying anyway. It + * is more important to save the messages. + */ + while (retries > 0) { + const unsigned long timeo = (HZ / 1000) + 1; + + /* send the reset command */ + map_write(map, CMD(0xF0), chip->start); + + /* wait for the chip to become ready */ + for (i = 0; i < jiffies_to_usecs(timeo); i++) { + if (chip_ready(map, adr)) + return 0; + + udelay(1); + } + } + + /* the chip never became ready */ + return -EBUSY; +} + +/* + * Write out one word of data to a single flash chip during a kernel panic + * + * This is only called during the panic_write() path. When panic_write() + * is called, the kernel is in the process of a panic, and will soon be + * dead. Therefore we don't take any locks, and attempt to get access + * to the chip as soon as possible. + * + * The implementation of this routine is intentionally similar to + * do_write_oneword(), in order to ease code maintenance. + */ +static int do_panic_write_oneword(struct map_info *map, struct flchip *chip, + unsigned long adr, map_word datum) +{ + const unsigned long uWriteTimeout = (HZ / 1000) + 1; + struct cfi_private *cfi = map->fldrv_priv; + int retry_cnt = 0; + map_word oldd; + int ret = 0; + int i; + + adr += chip->start; + + ret = cfi_amdstd_panic_wait(map, chip, adr); + if (ret) + return ret; + + pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n", + __func__, adr, datum.x[0]); + + /* + * Check for a NOP for the case when the datum to write is already + * present - it saves time and works around buggy chips that corrupt + * data at other locations when 0xff is written to a location that + * already contains 0xff. + */ + oldd = map_read(map, adr); + if (map_word_equal(map, oldd, datum)) { + pr_debug("MTD %s(): NOP\n", __func__); + goto op_done; + } + + ENABLE_VPP(map); + +retry: + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + map_write(map, datum, adr); + + for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) { + if (chip_ready(map, adr)) + break; + + udelay(1); + } + + if (!chip_good(map, adr, datum)) { + /* reset on all failures. */ + map_write(map, CMD(0xF0), chip->start); + /* FIXME - should have reset delay before continuing */ + + if (++retry_cnt <= MAX_WORD_RETRIES) + goto retry; + + ret = -EIO; + } + +op_done: + DISABLE_VPP(map); + return ret; +} + +/* + * Write out some data during a kernel panic + * + * This is used by the mtdoops driver to save the dying messages from a + * kernel which has panic'd. + * + * This routine ignores all of the locking used throughout the rest of the + * driver, in order to ensure that the data gets written out no matter what + * state this driver (and the flash chip itself) was in when the kernel crashed. + * + * The implementation of this routine is intentionally similar to + * cfi_amdstd_write_words(), in order to ease code maintenance. + */ +static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long ofs, chipstart; + int ret = 0; + int chipnum; + + chipnum = to >> cfi->chipshift; + ofs = to - (chipnum << cfi->chipshift); + chipstart = cfi->chips[chipnum].start; + + /* If it's not bus aligned, do the first byte write */ + if (ofs & (map_bankwidth(map) - 1)) { + unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1); + int i = ofs - bus_ofs; + int n = 0; + map_word tmp_buf; + + ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs); + if (ret) + return ret; + + /* Load 'tmp_buf' with old contents of flash */ + tmp_buf = map_read(map, bus_ofs + chipstart); + + /* Number of bytes to copy from buffer */ + n = min_t(int, len, map_bankwidth(map) - i); + + tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n); + + ret = do_panic_write_oneword(map, &cfi->chips[chipnum], + bus_ofs, tmp_buf); + if (ret) + return ret; + + ofs += n; + buf += n; + (*retlen) += n; + len -= n; + + if (ofs >> cfi->chipshift) { + chipnum++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + /* We are now aligned, write as much as possible */ + while (len >= map_bankwidth(map)) { + map_word datum; + + datum = map_word_load(map, buf); + + ret = do_panic_write_oneword(map, &cfi->chips[chipnum], + ofs, datum); + if (ret) + return ret; + + ofs += map_bankwidth(map); + buf += map_bankwidth(map); + (*retlen) += map_bankwidth(map); + len -= map_bankwidth(map); + + if (ofs >> cfi->chipshift) { + chipnum++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + + chipstart = cfi->chips[chipnum].start; + } + } + + /* Write the trailing bytes if any */ + if (len & (map_bankwidth(map) - 1)) { + map_word tmp_buf; + + ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs); + if (ret) + return ret; + + tmp_buf = map_read(map, ofs + chipstart); + + tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len); + + ret = do_panic_write_oneword(map, &cfi->chips[chipnum], + ofs, tmp_buf); + if (ret) + return ret; + + (*retlen) += len; + } + + return 0; +} + /* * Handle devices with one erase region, that only implement @@ -1566,7 +1909,7 @@ static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip) return ret; } - DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n", + pr_debug("MTD %s(): ERASE 0x%.8lx\n", __func__, chip->start ); XIP_INVAL_CACHED_RANGE(map, adr, map->size); @@ -1631,6 +1974,7 @@ static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip) chip->state = FL_READY; xip_enable(map, chip, adr); + DISABLE_VPP(map); put_chip(map, chip, adr); mutex_unlock(&chip->mutex); @@ -1654,7 +1998,7 @@ static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, return ret; } - DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n", + pr_debug("MTD %s(): ERASE 0x%.8lx\n", __func__, adr ); XIP_INVAL_CACHED_RANGE(map, adr, len); @@ -1666,7 +2010,7 @@ static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); - map_write(map, CMD(0x30), adr); + map_write(map, cfi->sector_erase_cmd, adr); chip->state = FL_ERASING; chip->erase_suspended = 0; @@ -1721,6 +2065,7 @@ static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, } chip->state = FL_READY; + DISABLE_VPP(map); put_chip(map, chip, adr); mutex_unlock(&chip->mutex); return ret; @@ -1780,8 +2125,7 @@ static int do_atmel_lock(struct map_info *map, struct flchip *chip, goto out_unlock; chip->state = FL_LOCKING; - DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n", - __func__, adr, len); + pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len); cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); @@ -1816,8 +2160,7 @@ static int do_atmel_unlock(struct map_info *map, struct flchip *chip, goto out_unlock; chip->state = FL_UNLOCKING; - DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n", - __func__, adr, len); + pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len); cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); @@ -1842,6 +2185,205 @@ static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL); } +/* + * Advanced Sector Protection - PPB (Persistent Protection Bit) locking + */ + +struct ppb_lock { + struct flchip *chip; + loff_t offset; + int locked; +}; + +#define MAX_SECTORS 512 + +#define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1) +#define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2) +#define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3) + +static int __maybe_unused do_ppb_xxlock(struct map_info *map, + struct flchip *chip, + unsigned long adr, int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + unsigned long timeo; + int ret; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, adr + chip->start, FL_LOCKING); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len); + + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, + cfi->device_type, NULL); + /* PPB entry command */ + cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + + if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) { + chip->state = FL_LOCKING; + map_write(map, CMD(0xA0), chip->start + adr); + map_write(map, CMD(0x00), chip->start + adr); + } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) { + /* + * Unlocking of one specific sector is not supported, so we + * have to unlock all sectors of this device instead + */ + chip->state = FL_UNLOCKING; + map_write(map, CMD(0x80), chip->start); + map_write(map, CMD(0x30), chip->start); + } else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) { + chip->state = FL_JEDEC_QUERY; + /* Return locked status: 0->locked, 1->unlocked */ + ret = !cfi_read_query(map, adr); + } else + BUG(); + + /* + * Wait for some time as unlocking of all sectors takes quite long + */ + timeo = jiffies + msecs_to_jiffies(2000); /* 2s max (un)locking */ + for (;;) { + if (chip_ready(map, adr)) + break; + + if (time_after(jiffies, timeo)) { + printk(KERN_ERR "Waiting for chip to be ready timed out.\n"); + ret = -EIO; + break; + } + + UDELAY(map, chip, adr, 1); + } + + /* Exit BC commands */ + map_write(map, CMD(0x90), chip->start); + map_write(map, CMD(0x00), chip->start); + + chip->state = FL_READY; + put_chip(map, chip, adr + chip->start); + mutex_unlock(&chip->mutex); + + return ret; +} + +static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, + uint64_t len) +{ + return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len, + DO_XXLOCK_ONEBLOCK_LOCK); +} + +static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, + uint64_t len) +{ + struct mtd_erase_region_info *regions = mtd->eraseregions; + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct ppb_lock *sect; + unsigned long adr; + loff_t offset; + uint64_t length; + int chipnum; + int i; + int sectors; + int ret; + + /* + * PPB unlocking always unlocks all sectors of the flash chip. + * We need to re-lock all previously locked sectors. So lets + * first check the locking status of all sectors and save + * it for future use. + */ + sect = kzalloc(MAX_SECTORS * sizeof(struct ppb_lock), GFP_KERNEL); + if (!sect) + return -ENOMEM; + + /* + * This code to walk all sectors is a slightly modified version + * of the cfi_varsize_frob() code. + */ + i = 0; + chipnum = 0; + adr = 0; + sectors = 0; + offset = 0; + length = mtd->size; + + while (length) { + int size = regions[i].erasesize; + + /* + * Only test sectors that shall not be unlocked. The other + * sectors shall be unlocked, so lets keep their locking + * status at "unlocked" (locked=0) for the final re-locking. + */ + if ((adr < ofs) || (adr >= (ofs + len))) { + sect[sectors].chip = &cfi->chips[chipnum]; + sect[sectors].offset = offset; + sect[sectors].locked = do_ppb_xxlock( + map, &cfi->chips[chipnum], adr, 0, + DO_XXLOCK_ONEBLOCK_GETLOCK); + } + + adr += size; + offset += size; + length -= size; + + if (offset == regions[i].offset + size * regions[i].numblocks) + i++; + + if (adr >> cfi->chipshift) { + adr = 0; + chipnum++; + + if (chipnum >= cfi->numchips) + break; + } + + sectors++; + if (sectors >= MAX_SECTORS) { + printk(KERN_ERR "Only %d sectors for PPB locking supported!\n", + MAX_SECTORS); + kfree(sect); + return -EINVAL; + } + } + + /* Now unlock the whole chip */ + ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len, + DO_XXLOCK_ONEBLOCK_UNLOCK); + if (ret) { + kfree(sect); + return ret; + } + + /* + * PPB unlocking always unlocks all sectors of the flash chip. + * We need to re-lock all previously locked sectors. + */ + for (i = 0; i < sectors; i++) { + if (sect[i].locked) + do_ppb_xxlock(map, sect[i].chip, sect[i].offset, 0, + DO_XXLOCK_ONEBLOCK_LOCK); + } + + kfree(sect); + return ret; +} + +static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, + uint64_t len) +{ + return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len, + DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0; +} static void cfi_amdstd_sync (struct mtd_info *mtd) { diff --git a/drivers/mtd/chips/cfi_cmdset_0020.c b/drivers/mtd/chips/cfi_cmdset_0020.c index e54e8c169d7..423666b51ef 100644 --- a/drivers/mtd/chips/cfi_cmdset_0020.c +++ b/drivers/mtd/chips/cfi_cmdset_0020.c @@ -22,7 +22,6 @@ #include <linux/types.h> #include <linux/kernel.h> #include <linux/sched.h> -#include <linux/init.h> #include <asm/io.h> #include <asm/byteorder.h> @@ -33,7 +32,6 @@ #include <linux/mtd/map.h> #include <linux/mtd/cfi.h> #include <linux/mtd/mtd.h> -#include <linux/mtd/compatmac.h> static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *); @@ -140,8 +138,9 @@ struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary) } /* Do some byteswapping if necessary */ - extp->FeatureSupport = cfi32_to_cpu(extp->FeatureSupport); - extp->BlkStatusRegMask = cfi32_to_cpu(extp->BlkStatusRegMask); + extp->FeatureSupport = cfi32_to_cpu(map, extp->FeatureSupport); + extp->BlkStatusRegMask = cfi32_to_cpu(map, + extp->BlkStatusRegMask); #ifdef DEBUG_CFI_FEATURES /* Tell the user about it in lots of lovely detail */ @@ -176,7 +175,6 @@ static struct mtd_info *cfi_staa_setup(struct map_info *map) //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips); if (!mtd) { - printk(KERN_ERR "Failed to allocate memory for MTD device\n"); kfree(cfi->cmdset_priv); return NULL; } @@ -189,7 +187,6 @@ static struct mtd_info *cfi_staa_setup(struct map_info *map) mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) * mtd->numeraseregions, GFP_KERNEL); if (!mtd->eraseregions) { - printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n"); kfree(cfi->cmdset_priv); kfree(mtd); return NULL; @@ -228,17 +225,18 @@ static struct mtd_info *cfi_staa_setup(struct map_info *map) } /* Also select the correct geometry setup too */ - mtd->erase = cfi_staa_erase_varsize; - mtd->read = cfi_staa_read; - mtd->write = cfi_staa_write_buffers; - mtd->writev = cfi_staa_writev; - mtd->sync = cfi_staa_sync; - mtd->lock = cfi_staa_lock; - mtd->unlock = cfi_staa_unlock; - mtd->suspend = cfi_staa_suspend; - mtd->resume = cfi_staa_resume; + mtd->_erase = cfi_staa_erase_varsize; + mtd->_read = cfi_staa_read; + mtd->_write = cfi_staa_write_buffers; + mtd->_writev = cfi_staa_writev; + mtd->_sync = cfi_staa_sync; + mtd->_lock = cfi_staa_lock; + mtd->_unlock = cfi_staa_unlock; + mtd->_suspend = cfi_staa_suspend; + mtd->_resume = cfi_staa_resume; mtd->flags = MTD_CAP_NORFLASH & ~MTD_BIT_WRITEABLE; mtd->writesize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */ + mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; map->fldrv = &cfi_staa_chipdrv; __module_get(THIS_MODULE); mtd->name = map->name; @@ -296,6 +294,7 @@ static inline int do_read_onechip(struct map_info *map, struct flchip *chip, lof /* make sure we're in 'read status' mode */ map_write(map, CMD(0x70), cmd_addr); chip->state = FL_ERASING; + wake_up(&chip->wq); mutex_unlock(&chip->mutex); printk(KERN_ERR "Chip not ready after erase " "suspended: status = 0x%lx\n", status.x[0]); @@ -392,8 +391,6 @@ static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t chipnum = (from >> cfi->chipshift); ofs = from - (chipnum << cfi->chipshift); - *retlen = 0; - while (len) { unsigned long thislen; @@ -615,10 +612,6 @@ static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to, int chipnum; unsigned long ofs; - *retlen = 0; - if (!len) - return 0; - chipnum = to >> cfi->chipshift; ofs = to - (chipnum << cfi->chipshift); @@ -697,7 +690,8 @@ cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs, continue; } memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen); - ret = mtd->write(mtd, to, ECCBUF_SIZE, &thislen, buffer); + ret = mtd_write(mtd, to, ECCBUF_SIZE, &thislen, + buffer); totlen += thislen; if (ret || thislen != ECCBUF_SIZE) goto write_error; @@ -706,7 +700,8 @@ cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs, to += ECCBUF_SIZE; } if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */ - ret = mtd->write(mtd, to, ECCBUF_DIV(elem_len), &thislen, elem_base); + ret = mtd_write(mtd, to, ECCBUF_DIV(elem_len), + &thislen, elem_base); totlen += thislen; if (ret || thislen != ECCBUF_DIV(elem_len)) goto write_error; @@ -720,7 +715,7 @@ cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs, } if (buflen) { /* flush last page, even if not full */ /* This is sometimes intended behaviour, really */ - ret = mtd->write(mtd, to, buflen, &thislen, buffer); + ret = mtd_write(mtd, to, buflen, &thislen, buffer); totlen += thislen; if (ret || thislen != ECCBUF_SIZE) goto write_error; @@ -900,12 +895,6 @@ static int cfi_staa_erase_varsize(struct mtd_info *mtd, int i, first; struct mtd_erase_region_info *regions = mtd->eraseregions; - if (instr->addr > mtd->size) - return -EINVAL; - - if ((instr->len + instr->addr) > mtd->size) - return -EINVAL; - /* Check that both start and end of the requested erase are * aligned with the erasesize at the appropriate addresses. */ @@ -972,7 +961,7 @@ static int cfi_staa_erase_varsize(struct mtd_info *mtd, chipnum++; if (chipnum >= cfi->numchips) - break; + break; } } @@ -1151,9 +1140,6 @@ static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) if (len & (mtd->erasesize -1)) return -EINVAL; - if ((len + ofs) > mtd->size) - return -EINVAL; - chipnum = ofs >> cfi->chipshift; adr = ofs - (chipnum << cfi->chipshift); @@ -1184,7 +1170,7 @@ static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) chipnum++; if (chipnum >= cfi->numchips) - break; + break; } } return 0; diff --git a/drivers/mtd/chips/cfi_probe.c b/drivers/mtd/chips/cfi_probe.c index b2acd32f4fb..e8d0164498b 100644 --- a/drivers/mtd/chips/cfi_probe.c +++ b/drivers/mtd/chips/cfi_probe.c @@ -168,15 +168,15 @@ static int __xipram cfi_chip_setup(struct map_info *map, return 0; cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL); - if (!cfi->cfiq) { - printk(KERN_WARNING "%s: kmalloc failed for CFI ident structure\n", map->name); + if (!cfi->cfiq) return 0; - } memset(cfi->cfiq,0,sizeof(struct cfi_ident)); cfi->cfi_mode = CFI_MODE_CFI; + cfi->sector_erase_cmd = CMD(0x30); + /* Read the CFI info structure */ xip_disable_qry(base, map, cfi); for (i=0; i<(sizeof(struct cfi_ident) + num_erase_regions * 4); i++) @@ -235,9 +235,9 @@ static int __xipram cfi_chip_setup(struct map_info *map, cfi_qry_mode_off(base, map, cfi); xip_allowed(base, map); - printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n", + printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank. Manufacturer ID %#08x Chip ID %#08x\n", map->name, cfi->interleave, cfi->device_type*8, base, - map->bankwidth*8); + map->bankwidth*8, cfi->mfr, cfi->id); return 1; } diff --git a/drivers/mtd/chips/cfi_util.c b/drivers/mtd/chips/cfi_util.c index d7c2c672757..09c79bd0b4f 100644 --- a/drivers/mtd/chips/cfi_util.c +++ b/drivers/mtd/chips/cfi_util.c @@ -1,6 +1,6 @@ /* * Common Flash Interface support: - * Generic utility functions not dependant on command set + * Generic utility functions not dependent on command set * * Copyright (C) 2002 Red Hat * Copyright (C) 2003 STMicroelectronics Limited @@ -22,7 +22,6 @@ #include <linux/mtd/mtd.h> #include <linux/mtd/map.h> #include <linux/mtd/cfi.h> -#include <linux/mtd/compatmac.h> int __xipram cfi_qry_present(struct map_info *map, __u32 base, struct cfi_private *cfi) @@ -78,6 +77,13 @@ int __xipram cfi_qry_mode_on(uint32_t base, struct map_info *map, cfi_send_gen_cmd(0x98, 0x5555, base, map, cfi, cfi->device_type, NULL); if (cfi_qry_present(map, base, cfi)) return 1; + /* SST 39VF640xB */ + cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xAA, 0x555, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, 0x2AA, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x98, 0x555, base, map, cfi, cfi->device_type, NULL); + if (cfi_qry_present(map, base, cfi)) + return 1; /* QRY not found */ return 0; } @@ -110,10 +116,8 @@ __xipram cfi_read_pri(struct map_info *map, __u16 adr, __u16 size, const char* n printk(KERN_INFO "%s Extended Query Table at 0x%4.4X\n", name, adr); extp = kmalloc(size, GFP_KERNEL); - if (!extp) { - printk(KERN_ERR "Failed to allocate memory\n"); + if (!extp) goto out; - } #ifdef CONFIG_MTD_XIP local_irq_disable(); @@ -150,7 +154,7 @@ void cfi_fixup(struct mtd_info *mtd, struct cfi_fixup *fixups) for (f=fixups; f->fixup; f++) { if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi->mfr)) && ((f->id == CFI_ID_ANY) || (f->id == cfi->id))) { - f->fixup(mtd, f->param); + f->fixup(mtd); } } } @@ -167,12 +171,6 @@ int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob, int i, first; struct mtd_erase_region_info *regions = mtd->eraseregions; - if (ofs > mtd->size) - return -EINVAL; - - if ((len + ofs) > mtd->size) - return -EINVAL; - /* Check that both start and end of the requested erase are * aligned with the erasesize at the appropriate addresses. */ @@ -241,7 +239,7 @@ int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob, chipnum++; if (chipnum >= cfi->numchips) - break; + break; } } diff --git a/drivers/mtd/chips/chipreg.c b/drivers/mtd/chips/chipreg.c index c8576096822..0bbc61ba952 100644 --- a/drivers/mtd/chips/chipreg.c +++ b/drivers/mtd/chips/chipreg.c @@ -10,7 +10,6 @@ #include <linux/slab.h> #include <linux/mtd/map.h> #include <linux/mtd/mtd.h> -#include <linux/mtd/compatmac.h> static DEFINE_SPINLOCK(chip_drvs_lock); static LIST_HEAD(chip_drvs_list); @@ -77,10 +76,7 @@ struct mtd_info *do_map_probe(const char *name, struct map_info *map) */ module_put(drv->module); - if (ret) - return ret; - - return NULL; + return ret; } /* * Destroy an MTD device which was created for a map device. diff --git a/drivers/mtd/chips/fwh_lock.h b/drivers/mtd/chips/fwh_lock.h index d1806497719..800b0e853e8 100644 --- a/drivers/mtd/chips/fwh_lock.h +++ b/drivers/mtd/chips/fwh_lock.h @@ -34,8 +34,7 @@ static int fwh_xxlock_oneblock(struct map_info *map, struct flchip *chip, /* Refuse the operation if the we cannot look behind the chip */ if (chip->start < 0x400000) { - DEBUG( MTD_DEBUG_LEVEL3, - "MTD %s(): chip->start: %lx wanted >= 0x400000\n", + pr_debug( "MTD %s(): chip->start: %lx wanted >= 0x400000\n", __func__, chip->start ); return -EIO; } @@ -98,11 +97,11 @@ static int fwh_unlock_varsize(struct mtd_info *mtd, loff_t ofs, uint64_t len) return ret; } -static void fixup_use_fwh_lock(struct mtd_info *mtd, void *param) +static void fixup_use_fwh_lock(struct mtd_info *mtd) { printk(KERN_NOTICE "using fwh lock/unlock method\n"); /* Setup for the chips with the fwh lock method */ - mtd->lock = fwh_lock_varsize; - mtd->unlock = fwh_unlock_varsize; + mtd->_lock = fwh_lock_varsize; + mtd->_unlock = fwh_unlock_varsize; } #endif /* FWH_LOCK_H */ diff --git a/drivers/mtd/chips/gen_probe.c b/drivers/mtd/chips/gen_probe.c index 3b9a2843c5f..b57ceea2151 100644 --- a/drivers/mtd/chips/gen_probe.c +++ b/drivers/mtd/chips/gen_probe.c @@ -114,7 +114,6 @@ static struct cfi_private *genprobe_ident_chips(struct map_info *map, struct chi mapsize = sizeof(long) * DIV_ROUND_UP(max_chips, BITS_PER_LONG); chip_map = kzalloc(mapsize, GFP_KERNEL); if (!chip_map) { - printk(KERN_WARNING "%s: kmalloc failed for CFI chip map\n", map->name); kfree(cfi.cfiq); return NULL; } @@ -139,7 +138,6 @@ static struct cfi_private *genprobe_ident_chips(struct map_info *map, struct chi retcfi = kmalloc(sizeof(struct cfi_private) + cfi.numchips * sizeof(struct flchip), GFP_KERNEL); if (!retcfi) { - printk(KERN_WARNING "%s: kmalloc failed for CFI private structure\n", map->name); kfree(cfi.cfiq); kfree(chip_map); return NULL; @@ -204,14 +202,14 @@ static inline struct mtd_info *cfi_cmdset_unknown(struct map_info *map, struct cfi_private *cfi = map->fldrv_priv; __u16 type = primary?cfi->cfiq->P_ID:cfi->cfiq->A_ID; #ifdef CONFIG_MODULES - char probename[16+sizeof(MODULE_SYMBOL_PREFIX)]; + char probename[sizeof(VMLINUX_SYMBOL_STR(cfi_cmdset_%4.4X))]; cfi_cmdset_fn_t *probe_function; - sprintf(probename, MODULE_SYMBOL_PREFIX "cfi_cmdset_%4.4X", type); + sprintf(probename, VMLINUX_SYMBOL_STR(cfi_cmdset_%4.4X), type); probe_function = __symbol_get(probename); if (!probe_function) { - request_module(probename + sizeof(MODULE_SYMBOL_PREFIX) - 1); + request_module("cfi_cmdset_%4.4X", type); probe_function = __symbol_get(probename); } diff --git a/drivers/mtd/chips/jedec_probe.c b/drivers/mtd/chips/jedec_probe.c index d72a5fb2d04..7c0b27d132b 100644 --- a/drivers/mtd/chips/jedec_probe.c +++ b/drivers/mtd/chips/jedec_probe.c @@ -120,7 +120,7 @@ #define PM49FL008 0x006A /* Sharp */ -#define LH28F640BF 0x00b0 +#define LH28F640BF 0x00B0 /* ST - www.st.com */ #define M29F800AB 0x0058 @@ -1299,13 +1299,14 @@ static const struct amd_flash_info jedec_table[] = { .mfr_id = CFI_MFR_SHARP, .dev_id = LH28F640BF, .name = "LH28F640BF", - .devtypes = CFI_DEVICETYPE_X8, + .devtypes = CFI_DEVICETYPE_X16, .uaddr = MTD_UADDR_UNNECESSARY, - .dev_size = SIZE_4MiB, - .cmd_set = P_ID_INTEL_STD, - .nr_regions = 1, + .dev_size = SIZE_8MiB, + .cmd_set = P_ID_INTEL_EXT, + .nr_regions = 2, .regions = { - ERASEINFO(0x40000,16), + ERASEINFO(0x10000, 127), + ERASEINFO(0x02000, 8), } }, { .mfr_id = CFI_MFR_SST, @@ -1914,11 +1915,10 @@ static void jedec_reset(u32 base, struct map_info *map, struct cfi_private *cfi) * (oh and incidentaly the jedec spec - 3.5.3.3) the reset * sequence is *supposed* to be 0xaa at 0x5555, 0x55 at * 0x2aaa, 0xF0 at 0x5555 this will not affect the AMD chips - * as they will ignore the writes and dont care what address + * as they will ignore the writes and don't care what address * the F0 is written to */ if (cfi->addr_unlock1) { - DEBUG( MTD_DEBUG_LEVEL3, - "reset unlock called %x %x \n", + pr_debug( "reset unlock called %x %x \n", cfi->addr_unlock1,cfi->addr_unlock2); cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL); @@ -1935,14 +1935,14 @@ static void jedec_reset(u32 base, struct map_info *map, struct cfi_private *cfi) } -static int cfi_jedec_setup(struct cfi_private *p_cfi, int index) +static int cfi_jedec_setup(struct map_info *map, struct cfi_private *cfi, int index) { int i,num_erase_regions; uint8_t uaddr; - if (! (jedec_table[index].devtypes & p_cfi->device_type)) { - DEBUG(MTD_DEBUG_LEVEL1, "Rejecting potential %s with incompatible %d-bit device type\n", - jedec_table[index].name, 4 * (1<<p_cfi->device_type)); + if (!(jedec_table[index].devtypes & cfi->device_type)) { + pr_debug("Rejecting potential %s with incompatible %d-bit device type\n", + jedec_table[index].name, 4 * (1<<cfi->device_type)); return 0; } @@ -1950,27 +1950,28 @@ static int cfi_jedec_setup(struct cfi_private *p_cfi, int index) num_erase_regions = jedec_table[index].nr_regions; - p_cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL); - if (!p_cfi->cfiq) { + cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL); + if (!cfi->cfiq) { //xx printk(KERN_WARNING "%s: kmalloc failed for CFI ident structure\n", map->name); return 0; } - memset(p_cfi->cfiq,0,sizeof(struct cfi_ident)); + memset(cfi->cfiq, 0, sizeof(struct cfi_ident)); - p_cfi->cfiq->P_ID = jedec_table[index].cmd_set; - p_cfi->cfiq->NumEraseRegions = jedec_table[index].nr_regions; - p_cfi->cfiq->DevSize = jedec_table[index].dev_size; - p_cfi->cfi_mode = CFI_MODE_JEDEC; + cfi->cfiq->P_ID = jedec_table[index].cmd_set; + cfi->cfiq->NumEraseRegions = jedec_table[index].nr_regions; + cfi->cfiq->DevSize = jedec_table[index].dev_size; + cfi->cfi_mode = CFI_MODE_JEDEC; + cfi->sector_erase_cmd = CMD(0x30); for (i=0; i<num_erase_regions; i++){ - p_cfi->cfiq->EraseRegionInfo[i] = jedec_table[index].regions[i]; + cfi->cfiq->EraseRegionInfo[i] = jedec_table[index].regions[i]; } - p_cfi->cmdset_priv = NULL; + cfi->cmdset_priv = NULL; /* This may be redundant for some cases, but it doesn't hurt */ - p_cfi->mfr = jedec_table[index].mfr_id; - p_cfi->id = jedec_table[index].dev_id; + cfi->mfr = jedec_table[index].mfr_id; + cfi->id = jedec_table[index].dev_id; uaddr = jedec_table[index].uaddr; @@ -1978,8 +1979,8 @@ static int cfi_jedec_setup(struct cfi_private *p_cfi, int index) our brains explode when we see the datasheets talking about address lines numbered from A-1 to A18. The CFI table has unlock addresses in device-words according to the mode the device is connected in */ - p_cfi->addr_unlock1 = unlock_addrs[uaddr].addr1 / p_cfi->device_type; - p_cfi->addr_unlock2 = unlock_addrs[uaddr].addr2 / p_cfi->device_type; + cfi->addr_unlock1 = unlock_addrs[uaddr].addr1 / cfi->device_type; + cfi->addr_unlock2 = unlock_addrs[uaddr].addr2 / cfi->device_type; return 1; /* ok */ } @@ -2020,7 +2021,7 @@ static inline int jedec_match( uint32_t base, * there aren't. */ if (finfo->dev_id > 0xff) { - DEBUG( MTD_DEBUG_LEVEL3, "%s(): ID is not 8bit\n", + pr_debug("%s(): ID is not 8bit\n", __func__); goto match_done; } @@ -2044,12 +2045,10 @@ static inline int jedec_match( uint32_t base, } /* the part size must fit in the memory window */ - DEBUG( MTD_DEBUG_LEVEL3, - "MTD %s(): Check fit 0x%.8x + 0x%.8x = 0x%.8x\n", + pr_debug("MTD %s(): Check fit 0x%.8x + 0x%.8x = 0x%.8x\n", __func__, base, 1 << finfo->dev_size, base + (1 << finfo->dev_size) ); if ( base + cfi_interleave(cfi) * ( 1 << finfo->dev_size ) > map->size ) { - DEBUG( MTD_DEBUG_LEVEL3, - "MTD %s(): 0x%.4x 0x%.4x %dKiB doesn't fit\n", + pr_debug("MTD %s(): 0x%.4x 0x%.4x %dKiB doesn't fit\n", __func__, finfo->mfr_id, finfo->dev_id, 1 << finfo->dev_size ); goto match_done; @@ -2060,13 +2059,12 @@ static inline int jedec_match( uint32_t base, uaddr = finfo->uaddr; - DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): check unlock addrs 0x%.4x 0x%.4x\n", + pr_debug("MTD %s(): check unlock addrs 0x%.4x 0x%.4x\n", __func__, cfi->addr_unlock1, cfi->addr_unlock2 ); if ( MTD_UADDR_UNNECESSARY != uaddr && MTD_UADDR_DONT_CARE != uaddr && ( unlock_addrs[uaddr].addr1 / cfi->device_type != cfi->addr_unlock1 || unlock_addrs[uaddr].addr2 / cfi->device_type != cfi->addr_unlock2 ) ) { - DEBUG( MTD_DEBUG_LEVEL3, - "MTD %s(): 0x%.4x 0x%.4x did not match\n", + pr_debug("MTD %s(): 0x%.4x 0x%.4x did not match\n", __func__, unlock_addrs[uaddr].addr1, unlock_addrs[uaddr].addr2); @@ -2074,7 +2072,7 @@ static inline int jedec_match( uint32_t base, } /* - * Make sure the ID's dissappear when the device is taken out of + * Make sure the ID's disappear when the device is taken out of * ID mode. The only time this should fail when it should succeed * is when the ID's are written as data to the same * addresses. For this rare and unfortunate case the chip @@ -2082,15 +2080,13 @@ static inline int jedec_match( uint32_t base, * FIXME - write a driver that takes all of the chip info as * module parameters, doesn't probe but forces a load. */ - DEBUG( MTD_DEBUG_LEVEL3, - "MTD %s(): check ID's disappear when not in ID mode\n", + pr_debug("MTD %s(): check ID's disappear when not in ID mode\n", __func__ ); jedec_reset( base, map, cfi ); mfr = jedec_read_mfr( map, base, cfi ); id = jedec_read_id( map, base, cfi ); if ( mfr == cfi->mfr && id == cfi->id ) { - DEBUG( MTD_DEBUG_LEVEL3, - "MTD %s(): ID 0x%.2x:0x%.2x did not change after reset:\n" + pr_debug("MTD %s(): ID 0x%.2x:0x%.2x did not change after reset:\n" "You might need to manually specify JEDEC parameters.\n", __func__, cfi->mfr, cfi->id ); goto match_done; @@ -2103,7 +2099,7 @@ static inline int jedec_match( uint32_t base, * Put the device back in ID mode - only need to do this if we * were truly frobbing a real device. */ - DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): return to ID mode\n", __func__ ); + pr_debug("MTD %s(): return to ID mode\n", __func__ ); if (cfi->addr_unlock1) { cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL); @@ -2166,16 +2162,14 @@ static int jedec_probe_chip(struct map_info *map, __u32 base, cfi->mfr = jedec_read_mfr(map, base, cfi); cfi->id = jedec_read_id(map, base, cfi); - DEBUG(MTD_DEBUG_LEVEL3, - "Search for id:(%02x %02x) interleave(%d) type(%d)\n", + pr_debug("Search for id:(%02x %02x) interleave(%d) type(%d)\n", cfi->mfr, cfi->id, cfi_interleave(cfi), cfi->device_type); for (i = 0; i < ARRAY_SIZE(jedec_table); i++) { if ( jedec_match( base, map, cfi, &jedec_table[i] ) ) { - DEBUG( MTD_DEBUG_LEVEL3, - "MTD %s(): matched device 0x%x,0x%x unlock_addrs: 0x%.4x 0x%.4x\n", + pr_debug("MTD %s(): matched device 0x%x,0x%x unlock_addrs: 0x%.4x 0x%.4x\n", __func__, cfi->mfr, cfi->id, cfi->addr_unlock1, cfi->addr_unlock2 ); - if (!cfi_jedec_setup(cfi, i)) + if (!cfi_jedec_setup(map, cfi, i)) return 0; goto ok_out; } diff --git a/drivers/mtd/chips/map_absent.c b/drivers/mtd/chips/map_absent.c index 494d30d0631..f7a5bca92ae 100644 --- a/drivers/mtd/chips/map_absent.c +++ b/drivers/mtd/chips/map_absent.c @@ -25,7 +25,6 @@ #include <linux/init.h> #include <linux/mtd/mtd.h> #include <linux/mtd/map.h> -#include <linux/mtd/compatmac.h> static int map_absent_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); static int map_absent_write (struct mtd_info *, loff_t, size_t, size_t *, const u_char *); @@ -56,10 +55,10 @@ static struct mtd_info *map_absent_probe(struct map_info *map) mtd->name = map->name; mtd->type = MTD_ABSENT; mtd->size = map->size; - mtd->erase = map_absent_erase; - mtd->read = map_absent_read; - mtd->write = map_absent_write; - mtd->sync = map_absent_sync; + mtd->_erase = map_absent_erase; + mtd->_read = map_absent_read; + mtd->_write = map_absent_write; + mtd->_sync = map_absent_sync; mtd->flags = 0; mtd->erasesize = PAGE_SIZE; mtd->writesize = 1; @@ -71,13 +70,11 @@ static struct mtd_info *map_absent_probe(struct map_info *map) static int map_absent_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { - *retlen = 0; return -ENODEV; } static int map_absent_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { - *retlen = 0; return -ENODEV; } diff --git a/drivers/mtd/chips/map_ram.c b/drivers/mtd/chips/map_ram.c index 6bdc50c727e..991c2a1c05d 100644 --- a/drivers/mtd/chips/map_ram.c +++ b/drivers/mtd/chips/map_ram.c @@ -13,7 +13,6 @@ #include <linux/init.h> #include <linux/mtd/mtd.h> #include <linux/mtd/map.h> -#include <linux/mtd/compatmac.h> static int mapram_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); @@ -65,11 +64,11 @@ static struct mtd_info *map_ram_probe(struct map_info *map) mtd->name = map->name; mtd->type = MTD_RAM; mtd->size = map->size; - mtd->erase = mapram_erase; - mtd->get_unmapped_area = mapram_unmapped_area; - mtd->read = mapram_read; - mtd->write = mapram_write; - mtd->sync = mapram_nop; + mtd->_erase = mapram_erase; + mtd->_get_unmapped_area = mapram_unmapped_area; + mtd->_read = mapram_read; + mtd->_write = mapram_write; + mtd->_sync = mapram_nop; mtd->flags = MTD_CAP_RAM; mtd->writesize = 1; @@ -123,14 +122,10 @@ static int mapram_erase (struct mtd_info *mtd, struct erase_info *instr) unsigned long i; allff = map_word_ff(map); - for (i=0; i<instr->len; i += map_bankwidth(map)) map_write(map, allff, instr->addr + i); - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); - return 0; } diff --git a/drivers/mtd/chips/map_rom.c b/drivers/mtd/chips/map_rom.c index 076090a67b9..47a43cf7e5c 100644 --- a/drivers/mtd/chips/map_rom.c +++ b/drivers/mtd/chips/map_rom.c @@ -13,7 +13,6 @@ #include <linux/init.h> #include <linux/mtd/mtd.h> #include <linux/mtd/map.h> -#include <linux/mtd/compatmac.h> static int maprom_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); static int maprom_write (struct mtd_info *, loff_t, size_t, size_t *, const u_char *); @@ -42,11 +41,11 @@ static struct mtd_info *map_rom_probe(struct map_info *map) mtd->name = map->name; mtd->type = MTD_ROM; mtd->size = map->size; - mtd->get_unmapped_area = maprom_unmapped_area; - mtd->read = maprom_read; - mtd->write = maprom_write; - mtd->sync = maprom_nop; - mtd->erase = maprom_erase; + mtd->_get_unmapped_area = maprom_unmapped_area; + mtd->_read = maprom_read; + mtd->_write = maprom_write; + mtd->_sync = maprom_nop; + mtd->_erase = maprom_erase; mtd->flags = MTD_CAP_ROM; mtd->erasesize = map->size; mtd->writesize = 1; @@ -86,8 +85,7 @@ static void maprom_nop(struct mtd_info *mtd) static int maprom_write (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { - printk(KERN_NOTICE "maprom_write called\n"); - return -EIO; + return -EROFS; } static int maprom_erase (struct mtd_info *mtd, struct erase_info *info) diff --git a/drivers/mtd/cmdlinepart.c b/drivers/mtd/cmdlinepart.c index 1479da6d3aa..3e829b37af8 100644 --- a/drivers/mtd/cmdlinepart.c +++ b/drivers/mtd/cmdlinepart.c @@ -1,17 +1,43 @@ /* * Read flash partition table from command line * - * Copyright 2002 SYSGO Real-Time Solutions GmbH + * Copyright © 2002 SYSGO Real-Time Solutions GmbH + * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * The format for the command line is as follows: * * mtdparts=<mtddef>[;<mtddef] * <mtddef> := <mtd-id>:<partdef>[,<partdef>] - * where <mtd-id> is the name from the "cat /proc/mtd" command - * <partdef> := <size>[@offset][<name>][ro][lk] + * <partdef> := <size>[@<offset>][<name>][ro][lk] * <mtd-id> := unique name used in mapping driver/device (mtd->name) * <size> := standard linux memsize OR "-" to denote all remaining space + * size is automatically truncated at end of device + * if specified or trucated size is 0 the part is skipped + * <offset> := standard linux memsize + * if omitted the part will immediately follow the previous part + * or 0 if the first part * <name> := '(' NAME ')' + * NAME will appear in /proc/mtd + * + * <size> and <offset> can be specified such that the parts are out of order + * in physical memory and may even overlap. + * + * The parts are assigned MTD numbers in the order they are specified in the + * command line regardless of their order in physical memory. * * Examples: * @@ -24,10 +50,10 @@ #include <linux/kernel.h> #include <linux/slab.h> - #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> -#include <linux/bootmem.h> +#include <linux/module.h> +#include <linux/err.h> /* error message prefix */ #define ERRP "mtd: " @@ -41,8 +67,8 @@ /* special size referring to all the remaining space in a partition */ -#define SIZE_REMAINING UINT_MAX -#define OFFSET_CONTINUOUS UINT_MAX +#define SIZE_REMAINING ULLONG_MAX +#define OFFSET_CONTINUOUS ULLONG_MAX struct cmdline_mtd_partition { struct cmdline_mtd_partition *next; @@ -54,9 +80,10 @@ struct cmdline_mtd_partition { /* mtdpart_setup() parses into here */ static struct cmdline_mtd_partition *partitions; -/* the command line passed to mtdpart_setupd() */ +/* the command line passed to mtdpart_setup() */ +static char *mtdparts; static char *cmdline; -static int cmdline_parsed = 0; +static int cmdline_parsed; /* * Parse one partition definition for an MTD. Since there can be many @@ -67,15 +94,14 @@ static int cmdline_parsed = 0; * syntax has been verified ok. */ static struct mtd_partition * newpart(char *s, - char **retptr, - int *num_parts, - int this_part, - unsigned char **extra_mem_ptr, - int extra_mem_size) + char **retptr, + int *num_parts, + int this_part, + unsigned char **extra_mem_ptr, + int extra_mem_size) { struct mtd_partition *parts; - unsigned long size; - unsigned long offset = OFFSET_CONTINUOUS; + unsigned long long size, offset = OFFSET_CONTINUOUS; char *name; int name_len; unsigned char *extra_mem; @@ -83,127 +109,107 @@ static struct mtd_partition * newpart(char *s, unsigned int mask_flags; /* fetch the partition size */ - if (*s == '-') - { /* assign all remaining space to this partition */ + if (*s == '-') { + /* assign all remaining space to this partition */ size = SIZE_REMAINING; s++; - } - else - { + } else { size = memparse(s, &s); - if (size < PAGE_SIZE) - { - printk(KERN_ERR ERRP "partition size too small (%lx)\n", size); - return NULL; + if (size < PAGE_SIZE) { + printk(KERN_ERR ERRP "partition size too small (%llx)\n", + size); + return ERR_PTR(-EINVAL); } } /* fetch partition name and flags */ mask_flags = 0; /* this is going to be a regular partition */ delim = 0; - /* check for offset */ - if (*s == '@') - { - s++; - offset = memparse(s, &s); - } - /* now look for name */ + + /* check for offset */ + if (*s == '@') { + s++; + offset = memparse(s, &s); + } + + /* now look for name */ if (*s == '(') - { delim = ')'; - } - if (delim) - { + if (delim) { char *p; - name = ++s; + name = ++s; p = strchr(name, delim); - if (!p) - { + if (!p) { printk(KERN_ERR ERRP "no closing %c found in partition name\n", delim); - return NULL; + return ERR_PTR(-EINVAL); } name_len = p - name; s = p + 1; - } - else - { - name = NULL; + } else { + name = NULL; name_len = 13; /* Partition_000 */ } /* record name length for memory allocation later */ extra_mem_size += name_len + 1; - /* test for options */ - if (strncmp(s, "ro", 2) == 0) - { + /* test for options */ + if (strncmp(s, "ro", 2) == 0) { mask_flags |= MTD_WRITEABLE; s += 2; - } + } - /* if lk is found do NOT unlock the MTD partition*/ - if (strncmp(s, "lk", 2) == 0) - { + /* if lk is found do NOT unlock the MTD partition*/ + if (strncmp(s, "lk", 2) == 0) { mask_flags |= MTD_POWERUP_LOCK; s += 2; - } + } /* test if more partitions are following */ - if (*s == ',') - { - if (size == SIZE_REMAINING) - { + if (*s == ',') { + if (size == SIZE_REMAINING) { printk(KERN_ERR ERRP "no partitions allowed after a fill-up partition\n"); - return NULL; + return ERR_PTR(-EINVAL); } /* more partitions follow, parse them */ parts = newpart(s + 1, &s, num_parts, this_part + 1, &extra_mem, extra_mem_size); - if (!parts) - return NULL; - } - else - { /* this is the last partition: allocate space for all */ + if (IS_ERR(parts)) + return parts; + } else { + /* this is the last partition: allocate space for all */ int alloc_size; *num_parts = this_part + 1; alloc_size = *num_parts * sizeof(struct mtd_partition) + extra_mem_size; + parts = kzalloc(alloc_size, GFP_KERNEL); if (!parts) - { - printk(KERN_ERR ERRP "out of memory\n"); - return NULL; - } + return ERR_PTR(-ENOMEM); extra_mem = (unsigned char *)(parts + *num_parts); } + /* enter this partition (offset will be calculated later if it is zero at this point) */ parts[this_part].size = size; parts[this_part].offset = offset; parts[this_part].mask_flags = mask_flags; if (name) - { strlcpy(extra_mem, name, name_len + 1); - } else - { sprintf(extra_mem, "Partition_%03d", this_part); - } parts[this_part].name = extra_mem; extra_mem += name_len + 1; dbg(("partition %d: name <%s>, offset %llx, size %llx, mask flags %x\n", - this_part, - parts[this_part].name, - parts[this_part].offset, - parts[this_part].size, - parts[this_part].mask_flags)); + this_part, parts[this_part].name, parts[this_part].offset, + parts[this_part].size, parts[this_part].mask_flags)); /* return (updated) pointer to extra_mem memory */ if (extra_mem_ptr) - *extra_mem_ptr = extra_mem; + *extra_mem_ptr = extra_mem; /* return (updated) pointer command line string */ *retptr = s; @@ -223,16 +229,16 @@ static int mtdpart_setup_real(char *s) { struct cmdline_mtd_partition *this_mtd; struct mtd_partition *parts; - int mtd_id_len; - int num_parts; + int mtd_id_len, num_parts; char *p, *mtd_id; - mtd_id = s; + mtd_id = s; + /* fetch <mtd-id> */ - if (!(p = strchr(s, ':'))) - { + p = strchr(s, ':'); + if (!p) { printk(KERN_ERR ERRP "no mtd-id\n"); - return 0; + return -EINVAL; } mtd_id_len = p - mtd_id; @@ -249,8 +255,7 @@ static int mtdpart_setup_real(char *s) (unsigned char**)&this_mtd, /* out: extra mem */ mtd_id_len + 1 + sizeof(*this_mtd) + sizeof(void*)-1 /*alignment*/); - if(!parts) - { + if (IS_ERR(parts)) { /* * An error occurred. We're either: * a) out of memory, or @@ -258,12 +263,12 @@ static int mtdpart_setup_real(char *s) * Either way, this mtd is hosed and we're * unlikely to succeed in parsing any more */ - return 0; + return PTR_ERR(parts); } /* align this_mtd */ this_mtd = (struct cmdline_mtd_partition *) - ALIGN((unsigned long)this_mtd, sizeof(void*)); + ALIGN((unsigned long)this_mtd, sizeof(void *)); /* enter results */ this_mtd->parts = parts; this_mtd->num_parts = num_parts; @@ -283,14 +288,14 @@ static int mtdpart_setup_real(char *s) break; /* does another spec follow? */ - if (*s != ';') - { + if (*s != ';') { printk(KERN_ERR ERRP "bad character after partition (%c)\n", *s); - return 0; + return -EINVAL; } s++; } - return 1; + + return 0; } /* @@ -301,49 +306,67 @@ static int mtdpart_setup_real(char *s) * the first one in the chain if a NULL mtd_id is passed in. */ static int parse_cmdline_partitions(struct mtd_info *master, - struct mtd_partition **pparts, - unsigned long origin) + struct mtd_partition **pparts, + struct mtd_part_parser_data *data) { - unsigned long offset; - int i; + unsigned long long offset; + int i, err; struct cmdline_mtd_partition *part; const char *mtd_id = master->name; /* parse command line */ - if (!cmdline_parsed) - mtdpart_setup_real(cmdline); + if (!cmdline_parsed) { + err = mtdpart_setup_real(cmdline); + if (err) + return err; + } - for(part = partitions; part; part = part->next) - { + /* + * Search for the partition definition matching master->name. + * If master->name is not set, stop at first partition definition. + */ + for (part = partitions; part; part = part->next) { if ((!mtd_id) || (!strcmp(part->mtd_id, mtd_id))) - { - for(i = 0, offset = 0; i < part->num_parts; i++) - { - if (part->parts[i].offset == OFFSET_CONTINUOUS) - part->parts[i].offset = offset; - else - offset = part->parts[i].offset; - if (part->parts[i].size == SIZE_REMAINING) - part->parts[i].size = master->size - offset; - if (offset + part->parts[i].size > master->size) - { - printk(KERN_WARNING ERRP - "%s: partitioning exceeds flash size, truncating\n", - part->mtd_id); - part->parts[i].size = master->size - offset; - part->num_parts = i; - } - offset += part->parts[i].size; - } - *pparts = kmemdup(part->parts, - sizeof(*part->parts) * part->num_parts, - GFP_KERNEL); - if (!*pparts) - return -ENOMEM; - return part->num_parts; + break; + } + + if (!part) + return 0; + + for (i = 0, offset = 0; i < part->num_parts; i++) { + if (part->parts[i].offset == OFFSET_CONTINUOUS) + part->parts[i].offset = offset; + else + offset = part->parts[i].offset; + + if (part->parts[i].size == SIZE_REMAINING) + part->parts[i].size = master->size - offset; + + if (offset + part->parts[i].size > master->size) { + printk(KERN_WARNING ERRP + "%s: partitioning exceeds flash size, truncating\n", + part->mtd_id); + part->parts[i].size = master->size - offset; + } + offset += part->parts[i].size; + + if (part->parts[i].size == 0) { + printk(KERN_WARNING ERRP + "%s: skipping zero sized partition\n", + part->mtd_id); + part->num_parts--; + memmove(&part->parts[i], &part->parts[i + 1], + sizeof(*part->parts) * (part->num_parts - i)); + i--; } } - return 0; + + *pparts = kmemdup(part->parts, sizeof(*part->parts) * part->num_parts, + GFP_KERNEL); + if (!*pparts) + return -ENOMEM; + + return part->num_parts; } @@ -354,7 +377,7 @@ static int parse_cmdline_partitions(struct mtd_info *master, * * This function needs to be visible for bootloaders. */ -static int mtdpart_setup(char *s) +static int __init mtdpart_setup(char *s) { cmdline = s; return 1; @@ -370,10 +393,22 @@ static struct mtd_part_parser cmdline_parser = { static int __init cmdline_parser_init(void) { - return register_mtd_parser(&cmdline_parser); + if (mtdparts) + mtdpart_setup(mtdparts); + register_mtd_parser(&cmdline_parser); + return 0; +} + +static void __exit cmdline_parser_exit(void) +{ + deregister_mtd_parser(&cmdline_parser); } module_init(cmdline_parser_init); +module_exit(cmdline_parser_exit); + +MODULE_PARM_DESC(mtdparts, "Partitioning specification"); +module_param(mtdparts, charp, 0); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Marius Groeger <mag@sysgo.de>"); diff --git a/drivers/mtd/devices/Kconfig b/drivers/mtd/devices/Kconfig index 35081ce77fb..c49d0b127fe 100644 --- a/drivers/mtd/devices/Kconfig +++ b/drivers/mtd/devices/Kconfig @@ -1,5 +1,6 @@ menu "Self-contained MTD device drivers" depends on MTD!=n + depends on HAS_IOMEM config MTD_PMC551 tristate "Ramix PMC551 PCI Mezzanine RAM card support" @@ -51,7 +52,7 @@ config MTD_MS02NV config MTD_DATAFLASH tristate "Support for AT45xxx DataFlash" - depends on SPI_MASTER && EXPERIMENTAL + depends on SPI_MASTER help This enables access to AT45xxx DataFlash chips, using SPI. Sometimes DataFlash chips are packaged inside MMC-format @@ -70,7 +71,6 @@ config MTD_DATAFLASH_WRITE_VERIFY config MTD_DATAFLASH_OTP bool "DataFlash OTP support (Security Register)" depends on MTD_DATAFLASH - select HAVE_MTD_OTP help Newer DataFlash chips (revisions C and D) support 128 bytes of one-time-programmable (OTP) data. The first half may be written @@ -80,7 +80,7 @@ config MTD_DATAFLASH_OTP config MTD_M25P80 tristate "Support most SPI Flash chips (AT26DF, M25P, W25X, ...)" - depends on SPI_MASTER && EXPERIMENTAL + depends on SPI_MASTER && MTD_SPI_NOR help This enables access to most modern SPI flash chips, used for program and data storage. Series supported include Atmel AT26DF, @@ -95,12 +95,12 @@ config MTD_M25P80 if you want to specify device partitioning or to use a device which doesn't support the JEDEC ID instruction. -config M25PXX_USE_FAST_READ - bool "Use FAST_READ OPCode allowing SPI CLK <= 50MHz" - depends on MTD_M25P80 +config MTD_SPEAR_SMI + tristate "SPEAR MTD NOR Support through SMI controller" + depends on PLAT_SPEAR default y help - This option enables FAST_READ access supported by ST M25Pxx. + This enable SNOR support on SPEAR platforms using SMI controller config MTD_SST25L tristate "Support SST25L (non JEDEC) SPI Flash chips" @@ -112,6 +112,14 @@ config MTD_SST25L Set up your spi devices with the right board-specific platform data, if you want to specify device partitioning. +config MTD_BCM47XXSFLASH + tristate "R/O support for serial flash on BCMA bus" + depends on BCMA_SFLASH + help + BCMA bus can have various flash memories attached, they are + registered by bcma as platform devices. This enables driver for + serial flash memories (only read-only mode is implemented). + config MTD_SLRAM tristate "Uncached system RAM" help @@ -189,120 +197,32 @@ config MTD_BLOCK2MTD comment "Disk-On-Chip Device Drivers" -config MTD_DOC2000 - tristate "M-Systems Disk-On-Chip 2000 and Millennium (DEPRECATED)" - select MTD_DOCPROBE - select MTD_NAND_IDS +config MTD_DOCG3 + tristate "M-Systems Disk-On-Chip G3" + select BCH + select BCH_CONST_PARAMS + select BITREVERSE ---help--- This provides an MTD device driver for the M-Systems DiskOnChip - 2000 and Millennium devices. Originally designed for the DiskOnChip - 2000, it also now includes support for the DiskOnChip Millennium. - If you have problems with this driver and the DiskOnChip Millennium, - you may wish to try the alternative Millennium driver below. To use - the alternative driver, you will need to undefine DOC_SINGLE_DRIVER - in the <file:drivers/mtd/devices/docprobe.c> source code. - - If you use this device, you probably also want to enable the NFTL - 'NAND Flash Translation Layer' option below, which is used to - emulate a block device by using a kind of file system on the flash - chips. - - NOTE: This driver is deprecated and will probably be removed soon. - Please try the new DiskOnChip driver under "NAND Flash Device - Drivers". - -config MTD_DOC2001 - tristate "M-Systems Disk-On-Chip Millennium-only alternative driver (DEPRECATED)" - select MTD_DOCPROBE - select MTD_NAND_IDS - ---help--- - This provides an alternative MTD device driver for the M-Systems - DiskOnChip Millennium devices. Use this if you have problems with - the combined DiskOnChip 2000 and Millennium driver above. To get - the DiskOnChip probe code to load and use this driver instead of - the other one, you will need to undefine DOC_SINGLE_DRIVER near - the beginning of <file:drivers/mtd/devices/docprobe.c>. - - If you use this device, you probably also want to enable the NFTL - 'NAND Flash Translation Layer' option below, which is used to - emulate a block device by using a kind of file system on the flash - chips. - - NOTE: This driver is deprecated and will probably be removed soon. - Please try the new DiskOnChip driver under "NAND Flash Device - Drivers". - -config MTD_DOC2001PLUS - tristate "M-Systems Disk-On-Chip Millennium Plus" - select MTD_DOCPROBE - select MTD_NAND_IDS - ---help--- - This provides an MTD device driver for the M-Systems DiskOnChip - Millennium Plus devices. - - If you use this device, you probably also want to enable the INFTL - 'Inverse NAND Flash Translation Layer' option below, which is used - to emulate a block device by using a kind of file system on the - flash chips. - - NOTE: This driver will soon be replaced by the new DiskOnChip driver - under "NAND Flash Device Drivers" (currently that driver does not - support all Millennium Plus devices). - -config MTD_DOCPROBE - tristate - select MTD_DOCECC - -config MTD_DOCECC - tristate - -config MTD_DOCPROBE_ADVANCED - bool "Advanced detection options for DiskOnChip" - depends on MTD_DOCPROBE - help - This option allows you to specify nonstandard address at which to - probe for a DiskOnChip, or to change the detection options. You - are unlikely to need any of this unless you are using LinuxBIOS. - Say 'N'. - -config MTD_DOCPROBE_ADDRESS - hex "Physical address of DiskOnChip" if MTD_DOCPROBE_ADVANCED - depends on MTD_DOCPROBE - default "0x0000" if MTD_DOCPROBE_ADVANCED - default "0" if !MTD_DOCPROBE_ADVANCED - ---help--- - By default, the probe for DiskOnChip devices will look for a - DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000. - This option allows you to specify a single address at which to probe - for the device, which is useful if you have other devices in that - range which get upset when they are probed. - - (Note that on PowerPC, the normal probe will only check at - 0xE4000000.) - - Normally, you should leave this set to zero, to allow the probe at - the normal addresses. - -config MTD_DOCPROBE_HIGH - bool "Probe high addresses" - depends on MTD_DOCPROBE_ADVANCED - help - By default, the probe for DiskOnChip devices will look for a - DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000. - This option changes to make it probe between 0xFFFC8000 and - 0xFFFEE000. Unless you are using LinuxBIOS, this is unlikely to be - useful to you. Say 'N'. - -config MTD_DOCPROBE_55AA - bool "Probe for 0x55 0xAA BIOS Extension Signature" - depends on MTD_DOCPROBE_ADVANCED - help - Check for the 0x55 0xAA signature of a DiskOnChip, and do not - continue with probing if it is absent. The signature will always be - present for a DiskOnChip 2000 or a normal DiskOnChip Millennium. - Only if you have overwritten the first block of a DiskOnChip - Millennium will it be absent. Enable this option if you are using - LinuxBIOS or if you need to recover a DiskOnChip Millennium on which - you have managed to wipe the first block. + G3 devices. + + The driver provides access to G3 DiskOnChip, distributed by + M-Systems and now Sandisk. The support is very experimental, + and doesn't give access to any write operations. + +config MTD_ST_SPI_FSM + tristate "ST Microelectronics SPI FSM Serial Flash Controller" + depends on ARCH_STI + help + This provides an MTD device driver for the ST Microelectronics + SPI Fast Sequence Mode (FSM) Serial Flash Controller and support + for a subset of connected Serial Flash devices. + +if MTD_DOCG3 +config BCH_CONST_M + default 14 +config BCH_CONST_T + default 4 +endif endmenu diff --git a/drivers/mtd/devices/Makefile b/drivers/mtd/devices/Makefile index f3226b1d38f..c68868f6058 100644 --- a/drivers/mtd/devices/Makefile +++ b/drivers/mtd/devices/Makefile @@ -2,11 +2,7 @@ # linux/drivers/mtd/devices/Makefile # -obj-$(CONFIG_MTD_DOC2000) += doc2000.o -obj-$(CONFIG_MTD_DOC2001) += doc2001.o -obj-$(CONFIG_MTD_DOC2001PLUS) += doc2001plus.o -obj-$(CONFIG_MTD_DOCPROBE) += docprobe.o -obj-$(CONFIG_MTD_DOCECC) += docecc.o +obj-$(CONFIG_MTD_DOCG3) += docg3.o obj-$(CONFIG_MTD_SLRAM) += slram.o obj-$(CONFIG_MTD_PHRAM) += phram.o obj-$(CONFIG_MTD_PMC551) += pmc551.o @@ -16,4 +12,11 @@ obj-$(CONFIG_MTD_LART) += lart.o obj-$(CONFIG_MTD_BLOCK2MTD) += block2mtd.o obj-$(CONFIG_MTD_DATAFLASH) += mtd_dataflash.o obj-$(CONFIG_MTD_M25P80) += m25p80.o +obj-$(CONFIG_MTD_NAND_OMAP_BCH) += elm.o +obj-$(CONFIG_MTD_SPEAR_SMI) += spear_smi.o obj-$(CONFIG_MTD_SST25L) += sst25l.o +obj-$(CONFIG_MTD_BCM47XXSFLASH) += bcm47xxsflash.o +obj-$(CONFIG_MTD_ST_SPI_FSM) += st_spi_fsm.o + + +CFLAGS_docg3.o += -I$(src) diff --git a/drivers/mtd/devices/bcm47xxsflash.c b/drivers/mtd/devices/bcm47xxsflash.c new file mode 100644 index 00000000000..77de29bc02b --- /dev/null +++ b/drivers/mtd/devices/bcm47xxsflash.c @@ -0,0 +1,340 @@ +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/mtd/mtd.h> +#include <linux/platform_device.h> +#include <linux/bcma/bcma.h> + +#include "bcm47xxsflash.h" + +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("Serial flash driver for BCMA bus"); + +static const char * const probes[] = { "bcm47xxpart", NULL }; + +/************************************************** + * Various helpers + **************************************************/ + +static void bcm47xxsflash_cmd(struct bcm47xxsflash *b47s, u32 opcode) +{ + int i; + + b47s->cc_write(b47s, BCMA_CC_FLASHCTL, BCMA_CC_FLASHCTL_START | opcode); + for (i = 0; i < 1000; i++) { + if (!(b47s->cc_read(b47s, BCMA_CC_FLASHCTL) & + BCMA_CC_FLASHCTL_BUSY)) + return; + cpu_relax(); + } + pr_err("Control command failed (timeout)!\n"); +} + +static int bcm47xxsflash_poll(struct bcm47xxsflash *b47s, int timeout) +{ + unsigned long deadline = jiffies + timeout; + + do { + switch (b47s->type) { + case BCM47XXSFLASH_TYPE_ST: + bcm47xxsflash_cmd(b47s, OPCODE_ST_RDSR); + if (!(b47s->cc_read(b47s, BCMA_CC_FLASHDATA) & + SR_ST_WIP)) + return 0; + break; + case BCM47XXSFLASH_TYPE_ATMEL: + bcm47xxsflash_cmd(b47s, OPCODE_AT_STATUS); + if (b47s->cc_read(b47s, BCMA_CC_FLASHDATA) & + SR_AT_READY) + return 0; + break; + } + + cpu_relax(); + udelay(1); + } while (!time_after_eq(jiffies, deadline)); + + pr_err("Timeout waiting for flash to be ready!\n"); + + return -EBUSY; +} + +/************************************************** + * MTD ops + **************************************************/ + +static int bcm47xxsflash_erase(struct mtd_info *mtd, struct erase_info *erase) +{ + struct bcm47xxsflash *b47s = mtd->priv; + int err; + + switch (b47s->type) { + case BCM47XXSFLASH_TYPE_ST: + bcm47xxsflash_cmd(b47s, OPCODE_ST_WREN); + b47s->cc_write(b47s, BCMA_CC_FLASHADDR, erase->addr); + /* Newer flashes have "sub-sectors" which can be erased + * independently with a new command: ST_SSE. The ST_SE command + * erases 64KB just as before. + */ + if (b47s->blocksize < (64 * 1024)) + bcm47xxsflash_cmd(b47s, OPCODE_ST_SSE); + else + bcm47xxsflash_cmd(b47s, OPCODE_ST_SE); + break; + case BCM47XXSFLASH_TYPE_ATMEL: + b47s->cc_write(b47s, BCMA_CC_FLASHADDR, erase->addr << 1); + bcm47xxsflash_cmd(b47s, OPCODE_AT_PAGE_ERASE); + break; + } + + err = bcm47xxsflash_poll(b47s, HZ); + if (err) + erase->state = MTD_ERASE_FAILED; + else + erase->state = MTD_ERASE_DONE; + + if (erase->callback) + erase->callback(erase); + + return err; +} + +static int bcm47xxsflash_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct bcm47xxsflash *b47s = mtd->priv; + + /* Check address range */ + if ((from + len) > mtd->size) + return -EINVAL; + + memcpy_fromio(buf, (void __iomem *)KSEG0ADDR(b47s->window + from), + len); + *retlen = len; + + return len; +} + +static int bcm47xxsflash_write_st(struct mtd_info *mtd, u32 offset, size_t len, + const u_char *buf) +{ + struct bcm47xxsflash *b47s = mtd->priv; + int written = 0; + + /* Enable writes */ + bcm47xxsflash_cmd(b47s, OPCODE_ST_WREN); + + /* Write first byte */ + b47s->cc_write(b47s, BCMA_CC_FLASHADDR, offset); + b47s->cc_write(b47s, BCMA_CC_FLASHDATA, *buf++); + + /* Program page */ + if (b47s->bcma_cc->core->id.rev < 20) { + bcm47xxsflash_cmd(b47s, OPCODE_ST_PP); + return 1; /* 1B written */ + } + + /* Program page and set CSA (on newer chips we can continue writing) */ + bcm47xxsflash_cmd(b47s, OPCODE_ST_CSA | OPCODE_ST_PP); + offset++; + len--; + written++; + + while (len > 0) { + /* Page boundary, another function call is needed */ + if ((offset & 0xFF) == 0) + break; + + bcm47xxsflash_cmd(b47s, OPCODE_ST_CSA | *buf++); + offset++; + len--; + written++; + } + + /* All done, drop CSA & poll */ + b47s->cc_write(b47s, BCMA_CC_FLASHCTL, 0); + udelay(1); + if (bcm47xxsflash_poll(b47s, HZ / 10)) + pr_err("Flash rejected dropping CSA\n"); + + return written; +} + +static int bcm47xxsflash_write_at(struct mtd_info *mtd, u32 offset, size_t len, + const u_char *buf) +{ + struct bcm47xxsflash *b47s = mtd->priv; + u32 mask = b47s->blocksize - 1; + u32 page = (offset & ~mask) << 1; + u32 byte = offset & mask; + int written = 0; + + /* If we don't overwrite whole page, read it to the buffer first */ + if (byte || (len < b47s->blocksize)) { + int err; + + b47s->cc_write(b47s, BCMA_CC_FLASHADDR, page); + bcm47xxsflash_cmd(b47s, OPCODE_AT_BUF1_LOAD); + /* 250 us for AT45DB321B */ + err = bcm47xxsflash_poll(b47s, HZ / 1000); + if (err) { + pr_err("Timeout reading page 0x%X info buffer\n", page); + return err; + } + } + + /* Change buffer content with our data */ + while (len > 0) { + /* Page boundary, another function call is needed */ + if (byte == b47s->blocksize) + break; + + b47s->cc_write(b47s, BCMA_CC_FLASHADDR, byte++); + b47s->cc_write(b47s, BCMA_CC_FLASHDATA, *buf++); + bcm47xxsflash_cmd(b47s, OPCODE_AT_BUF1_WRITE); + len--; + written++; + } + + /* Program page with the buffer content */ + b47s->cc_write(b47s, BCMA_CC_FLASHADDR, page); + bcm47xxsflash_cmd(b47s, OPCODE_AT_BUF1_PROGRAM); + + return written; +} + +static int bcm47xxsflash_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct bcm47xxsflash *b47s = mtd->priv; + int written; + + /* Writing functions can return without writing all passed data, for + * example when the hardware is too old or when we git page boundary. + */ + while (len > 0) { + switch (b47s->type) { + case BCM47XXSFLASH_TYPE_ST: + written = bcm47xxsflash_write_st(mtd, to, len, buf); + break; + case BCM47XXSFLASH_TYPE_ATMEL: + written = bcm47xxsflash_write_at(mtd, to, len, buf); + break; + default: + BUG_ON(1); + } + if (written < 0) { + pr_err("Error writing at offset 0x%llX\n", to); + return written; + } + to += (loff_t)written; + len -= written; + *retlen += written; + buf += written; + } + + return 0; +} + +static void bcm47xxsflash_fill_mtd(struct bcm47xxsflash *b47s) +{ + struct mtd_info *mtd = &b47s->mtd; + + mtd->priv = b47s; + mtd->name = "bcm47xxsflash"; + mtd->owner = THIS_MODULE; + + mtd->type = MTD_NORFLASH; + mtd->flags = MTD_CAP_NORFLASH; + mtd->size = b47s->size; + mtd->erasesize = b47s->blocksize; + mtd->writesize = 1; + mtd->writebufsize = 1; + + mtd->_erase = bcm47xxsflash_erase; + mtd->_read = bcm47xxsflash_read; + mtd->_write = bcm47xxsflash_write; +} + +/************************************************** + * BCMA + **************************************************/ + +static int bcm47xxsflash_bcma_cc_read(struct bcm47xxsflash *b47s, u16 offset) +{ + return bcma_cc_read32(b47s->bcma_cc, offset); +} + +static void bcm47xxsflash_bcma_cc_write(struct bcm47xxsflash *b47s, u16 offset, + u32 value) +{ + bcma_cc_write32(b47s->bcma_cc, offset, value); +} + +static int bcm47xxsflash_bcma_probe(struct platform_device *pdev) +{ + struct bcma_sflash *sflash = dev_get_platdata(&pdev->dev); + struct bcm47xxsflash *b47s; + int err; + + b47s = devm_kzalloc(&pdev->dev, sizeof(*b47s), GFP_KERNEL); + if (!b47s) + return -ENOMEM; + sflash->priv = b47s; + + b47s->bcma_cc = container_of(sflash, struct bcma_drv_cc, sflash); + b47s->cc_read = bcm47xxsflash_bcma_cc_read; + b47s->cc_write = bcm47xxsflash_bcma_cc_write; + + switch (b47s->bcma_cc->capabilities & BCMA_CC_CAP_FLASHT) { + case BCMA_CC_FLASHT_STSER: + b47s->type = BCM47XXSFLASH_TYPE_ST; + break; + case BCMA_CC_FLASHT_ATSER: + b47s->type = BCM47XXSFLASH_TYPE_ATMEL; + break; + } + + b47s->window = sflash->window; + b47s->blocksize = sflash->blocksize; + b47s->numblocks = sflash->numblocks; + b47s->size = sflash->size; + bcm47xxsflash_fill_mtd(b47s); + + err = mtd_device_parse_register(&b47s->mtd, probes, NULL, NULL, 0); + if (err) { + pr_err("Failed to register MTD device: %d\n", err); + return err; + } + + if (bcm47xxsflash_poll(b47s, HZ / 10)) + pr_warn("Serial flash busy\n"); + + return 0; +} + +static int bcm47xxsflash_bcma_remove(struct platform_device *pdev) +{ + struct bcma_sflash *sflash = dev_get_platdata(&pdev->dev); + struct bcm47xxsflash *b47s = sflash->priv; + + mtd_device_unregister(&b47s->mtd); + + return 0; +} + +static struct platform_driver bcma_sflash_driver = { + .probe = bcm47xxsflash_bcma_probe, + .remove = bcm47xxsflash_bcma_remove, + .driver = { + .name = "bcma_sflash", + .owner = THIS_MODULE, + }, +}; + +/************************************************** + * Init + **************************************************/ + +module_platform_driver(bcma_sflash_driver); diff --git a/drivers/mtd/devices/bcm47xxsflash.h b/drivers/mtd/devices/bcm47xxsflash.h new file mode 100644 index 00000000000..fe93daf4f48 --- /dev/null +++ b/drivers/mtd/devices/bcm47xxsflash.h @@ -0,0 +1,76 @@ +#ifndef __BCM47XXSFLASH_H +#define __BCM47XXSFLASH_H + +#include <linux/mtd/mtd.h> + +/* Used for ST flashes only. */ +#define OPCODE_ST_WREN 0x0006 /* Write Enable */ +#define OPCODE_ST_WRDIS 0x0004 /* Write Disable */ +#define OPCODE_ST_RDSR 0x0105 /* Read Status Register */ +#define OPCODE_ST_WRSR 0x0101 /* Write Status Register */ +#define OPCODE_ST_READ 0x0303 /* Read Data Bytes */ +#define OPCODE_ST_PP 0x0302 /* Page Program */ +#define OPCODE_ST_SE 0x02d8 /* Sector Erase */ +#define OPCODE_ST_BE 0x00c7 /* Bulk Erase */ +#define OPCODE_ST_DP 0x00b9 /* Deep Power-down */ +#define OPCODE_ST_RES 0x03ab /* Read Electronic Signature */ +#define OPCODE_ST_CSA 0x1000 /* Keep chip select asserted */ +#define OPCODE_ST_SSE 0x0220 /* Sub-sector Erase */ + +/* Used for Atmel flashes only. */ +#define OPCODE_AT_READ 0x07e8 +#define OPCODE_AT_PAGE_READ 0x07d2 +#define OPCODE_AT_STATUS 0x01d7 +#define OPCODE_AT_BUF1_WRITE 0x0384 +#define OPCODE_AT_BUF2_WRITE 0x0387 +#define OPCODE_AT_BUF1_ERASE_PROGRAM 0x0283 +#define OPCODE_AT_BUF2_ERASE_PROGRAM 0x0286 +#define OPCODE_AT_BUF1_PROGRAM 0x0288 +#define OPCODE_AT_BUF2_PROGRAM 0x0289 +#define OPCODE_AT_PAGE_ERASE 0x0281 +#define OPCODE_AT_BLOCK_ERASE 0x0250 +#define OPCODE_AT_BUF1_WRITE_ERASE_PROGRAM 0x0382 +#define OPCODE_AT_BUF2_WRITE_ERASE_PROGRAM 0x0385 +#define OPCODE_AT_BUF1_LOAD 0x0253 +#define OPCODE_AT_BUF2_LOAD 0x0255 +#define OPCODE_AT_BUF1_COMPARE 0x0260 +#define OPCODE_AT_BUF2_COMPARE 0x0261 +#define OPCODE_AT_BUF1_REPROGRAM 0x0258 +#define OPCODE_AT_BUF2_REPROGRAM 0x0259 + +/* Status register bits for ST flashes */ +#define SR_ST_WIP 0x01 /* Write In Progress */ +#define SR_ST_WEL 0x02 /* Write Enable Latch */ +#define SR_ST_BP_MASK 0x1c /* Block Protect */ +#define SR_ST_BP_SHIFT 2 +#define SR_ST_SRWD 0x80 /* Status Register Write Disable */ + +/* Status register bits for Atmel flashes */ +#define SR_AT_READY 0x80 +#define SR_AT_MISMATCH 0x40 +#define SR_AT_ID_MASK 0x38 +#define SR_AT_ID_SHIFT 3 + +struct bcma_drv_cc; + +enum bcm47xxsflash_type { + BCM47XXSFLASH_TYPE_ATMEL, + BCM47XXSFLASH_TYPE_ST, +}; + +struct bcm47xxsflash { + struct bcma_drv_cc *bcma_cc; + int (*cc_read)(struct bcm47xxsflash *b47s, u16 offset); + void (*cc_write)(struct bcm47xxsflash *b47s, u16 offset, u32 value); + + enum bcm47xxsflash_type type; + + u32 window; + u32 blocksize; + u16 numblocks; + u32 size; + + struct mtd_info mtd; +}; + +#endif /* BCM47XXSFLASH */ diff --git a/drivers/mtd/devices/block2mtd.c b/drivers/mtd/devices/block2mtd.c index 93651865ddb..66f0405f7e5 100644 --- a/drivers/mtd/devices/block2mtd.c +++ b/drivers/mtd/devices/block2mtd.c @@ -6,6 +6,9 @@ * * Licence: GPL */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + #include <linux/module.h> #include <linux/fs.h> #include <linux/blkdev.h> @@ -14,14 +17,10 @@ #include <linux/list.h> #include <linux/init.h> #include <linux/mtd/mtd.h> -#include <linux/buffer_head.h> #include <linux/mutex.h> #include <linux/mount.h> #include <linux/slab.h> - -#define ERROR(fmt, args...) printk(KERN_ERR "block2mtd: " fmt "\n" , ## args) -#define INFO(fmt, args...) printk(KERN_INFO "block2mtd: " fmt "\n" , ## args) - +#include <linux/major.h> /* Info for the block device */ struct block2mtd_dev { @@ -53,8 +52,6 @@ static int _block2mtd_erase(struct block2mtd_dev *dev, loff_t to, size_t len) while (pages) { page = page_read(mapping, index); - if (!page) - return -ENOMEM; if (IS_ERR(page)) return PTR_ERR(page); @@ -65,6 +62,7 @@ static int _block2mtd_erase(struct block2mtd_dev *dev, loff_t to, size_t len) memset(page_address(page), 0xff, PAGE_SIZE); set_page_dirty(page); unlock_page(page); + balance_dirty_pages_ratelimited(mapping); break; } @@ -86,12 +84,11 @@ static int block2mtd_erase(struct mtd_info *mtd, struct erase_info *instr) err = _block2mtd_erase(dev, from, len); mutex_unlock(&dev->write_mutex); if (err) { - ERROR("erase failed err = %d", err); + pr_err("erase failed err = %d\n", err); instr->state = MTD_ERASE_FAILED; } else instr->state = MTD_ERASE_DONE; - instr->state = MTD_ERASE_DONE; mtd_erase_callback(instr); return err; } @@ -106,14 +103,6 @@ static int block2mtd_read(struct mtd_info *mtd, loff_t from, size_t len, int offset = from & (PAGE_SIZE-1); int cpylen; - if (from > mtd->size) - return -EINVAL; - if (from + len > mtd->size) - len = mtd->size - from; - - if (retlen) - *retlen = 0; - while (len) { if ((offset + len) > PAGE_SIZE) cpylen = PAGE_SIZE - offset; // multiple pages @@ -122,8 +111,6 @@ static int block2mtd_read(struct mtd_info *mtd, loff_t from, size_t len, len = len - cpylen; page = page_read(dev->blkdev->bd_inode->i_mapping, index); - if (!page) - return -ENOMEM; if (IS_ERR(page)) return PTR_ERR(page); @@ -150,8 +137,6 @@ static int _block2mtd_write(struct block2mtd_dev *dev, const u_char *buf, int offset = to & ~PAGE_MASK; // page offset int cpylen; - if (retlen) - *retlen = 0; while (len) { if ((offset+len) > PAGE_SIZE) cpylen = PAGE_SIZE - offset; // multiple pages @@ -160,8 +145,6 @@ static int _block2mtd_write(struct block2mtd_dev *dev, const u_char *buf, len = len - cpylen; page = page_read(mapping, index); - if (!page) - return -ENOMEM; if (IS_ERR(page)) return PTR_ERR(page); @@ -170,6 +153,7 @@ static int _block2mtd_write(struct block2mtd_dev *dev, const u_char *buf, memcpy(page_address(page) + offset, buf, cpylen); set_page_dirty(page); unlock_page(page); + balance_dirty_pages_ratelimited(mapping); } page_cache_release(page); @@ -190,13 +174,6 @@ static int block2mtd_write(struct mtd_info *mtd, loff_t to, size_t len, struct block2mtd_dev *dev = mtd->priv; int err; - if (!len) - return 0; - if (to >= mtd->size) - return -ENOSPC; - if (to + len > mtd->size) - len = mtd->size - to; - mutex_lock(&dev->write_mutex); err = _block2mtd_write(dev, buf, to, len, retlen); mutex_unlock(&dev->write_mutex); @@ -225,16 +202,16 @@ static void block2mtd_free_device(struct block2mtd_dev *dev) if (dev->blkdev) { invalidate_mapping_pages(dev->blkdev->bd_inode->i_mapping, 0, -1); - close_bdev_exclusive(dev->blkdev, FMODE_READ|FMODE_WRITE); + blkdev_put(dev->blkdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); } kfree(dev); } -/* FIXME: ensure that mtd->size % erase_size == 0 */ static struct block2mtd_dev *add_device(char *devname, int erase_size) { + const fmode_t mode = FMODE_READ | FMODE_WRITE | FMODE_EXCL; struct block_device *bdev; struct block2mtd_dev *dev; char *name; @@ -247,7 +224,7 @@ static struct block2mtd_dev *add_device(char *devname, int erase_size) return NULL; /* Get a handle on the device */ - bdev = open_bdev_exclusive(devname, FMODE_READ|FMODE_WRITE, NULL); + bdev = blkdev_get_by_path(devname, mode, dev); #ifndef MODULE if (IS_ERR(bdev)) { @@ -255,21 +232,25 @@ static struct block2mtd_dev *add_device(char *devname, int erase_size) to resolve the device name by other means. */ dev_t devt = name_to_dev_t(devname); - if (devt) { - bdev = open_by_devnum(devt, FMODE_WRITE | FMODE_READ); - } + if (devt) + bdev = blkdev_get_by_dev(devt, mode, dev); } #endif if (IS_ERR(bdev)) { - ERROR("error: cannot open device %s", devname); - goto devinit_err; + pr_err("error: cannot open device %s\n", devname); + goto err_free_block2mtd; } dev->blkdev = bdev; if (MAJOR(bdev->bd_dev) == MTD_BLOCK_MAJOR) { - ERROR("attempting to use an MTD device as a block device"); - goto devinit_err; + pr_err("attempting to use an MTD device as a block device\n"); + goto err_free_block2mtd; + } + + if ((long)dev->blkdev->bd_inode->i_size % erase_size) { + pr_err("erasesize must be a divisor of device size\n"); + goto err_free_block2mtd; } mutex_init(&dev->write_mutex); @@ -278,34 +259,37 @@ static struct block2mtd_dev *add_device(char *devname, int erase_size) /* make the name contain the block device in */ name = kasprintf(GFP_KERNEL, "block2mtd: %s", devname); if (!name) - goto devinit_err; + goto err_destroy_mutex; dev->mtd.name = name; dev->mtd.size = dev->blkdev->bd_inode->i_size & PAGE_MASK; dev->mtd.erasesize = erase_size; dev->mtd.writesize = 1; + dev->mtd.writebufsize = PAGE_SIZE; dev->mtd.type = MTD_RAM; dev->mtd.flags = MTD_CAP_RAM; - dev->mtd.erase = block2mtd_erase; - dev->mtd.write = block2mtd_write; - dev->mtd.writev = default_mtd_writev; - dev->mtd.sync = block2mtd_sync; - dev->mtd.read = block2mtd_read; + dev->mtd._erase = block2mtd_erase; + dev->mtd._write = block2mtd_write; + dev->mtd._sync = block2mtd_sync; + dev->mtd._read = block2mtd_read; dev->mtd.priv = dev; dev->mtd.owner = THIS_MODULE; - if (add_mtd_device(&dev->mtd)) { - /* Device didnt get added, so free the entry */ - goto devinit_err; + if (mtd_device_register(&dev->mtd, NULL, 0)) { + /* Device didn't get added, so free the entry */ + goto err_destroy_mutex; } list_add(&dev->list, &blkmtd_device_list); - INFO("mtd%d: [%s] erase_size = %dKiB [%d]", dev->mtd.index, - dev->mtd.name + strlen("block2mtd: "), - dev->mtd.erasesize >> 10, dev->mtd.erasesize); + pr_info("mtd%d: [%s] erase_size = %dKiB [%d]\n", + dev->mtd.index, + dev->mtd.name + strlen("block2mtd: "), + dev->mtd.erasesize >> 10, dev->mtd.erasesize); return dev; -devinit_err: +err_destroy_mutex: + mutex_destroy(&dev->write_mutex); +err_free_block2mtd: block2mtd_free_device(dev); return NULL; } @@ -362,17 +346,11 @@ static inline void kill_final_newline(char *str) } -#define parse_err(fmt, args...) do { \ - ERROR(fmt, ## args); \ - return 0; \ -} while (0) - #ifndef MODULE static int block2mtd_init_called = 0; static char block2mtd_paramline[80 + 12]; /* 80 for device, 12 for erase size */ #endif - static int block2mtd_setup2(const char *val) { char buf[80 + 12]; /* 80 for device, 12 for erase size */ @@ -382,8 +360,10 @@ static int block2mtd_setup2(const char *val) size_t erase_size = PAGE_SIZE; int i, ret; - if (strnlen(val, sizeof(buf)) >= sizeof(buf)) - parse_err("parameter too long"); + if (strnlen(val, sizeof(buf)) >= sizeof(buf)) { + pr_err("parameter too long\n"); + return 0; + } strcpy(str, val); kill_final_newline(str); @@ -391,20 +371,27 @@ static int block2mtd_setup2(const char *val) for (i = 0; i < 2; i++) token[i] = strsep(&str, ","); - if (str) - parse_err("too many arguments"); + if (str) { + pr_err("too many arguments\n"); + return 0; + } - if (!token[0]) - parse_err("no argument"); + if (!token[0]) { + pr_err("no argument\n"); + return 0; + } name = token[0]; - if (strlen(name) + 1 > 80) - parse_err("device name too long"); + if (strlen(name) + 1 > 80) { + pr_err("device name too long\n"); + return 0; + } if (token[1]) { ret = parse_num(&erase_size, token[1]); if (ret) { - parse_err("illegal erase size"); + pr_err("illegal erase size\n"); + return 0; } } @@ -458,7 +445,7 @@ static int __init block2mtd_init(void) } -static void __devexit block2mtd_exit(void) +static void block2mtd_exit(void) { struct list_head *pos, *next; @@ -466,9 +453,11 @@ static void __devexit block2mtd_exit(void) list_for_each_safe(pos, next, &blkmtd_device_list) { struct block2mtd_dev *dev = list_entry(pos, typeof(*dev), list); block2mtd_sync(&dev->mtd); - del_mtd_device(&dev->mtd); - INFO("mtd%d: [%s] removed", dev->mtd.index, - dev->mtd.name + strlen("block2mtd: ")); + mtd_device_unregister(&dev->mtd); + mutex_destroy(&dev->write_mutex); + pr_info("mtd%d: [%s] removed\n", + dev->mtd.index, + dev->mtd.name + strlen("block2mtd: ")); list_del(&dev->list); block2mtd_free_device(dev); } diff --git a/drivers/mtd/devices/doc2000.c b/drivers/mtd/devices/doc2000.c deleted file mode 100644 index 5bf5f460e13..00000000000 --- a/drivers/mtd/devices/doc2000.c +++ /dev/null @@ -1,1201 +0,0 @@ - -/* - * Linux driver for Disk-On-Chip 2000 and Millennium - * (c) 1999 Machine Vision Holdings, Inc. - * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> - */ - -#include <linux/kernel.h> -#include <linux/module.h> -#include <asm/errno.h> -#include <asm/io.h> -#include <asm/uaccess.h> -#include <linux/delay.h> -#include <linux/slab.h> -#include <linux/sched.h> -#include <linux/init.h> -#include <linux/types.h> -#include <linux/bitops.h> -#include <linux/mutex.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/doc2000.h> - -#define DOC_SUPPORT_2000 -#define DOC_SUPPORT_2000TSOP -#define DOC_SUPPORT_MILLENNIUM - -#ifdef DOC_SUPPORT_2000 -#define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k) -#else -#define DoC_is_2000(doc) (0) -#endif - -#if defined(DOC_SUPPORT_2000TSOP) || defined(DOC_SUPPORT_MILLENNIUM) -#define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil) -#else -#define DoC_is_Millennium(doc) (0) -#endif - -/* #define ECC_DEBUG */ - -/* I have no idea why some DoC chips can not use memcpy_from|to_io(). - * This may be due to the different revisions of the ASIC controller built-in or - * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment - * this: - #undef USE_MEMCPY -*/ - -static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, - size_t *retlen, u_char *buf); -static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, const u_char *buf); -static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops); -static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops); -static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len, - size_t *retlen, const u_char *buf); -static int doc_erase (struct mtd_info *mtd, struct erase_info *instr); - -static struct mtd_info *doc2klist = NULL; - -/* Perform the required delay cycles by reading from the appropriate register */ -static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles) -{ - volatile char dummy; - int i; - - for (i = 0; i < cycles; i++) { - if (DoC_is_Millennium(doc)) - dummy = ReadDOC(doc->virtadr, NOP); - else - dummy = ReadDOC(doc->virtadr, DOCStatus); - } - -} - -/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ -static int _DoC_WaitReady(struct DiskOnChip *doc) -{ - void __iomem *docptr = doc->virtadr; - unsigned long timeo = jiffies + (HZ * 10); - - DEBUG(MTD_DEBUG_LEVEL3, - "_DoC_WaitReady called for out-of-line wait\n"); - - /* Out-of-line routine to wait for chip response */ - while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { - /* issue 2 read from NOP register after reading from CDSNControl register - see Software Requirement 11.4 item 2. */ - DoC_Delay(doc, 2); - - if (time_after(jiffies, timeo)) { - DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n"); - return -EIO; - } - udelay(1); - cond_resched(); - } - - return 0; -} - -static inline int DoC_WaitReady(struct DiskOnChip *doc) -{ - void __iomem *docptr = doc->virtadr; - - /* This is inline, to optimise the common case, where it's ready instantly */ - int ret = 0; - - /* 4 read form NOP register should be issued in prior to the read from CDSNControl - see Software Requirement 11.4 item 2. */ - DoC_Delay(doc, 4); - - if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) - /* Call the out-of-line routine to wait */ - ret = _DoC_WaitReady(doc); - - /* issue 2 read from NOP register after reading from CDSNControl register - see Software Requirement 11.4 item 2. */ - DoC_Delay(doc, 2); - - return ret; -} - -/* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to - bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is - required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ - -static int DoC_Command(struct DiskOnChip *doc, unsigned char command, - unsigned char xtraflags) -{ - void __iomem *docptr = doc->virtadr; - - if (DoC_is_2000(doc)) - xtraflags |= CDSN_CTRL_FLASH_IO; - - /* Assert the CLE (Command Latch Enable) line to the flash chip */ - WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl); - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - if (DoC_is_Millennium(doc)) - WriteDOC(command, docptr, CDSNSlowIO); - - /* Send the command */ - WriteDOC_(command, docptr, doc->ioreg); - if (DoC_is_Millennium(doc)) - WriteDOC(command, docptr, WritePipeTerm); - - /* Lower the CLE line */ - WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl); - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - /* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */ - return DoC_WaitReady(doc); -} - -/* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to - bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is - required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ - -static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs, - unsigned char xtraflags1, unsigned char xtraflags2) -{ - int i; - void __iomem *docptr = doc->virtadr; - - if (DoC_is_2000(doc)) - xtraflags1 |= CDSN_CTRL_FLASH_IO; - - /* Assert the ALE (Address Latch Enable) line to the flash chip */ - WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl); - - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - /* Send the address */ - /* Devices with 256-byte page are addressed as: - Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) - * there is no device on the market with page256 - and more than 24 bits. - Devices with 512-byte page are addressed as: - Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) - * 25-31 is sent only if the chip support it. - * bit 8 changes the read command to be sent - (NAND_CMD_READ0 or NAND_CMD_READ1). - */ - - if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) { - if (DoC_is_Millennium(doc)) - WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); - WriteDOC_(ofs & 0xff, docptr, doc->ioreg); - } - - if (doc->page256) { - ofs = ofs >> 8; - } else { - ofs = ofs >> 9; - } - - if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) { - for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) { - if (DoC_is_Millennium(doc)) - WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); - WriteDOC_(ofs & 0xff, docptr, doc->ioreg); - } - } - - if (DoC_is_Millennium(doc)) - WriteDOC(ofs & 0xff, docptr, WritePipeTerm); - - DoC_Delay(doc, 2); /* Needed for some slow flash chips. mf. */ - - /* FIXME: The SlowIO's for millennium could be replaced by - a single WritePipeTerm here. mf. */ - - /* Lower the ALE line */ - WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr, - CDSNControl); - - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - /* Wait for the chip to respond - Software requirement 11.4.1 */ - return DoC_WaitReady(doc); -} - -/* Read a buffer from DoC, taking care of Millennium odditys */ -static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len) -{ - volatile int dummy; - int modulus = 0xffff; - void __iomem *docptr = doc->virtadr; - int i; - - if (len <= 0) - return; - - if (DoC_is_Millennium(doc)) { - /* Read the data via the internal pipeline through CDSN IO register, - see Pipelined Read Operations 11.3 */ - dummy = ReadDOC(docptr, ReadPipeInit); - - /* Millennium should use the LastDataRead register - Pipeline Reads */ - len--; - - /* This is needed for correctly ECC calculation */ - modulus = 0xff; - } - - for (i = 0; i < len; i++) - buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus)); - - if (DoC_is_Millennium(doc)) { - buf[i] = ReadDOC(docptr, LastDataRead); - } -} - -/* Write a buffer to DoC, taking care of Millennium odditys */ -static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len) -{ - void __iomem *docptr = doc->virtadr; - int i; - - if (len <= 0) - return; - - for (i = 0; i < len; i++) - WriteDOC_(buf[i], docptr, doc->ioreg + i); - - if (DoC_is_Millennium(doc)) { - WriteDOC(0x00, docptr, WritePipeTerm); - } -} - - -/* DoC_SelectChip: Select a given flash chip within the current floor */ - -static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip) -{ - void __iomem *docptr = doc->virtadr; - - /* Software requirement 11.4.4 before writing DeviceSelect */ - /* Deassert the CE line to eliminate glitches on the FCE# outputs */ - WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl); - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - /* Select the individual flash chip requested */ - WriteDOC(chip, docptr, CDSNDeviceSelect); - DoC_Delay(doc, 4); - - /* Reassert the CE line */ - WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr, - CDSNControl); - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - /* Wait for it to be ready */ - return DoC_WaitReady(doc); -} - -/* DoC_SelectFloor: Select a given floor (bank of flash chips) */ - -static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor) -{ - void __iomem *docptr = doc->virtadr; - - /* Select the floor (bank) of chips required */ - WriteDOC(floor, docptr, FloorSelect); - - /* Wait for the chip to be ready */ - return DoC_WaitReady(doc); -} - -/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */ - -static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip) -{ - int mfr, id, i, j; - volatile char dummy; - - /* Page in the required floor/chip */ - DoC_SelectFloor(doc, floor); - DoC_SelectChip(doc, chip); - - /* Reset the chip */ - if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) { - DEBUG(MTD_DEBUG_LEVEL2, - "DoC_Command (reset) for %d,%d returned true\n", - floor, chip); - return 0; - } - - - /* Read the NAND chip ID: 1. Send ReadID command */ - if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) { - DEBUG(MTD_DEBUG_LEVEL2, - "DoC_Command (ReadID) for %d,%d returned true\n", - floor, chip); - return 0; - } - - /* Read the NAND chip ID: 2. Send address byte zero */ - DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0); - - /* Read the manufacturer and device id codes from the device */ - - if (DoC_is_Millennium(doc)) { - DoC_Delay(doc, 2); - dummy = ReadDOC(doc->virtadr, ReadPipeInit); - mfr = ReadDOC(doc->virtadr, LastDataRead); - - DoC_Delay(doc, 2); - dummy = ReadDOC(doc->virtadr, ReadPipeInit); - id = ReadDOC(doc->virtadr, LastDataRead); - } else { - /* CDSN Slow IO register see Software Req 11.4 item 5. */ - dummy = ReadDOC(doc->virtadr, CDSNSlowIO); - DoC_Delay(doc, 2); - mfr = ReadDOC_(doc->virtadr, doc->ioreg); - - /* CDSN Slow IO register see Software Req 11.4 item 5. */ - dummy = ReadDOC(doc->virtadr, CDSNSlowIO); - DoC_Delay(doc, 2); - id = ReadDOC_(doc->virtadr, doc->ioreg); - } - - /* No response - return failure */ - if (mfr == 0xff || mfr == 0) - return 0; - - /* Check it's the same as the first chip we identified. - * M-Systems say that any given DiskOnChip device should only - * contain _one_ type of flash part, although that's not a - * hardware restriction. */ - if (doc->mfr) { - if (doc->mfr == mfr && doc->id == id) - return 1; /* This is the same as the first */ - else - printk(KERN_WARNING - "Flash chip at floor %d, chip %d is different:\n", - floor, chip); - } - - /* Print and store the manufacturer and ID codes. */ - for (i = 0; nand_flash_ids[i].name != NULL; i++) { - if (id == nand_flash_ids[i].id) { - /* Try to identify manufacturer */ - for (j = 0; nand_manuf_ids[j].id != 0x0; j++) { - if (nand_manuf_ids[j].id == mfr) - break; - } - printk(KERN_INFO - "Flash chip found: Manufacturer ID: %2.2X, " - "Chip ID: %2.2X (%s:%s)\n", mfr, id, - nand_manuf_ids[j].name, nand_flash_ids[i].name); - if (!doc->mfr) { - doc->mfr = mfr; - doc->id = id; - doc->chipshift = - ffs((nand_flash_ids[i].chipsize << 20)) - 1; - doc->page256 = (nand_flash_ids[i].pagesize == 256) ? 1 : 0; - doc->pageadrlen = doc->chipshift > 25 ? 3 : 2; - doc->erasesize = - nand_flash_ids[i].erasesize; - return 1; - } - return 0; - } - } - - - /* We haven't fully identified the chip. Print as much as we know. */ - printk(KERN_WARNING "Unknown flash chip found: %2.2X %2.2X\n", - id, mfr); - - printk(KERN_WARNING "Please report to dwmw2@infradead.org\n"); - return 0; -} - -/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */ - -static void DoC_ScanChips(struct DiskOnChip *this, int maxchips) -{ - int floor, chip; - int numchips[MAX_FLOORS]; - int ret = 1; - - this->numchips = 0; - this->mfr = 0; - this->id = 0; - - /* For each floor, find the number of valid chips it contains */ - for (floor = 0; floor < MAX_FLOORS; floor++) { - ret = 1; - numchips[floor] = 0; - for (chip = 0; chip < maxchips && ret != 0; chip++) { - - ret = DoC_IdentChip(this, floor, chip); - if (ret) { - numchips[floor]++; - this->numchips++; - } - } - } - - /* If there are none at all that we recognise, bail */ - if (!this->numchips) { - printk(KERN_NOTICE "No flash chips recognised.\n"); - return; - } - - /* Allocate an array to hold the information for each chip */ - this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL); - if (!this->chips) { - printk(KERN_NOTICE "No memory for allocating chip info structures\n"); - return; - } - - ret = 0; - - /* Fill out the chip array with {floor, chipno} for each - * detected chip in the device. */ - for (floor = 0; floor < MAX_FLOORS; floor++) { - for (chip = 0; chip < numchips[floor]; chip++) { - this->chips[ret].floor = floor; - this->chips[ret].chip = chip; - this->chips[ret].curadr = 0; - this->chips[ret].curmode = 0x50; - ret++; - } - } - - /* Calculate and print the total size of the device */ - this->totlen = this->numchips * (1 << this->chipshift); - - printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n", - this->numchips, this->totlen >> 20); -} - -static int DoC2k_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2) -{ - int tmp1, tmp2, retval; - if (doc1->physadr == doc2->physadr) - return 1; - - /* Use the alias resolution register which was set aside for this - * purpose. If it's value is the same on both chips, they might - * be the same chip, and we write to one and check for a change in - * the other. It's unclear if this register is usuable in the - * DoC 2000 (it's in the Millennium docs), but it seems to work. */ - tmp1 = ReadDOC(doc1->virtadr, AliasResolution); - tmp2 = ReadDOC(doc2->virtadr, AliasResolution); - if (tmp1 != tmp2) - return 0; - - WriteDOC((tmp1 + 1) % 0xff, doc1->virtadr, AliasResolution); - tmp2 = ReadDOC(doc2->virtadr, AliasResolution); - if (tmp2 == (tmp1 + 1) % 0xff) - retval = 1; - else - retval = 0; - - /* Restore register contents. May not be necessary, but do it just to - * be safe. */ - WriteDOC(tmp1, doc1->virtadr, AliasResolution); - - return retval; -} - -/* This routine is found from the docprobe code by symbol_get(), - * which will bump the use count of this module. */ -void DoC2k_init(struct mtd_info *mtd) -{ - struct DiskOnChip *this = mtd->priv; - struct DiskOnChip *old = NULL; - int maxchips; - - /* We must avoid being called twice for the same device. */ - - if (doc2klist) - old = doc2klist->priv; - - while (old) { - if (DoC2k_is_alias(old, this)) { - printk(KERN_NOTICE - "Ignoring DiskOnChip 2000 at 0x%lX - already configured\n", - this->physadr); - iounmap(this->virtadr); - kfree(mtd); - return; - } - if (old->nextdoc) - old = old->nextdoc->priv; - else - old = NULL; - } - - - switch (this->ChipID) { - case DOC_ChipID_Doc2kTSOP: - mtd->name = "DiskOnChip 2000 TSOP"; - this->ioreg = DoC_Mil_CDSN_IO; - /* Pretend it's a Millennium */ - this->ChipID = DOC_ChipID_DocMil; - maxchips = MAX_CHIPS; - break; - case DOC_ChipID_Doc2k: - mtd->name = "DiskOnChip 2000"; - this->ioreg = DoC_2k_CDSN_IO; - maxchips = MAX_CHIPS; - break; - case DOC_ChipID_DocMil: - mtd->name = "DiskOnChip Millennium"; - this->ioreg = DoC_Mil_CDSN_IO; - maxchips = MAX_CHIPS_MIL; - break; - default: - printk("Unknown ChipID 0x%02x\n", this->ChipID); - kfree(mtd); - iounmap(this->virtadr); - return; - } - - printk(KERN_NOTICE "%s found at address 0x%lX\n", mtd->name, - this->physadr); - - mtd->type = MTD_NANDFLASH; - mtd->flags = MTD_CAP_NANDFLASH; - mtd->size = 0; - mtd->erasesize = 0; - mtd->writesize = 512; - mtd->oobsize = 16; - mtd->owner = THIS_MODULE; - mtd->erase = doc_erase; - mtd->point = NULL; - mtd->unpoint = NULL; - mtd->read = doc_read; - mtd->write = doc_write; - mtd->read_oob = doc_read_oob; - mtd->write_oob = doc_write_oob; - mtd->sync = NULL; - - this->totlen = 0; - this->numchips = 0; - - this->curfloor = -1; - this->curchip = -1; - mutex_init(&this->lock); - - /* Ident all the chips present. */ - DoC_ScanChips(this, maxchips); - - if (!this->totlen) { - kfree(mtd); - iounmap(this->virtadr); - } else { - this->nextdoc = doc2klist; - doc2klist = mtd; - mtd->size = this->totlen; - mtd->erasesize = this->erasesize; - add_mtd_device(mtd); - return; - } -} -EXPORT_SYMBOL_GPL(DoC2k_init); - -static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, - size_t * retlen, u_char * buf) -{ - struct DiskOnChip *this = mtd->priv; - void __iomem *docptr = this->virtadr; - struct Nand *mychip; - unsigned char syndrome[6], eccbuf[6]; - volatile char dummy; - int i, len256 = 0, ret=0; - size_t left = len; - - /* Don't allow read past end of device */ - if (from >= this->totlen) - return -EINVAL; - - mutex_lock(&this->lock); - - *retlen = 0; - while (left) { - len = left; - - /* Don't allow a single read to cross a 512-byte block boundary */ - if (from + len > ((from | 0x1ff) + 1)) - len = ((from | 0x1ff) + 1) - from; - - /* The ECC will not be calculated correctly if less than 512 is read */ - if (len != 0x200) - printk(KERN_WARNING - "ECC needs a full sector read (adr: %lx size %lx)\n", - (long) from, (long) len); - - /* printk("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); */ - - - /* Find the chip which is to be used and select it */ - mychip = &this->chips[from >> (this->chipshift)]; - - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(this, mychip->floor); - DoC_SelectChip(this, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(this, mychip->chip); - } - - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - DoC_Command(this, - (!this->page256 - && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, - CDSN_CTRL_WP); - DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP, - CDSN_CTRL_ECC_IO); - - /* Prime the ECC engine */ - WriteDOC(DOC_ECC_RESET, docptr, ECCConf); - WriteDOC(DOC_ECC_EN, docptr, ECCConf); - - /* treat crossing 256-byte sector for 2M x 8bits devices */ - if (this->page256 && from + len > (from | 0xff) + 1) { - len256 = (from | 0xff) + 1 - from; - DoC_ReadBuf(this, buf, len256); - - DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP); - DoC_Address(this, ADDR_COLUMN_PAGE, from + len256, - CDSN_CTRL_WP, CDSN_CTRL_ECC_IO); - } - - DoC_ReadBuf(this, &buf[len256], len - len256); - - /* Let the caller know we completed it */ - *retlen += len; - - /* Read the ECC data through the DiskOnChip ECC logic */ - /* Note: this will work even with 2M x 8bit devices as */ - /* they have 8 bytes of OOB per 256 page. mf. */ - DoC_ReadBuf(this, eccbuf, 6); - - /* Flush the pipeline */ - if (DoC_is_Millennium(this)) { - dummy = ReadDOC(docptr, ECCConf); - dummy = ReadDOC(docptr, ECCConf); - i = ReadDOC(docptr, ECCConf); - } else { - dummy = ReadDOC(docptr, 2k_ECCStatus); - dummy = ReadDOC(docptr, 2k_ECCStatus); - i = ReadDOC(docptr, 2k_ECCStatus); - } - - /* Check the ECC Status */ - if (i & 0x80) { - int nb_errors; - /* There was an ECC error */ -#ifdef ECC_DEBUG - printk(KERN_ERR "DiskOnChip ECC Error: Read at %lx\n", (long)from); -#endif - /* Read the ECC syndrom through the DiskOnChip ECC - logic. These syndrome will be all ZERO when there - is no error */ - for (i = 0; i < 6; i++) { - syndrome[i] = - ReadDOC(docptr, ECCSyndrome0 + i); - } - nb_errors = doc_decode_ecc(buf, syndrome); - -#ifdef ECC_DEBUG - printk(KERN_ERR "Errors corrected: %x\n", nb_errors); -#endif - if (nb_errors < 0) { - /* We return error, but have actually done the - read. Not that this can be told to - user-space, via sys_read(), but at least - MTD-aware stuff can know about it by - checking *retlen */ - ret = -EIO; - } - } - -#ifdef PSYCHO_DEBUG - printk(KERN_DEBUG "ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", - (long)from, eccbuf[0], eccbuf[1], eccbuf[2], - eccbuf[3], eccbuf[4], eccbuf[5]); -#endif - - /* disable the ECC engine */ - WriteDOC(DOC_ECC_DIS, docptr , ECCConf); - - /* according to 11.4.1, we need to wait for the busy line - * drop if we read to the end of the page. */ - if(0 == ((from + len) & 0x1ff)) - { - DoC_WaitReady(this); - } - - from += len; - left -= len; - buf += len; - } - - mutex_unlock(&this->lock); - - return ret; -} - -static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t * retlen, const u_char * buf) -{ - struct DiskOnChip *this = mtd->priv; - int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */ - void __iomem *docptr = this->virtadr; - unsigned char eccbuf[6]; - volatile char dummy; - int len256 = 0; - struct Nand *mychip; - size_t left = len; - int status; - - /* Don't allow write past end of device */ - if (to >= this->totlen) - return -EINVAL; - - mutex_lock(&this->lock); - - *retlen = 0; - while (left) { - len = left; - - /* Don't allow a single write to cross a 512-byte block boundary */ - if (to + len > ((to | 0x1ff) + 1)) - len = ((to | 0x1ff) + 1) - to; - - /* The ECC will not be calculated correctly if less than 512 is written */ -/* DBB- - if (len != 0x200 && eccbuf) - printk(KERN_WARNING - "ECC needs a full sector write (adr: %lx size %lx)\n", - (long) to, (long) len); - -DBB */ - - /* printk("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */ - - /* Find the chip which is to be used and select it */ - mychip = &this->chips[to >> (this->chipshift)]; - - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(this, mychip->floor); - DoC_SelectChip(this, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(this, mychip->chip); - } - - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* Set device to main plane of flash */ - DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); - DoC_Command(this, - (!this->page256 - && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, - CDSN_CTRL_WP); - - DoC_Command(this, NAND_CMD_SEQIN, 0); - DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO); - - /* Prime the ECC engine */ - WriteDOC(DOC_ECC_RESET, docptr, ECCConf); - WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); - - /* treat crossing 256-byte sector for 2M x 8bits devices */ - if (this->page256 && to + len > (to | 0xff) + 1) { - len256 = (to | 0xff) + 1 - to; - DoC_WriteBuf(this, buf, len256); - - DoC_Command(this, NAND_CMD_PAGEPROG, 0); - - DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); - /* There's an implicit DoC_WaitReady() in DoC_Command */ - - dummy = ReadDOC(docptr, CDSNSlowIO); - DoC_Delay(this, 2); - - if (ReadDOC_(docptr, this->ioreg) & 1) { - printk(KERN_ERR "Error programming flash\n"); - /* Error in programming */ - *retlen = 0; - mutex_unlock(&this->lock); - return -EIO; - } - - DoC_Command(this, NAND_CMD_SEQIN, 0); - DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0, - CDSN_CTRL_ECC_IO); - } - - DoC_WriteBuf(this, &buf[len256], len - len256); - - WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr, CDSNControl); - - if (DoC_is_Millennium(this)) { - WriteDOC(0, docptr, NOP); - WriteDOC(0, docptr, NOP); - WriteDOC(0, docptr, NOP); - } else { - WriteDOC_(0, docptr, this->ioreg); - WriteDOC_(0, docptr, this->ioreg); - WriteDOC_(0, docptr, this->ioreg); - } - - WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_FLASH_IO | CDSN_CTRL_CE, docptr, - CDSNControl); - - /* Read the ECC data through the DiskOnChip ECC logic */ - for (di = 0; di < 6; di++) { - eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di); - } - - /* Reset the ECC engine */ - WriteDOC(DOC_ECC_DIS, docptr, ECCConf); - -#ifdef PSYCHO_DEBUG - printk - ("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", - (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], - eccbuf[4], eccbuf[5]); -#endif - DoC_Command(this, NAND_CMD_PAGEPROG, 0); - - DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); - /* There's an implicit DoC_WaitReady() in DoC_Command */ - - if (DoC_is_Millennium(this)) { - ReadDOC(docptr, ReadPipeInit); - status = ReadDOC(docptr, LastDataRead); - } else { - dummy = ReadDOC(docptr, CDSNSlowIO); - DoC_Delay(this, 2); - status = ReadDOC_(docptr, this->ioreg); - } - - if (status & 1) { - printk(KERN_ERR "Error programming flash\n"); - /* Error in programming */ - *retlen = 0; - mutex_unlock(&this->lock); - return -EIO; - } - - /* Let the caller know we completed it */ - *retlen += len; - - { - unsigned char x[8]; - size_t dummy; - int ret; - - /* Write the ECC data to flash */ - for (di=0; di<6; di++) - x[di] = eccbuf[di]; - - x[6]=0x55; - x[7]=0x55; - - ret = doc_write_oob_nolock(mtd, to, 8, &dummy, x); - if (ret) { - mutex_unlock(&this->lock); - return ret; - } - } - - to += len; - left -= len; - buf += len; - } - - mutex_unlock(&this->lock); - return 0; -} - -static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops) -{ - struct DiskOnChip *this = mtd->priv; - int len256 = 0, ret; - struct Nand *mychip; - uint8_t *buf = ops->oobbuf; - size_t len = ops->len; - - BUG_ON(ops->mode != MTD_OOB_PLACE); - - ofs += ops->ooboffs; - - mutex_lock(&this->lock); - - mychip = &this->chips[ofs >> this->chipshift]; - - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(this, mychip->floor); - DoC_SelectChip(this, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(this, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* update address for 2M x 8bit devices. OOB starts on the second */ - /* page to maintain compatibility with doc_read_ecc. */ - if (this->page256) { - if (!(ofs & 0x8)) - ofs += 0x100; - else - ofs -= 0x8; - } - - DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); - DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0); - - /* treat crossing 8-byte OOB data for 2M x 8bit devices */ - /* Note: datasheet says it should automaticaly wrap to the */ - /* next OOB block, but it didn't work here. mf. */ - if (this->page256 && ofs + len > (ofs | 0x7) + 1) { - len256 = (ofs | 0x7) + 1 - ofs; - DoC_ReadBuf(this, buf, len256); - - DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); - DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), - CDSN_CTRL_WP, 0); - } - - DoC_ReadBuf(this, &buf[len256], len - len256); - - ops->retlen = len; - /* Reading the full OOB data drops us off of the end of the page, - * causing the flash device to go into busy mode, so we need - * to wait until ready 11.4.1 and Toshiba TC58256FT docs */ - - ret = DoC_WaitReady(this); - - mutex_unlock(&this->lock); - return ret; - -} - -static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len, - size_t * retlen, const u_char * buf) -{ - struct DiskOnChip *this = mtd->priv; - int len256 = 0; - void __iomem *docptr = this->virtadr; - struct Nand *mychip = &this->chips[ofs >> this->chipshift]; - volatile int dummy; - int status; - - // printk("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",(long)ofs, len, - // buf[0], buf[1], buf[2], buf[3], buf[8], buf[9], buf[14],buf[15]); - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(this, mychip->floor); - DoC_SelectChip(this, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(this, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* disable the ECC engine */ - WriteDOC (DOC_ECC_RESET, docptr, ECCConf); - WriteDOC (DOC_ECC_DIS, docptr, ECCConf); - - /* Reset the chip, see Software Requirement 11.4 item 1. */ - DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); - - /* issue the Read2 command to set the pointer to the Spare Data Area. */ - DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); - - /* update address for 2M x 8bit devices. OOB starts on the second */ - /* page to maintain compatibility with doc_read_ecc. */ - if (this->page256) { - if (!(ofs & 0x8)) - ofs += 0x100; - else - ofs -= 0x8; - } - - /* issue the Serial Data In command to initial the Page Program process */ - DoC_Command(this, NAND_CMD_SEQIN, 0); - DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0); - - /* treat crossing 8-byte OOB data for 2M x 8bit devices */ - /* Note: datasheet says it should automaticaly wrap to the */ - /* next OOB block, but it didn't work here. mf. */ - if (this->page256 && ofs + len > (ofs | 0x7) + 1) { - len256 = (ofs | 0x7) + 1 - ofs; - DoC_WriteBuf(this, buf, len256); - - DoC_Command(this, NAND_CMD_PAGEPROG, 0); - DoC_Command(this, NAND_CMD_STATUS, 0); - /* DoC_WaitReady() is implicit in DoC_Command */ - - if (DoC_is_Millennium(this)) { - ReadDOC(docptr, ReadPipeInit); - status = ReadDOC(docptr, LastDataRead); - } else { - dummy = ReadDOC(docptr, CDSNSlowIO); - DoC_Delay(this, 2); - status = ReadDOC_(docptr, this->ioreg); - } - - if (status & 1) { - printk(KERN_ERR "Error programming oob data\n"); - /* There was an error */ - *retlen = 0; - return -EIO; - } - DoC_Command(this, NAND_CMD_SEQIN, 0); - DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0); - } - - DoC_WriteBuf(this, &buf[len256], len - len256); - - DoC_Command(this, NAND_CMD_PAGEPROG, 0); - DoC_Command(this, NAND_CMD_STATUS, 0); - /* DoC_WaitReady() is implicit in DoC_Command */ - - if (DoC_is_Millennium(this)) { - ReadDOC(docptr, ReadPipeInit); - status = ReadDOC(docptr, LastDataRead); - } else { - dummy = ReadDOC(docptr, CDSNSlowIO); - DoC_Delay(this, 2); - status = ReadDOC_(docptr, this->ioreg); - } - - if (status & 1) { - printk(KERN_ERR "Error programming oob data\n"); - /* There was an error */ - *retlen = 0; - return -EIO; - } - - *retlen = len; - return 0; - -} - -static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops) -{ - struct DiskOnChip *this = mtd->priv; - int ret; - - BUG_ON(ops->mode != MTD_OOB_PLACE); - - mutex_lock(&this->lock); - ret = doc_write_oob_nolock(mtd, ofs + ops->ooboffs, ops->len, - &ops->retlen, ops->oobbuf); - - mutex_unlock(&this->lock); - return ret; -} - -static int doc_erase(struct mtd_info *mtd, struct erase_info *instr) -{ - struct DiskOnChip *this = mtd->priv; - __u32 ofs = instr->addr; - __u32 len = instr->len; - volatile int dummy; - void __iomem *docptr = this->virtadr; - struct Nand *mychip; - int status; - - mutex_lock(&this->lock); - - if (ofs & (mtd->erasesize-1) || len & (mtd->erasesize-1)) { - mutex_unlock(&this->lock); - return -EINVAL; - } - - instr->state = MTD_ERASING; - - /* FIXME: Do this in the background. Use timers or schedule_task() */ - while(len) { - mychip = &this->chips[ofs >> this->chipshift]; - - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(this, mychip->floor); - DoC_SelectChip(this, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(this, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - DoC_Command(this, NAND_CMD_ERASE1, 0); - DoC_Address(this, ADDR_PAGE, ofs, 0, 0); - DoC_Command(this, NAND_CMD_ERASE2, 0); - - DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); - - if (DoC_is_Millennium(this)) { - ReadDOC(docptr, ReadPipeInit); - status = ReadDOC(docptr, LastDataRead); - } else { - dummy = ReadDOC(docptr, CDSNSlowIO); - DoC_Delay(this, 2); - status = ReadDOC_(docptr, this->ioreg); - } - - if (status & 1) { - printk(KERN_ERR "Error erasing at 0x%x\n", ofs); - /* There was an error */ - instr->state = MTD_ERASE_FAILED; - goto callback; - } - ofs += mtd->erasesize; - len -= mtd->erasesize; - } - instr->state = MTD_ERASE_DONE; - - callback: - mtd_erase_callback(instr); - - mutex_unlock(&this->lock); - return 0; -} - - -/**************************************************************************** - * - * Module stuff - * - ****************************************************************************/ - -static void __exit cleanup_doc2000(void) -{ - struct mtd_info *mtd; - struct DiskOnChip *this; - - while ((mtd = doc2klist)) { - this = mtd->priv; - doc2klist = this->nextdoc; - - del_mtd_device(mtd); - - iounmap(this->virtadr); - kfree(this->chips); - kfree(mtd); - } -} - -module_exit(cleanup_doc2000); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); -MODULE_DESCRIPTION("MTD driver for DiskOnChip 2000 and Millennium"); - diff --git a/drivers/mtd/devices/doc2001.c b/drivers/mtd/devices/doc2001.c deleted file mode 100644 index 0990f780362..00000000000 --- a/drivers/mtd/devices/doc2001.c +++ /dev/null @@ -1,841 +0,0 @@ - -/* - * Linux driver for Disk-On-Chip Millennium - * (c) 1999 Machine Vision Holdings, Inc. - * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> - */ - -#include <linux/kernel.h> -#include <linux/module.h> -#include <asm/errno.h> -#include <asm/io.h> -#include <asm/uaccess.h> -#include <linux/delay.h> -#include <linux/slab.h> -#include <linux/init.h> -#include <linux/types.h> -#include <linux/bitops.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/doc2000.h> - -/* #define ECC_DEBUG */ - -/* I have no idea why some DoC chips can not use memcop_form|to_io(). - * This may be due to the different revisions of the ASIC controller built-in or - * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment - * this:*/ -#undef USE_MEMCPY - -static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, - size_t *retlen, u_char *buf); -static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, const u_char *buf); -static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops); -static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops); -static int doc_erase (struct mtd_info *mtd, struct erase_info *instr); - -static struct mtd_info *docmillist = NULL; - -/* Perform the required delay cycles by reading from the NOP register */ -static void DoC_Delay(void __iomem * docptr, unsigned short cycles) -{ - volatile char dummy; - int i; - - for (i = 0; i < cycles; i++) - dummy = ReadDOC(docptr, NOP); -} - -/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ -static int _DoC_WaitReady(void __iomem * docptr) -{ - unsigned short c = 0xffff; - - DEBUG(MTD_DEBUG_LEVEL3, - "_DoC_WaitReady called for out-of-line wait\n"); - - /* Out-of-line routine to wait for chip response */ - while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B) && --c) - ; - - if (c == 0) - DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n"); - - return (c == 0); -} - -static inline int DoC_WaitReady(void __iomem * docptr) -{ - /* This is inline, to optimise the common case, where it's ready instantly */ - int ret = 0; - - /* 4 read form NOP register should be issued in prior to the read from CDSNControl - see Software Requirement 11.4 item 2. */ - DoC_Delay(docptr, 4); - - if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) - /* Call the out-of-line routine to wait */ - ret = _DoC_WaitReady(docptr); - - /* issue 2 read from NOP register after reading from CDSNControl register - see Software Requirement 11.4 item 2. */ - DoC_Delay(docptr, 2); - - return ret; -} - -/* DoC_Command: Send a flash command to the flash chip through the CDSN IO register - with the internal pipeline. Each of 4 delay cycles (read from the NOP register) is - required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ - -static void DoC_Command(void __iomem * docptr, unsigned char command, - unsigned char xtraflags) -{ - /* Assert the CLE (Command Latch Enable) line to the flash chip */ - WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl); - DoC_Delay(docptr, 4); - - /* Send the command */ - WriteDOC(command, docptr, Mil_CDSN_IO); - WriteDOC(0x00, docptr, WritePipeTerm); - - /* Lower the CLE line */ - WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl); - DoC_Delay(docptr, 4); -} - -/* DoC_Address: Set the current address for the flash chip through the CDSN IO register - with the internal pipeline. Each of 4 delay cycles (read from the NOP register) is - required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ - -static inline void DoC_Address(void __iomem * docptr, int numbytes, unsigned long ofs, - unsigned char xtraflags1, unsigned char xtraflags2) -{ - /* Assert the ALE (Address Latch Enable) line to the flash chip */ - WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl); - DoC_Delay(docptr, 4); - - /* Send the address */ - switch (numbytes) - { - case 1: - /* Send single byte, bits 0-7. */ - WriteDOC(ofs & 0xff, docptr, Mil_CDSN_IO); - WriteDOC(0x00, docptr, WritePipeTerm); - break; - case 2: - /* Send bits 9-16 followed by 17-23 */ - WriteDOC((ofs >> 9) & 0xff, docptr, Mil_CDSN_IO); - WriteDOC((ofs >> 17) & 0xff, docptr, Mil_CDSN_IO); - WriteDOC(0x00, docptr, WritePipeTerm); - break; - case 3: - /* Send 0-7, 9-16, then 17-23 */ - WriteDOC(ofs & 0xff, docptr, Mil_CDSN_IO); - WriteDOC((ofs >> 9) & 0xff, docptr, Mil_CDSN_IO); - WriteDOC((ofs >> 17) & 0xff, docptr, Mil_CDSN_IO); - WriteDOC(0x00, docptr, WritePipeTerm); - break; - default: - return; - } - - /* Lower the ALE line */ - WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr, CDSNControl); - DoC_Delay(docptr, 4); -} - -/* DoC_SelectChip: Select a given flash chip within the current floor */ -static int DoC_SelectChip(void __iomem * docptr, int chip) -{ - /* Select the individual flash chip requested */ - WriteDOC(chip, docptr, CDSNDeviceSelect); - DoC_Delay(docptr, 4); - - /* Wait for it to be ready */ - return DoC_WaitReady(docptr); -} - -/* DoC_SelectFloor: Select a given floor (bank of flash chips) */ -static int DoC_SelectFloor(void __iomem * docptr, int floor) -{ - /* Select the floor (bank) of chips required */ - WriteDOC(floor, docptr, FloorSelect); - - /* Wait for the chip to be ready */ - return DoC_WaitReady(docptr); -} - -/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */ -static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip) -{ - int mfr, id, i, j; - volatile char dummy; - - /* Page in the required floor/chip - FIXME: is this supported by Millennium ?? */ - DoC_SelectFloor(doc->virtadr, floor); - DoC_SelectChip(doc->virtadr, chip); - - /* Reset the chip, see Software Requirement 11.4 item 1. */ - DoC_Command(doc->virtadr, NAND_CMD_RESET, CDSN_CTRL_WP); - DoC_WaitReady(doc->virtadr); - - /* Read the NAND chip ID: 1. Send ReadID command */ - DoC_Command(doc->virtadr, NAND_CMD_READID, CDSN_CTRL_WP); - - /* Read the NAND chip ID: 2. Send address byte zero */ - DoC_Address(doc->virtadr, 1, 0x00, CDSN_CTRL_WP, 0x00); - - /* Read the manufacturer and device id codes of the flash device through - CDSN IO register see Software Requirement 11.4 item 5.*/ - dummy = ReadDOC(doc->virtadr, ReadPipeInit); - DoC_Delay(doc->virtadr, 2); - mfr = ReadDOC(doc->virtadr, Mil_CDSN_IO); - - DoC_Delay(doc->virtadr, 2); - id = ReadDOC(doc->virtadr, Mil_CDSN_IO); - dummy = ReadDOC(doc->virtadr, LastDataRead); - - /* No response - return failure */ - if (mfr == 0xff || mfr == 0) - return 0; - - /* FIXME: to deal with multi-flash on multi-Millennium case more carefully */ - for (i = 0; nand_flash_ids[i].name != NULL; i++) { - if ( id == nand_flash_ids[i].id) { - /* Try to identify manufacturer */ - for (j = 0; nand_manuf_ids[j].id != 0x0; j++) { - if (nand_manuf_ids[j].id == mfr) - break; - } - printk(KERN_INFO "Flash chip found: Manufacturer ID: %2.2X, " - "Chip ID: %2.2X (%s:%s)\n", - mfr, id, nand_manuf_ids[j].name, nand_flash_ids[i].name); - doc->mfr = mfr; - doc->id = id; - doc->chipshift = ffs((nand_flash_ids[i].chipsize << 20)) - 1; - break; - } - } - - if (nand_flash_ids[i].name == NULL) - return 0; - else - return 1; -} - -/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */ -static void DoC_ScanChips(struct DiskOnChip *this) -{ - int floor, chip; - int numchips[MAX_FLOORS_MIL]; - int ret; - - this->numchips = 0; - this->mfr = 0; - this->id = 0; - - /* For each floor, find the number of valid chips it contains */ - for (floor = 0,ret = 1; floor < MAX_FLOORS_MIL; floor++) { - numchips[floor] = 0; - for (chip = 0; chip < MAX_CHIPS_MIL && ret != 0; chip++) { - ret = DoC_IdentChip(this, floor, chip); - if (ret) { - numchips[floor]++; - this->numchips++; - } - } - } - /* If there are none at all that we recognise, bail */ - if (!this->numchips) { - printk("No flash chips recognised.\n"); - return; - } - - /* Allocate an array to hold the information for each chip */ - this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL); - if (!this->chips){ - printk("No memory for allocating chip info structures\n"); - return; - } - - /* Fill out the chip array with {floor, chipno} for each - * detected chip in the device. */ - for (floor = 0, ret = 0; floor < MAX_FLOORS_MIL; floor++) { - for (chip = 0 ; chip < numchips[floor] ; chip++) { - this->chips[ret].floor = floor; - this->chips[ret].chip = chip; - this->chips[ret].curadr = 0; - this->chips[ret].curmode = 0x50; - ret++; - } - } - - /* Calculate and print the total size of the device */ - this->totlen = this->numchips * (1 << this->chipshift); - printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n", - this->numchips ,this->totlen >> 20); -} - -static int DoCMil_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2) -{ - int tmp1, tmp2, retval; - - if (doc1->physadr == doc2->physadr) - return 1; - - /* Use the alias resolution register which was set aside for this - * purpose. If it's value is the same on both chips, they might - * be the same chip, and we write to one and check for a change in - * the other. It's unclear if this register is usuable in the - * DoC 2000 (it's in the Millenium docs), but it seems to work. */ - tmp1 = ReadDOC(doc1->virtadr, AliasResolution); - tmp2 = ReadDOC(doc2->virtadr, AliasResolution); - if (tmp1 != tmp2) - return 0; - - WriteDOC((tmp1+1) % 0xff, doc1->virtadr, AliasResolution); - tmp2 = ReadDOC(doc2->virtadr, AliasResolution); - if (tmp2 == (tmp1+1) % 0xff) - retval = 1; - else - retval = 0; - - /* Restore register contents. May not be necessary, but do it just to - * be safe. */ - WriteDOC(tmp1, doc1->virtadr, AliasResolution); - - return retval; -} - -/* This routine is found from the docprobe code by symbol_get(), - * which will bump the use count of this module. */ -void DoCMil_init(struct mtd_info *mtd) -{ - struct DiskOnChip *this = mtd->priv; - struct DiskOnChip *old = NULL; - - /* We must avoid being called twice for the same device. */ - if (docmillist) - old = docmillist->priv; - - while (old) { - if (DoCMil_is_alias(this, old)) { - printk(KERN_NOTICE "Ignoring DiskOnChip Millennium at " - "0x%lX - already configured\n", this->physadr); - iounmap(this->virtadr); - kfree(mtd); - return; - } - if (old->nextdoc) - old = old->nextdoc->priv; - else - old = NULL; - } - - mtd->name = "DiskOnChip Millennium"; - printk(KERN_NOTICE "DiskOnChip Millennium found at address 0x%lX\n", - this->physadr); - - mtd->type = MTD_NANDFLASH; - mtd->flags = MTD_CAP_NANDFLASH; - mtd->size = 0; - - /* FIXME: erase size is not always 8KiB */ - mtd->erasesize = 0x2000; - - mtd->writesize = 512; - mtd->oobsize = 16; - mtd->owner = THIS_MODULE; - mtd->erase = doc_erase; - mtd->point = NULL; - mtd->unpoint = NULL; - mtd->read = doc_read; - mtd->write = doc_write; - mtd->read_oob = doc_read_oob; - mtd->write_oob = doc_write_oob; - mtd->sync = NULL; - - this->totlen = 0; - this->numchips = 0; - this->curfloor = -1; - this->curchip = -1; - - /* Ident all the chips present. */ - DoC_ScanChips(this); - - if (!this->totlen) { - kfree(mtd); - iounmap(this->virtadr); - } else { - this->nextdoc = docmillist; - docmillist = mtd; - mtd->size = this->totlen; - add_mtd_device(mtd); - return; - } -} -EXPORT_SYMBOL_GPL(DoCMil_init); - -static int doc_read (struct mtd_info *mtd, loff_t from, size_t len, - size_t *retlen, u_char *buf) -{ - int i, ret; - volatile char dummy; - unsigned char syndrome[6], eccbuf[6]; - struct DiskOnChip *this = mtd->priv; - void __iomem *docptr = this->virtadr; - struct Nand *mychip = &this->chips[from >> (this->chipshift)]; - - /* Don't allow read past end of device */ - if (from >= this->totlen) - return -EINVAL; - - /* Don't allow a single read to cross a 512-byte block boundary */ - if (from + len > ((from | 0x1ff) + 1)) - len = ((from | 0x1ff) + 1) - from; - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* issue the Read0 or Read1 command depend on which half of the page - we are accessing. Polling the Flash Ready bit after issue 3 bytes - address in Sequence Read Mode, see Software Requirement 11.4 item 1.*/ - DoC_Command(docptr, (from >> 8) & 1, CDSN_CTRL_WP); - DoC_Address(docptr, 3, from, CDSN_CTRL_WP, 0x00); - DoC_WaitReady(docptr); - - /* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/ - WriteDOC (DOC_ECC_RESET, docptr, ECCConf); - WriteDOC (DOC_ECC_EN, docptr, ECCConf); - - /* Read the data via the internal pipeline through CDSN IO register, - see Pipelined Read Operations 11.3 */ - dummy = ReadDOC(docptr, ReadPipeInit); -#ifndef USE_MEMCPY - for (i = 0; i < len-1; i++) { - /* N.B. you have to increase the source address in this way or the - ECC logic will not work properly */ - buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff)); - } -#else - memcpy_fromio(buf, docptr + DoC_Mil_CDSN_IO, len - 1); -#endif - buf[len - 1] = ReadDOC(docptr, LastDataRead); - - /* Let the caller know we completed it */ - *retlen = len; - ret = 0; - - /* Read the ECC data from Spare Data Area, - see Reed-Solomon EDC/ECC 11.1 */ - dummy = ReadDOC(docptr, ReadPipeInit); -#ifndef USE_MEMCPY - for (i = 0; i < 5; i++) { - /* N.B. you have to increase the source address in this way or the - ECC logic will not work properly */ - eccbuf[i] = ReadDOC(docptr, Mil_CDSN_IO + i); - } -#else - memcpy_fromio(eccbuf, docptr + DoC_Mil_CDSN_IO, 5); -#endif - eccbuf[5] = ReadDOC(docptr, LastDataRead); - - /* Flush the pipeline */ - dummy = ReadDOC(docptr, ECCConf); - dummy = ReadDOC(docptr, ECCConf); - - /* Check the ECC Status */ - if (ReadDOC(docptr, ECCConf) & 0x80) { - int nb_errors; - /* There was an ECC error */ -#ifdef ECC_DEBUG - printk("DiskOnChip ECC Error: Read at %lx\n", (long)from); -#endif - /* Read the ECC syndrom through the DiskOnChip ECC logic. - These syndrome will be all ZERO when there is no error */ - for (i = 0; i < 6; i++) { - syndrome[i] = ReadDOC(docptr, ECCSyndrome0 + i); - } - nb_errors = doc_decode_ecc(buf, syndrome); -#ifdef ECC_DEBUG - printk("ECC Errors corrected: %x\n", nb_errors); -#endif - if (nb_errors < 0) { - /* We return error, but have actually done the read. Not that - this can be told to user-space, via sys_read(), but at least - MTD-aware stuff can know about it by checking *retlen */ - ret = -EIO; - } - } - -#ifdef PSYCHO_DEBUG - printk("ECC DATA at %lx: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", - (long)from, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], - eccbuf[4], eccbuf[5]); -#endif - - /* disable the ECC engine */ - WriteDOC(DOC_ECC_DIS, docptr , ECCConf); - - return ret; -} - -static int doc_write (struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, const u_char *buf) -{ - int i,ret = 0; - char eccbuf[6]; - volatile char dummy; - struct DiskOnChip *this = mtd->priv; - void __iomem *docptr = this->virtadr; - struct Nand *mychip = &this->chips[to >> (this->chipshift)]; - - /* Don't allow write past end of device */ - if (to >= this->totlen) - return -EINVAL; - -#if 0 - /* Don't allow a single write to cross a 512-byte block boundary */ - if (to + len > ( (to | 0x1ff) + 1)) - len = ((to | 0x1ff) + 1) - to; -#else - /* Don't allow writes which aren't exactly one block */ - if (to & 0x1ff || len != 0x200) - return -EINVAL; -#endif - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* Reset the chip, see Software Requirement 11.4 item 1. */ - DoC_Command(docptr, NAND_CMD_RESET, 0x00); - DoC_WaitReady(docptr); - /* Set device to main plane of flash */ - DoC_Command(docptr, NAND_CMD_READ0, 0x00); - - /* issue the Serial Data In command to initial the Page Program process */ - DoC_Command(docptr, NAND_CMD_SEQIN, 0x00); - DoC_Address(docptr, 3, to, 0x00, 0x00); - DoC_WaitReady(docptr); - - /* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/ - WriteDOC (DOC_ECC_RESET, docptr, ECCConf); - WriteDOC (DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); - - /* Write the data via the internal pipeline through CDSN IO register, - see Pipelined Write Operations 11.2 */ -#ifndef USE_MEMCPY - for (i = 0; i < len; i++) { - /* N.B. you have to increase the source address in this way or the - ECC logic will not work properly */ - WriteDOC(buf[i], docptr, Mil_CDSN_IO + i); - } -#else - memcpy_toio(docptr + DoC_Mil_CDSN_IO, buf, len); -#endif - WriteDOC(0x00, docptr, WritePipeTerm); - - /* Write ECC data to flash, the ECC info is generated by the DiskOnChip ECC logic - see Reed-Solomon EDC/ECC 11.1 */ - WriteDOC(0, docptr, NOP); - WriteDOC(0, docptr, NOP); - WriteDOC(0, docptr, NOP); - - /* Read the ECC data through the DiskOnChip ECC logic */ - for (i = 0; i < 6; i++) { - eccbuf[i] = ReadDOC(docptr, ECCSyndrome0 + i); - } - - /* ignore the ECC engine */ - WriteDOC(DOC_ECC_DIS, docptr , ECCConf); - -#ifndef USE_MEMCPY - /* Write the ECC data to flash */ - for (i = 0; i < 6; i++) { - /* N.B. you have to increase the source address in this way or the - ECC logic will not work properly */ - WriteDOC(eccbuf[i], docptr, Mil_CDSN_IO + i); - } -#else - memcpy_toio(docptr + DoC_Mil_CDSN_IO, eccbuf, 6); -#endif - - /* write the block status BLOCK_USED (0x5555) at the end of ECC data - FIXME: this is only a hack for programming the IPL area for LinuxBIOS - and should be replace with proper codes in user space utilities */ - WriteDOC(0x55, docptr, Mil_CDSN_IO); - WriteDOC(0x55, docptr, Mil_CDSN_IO + 1); - - WriteDOC(0x00, docptr, WritePipeTerm); - -#ifdef PSYCHO_DEBUG - printk("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", - (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], - eccbuf[4], eccbuf[5]); -#endif - - /* Commit the Page Program command and wait for ready - see Software Requirement 11.4 item 1.*/ - DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00); - DoC_WaitReady(docptr); - - /* Read the status of the flash device through CDSN IO register - see Software Requirement 11.4 item 5.*/ - DoC_Command(docptr, NAND_CMD_STATUS, CDSN_CTRL_WP); - dummy = ReadDOC(docptr, ReadPipeInit); - DoC_Delay(docptr, 2); - if (ReadDOC(docptr, Mil_CDSN_IO) & 1) { - printk("Error programming flash\n"); - /* Error in programming - FIXME: implement Bad Block Replacement (in nftl.c ??) */ - *retlen = 0; - ret = -EIO; - } - dummy = ReadDOC(docptr, LastDataRead); - - /* Let the caller know we completed it */ - *retlen = len; - - return ret; -} - -static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops) -{ -#ifndef USE_MEMCPY - int i; -#endif - volatile char dummy; - struct DiskOnChip *this = mtd->priv; - void __iomem *docptr = this->virtadr; - struct Nand *mychip = &this->chips[ofs >> this->chipshift]; - uint8_t *buf = ops->oobbuf; - size_t len = ops->len; - - BUG_ON(ops->mode != MTD_OOB_PLACE); - - ofs += ops->ooboffs; - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* disable the ECC engine */ - WriteDOC (DOC_ECC_RESET, docptr, ECCConf); - WriteDOC (DOC_ECC_DIS, docptr, ECCConf); - - /* issue the Read2 command to set the pointer to the Spare Data Area. - Polling the Flash Ready bit after issue 3 bytes address in - Sequence Read Mode, see Software Requirement 11.4 item 1.*/ - DoC_Command(docptr, NAND_CMD_READOOB, CDSN_CTRL_WP); - DoC_Address(docptr, 3, ofs, CDSN_CTRL_WP, 0x00); - DoC_WaitReady(docptr); - - /* Read the data out via the internal pipeline through CDSN IO register, - see Pipelined Read Operations 11.3 */ - dummy = ReadDOC(docptr, ReadPipeInit); -#ifndef USE_MEMCPY - for (i = 0; i < len-1; i++) { - /* N.B. you have to increase the source address in this way or the - ECC logic will not work properly */ - buf[i] = ReadDOC(docptr, Mil_CDSN_IO + i); - } -#else - memcpy_fromio(buf, docptr + DoC_Mil_CDSN_IO, len - 1); -#endif - buf[len - 1] = ReadDOC(docptr, LastDataRead); - - ops->retlen = len; - - return 0; -} - -static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops) -{ -#ifndef USE_MEMCPY - int i; -#endif - volatile char dummy; - int ret = 0; - struct DiskOnChip *this = mtd->priv; - void __iomem *docptr = this->virtadr; - struct Nand *mychip = &this->chips[ofs >> this->chipshift]; - uint8_t *buf = ops->oobbuf; - size_t len = ops->len; - - BUG_ON(ops->mode != MTD_OOB_PLACE); - - ofs += ops->ooboffs; - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* disable the ECC engine */ - WriteDOC (DOC_ECC_RESET, docptr, ECCConf); - WriteDOC (DOC_ECC_DIS, docptr, ECCConf); - - /* Reset the chip, see Software Requirement 11.4 item 1. */ - DoC_Command(docptr, NAND_CMD_RESET, CDSN_CTRL_WP); - DoC_WaitReady(docptr); - /* issue the Read2 command to set the pointer to the Spare Data Area. */ - DoC_Command(docptr, NAND_CMD_READOOB, CDSN_CTRL_WP); - - /* issue the Serial Data In command to initial the Page Program process */ - DoC_Command(docptr, NAND_CMD_SEQIN, 0x00); - DoC_Address(docptr, 3, ofs, 0x00, 0x00); - - /* Write the data via the internal pipeline through CDSN IO register, - see Pipelined Write Operations 11.2 */ -#ifndef USE_MEMCPY - for (i = 0; i < len; i++) { - /* N.B. you have to increase the source address in this way or the - ECC logic will not work properly */ - WriteDOC(buf[i], docptr, Mil_CDSN_IO + i); - } -#else - memcpy_toio(docptr + DoC_Mil_CDSN_IO, buf, len); -#endif - WriteDOC(0x00, docptr, WritePipeTerm); - - /* Commit the Page Program command and wait for ready - see Software Requirement 11.4 item 1.*/ - DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00); - DoC_WaitReady(docptr); - - /* Read the status of the flash device through CDSN IO register - see Software Requirement 11.4 item 5.*/ - DoC_Command(docptr, NAND_CMD_STATUS, 0x00); - dummy = ReadDOC(docptr, ReadPipeInit); - DoC_Delay(docptr, 2); - if (ReadDOC(docptr, Mil_CDSN_IO) & 1) { - printk("Error programming oob data\n"); - /* FIXME: implement Bad Block Replacement (in nftl.c ??) */ - ops->retlen = 0; - ret = -EIO; - } - dummy = ReadDOC(docptr, LastDataRead); - - ops->retlen = len; - - return ret; -} - -int doc_erase (struct mtd_info *mtd, struct erase_info *instr) -{ - volatile char dummy; - struct DiskOnChip *this = mtd->priv; - __u32 ofs = instr->addr; - __u32 len = instr->len; - void __iomem *docptr = this->virtadr; - struct Nand *mychip = &this->chips[ofs >> this->chipshift]; - - if (len != mtd->erasesize) - printk(KERN_WARNING "Erase not right size (%x != %x)n", - len, mtd->erasesize); - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - instr->state = MTD_ERASE_PENDING; - - /* issue the Erase Setup command */ - DoC_Command(docptr, NAND_CMD_ERASE1, 0x00); - DoC_Address(docptr, 2, ofs, 0x00, 0x00); - - /* Commit the Erase Start command and wait for ready - see Software Requirement 11.4 item 1.*/ - DoC_Command(docptr, NAND_CMD_ERASE2, 0x00); - DoC_WaitReady(docptr); - - instr->state = MTD_ERASING; - - /* Read the status of the flash device through CDSN IO register - see Software Requirement 11.4 item 5. - FIXME: it seems that we are not wait long enough, some blocks are not - erased fully */ - DoC_Command(docptr, NAND_CMD_STATUS, CDSN_CTRL_WP); - dummy = ReadDOC(docptr, ReadPipeInit); - DoC_Delay(docptr, 2); - if (ReadDOC(docptr, Mil_CDSN_IO) & 1) { - printk("Error Erasing at 0x%x\n", ofs); - /* There was an error - FIXME: implement Bad Block Replacement (in nftl.c ??) */ - instr->state = MTD_ERASE_FAILED; - } else - instr->state = MTD_ERASE_DONE; - dummy = ReadDOC(docptr, LastDataRead); - - mtd_erase_callback(instr); - - return 0; -} - -/**************************************************************************** - * - * Module stuff - * - ****************************************************************************/ - -static void __exit cleanup_doc2001(void) -{ - struct mtd_info *mtd; - struct DiskOnChip *this; - - while ((mtd=docmillist)) { - this = mtd->priv; - docmillist = this->nextdoc; - - del_mtd_device(mtd); - - iounmap(this->virtadr); - kfree(this->chips); - kfree(mtd); - } -} - -module_exit(cleanup_doc2001); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); -MODULE_DESCRIPTION("Alternative driver for DiskOnChip Millennium"); diff --git a/drivers/mtd/devices/doc2001plus.c b/drivers/mtd/devices/doc2001plus.c deleted file mode 100644 index 719b2915dc3..00000000000 --- a/drivers/mtd/devices/doc2001plus.c +++ /dev/null @@ -1,1106 +0,0 @@ -/* - * Linux driver for Disk-On-Chip Millennium Plus - * - * (c) 2002-2003 Greg Ungerer <gerg@snapgear.com> - * (c) 2002-2003 SnapGear Inc - * (c) 1999 Machine Vision Holdings, Inc. - * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> - * - * Released under GPL - */ - -#include <linux/kernel.h> -#include <linux/module.h> -#include <asm/errno.h> -#include <asm/io.h> -#include <asm/uaccess.h> -#include <linux/delay.h> -#include <linux/slab.h> -#include <linux/init.h> -#include <linux/types.h> -#include <linux/bitops.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/doc2000.h> - -/* #define ECC_DEBUG */ - -/* I have no idea why some DoC chips can not use memcop_form|to_io(). - * This may be due to the different revisions of the ASIC controller built-in or - * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment - * this:*/ -#undef USE_MEMCPY - -static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, - size_t *retlen, u_char *buf); -static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, const u_char *buf); -static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops); -static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops); -static int doc_erase (struct mtd_info *mtd, struct erase_info *instr); - -static struct mtd_info *docmilpluslist = NULL; - - -/* Perform the required delay cycles by writing to the NOP register */ -static void DoC_Delay(void __iomem * docptr, int cycles) -{ - int i; - - for (i = 0; (i < cycles); i++) - WriteDOC(0, docptr, Mplus_NOP); -} - -#define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1) - -/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ -static int _DoC_WaitReady(void __iomem * docptr) -{ - unsigned int c = 0xffff; - - DEBUG(MTD_DEBUG_LEVEL3, - "_DoC_WaitReady called for out-of-line wait\n"); - - /* Out-of-line routine to wait for chip response */ - while (((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) && --c) - ; - - if (c == 0) - DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n"); - - return (c == 0); -} - -static inline int DoC_WaitReady(void __iomem * docptr) -{ - /* This is inline, to optimise the common case, where it's ready instantly */ - int ret = 0; - - /* read form NOP register should be issued prior to the read from CDSNControl - see Software Requirement 11.4 item 2. */ - DoC_Delay(docptr, 4); - - if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) - /* Call the out-of-line routine to wait */ - ret = _DoC_WaitReady(docptr); - - return ret; -} - -/* For some reason the Millennium Plus seems to occassionally put itself - * into reset mode. For me this happens randomly, with no pattern that I - * can detect. M-systems suggest always check this on any block level - * operation and setting to normal mode if in reset mode. - */ -static inline void DoC_CheckASIC(void __iomem * docptr) -{ - /* Make sure the DoC is in normal mode */ - if ((ReadDOC(docptr, Mplus_DOCControl) & DOC_MODE_NORMAL) == 0) { - WriteDOC((DOC_MODE_NORMAL | DOC_MODE_MDWREN), docptr, Mplus_DOCControl); - WriteDOC(~(DOC_MODE_NORMAL | DOC_MODE_MDWREN), docptr, Mplus_CtrlConfirm); - } -} - -/* DoC_Command: Send a flash command to the flash chip through the Flash - * command register. Need 2 Write Pipeline Terminates to complete send. - */ -static void DoC_Command(void __iomem * docptr, unsigned char command, - unsigned char xtraflags) -{ - WriteDOC(command, docptr, Mplus_FlashCmd); - WriteDOC(command, docptr, Mplus_WritePipeTerm); - WriteDOC(command, docptr, Mplus_WritePipeTerm); -} - -/* DoC_Address: Set the current address for the flash chip through the Flash - * Address register. Need 2 Write Pipeline Terminates to complete send. - */ -static inline void DoC_Address(struct DiskOnChip *doc, int numbytes, - unsigned long ofs, unsigned char xtraflags1, - unsigned char xtraflags2) -{ - void __iomem * docptr = doc->virtadr; - - /* Allow for possible Mill Plus internal flash interleaving */ - ofs >>= doc->interleave; - - switch (numbytes) { - case 1: - /* Send single byte, bits 0-7. */ - WriteDOC(ofs & 0xff, docptr, Mplus_FlashAddress); - break; - case 2: - /* Send bits 9-16 followed by 17-23 */ - WriteDOC((ofs >> 9) & 0xff, docptr, Mplus_FlashAddress); - WriteDOC((ofs >> 17) & 0xff, docptr, Mplus_FlashAddress); - break; - case 3: - /* Send 0-7, 9-16, then 17-23 */ - WriteDOC(ofs & 0xff, docptr, Mplus_FlashAddress); - WriteDOC((ofs >> 9) & 0xff, docptr, Mplus_FlashAddress); - WriteDOC((ofs >> 17) & 0xff, docptr, Mplus_FlashAddress); - break; - default: - return; - } - - WriteDOC(0x00, docptr, Mplus_WritePipeTerm); - WriteDOC(0x00, docptr, Mplus_WritePipeTerm); -} - -/* DoC_SelectChip: Select a given flash chip within the current floor */ -static int DoC_SelectChip(void __iomem * docptr, int chip) -{ - /* No choice for flash chip on Millennium Plus */ - return 0; -} - -/* DoC_SelectFloor: Select a given floor (bank of flash chips) */ -static int DoC_SelectFloor(void __iomem * docptr, int floor) -{ - WriteDOC((floor & 0x3), docptr, Mplus_DeviceSelect); - return 0; -} - -/* - * Translate the given offset into the appropriate command and offset. - * This does the mapping using the 16bit interleave layout defined by - * M-Systems, and looks like this for a sector pair: - * +-----------+-------+-------+-------+--------------+---------+-----------+ - * | 0 --- 511 |512-517|518-519|520-521| 522 --- 1033 |1034-1039|1040 - 1055| - * +-----------+-------+-------+-------+--------------+---------+-----------+ - * | Data 0 | ECC 0 |Flags0 |Flags1 | Data 1 |ECC 1 | OOB 1 + 2 | - * +-----------+-------+-------+-------+--------------+---------+-----------+ - */ -/* FIXME: This lives in INFTL not here. Other users of flash devices - may not want it */ -static unsigned int DoC_GetDataOffset(struct mtd_info *mtd, loff_t *from) -{ - struct DiskOnChip *this = mtd->priv; - - if (this->interleave) { - unsigned int ofs = *from & 0x3ff; - unsigned int cmd; - - if (ofs < 512) { - cmd = NAND_CMD_READ0; - ofs &= 0x1ff; - } else if (ofs < 1014) { - cmd = NAND_CMD_READ1; - ofs = (ofs & 0x1ff) + 10; - } else { - cmd = NAND_CMD_READOOB; - ofs = ofs - 1014; - } - - *from = (*from & ~0x3ff) | ofs; - return cmd; - } else { - /* No interleave */ - if ((*from) & 0x100) - return NAND_CMD_READ1; - return NAND_CMD_READ0; - } -} - -static unsigned int DoC_GetECCOffset(struct mtd_info *mtd, loff_t *from) -{ - unsigned int ofs, cmd; - - if (*from & 0x200) { - cmd = NAND_CMD_READOOB; - ofs = 10 + (*from & 0xf); - } else { - cmd = NAND_CMD_READ1; - ofs = (*from & 0xf); - } - - *from = (*from & ~0x3ff) | ofs; - return cmd; -} - -static unsigned int DoC_GetFlagsOffset(struct mtd_info *mtd, loff_t *from) -{ - unsigned int ofs, cmd; - - cmd = NAND_CMD_READ1; - ofs = (*from & 0x200) ? 8 : 6; - *from = (*from & ~0x3ff) | ofs; - return cmd; -} - -static unsigned int DoC_GetHdrOffset(struct mtd_info *mtd, loff_t *from) -{ - unsigned int ofs, cmd; - - cmd = NAND_CMD_READOOB; - ofs = (*from & 0x200) ? 24 : 16; - *from = (*from & ~0x3ff) | ofs; - return cmd; -} - -static inline void MemReadDOC(void __iomem * docptr, unsigned char *buf, int len) -{ -#ifndef USE_MEMCPY - int i; - for (i = 0; i < len; i++) - buf[i] = ReadDOC(docptr, Mil_CDSN_IO + i); -#else - memcpy_fromio(buf, docptr + DoC_Mil_CDSN_IO, len); -#endif -} - -static inline void MemWriteDOC(void __iomem * docptr, unsigned char *buf, int len) -{ -#ifndef USE_MEMCPY - int i; - for (i = 0; i < len; i++) - WriteDOC(buf[i], docptr, Mil_CDSN_IO + i); -#else - memcpy_toio(docptr + DoC_Mil_CDSN_IO, buf, len); -#endif -} - -/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */ -static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip) -{ - int mfr, id, i, j; - volatile char dummy; - void __iomem * docptr = doc->virtadr; - - /* Page in the required floor/chip */ - DoC_SelectFloor(docptr, floor); - DoC_SelectChip(docptr, chip); - - /* Millennium Plus bus cycle sequence as per figure 2, section 2.4 */ - WriteDOC((DOC_FLASH_CE | DOC_FLASH_WP), docptr, Mplus_FlashSelect); - - /* Reset the chip, see Software Requirement 11.4 item 1. */ - DoC_Command(docptr, NAND_CMD_RESET, 0); - DoC_WaitReady(docptr); - - /* Read the NAND chip ID: 1. Send ReadID command */ - DoC_Command(docptr, NAND_CMD_READID, 0); - - /* Read the NAND chip ID: 2. Send address byte zero */ - DoC_Address(doc, 1, 0x00, 0, 0x00); - - WriteDOC(0, docptr, Mplus_FlashControl); - DoC_WaitReady(docptr); - - /* Read the manufacturer and device id codes of the flash device through - CDSN IO register see Software Requirement 11.4 item 5.*/ - dummy = ReadDOC(docptr, Mplus_ReadPipeInit); - dummy = ReadDOC(docptr, Mplus_ReadPipeInit); - - mfr = ReadDOC(docptr, Mil_CDSN_IO); - if (doc->interleave) - dummy = ReadDOC(docptr, Mil_CDSN_IO); /* 2 way interleave */ - - id = ReadDOC(docptr, Mil_CDSN_IO); - if (doc->interleave) - dummy = ReadDOC(docptr, Mil_CDSN_IO); /* 2 way interleave */ - - dummy = ReadDOC(docptr, Mplus_LastDataRead); - dummy = ReadDOC(docptr, Mplus_LastDataRead); - - /* Disable flash internally */ - WriteDOC(0, docptr, Mplus_FlashSelect); - - /* No response - return failure */ - if (mfr == 0xff || mfr == 0) - return 0; - - for (i = 0; nand_flash_ids[i].name != NULL; i++) { - if (id == nand_flash_ids[i].id) { - /* Try to identify manufacturer */ - for (j = 0; nand_manuf_ids[j].id != 0x0; j++) { - if (nand_manuf_ids[j].id == mfr) - break; - } - printk(KERN_INFO "Flash chip found: Manufacturer ID: %2.2X, " - "Chip ID: %2.2X (%s:%s)\n", mfr, id, - nand_manuf_ids[j].name, nand_flash_ids[i].name); - doc->mfr = mfr; - doc->id = id; - doc->chipshift = ffs((nand_flash_ids[i].chipsize << 20)) - 1; - doc->erasesize = nand_flash_ids[i].erasesize << doc->interleave; - break; - } - } - - if (nand_flash_ids[i].name == NULL) - return 0; - return 1; -} - -/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */ -static void DoC_ScanChips(struct DiskOnChip *this) -{ - int floor, chip; - int numchips[MAX_FLOORS_MPLUS]; - int ret; - - this->numchips = 0; - this->mfr = 0; - this->id = 0; - - /* Work out the intended interleave setting */ - this->interleave = 0; - if (this->ChipID == DOC_ChipID_DocMilPlus32) - this->interleave = 1; - - /* Check the ASIC agrees */ - if ( (this->interleave << 2) != - (ReadDOC(this->virtadr, Mplus_Configuration) & 4)) { - u_char conf = ReadDOC(this->virtadr, Mplus_Configuration); - printk(KERN_NOTICE "Setting DiskOnChip Millennium Plus interleave to %s\n", - this->interleave?"on (16-bit)":"off (8-bit)"); - conf ^= 4; - WriteDOC(conf, this->virtadr, Mplus_Configuration); - } - - /* For each floor, find the number of valid chips it contains */ - for (floor = 0,ret = 1; floor < MAX_FLOORS_MPLUS; floor++) { - numchips[floor] = 0; - for (chip = 0; chip < MAX_CHIPS_MPLUS && ret != 0; chip++) { - ret = DoC_IdentChip(this, floor, chip); - if (ret) { - numchips[floor]++; - this->numchips++; - } - } - } - /* If there are none at all that we recognise, bail */ - if (!this->numchips) { - printk("No flash chips recognised.\n"); - return; - } - - /* Allocate an array to hold the information for each chip */ - this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL); - if (!this->chips){ - printk("MTD: No memory for allocating chip info structures\n"); - return; - } - - /* Fill out the chip array with {floor, chipno} for each - * detected chip in the device. */ - for (floor = 0, ret = 0; floor < MAX_FLOORS_MPLUS; floor++) { - for (chip = 0 ; chip < numchips[floor] ; chip++) { - this->chips[ret].floor = floor; - this->chips[ret].chip = chip; - this->chips[ret].curadr = 0; - this->chips[ret].curmode = 0x50; - ret++; - } - } - - /* Calculate and print the total size of the device */ - this->totlen = this->numchips * (1 << this->chipshift); - printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n", - this->numchips ,this->totlen >> 20); -} - -static int DoCMilPlus_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2) -{ - int tmp1, tmp2, retval; - - if (doc1->physadr == doc2->physadr) - return 1; - - /* Use the alias resolution register which was set aside for this - * purpose. If it's value is the same on both chips, they might - * be the same chip, and we write to one and check for a change in - * the other. It's unclear if this register is usuable in the - * DoC 2000 (it's in the Millennium docs), but it seems to work. */ - tmp1 = ReadDOC(doc1->virtadr, Mplus_AliasResolution); - tmp2 = ReadDOC(doc2->virtadr, Mplus_AliasResolution); - if (tmp1 != tmp2) - return 0; - - WriteDOC((tmp1+1) % 0xff, doc1->virtadr, Mplus_AliasResolution); - tmp2 = ReadDOC(doc2->virtadr, Mplus_AliasResolution); - if (tmp2 == (tmp1+1) % 0xff) - retval = 1; - else - retval = 0; - - /* Restore register contents. May not be necessary, but do it just to - * be safe. */ - WriteDOC(tmp1, doc1->virtadr, Mplus_AliasResolution); - - return retval; -} - -/* This routine is found from the docprobe code by symbol_get(), - * which will bump the use count of this module. */ -void DoCMilPlus_init(struct mtd_info *mtd) -{ - struct DiskOnChip *this = mtd->priv; - struct DiskOnChip *old = NULL; - - /* We must avoid being called twice for the same device. */ - if (docmilpluslist) - old = docmilpluslist->priv; - - while (old) { - if (DoCMilPlus_is_alias(this, old)) { - printk(KERN_NOTICE "Ignoring DiskOnChip Millennium " - "Plus at 0x%lX - already configured\n", - this->physadr); - iounmap(this->virtadr); - kfree(mtd); - return; - } - if (old->nextdoc) - old = old->nextdoc->priv; - else - old = NULL; - } - - mtd->name = "DiskOnChip Millennium Plus"; - printk(KERN_NOTICE "DiskOnChip Millennium Plus found at " - "address 0x%lX\n", this->physadr); - - mtd->type = MTD_NANDFLASH; - mtd->flags = MTD_CAP_NANDFLASH; - mtd->size = 0; - - mtd->erasesize = 0; - mtd->writesize = 512; - mtd->oobsize = 16; - mtd->owner = THIS_MODULE; - mtd->erase = doc_erase; - mtd->point = NULL; - mtd->unpoint = NULL; - mtd->read = doc_read; - mtd->write = doc_write; - mtd->read_oob = doc_read_oob; - mtd->write_oob = doc_write_oob; - mtd->sync = NULL; - - this->totlen = 0; - this->numchips = 0; - this->curfloor = -1; - this->curchip = -1; - - /* Ident all the chips present. */ - DoC_ScanChips(this); - - if (!this->totlen) { - kfree(mtd); - iounmap(this->virtadr); - } else { - this->nextdoc = docmilpluslist; - docmilpluslist = mtd; - mtd->size = this->totlen; - mtd->erasesize = this->erasesize; - add_mtd_device(mtd); - return; - } -} -EXPORT_SYMBOL_GPL(DoCMilPlus_init); - -#if 0 -static int doc_dumpblk(struct mtd_info *mtd, loff_t from) -{ - int i; - loff_t fofs; - struct DiskOnChip *this = mtd->priv; - void __iomem * docptr = this->virtadr; - struct Nand *mychip = &this->chips[from >> (this->chipshift)]; - unsigned char *bp, buf[1056]; - char c[32]; - - from &= ~0x3ff; - - /* Don't allow read past end of device */ - if (from >= this->totlen) - return -EINVAL; - - DoC_CheckASIC(docptr); - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* Millennium Plus bus cycle sequence as per figure 2, section 2.4 */ - WriteDOC((DOC_FLASH_CE | DOC_FLASH_WP), docptr, Mplus_FlashSelect); - - /* Reset the chip, see Software Requirement 11.4 item 1. */ - DoC_Command(docptr, NAND_CMD_RESET, 0); - DoC_WaitReady(docptr); - - fofs = from; - DoC_Command(docptr, DoC_GetDataOffset(mtd, &fofs), 0); - DoC_Address(this, 3, fofs, 0, 0x00); - WriteDOC(0, docptr, Mplus_FlashControl); - DoC_WaitReady(docptr); - - /* disable the ECC engine */ - WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); - - ReadDOC(docptr, Mplus_ReadPipeInit); - ReadDOC(docptr, Mplus_ReadPipeInit); - - /* Read the data via the internal pipeline through CDSN IO - register, see Pipelined Read Operations 11.3 */ - MemReadDOC(docptr, buf, 1054); - buf[1054] = ReadDOC(docptr, Mplus_LastDataRead); - buf[1055] = ReadDOC(docptr, Mplus_LastDataRead); - - memset(&c[0], 0, sizeof(c)); - printk("DUMP OFFSET=%x:\n", (int)from); - - for (i = 0, bp = &buf[0]; (i < 1056); i++) { - if ((i % 16) == 0) - printk("%08x: ", i); - printk(" %02x", *bp); - c[(i & 0xf)] = ((*bp >= 0x20) && (*bp <= 0x7f)) ? *bp : '.'; - bp++; - if (((i + 1) % 16) == 0) - printk(" %s\n", c); - } - printk("\n"); - - /* Disable flash internally */ - WriteDOC(0, docptr, Mplus_FlashSelect); - - return 0; -} -#endif - -static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, - size_t *retlen, u_char *buf) -{ - int ret, i; - volatile char dummy; - loff_t fofs; - unsigned char syndrome[6], eccbuf[6]; - struct DiskOnChip *this = mtd->priv; - void __iomem * docptr = this->virtadr; - struct Nand *mychip = &this->chips[from >> (this->chipshift)]; - - /* Don't allow read past end of device */ - if (from >= this->totlen) - return -EINVAL; - - /* Don't allow a single read to cross a 512-byte block boundary */ - if (from + len > ((from | 0x1ff) + 1)) - len = ((from | 0x1ff) + 1) - from; - - DoC_CheckASIC(docptr); - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* Millennium Plus bus cycle sequence as per figure 2, section 2.4 */ - WriteDOC((DOC_FLASH_CE | DOC_FLASH_WP), docptr, Mplus_FlashSelect); - - /* Reset the chip, see Software Requirement 11.4 item 1. */ - DoC_Command(docptr, NAND_CMD_RESET, 0); - DoC_WaitReady(docptr); - - fofs = from; - DoC_Command(docptr, DoC_GetDataOffset(mtd, &fofs), 0); - DoC_Address(this, 3, fofs, 0, 0x00); - WriteDOC(0, docptr, Mplus_FlashControl); - DoC_WaitReady(docptr); - - /* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/ - WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); - WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf); - - /* Let the caller know we completed it */ - *retlen = len; - ret = 0; - - ReadDOC(docptr, Mplus_ReadPipeInit); - ReadDOC(docptr, Mplus_ReadPipeInit); - - /* Read the data via the internal pipeline through CDSN IO - register, see Pipelined Read Operations 11.3 */ - MemReadDOC(docptr, buf, len); - - /* Read the ECC data following raw data */ - MemReadDOC(docptr, eccbuf, 4); - eccbuf[4] = ReadDOC(docptr, Mplus_LastDataRead); - eccbuf[5] = ReadDOC(docptr, Mplus_LastDataRead); - - /* Flush the pipeline */ - dummy = ReadDOC(docptr, Mplus_ECCConf); - dummy = ReadDOC(docptr, Mplus_ECCConf); - - /* Check the ECC Status */ - if (ReadDOC(docptr, Mplus_ECCConf) & 0x80) { - int nb_errors; - /* There was an ECC error */ -#ifdef ECC_DEBUG - printk("DiskOnChip ECC Error: Read at %lx\n", (long)from); -#endif - /* Read the ECC syndrom through the DiskOnChip ECC logic. - These syndrome will be all ZERO when there is no error */ - for (i = 0; i < 6; i++) - syndrome[i] = ReadDOC(docptr, Mplus_ECCSyndrome0 + i); - - nb_errors = doc_decode_ecc(buf, syndrome); -#ifdef ECC_DEBUG - printk("ECC Errors corrected: %x\n", nb_errors); -#endif - if (nb_errors < 0) { - /* We return error, but have actually done the - read. Not that this can be told to user-space, via - sys_read(), but at least MTD-aware stuff can know - about it by checking *retlen */ -#ifdef ECC_DEBUG - printk("%s(%d): Millennium Plus ECC error (from=0x%x:\n", - __FILE__, __LINE__, (int)from); - printk(" syndrome= %02x:%02x:%02x:%02x:%02x:" - "%02x\n", - syndrome[0], syndrome[1], syndrome[2], - syndrome[3], syndrome[4], syndrome[5]); - printk(" eccbuf= %02x:%02x:%02x:%02x:%02x:" - "%02x\n", - eccbuf[0], eccbuf[1], eccbuf[2], - eccbuf[3], eccbuf[4], eccbuf[5]); -#endif - ret = -EIO; - } - } - -#ifdef PSYCHO_DEBUG - printk("ECC DATA at %lx: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", - (long)from, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], - eccbuf[4], eccbuf[5]); -#endif - /* disable the ECC engine */ - WriteDOC(DOC_ECC_DIS, docptr , Mplus_ECCConf); - - /* Disable flash internally */ - WriteDOC(0, docptr, Mplus_FlashSelect); - - return ret; -} - -static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, const u_char *buf) -{ - int i, before, ret = 0; - loff_t fto; - volatile char dummy; - char eccbuf[6]; - struct DiskOnChip *this = mtd->priv; - void __iomem * docptr = this->virtadr; - struct Nand *mychip = &this->chips[to >> (this->chipshift)]; - - /* Don't allow write past end of device */ - if (to >= this->totlen) - return -EINVAL; - - /* Don't allow writes which aren't exactly one block (512 bytes) */ - if ((to & 0x1ff) || (len != 0x200)) - return -EINVAL; - - /* Determine position of OOB flags, before or after data */ - before = (this->interleave && (to & 0x200)); - - DoC_CheckASIC(docptr); - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* Millennium Plus bus cycle sequence as per figure 2, section 2.4 */ - WriteDOC(DOC_FLASH_CE, docptr, Mplus_FlashSelect); - - /* Reset the chip, see Software Requirement 11.4 item 1. */ - DoC_Command(docptr, NAND_CMD_RESET, 0); - DoC_WaitReady(docptr); - - /* Set device to appropriate plane of flash */ - fto = to; - WriteDOC(DoC_GetDataOffset(mtd, &fto), docptr, Mplus_FlashCmd); - - /* On interleaved devices the flags for 2nd half 512 are before data */ - if (before) - fto -= 2; - - /* issue the Serial Data In command to initial the Page Program process */ - DoC_Command(docptr, NAND_CMD_SEQIN, 0x00); - DoC_Address(this, 3, fto, 0x00, 0x00); - - /* Disable the ECC engine */ - WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); - - if (before) { - /* Write the block status BLOCK_USED (0x5555) */ - WriteDOC(0x55, docptr, Mil_CDSN_IO); - WriteDOC(0x55, docptr, Mil_CDSN_IO); - } - - /* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/ - WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf); - - MemWriteDOC(docptr, (unsigned char *) buf, len); - - /* Write ECC data to flash, the ECC info is generated by - the DiskOnChip ECC logic see Reed-Solomon EDC/ECC 11.1 */ - DoC_Delay(docptr, 3); - - /* Read the ECC data through the DiskOnChip ECC logic */ - for (i = 0; i < 6; i++) - eccbuf[i] = ReadDOC(docptr, Mplus_ECCSyndrome0 + i); - - /* disable the ECC engine */ - WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); - - /* Write the ECC data to flash */ - MemWriteDOC(docptr, eccbuf, 6); - - if (!before) { - /* Write the block status BLOCK_USED (0x5555) */ - WriteDOC(0x55, docptr, Mil_CDSN_IO+6); - WriteDOC(0x55, docptr, Mil_CDSN_IO+7); - } - -#ifdef PSYCHO_DEBUG - printk("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", - (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], - eccbuf[4], eccbuf[5]); -#endif - - WriteDOC(0x00, docptr, Mplus_WritePipeTerm); - WriteDOC(0x00, docptr, Mplus_WritePipeTerm); - - /* Commit the Page Program command and wait for ready - see Software Requirement 11.4 item 1.*/ - DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00); - DoC_WaitReady(docptr); - - /* Read the status of the flash device through CDSN IO register - see Software Requirement 11.4 item 5.*/ - DoC_Command(docptr, NAND_CMD_STATUS, 0); - dummy = ReadDOC(docptr, Mplus_ReadPipeInit); - dummy = ReadDOC(docptr, Mplus_ReadPipeInit); - DoC_Delay(docptr, 2); - if ((dummy = ReadDOC(docptr, Mplus_LastDataRead)) & 1) { - printk("MTD: Error 0x%x programming at 0x%x\n", dummy, (int)to); - /* Error in programming - FIXME: implement Bad Block Replacement (in nftl.c ??) */ - *retlen = 0; - ret = -EIO; - } - dummy = ReadDOC(docptr, Mplus_LastDataRead); - - /* Disable flash internally */ - WriteDOC(0, docptr, Mplus_FlashSelect); - - /* Let the caller know we completed it */ - *retlen = len; - - return ret; -} - -static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops) -{ - loff_t fofs, base; - struct DiskOnChip *this = mtd->priv; - void __iomem * docptr = this->virtadr; - struct Nand *mychip = &this->chips[ofs >> this->chipshift]; - size_t i, size, got, want; - uint8_t *buf = ops->oobbuf; - size_t len = ops->len; - - BUG_ON(ops->mode != MTD_OOB_PLACE); - - ofs += ops->ooboffs; - - DoC_CheckASIC(docptr); - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* Millennium Plus bus cycle sequence as per figure 2, section 2.4 */ - WriteDOC((DOC_FLASH_CE | DOC_FLASH_WP), docptr, Mplus_FlashSelect); - - /* disable the ECC engine */ - WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); - DoC_WaitReady(docptr); - - /* Maximum of 16 bytes in the OOB region, so limit read to that */ - if (len > 16) - len = 16; - got = 0; - want = len; - - for (i = 0; ((i < 3) && (want > 0)); i++) { - /* Figure out which region we are accessing... */ - fofs = ofs; - base = ofs & 0xf; - if (!this->interleave) { - DoC_Command(docptr, NAND_CMD_READOOB, 0); - size = 16 - base; - } else if (base < 6) { - DoC_Command(docptr, DoC_GetECCOffset(mtd, &fofs), 0); - size = 6 - base; - } else if (base < 8) { - DoC_Command(docptr, DoC_GetFlagsOffset(mtd, &fofs), 0); - size = 8 - base; - } else { - DoC_Command(docptr, DoC_GetHdrOffset(mtd, &fofs), 0); - size = 16 - base; - } - if (size > want) - size = want; - - /* Issue read command */ - DoC_Address(this, 3, fofs, 0, 0x00); - WriteDOC(0, docptr, Mplus_FlashControl); - DoC_WaitReady(docptr); - - ReadDOC(docptr, Mplus_ReadPipeInit); - ReadDOC(docptr, Mplus_ReadPipeInit); - MemReadDOC(docptr, &buf[got], size - 2); - buf[got + size - 2] = ReadDOC(docptr, Mplus_LastDataRead); - buf[got + size - 1] = ReadDOC(docptr, Mplus_LastDataRead); - - ofs += size; - got += size; - want -= size; - } - - /* Disable flash internally */ - WriteDOC(0, docptr, Mplus_FlashSelect); - - ops->retlen = len; - return 0; -} - -static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops) -{ - volatile char dummy; - loff_t fofs, base; - struct DiskOnChip *this = mtd->priv; - void __iomem * docptr = this->virtadr; - struct Nand *mychip = &this->chips[ofs >> this->chipshift]; - size_t i, size, got, want; - int ret = 0; - uint8_t *buf = ops->oobbuf; - size_t len = ops->len; - - BUG_ON(ops->mode != MTD_OOB_PLACE); - - ofs += ops->ooboffs; - - DoC_CheckASIC(docptr); - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* Millennium Plus bus cycle sequence as per figure 2, section 2.4 */ - WriteDOC(DOC_FLASH_CE, docptr, Mplus_FlashSelect); - - - /* Maximum of 16 bytes in the OOB region, so limit write to that */ - if (len > 16) - len = 16; - got = 0; - want = len; - - for (i = 0; ((i < 3) && (want > 0)); i++) { - /* Reset the chip, see Software Requirement 11.4 item 1. */ - DoC_Command(docptr, NAND_CMD_RESET, 0); - DoC_WaitReady(docptr); - - /* Figure out which region we are accessing... */ - fofs = ofs; - base = ofs & 0x0f; - if (!this->interleave) { - WriteDOC(NAND_CMD_READOOB, docptr, Mplus_FlashCmd); - size = 16 - base; - } else if (base < 6) { - WriteDOC(DoC_GetECCOffset(mtd, &fofs), docptr, Mplus_FlashCmd); - size = 6 - base; - } else if (base < 8) { - WriteDOC(DoC_GetFlagsOffset(mtd, &fofs), docptr, Mplus_FlashCmd); - size = 8 - base; - } else { - WriteDOC(DoC_GetHdrOffset(mtd, &fofs), docptr, Mplus_FlashCmd); - size = 16 - base; - } - if (size > want) - size = want; - - /* Issue the Serial Data In command to initial the Page Program process */ - DoC_Command(docptr, NAND_CMD_SEQIN, 0x00); - DoC_Address(this, 3, fofs, 0, 0x00); - - /* Disable the ECC engine */ - WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); - - /* Write the data via the internal pipeline through CDSN IO - register, see Pipelined Write Operations 11.2 */ - MemWriteDOC(docptr, (unsigned char *) &buf[got], size); - WriteDOC(0x00, docptr, Mplus_WritePipeTerm); - WriteDOC(0x00, docptr, Mplus_WritePipeTerm); - - /* Commit the Page Program command and wait for ready - see Software Requirement 11.4 item 1.*/ - DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00); - DoC_WaitReady(docptr); - - /* Read the status of the flash device through CDSN IO register - see Software Requirement 11.4 item 5.*/ - DoC_Command(docptr, NAND_CMD_STATUS, 0x00); - dummy = ReadDOC(docptr, Mplus_ReadPipeInit); - dummy = ReadDOC(docptr, Mplus_ReadPipeInit); - DoC_Delay(docptr, 2); - if ((dummy = ReadDOC(docptr, Mplus_LastDataRead)) & 1) { - printk("MTD: Error 0x%x programming oob at 0x%x\n", - dummy, (int)ofs); - /* FIXME: implement Bad Block Replacement */ - ops->retlen = 0; - ret = -EIO; - } - dummy = ReadDOC(docptr, Mplus_LastDataRead); - - ofs += size; - got += size; - want -= size; - } - - /* Disable flash internally */ - WriteDOC(0, docptr, Mplus_FlashSelect); - - ops->retlen = len; - return ret; -} - -int doc_erase(struct mtd_info *mtd, struct erase_info *instr) -{ - volatile char dummy; - struct DiskOnChip *this = mtd->priv; - __u32 ofs = instr->addr; - __u32 len = instr->len; - void __iomem * docptr = this->virtadr; - struct Nand *mychip = &this->chips[ofs >> this->chipshift]; - - DoC_CheckASIC(docptr); - - if (len != mtd->erasesize) - printk(KERN_WARNING "MTD: Erase not right size (%x != %x)n", - len, mtd->erasesize); - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - instr->state = MTD_ERASE_PENDING; - - /* Millennium Plus bus cycle sequence as per figure 2, section 2.4 */ - WriteDOC(DOC_FLASH_CE, docptr, Mplus_FlashSelect); - - DoC_Command(docptr, NAND_CMD_RESET, 0x00); - DoC_WaitReady(docptr); - - DoC_Command(docptr, NAND_CMD_ERASE1, 0); - DoC_Address(this, 2, ofs, 0, 0x00); - DoC_Command(docptr, NAND_CMD_ERASE2, 0); - DoC_WaitReady(docptr); - instr->state = MTD_ERASING; - - /* Read the status of the flash device through CDSN IO register - see Software Requirement 11.4 item 5. */ - DoC_Command(docptr, NAND_CMD_STATUS, 0); - dummy = ReadDOC(docptr, Mplus_ReadPipeInit); - dummy = ReadDOC(docptr, Mplus_ReadPipeInit); - if ((dummy = ReadDOC(docptr, Mplus_LastDataRead)) & 1) { - printk("MTD: Error 0x%x erasing at 0x%x\n", dummy, ofs); - /* FIXME: implement Bad Block Replacement (in nftl.c ??) */ - instr->state = MTD_ERASE_FAILED; - } else { - instr->state = MTD_ERASE_DONE; - } - dummy = ReadDOC(docptr, Mplus_LastDataRead); - - /* Disable flash internally */ - WriteDOC(0, docptr, Mplus_FlashSelect); - - mtd_erase_callback(instr); - - return 0; -} - -/**************************************************************************** - * - * Module stuff - * - ****************************************************************************/ - -static void __exit cleanup_doc2001plus(void) -{ - struct mtd_info *mtd; - struct DiskOnChip *this; - - while ((mtd=docmilpluslist)) { - this = mtd->priv; - docmilpluslist = this->nextdoc; - - del_mtd_device(mtd); - - iounmap(this->virtadr); - kfree(this->chips); - kfree(mtd); - } -} - -module_exit(cleanup_doc2001plus); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Greg Ungerer <gerg@snapgear.com> et al."); -MODULE_DESCRIPTION("Driver for DiskOnChip Millennium Plus"); diff --git a/drivers/mtd/devices/docecc.c b/drivers/mtd/devices/docecc.c deleted file mode 100644 index a19cda52da5..00000000000 --- a/drivers/mtd/devices/docecc.c +++ /dev/null @@ -1,522 +0,0 @@ -/* - * ECC algorithm for M-systems disk on chip. We use the excellent Reed - * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the - * GNU GPL License. The rest is simply to convert the disk on chip - * syndrom into a standard syndom. - * - * Author: Fabrice Bellard (fabrice.bellard@netgem.com) - * Copyright (C) 2000 Netgem S.A. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - */ -#include <linux/kernel.h> -#include <linux/module.h> -#include <asm/errno.h> -#include <asm/io.h> -#include <asm/uaccess.h> -#include <linux/delay.h> -#include <linux/slab.h> -#include <linux/init.h> -#include <linux/types.h> - -#include <linux/mtd/compatmac.h> /* for min() in older kernels */ -#include <linux/mtd/mtd.h> -#include <linux/mtd/doc2000.h> - -#define DEBUG_ECC 0 -/* need to undef it (from asm/termbits.h) */ -#undef B0 - -#define MM 10 /* Symbol size in bits */ -#define KK (1023-4) /* Number of data symbols per block */ -#define B0 510 /* First root of generator polynomial, alpha form */ -#define PRIM 1 /* power of alpha used to generate roots of generator poly */ -#define NN ((1 << MM) - 1) - -typedef unsigned short dtype; - -/* 1+x^3+x^10 */ -static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 }; - -/* This defines the type used to store an element of the Galois Field - * used by the code. Make sure this is something larger than a char if - * if anything larger than GF(256) is used. - * - * Note: unsigned char will work up to GF(256) but int seems to run - * faster on the Pentium. - */ -typedef int gf; - -/* No legal value in index form represents zero, so - * we need a special value for this purpose - */ -#define A0 (NN) - -/* Compute x % NN, where NN is 2**MM - 1, - * without a slow divide - */ -static inline gf -modnn(int x) -{ - while (x >= NN) { - x -= NN; - x = (x >> MM) + (x & NN); - } - return x; -} - -#define CLEAR(a,n) {\ -int ci;\ -for(ci=(n)-1;ci >=0;ci--)\ -(a)[ci] = 0;\ -} - -#define COPY(a,b,n) {\ -int ci;\ -for(ci=(n)-1;ci >=0;ci--)\ -(a)[ci] = (b)[ci];\ -} - -#define COPYDOWN(a,b,n) {\ -int ci;\ -for(ci=(n)-1;ci >=0;ci--)\ -(a)[ci] = (b)[ci];\ -} - -#define Ldec 1 - -/* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m] - lookup tables: index->polynomial form alpha_to[] contains j=alpha**i; - polynomial form -> index form index_of[j=alpha**i] = i - alpha=2 is the primitive element of GF(2**m) - HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows: - Let @ represent the primitive element commonly called "alpha" that - is the root of the primitive polynomial p(x). Then in GF(2^m), for any - 0 <= i <= 2^m-2, - @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) - where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation - of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for - example the polynomial representation of @^5 would be given by the binary - representation of the integer "alpha_to[5]". - Similarily, index_of[] can be used as follows: - As above, let @ represent the primitive element of GF(2^m) that is - the root of the primitive polynomial p(x). In order to find the power - of @ (alpha) that has the polynomial representation - a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) - we consider the integer "i" whose binary representation with a(0) being LSB - and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry - "index_of[i]". Now, @^index_of[i] is that element whose polynomial - representation is (a(0),a(1),a(2),...,a(m-1)). - NOTE: - The element alpha_to[2^m-1] = 0 always signifying that the - representation of "@^infinity" = 0 is (0,0,0,...,0). - Similarily, the element index_of[0] = A0 always signifying - that the power of alpha which has the polynomial representation - (0,0,...,0) is "infinity". - -*/ - -static void -generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1]) -{ - register int i, mask; - - mask = 1; - Alpha_to[MM] = 0; - for (i = 0; i < MM; i++) { - Alpha_to[i] = mask; - Index_of[Alpha_to[i]] = i; - /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */ - if (Pp[i] != 0) - Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */ - mask <<= 1; /* single left-shift */ - } - Index_of[Alpha_to[MM]] = MM; - /* - * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by - * poly-repr of @^i shifted left one-bit and accounting for any @^MM - * term that may occur when poly-repr of @^i is shifted. - */ - mask >>= 1; - for (i = MM + 1; i < NN; i++) { - if (Alpha_to[i - 1] >= mask) - Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1); - else - Alpha_to[i] = Alpha_to[i - 1] << 1; - Index_of[Alpha_to[i]] = i; - } - Index_of[0] = A0; - Alpha_to[NN] = 0; -} - -/* - * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content - * of the feedback shift register after having processed the data and - * the ECC. - * - * Return number of symbols corrected, or -1 if codeword is illegal - * or uncorrectable. If eras_pos is non-null, the detected error locations - * are written back. NOTE! This array must be at least NN-KK elements long. - * The corrected data are written in eras_val[]. They must be xor with the data - * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] . - * - * First "no_eras" erasures are declared by the calling program. Then, the - * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2). - * If the number of channel errors is not greater than "t_after_eras" the - * transmitted codeword will be recovered. Details of algorithm can be found - * in R. Blahut's "Theory ... of Error-Correcting Codes". - - * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure - * will result. The decoder *could* check for this condition, but it would involve - * extra time on every decoding operation. - * */ -static int -eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1], - gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK], - int no_eras) -{ - int deg_lambda, el, deg_omega; - int i, j, r,k; - gf u,q,tmp,num1,num2,den,discr_r; - gf lambda[NN-KK + 1], s[NN-KK + 1]; /* Err+Eras Locator poly - * and syndrome poly */ - gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1]; - gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK]; - int syn_error, count; - - syn_error = 0; - for(i=0;i<NN-KK;i++) - syn_error |= bb[i]; - - if (!syn_error) { - /* if remainder is zero, data[] is a codeword and there are no - * errors to correct. So return data[] unmodified - */ - count = 0; - goto finish; - } - - for(i=1;i<=NN-KK;i++){ - s[i] = bb[0]; - } - for(j=1;j<NN-KK;j++){ - if(bb[j] == 0) - continue; - tmp = Index_of[bb[j]]; - - for(i=1;i<=NN-KK;i++) - s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)]; - } - - /* undo the feedback register implicit multiplication and convert - syndromes to index form */ - - for(i=1;i<=NN-KK;i++) { - tmp = Index_of[s[i]]; - if (tmp != A0) - tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM); - s[i] = tmp; - } - - CLEAR(&lambda[1],NN-KK); - lambda[0] = 1; - - if (no_eras > 0) { - /* Init lambda to be the erasure locator polynomial */ - lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])]; - for (i = 1; i < no_eras; i++) { - u = modnn(PRIM*eras_pos[i]); - for (j = i+1; j > 0; j--) { - tmp = Index_of[lambda[j - 1]]; - if(tmp != A0) - lambda[j] ^= Alpha_to[modnn(u + tmp)]; - } - } -#if DEBUG_ECC >= 1 - /* Test code that verifies the erasure locator polynomial just constructed - Needed only for decoder debugging. */ - - /* find roots of the erasure location polynomial */ - for(i=1;i<=no_eras;i++) - reg[i] = Index_of[lambda[i]]; - count = 0; - for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { - q = 1; - for (j = 1; j <= no_eras; j++) - if (reg[j] != A0) { - reg[j] = modnn(reg[j] + j); - q ^= Alpha_to[reg[j]]; - } - if (q != 0) - continue; - /* store root and error location number indices */ - root[count] = i; - loc[count] = k; - count++; - } - if (count != no_eras) { - printf("\n lambda(x) is WRONG\n"); - count = -1; - goto finish; - } -#if DEBUG_ECC >= 2 - printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); - for (i = 0; i < count; i++) - printf("%d ", loc[i]); - printf("\n"); -#endif -#endif - } - for(i=0;i<NN-KK+1;i++) - b[i] = Index_of[lambda[i]]; - - /* - * Begin Berlekamp-Massey algorithm to determine error+erasure - * locator polynomial - */ - r = no_eras; - el = no_eras; - while (++r <= NN-KK) { /* r is the step number */ - /* Compute discrepancy at the r-th step in poly-form */ - discr_r = 0; - for (i = 0; i < r; i++){ - if ((lambda[i] != 0) && (s[r - i] != A0)) { - discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])]; - } - } - discr_r = Index_of[discr_r]; /* Index form */ - if (discr_r == A0) { - /* 2 lines below: B(x) <-- x*B(x) */ - COPYDOWN(&b[1],b,NN-KK); - b[0] = A0; - } else { - /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ - t[0] = lambda[0]; - for (i = 0 ; i < NN-KK; i++) { - if(b[i] != A0) - t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])]; - else - t[i+1] = lambda[i+1]; - } - if (2 * el <= r + no_eras - 1) { - el = r + no_eras - el; - /* - * 2 lines below: B(x) <-- inv(discr_r) * - * lambda(x) - */ - for (i = 0; i <= NN-KK; i++) - b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN); - } else { - /* 2 lines below: B(x) <-- x*B(x) */ - COPYDOWN(&b[1],b,NN-KK); - b[0] = A0; - } - COPY(lambda,t,NN-KK+1); - } - } - - /* Convert lambda to index form and compute deg(lambda(x)) */ - deg_lambda = 0; - for(i=0;i<NN-KK+1;i++){ - lambda[i] = Index_of[lambda[i]]; - if(lambda[i] != A0) - deg_lambda = i; - } - /* - * Find roots of the error+erasure locator polynomial by Chien - * Search - */ - COPY(®[1],&lambda[1],NN-KK); - count = 0; /* Number of roots of lambda(x) */ - for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { - q = 1; - for (j = deg_lambda; j > 0; j--){ - if (reg[j] != A0) { - reg[j] = modnn(reg[j] + j); - q ^= Alpha_to[reg[j]]; - } - } - if (q != 0) - continue; - /* store root (index-form) and error location number */ - root[count] = i; - loc[count] = k; - /* If we've already found max possible roots, - * abort the search to save time - */ - if(++count == deg_lambda) - break; - } - if (deg_lambda != count) { - /* - * deg(lambda) unequal to number of roots => uncorrectable - * error detected - */ - count = -1; - goto finish; - } - /* - * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo - * x**(NN-KK)). in index form. Also find deg(omega). - */ - deg_omega = 0; - for (i = 0; i < NN-KK;i++){ - tmp = 0; - j = (deg_lambda < i) ? deg_lambda : i; - for(;j >= 0; j--){ - if ((s[i + 1 - j] != A0) && (lambda[j] != A0)) - tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])]; - } - if(tmp != 0) - deg_omega = i; - omega[i] = Index_of[tmp]; - } - omega[NN-KK] = A0; - - /* - * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = - * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form - */ - for (j = count-1; j >=0; j--) { - num1 = 0; - for (i = deg_omega; i >= 0; i--) { - if (omega[i] != A0) - num1 ^= Alpha_to[modnn(omega[i] + i * root[j])]; - } - num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)]; - den = 0; - - /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ - for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) { - if(lambda[i+1] != A0) - den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])]; - } - if (den == 0) { -#if DEBUG_ECC >= 1 - printf("\n ERROR: denominator = 0\n"); -#endif - /* Convert to dual- basis */ - count = -1; - goto finish; - } - /* Apply error to data */ - if (num1 != 0) { - eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])]; - } else { - eras_val[j] = 0; - } - } - finish: - for(i=0;i<count;i++) - eras_pos[i] = loc[i]; - return count; -} - -/***************************************************************************/ -/* The DOC specific code begins here */ - -#define SECTOR_SIZE 512 -/* The sector bytes are packed into NB_DATA MM bits words */ -#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM) - -/* - * Correct the errors in 'sector[]' by using 'ecc1[]' which is the - * content of the feedback shift register applyied to the sector and - * the ECC. Return the number of errors corrected (and correct them in - * sector), or -1 if error - */ -int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6]) -{ - int parity, i, nb_errors; - gf bb[NN - KK + 1]; - gf error_val[NN-KK]; - int error_pos[NN-KK], pos, bitpos, index, val; - dtype *Alpha_to, *Index_of; - - /* init log and exp tables here to save memory. However, it is slower */ - Alpha_to = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL); - if (!Alpha_to) - return -1; - - Index_of = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL); - if (!Index_of) { - kfree(Alpha_to); - return -1; - } - - generate_gf(Alpha_to, Index_of); - - parity = ecc1[1]; - - bb[0] = (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8); - bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6); - bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4); - bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2); - - nb_errors = eras_dec_rs(Alpha_to, Index_of, bb, - error_val, error_pos, 0); - if (nb_errors <= 0) - goto the_end; - - /* correct the errors */ - for(i=0;i<nb_errors;i++) { - pos = error_pos[i]; - if (pos >= NB_DATA && pos < KK) { - nb_errors = -1; - goto the_end; - } - if (pos < NB_DATA) { - /* extract bit position (MSB first) */ - pos = 10 * (NB_DATA - 1 - pos) - 6; - /* now correct the following 10 bits. At most two bytes - can be modified since pos is even */ - index = (pos >> 3) ^ 1; - bitpos = pos & 7; - if ((index >= 0 && index < SECTOR_SIZE) || - index == (SECTOR_SIZE + 1)) { - val = error_val[i] >> (2 + bitpos); - parity ^= val; - if (index < SECTOR_SIZE) - sector[index] ^= val; - } - index = ((pos >> 3) + 1) ^ 1; - bitpos = (bitpos + 10) & 7; - if (bitpos == 0) - bitpos = 8; - if ((index >= 0 && index < SECTOR_SIZE) || - index == (SECTOR_SIZE + 1)) { - val = error_val[i] << (8 - bitpos); - parity ^= val; - if (index < SECTOR_SIZE) - sector[index] ^= val; - } - } - } - - /* use parity to test extra errors */ - if ((parity & 0xff) != 0) - nb_errors = -1; - - the_end: - kfree(Alpha_to); - kfree(Index_of); - return nb_errors; -} - -EXPORT_SYMBOL_GPL(doc_decode_ecc); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Fabrice Bellard <fabrice.bellard@netgem.com>"); -MODULE_DESCRIPTION("ECC code for correcting errors detected by DiskOnChip 2000 and Millennium ECC hardware"); diff --git a/drivers/mtd/devices/docg3.c b/drivers/mtd/devices/docg3.c new file mode 100644 index 00000000000..91a169c44b3 --- /dev/null +++ b/drivers/mtd/devices/docg3.c @@ -0,0 +1,2143 @@ +/* + * Handles the M-Systems DiskOnChip G3 chip + * + * Copyright (C) 2011 Robert Jarzmik + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/errno.h> +#include <linux/platform_device.h> +#include <linux/string.h> +#include <linux/slab.h> +#include <linux/io.h> +#include <linux/delay.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/bitmap.h> +#include <linux/bitrev.h> +#include <linux/bch.h> + +#include <linux/debugfs.h> +#include <linux/seq_file.h> + +#define CREATE_TRACE_POINTS +#include "docg3.h" + +/* + * This driver handles the DiskOnChip G3 flash memory. + * + * As no specification is available from M-Systems/Sandisk, this drivers lacks + * several functions available on the chip, as : + * - IPL write + * + * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and + * the driver assumes a 16bits data bus. + * + * DocG3 relies on 2 ECC algorithms, which are handled in hardware : + * - a 1 byte Hamming code stored in the OOB for each page + * - a 7 bytes BCH code stored in the OOB for each page + * The BCH ECC is : + * - BCH is in GF(2^14) + * - BCH is over data of 520 bytes (512 page + 7 page_info bytes + * + 1 hamming byte) + * - BCH can correct up to 4 bits (t = 4) + * - BCH syndroms are calculated in hardware, and checked in hardware as well + * + */ + +static unsigned int reliable_mode; +module_param(reliable_mode, uint, 0); +MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, " + "2=reliable) : MLC normal operations are in normal mode"); + +/** + * struct docg3_oobinfo - DiskOnChip G3 OOB layout + * @eccbytes: 8 bytes are used (1 for Hamming ECC, 7 for BCH ECC) + * @eccpos: ecc positions (byte 7 is Hamming ECC, byte 8-14 are BCH ECC) + * @oobfree: free pageinfo bytes (byte 0 until byte 6, byte 15 + * @oobavail: 8 available bytes remaining after ECC toll + */ +static struct nand_ecclayout docg3_oobinfo = { + .eccbytes = 8, + .eccpos = {7, 8, 9, 10, 11, 12, 13, 14}, + .oobfree = {{0, 7}, {15, 1} }, + .oobavail = 8, +}; + +static inline u8 doc_readb(struct docg3 *docg3, u16 reg) +{ + u8 val = readb(docg3->cascade->base + reg); + + trace_docg3_io(0, 8, reg, (int)val); + return val; +} + +static inline u16 doc_readw(struct docg3 *docg3, u16 reg) +{ + u16 val = readw(docg3->cascade->base + reg); + + trace_docg3_io(0, 16, reg, (int)val); + return val; +} + +static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg) +{ + writeb(val, docg3->cascade->base + reg); + trace_docg3_io(1, 8, reg, val); +} + +static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg) +{ + writew(val, docg3->cascade->base + reg); + trace_docg3_io(1, 16, reg, val); +} + +static inline void doc_flash_command(struct docg3 *docg3, u8 cmd) +{ + doc_writeb(docg3, cmd, DOC_FLASHCOMMAND); +} + +static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq) +{ + doc_writeb(docg3, seq, DOC_FLASHSEQUENCE); +} + +static inline void doc_flash_address(struct docg3 *docg3, u8 addr) +{ + doc_writeb(docg3, addr, DOC_FLASHADDRESS); +} + +static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL }; + +static int doc_register_readb(struct docg3 *docg3, int reg) +{ + u8 val; + + doc_writew(docg3, reg, DOC_READADDRESS); + val = doc_readb(docg3, reg); + doc_vdbg("Read register %04x : %02x\n", reg, val); + return val; +} + +static int doc_register_readw(struct docg3 *docg3, int reg) +{ + u16 val; + + doc_writew(docg3, reg, DOC_READADDRESS); + val = doc_readw(docg3, reg); + doc_vdbg("Read register %04x : %04x\n", reg, val); + return val; +} + +/** + * doc_delay - delay docg3 operations + * @docg3: the device + * @nbNOPs: the number of NOPs to issue + * + * As no specification is available, the right timings between chip commands are + * unknown. The only available piece of information are the observed nops on a + * working docg3 chip. + * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler + * friendlier msleep() functions or blocking mdelay(). + */ +static void doc_delay(struct docg3 *docg3, int nbNOPs) +{ + int i; + + doc_vdbg("NOP x %d\n", nbNOPs); + for (i = 0; i < nbNOPs; i++) + doc_writeb(docg3, 0, DOC_NOP); +} + +static int is_prot_seq_error(struct docg3 *docg3) +{ + int ctrl; + + ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); + return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR); +} + +static int doc_is_ready(struct docg3 *docg3) +{ + int ctrl; + + ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); + return ctrl & DOC_CTRL_FLASHREADY; +} + +static int doc_wait_ready(struct docg3 *docg3) +{ + int maxWaitCycles = 100; + + do { + doc_delay(docg3, 4); + cpu_relax(); + } while (!doc_is_ready(docg3) && maxWaitCycles--); + doc_delay(docg3, 2); + if (maxWaitCycles > 0) + return 0; + else + return -EIO; +} + +static int doc_reset_seq(struct docg3 *docg3) +{ + int ret; + + doc_writeb(docg3, 0x10, DOC_FLASHCONTROL); + doc_flash_sequence(docg3, DOC_SEQ_RESET); + doc_flash_command(docg3, DOC_CMD_RESET); + doc_delay(docg3, 2); + ret = doc_wait_ready(docg3); + + doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true"); + return ret; +} + +/** + * doc_read_data_area - Read data from data area + * @docg3: the device + * @buf: the buffer to fill in (might be NULL is dummy reads) + * @len: the length to read + * @first: first time read, DOC_READADDRESS should be set + * + * Reads bytes from flash data. Handles the single byte / even bytes reads. + */ +static void doc_read_data_area(struct docg3 *docg3, void *buf, int len, + int first) +{ + int i, cdr, len4; + u16 data16, *dst16; + u8 data8, *dst8; + + doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len); + cdr = len & 0x1; + len4 = len - cdr; + + if (first) + doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS); + dst16 = buf; + for (i = 0; i < len4; i += 2) { + data16 = doc_readw(docg3, DOC_IOSPACE_DATA); + if (dst16) { + *dst16 = data16; + dst16++; + } + } + + if (cdr) { + doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE, + DOC_READADDRESS); + doc_delay(docg3, 1); + dst8 = (u8 *)dst16; + for (i = 0; i < cdr; i++) { + data8 = doc_readb(docg3, DOC_IOSPACE_DATA); + if (dst8) { + *dst8 = data8; + dst8++; + } + } + } +} + +/** + * doc_write_data_area - Write data into data area + * @docg3: the device + * @buf: the buffer to get input bytes from + * @len: the length to write + * + * Writes bytes into flash data. Handles the single byte / even bytes writes. + */ +static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len) +{ + int i, cdr, len4; + u16 *src16; + u8 *src8; + + doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len); + cdr = len & 0x3; + len4 = len - cdr; + + doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS); + src16 = (u16 *)buf; + for (i = 0; i < len4; i += 2) { + doc_writew(docg3, *src16, DOC_IOSPACE_DATA); + src16++; + } + + src8 = (u8 *)src16; + for (i = 0; i < cdr; i++) { + doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE, + DOC_READADDRESS); + doc_writeb(docg3, *src8, DOC_IOSPACE_DATA); + src8++; + } +} + +/** + * doc_set_data_mode - Sets the flash to normal or reliable data mode + * @docg3: the device + * + * The reliable data mode is a bit slower than the fast mode, but less errors + * occur. Entering the reliable mode cannot be done without entering the fast + * mode first. + * + * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks + * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading + * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same + * result, which is a logical and between bytes from page 0 and page 1 (which is + * consistent with the fact that writing to a page is _clearing_ bits of that + * page). + */ +static void doc_set_reliable_mode(struct docg3 *docg3) +{ + static char *strmode[] = { "normal", "fast", "reliable", "invalid" }; + + doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]); + switch (docg3->reliable) { + case 0: + break; + case 1: + doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE); + doc_flash_command(docg3, DOC_CMD_FAST_MODE); + break; + case 2: + doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE); + doc_flash_command(docg3, DOC_CMD_FAST_MODE); + doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE); + break; + default: + doc_err("doc_set_reliable_mode(): invalid mode\n"); + break; + } + doc_delay(docg3, 2); +} + +/** + * doc_set_asic_mode - Set the ASIC mode + * @docg3: the device + * @mode: the mode + * + * The ASIC can work in 3 modes : + * - RESET: all registers are zeroed + * - NORMAL: receives and handles commands + * - POWERDOWN: minimal poweruse, flash parts shut off + */ +static void doc_set_asic_mode(struct docg3 *docg3, u8 mode) +{ + int i; + + for (i = 0; i < 12; i++) + doc_readb(docg3, DOC_IOSPACE_IPL); + + mode |= DOC_ASICMODE_MDWREN; + doc_dbg("doc_set_asic_mode(%02x)\n", mode); + doc_writeb(docg3, mode, DOC_ASICMODE); + doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM); + doc_delay(docg3, 1); +} + +/** + * doc_set_device_id - Sets the devices id for cascaded G3 chips + * @docg3: the device + * @id: the chip to select (amongst 0, 1, 2, 3) + * + * There can be 4 cascaded G3 chips. This function selects the one which will + * should be the active one. + */ +static void doc_set_device_id(struct docg3 *docg3, int id) +{ + u8 ctrl; + + doc_dbg("doc_set_device_id(%d)\n", id); + doc_writeb(docg3, id, DOC_DEVICESELECT); + ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); + + ctrl &= ~DOC_CTRL_VIOLATION; + ctrl |= DOC_CTRL_CE; + doc_writeb(docg3, ctrl, DOC_FLASHCONTROL); +} + +/** + * doc_set_extra_page_mode - Change flash page layout + * @docg3: the device + * + * Normally, the flash page is split into the data (512 bytes) and the out of + * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear + * leveling counters are stored. To access this last area of 4 bytes, a special + * mode must be input to the flash ASIC. + * + * Returns 0 if no error occurred, -EIO else. + */ +static int doc_set_extra_page_mode(struct docg3 *docg3) +{ + int fctrl; + + doc_dbg("doc_set_extra_page_mode()\n"); + doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532); + doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532); + doc_delay(docg3, 2); + + fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); + if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR)) + return -EIO; + else + return 0; +} + +/** + * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane + * @docg3: the device + * @sector: the sector + */ +static void doc_setup_addr_sector(struct docg3 *docg3, int sector) +{ + doc_delay(docg3, 1); + doc_flash_address(docg3, sector & 0xff); + doc_flash_address(docg3, (sector >> 8) & 0xff); + doc_flash_address(docg3, (sector >> 16) & 0xff); + doc_delay(docg3, 1); +} + +/** + * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane + * @docg3: the device + * @sector: the sector + * @ofs: the offset in the page, between 0 and (512 + 16 + 512) + */ +static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs) +{ + ofs = ofs >> 2; + doc_delay(docg3, 1); + doc_flash_address(docg3, ofs & 0xff); + doc_flash_address(docg3, sector & 0xff); + doc_flash_address(docg3, (sector >> 8) & 0xff); + doc_flash_address(docg3, (sector >> 16) & 0xff); + doc_delay(docg3, 1); +} + +/** + * doc_seek - Set both flash planes to the specified block, page for reading + * @docg3: the device + * @block0: the first plane block index + * @block1: the second plane block index + * @page: the page index within the block + * @wear: if true, read will occur on the 4 extra bytes of the wear area + * @ofs: offset in page to read + * + * Programs the flash even and odd planes to the specific block and page. + * Alternatively, programs the flash to the wear area of the specified page. + */ +static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page, + int wear, int ofs) +{ + int sector, ret = 0; + + doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n", + block0, block1, page, ofs, wear); + + if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) { + doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1); + doc_flash_command(docg3, DOC_CMD_READ_PLANE1); + doc_delay(docg3, 2); + } else { + doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2); + doc_flash_command(docg3, DOC_CMD_READ_PLANE2); + doc_delay(docg3, 2); + } + + doc_set_reliable_mode(docg3); + if (wear) + ret = doc_set_extra_page_mode(docg3); + if (ret) + goto out; + + doc_flash_sequence(docg3, DOC_SEQ_READ); + sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); + doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); + doc_setup_addr_sector(docg3, sector); + + sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); + doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); + doc_setup_addr_sector(docg3, sector); + doc_delay(docg3, 1); + +out: + return ret; +} + +/** + * doc_write_seek - Set both flash planes to the specified block, page for writing + * @docg3: the device + * @block0: the first plane block index + * @block1: the second plane block index + * @page: the page index within the block + * @ofs: offset in page to write + * + * Programs the flash even and odd planes to the specific block and page. + * Alternatively, programs the flash to the wear area of the specified page. + */ +static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page, + int ofs) +{ + int ret = 0, sector; + + doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n", + block0, block1, page, ofs); + + doc_set_reliable_mode(docg3); + + if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) { + doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1); + doc_flash_command(docg3, DOC_CMD_READ_PLANE1); + doc_delay(docg3, 2); + } else { + doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2); + doc_flash_command(docg3, DOC_CMD_READ_PLANE2); + doc_delay(docg3, 2); + } + + doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP); + doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1); + + sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); + doc_setup_writeaddr_sector(docg3, sector, ofs); + + doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3); + doc_delay(docg3, 2); + ret = doc_wait_ready(docg3); + if (ret) + goto out; + + doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1); + sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); + doc_setup_writeaddr_sector(docg3, sector, ofs); + doc_delay(docg3, 1); + +out: + return ret; +} + + +/** + * doc_read_page_ecc_init - Initialize hardware ECC engine + * @docg3: the device + * @len: the number of bytes covered by the ECC (BCH covered) + * + * The function does initialize the hardware ECC engine to compute the Hamming + * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes). + * + * Return 0 if succeeded, -EIO on error + */ +static int doc_read_page_ecc_init(struct docg3 *docg3, int len) +{ + doc_writew(docg3, DOC_ECCCONF0_READ_MODE + | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE + | (len & DOC_ECCCONF0_DATA_BYTES_MASK), + DOC_ECCCONF0); + doc_delay(docg3, 4); + doc_register_readb(docg3, DOC_FLASHCONTROL); + return doc_wait_ready(docg3); +} + +/** + * doc_write_page_ecc_init - Initialize hardware BCH ECC engine + * @docg3: the device + * @len: the number of bytes covered by the ECC (BCH covered) + * + * The function does initialize the hardware ECC engine to compute the Hamming + * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes). + * + * Return 0 if succeeded, -EIO on error + */ +static int doc_write_page_ecc_init(struct docg3 *docg3, int len) +{ + doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE + | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE + | (len & DOC_ECCCONF0_DATA_BYTES_MASK), + DOC_ECCCONF0); + doc_delay(docg3, 4); + doc_register_readb(docg3, DOC_FLASHCONTROL); + return doc_wait_ready(docg3); +} + +/** + * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator + * @docg3: the device + * + * Disables the hardware ECC generator and checker, for unchecked reads (as when + * reading OOB only or write status byte). + */ +static void doc_ecc_disable(struct docg3 *docg3) +{ + doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0); + doc_delay(docg3, 4); +} + +/** + * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine + * @docg3: the device + * @nb_bytes: the number of bytes covered by the ECC (Hamming covered) + * + * This function programs the ECC hardware to compute the hamming code on the + * last provided N bytes to the hardware generator. + */ +static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes) +{ + u8 ecc_conf1; + + ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1); + ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK; + ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK); + doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1); +} + +/** + * doc_ecc_bch_fix_data - Fix if need be read data from flash + * @docg3: the device + * @buf: the buffer of read data (512 + 7 + 1 bytes) + * @hwecc: the hardware calculated ECC. + * It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB + * area data, and calc_ecc the ECC calculated by the hardware generator. + * + * Checks if the received data matches the ECC, and if an error is detected, + * tries to fix the bit flips (at most 4) in the buffer buf. As the docg3 + * understands the (data, ecc, syndroms) in an inverted order in comparison to + * the BCH library, the function reverses the order of bits (ie. bit7 and bit0, + * bit6 and bit 1, ...) for all ECC data. + * + * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch + * algorithm is used to decode this. However the hw operates on page + * data in a bit order that is the reverse of that of the bch alg, + * requiring that the bits be reversed on the result. Thanks to Ivan + * Djelic for his analysis. + * + * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit + * errors were detected and cannot be fixed. + */ +static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc) +{ + u8 ecc[DOC_ECC_BCH_SIZE]; + int errorpos[DOC_ECC_BCH_T], i, numerrs; + + for (i = 0; i < DOC_ECC_BCH_SIZE; i++) + ecc[i] = bitrev8(hwecc[i]); + numerrs = decode_bch(docg3->cascade->bch, NULL, + DOC_ECC_BCH_COVERED_BYTES, + NULL, ecc, NULL, errorpos); + BUG_ON(numerrs == -EINVAL); + if (numerrs < 0) + goto out; + + for (i = 0; i < numerrs; i++) + errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7)); + for (i = 0; i < numerrs; i++) + if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8) + /* error is located in data, correct it */ + change_bit(errorpos[i], buf); +out: + doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs); + return numerrs; +} + + +/** + * doc_read_page_prepare - Prepares reading data from a flash page + * @docg3: the device + * @block0: the first plane block index on flash memory + * @block1: the second plane block index on flash memory + * @page: the page index in the block + * @offset: the offset in the page (must be a multiple of 4) + * + * Prepares the page to be read in the flash memory : + * - tell ASIC to map the flash pages + * - tell ASIC to be in read mode + * + * After a call to this method, a call to doc_read_page_finish is mandatory, + * to end the read cycle of the flash. + * + * Read data from a flash page. The length to be read must be between 0 and + * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because + * the extra bytes reading is not implemented). + * + * As pages are grouped by 2 (in 2 planes), reading from a page must be done + * in two steps: + * - one read of 512 bytes at offset 0 + * - one read of 512 bytes at offset 512 + 16 + * + * Returns 0 if successful, -EIO if a read error occurred. + */ +static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1, + int page, int offset) +{ + int wear_area = 0, ret = 0; + + doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n", + block0, block1, page, offset); + if (offset >= DOC_LAYOUT_WEAR_OFFSET) + wear_area = 1; + if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2)) + return -EINVAL; + + doc_set_device_id(docg3, docg3->device_id); + ret = doc_reset_seq(docg3); + if (ret) + goto err; + + /* Program the flash address block and page */ + ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset); + if (ret) + goto err; + + doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES); + doc_delay(docg3, 2); + doc_wait_ready(docg3); + + doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ); + doc_delay(docg3, 1); + if (offset >= DOC_LAYOUT_PAGE_SIZE * 2) + offset -= 2 * DOC_LAYOUT_PAGE_SIZE; + doc_flash_address(docg3, offset >> 2); + doc_delay(docg3, 1); + doc_wait_ready(docg3); + + doc_flash_command(docg3, DOC_CMD_READ_FLASH); + + return 0; +err: + doc_writeb(docg3, 0, DOC_DATAEND); + doc_delay(docg3, 2); + return -EIO; +} + +/** + * doc_read_page_getbytes - Reads bytes from a prepared page + * @docg3: the device + * @len: the number of bytes to be read (must be a multiple of 4) + * @buf: the buffer to be filled in (or NULL is forget bytes) + * @first: 1 if first time read, DOC_READADDRESS should be set + * @last_odd: 1 if last read ended up on an odd byte + * + * Reads bytes from a prepared page. There is a trickery here : if the last read + * ended up on an odd offset in the 1024 bytes double page, ie. between the 2 + * planes, the first byte must be read apart. If a word (16bit) read was used, + * the read would return the byte of plane 2 as low *and* high endian, which + * will mess the read. + * + */ +static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf, + int first, int last_odd) +{ + if (last_odd && len > 0) { + doc_read_data_area(docg3, buf, 1, first); + doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0); + } else { + doc_read_data_area(docg3, buf, len, first); + } + doc_delay(docg3, 2); + return len; +} + +/** + * doc_write_page_putbytes - Writes bytes into a prepared page + * @docg3: the device + * @len: the number of bytes to be written + * @buf: the buffer of input bytes + * + */ +static void doc_write_page_putbytes(struct docg3 *docg3, int len, + const u_char *buf) +{ + doc_write_data_area(docg3, buf, len); + doc_delay(docg3, 2); +} + +/** + * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC + * @docg3: the device + * @hwecc: the array of 7 integers where the hardware ecc will be stored + */ +static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc) +{ + int i; + + for (i = 0; i < DOC_ECC_BCH_SIZE; i++) + hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i)); +} + +/** + * doc_page_finish - Ends reading/writing of a flash page + * @docg3: the device + */ +static void doc_page_finish(struct docg3 *docg3) +{ + doc_writeb(docg3, 0, DOC_DATAEND); + doc_delay(docg3, 2); +} + +/** + * doc_read_page_finish - Ends reading of a flash page + * @docg3: the device + * + * As a side effect, resets the chip selector to 0. This ensures that after each + * read operation, the floor 0 is selected. Therefore, if the systems halts, the + * reboot will boot on floor 0, where the IPL is. + */ +static void doc_read_page_finish(struct docg3 *docg3) +{ + doc_page_finish(docg3); + doc_set_device_id(docg3, 0); +} + +/** + * calc_block_sector - Calculate blocks, pages and ofs. + + * @from: offset in flash + * @block0: first plane block index calculated + * @block1: second plane block index calculated + * @page: page calculated + * @ofs: offset in page + * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in + * reliable mode. + * + * The calculation is based on the reliable/normal mode. In normal mode, the 64 + * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are + * clones, only 32 pages per block are available. + */ +static void calc_block_sector(loff_t from, int *block0, int *block1, int *page, + int *ofs, int reliable) +{ + uint sector, pages_biblock; + + pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES; + if (reliable == 1 || reliable == 2) + pages_biblock /= 2; + + sector = from / DOC_LAYOUT_PAGE_SIZE; + *block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES; + *block1 = *block0 + 1; + *page = sector % pages_biblock; + *page /= DOC_LAYOUT_NBPLANES; + if (reliable == 1 || reliable == 2) + *page *= 2; + if (sector % 2) + *ofs = DOC_LAYOUT_PAGE_OOB_SIZE; + else + *ofs = 0; +} + +/** + * doc_read_oob - Read out of band bytes from flash + * @mtd: the device + * @from: the offset from first block and first page, in bytes, aligned on page + * size + * @ops: the mtd oob structure + * + * Reads flash memory OOB area of pages. + * + * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred + */ +static int doc_read_oob(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + struct docg3 *docg3 = mtd->priv; + int block0, block1, page, ret, skip, ofs = 0; + u8 *oobbuf = ops->oobbuf; + u8 *buf = ops->datbuf; + size_t len, ooblen, nbdata, nboob; + u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1; + int max_bitflips = 0; + + if (buf) + len = ops->len; + else + len = 0; + if (oobbuf) + ooblen = ops->ooblen; + else + ooblen = 0; + + if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB) + oobbuf += ops->ooboffs; + + doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n", + from, ops->mode, buf, len, oobbuf, ooblen); + if (ooblen % DOC_LAYOUT_OOB_SIZE) + return -EINVAL; + + if (from + len > mtd->size) + return -EINVAL; + + ops->oobretlen = 0; + ops->retlen = 0; + ret = 0; + skip = from % DOC_LAYOUT_PAGE_SIZE; + mutex_lock(&docg3->cascade->lock); + while (ret >= 0 && (len > 0 || ooblen > 0)) { + calc_block_sector(from - skip, &block0, &block1, &page, &ofs, + docg3->reliable); + nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip); + nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE); + ret = doc_read_page_prepare(docg3, block0, block1, page, ofs); + if (ret < 0) + goto out; + ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES); + if (ret < 0) + goto err_in_read; + ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0); + if (ret < skip) + goto err_in_read; + ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2); + if (ret < nbdata) + goto err_in_read; + doc_read_page_getbytes(docg3, + DOC_LAYOUT_PAGE_SIZE - nbdata - skip, + NULL, 0, (skip + nbdata) % 2); + ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0); + if (ret < nboob) + goto err_in_read; + doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob, + NULL, 0, nboob % 2); + + doc_get_bch_hw_ecc(docg3, hwecc); + eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1); + + if (nboob >= DOC_LAYOUT_OOB_SIZE) { + doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf); + doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]); + doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8); + doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]); + } + doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1); + doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc); + + ret = -EIO; + if (is_prot_seq_error(docg3)) + goto err_in_read; + ret = 0; + if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) && + (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) && + (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) && + (ops->mode != MTD_OPS_RAW) && + (nbdata == DOC_LAYOUT_PAGE_SIZE)) { + ret = doc_ecc_bch_fix_data(docg3, buf, hwecc); + if (ret < 0) { + mtd->ecc_stats.failed++; + ret = -EBADMSG; + } + if (ret > 0) { + mtd->ecc_stats.corrected += ret; + max_bitflips = max(max_bitflips, ret); + ret = max_bitflips; + } + } + + doc_read_page_finish(docg3); + ops->retlen += nbdata; + ops->oobretlen += nboob; + buf += nbdata; + oobbuf += nboob; + len -= nbdata; + ooblen -= nboob; + from += DOC_LAYOUT_PAGE_SIZE; + skip = 0; + } + +out: + mutex_unlock(&docg3->cascade->lock); + return ret; +err_in_read: + doc_read_page_finish(docg3); + goto out; +} + +/** + * doc_read - Read bytes from flash + * @mtd: the device + * @from: the offset from first block and first page, in bytes, aligned on page + * size + * @len: the number of bytes to read (must be a multiple of 4) + * @retlen: the number of bytes actually read + * @buf: the filled in buffer + * + * Reads flash memory pages. This function does not read the OOB chunk, but only + * the page data. + * + * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred + */ +static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct mtd_oob_ops ops; + size_t ret; + + memset(&ops, 0, sizeof(ops)); + ops.datbuf = buf; + ops.len = len; + ops.mode = MTD_OPS_AUTO_OOB; + + ret = doc_read_oob(mtd, from, &ops); + *retlen = ops.retlen; + return ret; +} + +static int doc_reload_bbt(struct docg3 *docg3) +{ + int block = DOC_LAYOUT_BLOCK_BBT; + int ret = 0, nbpages, page; + u_char *buf = docg3->bbt; + + nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE); + for (page = 0; !ret && (page < nbpages); page++) { + ret = doc_read_page_prepare(docg3, block, block + 1, + page + DOC_LAYOUT_PAGE_BBT, 0); + if (!ret) + ret = doc_read_page_ecc_init(docg3, + DOC_LAYOUT_PAGE_SIZE); + if (!ret) + doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE, + buf, 1, 0); + buf += DOC_LAYOUT_PAGE_SIZE; + } + doc_read_page_finish(docg3); + return ret; +} + +/** + * doc_block_isbad - Checks whether a block is good or not + * @mtd: the device + * @from: the offset to find the correct block + * + * Returns 1 if block is bad, 0 if block is good + */ +static int doc_block_isbad(struct mtd_info *mtd, loff_t from) +{ + struct docg3 *docg3 = mtd->priv; + int block0, block1, page, ofs, is_good; + + calc_block_sector(from, &block0, &block1, &page, &ofs, + docg3->reliable); + doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n", + from, block0, block1, page, ofs); + + if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA) + return 0; + if (block1 > docg3->max_block) + return -EINVAL; + + is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7)); + return !is_good; +} + +#if 0 +/** + * doc_get_erase_count - Get block erase count + * @docg3: the device + * @from: the offset in which the block is. + * + * Get the number of times a block was erased. The number is the maximum of + * erase times between first and second plane (which should be equal normally). + * + * Returns The number of erases, or -EINVAL or -EIO on error. + */ +static int doc_get_erase_count(struct docg3 *docg3, loff_t from) +{ + u8 buf[DOC_LAYOUT_WEAR_SIZE]; + int ret, plane1_erase_count, plane2_erase_count; + int block0, block1, page, ofs; + + doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf); + if (from % DOC_LAYOUT_PAGE_SIZE) + return -EINVAL; + calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable); + if (block1 > docg3->max_block) + return -EINVAL; + + ret = doc_reset_seq(docg3); + if (!ret) + ret = doc_read_page_prepare(docg3, block0, block1, page, + ofs + DOC_LAYOUT_WEAR_OFFSET, 0); + if (!ret) + ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE, + buf, 1, 0); + doc_read_page_finish(docg3); + + if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK)) + return -EIO; + plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8) + | ((u8)(~buf[5]) << 16); + plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8) + | ((u8)(~buf[7]) << 16); + + return max(plane1_erase_count, plane2_erase_count); +} +#endif + +/** + * doc_get_op_status - get erase/write operation status + * @docg3: the device + * + * Queries the status from the chip, and returns it + * + * Returns the status (bits DOC_PLANES_STATUS_*) + */ +static int doc_get_op_status(struct docg3 *docg3) +{ + u8 status; + + doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS); + doc_flash_command(docg3, DOC_CMD_PLANES_STATUS); + doc_delay(docg3, 5); + + doc_ecc_disable(docg3); + doc_read_data_area(docg3, &status, 1, 1); + return status; +} + +/** + * doc_write_erase_wait_status - wait for write or erase completion + * @docg3: the device + * + * Wait for the chip to be ready again after erase or write operation, and check + * erase/write status. + * + * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if + * timeout + */ +static int doc_write_erase_wait_status(struct docg3 *docg3) +{ + int i, status, ret = 0; + + for (i = 0; !doc_is_ready(docg3) && i < 5; i++) + msleep(20); + if (!doc_is_ready(docg3)) { + doc_dbg("Timeout reached and the chip is still not ready\n"); + ret = -EAGAIN; + goto out; + } + + status = doc_get_op_status(docg3); + if (status & DOC_PLANES_STATUS_FAIL) { + doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n", + status); + ret = -EIO; + } + +out: + doc_page_finish(docg3); + return ret; +} + +/** + * doc_erase_block - Erase a couple of blocks + * @docg3: the device + * @block0: the first block to erase (leftmost plane) + * @block1: the second block to erase (rightmost plane) + * + * Erase both blocks, and return operation status + * + * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not + * ready for too long + */ +static int doc_erase_block(struct docg3 *docg3, int block0, int block1) +{ + int ret, sector; + + doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1); + ret = doc_reset_seq(docg3); + if (ret) + return -EIO; + + doc_set_reliable_mode(docg3); + doc_flash_sequence(docg3, DOC_SEQ_ERASE); + + sector = block0 << DOC_ADDR_BLOCK_SHIFT; + doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); + doc_setup_addr_sector(docg3, sector); + sector = block1 << DOC_ADDR_BLOCK_SHIFT; + doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); + doc_setup_addr_sector(docg3, sector); + doc_delay(docg3, 1); + + doc_flash_command(docg3, DOC_CMD_ERASECYCLE2); + doc_delay(docg3, 2); + + if (is_prot_seq_error(docg3)) { + doc_err("Erase blocks %d,%d error\n", block0, block1); + return -EIO; + } + + return doc_write_erase_wait_status(docg3); +} + +/** + * doc_erase - Erase a portion of the chip + * @mtd: the device + * @info: the erase info + * + * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is + * split into 2 pages of 512 bytes on 2 contiguous blocks. + * + * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase + * issue + */ +static int doc_erase(struct mtd_info *mtd, struct erase_info *info) +{ + struct docg3 *docg3 = mtd->priv; + uint64_t len; + int block0, block1, page, ret, ofs = 0; + + doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len); + + info->state = MTD_ERASE_PENDING; + calc_block_sector(info->addr + info->len, &block0, &block1, &page, + &ofs, docg3->reliable); + ret = -EINVAL; + if (info->addr + info->len > mtd->size || page || ofs) + goto reset_err; + + ret = 0; + calc_block_sector(info->addr, &block0, &block1, &page, &ofs, + docg3->reliable); + mutex_lock(&docg3->cascade->lock); + doc_set_device_id(docg3, docg3->device_id); + doc_set_reliable_mode(docg3); + for (len = info->len; !ret && len > 0; len -= mtd->erasesize) { + info->state = MTD_ERASING; + ret = doc_erase_block(docg3, block0, block1); + block0 += 2; + block1 += 2; + } + mutex_unlock(&docg3->cascade->lock); + + if (ret) + goto reset_err; + + info->state = MTD_ERASE_DONE; + return 0; + +reset_err: + info->state = MTD_ERASE_FAILED; + return ret; +} + +/** + * doc_write_page - Write a single page to the chip + * @docg3: the device + * @to: the offset from first block and first page, in bytes, aligned on page + * size + * @buf: buffer to get bytes from + * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be + * written) + * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or + * BCH computations. If 1, only bytes 0-7 and byte 15 are taken, + * remaining ones are filled with hardware Hamming and BCH + * computations. Its value is not meaningfull is oob == NULL. + * + * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the + * OOB data. The OOB ECC is automatically computed by the hardware Hamming and + * BCH generator if autoecc is not null. + * + * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout + */ +static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf, + const u_char *oob, int autoecc) +{ + int block0, block1, page, ret, ofs = 0; + u8 hwecc[DOC_ECC_BCH_SIZE], hamming; + + doc_dbg("doc_write_page(to=%lld)\n", to); + calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable); + + doc_set_device_id(docg3, docg3->device_id); + ret = doc_reset_seq(docg3); + if (ret) + goto err; + + /* Program the flash address block and page */ + ret = doc_write_seek(docg3, block0, block1, page, ofs); + if (ret) + goto err; + + doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES); + doc_delay(docg3, 2); + doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf); + + if (oob && autoecc) { + doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob); + doc_delay(docg3, 2); + oob += DOC_LAYOUT_OOB_UNUSED_OFS; + + hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY); + doc_delay(docg3, 2); + doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ, + &hamming); + doc_delay(docg3, 2); + + doc_get_bch_hw_ecc(docg3, hwecc); + doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc); + doc_delay(docg3, 2); + + doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob); + } + if (oob && !autoecc) + doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob); + + doc_delay(docg3, 2); + doc_page_finish(docg3); + doc_delay(docg3, 2); + doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2); + doc_delay(docg3, 2); + + /* + * The wait status will perform another doc_page_finish() call, but that + * seems to please the docg3, so leave it. + */ + ret = doc_write_erase_wait_status(docg3); + return ret; +err: + doc_read_page_finish(docg3); + return ret; +} + +/** + * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops + * @ops: the oob operations + * + * Returns 0 or 1 if success, -EINVAL if invalid oob mode + */ +static int doc_guess_autoecc(struct mtd_oob_ops *ops) +{ + int autoecc; + + switch (ops->mode) { + case MTD_OPS_PLACE_OOB: + case MTD_OPS_AUTO_OOB: + autoecc = 1; + break; + case MTD_OPS_RAW: + autoecc = 0; + break; + default: + autoecc = -EINVAL; + } + return autoecc; +} + +/** + * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes + * @dst: the target 16 bytes OOB buffer + * @oobsrc: the source 8 bytes non-ECC OOB buffer + * + */ +static void doc_fill_autooob(u8 *dst, u8 *oobsrc) +{ + memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ); + dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ]; +} + +/** + * doc_backup_oob - Backup OOB into docg3 structure + * @docg3: the device + * @to: the page offset in the chip + * @ops: the OOB size and buffer + * + * As the docg3 should write a page with its OOB in one pass, and some userland + * applications do write_oob() to setup the OOB and then write(), store the OOB + * into a temporary storage. This is very dangerous, as 2 concurrent + * applications could store an OOB, and then write their pages (which will + * result into one having its OOB corrupted). + * + * The only reliable way would be for userland to call doc_write_oob() with both + * the page data _and_ the OOB area. + * + * Returns 0 if success, -EINVAL if ops content invalid + */ +static int doc_backup_oob(struct docg3 *docg3, loff_t to, + struct mtd_oob_ops *ops) +{ + int ooblen = ops->ooblen, autoecc; + + if (ooblen != DOC_LAYOUT_OOB_SIZE) + return -EINVAL; + autoecc = doc_guess_autoecc(ops); + if (autoecc < 0) + return autoecc; + + docg3->oob_write_ofs = to; + docg3->oob_autoecc = autoecc; + if (ops->mode == MTD_OPS_AUTO_OOB) { + doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf); + ops->oobretlen = 8; + } else { + memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE); + ops->oobretlen = DOC_LAYOUT_OOB_SIZE; + } + return 0; +} + +/** + * doc_write_oob - Write out of band bytes to flash + * @mtd: the device + * @ofs: the offset from first block and first page, in bytes, aligned on page + * size + * @ops: the mtd oob structure + * + * Either write OOB data into a temporary buffer, for the subsequent write + * page. The provided OOB should be 16 bytes long. If a data buffer is provided + * as well, issue the page write. + * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will + * still be filled in if asked for). + * + * Returns 0 is successful, EINVAL if length is not 14 bytes + */ +static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, + struct mtd_oob_ops *ops) +{ + struct docg3 *docg3 = mtd->priv; + int ret, autoecc, oobdelta; + u8 *oobbuf = ops->oobbuf; + u8 *buf = ops->datbuf; + size_t len, ooblen; + u8 oob[DOC_LAYOUT_OOB_SIZE]; + + if (buf) + len = ops->len; + else + len = 0; + if (oobbuf) + ooblen = ops->ooblen; + else + ooblen = 0; + + if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB) + oobbuf += ops->ooboffs; + + doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n", + ofs, ops->mode, buf, len, oobbuf, ooblen); + switch (ops->mode) { + case MTD_OPS_PLACE_OOB: + case MTD_OPS_RAW: + oobdelta = mtd->oobsize; + break; + case MTD_OPS_AUTO_OOB: + oobdelta = mtd->ecclayout->oobavail; + break; + default: + return -EINVAL; + } + if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) || + (ofs % DOC_LAYOUT_PAGE_SIZE)) + return -EINVAL; + if (len && ooblen && + (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta)) + return -EINVAL; + if (ofs + len > mtd->size) + return -EINVAL; + + ops->oobretlen = 0; + ops->retlen = 0; + ret = 0; + if (len == 0 && ooblen == 0) + return -EINVAL; + if (len == 0 && ooblen > 0) + return doc_backup_oob(docg3, ofs, ops); + + autoecc = doc_guess_autoecc(ops); + if (autoecc < 0) + return autoecc; + + mutex_lock(&docg3->cascade->lock); + while (!ret && len > 0) { + memset(oob, 0, sizeof(oob)); + if (ofs == docg3->oob_write_ofs) + memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE); + else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB) + doc_fill_autooob(oob, oobbuf); + else if (ooblen > 0) + memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE); + ret = doc_write_page(docg3, ofs, buf, oob, autoecc); + + ofs += DOC_LAYOUT_PAGE_SIZE; + len -= DOC_LAYOUT_PAGE_SIZE; + buf += DOC_LAYOUT_PAGE_SIZE; + if (ooblen) { + oobbuf += oobdelta; + ooblen -= oobdelta; + ops->oobretlen += oobdelta; + } + ops->retlen += DOC_LAYOUT_PAGE_SIZE; + } + + doc_set_device_id(docg3, 0); + mutex_unlock(&docg3->cascade->lock); + return ret; +} + +/** + * doc_write - Write a buffer to the chip + * @mtd: the device + * @to: the offset from first block and first page, in bytes, aligned on page + * size + * @len: the number of bytes to write (must be a full page size, ie. 512) + * @retlen: the number of bytes actually written (0 or 512) + * @buf: the buffer to get bytes from + * + * Writes data to the chip. + * + * Returns 0 if write successful, -EIO if write error + */ +static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct docg3 *docg3 = mtd->priv; + int ret; + struct mtd_oob_ops ops; + + doc_dbg("doc_write(to=%lld, len=%zu)\n", to, len); + ops.datbuf = (char *)buf; + ops.len = len; + ops.mode = MTD_OPS_PLACE_OOB; + ops.oobbuf = NULL; + ops.ooblen = 0; + ops.ooboffs = 0; + + ret = doc_write_oob(mtd, to, &ops); + *retlen = ops.retlen; + return ret; +} + +static struct docg3 *sysfs_dev2docg3(struct device *dev, + struct device_attribute *attr) +{ + int floor; + struct platform_device *pdev = to_platform_device(dev); + struct mtd_info **docg3_floors = platform_get_drvdata(pdev); + + floor = attr->attr.name[1] - '0'; + if (floor < 0 || floor >= DOC_MAX_NBFLOORS) + return NULL; + else + return docg3_floors[floor]->priv; +} + +static ssize_t dps0_is_key_locked(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); + int dps0; + + mutex_lock(&docg3->cascade->lock); + doc_set_device_id(docg3, docg3->device_id); + dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS); + doc_set_device_id(docg3, 0); + mutex_unlock(&docg3->cascade->lock); + + return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK)); +} + +static ssize_t dps1_is_key_locked(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); + int dps1; + + mutex_lock(&docg3->cascade->lock); + doc_set_device_id(docg3, docg3->device_id); + dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS); + doc_set_device_id(docg3, 0); + mutex_unlock(&docg3->cascade->lock); + + return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK)); +} + +static ssize_t dps0_insert_key(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); + int i; + + if (count != DOC_LAYOUT_DPS_KEY_LENGTH) + return -EINVAL; + + mutex_lock(&docg3->cascade->lock); + doc_set_device_id(docg3, docg3->device_id); + for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++) + doc_writeb(docg3, buf[i], DOC_DPS0_KEY); + doc_set_device_id(docg3, 0); + mutex_unlock(&docg3->cascade->lock); + return count; +} + +static ssize_t dps1_insert_key(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); + int i; + + if (count != DOC_LAYOUT_DPS_KEY_LENGTH) + return -EINVAL; + + mutex_lock(&docg3->cascade->lock); + doc_set_device_id(docg3, docg3->device_id); + for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++) + doc_writeb(docg3, buf[i], DOC_DPS1_KEY); + doc_set_device_id(docg3, 0); + mutex_unlock(&docg3->cascade->lock); + return count; +} + +#define FLOOR_SYSFS(id) { \ + __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \ + __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \ + __ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \ + __ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \ +} + +static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = { + FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3) +}; + +static int doc_register_sysfs(struct platform_device *pdev, + struct docg3_cascade *cascade) +{ + int ret = 0, floor, i = 0; + struct device *dev = &pdev->dev; + + for (floor = 0; !ret && floor < DOC_MAX_NBFLOORS && + cascade->floors[floor]; floor++) + for (i = 0; !ret && i < 4; i++) + ret = device_create_file(dev, &doc_sys_attrs[floor][i]); + if (!ret) + return 0; + do { + while (--i >= 0) + device_remove_file(dev, &doc_sys_attrs[floor][i]); + i = 4; + } while (--floor >= 0); + return ret; +} + +static void doc_unregister_sysfs(struct platform_device *pdev, + struct docg3_cascade *cascade) +{ + struct device *dev = &pdev->dev; + int floor, i; + + for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor]; + floor++) + for (i = 0; i < 4; i++) + device_remove_file(dev, &doc_sys_attrs[floor][i]); +} + +/* + * Debug sysfs entries + */ +static int dbg_flashctrl_show(struct seq_file *s, void *p) +{ + struct docg3 *docg3 = (struct docg3 *)s->private; + + int pos = 0; + u8 fctrl; + + mutex_lock(&docg3->cascade->lock); + fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); + mutex_unlock(&docg3->cascade->lock); + + pos += seq_printf(s, + "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n", + fctrl, + fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-", + fctrl & DOC_CTRL_CE ? "active" : "inactive", + fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-", + fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-", + fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready"); + return pos; +} +DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show); + +static int dbg_asicmode_show(struct seq_file *s, void *p) +{ + struct docg3 *docg3 = (struct docg3 *)s->private; + + int pos = 0, pctrl, mode; + + mutex_lock(&docg3->cascade->lock); + pctrl = doc_register_readb(docg3, DOC_ASICMODE); + mode = pctrl & 0x03; + mutex_unlock(&docg3->cascade->lock); + + pos += seq_printf(s, + "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (", + pctrl, + pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0, + pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0, + pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0, + pctrl & DOC_ASICMODE_MDWREN ? 1 : 0, + pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0, + mode >> 1, mode & 0x1); + + switch (mode) { + case DOC_ASICMODE_RESET: + pos += seq_printf(s, "reset"); + break; + case DOC_ASICMODE_NORMAL: + pos += seq_printf(s, "normal"); + break; + case DOC_ASICMODE_POWERDOWN: + pos += seq_printf(s, "powerdown"); + break; + } + pos += seq_printf(s, ")\n"); + return pos; +} +DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show); + +static int dbg_device_id_show(struct seq_file *s, void *p) +{ + struct docg3 *docg3 = (struct docg3 *)s->private; + int pos = 0; + int id; + + mutex_lock(&docg3->cascade->lock); + id = doc_register_readb(docg3, DOC_DEVICESELECT); + mutex_unlock(&docg3->cascade->lock); + + pos += seq_printf(s, "DeviceId = %d\n", id); + return pos; +} +DEBUGFS_RO_ATTR(device_id, dbg_device_id_show); + +static int dbg_protection_show(struct seq_file *s, void *p) +{ + struct docg3 *docg3 = (struct docg3 *)s->private; + int pos = 0; + int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high; + + mutex_lock(&docg3->cascade->lock); + protect = doc_register_readb(docg3, DOC_PROTECTION); + dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS); + dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW); + dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH); + dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS); + dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW); + dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH); + mutex_unlock(&docg3->cascade->lock); + + pos += seq_printf(s, "Protection = 0x%02x (", + protect); + if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK) + pos += seq_printf(s, "FOUNDRY_OTP_LOCK,"); + if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK) + pos += seq_printf(s, "CUSTOMER_OTP_LOCK,"); + if (protect & DOC_PROTECT_LOCK_INPUT) + pos += seq_printf(s, "LOCK_INPUT,"); + if (protect & DOC_PROTECT_STICKY_LOCK) + pos += seq_printf(s, "STICKY_LOCK,"); + if (protect & DOC_PROTECT_PROTECTION_ENABLED) + pos += seq_printf(s, "PROTECTION ON,"); + if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK) + pos += seq_printf(s, "IPL_DOWNLOAD_LOCK,"); + if (protect & DOC_PROTECT_PROTECTION_ERROR) + pos += seq_printf(s, "PROTECT_ERR,"); + else + pos += seq_printf(s, "NO_PROTECT_ERR"); + pos += seq_printf(s, ")\n"); + + pos += seq_printf(s, "DPS0 = 0x%02x : " + "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, " + "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", + dps0, dps0_low, dps0_high, + !!(dps0 & DOC_DPS_OTP_PROTECTED), + !!(dps0 & DOC_DPS_READ_PROTECTED), + !!(dps0 & DOC_DPS_WRITE_PROTECTED), + !!(dps0 & DOC_DPS_HW_LOCK_ENABLED), + !!(dps0 & DOC_DPS_KEY_OK)); + pos += seq_printf(s, "DPS1 = 0x%02x : " + "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, " + "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", + dps1, dps1_low, dps1_high, + !!(dps1 & DOC_DPS_OTP_PROTECTED), + !!(dps1 & DOC_DPS_READ_PROTECTED), + !!(dps1 & DOC_DPS_WRITE_PROTECTED), + !!(dps1 & DOC_DPS_HW_LOCK_ENABLED), + !!(dps1 & DOC_DPS_KEY_OK)); + return pos; +} +DEBUGFS_RO_ATTR(protection, dbg_protection_show); + +static int __init doc_dbg_register(struct docg3 *docg3) +{ + struct dentry *root, *entry; + + root = debugfs_create_dir("docg3", NULL); + if (!root) + return -ENOMEM; + + entry = debugfs_create_file("flashcontrol", S_IRUSR, root, docg3, + &flashcontrol_fops); + if (entry) + entry = debugfs_create_file("asic_mode", S_IRUSR, root, + docg3, &asic_mode_fops); + if (entry) + entry = debugfs_create_file("device_id", S_IRUSR, root, + docg3, &device_id_fops); + if (entry) + entry = debugfs_create_file("protection", S_IRUSR, root, + docg3, &protection_fops); + if (entry) { + docg3->debugfs_root = root; + return 0; + } else { + debugfs_remove_recursive(root); + return -ENOMEM; + } +} + +static void __exit doc_dbg_unregister(struct docg3 *docg3) +{ + debugfs_remove_recursive(docg3->debugfs_root); +} + +/** + * doc_set_driver_info - Fill the mtd_info structure and docg3 structure + * @chip_id: The chip ID of the supported chip + * @mtd: The structure to fill + */ +static void __init doc_set_driver_info(int chip_id, struct mtd_info *mtd) +{ + struct docg3 *docg3 = mtd->priv; + int cfg; + + cfg = doc_register_readb(docg3, DOC_CONFIGURATION); + docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0); + docg3->reliable = reliable_mode; + + switch (chip_id) { + case DOC_CHIPID_G3: + mtd->name = kasprintf(GFP_KERNEL, "docg3.%d", + docg3->device_id); + docg3->max_block = 2047; + break; + } + mtd->type = MTD_NANDFLASH; + mtd->flags = MTD_CAP_NANDFLASH; + mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE; + if (docg3->reliable == 2) + mtd->size /= 2; + mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES; + if (docg3->reliable == 2) + mtd->erasesize /= 2; + mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE; + mtd->oobsize = DOC_LAYOUT_OOB_SIZE; + mtd->owner = THIS_MODULE; + mtd->_erase = doc_erase; + mtd->_read = doc_read; + mtd->_write = doc_write; + mtd->_read_oob = doc_read_oob; + mtd->_write_oob = doc_write_oob; + mtd->_block_isbad = doc_block_isbad; + mtd->ecclayout = &docg3_oobinfo; + mtd->ecc_strength = DOC_ECC_BCH_T; +} + +/** + * doc_probe_device - Check if a device is available + * @base: the io space where the device is probed + * @floor: the floor of the probed device + * @dev: the device + * @cascade: the cascade of chips this devices will belong to + * + * Checks whether a device at the specified IO range, and floor is available. + * + * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM + * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is + * launched. + */ +static struct mtd_info * __init +doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev) +{ + int ret, bbt_nbpages; + u16 chip_id, chip_id_inv; + struct docg3 *docg3; + struct mtd_info *mtd; + + ret = -ENOMEM; + docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL); + if (!docg3) + goto nomem1; + mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL); + if (!mtd) + goto nomem2; + mtd->priv = docg3; + bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1, + 8 * DOC_LAYOUT_PAGE_SIZE); + docg3->bbt = kzalloc(bbt_nbpages * DOC_LAYOUT_PAGE_SIZE, GFP_KERNEL); + if (!docg3->bbt) + goto nomem3; + + docg3->dev = dev; + docg3->device_id = floor; + docg3->cascade = cascade; + doc_set_device_id(docg3, docg3->device_id); + if (!floor) + doc_set_asic_mode(docg3, DOC_ASICMODE_RESET); + doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL); + + chip_id = doc_register_readw(docg3, DOC_CHIPID); + chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV); + + ret = 0; + if (chip_id != (u16)(~chip_id_inv)) { + goto nomem3; + } + + switch (chip_id) { + case DOC_CHIPID_G3: + doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n", + docg3->cascade->base, floor); + break; + default: + doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id); + goto nomem3; + } + + doc_set_driver_info(chip_id, mtd); + + doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ); + doc_reload_bbt(docg3); + return mtd; + +nomem3: + kfree(mtd); +nomem2: + kfree(docg3); +nomem1: + return ERR_PTR(ret); +} + +/** + * doc_release_device - Release a docg3 floor + * @mtd: the device + */ +static void doc_release_device(struct mtd_info *mtd) +{ + struct docg3 *docg3 = mtd->priv; + + mtd_device_unregister(mtd); + kfree(docg3->bbt); + kfree(docg3); + kfree(mtd->name); + kfree(mtd); +} + +/** + * docg3_resume - Awakens docg3 floor + * @pdev: platfrom device + * + * Returns 0 (always successful) + */ +static int docg3_resume(struct platform_device *pdev) +{ + int i; + struct docg3_cascade *cascade; + struct mtd_info **docg3_floors, *mtd; + struct docg3 *docg3; + + cascade = platform_get_drvdata(pdev); + docg3_floors = cascade->floors; + mtd = docg3_floors[0]; + docg3 = mtd->priv; + + doc_dbg("docg3_resume()\n"); + for (i = 0; i < 12; i++) + doc_readb(docg3, DOC_IOSPACE_IPL); + return 0; +} + +/** + * docg3_suspend - Put in low power mode the docg3 floor + * @pdev: platform device + * @state: power state + * + * Shuts off most of docg3 circuitery to lower power consumption. + * + * Returns 0 if suspend succeeded, -EIO if chip refused suspend + */ +static int docg3_suspend(struct platform_device *pdev, pm_message_t state) +{ + int floor, i; + struct docg3_cascade *cascade; + struct mtd_info **docg3_floors, *mtd; + struct docg3 *docg3; + u8 ctrl, pwr_down; + + cascade = platform_get_drvdata(pdev); + docg3_floors = cascade->floors; + for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) { + mtd = docg3_floors[floor]; + if (!mtd) + continue; + docg3 = mtd->priv; + + doc_writeb(docg3, floor, DOC_DEVICESELECT); + ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); + ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE; + doc_writeb(docg3, ctrl, DOC_FLASHCONTROL); + + for (i = 0; i < 10; i++) { + usleep_range(3000, 4000); + pwr_down = doc_register_readb(docg3, DOC_POWERMODE); + if (pwr_down & DOC_POWERDOWN_READY) + break; + } + if (pwr_down & DOC_POWERDOWN_READY) { + doc_dbg("docg3_suspend(): floor %d powerdown ok\n", + floor); + } else { + doc_err("docg3_suspend(): floor %d powerdown failed\n", + floor); + return -EIO; + } + } + + mtd = docg3_floors[0]; + docg3 = mtd->priv; + doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN); + return 0; +} + +/** + * doc_probe - Probe the IO space for a DiskOnChip G3 chip + * @pdev: platform device + * + * Probes for a G3 chip at the specified IO space in the platform data + * ressources. The floor 0 must be available. + * + * Returns 0 on success, -ENOMEM, -ENXIO on error + */ +static int __init docg3_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct mtd_info *mtd; + struct resource *ress; + void __iomem *base; + int ret, floor, found = 0; + struct docg3_cascade *cascade; + + ret = -ENXIO; + ress = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!ress) { + dev_err(dev, "No I/O memory resource defined\n"); + return ret; + } + base = devm_ioremap(dev, ress->start, DOC_IOSPACE_SIZE); + + ret = -ENOMEM; + cascade = devm_kzalloc(dev, sizeof(*cascade) * DOC_MAX_NBFLOORS, + GFP_KERNEL); + if (!cascade) + return ret; + cascade->base = base; + mutex_init(&cascade->lock); + cascade->bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T, + DOC_ECC_BCH_PRIMPOLY); + if (!cascade->bch) + return ret; + + for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) { + mtd = doc_probe_device(cascade, floor, dev); + if (IS_ERR(mtd)) { + ret = PTR_ERR(mtd); + goto err_probe; + } + if (!mtd) { + if (floor == 0) + goto notfound; + else + continue; + } + cascade->floors[floor] = mtd; + ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL, + 0); + if (ret) + goto err_probe; + found++; + } + + ret = doc_register_sysfs(pdev, cascade); + if (ret) + goto err_probe; + if (!found) + goto notfound; + + platform_set_drvdata(pdev, cascade); + doc_dbg_register(cascade->floors[0]->priv); + return 0; + +notfound: + ret = -ENODEV; + dev_info(dev, "No supported DiskOnChip found\n"); +err_probe: + free_bch(cascade->bch); + for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) + if (cascade->floors[floor]) + doc_release_device(cascade->floors[floor]); + return ret; +} + +/** + * docg3_release - Release the driver + * @pdev: the platform device + * + * Returns 0 + */ +static int __exit docg3_release(struct platform_device *pdev) +{ + struct docg3_cascade *cascade = platform_get_drvdata(pdev); + struct docg3 *docg3 = cascade->floors[0]->priv; + int floor; + + doc_unregister_sysfs(pdev, cascade); + doc_dbg_unregister(docg3); + for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) + if (cascade->floors[floor]) + doc_release_device(cascade->floors[floor]); + + free_bch(docg3->cascade->bch); + return 0; +} + +static struct platform_driver g3_driver = { + .driver = { + .name = "docg3", + .owner = THIS_MODULE, + }, + .suspend = docg3_suspend, + .resume = docg3_resume, + .remove = __exit_p(docg3_release), +}; + +module_platform_driver_probe(g3_driver, docg3_probe); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>"); +MODULE_DESCRIPTION("MTD driver for DiskOnChip G3"); diff --git a/drivers/mtd/devices/docg3.h b/drivers/mtd/devices/docg3.h new file mode 100644 index 00000000000..19fb93f96a3 --- /dev/null +++ b/drivers/mtd/devices/docg3.h @@ -0,0 +1,370 @@ +/* + * Handles the M-Systems DiskOnChip G3 chip + * + * Copyright (C) 2011 Robert Jarzmik + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + */ + +#ifndef _MTD_DOCG3_H +#define _MTD_DOCG3_H + +#include <linux/mtd/mtd.h> + +/* + * Flash memory areas : + * - 0x0000 .. 0x07ff : IPL + * - 0x0800 .. 0x0fff : Data area + * - 0x1000 .. 0x17ff : Registers + * - 0x1800 .. 0x1fff : Unknown + */ +#define DOC_IOSPACE_IPL 0x0000 +#define DOC_IOSPACE_DATA 0x0800 +#define DOC_IOSPACE_SIZE 0x2000 + +/* + * DOC G3 layout and adressing scheme + * A page address for the block "b", plane "P" and page "p": + * address = [bbbb bPpp pppp] + */ + +#define DOC_ADDR_PAGE_MASK 0x3f +#define DOC_ADDR_BLOCK_SHIFT 6 +#define DOC_LAYOUT_NBPLANES 2 +#define DOC_LAYOUT_PAGES_PER_BLOCK 64 +#define DOC_LAYOUT_PAGE_SIZE 512 +#define DOC_LAYOUT_OOB_SIZE 16 +#define DOC_LAYOUT_WEAR_SIZE 8 +#define DOC_LAYOUT_PAGE_OOB_SIZE \ + (DOC_LAYOUT_PAGE_SIZE + DOC_LAYOUT_OOB_SIZE) +#define DOC_LAYOUT_WEAR_OFFSET (DOC_LAYOUT_PAGE_OOB_SIZE * 2) +#define DOC_LAYOUT_BLOCK_SIZE \ + (DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_PAGE_SIZE) + +/* + * ECC related constants + */ +#define DOC_ECC_BCH_M 14 +#define DOC_ECC_BCH_T 4 +#define DOC_ECC_BCH_PRIMPOLY 0x4443 +#define DOC_ECC_BCH_SIZE 7 +#define DOC_ECC_BCH_COVERED_BYTES \ + (DOC_LAYOUT_PAGE_SIZE + DOC_LAYOUT_OOB_PAGEINFO_SZ + \ + DOC_LAYOUT_OOB_HAMMING_SZ) +#define DOC_ECC_BCH_TOTAL_BYTES \ + (DOC_ECC_BCH_COVERED_BYTES + DOC_LAYOUT_OOB_BCH_SZ) + +/* + * Blocks distribution + */ +#define DOC_LAYOUT_BLOCK_BBT 0 +#define DOC_LAYOUT_BLOCK_OTP 0 +#define DOC_LAYOUT_BLOCK_FIRST_DATA 6 + +#define DOC_LAYOUT_PAGE_BBT 4 + +/* + * Extra page OOB (16 bytes wide) layout + */ +#define DOC_LAYOUT_OOB_PAGEINFO_OFS 0 +#define DOC_LAYOUT_OOB_HAMMING_OFS 7 +#define DOC_LAYOUT_OOB_BCH_OFS 8 +#define DOC_LAYOUT_OOB_UNUSED_OFS 15 +#define DOC_LAYOUT_OOB_PAGEINFO_SZ 7 +#define DOC_LAYOUT_OOB_HAMMING_SZ 1 +#define DOC_LAYOUT_OOB_BCH_SZ 7 +#define DOC_LAYOUT_OOB_UNUSED_SZ 1 + + +#define DOC_CHIPID_G3 0x200 +#define DOC_ERASE_MARK 0xaa +#define DOC_MAX_NBFLOORS 4 +/* + * Flash registers + */ +#define DOC_CHIPID 0x1000 +#define DOC_TEST 0x1004 +#define DOC_BUSLOCK 0x1006 +#define DOC_ENDIANCONTROL 0x1008 +#define DOC_DEVICESELECT 0x100a +#define DOC_ASICMODE 0x100c +#define DOC_CONFIGURATION 0x100e +#define DOC_INTERRUPTCONTROL 0x1010 +#define DOC_READADDRESS 0x101a +#define DOC_DATAEND 0x101e +#define DOC_INTERRUPTSTATUS 0x1020 + +#define DOC_FLASHSEQUENCE 0x1032 +#define DOC_FLASHCOMMAND 0x1034 +#define DOC_FLASHADDRESS 0x1036 +#define DOC_FLASHCONTROL 0x1038 +#define DOC_NOP 0x103e + +#define DOC_ECCCONF0 0x1040 +#define DOC_ECCCONF1 0x1042 +#define DOC_ECCPRESET 0x1044 +#define DOC_HAMMINGPARITY 0x1046 +#define DOC_BCH_HW_ECC(idx) (0x1048 + idx) + +#define DOC_PROTECTION 0x1056 +#define DOC_DPS0_KEY 0x105c +#define DOC_DPS1_KEY 0x105e +#define DOC_DPS0_ADDRLOW 0x1060 +#define DOC_DPS0_ADDRHIGH 0x1062 +#define DOC_DPS1_ADDRLOW 0x1064 +#define DOC_DPS1_ADDRHIGH 0x1066 +#define DOC_DPS0_STATUS 0x106c +#define DOC_DPS1_STATUS 0x106e + +#define DOC_ASICMODECONFIRM 0x1072 +#define DOC_CHIPID_INV 0x1074 +#define DOC_POWERMODE 0x107c + +/* + * Flash sequences + * A sequence is preset before one or more commands are input to the chip. + */ +#define DOC_SEQ_RESET 0x00 +#define DOC_SEQ_PAGE_SIZE_532 0x03 +#define DOC_SEQ_SET_FASTMODE 0x05 +#define DOC_SEQ_SET_RELIABLEMODE 0x09 +#define DOC_SEQ_READ 0x12 +#define DOC_SEQ_SET_PLANE1 0x0e +#define DOC_SEQ_SET_PLANE2 0x10 +#define DOC_SEQ_PAGE_SETUP 0x1d +#define DOC_SEQ_ERASE 0x27 +#define DOC_SEQ_PLANES_STATUS 0x31 + +/* + * Flash commands + */ +#define DOC_CMD_READ_PLANE1 0x00 +#define DOC_CMD_SET_ADDR_READ 0x05 +#define DOC_CMD_READ_ALL_PLANES 0x30 +#define DOC_CMD_READ_PLANE2 0x50 +#define DOC_CMD_READ_FLASH 0xe0 +#define DOC_CMD_PAGE_SIZE_532 0x3c + +#define DOC_CMD_PROG_BLOCK_ADDR 0x60 +#define DOC_CMD_PROG_CYCLE1 0x80 +#define DOC_CMD_PROG_CYCLE2 0x10 +#define DOC_CMD_PROG_CYCLE3 0x11 +#define DOC_CMD_ERASECYCLE2 0xd0 +#define DOC_CMD_READ_STATUS 0x70 +#define DOC_CMD_PLANES_STATUS 0x71 + +#define DOC_CMD_RELIABLE_MODE 0x22 +#define DOC_CMD_FAST_MODE 0xa2 + +#define DOC_CMD_RESET 0xff + +/* + * Flash register : DOC_FLASHCONTROL + */ +#define DOC_CTRL_VIOLATION 0x20 +#define DOC_CTRL_CE 0x10 +#define DOC_CTRL_UNKNOWN_BITS 0x08 +#define DOC_CTRL_PROTECTION_ERROR 0x04 +#define DOC_CTRL_SEQUENCE_ERROR 0x02 +#define DOC_CTRL_FLASHREADY 0x01 + +/* + * Flash register : DOC_ASICMODE + */ +#define DOC_ASICMODE_RESET 0x00 +#define DOC_ASICMODE_NORMAL 0x01 +#define DOC_ASICMODE_POWERDOWN 0x02 +#define DOC_ASICMODE_MDWREN 0x04 +#define DOC_ASICMODE_BDETCT_RESET 0x08 +#define DOC_ASICMODE_RSTIN_RESET 0x10 +#define DOC_ASICMODE_RAM_WE 0x20 + +/* + * Flash register : DOC_ECCCONF0 + */ +#define DOC_ECCCONF0_WRITE_MODE 0x0000 +#define DOC_ECCCONF0_READ_MODE 0x8000 +#define DOC_ECCCONF0_AUTO_ECC_ENABLE 0x4000 +#define DOC_ECCCONF0_HAMMING_ENABLE 0x1000 +#define DOC_ECCCONF0_BCH_ENABLE 0x0800 +#define DOC_ECCCONF0_DATA_BYTES_MASK 0x07ff + +/* + * Flash register : DOC_ECCCONF1 + */ +#define DOC_ECCCONF1_BCH_SYNDROM_ERR 0x80 +#define DOC_ECCCONF1_UNKOWN1 0x40 +#define DOC_ECCCONF1_PAGE_IS_WRITTEN 0x20 +#define DOC_ECCCONF1_UNKOWN3 0x10 +#define DOC_ECCCONF1_HAMMING_BITS_MASK 0x0f + +/* + * Flash register : DOC_PROTECTION + */ +#define DOC_PROTECT_FOUNDRY_OTP_LOCK 0x01 +#define DOC_PROTECT_CUSTOMER_OTP_LOCK 0x02 +#define DOC_PROTECT_LOCK_INPUT 0x04 +#define DOC_PROTECT_STICKY_LOCK 0x08 +#define DOC_PROTECT_PROTECTION_ENABLED 0x10 +#define DOC_PROTECT_IPL_DOWNLOAD_LOCK 0x20 +#define DOC_PROTECT_PROTECTION_ERROR 0x80 + +/* + * Flash register : DOC_DPS0_STATUS and DOC_DPS1_STATUS + */ +#define DOC_DPS_OTP_PROTECTED 0x01 +#define DOC_DPS_READ_PROTECTED 0x02 +#define DOC_DPS_WRITE_PROTECTED 0x04 +#define DOC_DPS_HW_LOCK_ENABLED 0x08 +#define DOC_DPS_KEY_OK 0x80 + +/* + * Flash register : DOC_CONFIGURATION + */ +#define DOC_CONF_IF_CFG 0x80 +#define DOC_CONF_MAX_ID_MASK 0x30 +#define DOC_CONF_VCCQ_3V 0x01 + +/* + * Flash register : DOC_READADDRESS + */ +#define DOC_READADDR_INC 0x8000 +#define DOC_READADDR_ONE_BYTE 0x4000 +#define DOC_READADDR_ADDR_MASK 0x1fff + +/* + * Flash register : DOC_POWERMODE + */ +#define DOC_POWERDOWN_READY 0x80 + +/* + * Status of erase and write operation + */ +#define DOC_PLANES_STATUS_FAIL 0x01 +#define DOC_PLANES_STATUS_PLANE0_KO 0x02 +#define DOC_PLANES_STATUS_PLANE1_KO 0x04 + +/* + * DPS key management + * + * Each floor of docg3 has 2 protection areas: DPS0 and DPS1. These areas span + * across block boundaries, and define whether these blocks can be read or + * written. + * The definition is dynamically stored in page 0 of blocks (2,3) for DPS0, and + * page 0 of blocks (4,5) for DPS1. + */ +#define DOC_LAYOUT_DPS_KEY_LENGTH 8 + +/** + * struct docg3_cascade - Cascade of 1 to 4 docg3 chips + * @floors: floors (ie. one physical docg3 chip is one floor) + * @base: IO space to access all chips in the cascade + * @bch: the BCH correcting control structure + * @lock: lock to protect docg3 IO space from concurrent accesses + */ +struct docg3_cascade { + struct mtd_info *floors[DOC_MAX_NBFLOORS]; + void __iomem *base; + struct bch_control *bch; + struct mutex lock; +}; + +/** + * struct docg3 - DiskOnChip driver private data + * @dev: the device currently under control + * @cascade: the cascade this device belongs to + * @device_id: number of the cascaded DoCG3 device (0, 1, 2 or 3) + * @if_cfg: if true, reads are on 16bits, else reads are on 8bits + + * @reliable: if 0, docg3 in normal mode, if 1 docg3 in fast mode, if 2 in + * reliable mode + * Fast mode implies more errors than normal mode. + * Reliable mode implies that page 2*n and 2*n+1 are clones. + * @bbt: bad block table cache + * @oob_write_ofs: offset of the MTD where this OOB should belong (ie. in next + * page_write) + * @oob_autoecc: if 1, use only bytes 0-7, 15, and fill the others with HW ECC + * if 0, use all the 16 bytes. + * @oob_write_buf: prepared OOB for next page_write + * @debugfs_root: debugfs root node + */ +struct docg3 { + struct device *dev; + struct docg3_cascade *cascade; + unsigned int device_id:4; + unsigned int if_cfg:1; + unsigned int reliable:2; + int max_block; + u8 *bbt; + loff_t oob_write_ofs; + int oob_autoecc; + u8 oob_write_buf[DOC_LAYOUT_OOB_SIZE]; + struct dentry *debugfs_root; +}; + +#define doc_err(fmt, arg...) dev_err(docg3->dev, (fmt), ## arg) +#define doc_info(fmt, arg...) dev_info(docg3->dev, (fmt), ## arg) +#define doc_dbg(fmt, arg...) dev_dbg(docg3->dev, (fmt), ## arg) +#define doc_vdbg(fmt, arg...) dev_vdbg(docg3->dev, (fmt), ## arg) + +#define DEBUGFS_RO_ATTR(name, show_fct) \ + static int name##_open(struct inode *inode, struct file *file) \ + { return single_open(file, show_fct, inode->i_private); } \ + static const struct file_operations name##_fops = { \ + .owner = THIS_MODULE, \ + .open = name##_open, \ + .llseek = seq_lseek, \ + .read = seq_read, \ + .release = single_release \ + }; +#endif + +/* + * Trace events part + */ +#undef TRACE_SYSTEM +#define TRACE_SYSTEM docg3 + +#if !defined(_MTD_DOCG3_TRACE) || defined(TRACE_HEADER_MULTI_READ) +#define _MTD_DOCG3_TRACE + +#include <linux/tracepoint.h> + +TRACE_EVENT(docg3_io, + TP_PROTO(int op, int width, u16 reg, int val), + TP_ARGS(op, width, reg, val), + TP_STRUCT__entry( + __field(int, op) + __field(unsigned char, width) + __field(u16, reg) + __field(int, val)), + TP_fast_assign( + __entry->op = op; + __entry->width = width; + __entry->reg = reg; + __entry->val = val;), + TP_printk("docg3: %s%02d reg=%04x, val=%04x", + __entry->op ? "write" : "read", __entry->width, + __entry->reg, __entry->val) + ); +#endif + +/* This part must be outside protection */ +#undef TRACE_INCLUDE_PATH +#undef TRACE_INCLUDE_FILE +#define TRACE_INCLUDE_PATH . +#define TRACE_INCLUDE_FILE docg3 +#include <trace/define_trace.h> diff --git a/drivers/mtd/devices/docprobe.c b/drivers/mtd/devices/docprobe.c deleted file mode 100644 index 6e62922942b..00000000000 --- a/drivers/mtd/devices/docprobe.c +++ /dev/null @@ -1,338 +0,0 @@ - -/* Linux driver for Disk-On-Chip devices */ -/* Probe routines common to all DoC devices */ -/* (C) 1999 Machine Vision Holdings, Inc. */ -/* (C) 1999-2003 David Woodhouse <dwmw2@infradead.org> */ - - -/* DOC_PASSIVE_PROBE: - In order to ensure that the BIOS checksum is correct at boot time, and - hence that the onboard BIOS extension gets executed, the DiskOnChip - goes into reset mode when it is read sequentially: all registers - return 0xff until the chip is woken up again by writing to the - DOCControl register. - - Unfortunately, this means that the probe for the DiskOnChip is unsafe, - because one of the first things it does is write to where it thinks - the DOCControl register should be - which may well be shared memory - for another device. I've had machines which lock up when this is - attempted. Hence the possibility to do a passive probe, which will fail - to detect a chip in reset mode, but is at least guaranteed not to lock - the machine. - - If you have this problem, uncomment the following line: -#define DOC_PASSIVE_PROBE -*/ - - -/* DOC_SINGLE_DRIVER: - Millennium driver has been merged into DOC2000 driver. - - The old Millennium-only driver has been retained just in case there - are problems with the new code. If the combined driver doesn't work - for you, you can try the old one by undefining DOC_SINGLE_DRIVER - below and also enabling it in your configuration. If this fixes the - problems, please send a report to the MTD mailing list at - <linux-mtd@lists.infradead.org>. -*/ -#define DOC_SINGLE_DRIVER - -#include <linux/kernel.h> -#include <linux/module.h> -#include <asm/errno.h> -#include <asm/io.h> -#include <linux/delay.h> -#include <linux/slab.h> -#include <linux/init.h> -#include <linux/types.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/doc2000.h> -#include <linux/mtd/compatmac.h> - -/* Where to look for the devices? */ -#ifndef CONFIG_MTD_DOCPROBE_ADDRESS -#define CONFIG_MTD_DOCPROBE_ADDRESS 0 -#endif - - -static unsigned long doc_config_location = CONFIG_MTD_DOCPROBE_ADDRESS; -module_param(doc_config_location, ulong, 0); -MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip"); - -static unsigned long __initdata doc_locations[] = { -#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__) -#ifdef CONFIG_MTD_DOCPROBE_HIGH - 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, - 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000, - 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, - 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, - 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000, -#else /* CONFIG_MTD_DOCPROBE_HIGH */ - 0xc8000, 0xca000, 0xcc000, 0xce000, - 0xd0000, 0xd2000, 0xd4000, 0xd6000, - 0xd8000, 0xda000, 0xdc000, 0xde000, - 0xe0000, 0xe2000, 0xe4000, 0xe6000, - 0xe8000, 0xea000, 0xec000, 0xee000, -#endif /* CONFIG_MTD_DOCPROBE_HIGH */ -#else -#warning Unknown architecture for DiskOnChip. No default probe locations defined -#endif - 0xffffffff }; - -/* doccheck: Probe a given memory window to see if there's a DiskOnChip present */ - -static inline int __init doccheck(void __iomem *potential, unsigned long physadr) -{ - void __iomem *window=potential; - unsigned char tmp, tmpb, tmpc, ChipID; -#ifndef DOC_PASSIVE_PROBE - unsigned char tmp2; -#endif - - /* Routine copied from the Linux DOC driver */ - -#ifdef CONFIG_MTD_DOCPROBE_55AA - /* Check for 0x55 0xAA signature at beginning of window, - this is no longer true once we remove the IPL (for Millennium */ - if (ReadDOC(window, Sig1) != 0x55 || ReadDOC(window, Sig2) != 0xaa) - return 0; -#endif /* CONFIG_MTD_DOCPROBE_55AA */ - -#ifndef DOC_PASSIVE_PROBE - /* It's not possible to cleanly detect the DiskOnChip - the - * bootup procedure will put the device into reset mode, and - * it's not possible to talk to it without actually writing - * to the DOCControl register. So we store the current contents - * of the DOCControl register's location, in case we later decide - * that it's not a DiskOnChip, and want to put it back how we - * found it. - */ - tmp2 = ReadDOC(window, DOCControl); - - /* Reset the DiskOnChip ASIC */ - WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, - window, DOCControl); - WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, - window, DOCControl); - - /* Enable the DiskOnChip ASIC */ - WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, - window, DOCControl); - WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, - window, DOCControl); -#endif /* !DOC_PASSIVE_PROBE */ - - /* We need to read the ChipID register four times. For some - newer DiskOnChip 2000 units, the first three reads will - return the DiskOnChip Millennium ident. Don't ask. */ - ChipID = ReadDOC(window, ChipID); - - switch (ChipID) { - case DOC_ChipID_Doc2k: - /* Check the TOGGLE bit in the ECC register */ - tmp = ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT; - tmpb = ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT; - tmpc = ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT; - if (tmp != tmpb && tmp == tmpc) - return ChipID; - break; - - case DOC_ChipID_DocMil: - /* Check for the new 2000 with Millennium ASIC */ - ReadDOC(window, ChipID); - ReadDOC(window, ChipID); - if (ReadDOC(window, ChipID) != DOC_ChipID_DocMil) - ChipID = DOC_ChipID_Doc2kTSOP; - - /* Check the TOGGLE bit in the ECC register */ - tmp = ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT; - tmpb = ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT; - tmpc = ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT; - if (tmp != tmpb && tmp == tmpc) - return ChipID; - break; - - case DOC_ChipID_DocMilPlus16: - case DOC_ChipID_DocMilPlus32: - case 0: - /* Possible Millennium+, need to do more checks */ -#ifndef DOC_PASSIVE_PROBE - /* Possibly release from power down mode */ - for (tmp = 0; (tmp < 4); tmp++) - ReadDOC(window, Mplus_Power); - - /* Reset the DiskOnChip ASIC */ - tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | - DOC_MODE_BDECT; - WriteDOC(tmp, window, Mplus_DOCControl); - WriteDOC(~tmp, window, Mplus_CtrlConfirm); - - mdelay(1); - /* Enable the DiskOnChip ASIC */ - tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | - DOC_MODE_BDECT; - WriteDOC(tmp, window, Mplus_DOCControl); - WriteDOC(~tmp, window, Mplus_CtrlConfirm); - mdelay(1); -#endif /* !DOC_PASSIVE_PROBE */ - - ChipID = ReadDOC(window, ChipID); - - switch (ChipID) { - case DOC_ChipID_DocMilPlus16: - case DOC_ChipID_DocMilPlus32: - /* Check the TOGGLE bit in the toggle register */ - tmp = ReadDOC(window, Mplus_Toggle) & DOC_TOGGLE_BIT; - tmpb = ReadDOC(window, Mplus_Toggle) & DOC_TOGGLE_BIT; - tmpc = ReadDOC(window, Mplus_Toggle) & DOC_TOGGLE_BIT; - if (tmp != tmpb && tmp == tmpc) - return ChipID; - default: - break; - } - /* FALL TRHU */ - - default: - -#ifdef CONFIG_MTD_DOCPROBE_55AA - printk(KERN_DEBUG "Possible DiskOnChip with unknown ChipID %2.2X found at 0x%lx\n", - ChipID, physadr); -#endif -#ifndef DOC_PASSIVE_PROBE - /* Put back the contents of the DOCControl register, in case it's not - * actually a DiskOnChip. - */ - WriteDOC(tmp2, window, DOCControl); -#endif - return 0; - } - - printk(KERN_WARNING "DiskOnChip failed TOGGLE test, dropping.\n"); - -#ifndef DOC_PASSIVE_PROBE - /* Put back the contents of the DOCControl register: it's not a DiskOnChip */ - WriteDOC(tmp2, window, DOCControl); -#endif - return 0; -} - -static int docfound; - -extern void DoC2k_init(struct mtd_info *); -extern void DoCMil_init(struct mtd_info *); -extern void DoCMilPlus_init(struct mtd_info *); - -static void __init DoC_Probe(unsigned long physadr) -{ - void __iomem *docptr; - struct DiskOnChip *this; - struct mtd_info *mtd; - int ChipID; - char namebuf[15]; - char *name = namebuf; - void (*initroutine)(struct mtd_info *) = NULL; - - docptr = ioremap(physadr, DOC_IOREMAP_LEN); - - if (!docptr) - return; - - if ((ChipID = doccheck(docptr, physadr))) { - if (ChipID == DOC_ChipID_Doc2kTSOP) { - /* Remove this at your own peril. The hardware driver works but nothing prevents you from erasing bad blocks */ - printk(KERN_NOTICE "Refusing to drive DiskOnChip 2000 TSOP until Bad Block Table is correctly supported by INFTL\n"); - iounmap(docptr); - return; - } - docfound = 1; - mtd = kmalloc(sizeof(struct DiskOnChip) + sizeof(struct mtd_info), GFP_KERNEL); - - if (!mtd) { - printk(KERN_WARNING "Cannot allocate memory for data structures. Dropping.\n"); - iounmap(docptr); - return; - } - - this = (struct DiskOnChip *)(&mtd[1]); - - memset((char *)mtd,0, sizeof(struct mtd_info)); - memset((char *)this, 0, sizeof(struct DiskOnChip)); - - mtd->priv = this; - this->virtadr = docptr; - this->physadr = physadr; - this->ChipID = ChipID; - sprintf(namebuf, "with ChipID %2.2X", ChipID); - - switch(ChipID) { - case DOC_ChipID_Doc2kTSOP: - name="2000 TSOP"; - initroutine = symbol_request(DoC2k_init); - break; - - case DOC_ChipID_Doc2k: - name="2000"; - initroutine = symbol_request(DoC2k_init); - break; - - case DOC_ChipID_DocMil: - name="Millennium"; -#ifdef DOC_SINGLE_DRIVER - initroutine = symbol_request(DoC2k_init); -#else - initroutine = symbol_request(DoCMil_init); -#endif /* DOC_SINGLE_DRIVER */ - break; - - case DOC_ChipID_DocMilPlus16: - case DOC_ChipID_DocMilPlus32: - name="MillenniumPlus"; - initroutine = symbol_request(DoCMilPlus_init); - break; - } - - if (initroutine) { - (*initroutine)(mtd); - symbol_put_addr(initroutine); - return; - } - printk(KERN_NOTICE "Cannot find driver for DiskOnChip %s at 0x%lX\n", name, physadr); - kfree(mtd); - } - iounmap(docptr); -} - - -/**************************************************************************** - * - * Module stuff - * - ****************************************************************************/ - -static int __init init_doc(void) -{ - int i; - - if (doc_config_location) { - printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location); - DoC_Probe(doc_config_location); - } else { - for (i=0; (doc_locations[i] != 0xffffffff); i++) { - DoC_Probe(doc_locations[i]); - } - } - /* No banner message any more. Print a message if no DiskOnChip - found, so the user knows we at least tried. */ - if (!docfound) - printk(KERN_INFO "No recognised DiskOnChip devices found\n"); - return -EAGAIN; -} - -module_init(init_doc); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); -MODULE_DESCRIPTION("Probe code for DiskOnChip 2000 and Millennium devices"); - diff --git a/drivers/mtd/devices/elm.c b/drivers/mtd/devices/elm.c new file mode 100644 index 00000000000..b4f61c7fc16 --- /dev/null +++ b/drivers/mtd/devices/elm.c @@ -0,0 +1,579 @@ +/* + * Error Location Module + * + * Copyright (C) 2012 Texas Instruments Incorporated - http://www.ti.com/ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + */ + +#define DRIVER_NAME "omap-elm" + +#include <linux/platform_device.h> +#include <linux/module.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/of.h> +#include <linux/sched.h> +#include <linux/pm_runtime.h> +#include <linux/platform_data/elm.h> + +#define ELM_SYSCONFIG 0x010 +#define ELM_IRQSTATUS 0x018 +#define ELM_IRQENABLE 0x01c +#define ELM_LOCATION_CONFIG 0x020 +#define ELM_PAGE_CTRL 0x080 +#define ELM_SYNDROME_FRAGMENT_0 0x400 +#define ELM_SYNDROME_FRAGMENT_1 0x404 +#define ELM_SYNDROME_FRAGMENT_2 0x408 +#define ELM_SYNDROME_FRAGMENT_3 0x40c +#define ELM_SYNDROME_FRAGMENT_4 0x410 +#define ELM_SYNDROME_FRAGMENT_5 0x414 +#define ELM_SYNDROME_FRAGMENT_6 0x418 +#define ELM_LOCATION_STATUS 0x800 +#define ELM_ERROR_LOCATION_0 0x880 + +/* ELM Interrupt Status Register */ +#define INTR_STATUS_PAGE_VALID BIT(8) + +/* ELM Interrupt Enable Register */ +#define INTR_EN_PAGE_MASK BIT(8) + +/* ELM Location Configuration Register */ +#define ECC_BCH_LEVEL_MASK 0x3 + +/* ELM syndrome */ +#define ELM_SYNDROME_VALID BIT(16) + +/* ELM_LOCATION_STATUS Register */ +#define ECC_CORRECTABLE_MASK BIT(8) +#define ECC_NB_ERRORS_MASK 0x1f + +/* ELM_ERROR_LOCATION_0-15 Registers */ +#define ECC_ERROR_LOCATION_MASK 0x1fff + +#define ELM_ECC_SIZE 0x7ff + +#define SYNDROME_FRAGMENT_REG_SIZE 0x40 +#define ERROR_LOCATION_SIZE 0x100 + +struct elm_registers { + u32 elm_irqenable; + u32 elm_sysconfig; + u32 elm_location_config; + u32 elm_page_ctrl; + u32 elm_syndrome_fragment_6[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_5[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_4[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_3[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_2[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_1[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_0[ERROR_VECTOR_MAX]; +}; + +struct elm_info { + struct device *dev; + void __iomem *elm_base; + struct completion elm_completion; + struct list_head list; + enum bch_ecc bch_type; + struct elm_registers elm_regs; + int ecc_steps; + int ecc_syndrome_size; +}; + +static LIST_HEAD(elm_devices); + +static void elm_write_reg(struct elm_info *info, int offset, u32 val) +{ + writel(val, info->elm_base + offset); +} + +static u32 elm_read_reg(struct elm_info *info, int offset) +{ + return readl(info->elm_base + offset); +} + +/** + * elm_config - Configure ELM module + * @dev: ELM device + * @bch_type: Type of BCH ecc + */ +int elm_config(struct device *dev, enum bch_ecc bch_type, + int ecc_steps, int ecc_step_size, int ecc_syndrome_size) +{ + u32 reg_val; + struct elm_info *info = dev_get_drvdata(dev); + + if (!info) { + dev_err(dev, "Unable to configure elm - device not probed?\n"); + return -ENODEV; + } + /* ELM cannot detect ECC errors for chunks > 1KB */ + if (ecc_step_size > ((ELM_ECC_SIZE + 1) / 2)) { + dev_err(dev, "unsupported config ecc-size=%d\n", ecc_step_size); + return -EINVAL; + } + /* ELM support 8 error syndrome process */ + if (ecc_steps > ERROR_VECTOR_MAX) { + dev_err(dev, "unsupported config ecc-step=%d\n", ecc_steps); + return -EINVAL; + } + + reg_val = (bch_type & ECC_BCH_LEVEL_MASK) | (ELM_ECC_SIZE << 16); + elm_write_reg(info, ELM_LOCATION_CONFIG, reg_val); + info->bch_type = bch_type; + info->ecc_steps = ecc_steps; + info->ecc_syndrome_size = ecc_syndrome_size; + + return 0; +} +EXPORT_SYMBOL(elm_config); + +/** + * elm_configure_page_mode - Enable/Disable page mode + * @info: elm info + * @index: index number of syndrome fragment vector + * @enable: enable/disable flag for page mode + * + * Enable page mode for syndrome fragment index + */ +static void elm_configure_page_mode(struct elm_info *info, int index, + bool enable) +{ + u32 reg_val; + + reg_val = elm_read_reg(info, ELM_PAGE_CTRL); + if (enable) + reg_val |= BIT(index); /* enable page mode */ + else + reg_val &= ~BIT(index); /* disable page mode */ + + elm_write_reg(info, ELM_PAGE_CTRL, reg_val); +} + +/** + * elm_load_syndrome - Load ELM syndrome reg + * @info: elm info + * @err_vec: elm error vectors + * @ecc: buffer with calculated ecc + * + * Load syndrome fragment registers with calculated ecc in reverse order. + */ +static void elm_load_syndrome(struct elm_info *info, + struct elm_errorvec *err_vec, u8 *ecc) +{ + int i, offset; + u32 val; + + for (i = 0; i < info->ecc_steps; i++) { + + /* Check error reported */ + if (err_vec[i].error_reported) { + elm_configure_page_mode(info, i, true); + offset = ELM_SYNDROME_FRAGMENT_0 + + SYNDROME_FRAGMENT_REG_SIZE * i; + switch (info->bch_type) { + case BCH8_ECC: + /* syndrome fragment 0 = ecc[9-12B] */ + val = cpu_to_be32(*(u32 *) &ecc[9]); + elm_write_reg(info, offset, val); + + /* syndrome fragment 1 = ecc[5-8B] */ + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[5]); + elm_write_reg(info, offset, val); + + /* syndrome fragment 2 = ecc[1-4B] */ + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[1]); + elm_write_reg(info, offset, val); + + /* syndrome fragment 3 = ecc[0B] */ + offset += 4; + val = ecc[0]; + elm_write_reg(info, offset, val); + break; + case BCH4_ECC: + /* syndrome fragment 0 = ecc[20-52b] bits */ + val = (cpu_to_be32(*(u32 *) &ecc[3]) >> 4) | + ((ecc[2] & 0xf) << 28); + elm_write_reg(info, offset, val); + + /* syndrome fragment 1 = ecc[0-20b] bits */ + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[0]) >> 12; + elm_write_reg(info, offset, val); + break; + case BCH16_ECC: + val = cpu_to_be32(*(u32 *) &ecc[22]); + elm_write_reg(info, offset, val); + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[18]); + elm_write_reg(info, offset, val); + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[14]); + elm_write_reg(info, offset, val); + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[10]); + elm_write_reg(info, offset, val); + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[6]); + elm_write_reg(info, offset, val); + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[2]); + elm_write_reg(info, offset, val); + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[0]) >> 16; + elm_write_reg(info, offset, val); + break; + default: + pr_err("invalid config bch_type\n"); + } + } + + /* Update ecc pointer with ecc byte size */ + ecc += info->ecc_syndrome_size; + } +} + +/** + * elm_start_processing - start elm syndrome processing + * @info: elm info + * @err_vec: elm error vectors + * + * Set syndrome valid bit for syndrome fragment registers for which + * elm syndrome fragment registers are loaded. This enables elm module + * to start processing syndrome vectors. + */ +static void elm_start_processing(struct elm_info *info, + struct elm_errorvec *err_vec) +{ + int i, offset; + u32 reg_val; + + /* + * Set syndrome vector valid, so that ELM module + * will process it for vectors error is reported + */ + for (i = 0; i < info->ecc_steps; i++) { + if (err_vec[i].error_reported) { + offset = ELM_SYNDROME_FRAGMENT_6 + + SYNDROME_FRAGMENT_REG_SIZE * i; + reg_val = elm_read_reg(info, offset); + reg_val |= ELM_SYNDROME_VALID; + elm_write_reg(info, offset, reg_val); + } + } +} + +/** + * elm_error_correction - locate correctable error position + * @info: elm info + * @err_vec: elm error vectors + * + * On completion of processing by elm module, error location status + * register updated with correctable/uncorrectable error information. + * In case of correctable errors, number of errors located from + * elm location status register & read the positions from + * elm error location register. + */ +static void elm_error_correction(struct elm_info *info, + struct elm_errorvec *err_vec) +{ + int i, j, errors = 0; + int offset; + u32 reg_val; + + for (i = 0; i < info->ecc_steps; i++) { + + /* Check error reported */ + if (err_vec[i].error_reported) { + offset = ELM_LOCATION_STATUS + ERROR_LOCATION_SIZE * i; + reg_val = elm_read_reg(info, offset); + + /* Check correctable error or not */ + if (reg_val & ECC_CORRECTABLE_MASK) { + offset = ELM_ERROR_LOCATION_0 + + ERROR_LOCATION_SIZE * i; + + /* Read count of correctable errors */ + err_vec[i].error_count = reg_val & + ECC_NB_ERRORS_MASK; + + /* Update the error locations in error vector */ + for (j = 0; j < err_vec[i].error_count; j++) { + + reg_val = elm_read_reg(info, offset); + err_vec[i].error_loc[j] = reg_val & + ECC_ERROR_LOCATION_MASK; + + /* Update error location register */ + offset += 4; + } + + errors += err_vec[i].error_count; + } else { + err_vec[i].error_uncorrectable = true; + } + + /* Clearing interrupts for processed error vectors */ + elm_write_reg(info, ELM_IRQSTATUS, BIT(i)); + + /* Disable page mode */ + elm_configure_page_mode(info, i, false); + } + } +} + +/** + * elm_decode_bch_error_page - Locate error position + * @dev: device pointer + * @ecc_calc: calculated ECC bytes from GPMC + * @err_vec: elm error vectors + * + * Called with one or more error reported vectors & vectors with + * error reported is updated in err_vec[].error_reported + */ +void elm_decode_bch_error_page(struct device *dev, u8 *ecc_calc, + struct elm_errorvec *err_vec) +{ + struct elm_info *info = dev_get_drvdata(dev); + u32 reg_val; + + /* Enable page mode interrupt */ + reg_val = elm_read_reg(info, ELM_IRQSTATUS); + elm_write_reg(info, ELM_IRQSTATUS, reg_val & INTR_STATUS_PAGE_VALID); + elm_write_reg(info, ELM_IRQENABLE, INTR_EN_PAGE_MASK); + + /* Load valid ecc byte to syndrome fragment register */ + elm_load_syndrome(info, err_vec, ecc_calc); + + /* Enable syndrome processing for which syndrome fragment is updated */ + elm_start_processing(info, err_vec); + + /* Wait for ELM module to finish locating error correction */ + wait_for_completion(&info->elm_completion); + + /* Disable page mode interrupt */ + reg_val = elm_read_reg(info, ELM_IRQENABLE); + elm_write_reg(info, ELM_IRQENABLE, reg_val & ~INTR_EN_PAGE_MASK); + elm_error_correction(info, err_vec); +} +EXPORT_SYMBOL(elm_decode_bch_error_page); + +static irqreturn_t elm_isr(int this_irq, void *dev_id) +{ + u32 reg_val; + struct elm_info *info = dev_id; + + reg_val = elm_read_reg(info, ELM_IRQSTATUS); + + /* All error vectors processed */ + if (reg_val & INTR_STATUS_PAGE_VALID) { + elm_write_reg(info, ELM_IRQSTATUS, + reg_val & INTR_STATUS_PAGE_VALID); + complete(&info->elm_completion); + return IRQ_HANDLED; + } + + return IRQ_NONE; +} + +static int elm_probe(struct platform_device *pdev) +{ + int ret = 0; + struct resource *res, *irq; + struct elm_info *info; + + info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); + if (!info) + return -ENOMEM; + + info->dev = &pdev->dev; + + irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); + if (!irq) { + dev_err(&pdev->dev, "no irq resource defined\n"); + return -ENODEV; + } + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + info->elm_base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(info->elm_base)) + return PTR_ERR(info->elm_base); + + ret = devm_request_irq(&pdev->dev, irq->start, elm_isr, 0, + pdev->name, info); + if (ret) { + dev_err(&pdev->dev, "failure requesting irq %i\n", irq->start); + return ret; + } + + pm_runtime_enable(&pdev->dev); + if (pm_runtime_get_sync(&pdev->dev) < 0) { + ret = -EINVAL; + pm_runtime_disable(&pdev->dev); + dev_err(&pdev->dev, "can't enable clock\n"); + return ret; + } + + init_completion(&info->elm_completion); + INIT_LIST_HEAD(&info->list); + list_add(&info->list, &elm_devices); + platform_set_drvdata(pdev, info); + return ret; +} + +static int elm_remove(struct platform_device *pdev) +{ + pm_runtime_put_sync(&pdev->dev); + pm_runtime_disable(&pdev->dev); + return 0; +} + +#ifdef CONFIG_PM_SLEEP +/** + * elm_context_save + * saves ELM configurations to preserve them across Hardware powered-down + */ +static int elm_context_save(struct elm_info *info) +{ + struct elm_registers *regs = &info->elm_regs; + enum bch_ecc bch_type = info->bch_type; + u32 offset = 0, i; + + regs->elm_irqenable = elm_read_reg(info, ELM_IRQENABLE); + regs->elm_sysconfig = elm_read_reg(info, ELM_SYSCONFIG); + regs->elm_location_config = elm_read_reg(info, ELM_LOCATION_CONFIG); + regs->elm_page_ctrl = elm_read_reg(info, ELM_PAGE_CTRL); + for (i = 0; i < ERROR_VECTOR_MAX; i++) { + offset = i * SYNDROME_FRAGMENT_REG_SIZE; + switch (bch_type) { + case BCH16_ECC: + regs->elm_syndrome_fragment_6[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_6 + offset); + regs->elm_syndrome_fragment_5[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_5 + offset); + regs->elm_syndrome_fragment_4[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_4 + offset); + case BCH8_ECC: + regs->elm_syndrome_fragment_3[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_3 + offset); + regs->elm_syndrome_fragment_2[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_2 + offset); + case BCH4_ECC: + regs->elm_syndrome_fragment_1[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_1 + offset); + regs->elm_syndrome_fragment_0[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_0 + offset); + break; + default: + return -EINVAL; + } + /* ELM SYNDROME_VALID bit in SYNDROME_FRAGMENT_6[] needs + * to be saved for all BCH schemes*/ + regs->elm_syndrome_fragment_6[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_6 + offset); + } + return 0; +} + +/** + * elm_context_restore + * writes configurations saved duing power-down back into ELM registers + */ +static int elm_context_restore(struct elm_info *info) +{ + struct elm_registers *regs = &info->elm_regs; + enum bch_ecc bch_type = info->bch_type; + u32 offset = 0, i; + + elm_write_reg(info, ELM_IRQENABLE, regs->elm_irqenable); + elm_write_reg(info, ELM_SYSCONFIG, regs->elm_sysconfig); + elm_write_reg(info, ELM_LOCATION_CONFIG, regs->elm_location_config); + elm_write_reg(info, ELM_PAGE_CTRL, regs->elm_page_ctrl); + for (i = 0; i < ERROR_VECTOR_MAX; i++) { + offset = i * SYNDROME_FRAGMENT_REG_SIZE; + switch (bch_type) { + case BCH16_ECC: + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_6 + offset, + regs->elm_syndrome_fragment_6[i]); + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_5 + offset, + regs->elm_syndrome_fragment_5[i]); + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_4 + offset, + regs->elm_syndrome_fragment_4[i]); + case BCH8_ECC: + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_3 + offset, + regs->elm_syndrome_fragment_3[i]); + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_2 + offset, + regs->elm_syndrome_fragment_2[i]); + case BCH4_ECC: + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_1 + offset, + regs->elm_syndrome_fragment_1[i]); + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_0 + offset, + regs->elm_syndrome_fragment_0[i]); + break; + default: + return -EINVAL; + } + /* ELM_SYNDROME_VALID bit to be set in last to trigger FSM */ + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_6 + offset, + regs->elm_syndrome_fragment_6[i] & + ELM_SYNDROME_VALID); + } + return 0; +} + +static int elm_suspend(struct device *dev) +{ + struct elm_info *info = dev_get_drvdata(dev); + elm_context_save(info); + pm_runtime_put_sync(dev); + return 0; +} + +static int elm_resume(struct device *dev) +{ + struct elm_info *info = dev_get_drvdata(dev); + pm_runtime_get_sync(dev); + elm_context_restore(info); + return 0; +} +#endif + +static SIMPLE_DEV_PM_OPS(elm_pm_ops, elm_suspend, elm_resume); + +#ifdef CONFIG_OF +static const struct of_device_id elm_of_match[] = { + { .compatible = "ti,am3352-elm" }, + {}, +}; +MODULE_DEVICE_TABLE(of, elm_of_match); +#endif + +static struct platform_driver elm_driver = { + .driver = { + .name = DRIVER_NAME, + .owner = THIS_MODULE, + .of_match_table = of_match_ptr(elm_of_match), + .pm = &elm_pm_ops, + }, + .probe = elm_probe, + .remove = elm_remove, +}; + +module_platform_driver(elm_driver); + +MODULE_DESCRIPTION("ELM driver for BCH error correction"); +MODULE_AUTHOR("Texas Instruments"); +MODULE_ALIAS("platform: elm"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/devices/lart.c b/drivers/mtd/devices/lart.c index f4359fe7150..82bd00af5cc 100644 --- a/drivers/mtd/devices/lart.c +++ b/drivers/mtd/devices/lart.c @@ -17,7 +17,7 @@ * - January 2000 * * [2] MTD internal API documentation - * - http://www.linux-mtd.infradead.org/tech/ + * - http://www.linux-mtd.infradead.org/ * * Limitations: * @@ -34,9 +34,6 @@ /* debugging */ //#define LART_DEBUG -/* partition support */ -#define HAVE_PARTITIONS - #include <linux/kernel.h> #include <linux/module.h> #include <linux/types.h> @@ -44,9 +41,7 @@ #include <linux/errno.h> #include <linux/string.h> #include <linux/mtd/mtd.h> -#ifdef HAVE_PARTITIONS #include <linux/mtd/partitions.h> -#endif #ifndef CONFIG_SA1100_LART #error This is for LART architecture only @@ -353,7 +348,7 @@ static inline int erase_block (__u32 offset) /* put the flash back into command mode */ write32 (DATA_TO_FLASH (READ_ARRAY),offset); - /* was the erase successfull? */ + /* was the erase successful? */ if ((status & STATUS_ERASE_ERR)) { printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset); @@ -372,9 +367,6 @@ static int flash_erase (struct mtd_info *mtd,struct erase_info *instr) printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n", __func__, instr->addr, instr->len); #endif - /* sanity checks */ - if (instr->addr + instr->len > mtd->size) return (-EINVAL); - /* * check that both start and end of the requested erase are * aligned with the erasesize at the appropriate addresses. @@ -445,10 +437,6 @@ static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retle printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n", __func__, (__u32)from, len); #endif - /* sanity checks */ - if (!len) return (0); - if (from + len > mtd->size) return (-EINVAL); - /* we always read len bytes */ *retlen = len; @@ -508,7 +496,7 @@ static inline int write_dword (__u32 offset,__u32 x) /* put the flash back into command mode */ write32 (DATA_TO_FLASH (READ_ARRAY),offset); - /* was the write successfull? */ + /* was the write successful? */ if ((status & STATUS_PGM_ERR) || read32 (offset) != x) { printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset); @@ -527,11 +515,8 @@ static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n", __func__, (__u32)to, len); #endif - *retlen = 0; - /* sanity checks */ if (!len) return (0); - if (to + len > mtd->size) return (-EINVAL); /* first, we write a 0xFF.... padded byte until we reach a dword boundary */ if (to & (BUSWIDTH - 1)) @@ -598,7 +583,6 @@ static struct mtd_erase_region_info erase_regions[] = { } }; -#ifdef HAVE_PARTITIONS static struct mtd_partition lart_partitions[] = { /* blob */ { @@ -619,7 +603,7 @@ static struct mtd_partition lart_partitions[] = { .size = INITRD_LEN, /* MTDPART_SIZ_FULL */ } }; -#endif +#define NUM_PARTITIONS ARRAY_SIZE(lart_partitions) static int __init lart_flash_init (void) { @@ -636,14 +620,15 @@ static int __init lart_flash_init (void) mtd.name = module_name; mtd.type = MTD_NORFLASH; mtd.writesize = 1; + mtd.writebufsize = 4; mtd.flags = MTD_CAP_NORFLASH; mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN; mtd.erasesize = FLASH_BLOCKSIZE_MAIN; mtd.numeraseregions = ARRAY_SIZE(erase_regions); mtd.eraseregions = erase_regions; - mtd.erase = flash_erase; - mtd.read = flash_read; - mtd.write = flash_write; + mtd._erase = flash_erase; + mtd._read = flash_read; + mtd._write = flash_write; mtd.owner = THIS_MODULE; #ifdef LART_DEBUG @@ -668,7 +653,6 @@ static int __init lart_flash_init (void) result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024, result,mtd.eraseregions[result].numblocks); -#ifdef HAVE_PARTITIONS printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions)); for (result = 0; result < ARRAY_SIZE(lart_partitions); result++) @@ -681,24 +665,16 @@ static int __init lart_flash_init (void) result,lart_partitions[result].offset, result,lart_partitions[result].size,lart_partitions[result].size / 1024); #endif -#endif -#ifndef HAVE_PARTITIONS - result = add_mtd_device (&mtd); -#else - result = add_mtd_partitions (&mtd,lart_partitions, ARRAY_SIZE(lart_partitions)); -#endif + result = mtd_device_register(&mtd, lart_partitions, + ARRAY_SIZE(lart_partitions)); return (result); } static void __exit lart_flash_exit (void) { -#ifndef HAVE_PARTITIONS - del_mtd_device (&mtd); -#else - del_mtd_partitions (&mtd); -#endif + mtd_device_unregister(&mtd); } module_init (lart_flash_init); diff --git a/drivers/mtd/devices/m25p80.c b/drivers/mtd/devices/m25p80.c index 81e49a9b017..ed7e0a1bed3 100644 --- a/drivers/mtd/devices/m25p80.c +++ b/drivers/mtd/devices/m25p80.c @@ -15,952 +15,244 @@ * */ -#include <linux/init.h> +#include <linux/err.h> +#include <linux/errno.h> #include <linux/module.h> #include <linux/device.h> -#include <linux/interrupt.h> -#include <linux/mutex.h> -#include <linux/math64.h> -#include <linux/slab.h> -#include <linux/sched.h> -#include <linux/mod_devicetable.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #include <linux/spi/spi.h> #include <linux/spi/flash.h> +#include <linux/mtd/spi-nor.h> -/* Flash opcodes. */ -#define OPCODE_WREN 0x06 /* Write enable */ -#define OPCODE_RDSR 0x05 /* Read status register */ -#define OPCODE_WRSR 0x01 /* Write status register 1 byte */ -#define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */ -#define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */ -#define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */ -#define OPCODE_BE_4K 0x20 /* Erase 4KiB block */ -#define OPCODE_BE_32K 0x52 /* Erase 32KiB block */ -#define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */ -#define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */ -#define OPCODE_RDID 0x9f /* Read JEDEC ID */ - -/* Used for SST flashes only. */ -#define OPCODE_BP 0x02 /* Byte program */ -#define OPCODE_WRDI 0x04 /* Write disable */ -#define OPCODE_AAI_WP 0xad /* Auto address increment word program */ - -/* Status Register bits. */ -#define SR_WIP 1 /* Write in progress */ -#define SR_WEL 2 /* Write enable latch */ -/* meaning of other SR_* bits may differ between vendors */ -#define SR_BP0 4 /* Block protect 0 */ -#define SR_BP1 8 /* Block protect 1 */ -#define SR_BP2 0x10 /* Block protect 2 */ -#define SR_SRWD 0x80 /* SR write protect */ - -/* Define max times to check status register before we give up. */ -#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */ -#define MAX_CMD_SIZE 4 - -#ifdef CONFIG_M25PXX_USE_FAST_READ -#define OPCODE_READ OPCODE_FAST_READ -#define FAST_READ_DUMMY_BYTE 1 -#else -#define OPCODE_READ OPCODE_NORM_READ -#define FAST_READ_DUMMY_BYTE 0 -#endif - -/****************************************************************************/ - +#define MAX_CMD_SIZE 6 struct m25p { struct spi_device *spi; - struct mutex lock; + struct spi_nor spi_nor; struct mtd_info mtd; - unsigned partitioned:1; - u16 page_size; - u16 addr_width; - u8 erase_opcode; - u8 *command; + u8 command[MAX_CMD_SIZE]; }; -static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd) -{ - return container_of(mtd, struct m25p, mtd); -} - -/****************************************************************************/ - -/* - * Internal helper functions - */ - -/* - * Read the status register, returning its value in the location - * Return the status register value. - * Returns negative if error occurred. - */ -static int read_sr(struct m25p *flash) +static int m25p80_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len) { - ssize_t retval; - u8 code = OPCODE_RDSR; - u8 val; - - retval = spi_write_then_read(flash->spi, &code, 1, &val, 1); - - if (retval < 0) { - dev_err(&flash->spi->dev, "error %d reading SR\n", - (int) retval); - return retval; - } - - return val; -} - -/* - * Write status register 1 byte - * Returns negative if error occurred. - */ -static int write_sr(struct m25p *flash, u8 val) -{ - flash->command[0] = OPCODE_WRSR; - flash->command[1] = val; - - return spi_write(flash->spi, flash->command, 2); -} - -/* - * Set write enable latch with Write Enable command. - * Returns negative if error occurred. - */ -static inline int write_enable(struct m25p *flash) -{ - u8 code = OPCODE_WREN; - - return spi_write_then_read(flash->spi, &code, 1, NULL, 0); -} + struct m25p *flash = nor->priv; + struct spi_device *spi = flash->spi; + int ret; -/* - * Send write disble instruction to the chip. - */ -static inline int write_disable(struct m25p *flash) -{ - u8 code = OPCODE_WRDI; - - return spi_write_then_read(flash->spi, &code, 1, NULL, 0); -} - -/* - * Service routine to read status register until ready, or timeout occurs. - * Returns non-zero if error. - */ -static int wait_till_ready(struct m25p *flash) -{ - unsigned long deadline; - int sr; - - deadline = jiffies + MAX_READY_WAIT_JIFFIES; - - do { - if ((sr = read_sr(flash)) < 0) - break; - else if (!(sr & SR_WIP)) - return 0; - - cond_resched(); - - } while (!time_after_eq(jiffies, deadline)); - - return 1; -} - -/* - * Erase the whole flash memory - * - * Returns 0 if successful, non-zero otherwise. - */ -static int erase_chip(struct m25p *flash) -{ - DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %lldKiB\n", - dev_name(&flash->spi->dev), __func__, - (long long)(flash->mtd.size >> 10)); - - /* Wait until finished previous write command. */ - if (wait_till_ready(flash)) - return 1; - - /* Send write enable, then erase commands. */ - write_enable(flash); - - /* Set up command buffer. */ - flash->command[0] = OPCODE_CHIP_ERASE; + ret = spi_write_then_read(spi, &code, 1, val, len); + if (ret < 0) + dev_err(&spi->dev, "error %d reading %x\n", ret, code); - spi_write(flash->spi, flash->command, 1); - - return 0; + return ret; } -static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd) +static void m25p_addr2cmd(struct spi_nor *nor, unsigned int addr, u8 *cmd) { /* opcode is in cmd[0] */ - cmd[1] = addr >> (flash->addr_width * 8 - 8); - cmd[2] = addr >> (flash->addr_width * 8 - 16); - cmd[3] = addr >> (flash->addr_width * 8 - 24); + cmd[1] = addr >> (nor->addr_width * 8 - 8); + cmd[2] = addr >> (nor->addr_width * 8 - 16); + cmd[3] = addr >> (nor->addr_width * 8 - 24); + cmd[4] = addr >> (nor->addr_width * 8 - 32); } -static int m25p_cmdsz(struct m25p *flash) +static int m25p_cmdsz(struct spi_nor *nor) { - return 1 + flash->addr_width; -} - -/* - * Erase one sector of flash memory at offset ``offset'' which is any - * address within the sector which should be erased. - * - * Returns 0 if successful, non-zero otherwise. - */ -static int erase_sector(struct m25p *flash, u32 offset) -{ - DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n", - dev_name(&flash->spi->dev), __func__, - flash->mtd.erasesize / 1024, offset); - - /* Wait until finished previous write command. */ - if (wait_till_ready(flash)) - return 1; - - /* Send write enable, then erase commands. */ - write_enable(flash); - - /* Set up command buffer. */ - flash->command[0] = flash->erase_opcode; - m25p_addr2cmd(flash, offset, flash->command); - - spi_write(flash->spi, flash->command, m25p_cmdsz(flash)); - - return 0; + return 1 + nor->addr_width; } -/****************************************************************************/ - -/* - * MTD implementation - */ - -/* - * Erase an address range on the flash chip. The address range may extend - * one or more erase sectors. Return an error is there is a problem erasing. - */ -static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr) +static int m25p80_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len, + int wr_en) { - struct m25p *flash = mtd_to_m25p(mtd); - u32 addr,len; - uint32_t rem; - - DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%llx, len %lld\n", - dev_name(&flash->spi->dev), __func__, "at", - (long long)instr->addr, (long long)instr->len); - - /* sanity checks */ - if (instr->addr + instr->len > flash->mtd.size) - return -EINVAL; - div_u64_rem(instr->len, mtd->erasesize, &rem); - if (rem) - return -EINVAL; - - addr = instr->addr; - len = instr->len; - - mutex_lock(&flash->lock); - - /* whole-chip erase? */ - if (len == flash->mtd.size) { - if (erase_chip(flash)) { - instr->state = MTD_ERASE_FAILED; - mutex_unlock(&flash->lock); - return -EIO; - } - - /* REVISIT in some cases we could speed up erasing large regions - * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up - * to use "small sector erase", but that's not always optimal. - */ - - /* "sector"-at-a-time erase */ - } else { - while (len) { - if (erase_sector(flash, addr)) { - instr->state = MTD_ERASE_FAILED; - mutex_unlock(&flash->lock); - return -EIO; - } - - addr += mtd->erasesize; - len -= mtd->erasesize; - } - } - - mutex_unlock(&flash->lock); + struct m25p *flash = nor->priv; + struct spi_device *spi = flash->spi; - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); + flash->command[0] = opcode; + if (buf) + memcpy(&flash->command[1], buf, len); - return 0; + return spi_write(spi, flash->command, len + 1); } -/* - * Read an address range from the flash chip. The address range - * may be any size provided it is within the physical boundaries. - */ -static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len, - size_t *retlen, u_char *buf) +static void m25p80_write(struct spi_nor *nor, loff_t to, size_t len, + size_t *retlen, const u_char *buf) { - struct m25p *flash = mtd_to_m25p(mtd); - struct spi_transfer t[2]; + struct m25p *flash = nor->priv; + struct spi_device *spi = flash->spi; + struct spi_transfer t[2] = {}; struct spi_message m; + int cmd_sz = m25p_cmdsz(nor); - DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n", - dev_name(&flash->spi->dev), __func__, "from", - (u32)from, len); - - /* sanity checks */ - if (!len) - return 0; + spi_message_init(&m); - if (from + len > flash->mtd.size) - return -EINVAL; + if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second) + cmd_sz = 1; - spi_message_init(&m); - memset(t, 0, (sizeof t)); + flash->command[0] = nor->program_opcode; + m25p_addr2cmd(nor, to, flash->command); - /* NOTE: - * OPCODE_FAST_READ (if available) is faster. - * Should add 1 byte DUMMY_BYTE. - */ t[0].tx_buf = flash->command; - t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE; + t[0].len = cmd_sz; spi_message_add_tail(&t[0], &m); - t[1].rx_buf = buf; + t[1].tx_buf = buf; t[1].len = len; spi_message_add_tail(&t[1], &m); - /* Byte count starts at zero. */ - if (retlen) - *retlen = 0; + spi_sync(spi, &m); - mutex_lock(&flash->lock); + *retlen += m.actual_length - cmd_sz; +} - /* Wait till previous write/erase is done. */ - if (wait_till_ready(flash)) { - /* REVISIT status return?? */ - mutex_unlock(&flash->lock); - return 1; +static inline unsigned int m25p80_rx_nbits(struct spi_nor *nor) +{ + switch (nor->flash_read) { + case SPI_NOR_DUAL: + return 2; + case SPI_NOR_QUAD: + return 4; + default: + return 0; } - - /* FIXME switch to OPCODE_FAST_READ. It's required for higher - * clocks; and at this writing, every chip this driver handles - * supports that opcode. - */ - - /* Set up the write data buffer. */ - flash->command[0] = OPCODE_READ; - m25p_addr2cmd(flash, from, flash->command); - - spi_sync(flash->spi, &m); - - *retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE; - - mutex_unlock(&flash->lock); - - return 0; } /* - * Write an address range to the flash chip. Data must be written in - * FLASH_PAGESIZE chunks. The address range may be any size provided - * it is within the physical boundaries. + * Read an address range from the nor chip. The address range + * may be any size provided it is within the physical boundaries. */ -static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, const u_char *buf) +static int m25p80_read(struct spi_nor *nor, loff_t from, size_t len, + size_t *retlen, u_char *buf) { - struct m25p *flash = mtd_to_m25p(mtd); - u32 page_offset, page_size; + struct m25p *flash = nor->priv; + struct spi_device *spi = flash->spi; struct spi_transfer t[2]; struct spi_message m; + int dummy = nor->read_dummy; + int ret; - DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n", - dev_name(&flash->spi->dev), __func__, "to", - (u32)to, len); - - if (retlen) - *retlen = 0; - - /* sanity checks */ - if (!len) - return(0); - - if (to + len > flash->mtd.size) - return -EINVAL; + /* Wait till previous write/erase is done. */ + ret = nor->wait_till_ready(nor); + if (ret) + return ret; spi_message_init(&m); memset(t, 0, (sizeof t)); + flash->command[0] = nor->read_opcode; + m25p_addr2cmd(nor, from, flash->command); + t[0].tx_buf = flash->command; - t[0].len = m25p_cmdsz(flash); + t[0].len = m25p_cmdsz(nor) + dummy; spi_message_add_tail(&t[0], &m); - t[1].tx_buf = buf; + t[1].rx_buf = buf; + t[1].rx_nbits = m25p80_rx_nbits(nor); + t[1].len = len; spi_message_add_tail(&t[1], &m); - mutex_lock(&flash->lock); - - /* Wait until finished previous write command. */ - if (wait_till_ready(flash)) { - mutex_unlock(&flash->lock); - return 1; - } - - write_enable(flash); - - /* Set up the opcode in the write buffer. */ - flash->command[0] = OPCODE_PP; - m25p_addr2cmd(flash, to, flash->command); - - page_offset = to & (flash->page_size - 1); - - /* do all the bytes fit onto one page? */ - if (page_offset + len <= flash->page_size) { - t[1].len = len; - - spi_sync(flash->spi, &m); - - *retlen = m.actual_length - m25p_cmdsz(flash); - } else { - u32 i; - - /* the size of data remaining on the first page */ - page_size = flash->page_size - page_offset; - - t[1].len = page_size; - spi_sync(flash->spi, &m); - - *retlen = m.actual_length - m25p_cmdsz(flash); - - /* write everything in flash->page_size chunks */ - for (i = page_size; i < len; i += page_size) { - page_size = len - i; - if (page_size > flash->page_size) - page_size = flash->page_size; - - /* write the next page to flash */ - m25p_addr2cmd(flash, to + i, flash->command); - - t[1].tx_buf = buf + i; - t[1].len = page_size; - - wait_till_ready(flash); - - write_enable(flash); - - spi_sync(flash->spi, &m); - - if (retlen) - *retlen += m.actual_length - m25p_cmdsz(flash); - } - } - - mutex_unlock(&flash->lock); + spi_sync(spi, &m); + *retlen = m.actual_length - m25p_cmdsz(nor) - dummy; return 0; } -static int sst_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, const u_char *buf) +static int m25p80_erase(struct spi_nor *nor, loff_t offset) { - struct m25p *flash = mtd_to_m25p(mtd); - struct spi_transfer t[2]; - struct spi_message m; - size_t actual; - int cmd_sz, ret; - - if (retlen) - *retlen = 0; - - /* sanity checks */ - if (!len) - return 0; - - if (to + len > flash->mtd.size) - return -EINVAL; + struct m25p *flash = nor->priv; + int ret; - spi_message_init(&m); - memset(t, 0, (sizeof t)); - - t[0].tx_buf = flash->command; - t[0].len = m25p_cmdsz(flash); - spi_message_add_tail(&t[0], &m); - - t[1].tx_buf = buf; - spi_message_add_tail(&t[1], &m); - - mutex_lock(&flash->lock); + dev_dbg(nor->dev, "%dKiB at 0x%08x\n", + flash->mtd.erasesize / 1024, (u32)offset); /* Wait until finished previous write command. */ - ret = wait_till_ready(flash); - if (ret) - goto time_out; - - write_enable(flash); - - actual = to % 2; - /* Start write from odd address. */ - if (actual) { - flash->command[0] = OPCODE_BP; - m25p_addr2cmd(flash, to, flash->command); - - /* write one byte. */ - t[1].len = 1; - spi_sync(flash->spi, &m); - ret = wait_till_ready(flash); - if (ret) - goto time_out; - *retlen += m.actual_length - m25p_cmdsz(flash); - } - to += actual; - - flash->command[0] = OPCODE_AAI_WP; - m25p_addr2cmd(flash, to, flash->command); - - /* Write out most of the data here. */ - cmd_sz = m25p_cmdsz(flash); - for (; actual < len - 1; actual += 2) { - t[0].len = cmd_sz; - /* write two bytes. */ - t[1].len = 2; - t[1].tx_buf = buf + actual; - - spi_sync(flash->spi, &m); - ret = wait_till_ready(flash); - if (ret) - goto time_out; - *retlen += m.actual_length - cmd_sz; - cmd_sz = 1; - to += 2; - } - write_disable(flash); - ret = wait_till_ready(flash); + ret = nor->wait_till_ready(nor); if (ret) - goto time_out; - - /* Write out trailing byte if it exists. */ - if (actual != len) { - write_enable(flash); - flash->command[0] = OPCODE_BP; - m25p_addr2cmd(flash, to, flash->command); - t[0].len = m25p_cmdsz(flash); - t[1].len = 1; - t[1].tx_buf = buf + actual; - - spi_sync(flash->spi, &m); - ret = wait_till_ready(flash); - if (ret) - goto time_out; - *retlen += m.actual_length - m25p_cmdsz(flash); - write_disable(flash); - } - -time_out: - mutex_unlock(&flash->lock); - return ret; -} + return ret; -/****************************************************************************/ - -/* - * SPI device driver setup and teardown - */ - -struct flash_info { - /* JEDEC id zero means "no ID" (most older chips); otherwise it has - * a high byte of zero plus three data bytes: the manufacturer id, - * then a two byte device id. - */ - u32 jedec_id; - u16 ext_id; - - /* The size listed here is what works with OPCODE_SE, which isn't - * necessarily called a "sector" by the vendor. - */ - unsigned sector_size; - u16 n_sectors; - - u16 page_size; - u16 addr_width; + /* Send write enable, then erase commands. */ + ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0); + if (ret) + return ret; - u16 flags; -#define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */ -#define M25P_NO_ERASE 0x02 /* No erase command needed */ -}; + /* Set up command buffer. */ + flash->command[0] = nor->erase_opcode; + m25p_addr2cmd(nor, offset, flash->command); -#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ - ((kernel_ulong_t)&(struct flash_info) { \ - .jedec_id = (_jedec_id), \ - .ext_id = (_ext_id), \ - .sector_size = (_sector_size), \ - .n_sectors = (_n_sectors), \ - .page_size = 256, \ - .addr_width = 3, \ - .flags = (_flags), \ - }) - -#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \ - ((kernel_ulong_t)&(struct flash_info) { \ - .sector_size = (_sector_size), \ - .n_sectors = (_n_sectors), \ - .page_size = (_page_size), \ - .addr_width = (_addr_width), \ - .flags = M25P_NO_ERASE, \ - }) - -/* NOTE: double check command sets and memory organization when you add - * more flash chips. This current list focusses on newer chips, which - * have been converging on command sets which including JEDEC ID. - */ -static const struct spi_device_id m25p_ids[] = { - /* Atmel -- some are (confusingly) marketed as "DataFlash" */ - { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) }, - { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) }, - - { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) }, - { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) }, - - { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) }, - { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) }, - { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) }, - { "at26df321", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) }, - - /* Macronix */ - { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) }, - { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) }, - { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) }, - { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) }, - { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) }, - - /* Spansion -- single (large) sector size only, at least - * for the chips listed here (without boot sectors). - */ - { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) }, - { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) }, - { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) }, - { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) }, - { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) }, - { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) }, - { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) }, - { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) }, - { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) }, - - /* SST -- large erase sizes are "overlays", "sectors" are 4K */ - { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K) }, - { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) }, - { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) }, - { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) }, - { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K) }, - { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K) }, - { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K) }, - { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K) }, - - /* ST Microelectronics -- newer production may have feature updates */ - { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) }, - { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) }, - { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) }, - { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) }, - { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) }, - { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) }, - { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) }, - { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) }, - { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) }, - - { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) }, - { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) }, - { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) }, - - { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) }, - { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) }, - - /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ - { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) }, - { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) }, - { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) }, - { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) }, - { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) }, - { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) }, - { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) }, - - /* Catalyst / On Semiconductor -- non-JEDEC */ - { "cat25c11", CAT25_INFO( 16, 8, 16, 1) }, - { "cat25c03", CAT25_INFO( 32, 8, 16, 2) }, - { "cat25c09", CAT25_INFO( 128, 8, 32, 2) }, - { "cat25c17", CAT25_INFO( 256, 8, 32, 2) }, - { "cat25128", CAT25_INFO(2048, 8, 64, 2) }, - { }, -}; -MODULE_DEVICE_TABLE(spi, m25p_ids); + spi_write(flash->spi, flash->command, m25p_cmdsz(nor)); -static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi) -{ - int tmp; - u8 code = OPCODE_RDID; - u8 id[5]; - u32 jedec; - u16 ext_jedec; - struct flash_info *info; - - /* JEDEC also defines an optional "extended device information" - * string for after vendor-specific data, after the three bytes - * we use here. Supporting some chips might require using it. - */ - tmp = spi_write_then_read(spi, &code, 1, id, 5); - if (tmp < 0) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n", - dev_name(&spi->dev), tmp); - return NULL; - } - jedec = id[0]; - jedec = jedec << 8; - jedec |= id[1]; - jedec = jedec << 8; - jedec |= id[2]; - - /* - * Some chips (like Numonyx M25P80) have JEDEC and non-JEDEC variants, - * which depend on technology process. Officially RDID command doesn't - * exist for non-JEDEC chips, but for compatibility they return ID 0. - */ - if (jedec == 0) - return NULL; - - ext_jedec = id[3] << 8 | id[4]; - - for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) { - info = (void *)m25p_ids[tmp].driver_data; - if (info->jedec_id == jedec) { - if (info->ext_id != 0 && info->ext_id != ext_jedec) - continue; - return &m25p_ids[tmp]; - } - } - return NULL; + return 0; } - /* * board specific setup should have ensured the SPI clock used here * matches what the READ command supports, at least until this driver * understands FAST_READ (for clocks over 25 MHz). */ -static int __devinit m25p_probe(struct spi_device *spi) +static int m25p_probe(struct spi_device *spi) { - const struct spi_device_id *id = spi_get_device_id(spi); + struct mtd_part_parser_data ppdata; struct flash_platform_data *data; - struct m25p *flash; - struct flash_info *info; - unsigned i; - - /* Platform data helps sort out which chip type we have, as - * well as how this board partitions it. If we don't have - * a chip ID, try the JEDEC id commands; they'll work for most - * newer chips, even if we don't recognize the particular chip. - */ - data = spi->dev.platform_data; - if (data && data->type) { - const struct spi_device_id *plat_id; - - for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) { - plat_id = &m25p_ids[i]; - if (strcmp(data->type, plat_id->name)) - continue; - break; - } - - if (plat_id) - id = plat_id; - else - dev_warn(&spi->dev, "unrecognized id %s\n", data->type); - } - - info = (void *)id->driver_data; - - if (info->jedec_id) { - const struct spi_device_id *jid; - - jid = jedec_probe(spi); - if (!jid) { - dev_info(&spi->dev, "non-JEDEC variant of %s\n", - id->name); - } else if (jid != id) { - /* - * JEDEC knows better, so overwrite platform ID. We - * can't trust partitions any longer, but we'll let - * mtd apply them anyway, since some partitions may be - * marked read-only, and we don't want to lose that - * information, even if it's not 100% accurate. - */ - dev_warn(&spi->dev, "found %s, expected %s\n", - jid->name, id->name); - id = jid; - info = (void *)jid->driver_data; - } - } + struct m25p *flash; + struct spi_nor *nor; + enum read_mode mode = SPI_NOR_NORMAL; + int ret; - flash = kzalloc(sizeof *flash, GFP_KERNEL); + flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL); if (!flash) return -ENOMEM; - flash->command = kmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE, GFP_KERNEL); - if (!flash->command) { - kfree(flash); - return -ENOMEM; - } - flash->spi = spi; - mutex_init(&flash->lock); - dev_set_drvdata(&spi->dev, flash); + nor = &flash->spi_nor; - /* - * Atmel and SST serial flash tend to power - * up with the software protection bits set - */ + /* install the hooks */ + nor->read = m25p80_read; + nor->write = m25p80_write; + nor->erase = m25p80_erase; + nor->write_reg = m25p80_write_reg; + nor->read_reg = m25p80_read_reg; - if (info->jedec_id >> 16 == 0x1f || - info->jedec_id >> 16 == 0xbf) { - write_enable(flash); - write_sr(flash, 0); - } + nor->dev = &spi->dev; + nor->mtd = &flash->mtd; + nor->priv = flash; - if (data && data->name) - flash->mtd.name = data->name; - else - flash->mtd.name = dev_name(&spi->dev); - - flash->mtd.type = MTD_NORFLASH; - flash->mtd.writesize = 1; - flash->mtd.flags = MTD_CAP_NORFLASH; - flash->mtd.size = info->sector_size * info->n_sectors; - flash->mtd.erase = m25p80_erase; - flash->mtd.read = m25p80_read; - - /* sst flash chips use AAI word program */ - if (info->jedec_id >> 16 == 0xbf) - flash->mtd.write = sst_write; - else - flash->mtd.write = m25p80_write; - - /* prefer "small sector" erase if possible */ - if (info->flags & SECT_4K) { - flash->erase_opcode = OPCODE_BE_4K; - flash->mtd.erasesize = 4096; - } else { - flash->erase_opcode = OPCODE_SE; - flash->mtd.erasesize = info->sector_size; - } + spi_set_drvdata(spi, flash); + flash->mtd.priv = nor; + flash->spi = spi; - if (info->flags & M25P_NO_ERASE) - flash->mtd.flags |= MTD_NO_ERASE; - - flash->mtd.dev.parent = &spi->dev; - flash->page_size = info->page_size; - flash->addr_width = info->addr_width; - - dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name, - (long long)flash->mtd.size >> 10); - - DEBUG(MTD_DEBUG_LEVEL2, - "mtd .name = %s, .size = 0x%llx (%lldMiB) " - ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", - flash->mtd.name, - (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20), - flash->mtd.erasesize, flash->mtd.erasesize / 1024, - flash->mtd.numeraseregions); - - if (flash->mtd.numeraseregions) - for (i = 0; i < flash->mtd.numeraseregions; i++) - DEBUG(MTD_DEBUG_LEVEL2, - "mtd.eraseregions[%d] = { .offset = 0x%llx, " - ".erasesize = 0x%.8x (%uKiB), " - ".numblocks = %d }\n", - i, (long long)flash->mtd.eraseregions[i].offset, - flash->mtd.eraseregions[i].erasesize, - flash->mtd.eraseregions[i].erasesize / 1024, - flash->mtd.eraseregions[i].numblocks); - - - /* partitions should match sector boundaries; and it may be good to - * use readonly partitions for writeprotected sectors (BP2..BP0). - */ - if (mtd_has_partitions()) { - struct mtd_partition *parts = NULL; - int nr_parts = 0; - - if (mtd_has_cmdlinepart()) { - static const char *part_probes[] - = { "cmdlinepart", NULL, }; - - nr_parts = parse_mtd_partitions(&flash->mtd, - part_probes, &parts, 0); - } - - if (nr_parts <= 0 && data && data->parts) { - parts = data->parts; - nr_parts = data->nr_parts; - } - - if (nr_parts > 0) { - for (i = 0; i < nr_parts; i++) { - DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = " - "{.name = %s, .offset = 0x%llx, " - ".size = 0x%llx (%lldKiB) }\n", - i, parts[i].name, - (long long)parts[i].offset, - (long long)parts[i].size, - (long long)(parts[i].size >> 10)); - } - flash->partitioned = 1; - return add_mtd_partitions(&flash->mtd, parts, nr_parts); - } - } else if (data && data->nr_parts) - dev_warn(&spi->dev, "ignoring %d default partitions on %s\n", - data->nr_parts, data->name); - - return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0; + if (spi->mode & SPI_RX_QUAD) + mode = SPI_NOR_QUAD; + else if (spi->mode & SPI_RX_DUAL) + mode = SPI_NOR_DUAL; + ret = spi_nor_scan(nor, spi_get_device_id(spi), mode); + if (ret) + return ret; + + data = dev_get_platdata(&spi->dev); + ppdata.of_node = spi->dev.of_node; + + return mtd_device_parse_register(&flash->mtd, NULL, &ppdata, + data ? data->parts : NULL, + data ? data->nr_parts : 0); } -static int __devexit m25p_remove(struct spi_device *spi) +static int m25p_remove(struct spi_device *spi) { - struct m25p *flash = dev_get_drvdata(&spi->dev); - int status; + struct m25p *flash = spi_get_drvdata(spi); /* Clean up MTD stuff. */ - if (mtd_has_partitions() && flash->partitioned) - status = del_mtd_partitions(&flash->mtd); - else - status = del_mtd_device(&flash->mtd); - if (status == 0) { - kfree(flash->command); - kfree(flash); - } - return 0; + return mtd_device_unregister(&flash->mtd); } static struct spi_driver m25p80_driver = { .driver = { .name = "m25p80", - .bus = &spi_bus_type, .owner = THIS_MODULE, }, - .id_table = m25p_ids, + .id_table = spi_nor_ids, .probe = m25p_probe, - .remove = __devexit_p(m25p_remove), + .remove = m25p_remove, /* REVISIT: many of these chips have deep power-down modes, which * should clearly be entered on suspend() to minimize power use. @@ -968,21 +260,7 @@ static struct spi_driver m25p80_driver = { */ }; - -static int __init m25p80_init(void) -{ - return spi_register_driver(&m25p80_driver); -} - - -static void __exit m25p80_exit(void) -{ - spi_unregister_driver(&m25p80_driver); -} - - -module_init(m25p80_init); -module_exit(m25p80_exit); +module_spi_driver(m25p80_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Mike Lavender"); diff --git a/drivers/mtd/devices/ms02-nv.c b/drivers/mtd/devices/ms02-nv.c index 6a9a24a80a6..5c8b322ba90 100644 --- a/drivers/mtd/devices/ms02-nv.c +++ b/drivers/mtd/devices/ms02-nv.c @@ -59,12 +59,8 @@ static int ms02nv_read(struct mtd_info *mtd, loff_t from, { struct ms02nv_private *mp = mtd->priv; - if (from + len > mtd->size) - return -EINVAL; - memcpy(buf, mp->uaddr + from, len); *retlen = len; - return 0; } @@ -73,12 +69,8 @@ static int ms02nv_write(struct mtd_info *mtd, loff_t to, { struct ms02nv_private *mp = mtd->priv; - if (to + len > mtd->size) - return -EINVAL; - memcpy(mp->uaddr + to, buf, len); *retlen = len; - return 0; } @@ -213,14 +205,14 @@ static int __init ms02nv_init_one(ulong addr) mtd->type = MTD_RAM; mtd->flags = MTD_CAP_RAM; mtd->size = fixsize; - mtd->name = (char *)ms02nv_name; + mtd->name = ms02nv_name; mtd->owner = THIS_MODULE; - mtd->read = ms02nv_read; - mtd->write = ms02nv_write; + mtd->_read = ms02nv_read; + mtd->_write = ms02nv_write; mtd->writesize = 1; ret = -EIO; - if (add_mtd_device(mtd)) { + if (mtd_device_register(mtd, NULL, 0)) { printk(KERN_ERR "ms02-nv: Unable to register MTD device, aborting!\n"); goto err_out_csr_res; @@ -262,7 +254,7 @@ static void __exit ms02nv_remove_one(void) root_ms02nv_mtd = mp->next; - del_mtd_device(mtd); + mtd_device_unregister(mtd); release_resource(mp->resource.csr); kfree(mp->resource.csr); diff --git a/drivers/mtd/devices/mtd_dataflash.c b/drivers/mtd/devices/mtd_dataflash.c index 19817404ce7..dd22ce2cc9a 100644 --- a/drivers/mtd/devices/mtd_dataflash.c +++ b/drivers/mtd/devices/mtd_dataflash.c @@ -10,13 +10,14 @@ * 2 of the License, or (at your option) any later version. */ #include <linux/module.h> -#include <linux/init.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/mutex.h> #include <linux/err.h> #include <linux/math64.h> +#include <linux/of.h> +#include <linux/of_device.h> #include <linux/spi/spi.h> #include <linux/spi/flash.h> @@ -24,7 +25,6 @@ #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> - /* * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in * each chip, which may be used for double buffered I/O; but this driver @@ -87,8 +87,6 @@ struct dataflash { uint8_t command[4]; char name[24]; - unsigned partitioned:1; - unsigned short page_offset; /* offset in flash address */ unsigned int page_size; /* of bytes per page */ @@ -98,6 +96,14 @@ struct dataflash { struct mtd_info mtd; }; +#ifdef CONFIG_OF +static const struct of_device_id dataflash_dt_ids[] = { + { .compatible = "atmel,at45", }, + { .compatible = "atmel,dataflash", }, + { /* sentinel */ } +}; +#endif + /* ......................................................................... */ /* @@ -122,7 +128,7 @@ static int dataflash_waitready(struct spi_device *spi) for (;;) { status = dataflash_status(spi); if (status < 0) { - DEBUG(MTD_DEBUG_LEVEL1, "%s: status %d?\n", + pr_debug("%s: status %d?\n", dev_name(&spi->dev), status); status = 0; } @@ -141,7 +147,7 @@ static int dataflash_waitready(struct spi_device *spi) */ static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr) { - struct dataflash *priv = (struct dataflash *)mtd->priv; + struct dataflash *priv = mtd->priv; struct spi_device *spi = priv->spi; struct spi_transfer x = { .tx_dma = 0, }; struct spi_message msg; @@ -149,13 +155,10 @@ static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr) uint8_t *command; uint32_t rem; - DEBUG(MTD_DEBUG_LEVEL2, "%s: erase addr=0x%llx len 0x%llx\n", + pr_debug("%s: erase addr=0x%llx len 0x%llx\n", dev_name(&spi->dev), (long long)instr->addr, (long long)instr->len); - /* Sanity checks */ - if (instr->addr + instr->len > mtd->size) - return -EINVAL; div_u64_rem(instr->len, priv->page_size, &rem); if (rem) return -EINVAL; @@ -187,7 +190,7 @@ static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr) command[2] = (uint8_t)(pageaddr >> 8); command[3] = 0; - DEBUG(MTD_DEBUG_LEVEL3, "ERASE %s: (%x) %x %x %x [%i]\n", + pr_debug("ERASE %s: (%x) %x %x %x [%i]\n", do_block ? "block" : "page", command[0], command[1], command[2], command[3], pageaddr); @@ -231,23 +234,15 @@ static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr) static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { - struct dataflash *priv = (struct dataflash *)mtd->priv; + struct dataflash *priv = mtd->priv; struct spi_transfer x[2] = { { .tx_dma = 0, }, }; struct spi_message msg; unsigned int addr; uint8_t *command; int status; - DEBUG(MTD_DEBUG_LEVEL2, "%s: read 0x%x..0x%x\n", - dev_name(&priv->spi->dev), (unsigned)from, (unsigned)(from + len)); - - *retlen = 0; - - /* Sanity checks */ - if (!len) - return 0; - if (from + len > mtd->size) - return -EINVAL; + pr_debug("%s: read 0x%x..0x%x\n", dev_name(&priv->spi->dev), + (unsigned)from, (unsigned)(from + len)); /* Calculate flash page/byte address */ addr = (((unsigned)from / priv->page_size) << priv->page_offset) @@ -255,7 +250,7 @@ static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len, command = priv->command; - DEBUG(MTD_DEBUG_LEVEL3, "READ: (%x) %x %x %x\n", + pr_debug("READ: (%x) %x %x %x\n", command[0], command[1], command[2], command[3]); spi_message_init(&msg); @@ -287,7 +282,7 @@ static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len, *retlen = msg.actual_length - 8; status = 0; } else - DEBUG(MTD_DEBUG_LEVEL1, "%s: read %x..%x --> %d\n", + pr_debug("%s: read %x..%x --> %d\n", dev_name(&priv->spi->dev), (unsigned)from, (unsigned)(from + len), status); @@ -304,7 +299,7 @@ static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len, static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf) { - struct dataflash *priv = (struct dataflash *)mtd->priv; + struct dataflash *priv = mtd->priv; struct spi_device *spi = priv->spi; struct spi_transfer x[2] = { { .tx_dma = 0, }, }; struct spi_message msg; @@ -314,17 +309,9 @@ static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, int status = -EINVAL; uint8_t *command; - DEBUG(MTD_DEBUG_LEVEL2, "%s: write 0x%x..0x%x\n", + pr_debug("%s: write 0x%x..0x%x\n", dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len)); - *retlen = 0; - - /* Sanity checks */ - if (!len) - return 0; - if ((to + len) > mtd->size) - return -EINVAL; - spi_message_init(&msg); x[0].tx_buf = command = priv->command; @@ -340,7 +327,7 @@ static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, mutex_lock(&priv->lock); while (remaining > 0) { - DEBUG(MTD_DEBUG_LEVEL3, "write @ %i:%i len=%i\n", + pr_debug("write @ %i:%i len=%i\n", pageaddr, offset, writelen); /* REVISIT: @@ -368,12 +355,12 @@ static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, command[2] = (addr & 0x0000FF00) >> 8; command[3] = 0; - DEBUG(MTD_DEBUG_LEVEL3, "TRANSFER: (%x) %x %x %x\n", + pr_debug("TRANSFER: (%x) %x %x %x\n", command[0], command[1], command[2], command[3]); status = spi_sync(spi, &msg); if (status < 0) - DEBUG(MTD_DEBUG_LEVEL1, "%s: xfer %u -> %d \n", + pr_debug("%s: xfer %u -> %d\n", dev_name(&spi->dev), addr, status); (void) dataflash_waitready(priv->spi); @@ -386,7 +373,7 @@ static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, command[2] = (addr & 0x0000FF00) >> 8; command[3] = (addr & 0x000000FF); - DEBUG(MTD_DEBUG_LEVEL3, "PROGRAM: (%x) %x %x %x\n", + pr_debug("PROGRAM: (%x) %x %x %x\n", command[0], command[1], command[2], command[3]); x[1].tx_buf = writebuf; @@ -395,7 +382,7 @@ static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, status = spi_sync(spi, &msg); spi_transfer_del(x + 1); if (status < 0) - DEBUG(MTD_DEBUG_LEVEL1, "%s: pgm %u/%u -> %d \n", + pr_debug("%s: pgm %u/%u -> %d\n", dev_name(&spi->dev), addr, writelen, status); (void) dataflash_waitready(priv->spi); @@ -410,12 +397,12 @@ static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, command[2] = (addr & 0x0000FF00) >> 8; command[3] = 0; - DEBUG(MTD_DEBUG_LEVEL3, "COMPARE: (%x) %x %x %x\n", + pr_debug("COMPARE: (%x) %x %x %x\n", command[0], command[1], command[2], command[3]); status = spi_sync(spi, &msg); if (status < 0) - DEBUG(MTD_DEBUG_LEVEL1, "%s: compare %u -> %d \n", + pr_debug("%s: compare %u -> %d\n", dev_name(&spi->dev), addr, status); status = dataflash_waitready(priv->spi); @@ -452,8 +439,8 @@ static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, #ifdef CONFIG_MTD_DATAFLASH_OTP -static int dataflash_get_otp_info(struct mtd_info *mtd, - struct otp_info *info, size_t len) +static int dataflash_get_otp_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *info) { /* Report both blocks as identical: bytes 0..64, locked. * Unless the user block changed from all-ones, we can't @@ -462,7 +449,8 @@ static int dataflash_get_otp_info(struct mtd_info *mtd, info->start = 0; info->length = 64; info->locked = 1; - return sizeof(*info); + *retlen = sizeof(*info); + return 0; } static ssize_t otp_read(struct spi_device *spi, unsigned base, @@ -479,8 +467,6 @@ static ssize_t otp_read(struct spi_device *spi, unsigned base, if ((off + len) > 64) len = 64 - off; - if (len == 0) - return len; spi_message_init(&m); @@ -515,7 +501,7 @@ static ssize_t otp_read(struct spi_device *spi, unsigned base, static int dataflash_read_fact_otp(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { - struct dataflash *priv = (struct dataflash *)mtd->priv; + struct dataflash *priv = mtd->priv; int status; /* 64 bytes, from 0..63 ... start at 64 on-chip */ @@ -532,7 +518,7 @@ static int dataflash_read_fact_otp(struct mtd_info *mtd, static int dataflash_read_user_otp(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { - struct dataflash *priv = (struct dataflash *)mtd->priv; + struct dataflash *priv = mtd->priv; int status; /* 64 bytes, from 0..63 ... start at 0 on-chip */ @@ -553,17 +539,21 @@ static int dataflash_write_user_otp(struct mtd_info *mtd, const size_t l = 4 + 64; uint8_t *scratch; struct spi_transfer t; - struct dataflash *priv = (struct dataflash *)mtd->priv; + struct dataflash *priv = mtd->priv; int status; - if (len > 64) - return -EINVAL; + if (from >= 64) { + /* + * Attempting to write beyond the end of OTP memory, + * no data can be written. + */ + *retlen = 0; + return 0; + } - /* Strictly speaking, we *could* truncate the write ... but - * let's not do that for the only write that's ever possible. - */ + /* Truncate the write to fit into OTP memory. */ if ((from + len) > 64) - return -EINVAL; + len = 64 - from; /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes * IN: ignore all @@ -600,16 +590,16 @@ static int dataflash_write_user_otp(struct mtd_info *mtd, static char *otp_setup(struct mtd_info *device, char revision) { - device->get_fact_prot_info = dataflash_get_otp_info; - device->read_fact_prot_reg = dataflash_read_fact_otp; - device->get_user_prot_info = dataflash_get_otp_info; - device->read_user_prot_reg = dataflash_read_user_otp; + device->_get_fact_prot_info = dataflash_get_otp_info; + device->_read_fact_prot_reg = dataflash_read_fact_otp; + device->_get_user_prot_info = dataflash_get_otp_info; + device->_read_user_prot_reg = dataflash_read_user_otp; /* rev c parts (at45db321c and at45db1281 only!) use a * different write procedure; not (yet?) implemented. */ if (revision > 'c') - device->write_user_prot_reg = dataflash_write_user_otp; + device->_write_user_prot_reg = dataflash_write_user_otp; return ", OTP"; } @@ -628,13 +618,13 @@ static char *otp_setup(struct mtd_info *device, char revision) /* * Register DataFlash device with MTD subsystem. */ -static int __devinit -add_dataflash_otp(struct spi_device *spi, char *name, - int nr_pages, int pagesize, int pageoffset, char revision) +static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages, + int pagesize, int pageoffset, char revision) { struct dataflash *priv; struct mtd_info *device; - struct flash_platform_data *pdata = spi->dev.platform_data; + struct mtd_part_parser_data ppdata; + struct flash_platform_data *pdata = dev_get_platdata(&spi->dev); char *otp_tag = ""; int err = 0; @@ -660,9 +650,9 @@ add_dataflash_otp(struct spi_device *spi, char *name, device->owner = THIS_MODULE; device->type = MTD_DATAFLASH; device->flags = MTD_WRITEABLE; - device->erase = dataflash_erase; - device->read = dataflash_read; - device->write = dataflash_write; + device->_erase = dataflash_erase; + device->_read = dataflash_read; + device->_write = dataflash_write; device->priv = priv; device->dev.parent = &spi->dev; @@ -673,49 +663,22 @@ add_dataflash_otp(struct spi_device *spi, char *name, dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n", name, (long long)((device->size + 1023) >> 10), pagesize, otp_tag); - dev_set_drvdata(&spi->dev, priv); - - if (mtd_has_partitions()) { - struct mtd_partition *parts; - int nr_parts = 0; - - if (mtd_has_cmdlinepart()) { - static const char *part_probes[] - = { "cmdlinepart", NULL, }; - - nr_parts = parse_mtd_partitions(device, - part_probes, &parts, 0); - } - - if (nr_parts <= 0 && pdata && pdata->parts) { - parts = pdata->parts; - nr_parts = pdata->nr_parts; - } - - if (nr_parts > 0) { - priv->partitioned = 1; - err = add_mtd_partitions(device, parts, nr_parts); - goto out; - } - } else if (pdata && pdata->nr_parts) - dev_warn(&spi->dev, "ignoring %d default partitions on %s\n", - pdata->nr_parts, device->name); + spi_set_drvdata(spi, priv); - if (add_mtd_device(device) == 1) - err = -ENODEV; + ppdata.of_node = spi->dev.of_node; + err = mtd_device_parse_register(device, NULL, &ppdata, + pdata ? pdata->parts : NULL, + pdata ? pdata->nr_parts : 0); -out: if (!err) return 0; - dev_set_drvdata(&spi->dev, NULL); kfree(priv); return err; } -static inline int __devinit -add_dataflash(struct spi_device *spi, char *name, - int nr_pages, int pagesize, int pageoffset) +static inline int add_dataflash(struct spi_device *spi, char *name, + int nr_pages, int pagesize, int pageoffset) { return add_dataflash_otp(spi, name, nr_pages, pagesize, pageoffset, 0); @@ -739,7 +702,7 @@ struct flash_info { #define IS_POW2PS 0x0001 /* uses 2^N byte pages */ }; -static struct flash_info __devinitdata dataflash_data [] = { +static struct flash_info dataflash_data[] = { /* * NOTE: chips with SUP_POW2PS (rev D and up) need two entries, @@ -774,7 +737,7 @@ static struct flash_info __devinitdata dataflash_data [] = { { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS}, }; -static struct flash_info *__devinit jedec_probe(struct spi_device *spi) +static struct flash_info *jedec_probe(struct spi_device *spi) { int tmp; uint8_t code = OP_READ_ID; @@ -793,7 +756,7 @@ static struct flash_info *__devinit jedec_probe(struct spi_device *spi) */ tmp = spi_write_then_read(spi, &code, 1, id, 3); if (tmp < 0) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n", + pr_debug("%s: error %d reading JEDEC ID\n", dev_name(&spi->dev), tmp); return ERR_PTR(tmp); } @@ -810,7 +773,7 @@ static struct flash_info *__devinit jedec_probe(struct spi_device *spi) tmp < ARRAY_SIZE(dataflash_data); tmp++, info++) { if (info->jedec_id == jedec) { - DEBUG(MTD_DEBUG_LEVEL1, "%s: OTP, sector protect%s\n", + pr_debug("%s: OTP, sector protect%s\n", dev_name(&spi->dev), (info->flags & SUP_POW2PS) ? ", binary pagesize" : "" @@ -818,8 +781,7 @@ static struct flash_info *__devinit jedec_probe(struct spi_device *spi) if (info->flags & SUP_POW2PS) { status = dataflash_status(spi); if (status < 0) { - DEBUG(MTD_DEBUG_LEVEL1, - "%s: status error %d\n", + pr_debug("%s: status error %d\n", dev_name(&spi->dev), status); return ERR_PTR(status); } @@ -858,7 +820,7 @@ static struct flash_info *__devinit jedec_probe(struct spi_device *spi) * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11 * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11 */ -static int __devinit dataflash_probe(struct spi_device *spi) +static int dataflash_probe(struct spi_device *spi) { int status; struct flash_info *info; @@ -884,7 +846,7 @@ static int __devinit dataflash_probe(struct spi_device *spi) */ status = dataflash_status(spi); if (status <= 0 || status == 0xff) { - DEBUG(MTD_DEBUG_LEVEL1, "%s: status error %d\n", + pr_debug("%s: status error %d\n", dev_name(&spi->dev), status); if (status == 0 || status == 0xff) status = -ENODEV; @@ -920,61 +882,45 @@ static int __devinit dataflash_probe(struct spi_device *spi) break; /* obsolete AT45DB1282 not (yet?) supported */ default: - DEBUG(MTD_DEBUG_LEVEL1, "%s: unsupported device (%x)\n", - dev_name(&spi->dev), status & 0x3c); + dev_info(&spi->dev, "unsupported device (%x)\n", + status & 0x3c); status = -ENODEV; } if (status < 0) - DEBUG(MTD_DEBUG_LEVEL1, "%s: add_dataflash --> %d\n", - dev_name(&spi->dev), status); + pr_debug("%s: add_dataflash --> %d\n", dev_name(&spi->dev), + status); return status; } -static int __devexit dataflash_remove(struct spi_device *spi) +static int dataflash_remove(struct spi_device *spi) { - struct dataflash *flash = dev_get_drvdata(&spi->dev); + struct dataflash *flash = spi_get_drvdata(spi); int status; - DEBUG(MTD_DEBUG_LEVEL1, "%s: remove\n", dev_name(&spi->dev)); + pr_debug("%s: remove\n", dev_name(&spi->dev)); - if (mtd_has_partitions() && flash->partitioned) - status = del_mtd_partitions(&flash->mtd); - else - status = del_mtd_device(&flash->mtd); - if (status == 0) { - dev_set_drvdata(&spi->dev, NULL); + status = mtd_device_unregister(&flash->mtd); + if (status == 0) kfree(flash); - } return status; } static struct spi_driver dataflash_driver = { .driver = { .name = "mtd_dataflash", - .bus = &spi_bus_type, .owner = THIS_MODULE, + .of_match_table = of_match_ptr(dataflash_dt_ids), }, .probe = dataflash_probe, - .remove = __devexit_p(dataflash_remove), + .remove = dataflash_remove, /* FIXME: investigate suspend and resume... */ }; -static int __init dataflash_init(void) -{ - return spi_register_driver(&dataflash_driver); -} -module_init(dataflash_init); - -static void __exit dataflash_exit(void) -{ - spi_unregister_driver(&dataflash_driver); -} -module_exit(dataflash_exit); - +module_spi_driver(dataflash_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Andrew Victor, David Brownell"); diff --git a/drivers/mtd/devices/mtdram.c b/drivers/mtd/devices/mtdram.c index fce5ff7589a..8e285089229 100644 --- a/drivers/mtd/devices/mtdram.c +++ b/drivers/mtd/devices/mtdram.c @@ -14,7 +14,6 @@ #include <linux/ioport.h> #include <linux/vmalloc.h> #include <linux/init.h> -#include <linux/mtd/compatmac.h> #include <linux/mtd/mtd.h> #include <linux/mtd/mtdram.h> @@ -35,34 +34,23 @@ static struct mtd_info *mtd_info; static int ram_erase(struct mtd_info *mtd, struct erase_info *instr) { - if (instr->addr + instr->len > mtd->size) - return -EINVAL; - memset((char *)mtd->priv + instr->addr, 0xff, instr->len); - instr->state = MTD_ERASE_DONE; mtd_erase_callback(instr); - return 0; } static int ram_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, void **virt, resource_size_t *phys) { - if (from + len > mtd->size) - return -EINVAL; - - /* can we return a physical address with this driver? */ - if (phys) - return -EINVAL; - *virt = mtd->priv + from; *retlen = len; return 0; } -static void ram_unpoint(struct mtd_info *mtd, loff_t from, size_t len) +static int ram_unpoint(struct mtd_info *mtd, loff_t from, size_t len) { + return 0; } /* @@ -81,11 +69,7 @@ static unsigned long ram_get_unmapped_area(struct mtd_info *mtd, static int ram_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { - if (from + len > mtd->size) - return -EINVAL; - memcpy(buf, mtd->priv + from, len); - *retlen = len; return 0; } @@ -93,11 +77,7 @@ static int ram_read(struct mtd_info *mtd, loff_t from, size_t len, static int ram_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { - if (to + len > mtd->size) - return -EINVAL; - memcpy((char *)mtd->priv + to, buf, len); - *retlen = len; return 0; } @@ -105,14 +85,14 @@ static int ram_write(struct mtd_info *mtd, loff_t to, size_t len, static void __exit cleanup_mtdram(void) { if (mtd_info) { - del_mtd_device(mtd_info); + mtd_device_unregister(mtd_info); vfree(mtd_info->priv); kfree(mtd_info); } } int mtdram_init_device(struct mtd_info *mtd, void *mapped_address, - unsigned long size, char *name) + unsigned long size, const char *name) { memset(mtd, 0, sizeof(*mtd)); @@ -122,20 +102,20 @@ int mtdram_init_device(struct mtd_info *mtd, void *mapped_address, mtd->flags = MTD_CAP_RAM; mtd->size = size; mtd->writesize = 1; + mtd->writebufsize = 64; /* Mimic CFI NOR flashes */ mtd->erasesize = MTDRAM_ERASE_SIZE; mtd->priv = mapped_address; mtd->owner = THIS_MODULE; - mtd->erase = ram_erase; - mtd->point = ram_point; - mtd->unpoint = ram_unpoint; - mtd->get_unmapped_area = ram_get_unmapped_area; - mtd->read = ram_read; - mtd->write = ram_write; - - if (add_mtd_device(mtd)) { + mtd->_erase = ram_erase; + mtd->_point = ram_point; + mtd->_unpoint = ram_unpoint; + mtd->_get_unmapped_area = ram_get_unmapped_area; + mtd->_read = ram_read; + mtd->_write = ram_write; + + if (mtd_device_register(mtd, NULL, 0)) return -EIO; - } return 0; } diff --git a/drivers/mtd/devices/phram.c b/drivers/mtd/devices/phram.c index 1696bbecaa7..2cceebfb251 100644 --- a/drivers/mtd/devices/phram.c +++ b/drivers/mtd/devices/phram.c @@ -15,7 +15,7 @@ * phram=swap,64Mi,128Mi phram=test,900Mi,1Mi */ -#define pr_fmt(fmt) "phram: " fmt +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <asm/io.h> #include <linux/init.h> @@ -33,45 +33,33 @@ struct phram_mtd_list { static LIST_HEAD(phram_list); - static int phram_erase(struct mtd_info *mtd, struct erase_info *instr) { u_char *start = mtd->priv; - if (instr->addr + instr->len > mtd->size) - return -EINVAL; - memset(start + instr->addr, 0xff, instr->len); - /* This'll catch a few races. Free the thing before returning :) + /* + * This'll catch a few races. Free the thing before returning :) * I don't feel at all ashamed. This kind of thing is possible anyway * with flash, but unlikely. */ - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); - return 0; } static int phram_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, void **virt, resource_size_t *phys) { - if (from + len > mtd->size) - return -EINVAL; - - /* can we return a physical address with this driver? */ - if (phys) - return -EINVAL; - *virt = mtd->priv + from; *retlen = len; return 0; } -static void phram_unpoint(struct mtd_info *mtd, loff_t from, size_t len) +static int phram_unpoint(struct mtd_info *mtd, loff_t from, size_t len) { + return 0; } static int phram_read(struct mtd_info *mtd, loff_t from, size_t len, @@ -79,14 +67,7 @@ static int phram_read(struct mtd_info *mtd, loff_t from, size_t len, { u_char *start = mtd->priv; - if (from >= mtd->size) - return -EINVAL; - - if (len > mtd->size - from) - len = mtd->size - from; - memcpy(buf, start + from, len); - *retlen = len; return 0; } @@ -96,32 +77,24 @@ static int phram_write(struct mtd_info *mtd, loff_t to, size_t len, { u_char *start = mtd->priv; - if (to >= mtd->size) - return -EINVAL; - - if (len > mtd->size - to) - len = mtd->size - to; - memcpy(start + to, buf, len); - *retlen = len; return 0; } - - static void unregister_devices(void) { struct phram_mtd_list *this, *safe; list_for_each_entry_safe(this, safe, &phram_list, list) { - del_mtd_device(&this->mtd); + mtd_device_unregister(&this->mtd); iounmap(this->mtd.priv); + kfree(this->mtd.name); kfree(this); } } -static int register_device(char *name, unsigned long start, unsigned long len) +static int register_device(char *name, phys_addr_t start, size_t len) { struct phram_mtd_list *new; int ret = -ENOMEM; @@ -141,18 +114,18 @@ static int register_device(char *name, unsigned long start, unsigned long len) new->mtd.name = name; new->mtd.size = len; new->mtd.flags = MTD_CAP_RAM; - new->mtd.erase = phram_erase; - new->mtd.point = phram_point; - new->mtd.unpoint = phram_unpoint; - new->mtd.read = phram_read; - new->mtd.write = phram_write; + new->mtd._erase = phram_erase; + new->mtd._point = phram_point; + new->mtd._unpoint = phram_unpoint; + new->mtd._read = phram_read; + new->mtd._write = phram_write; new->mtd.owner = THIS_MODULE; new->mtd.type = MTD_RAM; new->mtd.erasesize = PAGE_SIZE; new->mtd.writesize = 1; ret = -EAGAIN; - if (add_mtd_device(&new->mtd)) { + if (mtd_device_register(&new->mtd, NULL, 0)) { pr_err("Failed to register new device\n"); goto out2; } @@ -168,35 +141,35 @@ out0: return ret; } -static int ustrtoul(const char *cp, char **endp, unsigned int base) +static int parse_num64(uint64_t *num64, char *token) { - unsigned long result = simple_strtoul(cp, endp, base); - - switch (**endp) { - case 'G': - result *= 1024; - case 'M': - result *= 1024; - case 'k': - result *= 1024; + size_t len; + int shift = 0; + int ret; + + len = strlen(token); /* By dwmw2 editorial decree, "ki", "Mi" or "Gi" are to be used. */ - if ((*endp)[1] == 'i') - (*endp) += 2; + if (len > 2) { + if (token[len - 1] == 'i') { + switch (token[len - 2]) { + case 'G': + shift += 10; + case 'M': + shift += 10; + case 'k': + shift += 10; + token[len - 2] = 0; + break; + default: + return -EINVAL; + } + } } - return result; -} - -static int parse_num32(uint32_t *num32, const char *token) -{ - char *endp; - unsigned long n; - n = ustrtoul(token, &endp, 0); - if (*endp) - return -EINVAL; + ret = kstrtou64(token, 0, num64); + *num64 <<= shift; - *num32 = n; - return 0; + return ret; } static int parse_name(char **pname, const char *token) @@ -232,13 +205,26 @@ static inline void kill_final_newline(char *str) return 1; \ } while (0) -static int phram_setup(const char *val, struct kernel_param *kp) +#ifndef MODULE +static int phram_init_called; +/* + * This shall contain the module parameter if any. It is of the form: + * - phram=<device>,<address>,<size> for module case + * - phram.phram=<device>,<address>,<size> for built-in case + * We leave 64 bytes for the device name, 20 for the address and 20 for the + * size. + * Example: phram.phram=rootfs,0xa0000000,512Mi + */ +static char phram_paramline[64 + 20 + 20]; +#endif + +static int phram_setup(const char *val) { - char buf[64+12+12], *str = buf; + char buf[64 + 20 + 20], *str = buf; char *token[3]; char *name; - uint32_t start; - uint32_t len; + uint64_t start; + uint64_t len; int i, ret; if (strnlen(val, sizeof(buf)) >= sizeof(buf)) @@ -260,13 +246,13 @@ static int phram_setup(const char *val, struct kernel_param *kp) if (ret) return ret; - ret = parse_num32(&start, token[1]); + ret = parse_num64(&start, token[1]); if (ret) { kfree(name); parse_err("illegal start address\n"); } - ret = parse_num32(&len, token[2]); + ret = parse_num64(&len, token[2]); if (ret) { kfree(name); parse_err("illegal device length\n"); @@ -274,18 +260,60 @@ static int phram_setup(const char *val, struct kernel_param *kp) ret = register_device(name, start, len); if (!ret) - pr_info("%s device: %#x at %#x\n", name, len, start); + pr_info("%s device: %#llx at %#llx\n", name, len, start); + else + kfree(name); return ret; } -module_param_call(phram, phram_setup, NULL, NULL, 000); +static int phram_param_call(const char *val, struct kernel_param *kp) +{ +#ifdef MODULE + return phram_setup(val); +#else + /* + * If more parameters are later passed in via + * /sys/module/phram/parameters/phram + * and init_phram() has already been called, + * we can parse the argument now. + */ + + if (phram_init_called) + return phram_setup(val); + + /* + * During early boot stage, we only save the parameters + * here. We must parse them later: if the param passed + * from kernel boot command line, phram_param_call() is + * called so early that it is not possible to resolve + * the device (even kmalloc() fails). Defer that work to + * phram_setup(). + */ + + if (strlen(val) >= sizeof(phram_paramline)) + return -ENOSPC; + strcpy(phram_paramline, val); + + return 0; +#endif +} + +module_param_call(phram, phram_param_call, NULL, NULL, 000); MODULE_PARM_DESC(phram, "Memory region to map. \"phram=<name>,<start>,<length>\""); static int __init init_phram(void) { - return 0; + int ret = 0; + +#ifndef MODULE + if (phram_paramline[0]) + ret = phram_setup(phram_paramline); + phram_init_called = 1; +#endif + + return ret; } static void __exit cleanup_phram(void) diff --git a/drivers/mtd/devices/pmc551.c b/drivers/mtd/devices/pmc551.c index fc8ea0a57ac..f02603e1bfe 100644 --- a/drivers/mtd/devices/pmc551.c +++ b/drivers/mtd/devices/pmc551.c @@ -93,15 +93,49 @@ #include <linux/fs.h> #include <linux/ioctl.h> #include <asm/io.h> -#include <asm/system.h> #include <linux/pci.h> - #include <linux/mtd/mtd.h> -#include <linux/mtd/pmc551.h> -#include <linux/mtd/compatmac.h> + +#define PMC551_VERSION \ + "Ramix PMC551 PCI Mezzanine Ram Driver. (C) 1999,2000 Nortel Networks.\n" + +#define PCI_VENDOR_ID_V3_SEMI 0x11b0 +#define PCI_DEVICE_ID_V3_SEMI_V370PDC 0x0200 + +#define PMC551_PCI_MEM_MAP0 0x50 +#define PMC551_PCI_MEM_MAP1 0x54 +#define PMC551_PCI_MEM_MAP_MAP_ADDR_MASK 0x3ff00000 +#define PMC551_PCI_MEM_MAP_APERTURE_MASK 0x000000f0 +#define PMC551_PCI_MEM_MAP_REG_EN 0x00000002 +#define PMC551_PCI_MEM_MAP_ENABLE 0x00000001 + +#define PMC551_SDRAM_MA 0x60 +#define PMC551_SDRAM_CMD 0x62 +#define PMC551_DRAM_CFG 0x64 +#define PMC551_SYS_CTRL_REG 0x78 + +#define PMC551_DRAM_BLK0 0x68 +#define PMC551_DRAM_BLK1 0x6c +#define PMC551_DRAM_BLK2 0x70 +#define PMC551_DRAM_BLK3 0x74 +#define PMC551_DRAM_BLK_GET_SIZE(x) (524288 << ((x >> 4) & 0x0f)) +#define PMC551_DRAM_BLK_SET_COL_MUX(x, v) (((x) & ~0x00007000) | (((v) & 0x7) << 12)) +#define PMC551_DRAM_BLK_SET_ROW_MUX(x, v) (((x) & ~0x00000f00) | (((v) & 0xf) << 8)) + +struct mypriv { + struct pci_dev *dev; + u_char *start; + u32 base_map0; + u32 curr_map0; + u32 asize; + struct mtd_info *nextpmc551; +}; static struct mtd_info *pmc551list; +static int pmc551_point(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, void **virt, resource_size_t *phys); + static int pmc551_erase(struct mtd_info *mtd, struct erase_info *instr) { struct mypriv *priv = mtd->priv; @@ -117,16 +151,6 @@ static int pmc551_erase(struct mtd_info *mtd, struct erase_info *instr) #endif end = instr->addr + instr->len - 1; - - /* Is it past the end? */ - if (end > mtd->size) { -#ifdef CONFIG_MTD_PMC551_DEBUG - printk(KERN_DEBUG "pmc551_erase() out of bounds (%ld > %ld)\n", - (long)end, (long)mtd->size); -#endif - return -EINVAL; - } - eoff_hi = end & ~(priv->asize - 1); soff_hi = instr->addr & ~(priv->asize - 1); eoff_lo = end & (priv->asize - 1); @@ -180,18 +204,6 @@ static int pmc551_point(struct mtd_info *mtd, loff_t from, size_t len, printk(KERN_DEBUG "pmc551_point(%ld, %ld)\n", (long)from, (long)len); #endif - if (from + len > mtd->size) { -#ifdef CONFIG_MTD_PMC551_DEBUG - printk(KERN_DEBUG "pmc551_point() out of bounds (%ld > %ld)\n", - (long)from + len, (long)mtd->size); -#endif - return -EINVAL; - } - - /* can we return a physical address with this driver? */ - if (phys) - return -EINVAL; - soff_hi = from & ~(priv->asize - 1); soff_lo = from & (priv->asize - 1); @@ -207,11 +219,12 @@ static int pmc551_point(struct mtd_info *mtd, loff_t from, size_t len, return 0; } -static void pmc551_unpoint(struct mtd_info *mtd, loff_t from, size_t len) +static int pmc551_unpoint(struct mtd_info *mtd, loff_t from, size_t len) { #ifdef CONFIG_MTD_PMC551_DEBUG printk(KERN_DEBUG "pmc551_unpoint()\n"); #endif + return 0; } static int pmc551_read(struct mtd_info *mtd, loff_t from, size_t len, @@ -230,16 +243,6 @@ static int pmc551_read(struct mtd_info *mtd, loff_t from, size_t len, #endif end = from + len - 1; - - /* Is it past the end? */ - if (end > mtd->size) { -#ifdef CONFIG_MTD_PMC551_DEBUG - printk(KERN_DEBUG "pmc551_read() out of bounds (%ld > %ld)\n", - (long)end, (long)mtd->size); -#endif - return -EINVAL; - } - soff_hi = from & ~(priv->asize - 1); eoff_hi = end & ~(priv->asize - 1); soff_lo = from & (priv->asize - 1); @@ -297,16 +300,6 @@ static int pmc551_write(struct mtd_info *mtd, loff_t to, size_t len, #endif end = to + len - 1; - /* Is it past the end? or did the u32 wrap? */ - if (end > mtd->size) { -#ifdef CONFIG_MTD_PMC551_DEBUG - printk(KERN_DEBUG "pmc551_write() out of bounds (end: %ld, " - "size: %ld, to: %ld)\n", (long)end, (long)mtd->size, - (long)to); -#endif - return -EINVAL; - } - soff_hi = to & ~(priv->asize - 1); eoff_hi = end & ~(priv->asize - 1); soff_lo = to & (priv->asize - 1); @@ -352,7 +345,7 @@ static int pmc551_write(struct mtd_info *mtd, loff_t to, size_t len, * Fixup routines for the V370PDC * PCI device ID 0x020011b0 * - * This function basicly kick starts the DRAM oboard the card and gets it + * This function basically kick starts the DRAM oboard the card and gets it * ready to be used. Before this is done the device reads VERY erratic, so * much that it can crash the Linux 2.2.x series kernels when a user cat's * /proc/pci .. though that is mainly a kernel bug in handling the PCI DEVSEL @@ -360,7 +353,7 @@ static int pmc551_write(struct mtd_info *mtd, loff_t to, size_t len, * mechanism * returns the size of the memory region found. */ -static u32 fixup_pmc551(struct pci_dev *dev) +static int fixup_pmc551(struct pci_dev *dev) { #ifdef CONFIG_MTD_PMC551_BUGFIX u32 dram_data; @@ -541,7 +534,7 @@ static u32 fixup_pmc551(struct pci_dev *dev) /* * Check to make certain the DEVSEL is set correctly, this device - * has a tendancy to assert DEVSEL and TRDY when a write is performed + * has a tendency to assert DEVSEL and TRDY when a write is performed * to the memory when memory is read-only */ if ((cmd & PCI_STATUS_DEVSEL_MASK) != 0x0) { @@ -670,7 +663,7 @@ static int __init init_pmc551(void) struct mypriv *priv; int found = 0; struct mtd_info *mtd; - u32 length = 0; + int length = 0; if (msize) { msize = (1 << (ffs(msize) - 1)) << 20; @@ -732,16 +725,11 @@ static int __init init_pmc551(void) } mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL); - if (!mtd) { - printk(KERN_NOTICE "pmc551: Cannot allocate new MTD " - "device.\n"); + if (!mtd) break; - } priv = kzalloc(sizeof(struct mypriv), GFP_KERNEL); if (!priv) { - printk(KERN_NOTICE "pmc551: Cannot allocate new MTD " - "device.\n"); kfree(mtd); break; } @@ -788,18 +776,18 @@ static int __init init_pmc551(void) mtd->size = msize; mtd->flags = MTD_CAP_RAM; - mtd->erase = pmc551_erase; - mtd->read = pmc551_read; - mtd->write = pmc551_write; - mtd->point = pmc551_point; - mtd->unpoint = pmc551_unpoint; + mtd->_erase = pmc551_erase; + mtd->_read = pmc551_read; + mtd->_write = pmc551_write; + mtd->_point = pmc551_point; + mtd->_unpoint = pmc551_unpoint; mtd->type = MTD_RAM; mtd->name = "PMC551 RAM board"; mtd->erasesize = 0x10000; mtd->writesize = 1; mtd->owner = THIS_MODULE; - if (add_mtd_device(mtd)) { + if (mtd_device_register(mtd, NULL, 0)) { printk(KERN_NOTICE "pmc551: Failed to register new device\n"); pci_iounmap(PCI_Device, priv->start); kfree(mtd->priv); @@ -807,7 +795,7 @@ static int __init init_pmc551(void) break; } - /* Keep a reference as the add_mtd_device worked */ + /* Keep a reference as the mtd_device_register worked */ pci_dev_get(PCI_Device); printk(KERN_NOTICE "Registered pmc551 memory device.\n"); @@ -857,7 +845,7 @@ static void __exit cleanup_pmc551(void) pci_dev_put(priv->dev); kfree(mtd->priv); - del_mtd_device(mtd); + mtd_device_unregister(mtd); kfree(mtd); found++; } diff --git a/drivers/mtd/devices/serial_flash_cmds.h b/drivers/mtd/devices/serial_flash_cmds.h new file mode 100644 index 00000000000..f59a125295d --- /dev/null +++ b/drivers/mtd/devices/serial_flash_cmds.h @@ -0,0 +1,61 @@ +/* + * Generic/SFDP Flash Commands and Device Capabilities + * + * Copyright (C) 2013 Lee Jones <lee.jones@lianro.org> + * + * This code is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#ifndef _MTD_SERIAL_FLASH_CMDS_H +#define _MTD_SERIAL_FLASH_CMDS_H + +/* Generic Flash Commands/OPCODEs */ +#define SPINOR_OP_RDSR2 0x35 +#define SPINOR_OP_WRVCR 0x81 +#define SPINOR_OP_RDVCR 0x85 + +/* JEDEC Standard - Serial Flash Discoverable Parmeters (SFDP) Commands */ +#define SPINOR_OP_READ_1_2_2 0xbb /* DUAL I/O READ */ +#define SPINOR_OP_READ_1_4_4 0xeb /* QUAD I/O READ */ + +#define SPINOR_OP_WRITE 0x02 /* PAGE PROGRAM */ +#define SPINOR_OP_WRITE_1_1_2 0xa2 /* DUAL INPUT PROGRAM */ +#define SPINOR_OP_WRITE_1_2_2 0xd2 /* DUAL INPUT EXT PROGRAM */ +#define SPINOR_OP_WRITE_1_1_4 0x32 /* QUAD INPUT PROGRAM */ +#define SPINOR_OP_WRITE_1_4_4 0x12 /* QUAD INPUT EXT PROGRAM */ + +/* READ commands with 32-bit addressing */ +#define SPINOR_OP_READ4_1_2_2 0xbc +#define SPINOR_OP_READ4_1_4_4 0xec + +/* Configuration flags */ +#define FLASH_FLAG_SINGLE 0x000000ff +#define FLASH_FLAG_READ_WRITE 0x00000001 +#define FLASH_FLAG_READ_FAST 0x00000002 +#define FLASH_FLAG_SE_4K 0x00000004 +#define FLASH_FLAG_SE_32K 0x00000008 +#define FLASH_FLAG_CE 0x00000010 +#define FLASH_FLAG_32BIT_ADDR 0x00000020 +#define FLASH_FLAG_RESET 0x00000040 +#define FLASH_FLAG_DYB_LOCKING 0x00000080 + +#define FLASH_FLAG_DUAL 0x0000ff00 +#define FLASH_FLAG_READ_1_1_2 0x00000100 +#define FLASH_FLAG_READ_1_2_2 0x00000200 +#define FLASH_FLAG_READ_2_2_2 0x00000400 +#define FLASH_FLAG_WRITE_1_1_2 0x00001000 +#define FLASH_FLAG_WRITE_1_2_2 0x00002000 +#define FLASH_FLAG_WRITE_2_2_2 0x00004000 + +#define FLASH_FLAG_QUAD 0x00ff0000 +#define FLASH_FLAG_READ_1_1_4 0x00010000 +#define FLASH_FLAG_READ_1_4_4 0x00020000 +#define FLASH_FLAG_READ_4_4_4 0x00040000 +#define FLASH_FLAG_WRITE_1_1_4 0x00100000 +#define FLASH_FLAG_WRITE_1_4_4 0x00200000 +#define FLASH_FLAG_WRITE_4_4_4 0x00400000 + +#endif /* _MTD_SERIAL_FLASH_CMDS_H */ diff --git a/drivers/mtd/devices/slram.c b/drivers/mtd/devices/slram.c index 592016a0668..2fc4957cbe7 100644 --- a/drivers/mtd/devices/slram.c +++ b/drivers/mtd/devices/slram.c @@ -42,7 +42,6 @@ #include <linux/ioctl.h> #include <linux/init.h> #include <asm/io.h> -#include <asm/system.h> #include <linux/mtd/mtd.h> @@ -76,7 +75,7 @@ static slram_mtd_list_t *slram_mtdlist = NULL; static int slram_erase(struct mtd_info *, struct erase_info *); static int slram_point(struct mtd_info *, loff_t, size_t, size_t *, void **, resource_size_t *); -static void slram_unpoint(struct mtd_info *, loff_t, size_t); +static int slram_unpoint(struct mtd_info *, loff_t, size_t); static int slram_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *); static int slram_write(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); @@ -84,21 +83,13 @@ static int slram_erase(struct mtd_info *mtd, struct erase_info *instr) { slram_priv_t *priv = mtd->priv; - if (instr->addr + instr->len > mtd->size) { - return(-EINVAL); - } - memset(priv->start + instr->addr, 0xff, instr->len); - /* This'll catch a few races. Free the thing before returning :) * I don't feel at all ashamed. This kind of thing is possible anyway * with flash, but unlikely. */ - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); - return(0); } @@ -107,20 +98,14 @@ static int slram_point(struct mtd_info *mtd, loff_t from, size_t len, { slram_priv_t *priv = mtd->priv; - /* can we return a physical address with this driver? */ - if (phys) - return -EINVAL; - - if (from + len > mtd->size) - return -EINVAL; - *virt = priv->start + from; *retlen = len; return(0); } -static void slram_unpoint(struct mtd_info *mtd, loff_t from, size_t len) +static int slram_unpoint(struct mtd_info *mtd, loff_t from, size_t len) { + return 0; } static int slram_read(struct mtd_info *mtd, loff_t from, size_t len, @@ -128,14 +113,7 @@ static int slram_read(struct mtd_info *mtd, loff_t from, size_t len, { slram_priv_t *priv = mtd->priv; - if (from > mtd->size) - return -EINVAL; - - if (from + len > mtd->size) - len = mtd->size - from; - memcpy(buf, priv->start + from, len); - *retlen = len; return(0); } @@ -145,11 +123,7 @@ static int slram_write(struct mtd_info *mtd, loff_t to, size_t len, { slram_priv_t *priv = mtd->priv; - if (to + len > mtd->size) - return -EINVAL; - memcpy(priv->start + to, buf, len); - *retlen = len; return(0); } @@ -200,17 +174,17 @@ static int register_device(char *name, unsigned long start, unsigned long length (*curmtd)->mtdinfo->name = name; (*curmtd)->mtdinfo->size = length; (*curmtd)->mtdinfo->flags = MTD_CAP_RAM; - (*curmtd)->mtdinfo->erase = slram_erase; - (*curmtd)->mtdinfo->point = slram_point; - (*curmtd)->mtdinfo->unpoint = slram_unpoint; - (*curmtd)->mtdinfo->read = slram_read; - (*curmtd)->mtdinfo->write = slram_write; + (*curmtd)->mtdinfo->_erase = slram_erase; + (*curmtd)->mtdinfo->_point = slram_point; + (*curmtd)->mtdinfo->_unpoint = slram_unpoint; + (*curmtd)->mtdinfo->_read = slram_read; + (*curmtd)->mtdinfo->_write = slram_write; (*curmtd)->mtdinfo->owner = THIS_MODULE; (*curmtd)->mtdinfo->type = MTD_RAM; (*curmtd)->mtdinfo->erasesize = SLRAM_BLK_SZ; (*curmtd)->mtdinfo->writesize = 1; - if (add_mtd_device((*curmtd)->mtdinfo)) { + if (mtd_device_register((*curmtd)->mtdinfo, NULL, 0)) { E("slram: Failed to register new device\n"); iounmap(((slram_priv_t *)(*curmtd)->mtdinfo->priv)->start); kfree((*curmtd)->mtdinfo->priv); @@ -231,7 +205,7 @@ static void unregister_devices(void) while (slram_mtdlist) { nextitem = slram_mtdlist->next; - del_mtd_device(slram_mtdlist->mtdinfo); + mtd_device_unregister(slram_mtdlist->mtdinfo); iounmap(((slram_priv_t *)slram_mtdlist->mtdinfo->priv)->start); kfree(slram_mtdlist->mtdinfo->priv); kfree(slram_mtdlist->mtdinfo); @@ -266,7 +240,7 @@ static int parse_cmdline(char *devname, char *szstart, char *szlength) if (*(szlength) != '+') { devlength = simple_strtoul(szlength, &buffer, 0); - devlength = handle_unit(devlength, buffer) - devstart; + devlength = handle_unit(devlength, buffer); if (devlength < devstart) goto err_out; @@ -306,14 +280,11 @@ __setup("slram=", mtd_slram_setup); static int __init init_slram(void) { char *devname; - int i; #ifndef MODULE char *devstart; char *devlength; - i = 0; - if (!map) { E("slram: not enough parameters.\n"); return(-EINVAL); @@ -340,6 +311,7 @@ static int __init init_slram(void) } #else int count; + int i; for (count = 0; count < SLRAM_MAX_DEVICES_PARAMS && map[count]; count++) { diff --git a/drivers/mtd/devices/spear_smi.c b/drivers/mtd/devices/spear_smi.c new file mode 100644 index 00000000000..c4176b0f382 --- /dev/null +++ b/drivers/mtd/devices/spear_smi.c @@ -0,0 +1,1093 @@ +/* + * SMI (Serial Memory Controller) device driver for Serial NOR Flash on + * SPEAr platform + * The serial nor interface is largely based on drivers/mtd/m25p80.c, + * however the SPI interface has been replaced by SMI. + * + * Copyright © 2010 STMicroelectronics. + * Ashish Priyadarshi + * Shiraz Hashim <shiraz.linux.kernel@gmail.com> + * + * This file is licensed under the terms of the GNU General Public + * License version 2. This program is licensed "as is" without any + * warranty of any kind, whether express or implied. + */ + +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/device.h> +#include <linux/err.h> +#include <linux/errno.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/ioport.h> +#include <linux/jiffies.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/param.h> +#include <linux/platform_device.h> +#include <linux/pm.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/spear_smi.h> +#include <linux/mutex.h> +#include <linux/sched.h> +#include <linux/slab.h> +#include <linux/wait.h> +#include <linux/of.h> +#include <linux/of_address.h> + +/* SMI clock rate */ +#define SMI_MAX_CLOCK_FREQ 50000000 /* 50 MHz */ + +/* MAX time out to safely come out of a erase or write busy conditions */ +#define SMI_PROBE_TIMEOUT (HZ / 10) +#define SMI_MAX_TIME_OUT (3 * HZ) + +/* timeout for command completion */ +#define SMI_CMD_TIMEOUT (HZ / 10) + +/* registers of smi */ +#define SMI_CR1 0x0 /* SMI control register 1 */ +#define SMI_CR2 0x4 /* SMI control register 2 */ +#define SMI_SR 0x8 /* SMI status register */ +#define SMI_TR 0xC /* SMI transmit register */ +#define SMI_RR 0x10 /* SMI receive register */ + +/* defines for control_reg 1 */ +#define BANK_EN (0xF << 0) /* enables all banks */ +#define DSEL_TIME (0x6 << 4) /* Deselect time 6 + 1 SMI_CK periods */ +#define SW_MODE (0x1 << 28) /* enables SW Mode */ +#define WB_MODE (0x1 << 29) /* Write Burst Mode */ +#define FAST_MODE (0x1 << 15) /* Fast Mode */ +#define HOLD1 (0x1 << 16) /* Clock Hold period selection */ + +/* defines for control_reg 2 */ +#define SEND (0x1 << 7) /* Send data */ +#define TFIE (0x1 << 8) /* Transmission Flag Interrupt Enable */ +#define WCIE (0x1 << 9) /* Write Complete Interrupt Enable */ +#define RD_STATUS_REG (0x1 << 10) /* reads status reg */ +#define WE (0x1 << 11) /* Write Enable */ + +#define TX_LEN_SHIFT 0 +#define RX_LEN_SHIFT 4 +#define BANK_SHIFT 12 + +/* defines for status register */ +#define SR_WIP 0x1 /* Write in progress */ +#define SR_WEL 0x2 /* Write enable latch */ +#define SR_BP0 0x4 /* Block protect 0 */ +#define SR_BP1 0x8 /* Block protect 1 */ +#define SR_BP2 0x10 /* Block protect 2 */ +#define SR_SRWD 0x80 /* SR write protect */ +#define TFF 0x100 /* Transfer Finished Flag */ +#define WCF 0x200 /* Transfer Finished Flag */ +#define ERF1 0x400 /* Forbidden Write Request */ +#define ERF2 0x800 /* Forbidden Access */ + +#define WM_SHIFT 12 + +/* flash opcodes */ +#define OPCODE_RDID 0x9f /* Read JEDEC ID */ + +/* Flash Device Ids maintenance section */ + +/* data structure to maintain flash ids from different vendors */ +struct flash_device { + char *name; + u8 erase_cmd; + u32 device_id; + u32 pagesize; + unsigned long sectorsize; + unsigned long size_in_bytes; +}; + +#define FLASH_ID(n, es, id, psize, ssize, size) \ +{ \ + .name = n, \ + .erase_cmd = es, \ + .device_id = id, \ + .pagesize = psize, \ + .sectorsize = ssize, \ + .size_in_bytes = size \ +} + +static struct flash_device flash_devices[] = { + FLASH_ID("st m25p16" , 0xd8, 0x00152020, 0x100, 0x10000, 0x200000), + FLASH_ID("st m25p32" , 0xd8, 0x00162020, 0x100, 0x10000, 0x400000), + FLASH_ID("st m25p64" , 0xd8, 0x00172020, 0x100, 0x10000, 0x800000), + FLASH_ID("st m25p128" , 0xd8, 0x00182020, 0x100, 0x40000, 0x1000000), + FLASH_ID("st m25p05" , 0xd8, 0x00102020, 0x80 , 0x8000 , 0x10000), + FLASH_ID("st m25p10" , 0xd8, 0x00112020, 0x80 , 0x8000 , 0x20000), + FLASH_ID("st m25p20" , 0xd8, 0x00122020, 0x100, 0x10000, 0x40000), + FLASH_ID("st m25p40" , 0xd8, 0x00132020, 0x100, 0x10000, 0x80000), + FLASH_ID("st m25p80" , 0xd8, 0x00142020, 0x100, 0x10000, 0x100000), + FLASH_ID("st m45pe10" , 0xd8, 0x00114020, 0x100, 0x10000, 0x20000), + FLASH_ID("st m45pe20" , 0xd8, 0x00124020, 0x100, 0x10000, 0x40000), + FLASH_ID("st m45pe40" , 0xd8, 0x00134020, 0x100, 0x10000, 0x80000), + FLASH_ID("st m45pe80" , 0xd8, 0x00144020, 0x100, 0x10000, 0x100000), + FLASH_ID("sp s25fl004" , 0xd8, 0x00120201, 0x100, 0x10000, 0x80000), + FLASH_ID("sp s25fl008" , 0xd8, 0x00130201, 0x100, 0x10000, 0x100000), + FLASH_ID("sp s25fl016" , 0xd8, 0x00140201, 0x100, 0x10000, 0x200000), + FLASH_ID("sp s25fl032" , 0xd8, 0x00150201, 0x100, 0x10000, 0x400000), + FLASH_ID("sp s25fl064" , 0xd8, 0x00160201, 0x100, 0x10000, 0x800000), + FLASH_ID("atmel 25f512" , 0x52, 0x0065001F, 0x80 , 0x8000 , 0x10000), + FLASH_ID("atmel 25f1024" , 0x52, 0x0060001F, 0x100, 0x8000 , 0x20000), + FLASH_ID("atmel 25f2048" , 0x52, 0x0063001F, 0x100, 0x10000, 0x40000), + FLASH_ID("atmel 25f4096" , 0x52, 0x0064001F, 0x100, 0x10000, 0x80000), + FLASH_ID("atmel 25fs040" , 0xd7, 0x0004661F, 0x100, 0x10000, 0x80000), + FLASH_ID("mac 25l512" , 0xd8, 0x001020C2, 0x010, 0x10000, 0x10000), + FLASH_ID("mac 25l1005" , 0xd8, 0x001120C2, 0x010, 0x10000, 0x20000), + FLASH_ID("mac 25l2005" , 0xd8, 0x001220C2, 0x010, 0x10000, 0x40000), + FLASH_ID("mac 25l4005" , 0xd8, 0x001320C2, 0x010, 0x10000, 0x80000), + FLASH_ID("mac 25l4005a" , 0xd8, 0x001320C2, 0x010, 0x10000, 0x80000), + FLASH_ID("mac 25l8005" , 0xd8, 0x001420C2, 0x010, 0x10000, 0x100000), + FLASH_ID("mac 25l1605" , 0xd8, 0x001520C2, 0x100, 0x10000, 0x200000), + FLASH_ID("mac 25l1605a" , 0xd8, 0x001520C2, 0x010, 0x10000, 0x200000), + FLASH_ID("mac 25l3205" , 0xd8, 0x001620C2, 0x100, 0x10000, 0x400000), + FLASH_ID("mac 25l3205a" , 0xd8, 0x001620C2, 0x100, 0x10000, 0x400000), + FLASH_ID("mac 25l6405" , 0xd8, 0x001720C2, 0x100, 0x10000, 0x800000), +}; + +/* Define spear specific structures */ + +struct spear_snor_flash; + +/** + * struct spear_smi - Structure for SMI Device + * + * @clk: functional clock + * @status: current status register of SMI. + * @clk_rate: functional clock rate of SMI (default: SMI_MAX_CLOCK_FREQ) + * @lock: lock to prevent parallel access of SMI. + * @io_base: base address for registers of SMI. + * @pdev: platform device + * @cmd_complete: queue to wait for command completion of NOR-flash. + * @num_flashes: number of flashes actually present on board. + * @flash: separate structure for each Serial NOR-flash attached to SMI. + */ +struct spear_smi { + struct clk *clk; + u32 status; + unsigned long clk_rate; + struct mutex lock; + void __iomem *io_base; + struct platform_device *pdev; + wait_queue_head_t cmd_complete; + u32 num_flashes; + struct spear_snor_flash *flash[MAX_NUM_FLASH_CHIP]; +}; + +/** + * struct spear_snor_flash - Structure for Serial NOR Flash + * + * @bank: Bank number(0, 1, 2, 3) for each NOR-flash. + * @dev_id: Device ID of NOR-flash. + * @lock: lock to manage flash read, write and erase operations + * @mtd: MTD info for each NOR-flash. + * @num_parts: Total number of partition in each bank of NOR-flash. + * @parts: Partition info for each bank of NOR-flash. + * @page_size: Page size of NOR-flash. + * @base_addr: Base address of NOR-flash. + * @erase_cmd: erase command may vary on different flash types + * @fast_mode: flash supports read in fast mode + */ +struct spear_snor_flash { + u32 bank; + u32 dev_id; + struct mutex lock; + struct mtd_info mtd; + u32 num_parts; + struct mtd_partition *parts; + u32 page_size; + void __iomem *base_addr; + u8 erase_cmd; + u8 fast_mode; +}; + +static inline struct spear_snor_flash *get_flash_data(struct mtd_info *mtd) +{ + return container_of(mtd, struct spear_snor_flash, mtd); +} + +/** + * spear_smi_read_sr - Read status register of flash through SMI + * @dev: structure of SMI information. + * @bank: bank to which flash is connected + * + * This routine will return the status register of the flash chip present at the + * given bank. + */ +static int spear_smi_read_sr(struct spear_smi *dev, u32 bank) +{ + int ret; + u32 ctrlreg1; + + mutex_lock(&dev->lock); + dev->status = 0; /* Will be set in interrupt handler */ + + ctrlreg1 = readl(dev->io_base + SMI_CR1); + /* program smi in hw mode */ + writel(ctrlreg1 & ~(SW_MODE | WB_MODE), dev->io_base + SMI_CR1); + + /* performing a rsr instruction in hw mode */ + writel((bank << BANK_SHIFT) | RD_STATUS_REG | TFIE, + dev->io_base + SMI_CR2); + + /* wait for tff */ + ret = wait_event_interruptible_timeout(dev->cmd_complete, + dev->status & TFF, SMI_CMD_TIMEOUT); + + /* copy dev->status (lower 16 bits) in order to release lock */ + if (ret > 0) + ret = dev->status & 0xffff; + else if (ret == 0) + ret = -ETIMEDOUT; + + /* restore the ctrl regs state */ + writel(ctrlreg1, dev->io_base + SMI_CR1); + writel(0, dev->io_base + SMI_CR2); + mutex_unlock(&dev->lock); + + return ret; +} + +/** + * spear_smi_wait_till_ready - wait till flash is ready + * @dev: structure of SMI information. + * @bank: flash corresponding to this bank + * @timeout: timeout for busy wait condition + * + * This routine checks for WIP (write in progress) bit in Status register + * If successful the routine returns 0 else -EBUSY + */ +static int spear_smi_wait_till_ready(struct spear_smi *dev, u32 bank, + unsigned long timeout) +{ + unsigned long finish; + int status; + + finish = jiffies + timeout; + do { + status = spear_smi_read_sr(dev, bank); + if (status < 0) { + if (status == -ETIMEDOUT) + continue; /* try till finish */ + return status; + } else if (!(status & SR_WIP)) { + return 0; + } + + cond_resched(); + } while (!time_after_eq(jiffies, finish)); + + dev_err(&dev->pdev->dev, "smi controller is busy, timeout\n"); + return -EBUSY; +} + +/** + * spear_smi_int_handler - SMI Interrupt Handler. + * @irq: irq number + * @dev_id: structure of SMI device, embedded in dev_id. + * + * The handler clears all interrupt conditions and records the status in + * dev->status which is used by the driver later. + */ +static irqreturn_t spear_smi_int_handler(int irq, void *dev_id) +{ + u32 status = 0; + struct spear_smi *dev = dev_id; + + status = readl(dev->io_base + SMI_SR); + + if (unlikely(!status)) + return IRQ_NONE; + + /* clear all interrupt conditions */ + writel(0, dev->io_base + SMI_SR); + + /* copy the status register in dev->status */ + dev->status |= status; + + /* send the completion */ + wake_up_interruptible(&dev->cmd_complete); + + return IRQ_HANDLED; +} + +/** + * spear_smi_hw_init - initializes the smi controller. + * @dev: structure of smi device + * + * this routine initializes the smi controller wit the default values + */ +static void spear_smi_hw_init(struct spear_smi *dev) +{ + unsigned long rate = 0; + u32 prescale = 0; + u32 val; + + rate = clk_get_rate(dev->clk); + + /* functional clock of smi */ + prescale = DIV_ROUND_UP(rate, dev->clk_rate); + + /* + * setting the standard values, fast mode, prescaler for + * SMI_MAX_CLOCK_FREQ (50MHz) operation and bank enable + */ + val = HOLD1 | BANK_EN | DSEL_TIME | (prescale << 8); + + mutex_lock(&dev->lock); + /* clear all interrupt conditions */ + writel(0, dev->io_base + SMI_SR); + + writel(val, dev->io_base + SMI_CR1); + mutex_unlock(&dev->lock); +} + +/** + * get_flash_index - match chip id from a flash list. + * @flash_id: a valid nor flash chip id obtained from board. + * + * try to validate the chip id by matching from a list, if not found then simply + * returns negative. In case of success returns index in to the flash devices + * array. + */ +static int get_flash_index(u32 flash_id) +{ + int index; + + /* Matches chip-id to entire list of 'serial-nor flash' ids */ + for (index = 0; index < ARRAY_SIZE(flash_devices); index++) { + if (flash_devices[index].device_id == flash_id) + return index; + } + + /* Memory chip is not listed and not supported */ + return -ENODEV; +} + +/** + * spear_smi_write_enable - Enable the flash to do write operation + * @dev: structure of SMI device + * @bank: enable write for flash connected to this bank + * + * Set write enable latch with Write Enable command. + * Returns 0 on success. + */ +static int spear_smi_write_enable(struct spear_smi *dev, u32 bank) +{ + int ret; + u32 ctrlreg1; + + mutex_lock(&dev->lock); + dev->status = 0; /* Will be set in interrupt handler */ + + ctrlreg1 = readl(dev->io_base + SMI_CR1); + /* program smi in h/w mode */ + writel(ctrlreg1 & ~SW_MODE, dev->io_base + SMI_CR1); + + /* give the flash, write enable command */ + writel((bank << BANK_SHIFT) | WE | TFIE, dev->io_base + SMI_CR2); + + ret = wait_event_interruptible_timeout(dev->cmd_complete, + dev->status & TFF, SMI_CMD_TIMEOUT); + + /* restore the ctrl regs state */ + writel(ctrlreg1, dev->io_base + SMI_CR1); + writel(0, dev->io_base + SMI_CR2); + + if (ret == 0) { + ret = -EIO; + dev_err(&dev->pdev->dev, + "smi controller failed on write enable\n"); + } else if (ret > 0) { + /* check whether write mode status is set for required bank */ + if (dev->status & (1 << (bank + WM_SHIFT))) + ret = 0; + else { + dev_err(&dev->pdev->dev, "couldn't enable write\n"); + ret = -EIO; + } + } + + mutex_unlock(&dev->lock); + return ret; +} + +static inline u32 +get_sector_erase_cmd(struct spear_snor_flash *flash, u32 offset) +{ + u32 cmd; + u8 *x = (u8 *)&cmd; + + x[0] = flash->erase_cmd; + x[1] = offset >> 16; + x[2] = offset >> 8; + x[3] = offset; + + return cmd; +} + +/** + * spear_smi_erase_sector - erase one sector of flash + * @dev: structure of SMI information + * @command: erase command to be send + * @bank: bank to which this command needs to be send + * @bytes: size of command + * + * Erase one sector of flash memory at offset ``offset'' which is any + * address within the sector which should be erased. + * Returns 0 if successful, non-zero otherwise. + */ +static int spear_smi_erase_sector(struct spear_smi *dev, + u32 bank, u32 command, u32 bytes) +{ + u32 ctrlreg1 = 0; + int ret; + + ret = spear_smi_wait_till_ready(dev, bank, SMI_MAX_TIME_OUT); + if (ret) + return ret; + + ret = spear_smi_write_enable(dev, bank); + if (ret) + return ret; + + mutex_lock(&dev->lock); + + ctrlreg1 = readl(dev->io_base + SMI_CR1); + writel((ctrlreg1 | SW_MODE) & ~WB_MODE, dev->io_base + SMI_CR1); + + /* send command in sw mode */ + writel(command, dev->io_base + SMI_TR); + + writel((bank << BANK_SHIFT) | SEND | TFIE | (bytes << TX_LEN_SHIFT), + dev->io_base + SMI_CR2); + + ret = wait_event_interruptible_timeout(dev->cmd_complete, + dev->status & TFF, SMI_CMD_TIMEOUT); + + if (ret == 0) { + ret = -EIO; + dev_err(&dev->pdev->dev, "sector erase failed\n"); + } else if (ret > 0) + ret = 0; /* success */ + + /* restore ctrl regs */ + writel(ctrlreg1, dev->io_base + SMI_CR1); + writel(0, dev->io_base + SMI_CR2); + + mutex_unlock(&dev->lock); + return ret; +} + +/** + * spear_mtd_erase - perform flash erase operation as requested by user + * @mtd: Provides the memory characteristics + * @e_info: Provides the erase information + * + * Erase an address range on the flash chip. The address range may extend + * one or more erase sectors. Return an error is there is a problem erasing. + */ +static int spear_mtd_erase(struct mtd_info *mtd, struct erase_info *e_info) +{ + struct spear_snor_flash *flash = get_flash_data(mtd); + struct spear_smi *dev = mtd->priv; + u32 addr, command, bank; + int len, ret; + + if (!flash || !dev) + return -ENODEV; + + bank = flash->bank; + if (bank > dev->num_flashes - 1) { + dev_err(&dev->pdev->dev, "Invalid Bank Num"); + return -EINVAL; + } + + addr = e_info->addr; + len = e_info->len; + + mutex_lock(&flash->lock); + + /* now erase sectors in loop */ + while (len) { + command = get_sector_erase_cmd(flash, addr); + /* preparing the command for flash */ + ret = spear_smi_erase_sector(dev, bank, command, 4); + if (ret) { + e_info->state = MTD_ERASE_FAILED; + mutex_unlock(&flash->lock); + return ret; + } + addr += mtd->erasesize; + len -= mtd->erasesize; + } + + mutex_unlock(&flash->lock); + e_info->state = MTD_ERASE_DONE; + mtd_erase_callback(e_info); + + return 0; +} + +/** + * spear_mtd_read - performs flash read operation as requested by the user + * @mtd: MTD information of the memory bank + * @from: Address from which to start read + * @len: Number of bytes to be read + * @retlen: Fills the Number of bytes actually read + * @buf: Fills this after reading + * + * Read an address range from the flash chip. The address range + * may be any size provided it is within the physical boundaries. + * Returns 0 on success, non zero otherwise + */ +static int spear_mtd_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u8 *buf) +{ + struct spear_snor_flash *flash = get_flash_data(mtd); + struct spear_smi *dev = mtd->priv; + void __iomem *src; + u32 ctrlreg1, val; + int ret; + + if (!flash || !dev) + return -ENODEV; + + if (flash->bank > dev->num_flashes - 1) { + dev_err(&dev->pdev->dev, "Invalid Bank Num"); + return -EINVAL; + } + + /* select address as per bank number */ + src = flash->base_addr + from; + + mutex_lock(&flash->lock); + + /* wait till previous write/erase is done. */ + ret = spear_smi_wait_till_ready(dev, flash->bank, SMI_MAX_TIME_OUT); + if (ret) { + mutex_unlock(&flash->lock); + return ret; + } + + mutex_lock(&dev->lock); + /* put smi in hw mode not wbt mode */ + ctrlreg1 = val = readl(dev->io_base + SMI_CR1); + val &= ~(SW_MODE | WB_MODE); + if (flash->fast_mode) + val |= FAST_MODE; + + writel(val, dev->io_base + SMI_CR1); + + memcpy_fromio(buf, src, len); + + /* restore ctrl reg1 */ + writel(ctrlreg1, dev->io_base + SMI_CR1); + mutex_unlock(&dev->lock); + + *retlen = len; + mutex_unlock(&flash->lock); + + return 0; +} + +static inline int spear_smi_cpy_toio(struct spear_smi *dev, u32 bank, + void __iomem *dest, const void *src, size_t len) +{ + int ret; + u32 ctrlreg1; + + /* wait until finished previous write command. */ + ret = spear_smi_wait_till_ready(dev, bank, SMI_MAX_TIME_OUT); + if (ret) + return ret; + + /* put smi in write enable */ + ret = spear_smi_write_enable(dev, bank); + if (ret) + return ret; + + /* put smi in hw, write burst mode */ + mutex_lock(&dev->lock); + + ctrlreg1 = readl(dev->io_base + SMI_CR1); + writel((ctrlreg1 | WB_MODE) & ~SW_MODE, dev->io_base + SMI_CR1); + + memcpy_toio(dest, src, len); + + writel(ctrlreg1, dev->io_base + SMI_CR1); + + mutex_unlock(&dev->lock); + return 0; +} + +/** + * spear_mtd_write - performs write operation as requested by the user. + * @mtd: MTD information of the memory bank. + * @to: Address to write. + * @len: Number of bytes to be written. + * @retlen: Number of bytes actually wrote. + * @buf: Buffer from which the data to be taken. + * + * Write an address range to the flash chip. Data must be written in + * flash_page_size chunks. The address range may be any size provided + * it is within the physical boundaries. + * Returns 0 on success, non zero otherwise + */ +static int spear_mtd_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u8 *buf) +{ + struct spear_snor_flash *flash = get_flash_data(mtd); + struct spear_smi *dev = mtd->priv; + void __iomem *dest; + u32 page_offset, page_size; + int ret; + + if (!flash || !dev) + return -ENODEV; + + if (flash->bank > dev->num_flashes - 1) { + dev_err(&dev->pdev->dev, "Invalid Bank Num"); + return -EINVAL; + } + + /* select address as per bank number */ + dest = flash->base_addr + to; + mutex_lock(&flash->lock); + + page_offset = (u32)to % flash->page_size; + + /* do if all the bytes fit onto one page */ + if (page_offset + len <= flash->page_size) { + ret = spear_smi_cpy_toio(dev, flash->bank, dest, buf, len); + if (!ret) + *retlen += len; + } else { + u32 i; + + /* the size of data remaining on the first page */ + page_size = flash->page_size - page_offset; + + ret = spear_smi_cpy_toio(dev, flash->bank, dest, buf, + page_size); + if (ret) + goto err_write; + else + *retlen += page_size; + + /* write everything in pagesize chunks */ + for (i = page_size; i < len; i += page_size) { + page_size = len - i; + if (page_size > flash->page_size) + page_size = flash->page_size; + + ret = spear_smi_cpy_toio(dev, flash->bank, dest + i, + buf + i, page_size); + if (ret) + break; + else + *retlen += page_size; + } + } + +err_write: + mutex_unlock(&flash->lock); + + return ret; +} + +/** + * spear_smi_probe_flash - Detects the NOR Flash chip. + * @dev: structure of SMI information. + * @bank: bank on which flash must be probed + * + * This routine will check whether there exists a flash chip on a given memory + * bank ID. + * Return index of the probed flash in flash devices structure + */ +static int spear_smi_probe_flash(struct spear_smi *dev, u32 bank) +{ + int ret; + u32 val = 0; + + ret = spear_smi_wait_till_ready(dev, bank, SMI_PROBE_TIMEOUT); + if (ret) + return ret; + + mutex_lock(&dev->lock); + + dev->status = 0; /* Will be set in interrupt handler */ + /* put smi in sw mode */ + val = readl(dev->io_base + SMI_CR1); + writel(val | SW_MODE, dev->io_base + SMI_CR1); + + /* send readid command in sw mode */ + writel(OPCODE_RDID, dev->io_base + SMI_TR); + + val = (bank << BANK_SHIFT) | SEND | (1 << TX_LEN_SHIFT) | + (3 << RX_LEN_SHIFT) | TFIE; + writel(val, dev->io_base + SMI_CR2); + + /* wait for TFF */ + ret = wait_event_interruptible_timeout(dev->cmd_complete, + dev->status & TFF, SMI_CMD_TIMEOUT); + if (ret <= 0) { + ret = -ENODEV; + goto err_probe; + } + + /* get memory chip id */ + val = readl(dev->io_base + SMI_RR); + val &= 0x00ffffff; + ret = get_flash_index(val); + +err_probe: + /* clear sw mode */ + val = readl(dev->io_base + SMI_CR1); + writel(val & ~SW_MODE, dev->io_base + SMI_CR1); + + mutex_unlock(&dev->lock); + return ret; +} + + +#ifdef CONFIG_OF +static int spear_smi_probe_config_dt(struct platform_device *pdev, + struct device_node *np) +{ + struct spear_smi_plat_data *pdata = dev_get_platdata(&pdev->dev); + struct device_node *pp = NULL; + const __be32 *addr; + u32 val; + int len; + int i = 0; + + if (!np) + return -ENODEV; + + of_property_read_u32(np, "clock-rate", &val); + pdata->clk_rate = val; + + pdata->board_flash_info = devm_kzalloc(&pdev->dev, + sizeof(*pdata->board_flash_info), + GFP_KERNEL); + + /* Fill structs for each subnode (flash device) */ + while ((pp = of_get_next_child(np, pp))) { + struct spear_smi_flash_info *flash_info; + + flash_info = &pdata->board_flash_info[i]; + pdata->np[i] = pp; + + /* Read base-addr and size from DT */ + addr = of_get_property(pp, "reg", &len); + pdata->board_flash_info->mem_base = be32_to_cpup(&addr[0]); + pdata->board_flash_info->size = be32_to_cpup(&addr[1]); + + if (of_get_property(pp, "st,smi-fast-mode", NULL)) + pdata->board_flash_info->fast_mode = 1; + + i++; + } + + pdata->num_flashes = i; + + return 0; +} +#else +static int spear_smi_probe_config_dt(struct platform_device *pdev, + struct device_node *np) +{ + return -ENOSYS; +} +#endif + +static int spear_smi_setup_banks(struct platform_device *pdev, + u32 bank, struct device_node *np) +{ + struct spear_smi *dev = platform_get_drvdata(pdev); + struct mtd_part_parser_data ppdata = {}; + struct spear_smi_flash_info *flash_info; + struct spear_smi_plat_data *pdata; + struct spear_snor_flash *flash; + struct mtd_partition *parts = NULL; + int count = 0; + int flash_index; + int ret = 0; + + pdata = dev_get_platdata(&pdev->dev); + if (bank > pdata->num_flashes - 1) + return -EINVAL; + + flash_info = &pdata->board_flash_info[bank]; + if (!flash_info) + return -ENODEV; + + flash = devm_kzalloc(&pdev->dev, sizeof(*flash), GFP_ATOMIC); + if (!flash) + return -ENOMEM; + flash->bank = bank; + flash->fast_mode = flash_info->fast_mode ? 1 : 0; + mutex_init(&flash->lock); + + /* verify whether nor flash is really present on board */ + flash_index = spear_smi_probe_flash(dev, bank); + if (flash_index < 0) { + dev_info(&dev->pdev->dev, "smi-nor%d not found\n", bank); + return flash_index; + } + /* map the memory for nor flash chip */ + flash->base_addr = devm_ioremap(&pdev->dev, flash_info->mem_base, + flash_info->size); + if (!flash->base_addr) + return -EIO; + + dev->flash[bank] = flash; + flash->mtd.priv = dev; + + if (flash_info->name) + flash->mtd.name = flash_info->name; + else + flash->mtd.name = flash_devices[flash_index].name; + + flash->mtd.type = MTD_NORFLASH; + flash->mtd.writesize = 1; + flash->mtd.flags = MTD_CAP_NORFLASH; + flash->mtd.size = flash_info->size; + flash->mtd.erasesize = flash_devices[flash_index].sectorsize; + flash->page_size = flash_devices[flash_index].pagesize; + flash->mtd.writebufsize = flash->page_size; + flash->erase_cmd = flash_devices[flash_index].erase_cmd; + flash->mtd._erase = spear_mtd_erase; + flash->mtd._read = spear_mtd_read; + flash->mtd._write = spear_mtd_write; + flash->dev_id = flash_devices[flash_index].device_id; + + dev_info(&dev->pdev->dev, "mtd .name=%s .size=%llx(%lluM)\n", + flash->mtd.name, flash->mtd.size, + flash->mtd.size / (1024 * 1024)); + + dev_info(&dev->pdev->dev, ".erasesize = 0x%x(%uK)\n", + flash->mtd.erasesize, flash->mtd.erasesize / 1024); + +#ifndef CONFIG_OF + if (flash_info->partitions) { + parts = flash_info->partitions; + count = flash_info->nr_partitions; + } +#endif + ppdata.of_node = np; + + ret = mtd_device_parse_register(&flash->mtd, NULL, &ppdata, parts, + count); + if (ret) { + dev_err(&dev->pdev->dev, "Err MTD partition=%d\n", ret); + return ret; + } + + return 0; +} + +/** + * spear_smi_probe - Entry routine + * @pdev: platform device structure + * + * This is the first routine which gets invoked during booting and does all + * initialization/allocation work. The routine looks for available memory banks, + * and do proper init for any found one. + * Returns 0 on success, non zero otherwise + */ +static int spear_smi_probe(struct platform_device *pdev) +{ + struct device_node *np = pdev->dev.of_node; + struct spear_smi_plat_data *pdata = NULL; + struct spear_smi *dev; + struct resource *smi_base; + int irq, ret = 0; + int i; + + if (np) { + pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); + if (!pdata) { + ret = -ENOMEM; + goto err; + } + pdev->dev.platform_data = pdata; + ret = spear_smi_probe_config_dt(pdev, np); + if (ret) { + ret = -ENODEV; + dev_err(&pdev->dev, "no platform data\n"); + goto err; + } + } else { + pdata = dev_get_platdata(&pdev->dev); + if (!pdata) { + ret = -ENODEV; + dev_err(&pdev->dev, "no platform data\n"); + goto err; + } + } + + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + ret = -ENODEV; + dev_err(&pdev->dev, "invalid smi irq\n"); + goto err; + } + + dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_ATOMIC); + if (!dev) { + ret = -ENOMEM; + goto err; + } + + smi_base = platform_get_resource(pdev, IORESOURCE_MEM, 0); + + dev->io_base = devm_ioremap_resource(&pdev->dev, smi_base); + if (IS_ERR(dev->io_base)) { + ret = PTR_ERR(dev->io_base); + goto err; + } + + dev->pdev = pdev; + dev->clk_rate = pdata->clk_rate; + + if (dev->clk_rate > SMI_MAX_CLOCK_FREQ) + dev->clk_rate = SMI_MAX_CLOCK_FREQ; + + dev->num_flashes = pdata->num_flashes; + + if (dev->num_flashes > MAX_NUM_FLASH_CHIP) { + dev_err(&pdev->dev, "exceeding max number of flashes\n"); + dev->num_flashes = MAX_NUM_FLASH_CHIP; + } + + dev->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(dev->clk)) { + ret = PTR_ERR(dev->clk); + goto err; + } + + ret = clk_prepare_enable(dev->clk); + if (ret) + goto err; + + ret = devm_request_irq(&pdev->dev, irq, spear_smi_int_handler, 0, + pdev->name, dev); + if (ret) { + dev_err(&dev->pdev->dev, "SMI IRQ allocation failed\n"); + goto err_irq; + } + + mutex_init(&dev->lock); + init_waitqueue_head(&dev->cmd_complete); + spear_smi_hw_init(dev); + platform_set_drvdata(pdev, dev); + + /* loop for each serial nor-flash which is connected to smi */ + for (i = 0; i < dev->num_flashes; i++) { + ret = spear_smi_setup_banks(pdev, i, pdata->np[i]); + if (ret) { + dev_err(&dev->pdev->dev, "bank setup failed\n"); + goto err_irq; + } + } + + return 0; + +err_irq: + clk_disable_unprepare(dev->clk); +err: + return ret; +} + +/** + * spear_smi_remove - Exit routine + * @pdev: platform device structure + * + * free all allocations and delete the partitions. + */ +static int spear_smi_remove(struct platform_device *pdev) +{ + struct spear_smi *dev; + struct spear_snor_flash *flash; + int ret, i; + + dev = platform_get_drvdata(pdev); + if (!dev) { + dev_err(&pdev->dev, "dev is null\n"); + return -ENODEV; + } + + /* clean up for all nor flash */ + for (i = 0; i < dev->num_flashes; i++) { + flash = dev->flash[i]; + if (!flash) + continue; + + /* clean up mtd stuff */ + ret = mtd_device_unregister(&flash->mtd); + if (ret) + dev_err(&pdev->dev, "error removing mtd\n"); + } + + clk_disable_unprepare(dev->clk); + + return 0; +} + +#ifdef CONFIG_PM_SLEEP +static int spear_smi_suspend(struct device *dev) +{ + struct spear_smi *sdev = dev_get_drvdata(dev); + + if (sdev && sdev->clk) + clk_disable_unprepare(sdev->clk); + + return 0; +} + +static int spear_smi_resume(struct device *dev) +{ + struct spear_smi *sdev = dev_get_drvdata(dev); + int ret = -EPERM; + + if (sdev && sdev->clk) + ret = clk_prepare_enable(sdev->clk); + + if (!ret) + spear_smi_hw_init(sdev); + return ret; +} +#endif + +static SIMPLE_DEV_PM_OPS(spear_smi_pm_ops, spear_smi_suspend, spear_smi_resume); + +#ifdef CONFIG_OF +static const struct of_device_id spear_smi_id_table[] = { + { .compatible = "st,spear600-smi" }, + {} +}; +MODULE_DEVICE_TABLE(of, spear_smi_id_table); +#endif + +static struct platform_driver spear_smi_driver = { + .driver = { + .name = "smi", + .bus = &platform_bus_type, + .owner = THIS_MODULE, + .of_match_table = of_match_ptr(spear_smi_id_table), + .pm = &spear_smi_pm_ops, + }, + .probe = spear_smi_probe, + .remove = spear_smi_remove, +}; +module_platform_driver(spear_smi_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Ashish Priyadarshi, Shiraz Hashim <shiraz.linux.kernel@gmail.com>"); +MODULE_DESCRIPTION("MTD SMI driver for serial nor flash chips"); diff --git a/drivers/mtd/devices/sst25l.c b/drivers/mtd/devices/sst25l.c index ab5d8cd02a1..c63ecbcad0b 100644 --- a/drivers/mtd/devices/sst25l.c +++ b/drivers/mtd/devices/sst25l.c @@ -5,7 +5,7 @@ * * Copyright © 2009 Bluewater Systems Ltd * Author: Andre Renaud <andre@bluewatersys.com> - * Author: Ryan Mallon <ryan@bluewatersys.com> + * Author: Ryan Mallon * * Based on m25p80.c * @@ -15,7 +15,6 @@ * */ -#include <linux/init.h> #include <linux/module.h> #include <linux/device.h> #include <linux/mutex.h> @@ -52,8 +51,6 @@ struct sst25l_flash { struct spi_device *spi; struct mutex lock; struct mtd_info mtd; - - int partitioned; }; struct flash_info { @@ -66,7 +63,7 @@ struct flash_info { #define to_sst25l_flash(x) container_of(x, struct sst25l_flash, mtd) -static struct flash_info __initdata sst25l_flash_info[] = { +static struct flash_info sst25l_flash_info[] = { {"sst25lf020a", 0xbf43, 256, 1024, 4096}, {"sst25lf040a", 0xbf44, 256, 2048, 4096}, }; @@ -177,9 +174,6 @@ static int sst25l_erase(struct mtd_info *mtd, struct erase_info *instr) int err; /* Sanity checks */ - if (instr->addr + instr->len > flash->mtd.size) - return -EINVAL; - if ((uint32_t)instr->len % mtd->erasesize) return -EINVAL; @@ -225,16 +219,6 @@ static int sst25l_read(struct mtd_info *mtd, loff_t from, size_t len, unsigned char command[4]; int ret; - /* Sanity checking */ - if (len == 0) - return 0; - - if (from + len > flash->mtd.size) - return -EINVAL; - - if (retlen) - *retlen = 0; - spi_message_init(&message); memset(&transfer, 0, sizeof(transfer)); @@ -276,13 +260,6 @@ static int sst25l_write(struct mtd_info *mtd, loff_t to, size_t len, int i, j, ret, bytes, copied = 0; unsigned char command[5]; - /* Sanity checks */ - if (!len) - return 0; - - if (to + len > flash->mtd.size) - return -EINVAL; - if ((uint32_t)to % mtd->writesize) return -EINVAL; @@ -335,7 +312,7 @@ out: return ret; } -static struct flash_info *__init sst25l_match_device(struct spi_device *spi) +static struct flash_info *sst25l_match_device(struct spi_device *spi) { struct flash_info *flash_info = NULL; struct spi_message m; @@ -375,26 +352,26 @@ static struct flash_info *__init sst25l_match_device(struct spi_device *spi) return flash_info; } -static int __init sst25l_probe(struct spi_device *spi) +static int sst25l_probe(struct spi_device *spi) { struct flash_info *flash_info; struct sst25l_flash *flash; struct flash_platform_data *data; - int ret, i; + int ret; flash_info = sst25l_match_device(spi); if (!flash_info) return -ENODEV; - flash = kzalloc(sizeof(struct sst25l_flash), GFP_KERNEL); + flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL); if (!flash) return -ENOMEM; flash->spi = spi; mutex_init(&flash->lock); - dev_set_drvdata(&spi->dev, flash); + spi_set_drvdata(spi, flash); - data = spi->dev.platform_data; + data = dev_get_platdata(&spi->dev); if (data && data->name) flash->mtd.name = data->name; else @@ -404,109 +381,51 @@ static int __init sst25l_probe(struct spi_device *spi) flash->mtd.flags = MTD_CAP_NORFLASH; flash->mtd.erasesize = flash_info->erase_size; flash->mtd.writesize = flash_info->page_size; + flash->mtd.writebufsize = flash_info->page_size; flash->mtd.size = flash_info->page_size * flash_info->nr_pages; - flash->mtd.erase = sst25l_erase; - flash->mtd.read = sst25l_read; - flash->mtd.write = sst25l_write; + flash->mtd._erase = sst25l_erase; + flash->mtd._read = sst25l_read; + flash->mtd._write = sst25l_write; dev_info(&spi->dev, "%s (%lld KiB)\n", flash_info->name, (long long)flash->mtd.size >> 10); - DEBUG(MTD_DEBUG_LEVEL2, - "mtd .name = %s, .size = 0x%llx (%lldMiB) " + pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) " ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", flash->mtd.name, (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20), flash->mtd.erasesize, flash->mtd.erasesize / 1024, flash->mtd.numeraseregions); - if (mtd_has_partitions()) { - struct mtd_partition *parts = NULL; - int nr_parts = 0; - if (mtd_has_cmdlinepart()) { - static const char *part_probes[] = - {"cmdlinepart", NULL}; - - nr_parts = parse_mtd_partitions(&flash->mtd, - part_probes, - &parts, 0); - } - - if (nr_parts <= 0 && data && data->parts) { - parts = data->parts; - nr_parts = data->nr_parts; - } - - if (nr_parts > 0) { - for (i = 0; i < nr_parts; i++) { - DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = " - "{.name = %s, .offset = 0x%llx, " - ".size = 0x%llx (%lldKiB) }\n", - i, parts[i].name, - (long long)parts[i].offset, - (long long)parts[i].size, - (long long)(parts[i].size >> 10)); - } - - flash->partitioned = 1; - return add_mtd_partitions(&flash->mtd, - parts, nr_parts); - } - - } else if (data->nr_parts) { - dev_warn(&spi->dev, "ignoring %d default partitions on %s\n", - data->nr_parts, data->name); - } - - ret = add_mtd_device(&flash->mtd); - if (ret == 1) { - kfree(flash); - dev_set_drvdata(&spi->dev, NULL); + ret = mtd_device_parse_register(&flash->mtd, NULL, NULL, + data ? data->parts : NULL, + data ? data->nr_parts : 0); + if (ret) return -ENODEV; - } return 0; } -static int __exit sst25l_remove(struct spi_device *spi) +static int sst25l_remove(struct spi_device *spi) { - struct sst25l_flash *flash = dev_get_drvdata(&spi->dev); - int ret; + struct sst25l_flash *flash = spi_get_drvdata(spi); - if (mtd_has_partitions() && flash->partitioned) - ret = del_mtd_partitions(&flash->mtd); - else - ret = del_mtd_device(&flash->mtd); - if (ret == 0) - kfree(flash); - return ret; + return mtd_device_unregister(&flash->mtd); } static struct spi_driver sst25l_driver = { .driver = { .name = "sst25l", - .bus = &spi_bus_type, .owner = THIS_MODULE, }, .probe = sst25l_probe, - .remove = __exit_p(sst25l_remove), + .remove = sst25l_remove, }; -static int __init sst25l_init(void) -{ - return spi_register_driver(&sst25l_driver); -} - -static void __exit sst25l_exit(void) -{ - spi_unregister_driver(&sst25l_driver); -} - -module_init(sst25l_init); -module_exit(sst25l_exit); +module_spi_driver(sst25l_driver); MODULE_DESCRIPTION("MTD SPI driver for SST25L Flash chips"); MODULE_AUTHOR("Andre Renaud <andre@bluewatersys.com>, " - "Ryan Mallon <ryan@bluewatersys.com>"); + "Ryan Mallon"); MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/devices/st_spi_fsm.c b/drivers/mtd/devices/st_spi_fsm.c new file mode 100644 index 00000000000..d252514d3e9 --- /dev/null +++ b/drivers/mtd/devices/st_spi_fsm.c @@ -0,0 +1,2080 @@ +/* + * st_spi_fsm.c - ST Fast Sequence Mode (FSM) Serial Flash Controller + * + * Author: Angus Clark <angus.clark@st.com> + * + * Copyright (C) 2010-2014 STMicroelectronics Limited + * + * JEDEC probe based on drivers/mtd/devices/m25p80.c + * + * This code is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/regmap.h> +#include <linux/platform_device.h> +#include <linux/mfd/syscon.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/spi-nor.h> +#include <linux/sched.h> +#include <linux/delay.h> +#include <linux/io.h> +#include <linux/of.h> + +#include "serial_flash_cmds.h" + +/* + * FSM SPI Controller Registers + */ +#define SPI_CLOCKDIV 0x0010 +#define SPI_MODESELECT 0x0018 +#define SPI_CONFIGDATA 0x0020 +#define SPI_STA_MODE_CHANGE 0x0028 +#define SPI_FAST_SEQ_TRANSFER_SIZE 0x0100 +#define SPI_FAST_SEQ_ADD1 0x0104 +#define SPI_FAST_SEQ_ADD2 0x0108 +#define SPI_FAST_SEQ_ADD_CFG 0x010c +#define SPI_FAST_SEQ_OPC1 0x0110 +#define SPI_FAST_SEQ_OPC2 0x0114 +#define SPI_FAST_SEQ_OPC3 0x0118 +#define SPI_FAST_SEQ_OPC4 0x011c +#define SPI_FAST_SEQ_OPC5 0x0120 +#define SPI_MODE_BITS 0x0124 +#define SPI_DUMMY_BITS 0x0128 +#define SPI_FAST_SEQ_FLASH_STA_DATA 0x012c +#define SPI_FAST_SEQ_1 0x0130 +#define SPI_FAST_SEQ_2 0x0134 +#define SPI_FAST_SEQ_3 0x0138 +#define SPI_FAST_SEQ_4 0x013c +#define SPI_FAST_SEQ_CFG 0x0140 +#define SPI_FAST_SEQ_STA 0x0144 +#define SPI_QUAD_BOOT_SEQ_INIT_1 0x0148 +#define SPI_QUAD_BOOT_SEQ_INIT_2 0x014c +#define SPI_QUAD_BOOT_READ_SEQ_1 0x0150 +#define SPI_QUAD_BOOT_READ_SEQ_2 0x0154 +#define SPI_PROGRAM_ERASE_TIME 0x0158 +#define SPI_MULT_PAGE_REPEAT_SEQ_1 0x015c +#define SPI_MULT_PAGE_REPEAT_SEQ_2 0x0160 +#define SPI_STATUS_WR_TIME_REG 0x0164 +#define SPI_FAST_SEQ_DATA_REG 0x0300 + +/* + * Register: SPI_MODESELECT + */ +#define SPI_MODESELECT_CONTIG 0x01 +#define SPI_MODESELECT_FASTREAD 0x02 +#define SPI_MODESELECT_DUALIO 0x04 +#define SPI_MODESELECT_FSM 0x08 +#define SPI_MODESELECT_QUADBOOT 0x10 + +/* + * Register: SPI_CONFIGDATA + */ +#define SPI_CFG_DEVICE_ST 0x1 +#define SPI_CFG_DEVICE_ATMEL 0x4 +#define SPI_CFG_MIN_CS_HIGH(x) (((x) & 0xfff) << 4) +#define SPI_CFG_CS_SETUPHOLD(x) (((x) & 0xff) << 16) +#define SPI_CFG_DATA_HOLD(x) (((x) & 0xff) << 24) + +#define SPI_CFG_DEFAULT_MIN_CS_HIGH SPI_CFG_MIN_CS_HIGH(0x0AA) +#define SPI_CFG_DEFAULT_CS_SETUPHOLD SPI_CFG_CS_SETUPHOLD(0xA0) +#define SPI_CFG_DEFAULT_DATA_HOLD SPI_CFG_DATA_HOLD(0x00) + +/* + * Register: SPI_FAST_SEQ_TRANSFER_SIZE + */ +#define TRANSFER_SIZE(x) ((x) * 8) + +/* + * Register: SPI_FAST_SEQ_ADD_CFG + */ +#define ADR_CFG_CYCLES_ADD1(x) ((x) << 0) +#define ADR_CFG_PADS_1_ADD1 (0x0 << 6) +#define ADR_CFG_PADS_2_ADD1 (0x1 << 6) +#define ADR_CFG_PADS_4_ADD1 (0x3 << 6) +#define ADR_CFG_CSDEASSERT_ADD1 (1 << 8) +#define ADR_CFG_CYCLES_ADD2(x) ((x) << (0+16)) +#define ADR_CFG_PADS_1_ADD2 (0x0 << (6+16)) +#define ADR_CFG_PADS_2_ADD2 (0x1 << (6+16)) +#define ADR_CFG_PADS_4_ADD2 (0x3 << (6+16)) +#define ADR_CFG_CSDEASSERT_ADD2 (1 << (8+16)) + +/* + * Register: SPI_FAST_SEQ_n + */ +#define SEQ_OPC_OPCODE(x) ((x) << 0) +#define SEQ_OPC_CYCLES(x) ((x) << 8) +#define SEQ_OPC_PADS_1 (0x0 << 14) +#define SEQ_OPC_PADS_2 (0x1 << 14) +#define SEQ_OPC_PADS_4 (0x3 << 14) +#define SEQ_OPC_CSDEASSERT (1 << 16) + +/* + * Register: SPI_FAST_SEQ_CFG + */ +#define SEQ_CFG_STARTSEQ (1 << 0) +#define SEQ_CFG_SWRESET (1 << 5) +#define SEQ_CFG_CSDEASSERT (1 << 6) +#define SEQ_CFG_READNOTWRITE (1 << 7) +#define SEQ_CFG_ERASE (1 << 8) +#define SEQ_CFG_PADS_1 (0x0 << 16) +#define SEQ_CFG_PADS_2 (0x1 << 16) +#define SEQ_CFG_PADS_4 (0x3 << 16) + +/* + * Register: SPI_MODE_BITS + */ +#define MODE_DATA(x) (x & 0xff) +#define MODE_CYCLES(x) ((x & 0x3f) << 16) +#define MODE_PADS_1 (0x0 << 22) +#define MODE_PADS_2 (0x1 << 22) +#define MODE_PADS_4 (0x3 << 22) +#define DUMMY_CSDEASSERT (1 << 24) + +/* + * Register: SPI_DUMMY_BITS + */ +#define DUMMY_CYCLES(x) ((x & 0x3f) << 16) +#define DUMMY_PADS_1 (0x0 << 22) +#define DUMMY_PADS_2 (0x1 << 22) +#define DUMMY_PADS_4 (0x3 << 22) +#define DUMMY_CSDEASSERT (1 << 24) + +/* + * Register: SPI_FAST_SEQ_FLASH_STA_DATA + */ +#define STA_DATA_BYTE1(x) ((x & 0xff) << 0) +#define STA_DATA_BYTE2(x) ((x & 0xff) << 8) +#define STA_PADS_1 (0x0 << 16) +#define STA_PADS_2 (0x1 << 16) +#define STA_PADS_4 (0x3 << 16) +#define STA_CSDEASSERT (0x1 << 20) +#define STA_RDNOTWR (0x1 << 21) + +/* + * FSM SPI Instruction Opcodes + */ +#define STFSM_OPC_CMD 0x1 +#define STFSM_OPC_ADD 0x2 +#define STFSM_OPC_STA 0x3 +#define STFSM_OPC_MODE 0x4 +#define STFSM_OPC_DUMMY 0x5 +#define STFSM_OPC_DATA 0x6 +#define STFSM_OPC_WAIT 0x7 +#define STFSM_OPC_JUMP 0x8 +#define STFSM_OPC_GOTO 0x9 +#define STFSM_OPC_STOP 0xF + +/* + * FSM SPI Instructions (== opcode + operand). + */ +#define STFSM_INSTR(cmd, op) ((cmd) | ((op) << 4)) + +#define STFSM_INST_CMD1 STFSM_INSTR(STFSM_OPC_CMD, 1) +#define STFSM_INST_CMD2 STFSM_INSTR(STFSM_OPC_CMD, 2) +#define STFSM_INST_CMD3 STFSM_INSTR(STFSM_OPC_CMD, 3) +#define STFSM_INST_CMD4 STFSM_INSTR(STFSM_OPC_CMD, 4) +#define STFSM_INST_CMD5 STFSM_INSTR(STFSM_OPC_CMD, 5) +#define STFSM_INST_ADD1 STFSM_INSTR(STFSM_OPC_ADD, 1) +#define STFSM_INST_ADD2 STFSM_INSTR(STFSM_OPC_ADD, 2) + +#define STFSM_INST_DATA_WRITE STFSM_INSTR(STFSM_OPC_DATA, 1) +#define STFSM_INST_DATA_READ STFSM_INSTR(STFSM_OPC_DATA, 2) + +#define STFSM_INST_STA_RD1 STFSM_INSTR(STFSM_OPC_STA, 0x1) +#define STFSM_INST_STA_WR1 STFSM_INSTR(STFSM_OPC_STA, 0x1) +#define STFSM_INST_STA_RD2 STFSM_INSTR(STFSM_OPC_STA, 0x2) +#define STFSM_INST_STA_WR1_2 STFSM_INSTR(STFSM_OPC_STA, 0x3) + +#define STFSM_INST_MODE STFSM_INSTR(STFSM_OPC_MODE, 0) +#define STFSM_INST_DUMMY STFSM_INSTR(STFSM_OPC_DUMMY, 0) +#define STFSM_INST_WAIT STFSM_INSTR(STFSM_OPC_WAIT, 0) +#define STFSM_INST_STOP STFSM_INSTR(STFSM_OPC_STOP, 0) + +#define STFSM_DEFAULT_EMI_FREQ 100000000UL /* 100 MHz */ +#define STFSM_DEFAULT_WR_TIME (STFSM_DEFAULT_EMI_FREQ * (15/1000)) /* 15ms */ + +#define STFSM_FLASH_SAFE_FREQ 10000000UL /* 10 MHz */ + +#define STFSM_MAX_WAIT_SEQ_MS 1000 /* FSM execution time */ + +/* S25FLxxxS commands */ +#define S25FL_CMD_WRITE4_1_1_4 0x34 +#define S25FL_CMD_SE4 0xdc +#define S25FL_CMD_CLSR 0x30 +#define S25FL_CMD_DYBWR 0xe1 +#define S25FL_CMD_DYBRD 0xe0 +#define S25FL_CMD_WRITE4 0x12 /* Note, opcode clashes with + * 'SPINOR_OP_WRITE_1_4_4' + * as found on N25Qxxx devices! */ + +/* Status register */ +#define FLASH_STATUS_BUSY 0x01 +#define FLASH_STATUS_WEL 0x02 +#define FLASH_STATUS_BP0 0x04 +#define FLASH_STATUS_BP1 0x08 +#define FLASH_STATUS_BP2 0x10 +#define FLASH_STATUS_SRWP0 0x80 +#define FLASH_STATUS_TIMEOUT 0xff +/* S25FL Error Flags */ +#define S25FL_STATUS_E_ERR 0x20 +#define S25FL_STATUS_P_ERR 0x40 + +#define N25Q_CMD_WRVCR 0x81 +#define N25Q_CMD_RDVCR 0x85 +#define N25Q_CMD_RDVECR 0x65 +#define N25Q_CMD_RDNVCR 0xb5 +#define N25Q_CMD_WRNVCR 0xb1 + +#define FLASH_PAGESIZE 256 /* In Bytes */ +#define FLASH_PAGESIZE_32 (FLASH_PAGESIZE / 4) /* In uint32_t */ +#define FLASH_MAX_BUSY_WAIT (300 * HZ) /* Maximum 'CHIPERASE' time */ + +/* + * Flags to tweak operation of default read/write/erase routines + */ +#define CFG_READ_TOGGLE_32BIT_ADDR 0x00000001 +#define CFG_WRITE_TOGGLE_32BIT_ADDR 0x00000002 +#define CFG_ERASESEC_TOGGLE_32BIT_ADDR 0x00000008 +#define CFG_S25FL_CHECK_ERROR_FLAGS 0x00000010 + +struct stfsm_seq { + uint32_t data_size; + uint32_t addr1; + uint32_t addr2; + uint32_t addr_cfg; + uint32_t seq_opc[5]; + uint32_t mode; + uint32_t dummy; + uint32_t status; + uint8_t seq[16]; + uint32_t seq_cfg; +} __packed __aligned(4); + +struct stfsm { + struct device *dev; + void __iomem *base; + struct resource *region; + struct mtd_info mtd; + struct mutex lock; + struct flash_info *info; + + uint32_t configuration; + uint32_t fifo_dir_delay; + bool booted_from_spi; + bool reset_signal; + bool reset_por; + + struct stfsm_seq stfsm_seq_read; + struct stfsm_seq stfsm_seq_write; + struct stfsm_seq stfsm_seq_en_32bit_addr; +}; + +/* Parameters to configure a READ or WRITE FSM sequence */ +struct seq_rw_config { + uint32_t flags; /* flags to support config */ + uint8_t cmd; /* FLASH command */ + int write; /* Write Sequence */ + uint8_t addr_pads; /* No. of addr pads (MODE & DUMMY) */ + uint8_t data_pads; /* No. of data pads */ + uint8_t mode_data; /* MODE data */ + uint8_t mode_cycles; /* No. of MODE cycles */ + uint8_t dummy_cycles; /* No. of DUMMY cycles */ +}; + +/* SPI Flash Device Table */ +struct flash_info { + char *name; + /* + * JEDEC id zero means "no ID" (most older chips); otherwise it has + * a high byte of zero plus three data bytes: the manufacturer id, + * then a two byte device id. + */ + u32 jedec_id; + u16 ext_id; + /* + * The size listed here is what works with SPINOR_OP_SE, which isn't + * necessarily called a "sector" by the vendor. + */ + unsigned sector_size; + u16 n_sectors; + u32 flags; + /* + * Note, where FAST_READ is supported, freq_max specifies the + * FAST_READ frequency, not the READ frequency. + */ + u32 max_freq; + int (*config)(struct stfsm *); +}; + +static int stfsm_n25q_config(struct stfsm *fsm); +static int stfsm_mx25_config(struct stfsm *fsm); +static int stfsm_s25fl_config(struct stfsm *fsm); +static int stfsm_w25q_config(struct stfsm *fsm); + +static struct flash_info flash_types[] = { + /* + * ST Microelectronics/Numonyx -- + * (newer production versions may have feature updates + * (eg faster operating frequency) + */ +#define M25P_FLAG (FLASH_FLAG_READ_WRITE | FLASH_FLAG_READ_FAST) + { "m25p40", 0x202013, 0, 64 * 1024, 8, M25P_FLAG, 25, NULL }, + { "m25p80", 0x202014, 0, 64 * 1024, 16, M25P_FLAG, 25, NULL }, + { "m25p16", 0x202015, 0, 64 * 1024, 32, M25P_FLAG, 25, NULL }, + { "m25p32", 0x202016, 0, 64 * 1024, 64, M25P_FLAG, 50, NULL }, + { "m25p64", 0x202017, 0, 64 * 1024, 128, M25P_FLAG, 50, NULL }, + { "m25p128", 0x202018, 0, 256 * 1024, 64, M25P_FLAG, 50, NULL }, + +#define M25PX_FLAG (FLASH_FLAG_READ_WRITE | \ + FLASH_FLAG_READ_FAST | \ + FLASH_FLAG_READ_1_1_2 | \ + FLASH_FLAG_WRITE_1_1_2) + { "m25px32", 0x207116, 0, 64 * 1024, 64, M25PX_FLAG, 75, NULL }, + { "m25px64", 0x207117, 0, 64 * 1024, 128, M25PX_FLAG, 75, NULL }, + + /* Macronix MX25xxx + * - Support for 'FLASH_FLAG_WRITE_1_4_4' is omitted for devices + * where operating frequency must be reduced. + */ +#define MX25_FLAG (FLASH_FLAG_READ_WRITE | \ + FLASH_FLAG_READ_FAST | \ + FLASH_FLAG_READ_1_1_2 | \ + FLASH_FLAG_READ_1_2_2 | \ + FLASH_FLAG_READ_1_1_4 | \ + FLASH_FLAG_SE_4K | \ + FLASH_FLAG_SE_32K) + { "mx25l3255e", 0xc29e16, 0, 64 * 1024, 64, + (MX25_FLAG | FLASH_FLAG_WRITE_1_4_4), 86, + stfsm_mx25_config}, + { "mx25l25635e", 0xc22019, 0, 64*1024, 512, + (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70, + stfsm_mx25_config }, + { "mx25l25655e", 0xc22619, 0, 64*1024, 512, + (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70, + stfsm_mx25_config}, + +#define N25Q_FLAG (FLASH_FLAG_READ_WRITE | \ + FLASH_FLAG_READ_FAST | \ + FLASH_FLAG_READ_1_1_2 | \ + FLASH_FLAG_READ_1_2_2 | \ + FLASH_FLAG_READ_1_1_4 | \ + FLASH_FLAG_READ_1_4_4 | \ + FLASH_FLAG_WRITE_1_1_2 | \ + FLASH_FLAG_WRITE_1_2_2 | \ + FLASH_FLAG_WRITE_1_1_4 | \ + FLASH_FLAG_WRITE_1_4_4) + { "n25q128", 0x20ba18, 0, 64 * 1024, 256, N25Q_FLAG, 108, + stfsm_n25q_config }, + { "n25q256", 0x20ba19, 0, 64 * 1024, 512, + N25Q_FLAG | FLASH_FLAG_32BIT_ADDR, 108, stfsm_n25q_config }, + + /* + * Spansion S25FLxxxP + * - 256KiB and 64KiB sector variants (identified by ext. JEDEC) + */ +#define S25FLXXXP_FLAG (FLASH_FLAG_READ_WRITE | \ + FLASH_FLAG_READ_1_1_2 | \ + FLASH_FLAG_READ_1_2_2 | \ + FLASH_FLAG_READ_1_1_4 | \ + FLASH_FLAG_READ_1_4_4 | \ + FLASH_FLAG_WRITE_1_1_4 | \ + FLASH_FLAG_READ_FAST) + { "s25fl032p", 0x010215, 0x4d00, 64 * 1024, 64, S25FLXXXP_FLAG, 80, + stfsm_s25fl_config}, + { "s25fl129p0", 0x012018, 0x4d00, 256 * 1024, 64, S25FLXXXP_FLAG, 80, + stfsm_s25fl_config }, + { "s25fl129p1", 0x012018, 0x4d01, 64 * 1024, 256, S25FLXXXP_FLAG, 80, + stfsm_s25fl_config }, + + /* + * Spansion S25FLxxxS + * - 256KiB and 64KiB sector variants (identified by ext. JEDEC) + * - RESET# signal supported by die but not bristled out on all + * package types. The package type is a function of board design, + * so this information is captured in the board's flags. + * - Supports 'DYB' sector protection. Depending on variant, sectors + * may default to locked state on power-on. + */ +#define S25FLXXXS_FLAG (S25FLXXXP_FLAG | \ + FLASH_FLAG_RESET | \ + FLASH_FLAG_DYB_LOCKING) + { "s25fl128s0", 0x012018, 0x0300, 256 * 1024, 64, S25FLXXXS_FLAG, 80, + stfsm_s25fl_config }, + { "s25fl128s1", 0x012018, 0x0301, 64 * 1024, 256, S25FLXXXS_FLAG, 80, + stfsm_s25fl_config }, + { "s25fl256s0", 0x010219, 0x4d00, 256 * 1024, 128, + S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config }, + { "s25fl256s1", 0x010219, 0x4d01, 64 * 1024, 512, + S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config }, + + /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ +#define W25X_FLAG (FLASH_FLAG_READ_WRITE | \ + FLASH_FLAG_READ_FAST | \ + FLASH_FLAG_READ_1_1_2 | \ + FLASH_FLAG_WRITE_1_1_2) + { "w25x40", 0xef3013, 0, 64 * 1024, 8, W25X_FLAG, 75, NULL }, + { "w25x80", 0xef3014, 0, 64 * 1024, 16, W25X_FLAG, 75, NULL }, + { "w25x16", 0xef3015, 0, 64 * 1024, 32, W25X_FLAG, 75, NULL }, + { "w25x32", 0xef3016, 0, 64 * 1024, 64, W25X_FLAG, 75, NULL }, + { "w25x64", 0xef3017, 0, 64 * 1024, 128, W25X_FLAG, 75, NULL }, + + /* Winbond -- w25q "blocks" are 64K, "sectors" are 4KiB */ +#define W25Q_FLAG (FLASH_FLAG_READ_WRITE | \ + FLASH_FLAG_READ_FAST | \ + FLASH_FLAG_READ_1_1_2 | \ + FLASH_FLAG_READ_1_2_2 | \ + FLASH_FLAG_READ_1_1_4 | \ + FLASH_FLAG_READ_1_4_4 | \ + FLASH_FLAG_WRITE_1_1_4) + { "w25q80", 0xef4014, 0, 64 * 1024, 16, W25Q_FLAG, 80, + stfsm_w25q_config }, + { "w25q16", 0xef4015, 0, 64 * 1024, 32, W25Q_FLAG, 80, + stfsm_w25q_config }, + { "w25q32", 0xef4016, 0, 64 * 1024, 64, W25Q_FLAG, 80, + stfsm_w25q_config }, + { "w25q64", 0xef4017, 0, 64 * 1024, 128, W25Q_FLAG, 80, + stfsm_w25q_config }, + + /* Sentinel */ + { NULL, 0x000000, 0, 0, 0, 0, 0, NULL }, +}; + +/* + * FSM message sequence configurations: + * + * All configs are presented in order of preference + */ + +/* Default READ configurations, in order of preference */ +static struct seq_rw_config default_read_configs[] = { + {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4, 0, 4, 4, 0x00, 2, 4}, + {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4, 0, 1, 4, 0x00, 4, 0}, + {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2, 0, 2, 2, 0x00, 4, 0}, + {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2, 0, 1, 2, 0x00, 0, 8}, + {FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST, 0, 1, 1, 0x00, 0, 8}, + {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ, 0, 1, 1, 0x00, 0, 0}, + {0x00, 0, 0, 0, 0, 0x00, 0, 0}, +}; + +/* Default WRITE configurations */ +static struct seq_rw_config default_write_configs[] = { + {FLASH_FLAG_WRITE_1_4_4, SPINOR_OP_WRITE_1_4_4, 1, 4, 4, 0x00, 0, 0}, + {FLASH_FLAG_WRITE_1_1_4, SPINOR_OP_WRITE_1_1_4, 1, 1, 4, 0x00, 0, 0}, + {FLASH_FLAG_WRITE_1_2_2, SPINOR_OP_WRITE_1_2_2, 1, 2, 2, 0x00, 0, 0}, + {FLASH_FLAG_WRITE_1_1_2, SPINOR_OP_WRITE_1_1_2, 1, 1, 2, 0x00, 0, 0}, + {FLASH_FLAG_READ_WRITE, SPINOR_OP_WRITE, 1, 1, 1, 0x00, 0, 0}, + {0x00, 0, 0, 0, 0, 0x00, 0, 0}, +}; + +/* + * [N25Qxxx] Configuration + */ +#define N25Q_VCR_DUMMY_CYCLES(x) (((x) & 0xf) << 4) +#define N25Q_VCR_XIP_DISABLED ((uint8_t)0x1 << 3) +#define N25Q_VCR_WRAP_CONT 0x3 + +/* N25Q 3-byte Address READ configurations + * - 'FAST' variants configured for 8 dummy cycles. + * + * Note, the number of dummy cycles used for 'FAST' READ operations is + * configurable and would normally be tuned according to the READ command and + * operating frequency. However, this applies universally to all 'FAST' READ + * commands, including those used by the SPIBoot controller, and remains in + * force until the device is power-cycled. Since the SPIBoot controller is + * hard-wired to use 8 dummy cycles, we must configure the device to also use 8 + * cycles. + */ +static struct seq_rw_config n25q_read3_configs[] = { + {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4, 0, 4, 4, 0x00, 0, 8}, + {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4, 0, 1, 4, 0x00, 0, 8}, + {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2, 0, 2, 2, 0x00, 0, 8}, + {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2, 0, 1, 2, 0x00, 0, 8}, + {FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST, 0, 1, 1, 0x00, 0, 8}, + {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ, 0, 1, 1, 0x00, 0, 0}, + {0x00, 0, 0, 0, 0, 0x00, 0, 0}, +}; + +/* N25Q 4-byte Address READ configurations + * - use special 4-byte address READ commands (reduces overheads, and + * reduces risk of hitting watchdog reset issues). + * - 'FAST' variants configured for 8 dummy cycles (see note above.) + */ +static struct seq_rw_config n25q_read4_configs[] = { + {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ4_1_4_4, 0, 4, 4, 0x00, 0, 8}, + {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ4_1_1_4, 0, 1, 4, 0x00, 0, 8}, + {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ4_1_2_2, 0, 2, 2, 0x00, 0, 8}, + {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ4_1_1_2, 0, 1, 2, 0x00, 0, 8}, + {FLASH_FLAG_READ_FAST, SPINOR_OP_READ4_FAST, 0, 1, 1, 0x00, 0, 8}, + {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ4, 0, 1, 1, 0x00, 0, 0}, + {0x00, 0, 0, 0, 0, 0x00, 0, 0}, +}; + +/* + * [MX25xxx] Configuration + */ +#define MX25_STATUS_QE (0x1 << 6) + +static int stfsm_mx25_en_32bit_addr_seq(struct stfsm_seq *seq) +{ + seq->seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_EN4B) | + SEQ_OPC_CSDEASSERT); + + seq->seq[0] = STFSM_INST_CMD1; + seq->seq[1] = STFSM_INST_WAIT; + seq->seq[2] = STFSM_INST_STOP; + + seq->seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_ERASE | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ); + + return 0; +} + +/* + * [S25FLxxx] Configuration + */ +#define STFSM_S25FL_CONFIG_QE (0x1 << 1) + +/* + * S25FLxxxS devices provide three ways of supporting 32-bit addressing: Bank + * Register, Extended Address Modes, and a 32-bit address command set. The + * 32-bit address command set is used here, since it avoids any problems with + * entering a state that is incompatible with the SPIBoot Controller. + */ +static struct seq_rw_config stfsm_s25fl_read4_configs[] = { + {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ4_1_4_4, 0, 4, 4, 0x00, 2, 4}, + {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ4_1_1_4, 0, 1, 4, 0x00, 0, 8}, + {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ4_1_2_2, 0, 2, 2, 0x00, 4, 0}, + {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ4_1_1_2, 0, 1, 2, 0x00, 0, 8}, + {FLASH_FLAG_READ_FAST, SPINOR_OP_READ4_FAST, 0, 1, 1, 0x00, 0, 8}, + {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ4, 0, 1, 1, 0x00, 0, 0}, + {0x00, 0, 0, 0, 0, 0x00, 0, 0}, +}; + +static struct seq_rw_config stfsm_s25fl_write4_configs[] = { + {FLASH_FLAG_WRITE_1_1_4, S25FL_CMD_WRITE4_1_1_4, 1, 1, 4, 0x00, 0, 0}, + {FLASH_FLAG_READ_WRITE, S25FL_CMD_WRITE4, 1, 1, 1, 0x00, 0, 0}, + {0x00, 0, 0, 0, 0, 0x00, 0, 0}, +}; + +/* + * [W25Qxxx] Configuration + */ +#define W25Q_STATUS_QE (0x1 << 1) + +static struct stfsm_seq stfsm_seq_read_jedec = { + .data_size = TRANSFER_SIZE(8), + .seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_RDID)), + .seq = { + STFSM_INST_CMD1, + STFSM_INST_DATA_READ, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), +}; + +static struct stfsm_seq stfsm_seq_read_status_fifo = { + .data_size = TRANSFER_SIZE(4), + .seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_RDSR)), + .seq = { + STFSM_INST_CMD1, + STFSM_INST_DATA_READ, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), +}; + +static struct stfsm_seq stfsm_seq_erase_sector = { + /* 'addr_cfg' configured during initialisation */ + .seq_opc = { + (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT), + + (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_SE)), + }, + .seq = { + STFSM_INST_CMD1, + STFSM_INST_CMD2, + STFSM_INST_ADD1, + STFSM_INST_ADD2, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), +}; + +static struct stfsm_seq stfsm_seq_erase_chip = { + .seq_opc = { + (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT), + + (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_CHIP_ERASE) | SEQ_OPC_CSDEASSERT), + }, + .seq = { + STFSM_INST_CMD1, + STFSM_INST_CMD2, + STFSM_INST_WAIT, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_ERASE | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), +}; + +static struct stfsm_seq stfsm_seq_write_status = { + .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT), + .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WRSR)), + .seq = { + STFSM_INST_CMD1, + STFSM_INST_CMD2, + STFSM_INST_STA_WR1, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), +}; + +static int stfsm_n25q_en_32bit_addr_seq(struct stfsm_seq *seq) +{ + seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_EN4B)); + seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WREN) | + SEQ_OPC_CSDEASSERT); + + seq->seq[0] = STFSM_INST_CMD2; + seq->seq[1] = STFSM_INST_CMD1; + seq->seq[2] = STFSM_INST_WAIT; + seq->seq[3] = STFSM_INST_STOP; + + seq->seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_ERASE | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ); + + return 0; +} + +static inline int stfsm_is_idle(struct stfsm *fsm) +{ + return readl(fsm->base + SPI_FAST_SEQ_STA) & 0x10; +} + +static inline uint32_t stfsm_fifo_available(struct stfsm *fsm) +{ + return (readl(fsm->base + SPI_FAST_SEQ_STA) >> 5) & 0x7f; +} + +static void stfsm_clear_fifo(struct stfsm *fsm) +{ + uint32_t avail; + + for (;;) { + avail = stfsm_fifo_available(fsm); + if (!avail) + break; + + while (avail) { + readl(fsm->base + SPI_FAST_SEQ_DATA_REG); + avail--; + } + } +} + +static inline void stfsm_load_seq(struct stfsm *fsm, + const struct stfsm_seq *seq) +{ + void __iomem *dst = fsm->base + SPI_FAST_SEQ_TRANSFER_SIZE; + const uint32_t *src = (const uint32_t *)seq; + int words = sizeof(*seq) / sizeof(*src); + + BUG_ON(!stfsm_is_idle(fsm)); + + while (words--) { + writel(*src, dst); + src++; + dst += 4; + } +} + +static void stfsm_wait_seq(struct stfsm *fsm) +{ + unsigned long deadline; + int timeout = 0; + + deadline = jiffies + msecs_to_jiffies(STFSM_MAX_WAIT_SEQ_MS); + + while (!timeout) { + if (time_after_eq(jiffies, deadline)) + timeout = 1; + + if (stfsm_is_idle(fsm)) + return; + + cond_resched(); + } + + dev_err(fsm->dev, "timeout on sequence completion\n"); +} + +static void stfsm_read_fifo(struct stfsm *fsm, uint32_t *buf, uint32_t size) +{ + uint32_t remaining = size >> 2; + uint32_t avail; + uint32_t words; + + dev_dbg(fsm->dev, "Reading %d bytes from FIFO\n", size); + + BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3)); + + while (remaining) { + for (;;) { + avail = stfsm_fifo_available(fsm); + if (avail) + break; + udelay(1); + } + words = min(avail, remaining); + remaining -= words; + + readsl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words); + buf += words; + } +} + +static int stfsm_write_fifo(struct stfsm *fsm, const uint32_t *buf, + uint32_t size) +{ + uint32_t words = size >> 2; + + dev_dbg(fsm->dev, "writing %d bytes to FIFO\n", size); + + BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3)); + + writesl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words); + + return size; +} + +static int stfsm_enter_32bit_addr(struct stfsm *fsm, int enter) +{ + struct stfsm_seq *seq = &fsm->stfsm_seq_en_32bit_addr; + uint32_t cmd = enter ? SPINOR_OP_EN4B : SPINOR_OP_EX4B; + + seq->seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(cmd) | + SEQ_OPC_CSDEASSERT); + + stfsm_load_seq(fsm, seq); + + stfsm_wait_seq(fsm); + + return 0; +} + +static uint8_t stfsm_wait_busy(struct stfsm *fsm) +{ + struct stfsm_seq *seq = &stfsm_seq_read_status_fifo; + unsigned long deadline; + uint32_t status; + int timeout = 0; + + /* Use RDRS1 */ + seq->seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_RDSR)); + + /* Load read_status sequence */ + stfsm_load_seq(fsm, seq); + + /* + * Repeat until busy bit is deasserted, or timeout, or error (S25FLxxxS) + */ + deadline = jiffies + FLASH_MAX_BUSY_WAIT; + while (!timeout) { + if (time_after_eq(jiffies, deadline)) + timeout = 1; + + stfsm_wait_seq(fsm); + + stfsm_read_fifo(fsm, &status, 4); + + if ((status & FLASH_STATUS_BUSY) == 0) + return 0; + + if ((fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) && + ((status & S25FL_STATUS_P_ERR) || + (status & S25FL_STATUS_E_ERR))) + return (uint8_t)(status & 0xff); + + if (!timeout) + /* Restart */ + writel(seq->seq_cfg, fsm->base + SPI_FAST_SEQ_CFG); + + cond_resched(); + } + + dev_err(fsm->dev, "timeout on wait_busy\n"); + + return FLASH_STATUS_TIMEOUT; +} + +static int stfsm_read_status(struct stfsm *fsm, uint8_t cmd, + uint8_t *data, int bytes) +{ + struct stfsm_seq *seq = &stfsm_seq_read_status_fifo; + uint32_t tmp; + uint8_t *t = (uint8_t *)&tmp; + int i; + + dev_dbg(fsm->dev, "read 'status' register [0x%02x], %d byte(s)\n", + cmd, bytes); + + BUG_ON(bytes != 1 && bytes != 2); + + seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(cmd)), + + stfsm_load_seq(fsm, seq); + + stfsm_read_fifo(fsm, &tmp, 4); + + for (i = 0; i < bytes; i++) + data[i] = t[i]; + + stfsm_wait_seq(fsm); + + return 0; +} + +static int stfsm_write_status(struct stfsm *fsm, uint8_t cmd, + uint16_t data, int bytes, int wait_busy) +{ + struct stfsm_seq *seq = &stfsm_seq_write_status; + + dev_dbg(fsm->dev, + "write 'status' register [0x%02x], %d byte(s), 0x%04x\n" + " %s wait-busy\n", cmd, bytes, data, wait_busy ? "with" : "no"); + + BUG_ON(bytes != 1 && bytes != 2); + + seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(cmd)); + + seq->status = (uint32_t)data | STA_PADS_1 | STA_CSDEASSERT; + seq->seq[2] = (bytes == 1) ? STFSM_INST_STA_WR1 : STFSM_INST_STA_WR1_2; + + stfsm_load_seq(fsm, seq); + + stfsm_wait_seq(fsm); + + if (wait_busy) + stfsm_wait_busy(fsm); + + return 0; +} + +/* + * SoC reset on 'boot-from-spi' systems + * + * Certain modes of operation cause the Flash device to enter a particular state + * for a period of time (e.g. 'Erase Sector', 'Quad Enable', and 'Enter 32-bit + * Addr' commands). On boot-from-spi systems, it is important to consider what + * happens if a warm reset occurs during this period. The SPIBoot controller + * assumes that Flash device is in its default reset state, 24-bit address mode, + * and ready to accept commands. This can be achieved using some form of + * on-board logic/controller to force a device POR in response to a SoC-level + * reset or by making use of the device reset signal if available (limited + * number of devices only). + * + * Failure to take such precautions can cause problems following a warm reset. + * For some operations (e.g. ERASE), there is little that can be done. For + * other modes of operation (e.g. 32-bit addressing), options are often + * available that can help minimise the window in which a reset could cause a + * problem. + * + */ +static bool stfsm_can_handle_soc_reset(struct stfsm *fsm) +{ + /* Reset signal is available on the board and supported by the device */ + if (fsm->reset_signal && fsm->info->flags & FLASH_FLAG_RESET) + return true; + + /* Board-level logic forces a power-on-reset */ + if (fsm->reset_por) + return true; + + /* Reset is not properly handled and may result in failure to reboot */ + return false; +} + +/* Configure 'addr_cfg' according to addressing mode */ +static void stfsm_prepare_erasesec_seq(struct stfsm *fsm, + struct stfsm_seq *seq) +{ + int addr1_cycles = fsm->info->flags & FLASH_FLAG_32BIT_ADDR ? 16 : 8; + + seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(addr1_cycles) | + ADR_CFG_PADS_1_ADD1 | + ADR_CFG_CYCLES_ADD2(16) | + ADR_CFG_PADS_1_ADD2 | + ADR_CFG_CSDEASSERT_ADD2); +} + +/* Search for preferred configuration based on available flags */ +static struct seq_rw_config * +stfsm_search_seq_rw_configs(struct stfsm *fsm, + struct seq_rw_config cfgs[]) +{ + struct seq_rw_config *config; + int flags = fsm->info->flags; + + for (config = cfgs; config->cmd != 0; config++) + if ((config->flags & flags) == config->flags) + return config; + + return NULL; +} + +/* Prepare a READ/WRITE sequence according to configuration parameters */ +static void stfsm_prepare_rw_seq(struct stfsm *fsm, + struct stfsm_seq *seq, + struct seq_rw_config *cfg) +{ + int addr1_cycles, addr2_cycles; + int i = 0; + + memset(seq, 0, sizeof(*seq)); + + /* Add READ/WRITE OPC */ + seq->seq_opc[i++] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(cfg->cmd)); + + /* Add WREN OPC for a WRITE sequence */ + if (cfg->write) + seq->seq_opc[i++] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WREN) | + SEQ_OPC_CSDEASSERT); + + /* Address configuration (24 or 32-bit addresses) */ + addr1_cycles = (fsm->info->flags & FLASH_FLAG_32BIT_ADDR) ? 16 : 8; + addr1_cycles /= cfg->addr_pads; + addr2_cycles = 16 / cfg->addr_pads; + seq->addr_cfg = ((addr1_cycles & 0x3f) << 0 | /* ADD1 cycles */ + (cfg->addr_pads - 1) << 6 | /* ADD1 pads */ + (addr2_cycles & 0x3f) << 16 | /* ADD2 cycles */ + ((cfg->addr_pads - 1) << 22)); /* ADD2 pads */ + + /* Data/Sequence configuration */ + seq->seq_cfg = ((cfg->data_pads - 1) << 16 | + SEQ_CFG_STARTSEQ | + SEQ_CFG_CSDEASSERT); + if (!cfg->write) + seq->seq_cfg |= SEQ_CFG_READNOTWRITE; + + /* Mode configuration (no. of pads taken from addr cfg) */ + seq->mode = ((cfg->mode_data & 0xff) << 0 | /* data */ + (cfg->mode_cycles & 0x3f) << 16 | /* cycles */ + (cfg->addr_pads - 1) << 22); /* pads */ + + /* Dummy configuration (no. of pads taken from addr cfg) */ + seq->dummy = ((cfg->dummy_cycles & 0x3f) << 16 | /* cycles */ + (cfg->addr_pads - 1) << 22); /* pads */ + + + /* Instruction sequence */ + i = 0; + if (cfg->write) + seq->seq[i++] = STFSM_INST_CMD2; + + seq->seq[i++] = STFSM_INST_CMD1; + + seq->seq[i++] = STFSM_INST_ADD1; + seq->seq[i++] = STFSM_INST_ADD2; + + if (cfg->mode_cycles) + seq->seq[i++] = STFSM_INST_MODE; + + if (cfg->dummy_cycles) + seq->seq[i++] = STFSM_INST_DUMMY; + + seq->seq[i++] = + cfg->write ? STFSM_INST_DATA_WRITE : STFSM_INST_DATA_READ; + seq->seq[i++] = STFSM_INST_STOP; +} + +static int stfsm_search_prepare_rw_seq(struct stfsm *fsm, + struct stfsm_seq *seq, + struct seq_rw_config *cfgs) +{ + struct seq_rw_config *config; + + config = stfsm_search_seq_rw_configs(fsm, cfgs); + if (!config) { + dev_err(fsm->dev, "failed to find suitable config\n"); + return -EINVAL; + } + + stfsm_prepare_rw_seq(fsm, seq, config); + + return 0; +} + +/* Prepare a READ/WRITE/ERASE 'default' sequences */ +static int stfsm_prepare_rwe_seqs_default(struct stfsm *fsm) +{ + uint32_t flags = fsm->info->flags; + int ret; + + /* Configure 'READ' sequence */ + ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read, + default_read_configs); + if (ret) { + dev_err(fsm->dev, + "failed to prep READ sequence with flags [0x%08x]\n", + flags); + return ret; + } + + /* Configure 'WRITE' sequence */ + ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write, + default_write_configs); + if (ret) { + dev_err(fsm->dev, + "failed to prep WRITE sequence with flags [0x%08x]\n", + flags); + return ret; + } + + /* Configure 'ERASE_SECTOR' sequence */ + stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector); + + return 0; +} + +static int stfsm_mx25_config(struct stfsm *fsm) +{ + uint32_t flags = fsm->info->flags; + uint32_t data_pads; + uint8_t sta; + int ret; + bool soc_reset; + + /* + * Use default READ/WRITE sequences + */ + ret = stfsm_prepare_rwe_seqs_default(fsm); + if (ret) + return ret; + + /* + * Configure 32-bit Address Support + */ + if (flags & FLASH_FLAG_32BIT_ADDR) { + /* Configure 'enter_32bitaddr' FSM sequence */ + stfsm_mx25_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr); + + soc_reset = stfsm_can_handle_soc_reset(fsm); + if (soc_reset || !fsm->booted_from_spi) + /* If we can handle SoC resets, we enable 32-bit address + * mode pervasively */ + stfsm_enter_32bit_addr(fsm, 1); + + else + /* Else, enable/disable 32-bit addressing before/after + * each operation */ + fsm->configuration = (CFG_READ_TOGGLE_32BIT_ADDR | + CFG_WRITE_TOGGLE_32BIT_ADDR | + CFG_ERASESEC_TOGGLE_32BIT_ADDR); + } + + /* Check status of 'QE' bit, update if required. */ + stfsm_read_status(fsm, SPINOR_OP_RDSR, &sta, 1); + data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1; + if (data_pads == 4) { + if (!(sta & MX25_STATUS_QE)) { + /* Set 'QE' */ + sta |= MX25_STATUS_QE; + + stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1); + } + } else { + if (sta & MX25_STATUS_QE) { + /* Clear 'QE' */ + sta &= ~MX25_STATUS_QE; + + stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1); + } + } + + return 0; +} + +static int stfsm_n25q_config(struct stfsm *fsm) +{ + uint32_t flags = fsm->info->flags; + uint8_t vcr; + int ret = 0; + bool soc_reset; + + /* Configure 'READ' sequence */ + if (flags & FLASH_FLAG_32BIT_ADDR) + ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read, + n25q_read4_configs); + else + ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read, + n25q_read3_configs); + if (ret) { + dev_err(fsm->dev, + "failed to prepare READ sequence with flags [0x%08x]\n", + flags); + return ret; + } + + /* Configure 'WRITE' sequence (default configs) */ + ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write, + default_write_configs); + if (ret) { + dev_err(fsm->dev, + "preparing WRITE sequence using flags [0x%08x] failed\n", + flags); + return ret; + } + + /* * Configure 'ERASE_SECTOR' sequence */ + stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector); + + /* Configure 32-bit address support */ + if (flags & FLASH_FLAG_32BIT_ADDR) { + stfsm_n25q_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr); + + soc_reset = stfsm_can_handle_soc_reset(fsm); + if (soc_reset || !fsm->booted_from_spi) { + /* + * If we can handle SoC resets, we enable 32-bit + * address mode pervasively + */ + stfsm_enter_32bit_addr(fsm, 1); + } else { + /* + * If not, enable/disable for WRITE and ERASE + * operations (READ uses special commands) + */ + fsm->configuration = (CFG_WRITE_TOGGLE_32BIT_ADDR | + CFG_ERASESEC_TOGGLE_32BIT_ADDR); + } + } + + /* + * Configure device to use 8 dummy cycles + */ + vcr = (N25Q_VCR_DUMMY_CYCLES(8) | N25Q_VCR_XIP_DISABLED | + N25Q_VCR_WRAP_CONT); + stfsm_write_status(fsm, N25Q_CMD_WRVCR, vcr, 1, 0); + + return 0; +} + +static void stfsm_s25fl_prepare_erasesec_seq_32(struct stfsm_seq *seq) +{ + seq->seq_opc[1] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(S25FL_CMD_SE4)); + + seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(16) | + ADR_CFG_PADS_1_ADD1 | + ADR_CFG_CYCLES_ADD2(16) | + ADR_CFG_PADS_1_ADD2 | + ADR_CFG_CSDEASSERT_ADD2); +} + +static void stfsm_s25fl_read_dyb(struct stfsm *fsm, uint32_t offs, uint8_t *dby) +{ + uint32_t tmp; + struct stfsm_seq seq = { + .data_size = TRANSFER_SIZE(4), + .seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(S25FL_CMD_DYBRD)), + .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) | + ADR_CFG_PADS_1_ADD1 | + ADR_CFG_CYCLES_ADD2(16) | + ADR_CFG_PADS_1_ADD2), + .addr1 = (offs >> 16) & 0xffff, + .addr2 = offs & 0xffff, + .seq = { + STFSM_INST_CMD1, + STFSM_INST_ADD1, + STFSM_INST_ADD2, + STFSM_INST_DATA_READ, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), + }; + + stfsm_load_seq(fsm, &seq); + + stfsm_read_fifo(fsm, &tmp, 4); + + *dby = (uint8_t)(tmp >> 24); + + stfsm_wait_seq(fsm); +} + +static void stfsm_s25fl_write_dyb(struct stfsm *fsm, uint32_t offs, uint8_t dby) +{ + struct stfsm_seq seq = { + .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WREN) | + SEQ_OPC_CSDEASSERT), + .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(S25FL_CMD_DYBWR)), + .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) | + ADR_CFG_PADS_1_ADD1 | + ADR_CFG_CYCLES_ADD2(16) | + ADR_CFG_PADS_1_ADD2), + .status = (uint32_t)dby | STA_PADS_1 | STA_CSDEASSERT, + .addr1 = (offs >> 16) & 0xffff, + .addr2 = offs & 0xffff, + .seq = { + STFSM_INST_CMD1, + STFSM_INST_CMD2, + STFSM_INST_ADD1, + STFSM_INST_ADD2, + STFSM_INST_STA_WR1, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), + }; + + stfsm_load_seq(fsm, &seq); + stfsm_wait_seq(fsm); + + stfsm_wait_busy(fsm); +} + +static int stfsm_s25fl_clear_status_reg(struct stfsm *fsm) +{ + struct stfsm_seq seq = { + .seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(S25FL_CMD_CLSR) | + SEQ_OPC_CSDEASSERT), + .seq_opc[1] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WRDI) | + SEQ_OPC_CSDEASSERT), + .seq = { + STFSM_INST_CMD1, + STFSM_INST_CMD2, + STFSM_INST_WAIT, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_ERASE | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), + }; + + stfsm_load_seq(fsm, &seq); + + stfsm_wait_seq(fsm); + + return 0; +} + +static int stfsm_s25fl_config(struct stfsm *fsm) +{ + struct flash_info *info = fsm->info; + uint32_t flags = info->flags; + uint32_t data_pads; + uint32_t offs; + uint16_t sta_wr; + uint8_t sr1, cr1, dyb; + int update_sr = 0; + int ret; + + if (flags & FLASH_FLAG_32BIT_ADDR) { + /* + * Prepare Read/Write/Erase sequences according to S25FLxxx + * 32-bit address command set + */ + ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read, + stfsm_s25fl_read4_configs); + if (ret) + return ret; + + ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write, + stfsm_s25fl_write4_configs); + if (ret) + return ret; + + stfsm_s25fl_prepare_erasesec_seq_32(&stfsm_seq_erase_sector); + + } else { + /* Use default configurations for 24-bit addressing */ + ret = stfsm_prepare_rwe_seqs_default(fsm); + if (ret) + return ret; + } + + /* + * For devices that support 'DYB' sector locking, check lock status and + * unlock sectors if necessary (some variants power-on with sectors + * locked by default) + */ + if (flags & FLASH_FLAG_DYB_LOCKING) { + offs = 0; + for (offs = 0; offs < info->sector_size * info->n_sectors;) { + stfsm_s25fl_read_dyb(fsm, offs, &dyb); + if (dyb == 0x00) + stfsm_s25fl_write_dyb(fsm, offs, 0xff); + + /* Handle bottom/top 4KiB parameter sectors */ + if ((offs < info->sector_size * 2) || + (offs >= (info->sector_size - info->n_sectors * 4))) + offs += 0x1000; + else + offs += 0x10000; + } + } + + /* Check status of 'QE' bit, update if required. */ + stfsm_read_status(fsm, SPINOR_OP_RDSR2, &cr1, 1); + data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1; + if (data_pads == 4) { + if (!(cr1 & STFSM_S25FL_CONFIG_QE)) { + /* Set 'QE' */ + cr1 |= STFSM_S25FL_CONFIG_QE; + + update_sr = 1; + } + } else { + if (cr1 & STFSM_S25FL_CONFIG_QE) { + /* Clear 'QE' */ + cr1 &= ~STFSM_S25FL_CONFIG_QE; + + update_sr = 1; + } + } + if (update_sr) { + stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1); + sta_wr = ((uint16_t)cr1 << 8) | sr1; + stfsm_write_status(fsm, SPINOR_OP_WRSR, sta_wr, 2, 1); + } + + /* + * S25FLxxx devices support Program and Error error flags. + * Configure driver to check flags and clear if necessary. + */ + fsm->configuration |= CFG_S25FL_CHECK_ERROR_FLAGS; + + return 0; +} + +static int stfsm_w25q_config(struct stfsm *fsm) +{ + uint32_t data_pads; + uint8_t sr1, sr2; + uint16_t sr_wr; + int update_sr = 0; + int ret; + + ret = stfsm_prepare_rwe_seqs_default(fsm); + if (ret) + return ret; + + /* Check status of 'QE' bit, update if required. */ + stfsm_read_status(fsm, SPINOR_OP_RDSR2, &sr2, 1); + data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1; + if (data_pads == 4) { + if (!(sr2 & W25Q_STATUS_QE)) { + /* Set 'QE' */ + sr2 |= W25Q_STATUS_QE; + update_sr = 1; + } + } else { + if (sr2 & W25Q_STATUS_QE) { + /* Clear 'QE' */ + sr2 &= ~W25Q_STATUS_QE; + update_sr = 1; + } + } + if (update_sr) { + /* Write status register */ + stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1); + sr_wr = ((uint16_t)sr2 << 8) | sr1; + stfsm_write_status(fsm, SPINOR_OP_WRSR, sr_wr, 2, 1); + } + + return 0; +} + +static int stfsm_read(struct stfsm *fsm, uint8_t *buf, uint32_t size, + uint32_t offset) +{ + struct stfsm_seq *seq = &fsm->stfsm_seq_read; + uint32_t data_pads; + uint32_t read_mask; + uint32_t size_ub; + uint32_t size_lb; + uint32_t size_mop; + uint32_t tmp[4]; + uint32_t page_buf[FLASH_PAGESIZE_32]; + uint8_t *p; + + dev_dbg(fsm->dev, "reading %d bytes from 0x%08x\n", size, offset); + + /* Enter 32-bit address mode, if required */ + if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR) + stfsm_enter_32bit_addr(fsm, 1); + + /* Must read in multiples of 32 cycles (or 32*pads/8 Bytes) */ + data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1; + read_mask = (data_pads << 2) - 1; + + /* Handle non-aligned buf */ + p = ((uintptr_t)buf & 0x3) ? (uint8_t *)page_buf : buf; + + /* Handle non-aligned size */ + size_ub = (size + read_mask) & ~read_mask; + size_lb = size & ~read_mask; + size_mop = size & read_mask; + + seq->data_size = TRANSFER_SIZE(size_ub); + seq->addr1 = (offset >> 16) & 0xffff; + seq->addr2 = offset & 0xffff; + + stfsm_load_seq(fsm, seq); + + if (size_lb) + stfsm_read_fifo(fsm, (uint32_t *)p, size_lb); + + if (size_mop) { + stfsm_read_fifo(fsm, tmp, read_mask + 1); + memcpy(p + size_lb, &tmp, size_mop); + } + + /* Handle non-aligned buf */ + if ((uintptr_t)buf & 0x3) + memcpy(buf, page_buf, size); + + /* Wait for sequence to finish */ + stfsm_wait_seq(fsm); + + stfsm_clear_fifo(fsm); + + /* Exit 32-bit address mode, if required */ + if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR) + stfsm_enter_32bit_addr(fsm, 0); + + return 0; +} + +static int stfsm_write(struct stfsm *fsm, const uint8_t *buf, + uint32_t size, uint32_t offset) +{ + struct stfsm_seq *seq = &fsm->stfsm_seq_write; + uint32_t data_pads; + uint32_t write_mask; + uint32_t size_ub; + uint32_t size_lb; + uint32_t size_mop; + uint32_t tmp[4]; + uint32_t page_buf[FLASH_PAGESIZE_32]; + uint8_t *t = (uint8_t *)&tmp; + const uint8_t *p; + int ret; + int i; + + dev_dbg(fsm->dev, "writing %d bytes to 0x%08x\n", size, offset); + + /* Enter 32-bit address mode, if required */ + if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR) + stfsm_enter_32bit_addr(fsm, 1); + + /* Must write in multiples of 32 cycles (or 32*pads/8 bytes) */ + data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1; + write_mask = (data_pads << 2) - 1; + + /* Handle non-aligned buf */ + if ((uintptr_t)buf & 0x3) { + memcpy(page_buf, buf, size); + p = (uint8_t *)page_buf; + } else { + p = buf; + } + + /* Handle non-aligned size */ + size_ub = (size + write_mask) & ~write_mask; + size_lb = size & ~write_mask; + size_mop = size & write_mask; + + seq->data_size = TRANSFER_SIZE(size_ub); + seq->addr1 = (offset >> 16) & 0xffff; + seq->addr2 = offset & 0xffff; + + /* Need to set FIFO to write mode, before writing data to FIFO (see + * GNBvb79594) + */ + writel(0x00040000, fsm->base + SPI_FAST_SEQ_CFG); + + /* + * Before writing data to the FIFO, apply a small delay to allow a + * potential change of FIFO direction to complete. + */ + if (fsm->fifo_dir_delay == 0) + readl(fsm->base + SPI_FAST_SEQ_CFG); + else + udelay(fsm->fifo_dir_delay); + + + /* Write data to FIFO, before starting sequence (see GNBvd79593) */ + if (size_lb) { + stfsm_write_fifo(fsm, (uint32_t *)p, size_lb); + p += size_lb; + } + + /* Handle non-aligned size */ + if (size_mop) { + memset(t, 0xff, write_mask + 1); /* fill with 0xff's */ + for (i = 0; i < size_mop; i++) + t[i] = *p++; + + stfsm_write_fifo(fsm, tmp, write_mask + 1); + } + + /* Start sequence */ + stfsm_load_seq(fsm, seq); + + /* Wait for sequence to finish */ + stfsm_wait_seq(fsm); + + /* Wait for completion */ + ret = stfsm_wait_busy(fsm); + if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) + stfsm_s25fl_clear_status_reg(fsm); + + /* Exit 32-bit address mode, if required */ + if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR) + stfsm_enter_32bit_addr(fsm, 0); + + return 0; +} + +/* + * Read an address range from the flash chip. The address range + * may be any size provided it is within the physical boundaries. + */ +static int stfsm_mtd_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent); + uint32_t bytes; + + dev_dbg(fsm->dev, "%s from 0x%08x, len %zd\n", + __func__, (u32)from, len); + + mutex_lock(&fsm->lock); + + while (len > 0) { + bytes = min_t(size_t, len, FLASH_PAGESIZE); + + stfsm_read(fsm, buf, bytes, from); + + buf += bytes; + from += bytes; + len -= bytes; + + *retlen += bytes; + } + + mutex_unlock(&fsm->lock); + + return 0; +} + +static int stfsm_erase_sector(struct stfsm *fsm, uint32_t offset) +{ + struct stfsm_seq *seq = &stfsm_seq_erase_sector; + int ret; + + dev_dbg(fsm->dev, "erasing sector at 0x%08x\n", offset); + + /* Enter 32-bit address mode, if required */ + if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR) + stfsm_enter_32bit_addr(fsm, 1); + + seq->addr1 = (offset >> 16) & 0xffff; + seq->addr2 = offset & 0xffff; + + stfsm_load_seq(fsm, seq); + + stfsm_wait_seq(fsm); + + /* Wait for completion */ + ret = stfsm_wait_busy(fsm); + if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) + stfsm_s25fl_clear_status_reg(fsm); + + /* Exit 32-bit address mode, if required */ + if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR) + stfsm_enter_32bit_addr(fsm, 0); + + return ret; +} + +static int stfsm_erase_chip(struct stfsm *fsm) +{ + const struct stfsm_seq *seq = &stfsm_seq_erase_chip; + + dev_dbg(fsm->dev, "erasing chip\n"); + + stfsm_load_seq(fsm, seq); + + stfsm_wait_seq(fsm); + + return stfsm_wait_busy(fsm); +} + +/* + * Write an address range to the flash chip. Data must be written in + * FLASH_PAGESIZE chunks. The address range may be any size provided + * it is within the physical boundaries. + */ +static int stfsm_mtd_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent); + + u32 page_offs; + u32 bytes; + uint8_t *b = (uint8_t *)buf; + int ret = 0; + + dev_dbg(fsm->dev, "%s to 0x%08x, len %zd\n", __func__, (u32)to, len); + + /* Offset within page */ + page_offs = to % FLASH_PAGESIZE; + + mutex_lock(&fsm->lock); + + while (len) { + /* Write up to page boundary */ + bytes = min_t(size_t, FLASH_PAGESIZE - page_offs, len); + + ret = stfsm_write(fsm, b, bytes, to); + if (ret) + goto out1; + + b += bytes; + len -= bytes; + to += bytes; + + /* We are now page-aligned */ + page_offs = 0; + + *retlen += bytes; + + } + +out1: + mutex_unlock(&fsm->lock); + + return ret; +} + +/* + * Erase an address range on the flash chip. The address range may extend + * one or more erase sectors. Return an error is there is a problem erasing. + */ +static int stfsm_mtd_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent); + u32 addr, len; + int ret; + + dev_dbg(fsm->dev, "%s at 0x%llx, len %lld\n", __func__, + (long long)instr->addr, (long long)instr->len); + + addr = instr->addr; + len = instr->len; + + mutex_lock(&fsm->lock); + + /* Whole-chip erase? */ + if (len == mtd->size) { + ret = stfsm_erase_chip(fsm); + if (ret) + goto out1; + } else { + while (len) { + ret = stfsm_erase_sector(fsm, addr); + if (ret) + goto out1; + + addr += mtd->erasesize; + len -= mtd->erasesize; + } + } + + mutex_unlock(&fsm->lock); + + instr->state = MTD_ERASE_DONE; + mtd_erase_callback(instr); + + return 0; + +out1: + instr->state = MTD_ERASE_FAILED; + mutex_unlock(&fsm->lock); + + return ret; +} + +static void stfsm_read_jedec(struct stfsm *fsm, uint8_t *jedec) +{ + const struct stfsm_seq *seq = &stfsm_seq_read_jedec; + uint32_t tmp[2]; + + stfsm_load_seq(fsm, seq); + + stfsm_read_fifo(fsm, tmp, 8); + + memcpy(jedec, tmp, 5); + + stfsm_wait_seq(fsm); +} + +static struct flash_info *stfsm_jedec_probe(struct stfsm *fsm) +{ + struct flash_info *info; + u16 ext_jedec; + u32 jedec; + u8 id[5]; + + stfsm_read_jedec(fsm, id); + + jedec = id[0] << 16 | id[1] << 8 | id[2]; + /* + * JEDEC also defines an optional "extended device information" + * string for after vendor-specific data, after the three bytes + * we use here. Supporting some chips might require using it. + */ + ext_jedec = id[3] << 8 | id[4]; + + dev_dbg(fsm->dev, "JEDEC = 0x%08x [%02x %02x %02x %02x %02x]\n", + jedec, id[0], id[1], id[2], id[3], id[4]); + + for (info = flash_types; info->name; info++) { + if (info->jedec_id == jedec) { + if (info->ext_id && info->ext_id != ext_jedec) + continue; + return info; + } + } + dev_err(fsm->dev, "Unrecognized JEDEC id %06x\n", jedec); + + return NULL; +} + +static int stfsm_set_mode(struct stfsm *fsm, uint32_t mode) +{ + int ret, timeout = 10; + + /* Wait for controller to accept mode change */ + while (--timeout) { + ret = readl(fsm->base + SPI_STA_MODE_CHANGE); + if (ret & 0x1) + break; + udelay(1); + } + + if (!timeout) + return -EBUSY; + + writel(mode, fsm->base + SPI_MODESELECT); + + return 0; +} + +static void stfsm_set_freq(struct stfsm *fsm, uint32_t spi_freq) +{ + uint32_t emi_freq; + uint32_t clk_div; + + /* TODO: Make this dynamic */ + emi_freq = STFSM_DEFAULT_EMI_FREQ; + + /* + * Calculate clk_div - values between 2 and 128 + * Multiple of 2, rounded up + */ + clk_div = 2 * DIV_ROUND_UP(emi_freq, 2 * spi_freq); + if (clk_div < 2) + clk_div = 2; + else if (clk_div > 128) + clk_div = 128; + + /* + * Determine a suitable delay for the IP to complete a change of + * direction of the FIFO. The required delay is related to the clock + * divider used. The following heuristics are based on empirical tests, + * using a 100MHz EMI clock. + */ + if (clk_div <= 4) + fsm->fifo_dir_delay = 0; + else if (clk_div <= 10) + fsm->fifo_dir_delay = 1; + else + fsm->fifo_dir_delay = DIV_ROUND_UP(clk_div, 10); + + dev_dbg(fsm->dev, "emi_clk = %uHZ, spi_freq = %uHZ, clk_div = %u\n", + emi_freq, spi_freq, clk_div); + + writel(clk_div, fsm->base + SPI_CLOCKDIV); +} + +static int stfsm_init(struct stfsm *fsm) +{ + int ret; + + /* Perform a soft reset of the FSM controller */ + writel(SEQ_CFG_SWRESET, fsm->base + SPI_FAST_SEQ_CFG); + udelay(1); + writel(0, fsm->base + SPI_FAST_SEQ_CFG); + + /* Set clock to 'safe' frequency initially */ + stfsm_set_freq(fsm, STFSM_FLASH_SAFE_FREQ); + + /* Switch to FSM */ + ret = stfsm_set_mode(fsm, SPI_MODESELECT_FSM); + if (ret) + return ret; + + /* Set timing parameters */ + writel(SPI_CFG_DEVICE_ST | + SPI_CFG_DEFAULT_MIN_CS_HIGH | + SPI_CFG_DEFAULT_CS_SETUPHOLD | + SPI_CFG_DEFAULT_DATA_HOLD, + fsm->base + SPI_CONFIGDATA); + writel(STFSM_DEFAULT_WR_TIME, fsm->base + SPI_STATUS_WR_TIME_REG); + + /* + * Set the FSM 'WAIT' delay to the minimum workable value. Note, for + * our purposes, the WAIT instruction is used purely to achieve + * "sequence validity" rather than actually implement a delay. + */ + writel(0x00000001, fsm->base + SPI_PROGRAM_ERASE_TIME); + + /* Clear FIFO, just in case */ + stfsm_clear_fifo(fsm); + + return 0; +} + +static void stfsm_fetch_platform_configs(struct platform_device *pdev) +{ + struct stfsm *fsm = platform_get_drvdata(pdev); + struct device_node *np = pdev->dev.of_node; + struct regmap *regmap; + uint32_t boot_device_reg; + uint32_t boot_device_spi; + uint32_t boot_device; /* Value we read from *boot_device_reg */ + int ret; + + /* Booting from SPI NOR Flash is the default */ + fsm->booted_from_spi = true; + + regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg"); + if (IS_ERR(regmap)) + goto boot_device_fail; + + fsm->reset_signal = of_property_read_bool(np, "st,reset-signal"); + + fsm->reset_por = of_property_read_bool(np, "st,reset-por"); + + /* Where in the syscon the boot device information lives */ + ret = of_property_read_u32(np, "st,boot-device-reg", &boot_device_reg); + if (ret) + goto boot_device_fail; + + /* Boot device value when booted from SPI NOR */ + ret = of_property_read_u32(np, "st,boot-device-spi", &boot_device_spi); + if (ret) + goto boot_device_fail; + + ret = regmap_read(regmap, boot_device_reg, &boot_device); + if (ret) + goto boot_device_fail; + + if (boot_device != boot_device_spi) + fsm->booted_from_spi = false; + + return; + +boot_device_fail: + dev_warn(&pdev->dev, + "failed to fetch boot device, assuming boot from SPI\n"); +} + +static int stfsm_probe(struct platform_device *pdev) +{ + struct device_node *np = pdev->dev.of_node; + struct mtd_part_parser_data ppdata; + struct flash_info *info; + struct resource *res; + struct stfsm *fsm; + int ret; + + if (!np) { + dev_err(&pdev->dev, "No DT found\n"); + return -EINVAL; + } + ppdata.of_node = np; + + fsm = devm_kzalloc(&pdev->dev, sizeof(*fsm), GFP_KERNEL); + if (!fsm) + return -ENOMEM; + + fsm->dev = &pdev->dev; + + platform_set_drvdata(pdev, fsm); + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!res) { + dev_err(&pdev->dev, "Resource not found\n"); + return -ENODEV; + } + + fsm->base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(fsm->base)) { + dev_err(&pdev->dev, + "Failed to reserve memory region %pR\n", res); + return PTR_ERR(fsm->base); + } + + mutex_init(&fsm->lock); + + ret = stfsm_init(fsm); + if (ret) { + dev_err(&pdev->dev, "Failed to initialise FSM Controller\n"); + return ret; + } + + stfsm_fetch_platform_configs(pdev); + + /* Detect SPI FLASH device */ + info = stfsm_jedec_probe(fsm); + if (!info) + return -ENODEV; + fsm->info = info; + + /* Use device size to determine address width */ + if (info->sector_size * info->n_sectors > 0x1000000) + info->flags |= FLASH_FLAG_32BIT_ADDR; + + /* + * Configure READ/WRITE/ERASE sequences according to platform and + * device flags. + */ + if (info->config) { + ret = info->config(fsm); + if (ret) + return ret; + } else { + ret = stfsm_prepare_rwe_seqs_default(fsm); + if (ret) + return ret; + } + + fsm->mtd.name = info->name; + fsm->mtd.dev.parent = &pdev->dev; + fsm->mtd.type = MTD_NORFLASH; + fsm->mtd.writesize = 4; + fsm->mtd.writebufsize = fsm->mtd.writesize; + fsm->mtd.flags = MTD_CAP_NORFLASH; + fsm->mtd.size = info->sector_size * info->n_sectors; + fsm->mtd.erasesize = info->sector_size; + + fsm->mtd._read = stfsm_mtd_read; + fsm->mtd._write = stfsm_mtd_write; + fsm->mtd._erase = stfsm_mtd_erase; + + dev_info(&pdev->dev, + "Found serial flash device: %s\n" + " size = %llx (%lldMiB) erasesize = 0x%08x (%uKiB)\n", + info->name, + (long long)fsm->mtd.size, (long long)(fsm->mtd.size >> 20), + fsm->mtd.erasesize, (fsm->mtd.erasesize >> 10)); + + return mtd_device_parse_register(&fsm->mtd, NULL, &ppdata, NULL, 0); +} + +static int stfsm_remove(struct platform_device *pdev) +{ + struct stfsm *fsm = platform_get_drvdata(pdev); + + return mtd_device_unregister(&fsm->mtd); +} + +static const struct of_device_id stfsm_match[] = { + { .compatible = "st,spi-fsm", }, + {}, +}; +MODULE_DEVICE_TABLE(of, stfsm_match); + +static struct platform_driver stfsm_driver = { + .probe = stfsm_probe, + .remove = stfsm_remove, + .driver = { + .name = "st-spi-fsm", + .owner = THIS_MODULE, + .of_match_table = stfsm_match, + }, +}; +module_platform_driver(stfsm_driver); + +MODULE_AUTHOR("Angus Clark <angus.clark@st.com>"); +MODULE_DESCRIPTION("ST SPI FSM driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/ftl.c b/drivers/mtd/ftl.c index 62da9eb7032..19d637266fc 100644 --- a/drivers/mtd/ftl.c +++ b/drivers/mtd/ftl.c @@ -26,7 +26,7 @@ The initial developer of the original code is David A. Hinds <dahinds@users.sourceforge.net>. Portions created by David A. Hinds - are Copyright (C) 1999 David A. Hinds. All Rights Reserved. + are Copyright © 1999 David A. Hinds. All Rights Reserved. Alternatively, the contents of this file may be used under the terms of the GNU General Public License version 2 (the "GPL"), in @@ -51,7 +51,7 @@ Use of the FTL format for non-PCMCIA applications may be an infringement of these patents. For additional information, - contact M-Systems (http://www.m-sys.com) directly. + contact M-Systems directly. M-Systems since acquired by Sandisk. ======================================================================*/ #include <linux/mtd/blktrans.h> @@ -168,8 +168,8 @@ static int scan_header(partition_t *part) (offset + sizeof(header)) < max_offset; offset += part->mbd.mtd->erasesize ? : 0x2000) { - err = part->mbd.mtd->read(part->mbd.mtd, offset, sizeof(header), &ret, - (unsigned char *)&header); + err = mtd_read(part->mbd.mtd, offset, sizeof(header), &ret, + (unsigned char *)&header); if (err) return err; @@ -224,8 +224,8 @@ static int build_maps(partition_t *part) for (i = 0; i < le16_to_cpu(part->header.NumEraseUnits); i++) { offset = ((i + le16_to_cpu(part->header.FirstPhysicalEUN)) << part->header.EraseUnitSize); - ret = part->mbd.mtd->read(part->mbd.mtd, offset, sizeof(header), &retval, - (unsigned char *)&header); + ret = mtd_read(part->mbd.mtd, offset, sizeof(header), &retval, + (unsigned char *)&header); if (ret) goto out_XferInfo; @@ -289,9 +289,9 @@ static int build_maps(partition_t *part) part->EUNInfo[i].Deleted = 0; offset = part->EUNInfo[i].Offset + le32_to_cpu(header.BAMOffset); - ret = part->mbd.mtd->read(part->mbd.mtd, offset, - part->BlocksPerUnit * sizeof(uint32_t), &retval, - (unsigned char *)part->bam_cache); + ret = mtd_read(part->mbd.mtd, offset, + part->BlocksPerUnit * sizeof(uint32_t), &retval, + (unsigned char *)part->bam_cache); if (ret) goto out_bam_cache; @@ -339,7 +339,7 @@ static int erase_xfer(partition_t *part, struct erase_info *erase; xfer = &part->XferInfo[xfernum]; - DEBUG(1, "ftl_cs: erasing xfer unit at 0x%x\n", xfer->Offset); + pr_debug("ftl_cs: erasing xfer unit at 0x%x\n", xfer->Offset); xfer->state = XFER_ERASING; /* Is there a free erase slot? Always in MTD. */ @@ -355,7 +355,7 @@ static int erase_xfer(partition_t *part, erase->len = 1 << part->header.EraseUnitSize; erase->priv = (u_long)part; - ret = part->mbd.mtd->erase(part->mbd.mtd, erase); + ret = mtd_erase(part->mbd.mtd, erase); if (!ret) xfer->EraseCount++; @@ -415,15 +415,15 @@ static int prepare_xfer(partition_t *part, int i) xfer = &part->XferInfo[i]; xfer->state = XFER_FAILED; - DEBUG(1, "ftl_cs: preparing xfer unit at 0x%x\n", xfer->Offset); + pr_debug("ftl_cs: preparing xfer unit at 0x%x\n", xfer->Offset); /* Write the transfer unit header */ header = part->header; header.LogicalEUN = cpu_to_le16(0xffff); header.EraseCount = cpu_to_le32(xfer->EraseCount); - ret = part->mbd.mtd->write(part->mbd.mtd, xfer->Offset, sizeof(header), - &retlen, (u_char *)&header); + ret = mtd_write(part->mbd.mtd, xfer->Offset, sizeof(header), &retlen, + (u_char *)&header); if (ret) { return ret; @@ -438,8 +438,8 @@ static int prepare_xfer(partition_t *part, int i) for (i = 0; i < nbam; i++, offset += sizeof(uint32_t)) { - ret = part->mbd.mtd->write(part->mbd.mtd, offset, sizeof(uint32_t), - &retlen, (u_char *)&ctl); + ret = mtd_write(part->mbd.mtd, offset, sizeof(uint32_t), &retlen, + (u_char *)&ctl); if (ret) return ret; @@ -476,7 +476,7 @@ static int copy_erase_unit(partition_t *part, uint16_t srcunit, eun = &part->EUNInfo[srcunit]; xfer = &part->XferInfo[xferunit]; - DEBUG(2, "ftl_cs: copying block 0x%x to 0x%x\n", + pr_debug("ftl_cs: copying block 0x%x to 0x%x\n", eun->Offset, xfer->Offset); @@ -485,9 +485,9 @@ static int copy_erase_unit(partition_t *part, uint16_t srcunit, offset = eun->Offset + le32_to_cpu(part->header.BAMOffset); - ret = part->mbd.mtd->read(part->mbd.mtd, offset, - part->BlocksPerUnit * sizeof(uint32_t), - &retlen, (u_char *) (part->bam_cache)); + ret = mtd_read(part->mbd.mtd, offset, + part->BlocksPerUnit * sizeof(uint32_t), &retlen, + (u_char *)(part->bam_cache)); /* mark the cache bad, in case we get an error later */ part->bam_index = 0xffff; @@ -503,8 +503,8 @@ static int copy_erase_unit(partition_t *part, uint16_t srcunit, offset = xfer->Offset + 20; /* Bad! */ unit = cpu_to_le16(0x7fff); - ret = part->mbd.mtd->write(part->mbd.mtd, offset, sizeof(uint16_t), - &retlen, (u_char *) &unit); + ret = mtd_write(part->mbd.mtd, offset, sizeof(uint16_t), &retlen, + (u_char *)&unit); if (ret) { printk( KERN_WARNING "ftl: Failed to write back to BAM cache in copy_erase_unit()!\n"); @@ -523,16 +523,16 @@ static int copy_erase_unit(partition_t *part, uint16_t srcunit, break; case BLOCK_DATA: case BLOCK_REPLACEMENT: - ret = part->mbd.mtd->read(part->mbd.mtd, src, SECTOR_SIZE, - &retlen, (u_char *) buf); + ret = mtd_read(part->mbd.mtd, src, SECTOR_SIZE, &retlen, + (u_char *)buf); if (ret) { printk(KERN_WARNING "ftl: Error reading old xfer unit in copy_erase_unit\n"); return ret; } - ret = part->mbd.mtd->write(part->mbd.mtd, dest, SECTOR_SIZE, - &retlen, (u_char *) buf); + ret = mtd_write(part->mbd.mtd, dest, SECTOR_SIZE, &retlen, + (u_char *)buf); if (ret) { printk(KERN_WARNING "ftl: Error writing new xfer unit in copy_erase_unit\n"); return ret; @@ -550,9 +550,11 @@ static int copy_erase_unit(partition_t *part, uint16_t srcunit, } /* Write the BAM to the transfer unit */ - ret = part->mbd.mtd->write(part->mbd.mtd, xfer->Offset + le32_to_cpu(part->header.BAMOffset), - part->BlocksPerUnit * sizeof(int32_t), &retlen, - (u_char *)part->bam_cache); + ret = mtd_write(part->mbd.mtd, + xfer->Offset + le32_to_cpu(part->header.BAMOffset), + part->BlocksPerUnit * sizeof(int32_t), + &retlen, + (u_char *)part->bam_cache); if (ret) { printk( KERN_WARNING "ftl: Error writing BAM in copy_erase_unit\n"); return ret; @@ -560,8 +562,8 @@ static int copy_erase_unit(partition_t *part, uint16_t srcunit, /* All clear? Then update the LogicalEUN again */ - ret = part->mbd.mtd->write(part->mbd.mtd, xfer->Offset + 20, sizeof(uint16_t), - &retlen, (u_char *)&srcunitswap); + ret = mtd_write(part->mbd.mtd, xfer->Offset + 20, sizeof(uint16_t), + &retlen, (u_char *)&srcunitswap); if (ret) { printk(KERN_WARNING "ftl: Error writing new LogicalEUN in copy_erase_unit\n"); @@ -598,7 +600,7 @@ static int copy_erase_unit(partition_t *part, uint16_t srcunit, unit with the fewest erases, and usually pick the data unit with the most deleted blocks. But with a small probability, pick the oldest data unit instead. This means that we generally postpone - the next reclaimation as long as possible, but shuffle static + the next reclamation as long as possible, but shuffle static stuff around a bit for wear leveling. ======================================================================*/ @@ -609,8 +611,8 @@ static int reclaim_block(partition_t *part) uint32_t best; int queued, ret; - DEBUG(0, "ftl_cs: reclaiming space...\n"); - DEBUG(3, "NumTransferUnits == %x\n", part->header.NumTransferUnits); + pr_debug("ftl_cs: reclaiming space...\n"); + pr_debug("NumTransferUnits == %x\n", part->header.NumTransferUnits); /* Pick the least erased transfer unit */ best = 0xffffffff; xfer = 0xffff; do { @@ -618,22 +620,22 @@ static int reclaim_block(partition_t *part) for (i = 0; i < part->header.NumTransferUnits; i++) { int n=0; if (part->XferInfo[i].state == XFER_UNKNOWN) { - DEBUG(3,"XferInfo[%d].state == XFER_UNKNOWN\n",i); + pr_debug("XferInfo[%d].state == XFER_UNKNOWN\n",i); n=1; erase_xfer(part, i); } if (part->XferInfo[i].state == XFER_ERASING) { - DEBUG(3,"XferInfo[%d].state == XFER_ERASING\n",i); + pr_debug("XferInfo[%d].state == XFER_ERASING\n",i); n=1; queued = 1; } else if (part->XferInfo[i].state == XFER_ERASED) { - DEBUG(3,"XferInfo[%d].state == XFER_ERASED\n",i); + pr_debug("XferInfo[%d].state == XFER_ERASED\n",i); n=1; prepare_xfer(part, i); } if (part->XferInfo[i].state == XFER_PREPARED) { - DEBUG(3,"XferInfo[%d].state == XFER_PREPARED\n",i); + pr_debug("XferInfo[%d].state == XFER_PREPARED\n",i); n=1; if (part->XferInfo[i].EraseCount <= best) { best = part->XferInfo[i].EraseCount; @@ -641,22 +643,21 @@ static int reclaim_block(partition_t *part) } } if (!n) - DEBUG(3,"XferInfo[%d].state == %x\n",i, part->XferInfo[i].state); + pr_debug("XferInfo[%d].state == %x\n",i, part->XferInfo[i].state); } if (xfer == 0xffff) { if (queued) { - DEBUG(1, "ftl_cs: waiting for transfer " + pr_debug("ftl_cs: waiting for transfer " "unit to be prepared...\n"); - if (part->mbd.mtd->sync) - part->mbd.mtd->sync(part->mbd.mtd); + mtd_sync(part->mbd.mtd); } else { static int ne = 0; if (++ne < 5) printk(KERN_NOTICE "ftl_cs: reclaim failed: no " "suitable transfer units!\n"); else - DEBUG(1, "ftl_cs: reclaim failed: no " + pr_debug("ftl_cs: reclaim failed: no " "suitable transfer units!\n"); return -EIO; @@ -666,7 +667,7 @@ static int reclaim_block(partition_t *part) eun = 0; if ((jiffies % shuffle_freq) == 0) { - DEBUG(1, "ftl_cs: recycling freshest block...\n"); + pr_debug("ftl_cs: recycling freshest block...\n"); best = 0xffffffff; for (i = 0; i < part->DataUnits; i++) if (part->EUNInfo[i].EraseCount <= best) { @@ -686,7 +687,7 @@ static int reclaim_block(partition_t *part) printk(KERN_NOTICE "ftl_cs: reclaim failed: " "no free blocks!\n"); else - DEBUG(1,"ftl_cs: reclaim failed: " + pr_debug("ftl_cs: reclaim failed: " "no free blocks!\n"); return -EIO; @@ -747,10 +748,11 @@ static uint32_t find_free(partition_t *part) /* Invalidate cache */ part->bam_index = 0xffff; - ret = part->mbd.mtd->read(part->mbd.mtd, - part->EUNInfo[eun].Offset + le32_to_cpu(part->header.BAMOffset), - part->BlocksPerUnit * sizeof(uint32_t), - &retlen, (u_char *) (part->bam_cache)); + ret = mtd_read(part->mbd.mtd, + part->EUNInfo[eun].Offset + le32_to_cpu(part->header.BAMOffset), + part->BlocksPerUnit * sizeof(uint32_t), + &retlen, + (u_char *)(part->bam_cache)); if (ret) { printk(KERN_WARNING"ftl: Error reading BAM in find_free\n"); @@ -771,7 +773,7 @@ static uint32_t find_free(partition_t *part) printk(KERN_NOTICE "ftl_cs: bad free list!\n"); return 0; } - DEBUG(2, "ftl_cs: found free block at %d in %d\n", blk, eun); + pr_debug("ftl_cs: found free block at %d in %d\n", blk, eun); return blk; } /* find_free */ @@ -791,7 +793,7 @@ static int ftl_read(partition_t *part, caddr_t buffer, int ret; size_t offset, retlen; - DEBUG(2, "ftl_cs: ftl_read(0x%p, 0x%lx, %ld)\n", + pr_debug("ftl_cs: ftl_read(0x%p, 0x%lx, %ld)\n", part, sector, nblocks); if (!(part->state & FTL_FORMATTED)) { printk(KERN_NOTICE "ftl_cs: bad partition\n"); @@ -810,8 +812,8 @@ static int ftl_read(partition_t *part, caddr_t buffer, else { offset = (part->EUNInfo[log_addr / bsize].Offset + (log_addr % bsize)); - ret = part->mbd.mtd->read(part->mbd.mtd, offset, SECTOR_SIZE, - &retlen, (u_char *) buffer); + ret = mtd_read(part->mbd.mtd, offset, SECTOR_SIZE, &retlen, + (u_char *)buffer); if (ret) { printk(KERN_WARNING "Error reading MTD device in ftl_read()\n"); @@ -840,7 +842,7 @@ static int set_bam_entry(partition_t *part, uint32_t log_addr, int ret; size_t retlen, offset; - DEBUG(2, "ftl_cs: set_bam_entry(0x%p, 0x%x, 0x%x)\n", + pr_debug("ftl_cs: set_bam_entry(0x%p, 0x%x, 0x%x)\n", part, log_addr, virt_addr); bsize = 1 << part->header.EraseUnitSize; eun = log_addr / bsize; @@ -849,8 +851,8 @@ static int set_bam_entry(partition_t *part, uint32_t log_addr, le32_to_cpu(part->header.BAMOffset)); #ifdef PSYCHO_DEBUG - ret = part->mbd.mtd->read(part->mbd.mtd, offset, sizeof(uint32_t), - &retlen, (u_char *)&old_addr); + ret = mtd_read(part->mbd.mtd, offset, sizeof(uint32_t), &retlen, + (u_char *)&old_addr); if (ret) { printk(KERN_WARNING"ftl: Error reading old_addr in set_bam_entry: %d\n",ret); return ret; @@ -886,8 +888,8 @@ static int set_bam_entry(partition_t *part, uint32_t log_addr, #endif part->bam_cache[blk] = le_virt_addr; } - ret = part->mbd.mtd->write(part->mbd.mtd, offset, sizeof(uint32_t), - &retlen, (u_char *)&le_virt_addr); + ret = mtd_write(part->mbd.mtd, offset, sizeof(uint32_t), &retlen, + (u_char *)&le_virt_addr); if (ret) { printk(KERN_NOTICE "ftl_cs: set_bam_entry() failed!\n"); @@ -905,7 +907,7 @@ static int ftl_write(partition_t *part, caddr_t buffer, int ret; size_t retlen, offset; - DEBUG(2, "ftl_cs: ftl_write(0x%p, %ld, %ld)\n", + pr_debug("ftl_cs: ftl_write(0x%p, %ld, %ld)\n", part, sector, nblocks); if (!(part->state & FTL_FORMATTED)) { printk(KERN_NOTICE "ftl_cs: bad partition\n"); @@ -946,8 +948,7 @@ static int ftl_write(partition_t *part, caddr_t buffer, part->EUNInfo[part->bam_index].Deleted++; offset = (part->EUNInfo[part->bam_index].Offset + blk * SECTOR_SIZE); - ret = part->mbd.mtd->write(part->mbd.mtd, offset, SECTOR_SIZE, &retlen, - buffer); + ret = mtd_write(part->mbd.mtd, offset, SECTOR_SIZE, &retlen, buffer); if (ret) { printk(KERN_NOTICE "ftl_cs: block write failed!\n"); @@ -1011,7 +1012,7 @@ static int ftl_discardsect(struct mtd_blktrans_dev *dev, partition_t *part = (void *)dev; uint32_t bsize = 1 << part->header.EraseUnitSize; - DEBUG(1, "FTL erase sector %ld for %d sectors\n", + pr_debug("FTL erase sector %ld for %d sectors\n", sector, nr_sects); while (nr_sects) { diff --git a/drivers/mtd/inftlcore.c b/drivers/mtd/inftlcore.c index 015a7fe1b6e..b66b541877f 100644 --- a/drivers/mtd/inftlcore.c +++ b/drivers/mtd/inftlcore.c @@ -1,11 +1,11 @@ /* * inftlcore.c -- Linux driver for Inverse Flash Translation Layer (INFTL) * - * (C) Copyright 2002, Greg Ungerer (gerg@snapgear.com) + * Copyright © 2002, Greg Ungerer (gerg@snapgear.com) * * Based heavily on the nftlcore.c code which is: - * (c) 1999 Machine Vision Holdings, Inc. - * Author: David Woodhouse <dwmw2@infradead.org> + * Copyright © 1999 Machine Vision Holdings, Inc. + * Copyright © 1999 David Woodhouse <dwmw2@infradead.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -50,27 +50,25 @@ static void inftl_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) struct INFTLrecord *inftl; unsigned long temp; - if (mtd->type != MTD_NANDFLASH || mtd->size > UINT_MAX) + if (!mtd_type_is_nand(mtd) || mtd->size > UINT_MAX) return; /* OK, this is moderately ugly. But probably safe. Alternatives? */ if (memcmp(mtd->name, "DiskOnChip", 10)) return; - if (!mtd->block_isbad) { + if (!mtd->_block_isbad) { printk(KERN_ERR "INFTL no longer supports the old DiskOnChip drivers loaded via docprobe.\n" "Please use the new diskonchip driver under the NAND subsystem.\n"); return; } - DEBUG(MTD_DEBUG_LEVEL3, "INFTL: add_mtd for %s\n", mtd->name); + pr_debug("INFTL: add_mtd for %s\n", mtd->name); inftl = kzalloc(sizeof(*inftl), GFP_KERNEL); - if (!inftl) { - printk(KERN_WARNING "INFTL: Out of memory for data structures\n"); + if (!inftl) return; - } inftl->mbd.mtd = mtd; inftl->mbd.devnum = -1; @@ -133,7 +131,7 @@ static void inftl_remove_dev(struct mtd_blktrans_dev *dev) { struct INFTLrecord *inftl = (void *)dev; - DEBUG(MTD_DEBUG_LEVEL3, "INFTL: remove_dev (i=%d)\n", dev->devnum); + pr_debug("INFTL: remove_dev (i=%d)\n", dev->devnum); del_mtd_blktrans_dev(dev); @@ -154,13 +152,13 @@ int inftl_read_oob(struct mtd_info *mtd, loff_t offs, size_t len, struct mtd_oob_ops ops; int res; - ops.mode = MTD_OOB_PLACE; + ops.mode = MTD_OPS_PLACE_OOB; ops.ooboffs = offs & (mtd->writesize - 1); ops.ooblen = len; ops.oobbuf = buf; ops.datbuf = NULL; - res = mtd->read_oob(mtd, offs & ~(mtd->writesize - 1), &ops); + res = mtd_read_oob(mtd, offs & ~(mtd->writesize - 1), &ops); *retlen = ops.oobretlen; return res; } @@ -174,13 +172,13 @@ int inftl_write_oob(struct mtd_info *mtd, loff_t offs, size_t len, struct mtd_oob_ops ops; int res; - ops.mode = MTD_OOB_PLACE; + ops.mode = MTD_OPS_PLACE_OOB; ops.ooboffs = offs & (mtd->writesize - 1); ops.ooblen = len; ops.oobbuf = buf; ops.datbuf = NULL; - res = mtd->write_oob(mtd, offs & ~(mtd->writesize - 1), &ops); + res = mtd_write_oob(mtd, offs & ~(mtd->writesize - 1), &ops); *retlen = ops.oobretlen; return res; } @@ -194,14 +192,14 @@ static int inftl_write(struct mtd_info *mtd, loff_t offs, size_t len, struct mtd_oob_ops ops; int res; - ops.mode = MTD_OOB_PLACE; + ops.mode = MTD_OPS_PLACE_OOB; ops.ooboffs = offs; ops.ooblen = mtd->oobsize; ops.oobbuf = oob; ops.datbuf = buf; ops.len = len; - res = mtd->write_oob(mtd, offs & ~(mtd->writesize - 1), &ops); + res = mtd_write_oob(mtd, offs & ~(mtd->writesize - 1), &ops); *retlen = ops.retlen; return res; } @@ -215,16 +213,16 @@ static u16 INFTL_findfreeblock(struct INFTLrecord *inftl, int desperate) u16 pot = inftl->LastFreeEUN; int silly = inftl->nb_blocks; - DEBUG(MTD_DEBUG_LEVEL3, "INFTL: INFTL_findfreeblock(inftl=%p," - "desperate=%d)\n", inftl, desperate); + pr_debug("INFTL: INFTL_findfreeblock(inftl=%p,desperate=%d)\n", + inftl, desperate); /* * Normally, we force a fold to happen before we run out of free * blocks completely. */ if (!desperate && inftl->numfreeEUNs < 2) { - DEBUG(MTD_DEBUG_LEVEL1, "INFTL: there are too few free " - "EUNs (%d)\n", inftl->numfreeEUNs); + pr_debug("INFTL: there are too few free EUNs (%d)\n", + inftl->numfreeEUNs); return BLOCK_NIL; } @@ -259,8 +257,8 @@ static u16 INFTL_foldchain(struct INFTLrecord *inftl, unsigned thisVUC, unsigned struct inftl_oob oob; size_t retlen; - DEBUG(MTD_DEBUG_LEVEL3, "INFTL: INFTL_foldchain(inftl=%p,thisVUC=%d," - "pending=%d)\n", inftl, thisVUC, pendingblock); + pr_debug("INFTL: INFTL_foldchain(inftl=%p,thisVUC=%d,pending=%d)\n", + inftl, thisVUC, pendingblock); memset(BlockMap, 0xff, sizeof(BlockMap)); memset(BlockDeleted, 0, sizeof(BlockDeleted)); @@ -323,8 +321,7 @@ static u16 INFTL_foldchain(struct INFTLrecord *inftl, unsigned thisVUC, unsigned * Chain, and the Erase Unit into which we are supposed to be copying. * Go for it. */ - DEBUG(MTD_DEBUG_LEVEL1, "INFTL: folding chain %d into unit %d\n", - thisVUC, targetEUN); + pr_debug("INFTL: folding chain %d into unit %d\n", thisVUC, targetEUN); for (block = 0; block < inftl->EraseSize/SECTORSIZE ; block++) { unsigned char movebuf[SECTORSIZE]; @@ -346,17 +343,19 @@ static u16 INFTL_foldchain(struct INFTLrecord *inftl, unsigned thisVUC, unsigned if (BlockMap[block] == BLOCK_NIL) continue; - ret = mtd->read(mtd, (inftl->EraseSize * BlockMap[block]) + - (block * SECTORSIZE), SECTORSIZE, &retlen, - movebuf); - if (ret < 0 && ret != -EUCLEAN) { - ret = mtd->read(mtd, - (inftl->EraseSize * BlockMap[block]) + - (block * SECTORSIZE), SECTORSIZE, - &retlen, movebuf); + ret = mtd_read(mtd, + (inftl->EraseSize * BlockMap[block]) + (block * SECTORSIZE), + SECTORSIZE, + &retlen, + movebuf); + if (ret < 0 && !mtd_is_bitflip(ret)) { + ret = mtd_read(mtd, + (inftl->EraseSize * BlockMap[block]) + (block * SECTORSIZE), + SECTORSIZE, + &retlen, + movebuf); if (ret != -EIO) - DEBUG(MTD_DEBUG_LEVEL1, "INFTL: error went " - "away on retry?\n"); + pr_debug("INFTL: error went away on retry?\n"); } memset(&oob, 0xff, sizeof(struct inftl_oob)); oob.b.Status = oob.b.Status1 = SECTOR_USED; @@ -372,8 +371,7 @@ static u16 INFTL_foldchain(struct INFTLrecord *inftl, unsigned thisVUC, unsigned * is important, by doing oldest first if we crash/reboot then it * it is relatively simple to clean up the mess). */ - DEBUG(MTD_DEBUG_LEVEL1, "INFTL: want to erase virtual chain %d\n", - thisVUC); + pr_debug("INFTL: want to erase virtual chain %d\n", thisVUC); for (;;) { /* Find oldest unit in chain. */ @@ -421,7 +419,7 @@ static u16 INFTL_makefreeblock(struct INFTLrecord *inftl, unsigned pendingblock) u16 ChainLength = 0, thislen; u16 chain, EUN; - DEBUG(MTD_DEBUG_LEVEL3, "INFTL: INFTL_makefreeblock(inftl=%p," + pr_debug("INFTL: INFTL_makefreeblock(inftl=%p," "pending=%d)\n", inftl, pendingblock); for (chain = 0; chain < inftl->nb_blocks; chain++) { @@ -484,8 +482,8 @@ static inline u16 INFTL_findwriteunit(struct INFTLrecord *inftl, unsigned block) size_t retlen; int silly, silly2 = 3; - DEBUG(MTD_DEBUG_LEVEL3, "INFTL: INFTL_findwriteunit(inftl=%p," - "block=%d)\n", inftl, block); + pr_debug("INFTL: INFTL_findwriteunit(inftl=%p,block=%d)\n", + inftl, block); do { /* @@ -501,8 +499,8 @@ static inline u16 INFTL_findwriteunit(struct INFTLrecord *inftl, unsigned block) blockofs, 8, &retlen, (char *)&bci); status = bci.Status | bci.Status1; - DEBUG(MTD_DEBUG_LEVEL3, "INFTL: status of block %d in " - "EUN %d is %x\n", block , writeEUN, status); + pr_debug("INFTL: status of block %d in EUN %d is %x\n", + block , writeEUN, status); switch(status) { case SECTOR_FREE: @@ -555,9 +553,9 @@ hitused: * Hopefully we free something, lets try again. * This time we are desperate... */ - DEBUG(MTD_DEBUG_LEVEL1, "INFTL: using desperate==1 " - "to find free EUN to accommodate write to " - "VUC %d\n", thisVUC); + pr_debug("INFTL: using desperate==1 to find free EUN " + "to accommodate write to VUC %d\n", + thisVUC); writeEUN = INFTL_findfreeblock(inftl, 1); if (writeEUN == BLOCK_NIL) { /* @@ -647,7 +645,7 @@ static void INFTL_trydeletechain(struct INFTLrecord *inftl, unsigned thisVUC) struct inftl_bci bci; size_t retlen; - DEBUG(MTD_DEBUG_LEVEL3, "INFTL: INFTL_trydeletechain(inftl=%p," + pr_debug("INFTL: INFTL_trydeletechain(inftl=%p," "thisVUC=%d)\n", inftl, thisVUC); memset(BlockUsed, 0, sizeof(BlockUsed)); @@ -711,7 +709,7 @@ static void INFTL_trydeletechain(struct INFTLrecord *inftl, unsigned thisVUC) * For each block in the chain free it and make it available * for future use. Erase from the oldest unit first. */ - DEBUG(MTD_DEBUG_LEVEL1, "INFTL: deleting empty VUC %d\n", thisVUC); + pr_debug("INFTL: deleting empty VUC %d\n", thisVUC); for (;;) { u16 *prevEUN = &inftl->VUtable[thisVUC]; @@ -719,7 +717,7 @@ static void INFTL_trydeletechain(struct INFTLrecord *inftl, unsigned thisVUC) /* If the chain is all gone already, we're done */ if (thisEUN == BLOCK_NIL) { - DEBUG(MTD_DEBUG_LEVEL2, "INFTL: Empty VUC %d for deletion was already absent\n", thisEUN); + pr_debug("INFTL: Empty VUC %d for deletion was already absent\n", thisEUN); return; } @@ -731,7 +729,7 @@ static void INFTL_trydeletechain(struct INFTLrecord *inftl, unsigned thisVUC) thisEUN = *prevEUN; } - DEBUG(MTD_DEBUG_LEVEL3, "Deleting EUN %d from VUC %d\n", + pr_debug("Deleting EUN %d from VUC %d\n", thisEUN, thisVUC); if (INFTL_formatblock(inftl, thisEUN) < 0) { @@ -767,7 +765,7 @@ static int INFTL_deleteblock(struct INFTLrecord *inftl, unsigned block) size_t retlen; struct inftl_bci bci; - DEBUG(MTD_DEBUG_LEVEL3, "INFTL: INFTL_deleteblock(inftl=%p," + pr_debug("INFTL: INFTL_deleteblock(inftl=%p," "block=%d)\n", inftl, block); while (thisEUN < inftl->nb_blocks) { @@ -826,7 +824,7 @@ static int inftl_writeblock(struct mtd_blktrans_dev *mbd, unsigned long block, struct inftl_oob oob; char *p, *pend; - DEBUG(MTD_DEBUG_LEVEL3, "INFTL: inftl_writeblock(inftl=%p,block=%ld," + pr_debug("INFTL: inftl_writeblock(inftl=%p,block=%ld," "buffer=%p)\n", inftl, block, buffer); /* Is block all zero? */ @@ -876,7 +874,7 @@ static int inftl_readblock(struct mtd_blktrans_dev *mbd, unsigned long block, struct inftl_bci bci; size_t retlen; - DEBUG(MTD_DEBUG_LEVEL3, "INFTL: inftl_readblock(inftl=%p,block=%ld," + pr_debug("INFTL: inftl_readblock(inftl=%p,block=%ld," "buffer=%p)\n", inftl, block, buffer); while (thisEUN < inftl->nb_blocks) { @@ -919,10 +917,10 @@ foundit: } else { size_t retlen; loff_t ptr = (thisEUN * inftl->EraseSize) + blockofs; - int ret = mtd->read(mtd, ptr, SECTORSIZE, &retlen, buffer); + int ret = mtd_read(mtd, ptr, SECTORSIZE, &retlen, buffer); /* Handle corrected bit flips gracefully */ - if (ret < 0 && ret != -EUCLEAN) + if (ret < 0 && !mtd_is_bitflip(ret)) return -EIO; } return 0; diff --git a/drivers/mtd/inftlmount.c b/drivers/mtd/inftlmount.c index 8f988d7d3c5..487e64f411a 100644 --- a/drivers/mtd/inftlmount.c +++ b/drivers/mtd/inftlmount.c @@ -2,11 +2,11 @@ * inftlmount.c -- INFTL mount code with extensive checks. * * Author: Greg Ungerer (gerg@snapgear.com) - * (C) Copyright 2002-2003, Greg Ungerer (gerg@snapgear.com) + * Copyright © 2002-2003, Greg Ungerer (gerg@snapgear.com) * * Based heavily on the nftlmount.c code which is: * Author: Fabrice Bellard (fabrice.bellard@netgem.com) - * Copyright (C) 2000 Netgem S.A. + * Copyright © 2000 Netgem S.A. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -30,11 +30,9 @@ #include <asm/uaccess.h> #include <linux/delay.h> #include <linux/slab.h> -#include <linux/init.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nftl.h> #include <linux/mtd/inftl.h> -#include <linux/mtd/compatmac.h> /* * find_boot_record: Find the INFTL Media Header and its Spare copy which @@ -54,7 +52,7 @@ static int find_boot_record(struct INFTLrecord *inftl) struct INFTLPartition *ip; size_t retlen; - DEBUG(MTD_DEBUG_LEVEL3, "INFTL: find_boot_record(inftl=%p)\n", inftl); + pr_debug("INFTL: find_boot_record(inftl=%p)\n", inftl); /* * Assume logical EraseSize == physical erasesize for starting the @@ -74,8 +72,8 @@ static int find_boot_record(struct INFTLrecord *inftl) * Check for BNAND header first. Then whinge if it's found * but later checks fail. */ - ret = mtd->read(mtd, block * inftl->EraseSize, - SECTORSIZE, &retlen, buf); + ret = mtd_read(mtd, block * inftl->EraseSize, SECTORSIZE, + &retlen, buf); /* We ignore ret in case the ECC of the MediaHeader is invalid (which is apparently acceptable) */ if (retlen != SECTORSIZE) { @@ -119,8 +117,8 @@ static int find_boot_record(struct INFTLrecord *inftl) memcpy(mh, buf, sizeof(struct INFTLMediaHeader)); /* Read the spare media header at offset 4096 */ - mtd->read(mtd, block * inftl->EraseSize + 4096, - SECTORSIZE, &retlen, buf); + mtd_read(mtd, block * inftl->EraseSize + 4096, SECTORSIZE, + &retlen, buf); if (retlen != SECTORSIZE) { printk(KERN_WARNING "INFTL: Unable to read spare " "Media Header\n"); @@ -140,24 +138,20 @@ static int find_boot_record(struct INFTLrecord *inftl) mh->FormatFlags = le32_to_cpu(mh->FormatFlags); mh->PercentUsed = le32_to_cpu(mh->PercentUsed); -#ifdef CONFIG_MTD_DEBUG_VERBOSE - if (CONFIG_MTD_DEBUG_VERBOSE >= 2) { - printk("INFTL: Media Header ->\n" - " bootRecordID = %s\n" - " NoOfBootImageBlocks = %d\n" - " NoOfBinaryPartitions = %d\n" - " NoOfBDTLPartitions = %d\n" - " BlockMultiplerBits = %d\n" - " FormatFlgs = %d\n" - " OsakVersion = 0x%x\n" - " PercentUsed = %d\n", - mh->bootRecordID, mh->NoOfBootImageBlocks, - mh->NoOfBinaryPartitions, - mh->NoOfBDTLPartitions, - mh->BlockMultiplierBits, mh->FormatFlags, - mh->OsakVersion, mh->PercentUsed); - } -#endif + pr_debug("INFTL: Media Header ->\n" + " bootRecordID = %s\n" + " NoOfBootImageBlocks = %d\n" + " NoOfBinaryPartitions = %d\n" + " NoOfBDTLPartitions = %d\n" + " BlockMultiplerBits = %d\n" + " FormatFlgs = %d\n" + " OsakVersion = 0x%x\n" + " PercentUsed = %d\n", + mh->bootRecordID, mh->NoOfBootImageBlocks, + mh->NoOfBinaryPartitions, + mh->NoOfBDTLPartitions, + mh->BlockMultiplierBits, mh->FormatFlags, + mh->OsakVersion, mh->PercentUsed); if (mh->NoOfBDTLPartitions == 0) { printk(KERN_WARNING "INFTL: Media Header sanity check " @@ -201,19 +195,15 @@ static int find_boot_record(struct INFTLrecord *inftl) ip->spareUnits = le32_to_cpu(ip->spareUnits); ip->Reserved0 = le32_to_cpu(ip->Reserved0); -#ifdef CONFIG_MTD_DEBUG_VERBOSE - if (CONFIG_MTD_DEBUG_VERBOSE >= 2) { - printk(" PARTITION[%d] ->\n" - " virtualUnits = %d\n" - " firstUnit = %d\n" - " lastUnit = %d\n" - " flags = 0x%x\n" - " spareUnits = %d\n", - i, ip->virtualUnits, ip->firstUnit, - ip->lastUnit, ip->flags, - ip->spareUnits); - } -#endif + pr_debug(" PARTITION[%d] ->\n" + " virtualUnits = %d\n" + " firstUnit = %d\n" + " lastUnit = %d\n" + " flags = 0x%x\n" + " spareUnits = %d\n", + i, ip->virtualUnits, ip->firstUnit, + ip->lastUnit, ip->flags, + ip->spareUnits); if (ip->Reserved0 != ip->firstUnit) { struct erase_info *instr = &inftl->instr; @@ -229,7 +219,7 @@ static int find_boot_record(struct INFTLrecord *inftl) */ instr->addr = ip->Reserved0 * inftl->EraseSize; instr->len = inftl->EraseSize; - mtd->erase(mtd, instr); + mtd_erase(mtd, instr); } if ((ip->lastUnit - ip->firstUnit + 1) < ip->virtualUnits) { printk(KERN_WARNING "INFTL: Media Header " @@ -315,7 +305,8 @@ static int find_boot_record(struct INFTLrecord *inftl) /* If any of the physical eraseblocks are bad, don't use the unit. */ for (physblock = 0; physblock < inftl->EraseSize; physblock += inftl->mbd.mtd->erasesize) { - if (inftl->mbd.mtd->block_isbad(inftl->mbd.mtd, i * inftl->EraseSize + physblock)) + if (mtd_block_isbad(inftl->mbd.mtd, + i * inftl->EraseSize + physblock)) inftl->PUtable[i] = BLOCK_RESERVED; } } @@ -351,7 +342,7 @@ static int check_free_sectors(struct INFTLrecord *inftl, unsigned int address, int i; for (i = 0; i < len; i += SECTORSIZE) { - if (mtd->read(mtd, address, SECTORSIZE, &retlen, buf)) + if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf)) return -1; if (memcmpb(buf, 0xff, SECTORSIZE) != 0) return -1; @@ -376,7 +367,7 @@ static int check_free_sectors(struct INFTLrecord *inftl, unsigned int address, * * Return: 0 when succeed, -1 on error. * - * ToDo: 1. Is it neceressary to check_free_sector after erasing ?? + * ToDo: 1. Is it necessary to check_free_sector after erasing ?? */ int INFTL_formatblock(struct INFTLrecord *inftl, int block) { @@ -386,8 +377,7 @@ int INFTL_formatblock(struct INFTLrecord *inftl, int block) struct mtd_info *mtd = inftl->mbd.mtd; int physblock; - DEBUG(MTD_DEBUG_LEVEL3, "INFTL: INFTL_formatblock(inftl=%p," - "block=%d)\n", inftl, block); + pr_debug("INFTL: INFTL_formatblock(inftl=%p,block=%d)\n", inftl, block); memset(instr, 0, sizeof(struct erase_info)); @@ -403,7 +393,7 @@ int INFTL_formatblock(struct INFTLrecord *inftl, int block) mark only the failed block in the bbt. */ for (physblock = 0; physblock < inftl->EraseSize; physblock += instr->len, instr->addr += instr->len) { - mtd->erase(inftl->mbd.mtd, instr); + mtd_erase(inftl->mbd.mtd, instr); if (instr->state == MTD_ERASE_FAILED) { printk(KERN_WARNING "INFTL: error while formatting block %d\n", @@ -433,7 +423,7 @@ int INFTL_formatblock(struct INFTLrecord *inftl, int block) fail: /* could not format, update the bad block table (caller is responsible for setting the PUtable to BLOCK_RESERVED on failure) */ - inftl->mbd.mtd->block_markbad(inftl->mbd.mtd, instr->addr); + mtd_block_markbad(inftl->mbd.mtd, instr->addr); return -1; } @@ -477,30 +467,30 @@ void INFTL_dumptables(struct INFTLrecord *s) { int i; - printk("-------------------------------------------" + pr_debug("-------------------------------------------" "----------------------------------\n"); - printk("VUtable[%d] ->", s->nb_blocks); + pr_debug("VUtable[%d] ->", s->nb_blocks); for (i = 0; i < s->nb_blocks; i++) { if ((i % 8) == 0) - printk("\n%04x: ", i); - printk("%04x ", s->VUtable[i]); + pr_debug("\n%04x: ", i); + pr_debug("%04x ", s->VUtable[i]); } - printk("\n-------------------------------------------" + pr_debug("\n-------------------------------------------" "----------------------------------\n"); - printk("PUtable[%d-%d=%d] ->", s->firstEUN, s->lastEUN, s->nb_blocks); + pr_debug("PUtable[%d-%d=%d] ->", s->firstEUN, s->lastEUN, s->nb_blocks); for (i = 0; i <= s->lastEUN; i++) { if ((i % 8) == 0) - printk("\n%04x: ", i); - printk("%04x ", s->PUtable[i]); + pr_debug("\n%04x: ", i); + pr_debug("%04x ", s->PUtable[i]); } - printk("\n-------------------------------------------" + pr_debug("\n-------------------------------------------" "----------------------------------\n"); - printk("INFTL ->\n" + pr_debug("INFTL ->\n" " EraseSize = %d\n" " h/s/c = %d/%d/%d\n" " numvunits = %d\n" @@ -514,7 +504,7 @@ void INFTL_dumptables(struct INFTLrecord *s) s->numvunits, s->firstEUN, s->lastEUN, s->numfreeEUNs, s->LastFreeEUN, s->nb_blocks, s->nb_boot_blocks); - printk("\n-------------------------------------------" + pr_debug("\n-------------------------------------------" "----------------------------------\n"); } @@ -522,25 +512,25 @@ void INFTL_dumpVUchains(struct INFTLrecord *s) { int logical, block, i; - printk("-------------------------------------------" + pr_debug("-------------------------------------------" "----------------------------------\n"); - printk("INFTL Virtual Unit Chains:\n"); + pr_debug("INFTL Virtual Unit Chains:\n"); for (logical = 0; logical < s->nb_blocks; logical++) { block = s->VUtable[logical]; if (block > s->nb_blocks) continue; - printk(" LOGICAL %d --> %d ", logical, block); + pr_debug(" LOGICAL %d --> %d ", logical, block); for (i = 0; i < s->nb_blocks; i++) { if (s->PUtable[block] == BLOCK_NIL) break; block = s->PUtable[block]; - printk("%d ", block); + pr_debug("%d ", block); } - printk("\n"); + pr_debug("\n"); } - printk("-------------------------------------------" + pr_debug("-------------------------------------------" "----------------------------------\n"); } @@ -556,7 +546,7 @@ int INFTL_mount(struct INFTLrecord *s) int i; u8 *ANACtable, ANAC; - DEBUG(MTD_DEBUG_LEVEL3, "INFTL: INFTL_mount(inftl=%p)\n", s); + pr_debug("INFTL: INFTL_mount(inftl=%p)\n", s); /* Search for INFTL MediaHeader and Spare INFTL Media Header */ if (find_boot_record(s) < 0) { @@ -586,7 +576,7 @@ int INFTL_mount(struct INFTLrecord *s) * NOTEXPLORED state. Then at the end we will try to format it and * mark it as free. */ - DEBUG(MTD_DEBUG_LEVEL3, "INFTL: pass 1, explore each unit\n"); + pr_debug("INFTL: pass 1, explore each unit\n"); for (first_block = s->firstEUN; first_block <= s->lastEUN; first_block++) { if (s->PUtable[first_block] != BLOCK_NOTEXPLORED) continue; @@ -718,17 +708,14 @@ int INFTL_mount(struct INFTLrecord *s) logical_block = BLOCK_NIL; } -#ifdef CONFIG_MTD_DEBUG_VERBOSE - if (CONFIG_MTD_DEBUG_VERBOSE >= 2) - INFTL_dumptables(s); -#endif + INFTL_dumptables(s); /* * Second pass, check for infinite loops in chains. These are * possible because we don't update the previous pointers when * we fold chains. No big deal, just fix them up in PUtable. */ - DEBUG(MTD_DEBUG_LEVEL3, "INFTL: pass 2, validate virtual chains\n"); + pr_debug("INFTL: pass 2, validate virtual chains\n"); for (logical_block = 0; logical_block < s->numvunits; logical_block++) { block = s->VUtable[logical_block]; last_block = BLOCK_NIL; @@ -773,12 +760,8 @@ int INFTL_mount(struct INFTLrecord *s) } } -#ifdef CONFIG_MTD_DEBUG_VERBOSE - if (CONFIG_MTD_DEBUG_VERBOSE >= 2) - INFTL_dumptables(s); - if (CONFIG_MTD_DEBUG_VERBOSE >= 2) - INFTL_dumpVUchains(s); -#endif + INFTL_dumptables(s); + INFTL_dumpVUchains(s); /* * Third pass, format unreferenced blocks and init free block count. @@ -786,7 +769,7 @@ int INFTL_mount(struct INFTLrecord *s) s->numfreeEUNs = 0; s->LastFreeEUN = BLOCK_NIL; - DEBUG(MTD_DEBUG_LEVEL3, "INFTL: pass 3, format unused blocks\n"); + pr_debug("INFTL: pass 3, format unused blocks\n"); for (block = s->firstEUN; block <= s->lastEUN; block++) { if (s->PUtable[block] == BLOCK_NOTEXPLORED) { printk("INFTL: unreferenced block %d, formatting it\n", diff --git a/drivers/mtd/lpddr/Kconfig b/drivers/mtd/lpddr/Kconfig index 265f969817e..3a19cbee24d 100644 --- a/drivers/mtd/lpddr/Kconfig +++ b/drivers/mtd/lpddr/Kconfig @@ -1,5 +1,5 @@ -menu "LPDDR flash memory drivers" - depends on MTD!=n +menu "LPDDR & LPDDR2 PCM memory drivers" + depends on MTD config MTD_LPDDR tristate "Support for LPDDR flash chips" @@ -17,4 +17,13 @@ config MTD_QINFO_PROBE Window QINFO interface, permits software to be used for entire families of devices. This serves similar purpose of CFI on legacy Flash products + +config MTD_LPDDR2_NVM + # ARM dependency is only for writel_relaxed() + depends on MTD && ARM + tristate "Support for LPDDR2-NVM flash chips" + help + This option enables support of PCM memories with a LPDDR2-NVM + (Low power double data rate 2) interface. + endmenu diff --git a/drivers/mtd/lpddr/Makefile b/drivers/mtd/lpddr/Makefile index da48e46b581..881d440d483 100644 --- a/drivers/mtd/lpddr/Makefile +++ b/drivers/mtd/lpddr/Makefile @@ -4,3 +4,4 @@ obj-$(CONFIG_MTD_QINFO_PROBE) += qinfo_probe.o obj-$(CONFIG_MTD_LPDDR) += lpddr_cmds.o +obj-$(CONFIG_MTD_LPDDR2_NVM) += lpddr2_nvm.o diff --git a/drivers/mtd/lpddr/lpddr2_nvm.c b/drivers/mtd/lpddr/lpddr2_nvm.c new file mode 100644 index 00000000000..063cec40d0a --- /dev/null +++ b/drivers/mtd/lpddr/lpddr2_nvm.c @@ -0,0 +1,507 @@ +/* + * LPDDR2-NVM MTD driver. This module provides read, write, erase, lock/unlock + * support for LPDDR2-NVM PCM memories + * + * Copyright © 2012 Micron Technology, Inc. + * + * Vincenzo Aliberti <vincenzo.aliberti@gmail.com> + * Domenico Manna <domenico.manna@gmail.com> + * Many thanks to Andrea Vigilante for initial enabling + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": %s: " fmt, __func__ + +#include <linux/init.h> +#include <linux/io.h> +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/mtd/map.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/slab.h> +#include <linux/platform_device.h> +#include <linux/ioport.h> +#include <linux/err.h> + +/* Parameters */ +#define ERASE_BLOCKSIZE (0x00020000/2) /* in Word */ +#define WRITE_BUFFSIZE (0x00000400/2) /* in Word */ +#define OW_BASE_ADDRESS 0x00000000 /* OW offset */ +#define BUS_WIDTH 0x00000020 /* x32 devices */ + +/* PFOW symbols address offset */ +#define PFOW_QUERY_STRING_P (0x0000/2) /* in Word */ +#define PFOW_QUERY_STRING_F (0x0002/2) /* in Word */ +#define PFOW_QUERY_STRING_O (0x0004/2) /* in Word */ +#define PFOW_QUERY_STRING_W (0x0006/2) /* in Word */ + +/* OW registers address */ +#define CMD_CODE_OFS (0x0080/2) /* in Word */ +#define CMD_DATA_OFS (0x0084/2) /* in Word */ +#define CMD_ADD_L_OFS (0x0088/2) /* in Word */ +#define CMD_ADD_H_OFS (0x008A/2) /* in Word */ +#define MPR_L_OFS (0x0090/2) /* in Word */ +#define MPR_H_OFS (0x0092/2) /* in Word */ +#define CMD_EXEC_OFS (0x00C0/2) /* in Word */ +#define STATUS_REG_OFS (0x00CC/2) /* in Word */ +#define PRG_BUFFER_OFS (0x0010/2) /* in Word */ + +/* Datamask */ +#define MR_CFGMASK 0x8000 +#define SR_OK_DATAMASK 0x0080 + +/* LPDDR2-NVM Commands */ +#define LPDDR2_NVM_LOCK 0x0061 +#define LPDDR2_NVM_UNLOCK 0x0062 +#define LPDDR2_NVM_SW_PROGRAM 0x0041 +#define LPDDR2_NVM_SW_OVERWRITE 0x0042 +#define LPDDR2_NVM_BUF_PROGRAM 0x00E9 +#define LPDDR2_NVM_BUF_OVERWRITE 0x00EA +#define LPDDR2_NVM_ERASE 0x0020 + +/* LPDDR2-NVM Registers offset */ +#define LPDDR2_MODE_REG_DATA 0x0040 +#define LPDDR2_MODE_REG_CFG 0x0050 + +/* + * Internal Type Definitions + * pcm_int_data contains memory controller details: + * @reg_data : LPDDR2_MODE_REG_DATA register address after remapping + * @reg_cfg : LPDDR2_MODE_REG_CFG register address after remapping + * &bus_width: memory bus-width (eg: x16 2 Bytes, x32 4 Bytes) + */ +struct pcm_int_data { + void __iomem *ctl_regs; + int bus_width; +}; + +static DEFINE_MUTEX(lpdd2_nvm_mutex); + +/* + * Build a map_word starting from an u_long + */ +static inline map_word build_map_word(u_long myword) +{ + map_word val = { {0} }; + val.x[0] = myword; + return val; +} + +/* + * Build Mode Register Configuration DataMask based on device bus-width + */ +static inline u_int build_mr_cfgmask(u_int bus_width) +{ + u_int val = MR_CFGMASK; + + if (bus_width == 0x0004) /* x32 device */ + val = val << 16; + + return val; +} + +/* + * Build Status Register OK DataMask based on device bus-width + */ +static inline u_int build_sr_ok_datamask(u_int bus_width) +{ + u_int val = SR_OK_DATAMASK; + + if (bus_width == 0x0004) /* x32 device */ + val = (val << 16)+val; + + return val; +} + +/* + * Evaluates Overlay Window Control Registers address + */ +static inline u_long ow_reg_add(struct map_info *map, u_long offset) +{ + u_long val = 0; + struct pcm_int_data *pcm_data = map->fldrv_priv; + + val = map->pfow_base + offset*pcm_data->bus_width; + + return val; +} + +/* + * Enable lpddr2-nvm Overlay Window + * Overlay Window is a memory mapped area containing all LPDDR2-NVM registers + * used by device commands as well as uservisible resources like Device Status + * Register, Device ID, etc + */ +static inline void ow_enable(struct map_info *map) +{ + struct pcm_int_data *pcm_data = map->fldrv_priv; + + writel_relaxed(build_mr_cfgmask(pcm_data->bus_width) | 0x18, + pcm_data->ctl_regs + LPDDR2_MODE_REG_CFG); + writel_relaxed(0x01, pcm_data->ctl_regs + LPDDR2_MODE_REG_DATA); +} + +/* + * Disable lpddr2-nvm Overlay Window + * Overlay Window is a memory mapped area containing all LPDDR2-NVM registers + * used by device commands as well as uservisible resources like Device Status + * Register, Device ID, etc + */ +static inline void ow_disable(struct map_info *map) +{ + struct pcm_int_data *pcm_data = map->fldrv_priv; + + writel_relaxed(build_mr_cfgmask(pcm_data->bus_width) | 0x18, + pcm_data->ctl_regs + LPDDR2_MODE_REG_CFG); + writel_relaxed(0x02, pcm_data->ctl_regs + LPDDR2_MODE_REG_DATA); +} + +/* + * Execute lpddr2-nvm operations + */ +static int lpddr2_nvm_do_op(struct map_info *map, u_long cmd_code, + u_long cmd_data, u_long cmd_add, u_long cmd_mpr, u_char *buf) +{ + map_word add_l = { {0} }, add_h = { {0} }, mpr_l = { {0} }, + mpr_h = { {0} }, data_l = { {0} }, cmd = { {0} }, + exec_cmd = { {0} }, sr; + map_word data_h = { {0} }; /* only for 2x x16 devices stacked */ + u_long i, status_reg, prg_buff_ofs; + struct pcm_int_data *pcm_data = map->fldrv_priv; + u_int sr_ok_datamask = build_sr_ok_datamask(pcm_data->bus_width); + + /* Builds low and high words for OW Control Registers */ + add_l.x[0] = cmd_add & 0x0000FFFF; + add_h.x[0] = (cmd_add >> 16) & 0x0000FFFF; + mpr_l.x[0] = cmd_mpr & 0x0000FFFF; + mpr_h.x[0] = (cmd_mpr >> 16) & 0x0000FFFF; + cmd.x[0] = cmd_code & 0x0000FFFF; + exec_cmd.x[0] = 0x0001; + data_l.x[0] = cmd_data & 0x0000FFFF; + data_h.x[0] = (cmd_data >> 16) & 0x0000FFFF; /* only for 2x x16 */ + + /* Set Overlay Window Control Registers */ + map_write(map, cmd, ow_reg_add(map, CMD_CODE_OFS)); + map_write(map, data_l, ow_reg_add(map, CMD_DATA_OFS)); + map_write(map, add_l, ow_reg_add(map, CMD_ADD_L_OFS)); + map_write(map, add_h, ow_reg_add(map, CMD_ADD_H_OFS)); + map_write(map, mpr_l, ow_reg_add(map, MPR_L_OFS)); + map_write(map, mpr_h, ow_reg_add(map, MPR_H_OFS)); + if (pcm_data->bus_width == 0x0004) { /* 2x16 devices stacked */ + map_write(map, cmd, ow_reg_add(map, CMD_CODE_OFS) + 2); + map_write(map, data_h, ow_reg_add(map, CMD_DATA_OFS) + 2); + map_write(map, add_l, ow_reg_add(map, CMD_ADD_L_OFS) + 2); + map_write(map, add_h, ow_reg_add(map, CMD_ADD_H_OFS) + 2); + map_write(map, mpr_l, ow_reg_add(map, MPR_L_OFS) + 2); + map_write(map, mpr_h, ow_reg_add(map, MPR_H_OFS) + 2); + } + + /* Fill Program Buffer */ + if ((cmd_code == LPDDR2_NVM_BUF_PROGRAM) || + (cmd_code == LPDDR2_NVM_BUF_OVERWRITE)) { + prg_buff_ofs = (map_read(map, + ow_reg_add(map, PRG_BUFFER_OFS))).x[0]; + for (i = 0; i < cmd_mpr; i++) { + map_write(map, build_map_word(buf[i]), map->pfow_base + + prg_buff_ofs + i); + } + } + + /* Command Execute */ + map_write(map, exec_cmd, ow_reg_add(map, CMD_EXEC_OFS)); + if (pcm_data->bus_width == 0x0004) /* 2x16 devices stacked */ + map_write(map, exec_cmd, ow_reg_add(map, CMD_EXEC_OFS) + 2); + + /* Status Register Check */ + do { + sr = map_read(map, ow_reg_add(map, STATUS_REG_OFS)); + status_reg = sr.x[0]; + if (pcm_data->bus_width == 0x0004) {/* 2x16 devices stacked */ + sr = map_read(map, ow_reg_add(map, + STATUS_REG_OFS) + 2); + status_reg += sr.x[0] << 16; + } + } while ((status_reg & sr_ok_datamask) != sr_ok_datamask); + + return (((status_reg & sr_ok_datamask) == sr_ok_datamask) ? 0 : -EIO); +} + +/* + * Execute lpddr2-nvm operations @ block level + */ +static int lpddr2_nvm_do_block_op(struct mtd_info *mtd, loff_t start_add, + uint64_t len, u_char block_op) +{ + struct map_info *map = mtd->priv; + u_long add, end_add; + int ret = 0; + + mutex_lock(&lpdd2_nvm_mutex); + + ow_enable(map); + + add = start_add; + end_add = add + len; + + do { + ret = lpddr2_nvm_do_op(map, block_op, 0x00, add, add, NULL); + if (ret) + goto out; + add += mtd->erasesize; + } while (add < end_add); + +out: + ow_disable(map); + mutex_unlock(&lpdd2_nvm_mutex); + return ret; +} + +/* + * verify presence of PFOW string + */ +static int lpddr2_nvm_pfow_present(struct map_info *map) +{ + map_word pfow_val[4]; + unsigned int found = 1; + + mutex_lock(&lpdd2_nvm_mutex); + + ow_enable(map); + + /* Load string from array */ + pfow_val[0] = map_read(map, ow_reg_add(map, PFOW_QUERY_STRING_P)); + pfow_val[1] = map_read(map, ow_reg_add(map, PFOW_QUERY_STRING_F)); + pfow_val[2] = map_read(map, ow_reg_add(map, PFOW_QUERY_STRING_O)); + pfow_val[3] = map_read(map, ow_reg_add(map, PFOW_QUERY_STRING_W)); + + /* Verify the string loaded vs expected */ + if (!map_word_equal(map, build_map_word('P'), pfow_val[0])) + found = 0; + if (!map_word_equal(map, build_map_word('F'), pfow_val[1])) + found = 0; + if (!map_word_equal(map, build_map_word('O'), pfow_val[2])) + found = 0; + if (!map_word_equal(map, build_map_word('W'), pfow_val[3])) + found = 0; + + ow_disable(map); + + mutex_unlock(&lpdd2_nvm_mutex); + + return found; +} + +/* + * lpddr2_nvm driver read method + */ +static int lpddr2_nvm_read(struct mtd_info *mtd, loff_t start_add, + size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + + mutex_lock(&lpdd2_nvm_mutex); + + *retlen = len; + + map_copy_from(map, buf, start_add, *retlen); + + mutex_unlock(&lpdd2_nvm_mutex); + return 0; +} + +/* + * lpddr2_nvm driver write method + */ +static int lpddr2_nvm_write(struct mtd_info *mtd, loff_t start_add, + size_t len, size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + struct pcm_int_data *pcm_data = map->fldrv_priv; + u_long add, current_len, tot_len, target_len, my_data; + u_char *write_buf = (u_char *)buf; + int ret = 0; + + mutex_lock(&lpdd2_nvm_mutex); + + ow_enable(map); + + /* Set start value for the variables */ + add = start_add; + target_len = len; + tot_len = 0; + + while (tot_len < target_len) { + if (!(IS_ALIGNED(add, mtd->writesize))) { /* do sw program */ + my_data = write_buf[tot_len]; + my_data += (write_buf[tot_len+1]) << 8; + if (pcm_data->bus_width == 0x0004) {/* 2x16 devices */ + my_data += (write_buf[tot_len+2]) << 16; + my_data += (write_buf[tot_len+3]) << 24; + } + ret = lpddr2_nvm_do_op(map, LPDDR2_NVM_SW_OVERWRITE, + my_data, add, 0x00, NULL); + if (ret) + goto out; + + add += pcm_data->bus_width; + tot_len += pcm_data->bus_width; + } else { /* do buffer program */ + current_len = min(target_len - tot_len, + (u_long) mtd->writesize); + ret = lpddr2_nvm_do_op(map, LPDDR2_NVM_BUF_OVERWRITE, + 0x00, add, current_len, write_buf + tot_len); + if (ret) + goto out; + + add += current_len; + tot_len += current_len; + } + } + +out: + *retlen = tot_len; + ow_disable(map); + mutex_unlock(&lpdd2_nvm_mutex); + return ret; +} + +/* + * lpddr2_nvm driver erase method + */ +static int lpddr2_nvm_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + int ret = lpddr2_nvm_do_block_op(mtd, instr->addr, instr->len, + LPDDR2_NVM_ERASE); + if (!ret) { + instr->state = MTD_ERASE_DONE; + mtd_erase_callback(instr); + } + + return ret; +} + +/* + * lpddr2_nvm driver unlock method + */ +static int lpddr2_nvm_unlock(struct mtd_info *mtd, loff_t start_add, + uint64_t len) +{ + return lpddr2_nvm_do_block_op(mtd, start_add, len, LPDDR2_NVM_UNLOCK); +} + +/* + * lpddr2_nvm driver lock method + */ +static int lpddr2_nvm_lock(struct mtd_info *mtd, loff_t start_add, + uint64_t len) +{ + return lpddr2_nvm_do_block_op(mtd, start_add, len, LPDDR2_NVM_LOCK); +} + +/* + * lpddr2_nvm driver probe method + */ +static int lpddr2_nvm_probe(struct platform_device *pdev) +{ + struct map_info *map; + struct mtd_info *mtd; + struct resource *add_range; + struct resource *control_regs; + struct pcm_int_data *pcm_data; + + /* Allocate memory control_regs data structures */ + pcm_data = devm_kzalloc(&pdev->dev, sizeof(*pcm_data), GFP_KERNEL); + if (!pcm_data) + return -ENOMEM; + + pcm_data->bus_width = BUS_WIDTH; + + /* Allocate memory for map_info & mtd_info data structures */ + map = devm_kzalloc(&pdev->dev, sizeof(*map), GFP_KERNEL); + if (!map) + return -ENOMEM; + + mtd = devm_kzalloc(&pdev->dev, sizeof(*mtd), GFP_KERNEL); + if (!mtd) + return -ENOMEM; + + /* lpddr2_nvm address range */ + add_range = platform_get_resource(pdev, IORESOURCE_MEM, 0); + + /* Populate map_info data structure */ + *map = (struct map_info) { + .virt = devm_ioremap_resource(&pdev->dev, add_range), + .name = pdev->dev.init_name, + .phys = add_range->start, + .size = resource_size(add_range), + .bankwidth = pcm_data->bus_width / 2, + .pfow_base = OW_BASE_ADDRESS, + .fldrv_priv = pcm_data, + }; + if (IS_ERR(map->virt)) + return PTR_ERR(map->virt); + + simple_map_init(map); /* fill with default methods */ + + control_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); + pcm_data->ctl_regs = devm_ioremap_resource(&pdev->dev, control_regs); + if (IS_ERR(pcm_data->ctl_regs)) + return PTR_ERR(pcm_data->ctl_regs); + + /* Populate mtd_info data structure */ + *mtd = (struct mtd_info) { + .name = pdev->dev.init_name, + .type = MTD_RAM, + .priv = map, + .size = resource_size(add_range), + .erasesize = ERASE_BLOCKSIZE * pcm_data->bus_width, + .writesize = 1, + .writebufsize = WRITE_BUFFSIZE * pcm_data->bus_width, + .flags = (MTD_CAP_NVRAM | MTD_POWERUP_LOCK), + ._read = lpddr2_nvm_read, + ._write = lpddr2_nvm_write, + ._erase = lpddr2_nvm_erase, + ._unlock = lpddr2_nvm_unlock, + ._lock = lpddr2_nvm_lock, + }; + + /* Verify the presence of the device looking for PFOW string */ + if (!lpddr2_nvm_pfow_present(map)) { + pr_err("device not recognized\n"); + return -EINVAL; + } + /* Parse partitions and register the MTD device */ + return mtd_device_parse_register(mtd, NULL, NULL, NULL, 0); +} + +/* + * lpddr2_nvm driver remove method + */ +static int lpddr2_nvm_remove(struct platform_device *pdev) +{ + return mtd_device_unregister(dev_get_drvdata(&pdev->dev)); +} + +/* Initialize platform_driver data structure for lpddr2_nvm */ +static struct platform_driver lpddr2_nvm_drv = { + .driver = { + .name = "lpddr2_nvm", + }, + .probe = lpddr2_nvm_probe, + .remove = lpddr2_nvm_remove, +}; + +module_platform_driver(lpddr2_nvm_drv); +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Vincenzo Aliberti <vincenzo.aliberti@gmail.com>"); +MODULE_DESCRIPTION("MTD driver for LPDDR2-NVM PCM memories"); diff --git a/drivers/mtd/lpddr/lpddr_cmds.c b/drivers/mtd/lpddr/lpddr_cmds.c index fece5be5871..018c75faadb 100644 --- a/drivers/mtd/lpddr/lpddr_cmds.c +++ b/drivers/mtd/lpddr/lpddr_cmds.c @@ -3,7 +3,7 @@ * erase, lock/unlock support for LPDDR flash memories * (C) 2008 Korolev Alexey <akorolev@infradead.org> * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com> - * Many thanks to Roman Borisov for intial enabling + * Many thanks to Roman Borisov for initial enabling * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License @@ -27,6 +27,7 @@ #include <linux/mtd/pfow.h> #include <linux/mtd/qinfo.h> #include <linux/slab.h> +#include <linux/module.h> static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len, size_t *retlen, u_char *buf); @@ -39,7 +40,7 @@ static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len, size_t *retlen, void **mtdbuf, resource_size_t *phys); -static void lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len); +static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len); static int get_chip(struct map_info *map, struct flchip *chip, int mode); static int chip_ready(struct map_info *map, struct flchip *chip, int mode); static void put_chip(struct map_info *map, struct flchip *chip); @@ -54,34 +55,25 @@ struct mtd_info *lpddr_cmdset(struct map_info *map) int i, j; mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); - if (!mtd) { - printk(KERN_ERR "Failed to allocate memory for MTD device\n"); + if (!mtd) return NULL; - } mtd->priv = map; mtd->type = MTD_NORFLASH; /* Fill in the default mtd operations */ - mtd->read = lpddr_read; + mtd->_read = lpddr_read; mtd->type = MTD_NORFLASH; mtd->flags = MTD_CAP_NORFLASH; mtd->flags &= ~MTD_BIT_WRITEABLE; - mtd->erase = lpddr_erase; - mtd->write = lpddr_write_buffers; - mtd->writev = lpddr_writev; - mtd->read_oob = NULL; - mtd->write_oob = NULL; - mtd->sync = NULL; - mtd->lock = lpddr_lock; - mtd->unlock = lpddr_unlock; - mtd->suspend = NULL; - mtd->resume = NULL; + mtd->_erase = lpddr_erase; + mtd->_write = lpddr_write_buffers; + mtd->_writev = lpddr_writev; + mtd->_lock = lpddr_lock; + mtd->_unlock = lpddr_unlock; if (map_is_linear(map)) { - mtd->point = lpddr_point; - mtd->unpoint = lpddr_unpoint; + mtd->_point = lpddr_point; + mtd->_unpoint = lpddr_unpoint; } - mtd->block_isbad = NULL; - mtd->block_markbad = NULL; mtd->size = 1 << lpddr->qinfo->DevSizeShift; mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift; mtd->writesize = 1 << lpddr->qinfo->BufSizeShift; @@ -98,7 +90,7 @@ struct mtd_info *lpddr_cmdset(struct map_info *map) numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum; for (i = 0; i < numchips; i++) { shared[i].writing = shared[i].erasing = NULL; - spin_lock_init(&shared[i].lock); + mutex_init(&shared[i].lock); for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) { *chip = lpddr->chips[i]; chip->start += j << lpddr->chipshift; @@ -171,7 +163,7 @@ static int wait_for_ready(struct map_info *map, struct flchip *chip, mutex_lock(&chip->mutex); } if (chip->erase_suspended || chip->write_suspended) { - /* Suspend has occured while sleep: reset timeout */ + /* Suspend has occurred while sleep: reset timeout */ timeo = reset_timeo; chip->erase_suspended = chip->write_suspended = 0; } @@ -217,7 +209,7 @@ static int get_chip(struct map_info *map, struct flchip *chip, int mode) */ struct flchip_shared *shared = chip->priv; struct flchip *contender; - spin_lock(&shared->lock); + mutex_lock(&shared->lock); contender = shared->writing; if (contender && contender != chip) { /* @@ -230,7 +222,7 @@ static int get_chip(struct map_info *map, struct flchip *chip, int mode) * get_chip returns success we're clear to go ahead. */ ret = mutex_trylock(&contender->mutex); - spin_unlock(&shared->lock); + mutex_unlock(&shared->lock); if (!ret) goto retry; mutex_unlock(&chip->mutex); @@ -245,7 +237,7 @@ static int get_chip(struct map_info *map, struct flchip *chip, int mode) mutex_unlock(&contender->mutex); return ret; } - spin_lock(&shared->lock); + mutex_lock(&shared->lock); /* We should not own chip if it is already in FL_SYNCING * state. Put contender and retry. */ @@ -261,7 +253,7 @@ static int get_chip(struct map_info *map, struct flchip *chip, int mode) Must sleep in such a case. */ if (mode == FL_ERASING && shared->erasing && shared->erasing->oldstate == FL_ERASING) { - spin_unlock(&shared->lock); + mutex_unlock(&shared->lock); set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&chip->wq, &wait); mutex_unlock(&chip->mutex); @@ -275,7 +267,7 @@ static int get_chip(struct map_info *map, struct flchip *chip, int mode) shared->writing = chip; if (mode == FL_ERASING) shared->erasing = chip; - spin_unlock(&shared->lock); + mutex_unlock(&shared->lock); } ret = chip_ready(map, chip, mode); @@ -313,12 +305,7 @@ static int chip_ready(struct map_info *map, struct flchip *chip, int mode) if (ret) { /* Oops. something got wrong. */ /* Resume and pretend we weren't here. */ - map_write(map, CMD(LPDDR_RESUME), - map->pfow_base + PFOW_COMMAND_CODE); - map_write(map, CMD(LPDDR_START_EXECUTION), - map->pfow_base + PFOW_COMMAND_EXECUTE); - chip->state = FL_ERASING; - chip->oldstate = FL_READY; + put_chip(map, chip); printk(KERN_ERR "%s: suspend operation failed." "State may be wrong \n", map->name); return -EIO; @@ -348,7 +335,7 @@ static void put_chip(struct map_info *map, struct flchip *chip) { if (chip->priv) { struct flchip_shared *shared = chip->priv; - spin_lock(&shared->lock); + mutex_lock(&shared->lock); if (shared->writing == chip && chip->oldstate == FL_READY) { /* We own the ability to write, but we're done */ shared->writing = shared->erasing; @@ -356,7 +343,7 @@ static void put_chip(struct map_info *map, struct flchip *chip) /* give back the ownership */ struct flchip *loaner = shared->writing; mutex_lock(&loaner->mutex); - spin_unlock(&shared->lock); + mutex_unlock(&shared->lock); mutex_unlock(&chip->mutex); put_chip(map, loaner); mutex_lock(&chip->mutex); @@ -374,16 +361,15 @@ static void put_chip(struct map_info *map, struct flchip *chip) * Don't let the switch below mess things up since * we don't have ownership to resume anything. */ - spin_unlock(&shared->lock); + mutex_unlock(&shared->lock); wake_up(&chip->wq); return; } - spin_unlock(&shared->lock); + mutex_unlock(&shared->lock); } switch (chip->oldstate) { case FL_ERASING: - chip->state = chip->oldstate; map_write(map, CMD(LPDDR_RESUME), map->pfow_base + PFOW_COMMAND_CODE); map_write(map, CMD(LPDDR_START_EXECUTION), @@ -400,7 +386,7 @@ static void put_chip(struct map_info *map, struct flchip *chip) wake_up(&chip->wq); } -int do_write_buffer(struct map_info *map, struct flchip *chip, +static int do_write_buffer(struct map_info *map, struct flchip *chip, unsigned long adr, const struct kvec **pvec, unsigned long *pvec_seek, int len) { @@ -481,7 +467,7 @@ int do_write_buffer(struct map_info *map, struct flchip *chip, return ret; } -int do_erase_oneblock(struct mtd_info *mtd, loff_t adr) +static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr) { struct map_info *map = mtd->priv; struct lpddr_private *lpddr = map->fldrv_priv; @@ -542,14 +528,12 @@ static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len, struct flchip *chip = &lpddr->chips[chipnum]; int ret = 0; - if (!map->virt || (adr + len > mtd->size)) + if (!map->virt) return -EINVAL; /* ofs: offset within the first chip that the first read should start */ ofs = adr - (chipnum << lpddr->chipshift); - *mtdbuf = (void *)map->virt + chip->start + ofs; - *retlen = 0; while (len) { unsigned long thislen; @@ -587,11 +571,11 @@ static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len, return 0; } -static void lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len) +static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len) { struct map_info *map = mtd->priv; struct lpddr_private *lpddr = map->fldrv_priv; - int chipnum = adr >> lpddr->chipshift; + int chipnum = adr >> lpddr->chipshift, err = 0; unsigned long ofs; /* ofs: offset within the first chip that the first read should start */ @@ -615,9 +599,11 @@ static void lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len) chip->ref_point_counter--; if (chip->ref_point_counter == 0) chip->state = FL_READY; - } else + } else { printk(KERN_WARNING "%s: Warning: unpoint called on non" "pointed region\n", map->name); + err = -EINVAL; + } put_chip(map, chip); mutex_unlock(&chip->mutex); @@ -626,6 +612,8 @@ static void lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len) ofs = 0; chipnum++; } + + return err; } static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len, @@ -649,13 +637,11 @@ static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs, int chipnum; unsigned long ofs, vec_seek, i; int wbufsize = 1 << lpddr->qinfo->BufSizeShift; - size_t len = 0; for (i = 0; i < count; i++) len += vecs[i].iov_len; - *retlen = 0; if (!len) return 0; @@ -700,9 +686,6 @@ static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr) ofs = instr->addr; len = instr->len; - if (ofs > mtd->size || (len + ofs) > mtd->size) - return -EINVAL; - while (len > 0) { ret = do_erase_oneblock(mtd, ofs); if (ret) @@ -718,7 +701,7 @@ static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr) #define DO_XXLOCK_LOCK 1 #define DO_XXLOCK_UNLOCK 2 -int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk) +static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk) { int ret = 0; struct map_info *map = mtd->priv; @@ -763,34 +746,6 @@ static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK); } -int word_program(struct map_info *map, loff_t adr, uint32_t curval) -{ - int ret; - struct lpddr_private *lpddr = map->fldrv_priv; - int chipnum = adr >> lpddr->chipshift; - struct flchip *chip = &lpddr->chips[chipnum]; - - mutex_lock(&chip->mutex); - ret = get_chip(map, chip, FL_WRITING); - if (ret) { - mutex_unlock(&chip->mutex); - return ret; - } - - send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval); - - ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime)); - if (ret) { - printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n", - map->name, adr, curval); - goto out; - } - -out: put_chip(map, chip); - mutex_unlock(&chip->mutex); - return ret; -} - MODULE_LICENSE("GPL"); MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>"); MODULE_DESCRIPTION("MTD driver for LPDDR flash chips"); diff --git a/drivers/mtd/lpddr/qinfo_probe.c b/drivers/mtd/lpddr/qinfo_probe.c index dbfe17baf04..69f2112340b 100644 --- a/drivers/mtd/lpddr/qinfo_probe.c +++ b/drivers/mtd/lpddr/qinfo_probe.c @@ -57,7 +57,7 @@ static struct qinfo_query_info qinfo_array[] = { static long lpddr_get_qinforec_pos(struct map_info *map, char *id_str) { - int qinfo_lines = sizeof(qinfo_array)/sizeof(struct qinfo_query_info); + int qinfo_lines = ARRAY_SIZE(qinfo_array); int i; int bankwidth = map_bankwidth(map) * 8; int major, minor; @@ -135,11 +135,8 @@ static int lpddr_chip_setup(struct map_info *map, struct lpddr_private *lpddr) { lpddr->qinfo = kzalloc(sizeof(struct qinfo_chip), GFP_KERNEL); - if (!lpddr->qinfo) { - printk(KERN_WARNING "%s: no memory for LPDDR qinfo structure\n", - map->name); + if (!lpddr->qinfo) return 0; - } /* Get the ManuID */ lpddr->ManufactId = CMDVAL(map_read(map, map->pfow_base + PFOW_MANUFACTURER_ID)); diff --git a/drivers/mtd/maps/Kconfig b/drivers/mtd/maps/Kconfig index f22bc9f05dd..21b2874a303 100644 --- a/drivers/mtd/maps/Kconfig +++ b/drivers/mtd/maps/Kconfig @@ -1,5 +1,6 @@ menu "Mapping drivers for chip access" depends on MTD!=n + depends on HAS_IOMEM config MTD_COMPLEX_MAPPINGS bool "Support non-linear mappings of flash chips" @@ -41,8 +42,6 @@ config MTD_PHYSMAP_START are mapped on your particular target board. Refer to the memory map which should hopefully be in the documentation for your board. - Ignore this option if you use run-time physmap configuration - (i.e., run-time calling physmap_configure()). config MTD_PHYSMAP_LEN hex "Physical length of flash mapping" @@ -55,8 +54,6 @@ config MTD_PHYSMAP_LEN than the total amount of flash present. Refer to the memory map which should hopefully be in the documentation for your board. - Ignore this option if you use run-time physmap configuration - (i.e., run-time calling physmap_configure()). config MTD_PHYSMAP_BANKWIDTH int "Bank width in octets" @@ -67,22 +64,19 @@ config MTD_PHYSMAP_BANKWIDTH in octets. For example, if you have a data bus width of 32 bits, you would set the bus width octet value to 4. This is used internally by the CFI drivers. - Ignore this option if you use run-time physmap configuration - (i.e., run-time calling physmap_configure()). config MTD_PHYSMAP_OF - tristate "Flash device in physical memory map based on OF description" - depends on (MICROBLAZE || PPC_OF) && (MTD_CFI || MTD_JEDECPROBE || MTD_ROM) + tristate "Memory device in physical memory map based on OF description" + depends on OF && (MTD_CFI || MTD_JEDECPROBE || MTD_ROM || MTD_RAM) help - This provides a 'mapping' driver which allows the NOR Flash and - ROM driver code to communicate with chips which are mapped + This provides a 'mapping' driver which allows the NOR Flash, ROM + and RAM driver code to communicate with chips which are mapped physically into the CPU's memory. The mapping description here is taken from OF device tree. config MTD_PMC_MSP_EVM tristate "CFI Flash device mapped on PMC-Sierra MSP" depends on PMC_MSP && MTD_CFI - select MTD_PARTITIONS help This provides a 'mapping' driver which supports the way in which user-programmable flash chips are connected on the @@ -114,7 +108,7 @@ config MTD_SUN_UFLASH config MTD_SC520CDP tristate "CFI Flash device mapped on AMD SC520 CDP" - depends on X86 && MTD_CFI && MTD_CONCAT + depends on (MELAN || COMPILE_TEST) && MTD_CFI help The SC520 CDP board has two banks of CFI-compliant chips and one Dual-in-line JEDEC chip. This 'mapping' driver supports that @@ -122,7 +116,7 @@ config MTD_SC520CDP config MTD_NETSC520 tristate "CFI Flash device mapped on AMD NetSc520" - depends on X86 && MTD_CFI && MTD_PARTITIONS + depends on (MELAN || COMPILE_TEST) && MTD_CFI help This enables access routines for the flash chips on the AMD NetSc520 demonstration board. If you have one of these boards and would like @@ -130,8 +124,7 @@ config MTD_NETSC520 config MTD_TS5500 tristate "JEDEC Flash device mapped on Technologic Systems TS-5500" - depends on X86 - select MTD_PARTITIONS + depends on TS5500 || COMPILE_TEST select MTD_JEDECPROBE select MTD_CFI_AMDSTD help @@ -149,7 +142,7 @@ config MTD_TS5500 config MTD_SBC_GXX tristate "CFI Flash device mapped on Arcom SBC-GXx boards" - depends on X86 && MTD_CFI_INTELEXT && MTD_PARTITIONS && MTD_COMPLEX_MAPPINGS + depends on X86 && MTD_CFI_INTELEXT && MTD_COMPLEX_MAPPINGS help This provides a driver for the on-board flash of Arcom Control Systems' SBC-GXn family of boards, formerly known as SBC-MediaGX. @@ -161,31 +154,12 @@ config MTD_SBC_GXX config MTD_PXA2XX tristate "CFI Flash device mapped on Intel XScale PXA2xx based boards" depends on (PXA25x || PXA27x) && MTD_CFI_INTELEXT - select MTD_PARTITIONS help This provides a driver for the NOR flash attached to a PXA2xx chip. -config MTD_OCTAGON - tristate "JEDEC Flash device mapped on Octagon 5066 SBC" - depends on X86 && MTD_JEDEC && MTD_COMPLEX_MAPPINGS - help - This provides a 'mapping' driver which supports the way in which - the flash chips are connected in the Octagon-5066 Single Board - Computer. More information on the board is available at - <http://www.octagonsystems.com/CPUpages/5066.html>. - -config MTD_VMAX - tristate "JEDEC Flash device mapped on Tempustech VMAX SBC301" - depends on X86 && MTD_JEDEC && MTD_COMPLEX_MAPPINGS - help - This provides a 'mapping' driver which supports the way in which - the flash chips are connected in the Tempustech VMAX SBC301 Single - Board Computer. More information on the board is available at - <http://www.tempustech.com/>. - config MTD_SCx200_DOCFLASH tristate "Flash device mapped with DOCCS on NatSemi SCx200" - depends on SCx200 && MTD_CFI && MTD_PARTITIONS + depends on SCx200 && MTD_CFI help Enable support for a flash chip mapped using the DOCCS signal on a National Semiconductor SCx200 processor. @@ -232,7 +206,7 @@ config MTD_CK804XROM config MTD_SCB2_FLASH tristate "BIOS flash chip on Intel SCB2 boards" - depends on X86 && MTD_JEDECPROBE + depends on X86 && MTD_JEDECPROBE && PCI help Support for treating the BIOS flash chip on Intel SCB2 boards as an MTD device - with this you can reprogram your BIOS. @@ -247,25 +221,15 @@ config MTD_TSUNAMI config MTD_NETtel tristate "CFI flash device on SnapGear/SecureEdge" - depends on X86 && MTD_PARTITIONS && MTD_JEDECPROBE + depends on X86 && MTD_JEDECPROBE help Support for flash chips on NETtel/SecureEdge/SnapGear boards. -config MTD_DILNETPC - tristate "CFI Flash device mapped on DIL/Net PC" - depends on X86 && MTD_CONCAT && MTD_PARTITIONS && MTD_CFI_INTELEXT && BROKEN +config MTD_LANTIQ + tristate "Lantiq SoC NOR support" + depends on LANTIQ help - MTD map driver for SSV DIL/Net PC Boards "DNP" and "ADNP". - For details, see <http://www.ssv-embedded.de/ssv/pc104/p169.htm> - and <http://www.ssv-embedded.de/ssv/pc104/p170.htm> - -config MTD_DILNETPC_BOOTSIZE - hex "Size of DIL/Net PC flash boot partition" - depends on MTD_DILNETPC - default "0x80000" - help - The amount of space taken up by the kernel or Etherboot - on the DIL/Net PC flash chips. + Support for NOR flash attached to the Lantiq SoC's External Bus Unit. config MTD_L440GX tristate "BIOS flash chip on Intel L440GX boards" @@ -276,42 +240,6 @@ config MTD_L440GX BE VERY CAREFUL. -config MTD_TQM8XXL - tristate "CFI Flash device mapped on TQM8XXL" - depends on MTD_CFI && TQM8xxL - help - The TQM8xxL PowerPC board has up to two banks of CFI-compliant - chips, currently uses AMD one. This 'mapping' driver supports - that arrangement, allowing the CFI probe and command set driver - code to communicate with the chips on the TQM8xxL board. More at - <http://www.denx.de/embedded-ppc-en.html>. - -config MTD_RPXLITE - tristate "CFI Flash device mapped on RPX Lite or CLLF" - depends on MTD_CFI && (RPXCLASSIC || RPXLITE) - help - The RPXLite PowerPC board has CFI-compliant chips mapped in - a strange sparse mapping. This 'mapping' driver supports that - arrangement, allowing the CFI probe and command set driver code - to communicate with the chips on the RPXLite board. More at - <http://www.embeddedplanet.com/>. - -config MTD_MBX860 - tristate "System flash on MBX860 board" - depends on MTD_CFI && MBX - help - This enables access routines for the flash chips on the Motorola - MBX860 board. If you have one of these boards and would like - to use the flash chips on it, say 'Y'. - -config MTD_DBOX2 - tristate "CFI Flash device mapped on D-Box2" - depends on DBOX2 && MTD_CFI_INTELSTD && MTD_CFI_INTELEXT && MTD_CFI_AMDSTD - help - This enables access routines for the flash chips on the Nokia/Sagem - D-Box 2 board. If you have one of these boards and would like to use - the flash chips on it, say 'Y'. - config MTD_CFI_FLAGADM tristate "CFI Flash device mapping on FlagaDM" depends on 8xx && MTD_CFI @@ -319,14 +247,6 @@ config MTD_CFI_FLAGADM Mapping for the Flaga digital module. If you don't have one, ignore this setting. -config MTD_REDWOOD - tristate "CFI Flash devices mapped on IBM Redwood" - depends on MTD_CFI && ( REDWOOD_4 || REDWOOD_5 || REDWOOD_6 ) - help - This enables access routines for the flash chips on the IBM - Redwood board. If you have one of these boards and would like to - use the flash chips on it, say 'Y'. - config MTD_SOLUTIONENGINE tristate "CFI Flash device mapped on Hitachi SolutionEngine" depends on SUPERH && SOLUTION_ENGINE && MTD_CFI && MTD_REDBOOT_PARTS @@ -334,20 +254,9 @@ config MTD_SOLUTIONENGINE This enables access to the flash chips on the Hitachi SolutionEngine and similar boards. Say 'Y' if you are building a kernel for such a board. -config MTD_ARM_INTEGRATOR - tristate "CFI Flash device mapped on ARM Integrator/P720T" - depends on ARM && MTD_CFI - -config MTD_CDB89712 - tristate "Cirrus CDB89712 evaluation board mappings" - depends on MTD_CFI && ARCH_CDB89712 - help - This enables access to the flash or ROM chips on the CDB89712 board. - If you have such a board, say 'Y'. - config MTD_SA1100 tristate "CFI Flash device mapped on StrongARM SA11x0" - depends on MTD_CFI && ARCH_SA1100 && MTD_PARTITIONS + depends on MTD_CFI && ARCH_SA1100 help This enables access to the flash chips on most platforms based on the SA1100 and SA1110, including the Assabet and the Compaq iPAQ. @@ -370,36 +279,6 @@ config MTD_IXP4XX IXDP425 and Coyote. If you have an IXP4xx based board and would like to use the flash chips on it, say 'Y'. -config MTD_IXP2000 - tristate "CFI Flash device mapped on Intel IXP2000 based systems" - depends on MTD_CFI && MTD_COMPLEX_MAPPINGS && ARCH_IXP2000 - help - This enables MTD access to flash devices on platforms based - on Intel's IXP2000 family of network processors. If you have an - IXP2000 based board and would like to use the flash chips on it, - say 'Y'. - -config MTD_FORTUNET - tristate "CFI Flash device mapped on the FortuNet board" - depends on MTD_CFI && MTD_PARTITIONS && SA1100_FORTUNET - help - This enables access to the Flash on the FortuNet board. If you - have such a board, say 'Y'. - -config MTD_AUTCPU12 - tristate "NV-RAM mapping AUTCPU12 board" - depends on ARCH_AUTCPU12 - help - This enables access to the NV-RAM on autronix autcpu12 board. - If you have such a board, say 'Y'. - -config MTD_EDB7312 - tristate "CFI Flash device mapped on EDB7312" - depends on ARCH_EDB7312 && MTD_CFI - help - This enables access to the CFI Flash on the Cogent EDB7312 board. - If you have such a board, say 'Y' here. - config MTD_IMPA7 tristate "JEDEC Flash device mapped on impA7" depends on ARM && MTD_JEDECPROBE @@ -407,21 +286,6 @@ config MTD_IMPA7 This enables access to the NOR Flash on the impA7 board of implementa GmbH. If you have such a board, say 'Y' here. -config MTD_CEIVA - tristate "JEDEC Flash device mapped on Ceiva/Polaroid PhotoMax Digital Picture Frame" - depends on MTD_JEDECPROBE && ARCH_CEIVA - help - This enables access to the flash chips on the Ceiva/Polaroid - PhotoMax Digital Picture Frame. - If you have such a device, say 'Y'. - -config MTD_H720X - tristate "Hynix evaluation board mappings" - depends on MTD_CFI && ( ARCH_H7201 || ARCH_H7202 ) - help - This enables access to the flash chips on the Hynix evaluation boards. - If you have such a board, say 'Y'. - # This needs CFI or JEDEC, depending on the cards found. config MTD_PCI tristate "PCI MTD driver" @@ -453,7 +317,6 @@ config MTD_PCMCIA_ANONYMOUS config MTD_BFIN_ASYNC tristate "Blackfin BF533-STAMP Flash Chip Support" depends on BFIN533_STAMP && MTD_CFI && MTD_COMPLEX_MAPPINGS - select MTD_PARTITIONS default y help Map driver which allows for simultaneous utilization of @@ -463,9 +326,8 @@ config MTD_BFIN_ASYNC config MTD_GPIO_ADDR tristate "GPIO-assisted Flash Chip Support" - depends on GENERIC_GPIO || GPIOLIB + depends on GPIOLIB depends on MTD_COMPLEX_MAPPINGS - select MTD_PARTITIONS help Map driver which allows flashes to be partially physically addressed and assisted by GPIOs. @@ -474,33 +336,10 @@ config MTD_GPIO_ADDR config MTD_UCLINUX bool "Generic uClinux RAM/ROM filesystem support" - depends on MTD_PARTITIONS && MTD_RAM=y && !MMU + depends on (MTD_RAM=y || MTD_ROM=y) && (!MMU || COLDFIRE) help Map driver to support image based filesystems for uClinux. -config MTD_WRSBC8260 - tristate "Map driver for WindRiver PowerQUICC II MPC82xx board" - depends on (SBC82xx || SBC8560) - select MTD_PARTITIONS - select MTD_MAP_BANK_WIDTH_4 - select MTD_MAP_BANK_WIDTH_1 - select MTD_CFI_I1 - select MTD_CFI_I4 - help - Map driver for WindRiver PowerQUICC II MPC82xx board. Drives - all three flash regions on CS0, CS1 and CS6 if they are configured - correctly by the boot loader. - -config MTD_DMV182 - tristate "Map driver for Dy-4 SVME/DMV-182 board." - depends on DMV182 - select MTD_PARTITIONS - select MTD_MAP_BANK_WIDTH_32 - select MTD_CFI_I8 - select MTD_CFI_AMDSTD - help - Map driver for Dy-4 SVME/DMV-182 board. - config MTD_INTEL_VR_NOR tristate "NOR flash on Intel Vermilion Range Expansion Bus CS0" depends on PCI @@ -551,4 +390,13 @@ config MTD_PISMO When built as a module, it will be called pismo.ko +config MTD_LATCH_ADDR + tristate "Latch-assisted Flash Chip Support" + depends on MTD_COMPLEX_MAPPINGS + help + Map driver which allows flashes to be partially physically addressed + and have the upper address lines set by a board specific code. + + If compiled as a module, it will be called latch-addr-flash. + endmenu diff --git a/drivers/mtd/maps/Makefile b/drivers/mtd/maps/Makefile index bb035cd54c7..141c91a5b24 100644 --- a/drivers/mtd/maps/Makefile +++ b/drivers/mtd/maps/Makefile @@ -7,11 +7,8 @@ obj-$(CONFIG_MTD) += map_funcs.o endif # Chip mappings -obj-$(CONFIG_MTD_CDB89712) += cdb89712.o -obj-$(CONFIG_MTD_ARM_INTEGRATOR)+= integrator-flash.o obj-$(CONFIG_MTD_CFI_FLAGADM) += cfi_flagadm.o obj-$(CONFIG_MTD_DC21285) += dc21285.o -obj-$(CONFIG_MTD_DILNETPC) += dilnetpc.o obj-$(CONFIG_MTD_L440GX) += l440gx.o obj-$(CONFIG_MTD_AMD76XROM) += amd76xrom.o obj-$(CONFIG_MTD_ESB2ROM) += esb2rom.o @@ -19,43 +16,30 @@ obj-$(CONFIG_MTD_ICHXROM) += ichxrom.o obj-$(CONFIG_MTD_CK804XROM) += ck804xrom.o obj-$(CONFIG_MTD_TSUNAMI) += tsunami_flash.o obj-$(CONFIG_MTD_PXA2XX) += pxa2xx-flash.o -obj-$(CONFIG_MTD_MBX860) += mbx860.o -obj-$(CONFIG_MTD_CEIVA) += ceiva.o -obj-$(CONFIG_MTD_OCTAGON) += octagon-5066.o obj-$(CONFIG_MTD_PHYSMAP) += physmap.o obj-$(CONFIG_MTD_PHYSMAP_OF) += physmap_of.o obj-$(CONFIG_MTD_PISMO) += pismo.o obj-$(CONFIG_MTD_PMC_MSP_EVM) += pmcmsp-flash.o obj-$(CONFIG_MTD_PCMCIA) += pcmciamtd.o -obj-$(CONFIG_MTD_RPXLITE) += rpxlite.o -obj-$(CONFIG_MTD_TQM8XXL) += tqm8xxl.o obj-$(CONFIG_MTD_SA1100) += sa1100-flash.o obj-$(CONFIG_MTD_SBC_GXX) += sbc_gxx.o obj-$(CONFIG_MTD_SC520CDP) += sc520cdp.o obj-$(CONFIG_MTD_NETSC520) += netsc520.o obj-$(CONFIG_MTD_TS5500) += ts5500_flash.o obj-$(CONFIG_MTD_SUN_UFLASH) += sun_uflash.o -obj-$(CONFIG_MTD_VMAX) += vmax301.o obj-$(CONFIG_MTD_SCx200_DOCFLASH)+= scx200_docflash.o -obj-$(CONFIG_MTD_DBOX2) += dbox2-flash.o obj-$(CONFIG_MTD_SOLUTIONENGINE)+= solutionengine.o obj-$(CONFIG_MTD_PCI) += pci.o -obj-$(CONFIG_MTD_AUTCPU12) += autcpu12-nvram.o -obj-$(CONFIG_MTD_EDB7312) += edb7312.o obj-$(CONFIG_MTD_IMPA7) += impa7.o -obj-$(CONFIG_MTD_FORTUNET) += fortunet.o -obj-$(CONFIG_MTD_REDWOOD) += redwood.o obj-$(CONFIG_MTD_UCLINUX) += uclinux.o obj-$(CONFIG_MTD_NETtel) += nettel.o obj-$(CONFIG_MTD_SCB2_FLASH) += scb2_flash.o -obj-$(CONFIG_MTD_H720X) += h720x-flash.o obj-$(CONFIG_MTD_IXP4XX) += ixp4xx.o -obj-$(CONFIG_MTD_IXP2000) += ixp2000.o -obj-$(CONFIG_MTD_WRSBC8260) += wr_sbc82xx_flash.o -obj-$(CONFIG_MTD_DMV182) += dmv182.o obj-$(CONFIG_MTD_PLATRAM) += plat-ram.o obj-$(CONFIG_MTD_INTEL_VR_NOR) += intel_vr_nor.o obj-$(CONFIG_MTD_BFIN_ASYNC) += bfin-async-flash.o obj-$(CONFIG_MTD_RBTX4939) += rbtx4939-flash.o obj-$(CONFIG_MTD_VMU) += vmu-flash.o obj-$(CONFIG_MTD_GPIO_ADDR) += gpio-addr-flash.o +obj-$(CONFIG_MTD_LATCH_ADDR) += latch-addr-flash.o +obj-$(CONFIG_MTD_LANTIQ) += lantiq-flash.o diff --git a/drivers/mtd/maps/amd76xrom.c b/drivers/mtd/maps/amd76xrom.c index 19fe92db0c4..f7207b0a76d 100644 --- a/drivers/mtd/maps/amd76xrom.c +++ b/drivers/mtd/maps/amd76xrom.c @@ -82,7 +82,7 @@ static void amd76xrom_cleanup(struct amd76xrom_window *window) if (map->rsrc.parent) { release_resource(&map->rsrc); } - del_mtd_device(map->mtd); + mtd_device_unregister(map->mtd); map_destroy(map->mtd); list_del(&map->list); kfree(map); @@ -100,8 +100,8 @@ static void amd76xrom_cleanup(struct amd76xrom_window *window) } -static int __devinit amd76xrom_init_one (struct pci_dev *pdev, - const struct pci_device_id *ent) +static int amd76xrom_init_one(struct pci_dev *pdev, + const struct pci_device_id *ent) { static char *rom_probe_types[] = { "cfi_probe", "jedec_probe", NULL }; u8 byte; @@ -149,11 +149,9 @@ static int __devinit amd76xrom_init_one (struct pci_dev *pdev, if (request_resource(&iomem_resource, &window->rsrc)) { window->rsrc.parent = NULL; printk(KERN_ERR MOD_NAME - " %s(): Unable to register resource" - " 0x%.16llx-0x%.16llx - kernel bug?\n", - __func__, - (unsigned long long)window->rsrc.start, - (unsigned long long)window->rsrc.end); + " %s(): Unable to register resource %pR - kernel bug?\n", + __func__, &window->rsrc); + return -EBUSY; } @@ -264,7 +262,7 @@ static int __devinit amd76xrom_init_one (struct pci_dev *pdev, /* Now that the mtd devices is complete claim and export it */ map->mtd->owner = THIS_MODULE; - if (add_mtd_device(map->mtd)) { + if (mtd_device_register(map->mtd, NULL, 0)) { map_destroy(map->mtd); map->mtd = NULL; goto out; @@ -291,7 +289,7 @@ static int __devinit amd76xrom_init_one (struct pci_dev *pdev, } -static void __devexit amd76xrom_remove_one (struct pci_dev *pdev) +static void amd76xrom_remove_one(struct pci_dev *pdev) { struct amd76xrom_window *window = &amd76xrom_window; @@ -349,4 +347,3 @@ module_exit(cleanup_amd76xrom); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Eric Biederman <ebiederman@lnxi.com>"); MODULE_DESCRIPTION("MTD map driver for BIOS chips on the AMD76X southbridge"); - diff --git a/drivers/mtd/maps/autcpu12-nvram.c b/drivers/mtd/maps/autcpu12-nvram.c deleted file mode 100644 index 53664188fc4..00000000000 --- a/drivers/mtd/maps/autcpu12-nvram.c +++ /dev/null @@ -1,125 +0,0 @@ -/* - * NV-RAM memory access on autcpu12 - * (C) 2002 Thomas Gleixner (gleixner@autronix.de) - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/ioport.h> -#include <linux/init.h> -#include <asm/io.h> -#include <asm/sizes.h> -#include <mach/hardware.h> -#include <mach/autcpu12.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> - - -static struct mtd_info *sram_mtd; - -struct map_info autcpu12_sram_map = { - .name = "SRAM", - .size = 32768, - .bankwidth = 4, - .phys = 0x12000000, -}; - -static int __init init_autcpu12_sram (void) -{ - int err, save0, save1; - - autcpu12_sram_map.virt = ioremap(0x12000000, SZ_128K); - if (!autcpu12_sram_map.virt) { - printk("Failed to ioremap autcpu12 NV-RAM space\n"); - err = -EIO; - goto out; - } - simple_map_init(&autcpu_sram_map); - - /* - * Check for 32K/128K - * read ofs 0 - * read ofs 0x10000 - * Write complement to ofs 0x100000 - * Read and check result on ofs 0x0 - * Restore contents - */ - save0 = map_read32(&autcpu12_sram_map,0); - save1 = map_read32(&autcpu12_sram_map,0x10000); - map_write32(&autcpu12_sram_map,~save0,0x10000); - /* if we find this pattern on 0x0, we have 32K size - * restore contents and exit - */ - if ( map_read32(&autcpu12_sram_map,0) != save0) { - map_write32(&autcpu12_sram_map,save0,0x0); - goto map; - } - /* We have a 128K found, restore 0x10000 and set size - * to 128K - */ - map_write32(&autcpu12_sram_map,save1,0x10000); - autcpu12_sram_map.size = SZ_128K; - -map: - sram_mtd = do_map_probe("map_ram", &autcpu12_sram_map); - if (!sram_mtd) { - printk("NV-RAM probe failed\n"); - err = -ENXIO; - goto out_ioremap; - } - - sram_mtd->owner = THIS_MODULE; - sram_mtd->erasesize = 16; - - if (add_mtd_device(sram_mtd)) { - printk("NV-RAM device addition failed\n"); - err = -ENOMEM; - goto out_probe; - } - - printk("NV-RAM device size %ldKiB registered on AUTCPU12\n",autcpu12_sram_map.size/SZ_1K); - - return 0; - -out_probe: - map_destroy(sram_mtd); - sram_mtd = 0; - -out_ioremap: - iounmap((void *)autcpu12_sram_map.virt); -out: - return err; -} - -static void __exit cleanup_autcpu12_maps(void) -{ - if (sram_mtd) { - del_mtd_device(sram_mtd); - map_destroy(sram_mtd); - iounmap((void *)autcpu12_sram_map.virt); - } -} - -module_init(init_autcpu12_sram); -module_exit(cleanup_autcpu12_maps); - -MODULE_AUTHOR("Thomas Gleixner"); -MODULE_DESCRIPTION("autcpu12 NV-RAM map driver"); -MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/maps/bfin-async-flash.c b/drivers/mtd/maps/bfin-async-flash.c index 85dd18193cf..6ea51e54904 100644 --- a/drivers/mtd/maps/bfin-async-flash.c +++ b/drivers/mtd/maps/bfin-async-flash.c @@ -14,7 +14,6 @@ * Licensed under the GPL-2 or later. */ -#include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mtd/mtd.h> @@ -30,7 +29,8 @@ #include <linux/io.h> #include <asm/unaligned.h> -#define pr_devinit(fmt, args...) ({ static const __devinitconst char __fmt[] = fmt; printk(__fmt, ## args); }) +#define pr_devinit(fmt, args...) \ + ({ static const char __fmt[] = fmt; printk(__fmt, ## args); }) #define DRIVER_NAME "bfin-async-flash" @@ -41,9 +41,6 @@ struct async_state { uint32_t flash_ambctl0, flash_ambctl1; uint32_t save_ambctl0, save_ambctl1; unsigned long irq_flags; -#ifdef CONFIG_MTD_PARTITIONS - struct mtd_partition *parts; -#endif }; static void switch_to_flash(struct async_state *state) @@ -124,14 +121,13 @@ static void bfin_flash_copy_to(struct map_info *map, unsigned long to, const voi switch_back(state); } -#ifdef CONFIG_MTD_PARTITIONS -static const char *part_probe_types[] = { "cmdlinepart", "RedBoot", NULL }; -#endif +static const char * const part_probe_types[] = { + "cmdlinepart", "RedBoot", NULL }; -static int __devinit bfin_flash_probe(struct platform_device *pdev) +static int bfin_flash_probe(struct platform_device *pdev) { int ret; - struct physmap_flash_data *pdata = pdev->dev.platform_data; + struct physmap_flash_data *pdata = dev_get_platdata(&pdev->dev); struct resource *memory = platform_get_resource(pdev, IORESOURCE_MEM, 0); struct resource *flash_ambctl = platform_get_resource(pdev, IORESOURCE_MEM, 1); struct async_state *state; @@ -146,7 +142,7 @@ static int __devinit bfin_flash_probe(struct platform_device *pdev) state->map.write = bfin_flash_write; state->map.copy_to = bfin_flash_copy_to; state->map.bankwidth = pdata->width; - state->map.size = memory->end - memory->start + 1; + state->map.size = resource_size(memory); state->map.virt = (void __iomem *)memory->start; state->map.phys = memory->start; state->map.map_priv_1 = (unsigned long)state; @@ -169,37 +165,19 @@ static int __devinit bfin_flash_probe(struct platform_device *pdev) return -ENXIO; } -#ifdef CONFIG_MTD_PARTITIONS - ret = parse_mtd_partitions(state->mtd, part_probe_types, &pdata->parts, 0); - if (ret > 0) { - pr_devinit(KERN_NOTICE DRIVER_NAME ": Using commandline partition definition\n"); - add_mtd_partitions(state->mtd, pdata->parts, ret); - state->parts = pdata->parts; - - } else if (pdata->nr_parts) { - pr_devinit(KERN_NOTICE DRIVER_NAME ": Using board partition definition\n"); - add_mtd_partitions(state->mtd, pdata->parts, pdata->nr_parts); - - } else -#endif - { - pr_devinit(KERN_NOTICE DRIVER_NAME ": no partition info available, registering whole flash at once\n"); - add_mtd_device(state->mtd); - } + mtd_device_parse_register(state->mtd, part_probe_types, NULL, + pdata->parts, pdata->nr_parts); platform_set_drvdata(pdev, state); return 0; } -static int __devexit bfin_flash_remove(struct platform_device *pdev) +static int bfin_flash_remove(struct platform_device *pdev) { struct async_state *state = platform_get_drvdata(pdev); gpio_free(state->enet_flash_pin); -#ifdef CONFIG_MTD_PARTITIONS - del_mtd_partitions(state->mtd); - kfree(state->parts); -#endif + mtd_device_unregister(state->mtd); map_destroy(state->mtd); kfree(state); return 0; @@ -207,23 +185,13 @@ static int __devexit bfin_flash_remove(struct platform_device *pdev) static struct platform_driver bfin_flash_driver = { .probe = bfin_flash_probe, - .remove = __devexit_p(bfin_flash_remove), + .remove = bfin_flash_remove, .driver = { .name = DRIVER_NAME, }, }; -static int __init bfin_flash_init(void) -{ - return platform_driver_register(&bfin_flash_driver); -} -module_init(bfin_flash_init); - -static void __exit bfin_flash_exit(void) -{ - platform_driver_unregister(&bfin_flash_driver); -} -module_exit(bfin_flash_exit); +module_platform_driver(bfin_flash_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("MTD map driver for Blackfins with flash/ethernet on same async bank"); diff --git a/drivers/mtd/maps/cdb89712.c b/drivers/mtd/maps/cdb89712.c deleted file mode 100644 index 8d92d8db9a9..00000000000 --- a/drivers/mtd/maps/cdb89712.c +++ /dev/null @@ -1,278 +0,0 @@ -/* - * Flash on Cirrus CDB89712 - * - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/ioport.h> -#include <linux/init.h> -#include <asm/io.h> -#include <mach/hardware.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> - -/* dynamic ioremap() areas */ -#define FLASH_START 0x00000000 -#define FLASH_SIZE 0x800000 -#define FLASH_WIDTH 4 - -#define SRAM_START 0x60000000 -#define SRAM_SIZE 0xc000 -#define SRAM_WIDTH 4 - -#define BOOTROM_START 0x70000000 -#define BOOTROM_SIZE 0x80 -#define BOOTROM_WIDTH 4 - - -static struct mtd_info *flash_mtd; - -struct map_info cdb89712_flash_map = { - .name = "flash", - .size = FLASH_SIZE, - .bankwidth = FLASH_WIDTH, - .phys = FLASH_START, -}; - -struct resource cdb89712_flash_resource = { - .name = "Flash", - .start = FLASH_START, - .end = FLASH_START + FLASH_SIZE - 1, - .flags = IORESOURCE_IO | IORESOURCE_BUSY, -}; - -static int __init init_cdb89712_flash (void) -{ - int err; - - if (request_resource (&ioport_resource, &cdb89712_flash_resource)) { - printk(KERN_NOTICE "Failed to reserve Cdb89712 FLASH space\n"); - err = -EBUSY; - goto out; - } - - cdb89712_flash_map.virt = ioremap(FLASH_START, FLASH_SIZE); - if (!cdb89712_flash_map.virt) { - printk(KERN_NOTICE "Failed to ioremap Cdb89712 FLASH space\n"); - err = -EIO; - goto out_resource; - } - simple_map_init(&cdb89712_flash_map); - flash_mtd = do_map_probe("cfi_probe", &cdb89712_flash_map); - if (!flash_mtd) { - flash_mtd = do_map_probe("map_rom", &cdb89712_flash_map); - if (flash_mtd) - flash_mtd->erasesize = 0x10000; - } - if (!flash_mtd) { - printk("FLASH probe failed\n"); - err = -ENXIO; - goto out_ioremap; - } - - flash_mtd->owner = THIS_MODULE; - - if (add_mtd_device(flash_mtd)) { - printk("FLASH device addition failed\n"); - err = -ENOMEM; - goto out_probe; - } - - return 0; - -out_probe: - map_destroy(flash_mtd); - flash_mtd = 0; -out_ioremap: - iounmap((void *)cdb89712_flash_map.virt); -out_resource: - release_resource (&cdb89712_flash_resource); -out: - return err; -} - - - - - -static struct mtd_info *sram_mtd; - -struct map_info cdb89712_sram_map = { - .name = "SRAM", - .size = SRAM_SIZE, - .bankwidth = SRAM_WIDTH, - .phys = SRAM_START, -}; - -struct resource cdb89712_sram_resource = { - .name = "SRAM", - .start = SRAM_START, - .end = SRAM_START + SRAM_SIZE - 1, - .flags = IORESOURCE_IO | IORESOURCE_BUSY, -}; - -static int __init init_cdb89712_sram (void) -{ - int err; - - if (request_resource (&ioport_resource, &cdb89712_sram_resource)) { - printk(KERN_NOTICE "Failed to reserve Cdb89712 SRAM space\n"); - err = -EBUSY; - goto out; - } - - cdb89712_sram_map.virt = ioremap(SRAM_START, SRAM_SIZE); - if (!cdb89712_sram_map.virt) { - printk(KERN_NOTICE "Failed to ioremap Cdb89712 SRAM space\n"); - err = -EIO; - goto out_resource; - } - simple_map_init(&cdb89712_sram_map); - sram_mtd = do_map_probe("map_ram", &cdb89712_sram_map); - if (!sram_mtd) { - printk("SRAM probe failed\n"); - err = -ENXIO; - goto out_ioremap; - } - - sram_mtd->owner = THIS_MODULE; - sram_mtd->erasesize = 16; - - if (add_mtd_device(sram_mtd)) { - printk("SRAM device addition failed\n"); - err = -ENOMEM; - goto out_probe; - } - - return 0; - -out_probe: - map_destroy(sram_mtd); - sram_mtd = 0; -out_ioremap: - iounmap((void *)cdb89712_sram_map.virt); -out_resource: - release_resource (&cdb89712_sram_resource); -out: - return err; -} - - - - - - - -static struct mtd_info *bootrom_mtd; - -struct map_info cdb89712_bootrom_map = { - .name = "BootROM", - .size = BOOTROM_SIZE, - .bankwidth = BOOTROM_WIDTH, - .phys = BOOTROM_START, -}; - -struct resource cdb89712_bootrom_resource = { - .name = "BootROM", - .start = BOOTROM_START, - .end = BOOTROM_START + BOOTROM_SIZE - 1, - .flags = IORESOURCE_IO | IORESOURCE_BUSY, -}; - -static int __init init_cdb89712_bootrom (void) -{ - int err; - - if (request_resource (&ioport_resource, &cdb89712_bootrom_resource)) { - printk(KERN_NOTICE "Failed to reserve Cdb89712 BOOTROM space\n"); - err = -EBUSY; - goto out; - } - - cdb89712_bootrom_map.virt = ioremap(BOOTROM_START, BOOTROM_SIZE); - if (!cdb89712_bootrom_map.virt) { - printk(KERN_NOTICE "Failed to ioremap Cdb89712 BootROM space\n"); - err = -EIO; - goto out_resource; - } - simple_map_init(&cdb89712_bootrom_map); - bootrom_mtd = do_map_probe("map_rom", &cdb89712_bootrom_map); - if (!bootrom_mtd) { - printk("BootROM probe failed\n"); - err = -ENXIO; - goto out_ioremap; - } - - bootrom_mtd->owner = THIS_MODULE; - bootrom_mtd->erasesize = 0x10000; - - if (add_mtd_device(bootrom_mtd)) { - printk("BootROM device addition failed\n"); - err = -ENOMEM; - goto out_probe; - } - - return 0; - -out_probe: - map_destroy(bootrom_mtd); - bootrom_mtd = 0; -out_ioremap: - iounmap((void *)cdb89712_bootrom_map.virt); -out_resource: - release_resource (&cdb89712_bootrom_resource); -out: - return err; -} - - - - - -static int __init init_cdb89712_maps(void) -{ - - printk(KERN_INFO "Cirrus CDB89712 MTD mappings:\n Flash 0x%x at 0x%x\n SRAM 0x%x at 0x%x\n BootROM 0x%x at 0x%x\n", - FLASH_SIZE, FLASH_START, SRAM_SIZE, SRAM_START, BOOTROM_SIZE, BOOTROM_START); - - init_cdb89712_flash(); - init_cdb89712_sram(); - init_cdb89712_bootrom(); - - return 0; -} - - -static void __exit cleanup_cdb89712_maps(void) -{ - if (sram_mtd) { - del_mtd_device(sram_mtd); - map_destroy(sram_mtd); - iounmap((void *)cdb89712_sram_map.virt); - release_resource (&cdb89712_sram_resource); - } - - if (flash_mtd) { - del_mtd_device(flash_mtd); - map_destroy(flash_mtd); - iounmap((void *)cdb89712_flash_map.virt); - release_resource (&cdb89712_flash_resource); - } - - if (bootrom_mtd) { - del_mtd_device(bootrom_mtd); - map_destroy(bootrom_mtd); - iounmap((void *)cdb89712_bootrom_map.virt); - release_resource (&cdb89712_bootrom_resource); - } -} - -module_init(init_cdb89712_maps); -module_exit(cleanup_cdb89712_maps); - -MODULE_AUTHOR("Ray L"); -MODULE_DESCRIPTION("ARM CDB89712 map driver"); -MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/maps/ceiva.c b/drivers/mtd/maps/ceiva.c deleted file mode 100644 index c09f4f57093..00000000000 --- a/drivers/mtd/maps/ceiva.c +++ /dev/null @@ -1,347 +0,0 @@ -/* - * Ceiva flash memory driver. - * Copyright (C) 2002 Rob Scott <rscott@mtrob.fdns.net> - * - * Note: this driver supports jedec compatible devices. Modification - * for CFI compatible devices should be straight forward: change - * jedec_probe to cfi_probe. - * - * Based on: sa1100-flash.c, which has the following copyright: - * Flash memory access on SA11x0 based devices - * - * (C) 2000 Nicolas Pitre <nico@fluxnic.net> - * - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/ioport.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <linux/slab.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> -#include <linux/mtd/concat.h> - -#include <mach/hardware.h> -#include <asm/mach-types.h> -#include <asm/io.h> -#include <asm/sizes.h> - -/* - * This isn't complete yet, so... - */ -#define CONFIG_MTD_CEIVA_STATICMAP - -#ifdef CONFIG_MTD_CEIVA_STATICMAP -/* - * See include/linux/mtd/partitions.h for definition of the mtd_partition - * structure. - * - * Please note: - * 1. The flash size given should be the largest flash size that can - * be accomodated. - * - * 2. The bus width must defined in clps_setup_flash. - * - * The MTD layer will detect flash chip aliasing and reduce the size of - * the map accordingly. - * - */ - -#ifdef CONFIG_ARCH_CEIVA -/* Flash / Partition sizing */ -/* For the 28F8003, we use the block mapping to calcuate the sizes */ -#define MAX_SIZE_KiB (16 + 8 + 8 + 96 + (7*128)) -#define BOOT_PARTITION_SIZE_KiB (16) -#define PARAMS_PARTITION_SIZE_KiB (8) -#define KERNEL_PARTITION_SIZE_KiB (4*128) -/* Use both remaing portion of first flash, and all of second flash */ -#define ROOT_PARTITION_SIZE_KiB (3*128) + (8*128) - -static struct mtd_partition ceiva_partitions[] = { - { - .name = "Ceiva BOOT partition", - .size = BOOT_PARTITION_SIZE_KiB*1024, - .offset = 0, - - },{ - .name = "Ceiva parameters partition", - .size = PARAMS_PARTITION_SIZE_KiB*1024, - .offset = (16 + 8) * 1024, - },{ - .name = "Ceiva kernel partition", - .size = (KERNEL_PARTITION_SIZE_KiB)*1024, - .offset = 0x20000, - - },{ - .name = "Ceiva root filesystem partition", - .offset = MTDPART_OFS_APPEND, - .size = (ROOT_PARTITION_SIZE_KiB)*1024, - } -}; -#endif - -static int __init clps_static_partitions(struct mtd_partition **parts) -{ - int nb_parts = 0; - -#ifdef CONFIG_ARCH_CEIVA - if (machine_is_ceiva()) { - *parts = ceiva_partitions; - nb_parts = ARRAY_SIZE(ceiva_partitions); - } -#endif - return nb_parts; -} -#endif - -struct clps_info { - unsigned long base; - unsigned long size; - int width; - void *vbase; - struct map_info *map; - struct mtd_info *mtd; - struct resource *res; -}; - -#define NR_SUBMTD 4 - -static struct clps_info info[NR_SUBMTD]; - -static int __init clps_setup_mtd(struct clps_info *clps, int nr, struct mtd_info **rmtd) -{ - struct mtd_info *subdev[nr]; - struct map_info *maps; - int i, found = 0, ret = 0; - - /* - * Allocate the map_info structs in one go. - */ - maps = kzalloc(sizeof(struct map_info) * nr, GFP_KERNEL); - if (!maps) - return -ENOMEM; - /* - * Claim and then map the memory regions. - */ - for (i = 0; i < nr; i++) { - if (clps[i].base == (unsigned long)-1) - break; - - clps[i].res = request_mem_region(clps[i].base, clps[i].size, "clps flash"); - if (!clps[i].res) { - ret = -EBUSY; - break; - } - - clps[i].map = maps + i; - - clps[i].map->name = "clps flash"; - clps[i].map->phys = clps[i].base; - - clps[i].vbase = ioremap(clps[i].base, clps[i].size); - if (!clps[i].vbase) { - ret = -ENOMEM; - break; - } - - clps[i].map->virt = (void __iomem *)clps[i].vbase; - clps[i].map->bankwidth = clps[i].width; - clps[i].map->size = clps[i].size; - - simple_map_init(&clps[i].map); - - clps[i].mtd = do_map_probe("jedec_probe", clps[i].map); - if (clps[i].mtd == NULL) { - ret = -ENXIO; - break; - } - clps[i].mtd->owner = THIS_MODULE; - subdev[i] = clps[i].mtd; - - printk(KERN_INFO "clps flash: JEDEC device at 0x%08lx, %dMiB, " - "%d-bit\n", clps[i].base, clps[i].mtd->size >> 20, - clps[i].width * 8); - found += 1; - } - - /* - * ENXIO is special. It means we didn't find a chip when - * we probed. We need to tear down the mapping, free the - * resource and mark it as such. - */ - if (ret == -ENXIO) { - iounmap(clps[i].vbase); - clps[i].vbase = NULL; - release_resource(clps[i].res); - clps[i].res = NULL; - } - - /* - * If we found one device, don't bother with concat support. - * If we found multiple devices, use concat if we have it - * available, otherwise fail. - */ - if (ret == 0 || ret == -ENXIO) { - if (found == 1) { - *rmtd = subdev[0]; - ret = 0; - } else if (found > 1) { - /* - * We detected multiple devices. Concatenate - * them together. - */ -#ifdef CONFIG_MTD_CONCAT - *rmtd = mtd_concat_create(subdev, found, - "clps flash"); - if (*rmtd == NULL) - ret = -ENXIO; -#else - printk(KERN_ERR "clps flash: multiple devices " - "found but MTD concat support disabled.\n"); - ret = -ENXIO; -#endif - } - } - - /* - * If we failed, clean up. - */ - if (ret) { - do { - if (clps[i].mtd) - map_destroy(clps[i].mtd); - if (clps[i].vbase) - iounmap(clps[i].vbase); - if (clps[i].res) - release_resource(clps[i].res); - } while (i--); - - kfree(maps); - } - - return ret; -} - -static void __exit clps_destroy_mtd(struct clps_info *clps, struct mtd_info *mtd) -{ - int i; - - del_mtd_partitions(mtd); - - if (mtd != clps[0].mtd) - mtd_concat_destroy(mtd); - - for (i = NR_SUBMTD; i >= 0; i--) { - if (clps[i].mtd) - map_destroy(clps[i].mtd); - if (clps[i].vbase) - iounmap(clps[i].vbase); - if (clps[i].res) - release_resource(clps[i].res); - } - kfree(clps[0].map); -} - -/* - * We define the memory space, size, and width for the flash memory - * space here. - */ - -static int __init clps_setup_flash(void) -{ - int nr = 0; - -#ifdef CONFIG_ARCH_CEIVA - if (machine_is_ceiva()) { - info[0].base = CS0_PHYS_BASE; - info[0].size = SZ_32M; - info[0].width = CEIVA_FLASH_WIDTH; - info[1].base = CS1_PHYS_BASE; - info[1].size = SZ_32M; - info[1].width = CEIVA_FLASH_WIDTH; - nr = 2; - } -#endif - return nr; -} - -static struct mtd_partition *parsed_parts; -static const char *probes[] = { "cmdlinepart", "RedBoot", NULL }; - -static void __init clps_locate_partitions(struct mtd_info *mtd) -{ - const char *part_type = NULL; - int nr_parts = 0; - do { - /* - * Partition selection stuff. - */ - nr_parts = parse_mtd_partitions(mtd, probes, &parsed_parts, 0); - if (nr_parts > 0) { - part_type = "command line"; - break; - } -#ifdef CONFIG_MTD_CEIVA_STATICMAP - nr_parts = clps_static_partitions(&parsed_parts); - if (nr_parts > 0) { - part_type = "static"; - break; - } - printk("found: %d partitions\n", nr_parts); -#endif - } while (0); - - if (nr_parts == 0) { - printk(KERN_NOTICE "clps flash: no partition info " - "available, registering whole flash\n"); - add_mtd_device(mtd); - } else { - printk(KERN_NOTICE "clps flash: using %s partition " - "definition\n", part_type); - add_mtd_partitions(mtd, parsed_parts, nr_parts); - } - - /* Always succeeds. */ -} - -static void __exit clps_destroy_partitions(void) -{ - kfree(parsed_parts); -} - -static struct mtd_info *mymtd; - -static int __init clps_mtd_init(void) -{ - int ret; - int nr; - - nr = clps_setup_flash(); - if (nr < 0) - return nr; - - ret = clps_setup_mtd(info, nr, &mymtd); - if (ret) - return ret; - - clps_locate_partitions(mymtd); - - return 0; -} - -static void __exit clps_mtd_cleanup(void) -{ - clps_destroy_mtd(info, mymtd); - clps_destroy_partitions(); -} - -module_init(clps_mtd_init); -module_exit(clps_mtd_cleanup); - -MODULE_AUTHOR("Rob Scott"); -MODULE_DESCRIPTION("Cirrus Logic JEDEC map driver"); -MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/maps/cfi_flagadm.c b/drivers/mtd/maps/cfi_flagadm.c index b4ed8161191..d504b3d1791 100644 --- a/drivers/mtd/maps/cfi_flagadm.c +++ b/drivers/mtd/maps/cfi_flagadm.c @@ -33,7 +33,7 @@ /* We split the flash chip up into four parts. - * 1: bootloader firts 128k (0x00000000 - 0x0001FFFF) size 0x020000 + * 1: bootloader first 128k (0x00000000 - 0x0001FFFF) size 0x020000 * 2: kernel 640k (0x00020000 - 0x000BFFFF) size 0x0A0000 * 3: compressed 1536k root ramdisk (0x000C0000 - 0x0023FFFF) size 0x180000 * 4: writeable diskpartition (jffs)(0x00240000 - 0x003FFFFF) size 0x1C0000 @@ -55,13 +55,13 @@ #define FLASH_PARTITION3_SIZE 0x001C0000 -struct map_info flagadm_map = { +static struct map_info flagadm_map = { .name = "FlagaDM flash device", .size = FLASH_SIZE, .bankwidth = 2, }; -struct mtd_partition flagadm_parts[] = { +static struct mtd_partition flagadm_parts[] = { { .name = "Bootloader", .offset = FLASH_PARTITION0_ADDR, @@ -107,24 +107,24 @@ static int __init init_flagadm(void) mymtd = do_map_probe("cfi_probe", &flagadm_map); if (mymtd) { mymtd->owner = THIS_MODULE; - add_mtd_partitions(mymtd, flagadm_parts, PARTITION_COUNT); + mtd_device_register(mymtd, flagadm_parts, PARTITION_COUNT); printk(KERN_NOTICE "FlagaDM flash device initialized\n"); return 0; } - iounmap((void *)flagadm_map.virt); + iounmap((void __iomem *)flagadm_map.virt); return -ENXIO; } static void __exit cleanup_flagadm(void) { if (mymtd) { - del_mtd_partitions(mymtd); + mtd_device_unregister(mymtd); map_destroy(mymtd); } if (flagadm_map.virt) { - iounmap((void *)flagadm_map.virt); - flagadm_map.virt = 0; + iounmap((void __iomem *)flagadm_map.virt); + flagadm_map.virt = NULL; } } diff --git a/drivers/mtd/maps/ck804xrom.c b/drivers/mtd/maps/ck804xrom.c index ddb462bea9b..0455166f05f 100644 --- a/drivers/mtd/maps/ck804xrom.c +++ b/drivers/mtd/maps/ck804xrom.c @@ -94,7 +94,7 @@ static void ck804xrom_cleanup(struct ck804xrom_window *window) if (map->rsrc.parent) release_resource(&map->rsrc); - del_mtd_device(map->mtd); + mtd_device_unregister(map->mtd); map_destroy(map->mtd); list_del(&map->list); kfree(map); @@ -112,8 +112,8 @@ static void ck804xrom_cleanup(struct ck804xrom_window *window) } -static int __devinit ck804xrom_init_one (struct pci_dev *pdev, - const struct pci_device_id *ent) +static int ck804xrom_init_one(struct pci_dev *pdev, + const struct pci_device_id *ent) { static char *rom_probe_types[] = { "cfi_probe", "jedec_probe", NULL }; u8 byte; @@ -178,11 +178,8 @@ static int __devinit ck804xrom_init_one (struct pci_dev *pdev, if (request_resource(&iomem_resource, &window->rsrc)) { window->rsrc.parent = NULL; printk(KERN_ERR MOD_NAME - " %s(): Unable to register resource" - " 0x%.016llx-0x%.016llx - kernel bug?\n", - __func__, - (unsigned long long)window->rsrc.start, - (unsigned long long)window->rsrc.end); + " %s(): Unable to register resource %pR - kernel bug?\n", + __func__, &window->rsrc); } @@ -294,7 +291,7 @@ static int __devinit ck804xrom_init_one (struct pci_dev *pdev, /* Now that the mtd devices is complete claim and export it */ map->mtd->owner = THIS_MODULE; - if (add_mtd_device(map->mtd)) { + if (mtd_device_register(map->mtd, NULL, 0)) { map_destroy(map->mtd); map->mtd = NULL; goto out; @@ -311,8 +308,7 @@ static int __devinit ck804xrom_init_one (struct pci_dev *pdev, out: /* Free any left over map structures */ - if (map) - kfree(map); + kfree(map); /* See if I have any map structures */ if (list_empty(&window->maps)) { @@ -323,7 +319,7 @@ static int __devinit ck804xrom_init_one (struct pci_dev *pdev, } -static void __devexit ck804xrom_remove_one (struct pci_dev *pdev) +static void ck804xrom_remove_one(struct pci_dev *pdev) { struct ck804xrom_window *window = &ck804xrom_window; diff --git a/drivers/mtd/maps/dbox2-flash.c b/drivers/mtd/maps/dbox2-flash.c deleted file mode 100644 index cfacfa6f45d..00000000000 --- a/drivers/mtd/maps/dbox2-flash.c +++ /dev/null @@ -1,123 +0,0 @@ -/* - * D-Box 2 flash driver - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <asm/io.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> -#include <linux/errno.h> - -/* partition_info gives details on the logical partitions that the split the - * single flash device into. If the size if zero we use up to the end of the - * device. */ -static struct mtd_partition partition_info[]= { - { - .name = "BR bootloader", - .size = 128 * 1024, - .offset = 0, - .mask_flags = MTD_WRITEABLE - }, - { - .name = "FLFS (U-Boot)", - .size = 128 * 1024, - .offset = MTDPART_OFS_APPEND, - .mask_flags = 0 - }, - { - .name = "Root (SquashFS)", - .size = 7040 * 1024, - .offset = MTDPART_OFS_APPEND, - .mask_flags = 0 - }, - { - .name = "var (JFFS2)", - .size = 896 * 1024, - .offset = MTDPART_OFS_APPEND, - .mask_flags = 0 - }, - { - .name = "Flash without bootloader", - .size = MTDPART_SIZ_FULL, - .offset = 128 * 1024, - .mask_flags = 0 - }, - { - .name = "Complete Flash", - .size = MTDPART_SIZ_FULL, - .offset = 0, - .mask_flags = MTD_WRITEABLE - } -}; - -#define NUM_PARTITIONS ARRAY_SIZE(partition_info) - -#define WINDOW_ADDR 0x10000000 -#define WINDOW_SIZE 0x800000 - -static struct mtd_info *mymtd; - - -struct map_info dbox2_flash_map = { - .name = "D-Box 2 flash memory", - .size = WINDOW_SIZE, - .bankwidth = 4, - .phys = WINDOW_ADDR, -}; - -static int __init init_dbox2_flash(void) -{ - printk(KERN_NOTICE "D-Box 2 flash driver (size->0x%X mem->0x%X)\n", WINDOW_SIZE, WINDOW_ADDR); - dbox2_flash_map.virt = ioremap(WINDOW_ADDR, WINDOW_SIZE); - - if (!dbox2_flash_map.virt) { - printk("Failed to ioremap\n"); - return -EIO; - } - simple_map_init(&dbox2_flash_map); - - // Probe for dual Intel 28F320 or dual AMD - mymtd = do_map_probe("cfi_probe", &dbox2_flash_map); - if (!mymtd) { - // Probe for single Intel 28F640 - dbox2_flash_map.bankwidth = 2; - - mymtd = do_map_probe("cfi_probe", &dbox2_flash_map); - } - - if (mymtd) { - mymtd->owner = THIS_MODULE; - - /* Create MTD devices for each partition. */ - add_mtd_partitions(mymtd, partition_info, NUM_PARTITIONS); - - return 0; - } - - iounmap((void *)dbox2_flash_map.virt); - return -ENXIO; -} - -static void __exit cleanup_dbox2_flash(void) -{ - if (mymtd) { - del_mtd_partitions(mymtd); - map_destroy(mymtd); - } - if (dbox2_flash_map.virt) { - iounmap((void *)dbox2_flash_map.virt); - dbox2_flash_map.virt = 0; - } -} - -module_init(init_dbox2_flash); -module_exit(cleanup_dbox2_flash); - - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Kári Davíðsson <kd@flaga.is>, Bastian Blank <waldi@tuxbox.org>, Alexander Wild <wild@te-elektronik.com>"); -MODULE_DESCRIPTION("MTD map driver for D-Box 2 board"); diff --git a/drivers/mtd/maps/dc21285.c b/drivers/mtd/maps/dc21285.c index b3cb3a18380..f8a7dd14cee 100644 --- a/drivers/mtd/maps/dc21285.c +++ b/drivers/mtd/maps/dc21285.c @@ -143,20 +143,11 @@ static struct map_info dc21285_map = { .copy_from = dc21285_copy_from, }; - /* Partition stuff */ -#ifdef CONFIG_MTD_PARTITIONS -static struct mtd_partition *dc21285_parts; -static const char *probes[] = { "RedBoot", "cmdlinepart", NULL }; -#endif +static const char * const probes[] = { "RedBoot", "cmdlinepart", NULL }; static int __init init_dc21285(void) { - -#ifdef CONFIG_MTD_PARTITIONS - int nrparts; -#endif - /* Determine bankwidth */ switch (*CSR_SA110_CNTL & (3<<14)) { case SA110_CNTL_ROMWIDTH_8: @@ -204,13 +195,7 @@ static int __init init_dc21285(void) dc21285_mtd->owner = THIS_MODULE; -#ifdef CONFIG_MTD_PARTITIONS - nrparts = parse_mtd_partitions(dc21285_mtd, probes, &dc21285_parts, 0); - if (nrparts > 0) - add_mtd_partitions(dc21285_mtd, dc21285_parts, nrparts); - else -#endif - add_mtd_device(dc21285_mtd); + mtd_device_parse_register(dc21285_mtd, probes, NULL, NULL, 0); if(machine_is_ebsa285()) { /* @@ -232,14 +217,7 @@ static int __init init_dc21285(void) static void __exit cleanup_dc21285(void) { -#ifdef CONFIG_MTD_PARTITIONS - if (dc21285_parts) { - del_mtd_partitions(dc21285_mtd); - kfree(dc21285_parts); - } else -#endif - del_mtd_device(dc21285_mtd); - + mtd_device_unregister(dc21285_mtd); map_destroy(dc21285_mtd); iounmap(dc21285_map.virt); } diff --git a/drivers/mtd/maps/dilnetpc.c b/drivers/mtd/maps/dilnetpc.c deleted file mode 100644 index 0713e3a5a22..00000000000 --- a/drivers/mtd/maps/dilnetpc.c +++ /dev/null @@ -1,495 +0,0 @@ -/* dilnetpc.c -- MTD map driver for SSV DIL/Net PC Boards "DNP" and "ADNP" - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA - * - * The DIL/Net PC is a tiny embedded PC board made by SSV Embedded Systems - * featuring the AMD Elan SC410 processor. There are two variants of this - * board: DNP/1486 and ADNP/1486. The DNP version has 2 megs of flash - * ROM (Intel 28F016S3) and 8 megs of DRAM, the ADNP version has 4 megs - * flash and 16 megs of RAM. - * For details, see http://www.ssv-embedded.de/ssv/pc104/p169.htm - * and http://www.ssv-embedded.de/ssv/pc104/p170.htm - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <linux/string.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> -#include <linux/mtd/concat.h> - -#include <asm/io.h> - -/* -** The DIL/NetPC keeps its BIOS in two distinct flash blocks. -** Destroying any of these blocks transforms the DNPC into -** a paperweight (albeit not a very useful one, considering -** it only weighs a few grams). -** -** Therefore, the BIOS blocks must never be erased or written to -** except by people who know exactly what they are doing (e.g. -** to install a BIOS update). These partitions are marked read-only -** by default, but can be made read/write by undefining -** DNPC_BIOS_BLOCKS_WRITEPROTECTED: -*/ -#define DNPC_BIOS_BLOCKS_WRITEPROTECTED - -/* -** The ID string (in ROM) is checked to determine whether we -** are running on a DNP/1486 or ADNP/1486 -*/ -#define BIOSID_BASE 0x000fe100 - -#define ID_DNPC "DNP1486" -#define ID_ADNP "ADNP1486" - -/* -** Address where the flash should appear in CPU space -*/ -#define FLASH_BASE 0x2000000 - -/* -** Chip Setup and Control (CSC) indexed register space -*/ -#define CSC_INDEX 0x22 -#define CSC_DATA 0x23 - -#define CSC_MMSWAR 0x30 /* MMS window C-F attributes register */ -#define CSC_MMSWDSR 0x31 /* MMS window C-F device select register */ - -#define CSC_RBWR 0xa7 /* GPIO Read-Back/Write Register B */ - -#define CSC_CR 0xd0 /* internal I/O device disable/Echo */ - /* Z-bus/configuration register */ - -#define CSC_PCCMDCR 0xf1 /* PC card mode and DMA control register */ - - -/* -** PC Card indexed register space: -*/ - -#define PCC_INDEX 0x3e0 -#define PCC_DATA 0x3e1 - -#define PCC_AWER_B 0x46 /* Socket B Address Window enable register */ -#define PCC_MWSAR_1_Lo 0x58 /* memory window 1 start address low register */ -#define PCC_MWSAR_1_Hi 0x59 /* memory window 1 start address high register */ -#define PCC_MWEAR_1_Lo 0x5A /* memory window 1 stop address low register */ -#define PCC_MWEAR_1_Hi 0x5B /* memory window 1 stop address high register */ -#define PCC_MWAOR_1_Lo 0x5C /* memory window 1 address offset low register */ -#define PCC_MWAOR_1_Hi 0x5D /* memory window 1 address offset high register */ - - -/* -** Access to SC4x0's Chip Setup and Control (CSC) -** and PC Card (PCC) indexed registers: -*/ -static inline void setcsc(int reg, unsigned char data) -{ - outb(reg, CSC_INDEX); - outb(data, CSC_DATA); -} - -static inline unsigned char getcsc(int reg) -{ - outb(reg, CSC_INDEX); - return(inb(CSC_DATA)); -} - -static inline void setpcc(int reg, unsigned char data) -{ - outb(reg, PCC_INDEX); - outb(data, PCC_DATA); -} - -static inline unsigned char getpcc(int reg) -{ - outb(reg, PCC_INDEX); - return(inb(PCC_DATA)); -} - - -/* -************************************************************ -** Enable access to DIL/NetPC's flash by mapping it into -** the SC4x0's MMS Window C. -************************************************************ -*/ -static void dnpc_map_flash(unsigned long flash_base, unsigned long flash_size) -{ - unsigned long flash_end = flash_base + flash_size - 1; - - /* - ** enable setup of MMS windows C-F: - */ - /* - enable PC Card indexed register space */ - setcsc(CSC_CR, getcsc(CSC_CR) | 0x2); - /* - set PC Card controller to operate in standard mode */ - setcsc(CSC_PCCMDCR, getcsc(CSC_PCCMDCR) & ~1); - - /* - ** Program base address and end address of window - ** where the flash ROM should appear in CPU address space - */ - setpcc(PCC_MWSAR_1_Lo, (flash_base >> 12) & 0xff); - setpcc(PCC_MWSAR_1_Hi, (flash_base >> 20) & 0x3f); - setpcc(PCC_MWEAR_1_Lo, (flash_end >> 12) & 0xff); - setpcc(PCC_MWEAR_1_Hi, (flash_end >> 20) & 0x3f); - - /* program offset of first flash location to appear in this window (0) */ - setpcc(PCC_MWAOR_1_Lo, ((0 - flash_base) >> 12) & 0xff); - setpcc(PCC_MWAOR_1_Hi, ((0 - flash_base)>> 20) & 0x3f); - - /* set attributes for MMS window C: non-cacheable, write-enabled */ - setcsc(CSC_MMSWAR, getcsc(CSC_MMSWAR) & ~0x11); - - /* select physical device ROMCS0 (i.e. flash) for MMS Window C */ - setcsc(CSC_MMSWDSR, getcsc(CSC_MMSWDSR) & ~0x03); - - /* enable memory window 1 */ - setpcc(PCC_AWER_B, getpcc(PCC_AWER_B) | 0x02); - - /* now disable PC Card indexed register space again */ - setcsc(CSC_CR, getcsc(CSC_CR) & ~0x2); -} - - -/* -************************************************************ -** Disable access to DIL/NetPC's flash by mapping it into -** the SC4x0's MMS Window C. -************************************************************ -*/ -static void dnpc_unmap_flash(void) -{ - /* - enable PC Card indexed register space */ - setcsc(CSC_CR, getcsc(CSC_CR) | 0x2); - - /* disable memory window 1 */ - setpcc(PCC_AWER_B, getpcc(PCC_AWER_B) & ~0x02); - - /* now disable PC Card indexed register space again */ - setcsc(CSC_CR, getcsc(CSC_CR) & ~0x2); -} - - - -/* -************************************************************ -** Enable/Disable VPP to write to flash -************************************************************ -*/ - -static DEFINE_SPINLOCK(dnpc_spin); -static int vpp_counter = 0; -/* -** This is what has to be done for the DNP board .. -*/ -static void dnp_set_vpp(struct map_info *not_used, int on) -{ - spin_lock_irq(&dnpc_spin); - - if (on) - { - if(++vpp_counter == 1) - setcsc(CSC_RBWR, getcsc(CSC_RBWR) & ~0x4); - } - else - { - if(--vpp_counter == 0) - setcsc(CSC_RBWR, getcsc(CSC_RBWR) | 0x4); - else - BUG_ON(vpp_counter < 0); - } - spin_unlock_irq(&dnpc_spin); -} - -/* -** .. and this the ADNP version: -*/ -static void adnp_set_vpp(struct map_info *not_used, int on) -{ - spin_lock_irq(&dnpc_spin); - - if (on) - { - if(++vpp_counter == 1) - setcsc(CSC_RBWR, getcsc(CSC_RBWR) & ~0x8); - } - else - { - if(--vpp_counter == 0) - setcsc(CSC_RBWR, getcsc(CSC_RBWR) | 0x8); - else - BUG_ON(vpp_counter < 0); - } - spin_unlock_irq(&dnpc_spin); -} - - - -#define DNP_WINDOW_SIZE 0x00200000 /* DNP flash size is 2MiB */ -#define ADNP_WINDOW_SIZE 0x00400000 /* ADNP flash size is 4MiB */ -#define WINDOW_ADDR FLASH_BASE - -static struct map_info dnpc_map = { - .name = "ADNP Flash Bank", - .size = ADNP_WINDOW_SIZE, - .bankwidth = 1, - .set_vpp = adnp_set_vpp, - .phys = WINDOW_ADDR -}; - -/* -** The layout of the flash is somewhat "strange": -** -** 1. 960 KiB (15 blocks) : Space for ROM Bootloader and user data -** 2. 64 KiB (1 block) : System BIOS -** 3. 960 KiB (15 blocks) : User Data (DNP model) or -** 3. 3008 KiB (47 blocks) : User Data (ADNP model) -** 4. 64 KiB (1 block) : System BIOS Entry -*/ - -static struct mtd_partition partition_info[]= -{ - { - .name = "ADNP boot", - .offset = 0, - .size = 0xf0000, - }, - { - .name = "ADNP system BIOS", - .offset = MTDPART_OFS_NXTBLK, - .size = 0x10000, -#ifdef DNPC_BIOS_BLOCKS_WRITEPROTECTED - .mask_flags = MTD_WRITEABLE, -#endif - }, - { - .name = "ADNP file system", - .offset = MTDPART_OFS_NXTBLK, - .size = 0x2f0000, - }, - { - .name = "ADNP system BIOS entry", - .offset = MTDPART_OFS_NXTBLK, - .size = MTDPART_SIZ_FULL, -#ifdef DNPC_BIOS_BLOCKS_WRITEPROTECTED - .mask_flags = MTD_WRITEABLE, -#endif - }, -}; - -#define NUM_PARTITIONS ARRAY_SIZE(partition_info) - -static struct mtd_info *mymtd; -static struct mtd_info *lowlvl_parts[NUM_PARTITIONS]; -static struct mtd_info *merged_mtd; - -/* -** "Highlevel" partition info: -** -** Using the MTD concat layer, we can re-arrange partitions to our -** liking: we construct a virtual MTD device by concatenating the -** partitions, specifying the sequence such that the boot block -** is immediately followed by the filesystem block (i.e. the stupid -** system BIOS block is mapped to a different place). When re-partitioning -** this concatenated MTD device, we can set the boot block size to -** an arbitrary (though erase block aligned) value i.e. not one that -** is dictated by the flash's physical layout. We can thus set the -** boot block to be e.g. 64 KB (which is fully sufficient if we want -** to boot an etherboot image) or to -say- 1.5 MB if we want to boot -** a large kernel image. In all cases, the remainder of the flash -** is available as file system space. -*/ - -static struct mtd_partition higlvl_partition_info[]= -{ - { - .name = "ADNP boot block", - .offset = 0, - .size = CONFIG_MTD_DILNETPC_BOOTSIZE, - }, - { - .name = "ADNP file system space", - .offset = MTDPART_OFS_NXTBLK, - .size = ADNP_WINDOW_SIZE-CONFIG_MTD_DILNETPC_BOOTSIZE-0x20000, - }, - { - .name = "ADNP system BIOS + BIOS Entry", - .offset = MTDPART_OFS_NXTBLK, - .size = MTDPART_SIZ_FULL, -#ifdef DNPC_BIOS_BLOCKS_WRITEPROTECTED - .mask_flags = MTD_WRITEABLE, -#endif - }, -}; - -#define NUM_HIGHLVL_PARTITIONS ARRAY_SIZE(higlvl_partition_info) - - -static int dnp_adnp_probe(void) -{ - char *biosid, rc = -1; - - biosid = (char*)ioremap(BIOSID_BASE, 16); - if(biosid) - { - if(!strcmp(biosid, ID_DNPC)) - rc = 1; /* this is a DNPC */ - else if(!strcmp(biosid, ID_ADNP)) - rc = 0; /* this is a ADNPC */ - } - iounmap((void *)biosid); - return(rc); -} - - -static int __init init_dnpc(void) -{ - int is_dnp; - - /* - ** determine hardware (DNP/ADNP/invalid) - */ - if((is_dnp = dnp_adnp_probe()) < 0) - return -ENXIO; - - /* - ** Things are set up for ADNP by default - ** -> modify all that needs to be different for DNP - */ - if(is_dnp) - { /* - ** Adjust window size, select correct set_vpp function. - ** The partitioning scheme is identical on both DNP - ** and ADNP except for the size of the third partition. - */ - int i; - dnpc_map.size = DNP_WINDOW_SIZE; - dnpc_map.set_vpp = dnp_set_vpp; - partition_info[2].size = 0xf0000; - - /* - ** increment all string pointers so the leading 'A' gets skipped, - ** thus turning all occurrences of "ADNP ..." into "DNP ..." - */ - ++dnpc_map.name; - for(i = 0; i < NUM_PARTITIONS; i++) - ++partition_info[i].name; - higlvl_partition_info[1].size = DNP_WINDOW_SIZE - - CONFIG_MTD_DILNETPC_BOOTSIZE - 0x20000; - for(i = 0; i < NUM_HIGHLVL_PARTITIONS; i++) - ++higlvl_partition_info[i].name; - } - - printk(KERN_NOTICE "DIL/Net %s flash: 0x%lx at 0x%llx\n", - is_dnp ? "DNPC" : "ADNP", dnpc_map.size, (unsigned long long)dnpc_map.phys); - - dnpc_map.virt = ioremap_nocache(dnpc_map.phys, dnpc_map.size); - - dnpc_map_flash(dnpc_map.phys, dnpc_map.size); - - if (!dnpc_map.virt) { - printk("Failed to ioremap_nocache\n"); - return -EIO; - } - simple_map_init(&dnpc_map); - - printk("FLASH virtual address: 0x%p\n", dnpc_map.virt); - - mymtd = do_map_probe("jedec_probe", &dnpc_map); - - if (!mymtd) - mymtd = do_map_probe("cfi_probe", &dnpc_map); - - /* - ** If flash probes fail, try to make flashes accessible - ** at least as ROM. Ajust erasesize in this case since - ** the default one (128M) will break our partitioning - */ - if (!mymtd) - if((mymtd = do_map_probe("map_rom", &dnpc_map))) - mymtd->erasesize = 0x10000; - - if (!mymtd) { - iounmap(dnpc_map.virt); - return -ENXIO; - } - - mymtd->owner = THIS_MODULE; - - /* - ** Supply pointers to lowlvl_parts[] array to add_mtd_partitions() - ** -> add_mtd_partitions() will _not_ register MTD devices for - ** the partitions, but will instead store pointers to the MTD - ** objects it creates into our lowlvl_parts[] array. - ** NOTE: we arrange the pointers such that the sequence of the - ** partitions gets re-arranged: partition #2 follows - ** partition #0. - */ - partition_info[0].mtdp = &lowlvl_parts[0]; - partition_info[1].mtdp = &lowlvl_parts[2]; - partition_info[2].mtdp = &lowlvl_parts[1]; - partition_info[3].mtdp = &lowlvl_parts[3]; - - add_mtd_partitions(mymtd, partition_info, NUM_PARTITIONS); - - /* - ** now create a virtual MTD device by concatenating the for partitions - ** (in the sequence given by the lowlvl_parts[] array. - */ - merged_mtd = mtd_concat_create(lowlvl_parts, NUM_PARTITIONS, "(A)DNP Flash Concatenated"); - if(merged_mtd) - { /* - ** now partition the new device the way we want it. This time, - ** we do not supply mtd pointers in higlvl_partition_info, so - ** add_mtd_partitions() will register the devices. - */ - add_mtd_partitions(merged_mtd, higlvl_partition_info, NUM_HIGHLVL_PARTITIONS); - } - - return 0; -} - -static void __exit cleanup_dnpc(void) -{ - if(merged_mtd) { - del_mtd_partitions(merged_mtd); - mtd_concat_destroy(merged_mtd); - } - - if (mymtd) { - del_mtd_partitions(mymtd); - map_destroy(mymtd); - } - if (dnpc_map.virt) { - iounmap(dnpc_map.virt); - dnpc_unmap_flash(); - dnpc_map.virt = NULL; - } -} - -module_init(init_dnpc); -module_exit(cleanup_dnpc); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Sysgo Real-Time Solutions GmbH"); -MODULE_DESCRIPTION("MTD map driver for SSV DIL/NetPC DNP & ADNP"); diff --git a/drivers/mtd/maps/dmv182.c b/drivers/mtd/maps/dmv182.c deleted file mode 100644 index d171674eb2e..00000000000 --- a/drivers/mtd/maps/dmv182.c +++ /dev/null @@ -1,146 +0,0 @@ - -/* - * drivers/mtd/maps/dmv182.c - * - * Flash map driver for the Dy4 SVME182 board - * - * Copyright 2003-2004, TimeSys Corporation - * - * Based on the SVME181 flash map, by Tom Nelson, Dot4, Inc. for TimeSys Corp. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License as published by the - * Free Software Foundation; either version 2 of the License, or (at your - * option) any later version. - */ - -#include <linux/module.h> -#include <linux/init.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <asm/io.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> -#include <linux/errno.h> - -/* - * This driver currently handles only the 16MiB user flash bank 1 on the - * board. It does not provide access to bank 0 (contains the Dy4 FFW), bank 2 - * (VxWorks boot), or the optional 48MiB expansion flash. - * - * scott.wood@timesys.com: On the newer boards with 128MiB flash, it - * now supports the first 96MiB (the boot flash bank containing FFW - * is excluded). The VxWorks loader is in partition 1. - */ - -#define FLASH_BASE_ADDR 0xf0000000 -#define FLASH_BANK_SIZE (128*1024*1024) - -MODULE_AUTHOR("Scott Wood, TimeSys Corporation <scott.wood@timesys.com>"); -MODULE_DESCRIPTION("User-programmable flash device on the Dy4 SVME182 board"); -MODULE_LICENSE("GPL"); - -static struct map_info svme182_map = { - .name = "Dy4 SVME182", - .bankwidth = 32, - .size = 128 * 1024 * 1024 -}; - -#define BOOTIMAGE_PART_SIZE ((6*1024*1024)-RESERVED_PART_SIZE) - -// Allow 6MiB for the kernel -#define NEW_BOOTIMAGE_PART_SIZE (6 * 1024 * 1024) -// Allow 1MiB for the bootloader -#define NEW_BOOTLOADER_PART_SIZE (1024 * 1024) -// Use the remaining 9MiB at the end of flash for the RFS -#define NEW_RFS_PART_SIZE (0x01000000 - NEW_BOOTLOADER_PART_SIZE - \ - NEW_BOOTIMAGE_PART_SIZE) - -static struct mtd_partition svme182_partitions[] = { - // The Lower PABS is only 128KiB, but the partition code doesn't - // like partitions that don't end on the largest erase block - // size of the device, even if all of the erase blocks in the - // partition are small ones. The hardware should prevent - // writes to the actual PABS areas. - { - name: "Lower PABS and CPU 0 bootloader or kernel", - size: 6*1024*1024, - offset: 0, - }, - { - name: "Root Filesystem", - size: 10*1024*1024, - offset: MTDPART_OFS_NXTBLK - }, - { - name: "CPU1 Bootloader", - size: 1024*1024, - offset: MTDPART_OFS_NXTBLK, - }, - { - name: "Extra", - size: 110*1024*1024, - offset: MTDPART_OFS_NXTBLK - }, - { - name: "Foundation Firmware and Upper PABS", - size: 1024*1024, - offset: MTDPART_OFS_NXTBLK, - mask_flags: MTD_WRITEABLE // read-only - } -}; - -static struct mtd_info *this_mtd; - -static int __init init_svme182(void) -{ - struct mtd_partition *partitions; - int num_parts = ARRAY_SIZE(svme182_partitions); - - partitions = svme182_partitions; - - svme182_map.virt = ioremap(FLASH_BASE_ADDR, svme182_map.size); - - if (svme182_map.virt == 0) { - printk("Failed to ioremap FLASH memory area.\n"); - return -EIO; - } - - simple_map_init(&svme182_map); - - this_mtd = do_map_probe("cfi_probe", &svme182_map); - if (!this_mtd) - { - iounmap((void *)svme182_map.virt); - return -ENXIO; - } - - printk(KERN_NOTICE "SVME182 flash device: %dMiB at 0x%08x\n", - this_mtd->size >> 20, FLASH_BASE_ADDR); - - this_mtd->owner = THIS_MODULE; - add_mtd_partitions(this_mtd, partitions, num_parts); - - return 0; -} - -static void __exit cleanup_svme182(void) -{ - if (this_mtd) - { - del_mtd_partitions(this_mtd); - map_destroy(this_mtd); - } - - if (svme182_map.virt) - { - iounmap((void *)svme182_map.virt); - svme182_map.virt = 0; - } - - return; -} - -module_init(init_svme182); -module_exit(cleanup_svme182); diff --git a/drivers/mtd/maps/edb7312.c b/drivers/mtd/maps/edb7312.c deleted file mode 100644 index be9e90b4458..00000000000 --- a/drivers/mtd/maps/edb7312.c +++ /dev/null @@ -1,144 +0,0 @@ -/* - * Handle mapping of the NOR flash on Cogent EDB7312 boards - * - * Copyright 2002 SYSGO Real-Time Solutions GmbH - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <asm/io.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> - -#ifdef CONFIG_MTD_PARTITIONS -#include <linux/mtd/partitions.h> -#endif - -#define WINDOW_ADDR 0x00000000 /* physical properties of flash */ -#define WINDOW_SIZE 0x01000000 -#define BUSWIDTH 2 -#define FLASH_BLOCKSIZE_MAIN 0x20000 -#define FLASH_NUMBLOCKS_MAIN 128 -/* can be "cfi_probe", "jedec_probe", "map_rom", NULL }; */ -#define PROBETYPES { "cfi_probe", NULL } - -#define MSG_PREFIX "EDB7312-NOR:" /* prefix for our printk()'s */ -#define MTDID "edb7312-nor" /* for mtdparts= partitioning */ - -static struct mtd_info *mymtd; - -struct map_info edb7312nor_map = { - .name = "NOR flash on EDB7312", - .size = WINDOW_SIZE, - .bankwidth = BUSWIDTH, - .phys = WINDOW_ADDR, -}; - -#ifdef CONFIG_MTD_PARTITIONS - -/* - * MTD partitioning stuff - */ -static struct mtd_partition static_partitions[3] = -{ - { - .name = "ARMboot", - .size = 0x40000, - .offset = 0 - }, - { - .name = "Kernel", - .size = 0x200000, - .offset = 0x40000 - }, - { - .name = "RootFS", - .size = 0xDC0000, - .offset = 0x240000 - }, -}; - -static const char *probes[] = { "RedBoot", "cmdlinepart", NULL }; - -#endif - -static int mtd_parts_nb = 0; -static struct mtd_partition *mtd_parts = 0; - -static int __init init_edb7312nor(void) -{ - static const char *rom_probe_types[] = PROBETYPES; - const char **type; - const char *part_type = 0; - - printk(KERN_NOTICE MSG_PREFIX "0x%08x at 0x%08x\n", - WINDOW_SIZE, WINDOW_ADDR); - edb7312nor_map.virt = ioremap(WINDOW_ADDR, WINDOW_SIZE); - - if (!edb7312nor_map.virt) { - printk(MSG_PREFIX "failed to ioremap\n"); - return -EIO; - } - - simple_map_init(&edb7312nor_map); - - mymtd = 0; - type = rom_probe_types; - for(; !mymtd && *type; type++) { - mymtd = do_map_probe(*type, &edb7312nor_map); - } - if (mymtd) { - mymtd->owner = THIS_MODULE; - -#ifdef CONFIG_MTD_PARTITIONS - mtd_parts_nb = parse_mtd_partitions(mymtd, probes, &mtd_parts, MTDID); - if (mtd_parts_nb > 0) - part_type = "detected"; - - if (mtd_parts_nb == 0) - { - mtd_parts = static_partitions; - mtd_parts_nb = ARRAY_SIZE(static_partitions); - part_type = "static"; - } -#endif - add_mtd_device(mymtd); - if (mtd_parts_nb == 0) - printk(KERN_NOTICE MSG_PREFIX "no partition info available\n"); - else - { - printk(KERN_NOTICE MSG_PREFIX - "using %s partition definition\n", part_type); - add_mtd_partitions(mymtd, mtd_parts, mtd_parts_nb); - } - return 0; - } - - iounmap((void *)edb7312nor_map.virt); - return -ENXIO; -} - -static void __exit cleanup_edb7312nor(void) -{ - if (mymtd) { - del_mtd_device(mymtd); - map_destroy(mymtd); - } - if (edb7312nor_map.virt) { - iounmap((void *)edb7312nor_map.virt); - edb7312nor_map.virt = 0; - } -} - -module_init(init_edb7312nor); -module_exit(cleanup_edb7312nor); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Marius Groeger <mag@sysgo.de>"); -MODULE_DESCRIPTION("Generic configurable MTD map driver"); diff --git a/drivers/mtd/maps/esb2rom.c b/drivers/mtd/maps/esb2rom.c index d12c93dc1aa..f784cf0caa1 100644 --- a/drivers/mtd/maps/esb2rom.c +++ b/drivers/mtd/maps/esb2rom.c @@ -128,7 +128,7 @@ static void esb2rom_cleanup(struct esb2rom_window *window) list_for_each_entry_safe(map, scratch, &window->maps, list) { if (map->rsrc.parent) release_resource(&map->rsrc); - del_mtd_device(map->mtd); + mtd_device_unregister(map->mtd); map_destroy(map->mtd); list_del(&map->list); kfree(map); @@ -144,8 +144,8 @@ static void esb2rom_cleanup(struct esb2rom_window *window) pci_dev_put(window->pdev); } -static int __devinit esb2rom_init_one(struct pci_dev *pdev, - const struct pci_device_id *ent) +static int esb2rom_init_one(struct pci_dev *pdev, + const struct pci_device_id *ent) { static char *rom_probe_types[] = { "cfi_probe", "jedec_probe", NULL }; struct esb2rom_window *window = &esb2rom_window; @@ -242,12 +242,9 @@ static int __devinit esb2rom_init_one(struct pci_dev *pdev, window->rsrc.flags = IORESOURCE_MEM | IORESOURCE_BUSY; if (request_resource(&iomem_resource, &window->rsrc)) { window->rsrc.parent = NULL; - printk(KERN_DEBUG MOD_NAME - ": %s(): Unable to register resource" - " 0x%.08llx-0x%.08llx - kernel bug?\n", - __func__, - (unsigned long long)window->rsrc.start, - (unsigned long long)window->rsrc.end); + printk(KERN_DEBUG MOD_NAME ": " + "%s(): Unable to register resource %pR - kernel bug?\n", + __func__, &window->rsrc); } /* Map the firmware hub into my address space. */ @@ -355,7 +352,7 @@ static int __devinit esb2rom_init_one(struct pci_dev *pdev, /* Now that the mtd devices is complete claim and export it */ map->mtd->owner = THIS_MODULE; - if (add_mtd_device(map->mtd)) { + if (mtd_device_register(map->mtd, NULL, 0)) { map_destroy(map->mtd); map->mtd = NULL; goto out; @@ -381,13 +378,13 @@ static int __devinit esb2rom_init_one(struct pci_dev *pdev, return 0; } -static void __devexit esb2rom_remove_one (struct pci_dev *pdev) +static void esb2rom_remove_one(struct pci_dev *pdev) { struct esb2rom_window *window = &esb2rom_window; esb2rom_cleanup(window); } -static struct pci_device_id esb2rom_pci_tbl[] __devinitdata = { +static struct pci_device_id esb2rom_pci_tbl[] = { { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801BA_0, PCI_ANY_ID, PCI_ANY_ID, }, { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801CA_0, diff --git a/drivers/mtd/maps/fortunet.c b/drivers/mtd/maps/fortunet.c deleted file mode 100644 index 1e43124d498..00000000000 --- a/drivers/mtd/maps/fortunet.c +++ /dev/null @@ -1,276 +0,0 @@ -/* fortunet.c memory map - * - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <linux/string.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> - -#include <asm/io.h> - -#define MAX_NUM_REGIONS 4 -#define MAX_NUM_PARTITIONS 8 - -#define DEF_WINDOW_ADDR_PHY 0x00000000 -#define DEF_WINDOW_SIZE 0x00800000 // 8 Mega Bytes - -#define MTD_FORTUNET_PK "MTD FortuNet: " - -#define MAX_NAME_SIZE 128 - -struct map_region -{ - int window_addr_physical; - int altbankwidth; - struct map_info map_info; - struct mtd_info *mymtd; - struct mtd_partition parts[MAX_NUM_PARTITIONS]; - char map_name[MAX_NAME_SIZE]; - char parts_name[MAX_NUM_PARTITIONS][MAX_NAME_SIZE]; -}; - -static struct map_region map_regions[MAX_NUM_REGIONS]; -static int map_regions_set[MAX_NUM_REGIONS] = {0,0,0,0}; -static int map_regions_parts[MAX_NUM_REGIONS] = {0,0,0,0}; - - - -struct map_info default_map = { - .size = DEF_WINDOW_SIZE, - .bankwidth = 4, -}; - -static char * __init get_string_option(char *dest,int dest_size,char *sor) -{ - if(!dest_size) - return sor; - dest_size--; - while(*sor) - { - if(*sor==',') - { - sor++; - break; - } - else if(*sor=='\"') - { - sor++; - while(*sor) - { - if(*sor=='\"') - { - sor++; - break; - } - *dest = *sor; - dest++; - sor++; - dest_size--; - if(!dest_size) - { - *dest = 0; - return sor; - } - } - } - else - { - *dest = *sor; - dest++; - sor++; - dest_size--; - if(!dest_size) - { - *dest = 0; - return sor; - } - } - } - *dest = 0; - return sor; -} - -static int __init MTD_New_Region(char *line) -{ - char string[MAX_NAME_SIZE]; - int params[6]; - get_options (get_string_option(string,sizeof(string),line),6,params); - if(params[0]<1) - { - printk(MTD_FORTUNET_PK "Bad parameters for MTD Region " - " name,region-number[,base,size,bankwidth,altbankwidth]\n"); - return 1; - } - if((params[1]<0)||(params[1]>=MAX_NUM_REGIONS)) - { - printk(MTD_FORTUNET_PK "Bad region index of %d only have 0..%u regions\n", - params[1],MAX_NUM_REGIONS-1); - return 1; - } - memset(&map_regions[params[1]],0,sizeof(map_regions[params[1]])); - memcpy(&map_regions[params[1]].map_info, - &default_map,sizeof(map_regions[params[1]].map_info)); - map_regions_set[params[1]] = 1; - map_regions[params[1]].window_addr_physical = DEF_WINDOW_ADDR_PHY; - map_regions[params[1]].altbankwidth = 2; - map_regions[params[1]].mymtd = NULL; - map_regions[params[1]].map_info.name = map_regions[params[1]].map_name; - strcpy(map_regions[params[1]].map_info.name,string); - if(params[0]>1) - { - map_regions[params[1]].window_addr_physical = params[2]; - } - if(params[0]>2) - { - map_regions[params[1]].map_info.size = params[3]; - } - if(params[0]>3) - { - map_regions[params[1]].map_info.bankwidth = params[4]; - } - if(params[0]>4) - { - map_regions[params[1]].altbankwidth = params[5]; - } - return 1; -} - -static int __init MTD_New_Partition(char *line) -{ - char string[MAX_NAME_SIZE]; - int params[4]; - get_options (get_string_option(string,sizeof(string),line),4,params); - if(params[0]<3) - { - printk(MTD_FORTUNET_PK "Bad parameters for MTD Partition " - " name,region-number,size,offset\n"); - return 1; - } - if((params[1]<0)||(params[1]>=MAX_NUM_REGIONS)) - { - printk(MTD_FORTUNET_PK "Bad region index of %d only have 0..%u regions\n", - params[1],MAX_NUM_REGIONS-1); - return 1; - } - if(map_regions_parts[params[1]]>=MAX_NUM_PARTITIONS) - { - printk(MTD_FORTUNET_PK "Out of space for partition in this region\n"); - return 1; - } - map_regions[params[1]].parts[map_regions_parts[params[1]]].name = - map_regions[params[1]]. parts_name[map_regions_parts[params[1]]]; - strcpy(map_regions[params[1]].parts[map_regions_parts[params[1]]].name,string); - map_regions[params[1]].parts[map_regions_parts[params[1]]].size = - params[2]; - map_regions[params[1]].parts[map_regions_parts[params[1]]].offset = - params[3]; - map_regions[params[1]].parts[map_regions_parts[params[1]]].mask_flags = 0; - map_regions_parts[params[1]]++; - return 1; -} - -__setup("MTD_Region=", MTD_New_Region); -__setup("MTD_Partition=", MTD_New_Partition); - -/* Backwards-spelling-compatibility */ -__setup("MTD_Partion=", MTD_New_Partition); - -static int __init init_fortunet(void) -{ - int ix,iy; - for(iy=ix=0;ix<MAX_NUM_REGIONS;ix++) - { - if(map_regions_parts[ix]&&(!map_regions_set[ix])) - { - printk(MTD_FORTUNET_PK "Region %d is not setup (Setting to default)\n", - ix); - memset(&map_regions[ix],0,sizeof(map_regions[ix])); - memcpy(&map_regions[ix].map_info,&default_map, - sizeof(map_regions[ix].map_info)); - map_regions_set[ix] = 1; - map_regions[ix].window_addr_physical = DEF_WINDOW_ADDR_PHY; - map_regions[ix].altbankwidth = 2; - map_regions[ix].mymtd = NULL; - map_regions[ix].map_info.name = map_regions[ix].map_name; - strcpy(map_regions[ix].map_info.name,"FORTUNET"); - } - if(map_regions_set[ix]) - { - iy++; - printk(KERN_NOTICE MTD_FORTUNET_PK "%s flash device at physically " - " address %x size %x\n", - map_regions[ix].map_info.name, - map_regions[ix].window_addr_physical, - map_regions[ix].map_info.size); - - map_regions[ix].map_info.phys = map_regions[ix].window_addr_physical, - - map_regions[ix].map_info.virt = - ioremap_nocache( - map_regions[ix].window_addr_physical, - map_regions[ix].map_info.size); - if(!map_regions[ix].map_info.virt) - { - int j = 0; - printk(MTD_FORTUNET_PK "%s flash failed to ioremap!\n", - map_regions[ix].map_info.name); - for (j = 0 ; j < ix; j++) - iounmap(map_regions[j].map_info.virt); - return -ENXIO; - } - simple_map_init(&map_regions[ix].map_info); - - printk(KERN_NOTICE MTD_FORTUNET_PK "%s flash is virtually at: %x\n", - map_regions[ix].map_info.name, - map_regions[ix].map_info.virt); - map_regions[ix].mymtd = do_map_probe("cfi_probe", - &map_regions[ix].map_info); - if((!map_regions[ix].mymtd)&&( - map_regions[ix].altbankwidth!=map_regions[ix].map_info.bankwidth)) - { - printk(KERN_NOTICE MTD_FORTUNET_PK "Trying alternate bankwidth " - "for %s flash.\n", - map_regions[ix].map_info.name); - map_regions[ix].map_info.bankwidth = - map_regions[ix].altbankwidth; - map_regions[ix].mymtd = do_map_probe("cfi_probe", - &map_regions[ix].map_info); - } - map_regions[ix].mymtd->owner = THIS_MODULE; - add_mtd_partitions(map_regions[ix].mymtd, - map_regions[ix].parts,map_regions_parts[ix]); - } - } - if(iy) - return 0; - return -ENXIO; -} - -static void __exit cleanup_fortunet(void) -{ - int ix; - for(ix=0;ix<MAX_NUM_REGIONS;ix++) - { - if(map_regions_set[ix]) - { - if( map_regions[ix].mymtd ) - { - del_mtd_partitions( map_regions[ix].mymtd ); - map_destroy( map_regions[ix].mymtd ); - } - iounmap((void *)map_regions[ix].map_info.virt); - } - } -} - -module_init(init_fortunet); -module_exit(cleanup_fortunet); - -MODULE_AUTHOR("FortuNet, Inc."); -MODULE_DESCRIPTION("MTD map driver for FortuNet boards"); diff --git a/drivers/mtd/maps/gpio-addr-flash.c b/drivers/mtd/maps/gpio-addr-flash.c index 32e89d773b4..a4c477b9fdd 100644 --- a/drivers/mtd/maps/gpio-addr-flash.c +++ b/drivers/mtd/maps/gpio-addr-flash.c @@ -14,7 +14,6 @@ */ #include <linux/gpio.h> -#include <linux/init.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> @@ -26,7 +25,8 @@ #include <linux/slab.h> #include <linux/types.h> -#define pr_devinit(fmt, args...) ({ static const __devinitconst char __fmt[] = fmt; printk(__fmt, ## args); }) +#define pr_devinit(fmt, args...) \ + ({ static const char __fmt[] = fmt; printk(__fmt, ## args); }) #define DRIVER_NAME "gpio-addr-flash" #define PFX DRIVER_NAME ": " @@ -142,7 +142,8 @@ static void gf_write(struct map_info *map, map_word d1, unsigned long ofs) * * See gf_copy_from() caveat. */ -static void gf_copy_to(struct map_info *map, unsigned long to, const void *from, ssize_t len) +static void gf_copy_to(struct map_info *map, unsigned long to, + const void *from, ssize_t len) { struct async_state *state = gf_map_info_to_state(map); @@ -155,9 +156,8 @@ static void gf_copy_to(struct map_info *map, unsigned long to, const void *from, memcpy_toio(map->virt + (to % state->win_size), from, len); } -#ifdef CONFIG_MTD_PARTITIONS -static const char *part_probe_types[] = { "cmdlinepart", "RedBoot", NULL }; -#endif +static const char * const part_probe_types[] = { + "cmdlinepart", "RedBoot", NULL }; /** * gpio_flash_probe() - setup a mapping for a GPIO assisted flash @@ -187,16 +187,15 @@ static const char *part_probe_types[] = { "cmdlinepart", "RedBoot", NULL }; * ... * }; */ -static int __devinit gpio_flash_probe(struct platform_device *pdev) +static int gpio_flash_probe(struct platform_device *pdev) { - int ret; size_t i, arr_size; struct physmap_flash_data *pdata; struct resource *memory; struct resource *gpios; struct async_state *state; - pdata = pdev->dev.platform_data; + pdata = dev_get_platdata(&pdev->dev); memory = platform_get_resource(pdev, IORESOURCE_MEM, 0); gpios = platform_get_resource(pdev, IORESOURCE_IRQ, 0); @@ -208,10 +207,14 @@ static int __devinit gpio_flash_probe(struct platform_device *pdev) if (!state) return -ENOMEM; + /* + * We cast start/end to known types in the boards file, so cast + * away their pointer types here to the known types (gpios->xxx). + */ state->gpio_count = gpios->end; - state->gpio_addrs = (void *)gpios->start; + state->gpio_addrs = (void *)(unsigned long)gpios->start; state->gpio_values = (void *)(state + 1); - state->win_size = memory->end - memory->start + 1; + state->win_size = resource_size(memory); memset(state->gpio_values, 0xff, arr_size); state->map.name = DRIVER_NAME; @@ -221,7 +224,7 @@ static int __devinit gpio_flash_probe(struct platform_device *pdev) state->map.copy_to = gf_copy_to; state->map.bankwidth = pdata->width; state->map.size = state->win_size * (1 << state->gpio_count); - state->map.virt = (void __iomem *)memory->start; + state->map.virt = ioremap_nocache(memory->start, state->map.size); state->map.phys = NO_XIP; state->map.map_priv_1 = (unsigned long)state; @@ -250,37 +253,21 @@ static int __devinit gpio_flash_probe(struct platform_device *pdev) return -ENXIO; } -#ifdef CONFIG_MTD_PARTITIONS - ret = parse_mtd_partitions(state->mtd, part_probe_types, &pdata->parts, 0); - if (ret > 0) { - pr_devinit(KERN_NOTICE PFX "Using commandline partition definition\n"); - add_mtd_partitions(state->mtd, pdata->parts, ret); - kfree(pdata->parts); - - } else if (pdata->nr_parts) { - pr_devinit(KERN_NOTICE PFX "Using board partition definition\n"); - add_mtd_partitions(state->mtd, pdata->parts, pdata->nr_parts); - - } else -#endif - { - pr_devinit(KERN_NOTICE PFX "no partition info available, registering whole flash at once\n"); - add_mtd_device(state->mtd); - } + + mtd_device_parse_register(state->mtd, part_probe_types, NULL, + pdata->parts, pdata->nr_parts); return 0; } -static int __devexit gpio_flash_remove(struct platform_device *pdev) +static int gpio_flash_remove(struct platform_device *pdev) { struct async_state *state = platform_get_drvdata(pdev); size_t i = 0; do { gpio_free(state->gpio_addrs[i]); } while (++i < state->gpio_count); -#ifdef CONFIG_MTD_PARTITIONS - del_mtd_partitions(state->mtd); -#endif + mtd_device_unregister(state->mtd); map_destroy(state->mtd); kfree(state); return 0; @@ -288,23 +275,13 @@ static int __devexit gpio_flash_remove(struct platform_device *pdev) static struct platform_driver gpio_flash_driver = { .probe = gpio_flash_probe, - .remove = __devexit_p(gpio_flash_remove), + .remove = gpio_flash_remove, .driver = { .name = DRIVER_NAME, }, }; -static int __init gpio_flash_init(void) -{ - return platform_driver_register(&gpio_flash_driver); -} -module_init(gpio_flash_init); - -static void __exit gpio_flash_exit(void) -{ - platform_driver_unregister(&gpio_flash_driver); -} -module_exit(gpio_flash_exit); +module_platform_driver(gpio_flash_driver); MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>"); MODULE_DESCRIPTION("MTD map driver for flashes addressed physically and with gpios"); diff --git a/drivers/mtd/maps/h720x-flash.c b/drivers/mtd/maps/h720x-flash.c deleted file mode 100644 index 72c724fa8c2..00000000000 --- a/drivers/mtd/maps/h720x-flash.c +++ /dev/null @@ -1,141 +0,0 @@ -/* - * Flash memory access on Hynix GMS30C7201/HMS30C7202 based - * evaluation boards - * - * (C) 2002 Jungjun Kim <jungjun.kim@hynix.com> - * 2003 Thomas Gleixner <tglx@linutronix.de> - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <linux/errno.h> -#include <linux/slab.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> -#include <mach/hardware.h> -#include <asm/io.h> - -static struct mtd_info *mymtd; - -static struct map_info h720x_map = { - .name = "H720X", - .bankwidth = 4, - .size = H720X_FLASH_SIZE, - .phys = H720X_FLASH_PHYS, -}; - -static struct mtd_partition h720x_partitions[] = { - { - .name = "ArMon", - .size = 0x00080000, - .offset = 0, - .mask_flags = MTD_WRITEABLE - },{ - .name = "Env", - .size = 0x00040000, - .offset = 0x00080000, - .mask_flags = MTD_WRITEABLE - },{ - .name = "Kernel", - .size = 0x00180000, - .offset = 0x000c0000, - .mask_flags = MTD_WRITEABLE - },{ - .name = "Ramdisk", - .size = 0x00400000, - .offset = 0x00240000, - .mask_flags = MTD_WRITEABLE - },{ - .name = "jffs2", - .size = MTDPART_SIZ_FULL, - .offset = MTDPART_OFS_APPEND - } -}; - -#define NUM_PARTITIONS ARRAY_SIZE(h720x_partitions) - -static int nr_mtd_parts; -static struct mtd_partition *mtd_parts; -static const char *probes[] = { "cmdlinepart", NULL }; - -/* - * Initialize FLASH support - */ -static int __init h720x_mtd_init(void) -{ - - char *part_type = NULL; - - h720x_map.virt = ioremap(h720x_map.phys, h720x_map.size); - - if (!h720x_map.virt) { - printk(KERN_ERR "H720x-MTD: ioremap failed\n"); - return -EIO; - } - - simple_map_init(&h720x_map); - - // Probe for flash bankwidth 4 - printk (KERN_INFO "H720x-MTD probing 32bit FLASH\n"); - mymtd = do_map_probe("cfi_probe", &h720x_map); - if (!mymtd) { - printk (KERN_INFO "H720x-MTD probing 16bit FLASH\n"); - // Probe for bankwidth 2 - h720x_map.bankwidth = 2; - mymtd = do_map_probe("cfi_probe", &h720x_map); - } - - if (mymtd) { - mymtd->owner = THIS_MODULE; - -#ifdef CONFIG_MTD_PARTITIONS - nr_mtd_parts = parse_mtd_partitions(mymtd, probes, &mtd_parts, 0); - if (nr_mtd_parts > 0) - part_type = "command line"; -#endif - if (nr_mtd_parts <= 0) { - mtd_parts = h720x_partitions; - nr_mtd_parts = NUM_PARTITIONS; - part_type = "builtin"; - } - printk(KERN_INFO "Using %s partition table\n", part_type); - add_mtd_partitions(mymtd, mtd_parts, nr_mtd_parts); - return 0; - } - - iounmap((void *)h720x_map.virt); - return -ENXIO; -} - -/* - * Cleanup - */ -static void __exit h720x_mtd_cleanup(void) -{ - - if (mymtd) { - del_mtd_partitions(mymtd); - map_destroy(mymtd); - } - - /* Free partition info, if commandline partition was used */ - if (mtd_parts && (mtd_parts != h720x_partitions)) - kfree (mtd_parts); - - if (h720x_map.virt) { - iounmap((void *)h720x_map.virt); - h720x_map.virt = 0; - } -} - - -module_init(h720x_mtd_init); -module_exit(h720x_mtd_cleanup); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); -MODULE_DESCRIPTION("MTD map driver for Hynix evaluation boards"); diff --git a/drivers/mtd/maps/ichxrom.c b/drivers/mtd/maps/ichxrom.c index f102bf243a7..c7478e18f48 100644 --- a/drivers/mtd/maps/ichxrom.c +++ b/drivers/mtd/maps/ichxrom.c @@ -67,7 +67,7 @@ static void ichxrom_cleanup(struct ichxrom_window *window) list_for_each_entry_safe(map, scratch, &window->maps, list) { if (map->rsrc.parent) release_resource(&map->rsrc); - del_mtd_device(map->mtd); + mtd_device_unregister(map->mtd); map_destroy(map->mtd); list_del(&map->list); kfree(map); @@ -84,8 +84,8 @@ static void ichxrom_cleanup(struct ichxrom_window *window) } -static int __devinit ichxrom_init_one (struct pci_dev *pdev, - const struct pci_device_id *ent) +static int ichxrom_init_one(struct pci_dev *pdev, + const struct pci_device_id *ent) { static char *rom_probe_types[] = { "cfi_probe", "jedec_probe", NULL }; struct ichxrom_window *window = &ichxrom_window; @@ -175,12 +175,9 @@ static int __devinit ichxrom_init_one (struct pci_dev *pdev, window->rsrc.flags = IORESOURCE_MEM | IORESOURCE_BUSY; if (request_resource(&iomem_resource, &window->rsrc)) { window->rsrc.parent = NULL; - printk(KERN_DEBUG MOD_NAME - ": %s(): Unable to register resource" - " 0x%.16llx-0x%.16llx - kernel bug?\n", - __func__, - (unsigned long long)window->rsrc.start, - (unsigned long long)window->rsrc.end); + printk(KERN_DEBUG MOD_NAME ": " + "%s(): Unable to register resource %pR - kernel bug?\n", + __func__, &window->rsrc); } /* Map the firmware hub into my address space. */ @@ -290,7 +287,7 @@ static int __devinit ichxrom_init_one (struct pci_dev *pdev, /* Now that the mtd devices is complete claim and export it */ map->mtd->owner = THIS_MODULE; - if (add_mtd_device(map->mtd)) { + if (mtd_device_register(map->mtd, NULL, 0)) { map_destroy(map->mtd); map->mtd = NULL; goto out; @@ -318,13 +315,13 @@ static int __devinit ichxrom_init_one (struct pci_dev *pdev, } -static void __devexit ichxrom_remove_one (struct pci_dev *pdev) +static void ichxrom_remove_one(struct pci_dev *pdev) { struct ichxrom_window *window = &ichxrom_window; ichxrom_cleanup(window); } -static struct pci_device_id ichxrom_pci_tbl[] __devinitdata = { +static struct pci_device_id ichxrom_pci_tbl[] = { { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801BA_0, PCI_ANY_ID, PCI_ANY_ID, }, { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801CA_0, diff --git a/drivers/mtd/maps/impa7.c b/drivers/mtd/maps/impa7.c index 998a27da97f..15bbda03be6 100644 --- a/drivers/mtd/maps/impa7.c +++ b/drivers/mtd/maps/impa7.c @@ -15,10 +15,7 @@ #include <asm/io.h> #include <linux/mtd/mtd.h> #include <linux/mtd/map.h> - -#ifdef CONFIG_MTD_PARTITIONS #include <linux/mtd/partitions.h> -#endif #define WINDOW_ADDR0 0x00000000 /* physical properties of flash */ #define WINDOW_SIZE0 0x00800000 @@ -27,14 +24,12 @@ #define NUM_FLASHBANKS 2 #define BUSWIDTH 4 -/* can be { "cfi_probe", "jedec_probe", "map_rom", NULL } */ -#define PROBETYPES { "jedec_probe", NULL } - #define MSG_PREFIX "impA7:" /* prefix for our printk()'s */ #define MTDID "impa7-%d" /* for mtdparts= partitioning */ static struct mtd_info *impa7_mtd[NUM_FLASHBANKS]; +static const char * const rom_probe_types[] = { "jedec_probe", NULL }; static struct map_info impa7_map[NUM_FLASHBANKS] = { { @@ -49,12 +44,10 @@ static struct map_info impa7_map[NUM_FLASHBANKS] = { }, }; -#ifdef CONFIG_MTD_PARTITIONS - /* * MTD partitioning stuff */ -static struct mtd_partition static_partitions[] = +static struct mtd_partition partitions[] = { { .name = "FileSystem", @@ -63,18 +56,9 @@ static struct mtd_partition static_partitions[] = }, }; -static int mtd_parts_nb[NUM_FLASHBANKS]; -static struct mtd_partition *mtd_parts[NUM_FLASHBANKS]; - -#endif - -static const char *probes[] = { "cmdlinepart", NULL }; - static int __init init_impa7(void) { - static const char *rom_probe_types[] = PROBETYPES; - const char **type; - const char *part_type = 0; + const char * const *type; int i; static struct { u_long addr; u_long size; } pt[NUM_FLASHBANKS] = { { WINDOW_ADDR0, WINDOW_SIZE0 }, @@ -95,7 +79,7 @@ static int __init init_impa7(void) } simple_map_init(&impa7_map[i]); - impa7_mtd[i] = 0; + impa7_mtd[i] = NULL; type = rom_probe_types; for(; !impa7_mtd[i] && *type; type++) { impa7_mtd[i] = do_map_probe(*type, &impa7_map[i]); @@ -104,31 +88,12 @@ static int __init init_impa7(void) if (impa7_mtd[i]) { impa7_mtd[i]->owner = THIS_MODULE; devicesfound++; -#ifdef CONFIG_MTD_PARTITIONS - mtd_parts_nb[i] = parse_mtd_partitions(impa7_mtd[i], - probes, - &mtd_parts[i], - 0); - if (mtd_parts_nb[i] > 0) { - part_type = "command line"; - } else { - mtd_parts[i] = static_partitions; - mtd_parts_nb[i] = ARRAY_SIZE(static_partitions); - part_type = "static"; - } - - printk(KERN_NOTICE MSG_PREFIX - "using %s partition definition\n", - part_type); - add_mtd_partitions(impa7_mtd[i], - mtd_parts[i], mtd_parts_nb[i]); -#else - add_mtd_device(impa7_mtd[i]); - -#endif + mtd_device_parse_register(impa7_mtd[i], NULL, NULL, + partitions, + ARRAY_SIZE(partitions)); + } else { + iounmap((void __iomem *)impa7_map[i].virt); } - else - iounmap((void *)impa7_map[i].virt); } return devicesfound == 0 ? -ENXIO : 0; } @@ -138,14 +103,10 @@ static void __exit cleanup_impa7(void) int i; for (i=0; i<NUM_FLASHBANKS; i++) { if (impa7_mtd[i]) { -#ifdef CONFIG_MTD_PARTITIONS - del_mtd_partitions(impa7_mtd[i]); -#else - del_mtd_device(impa7_mtd[i]); -#endif + mtd_device_unregister(impa7_mtd[i]); map_destroy(impa7_mtd[i]); - iounmap((void *)impa7_map[i].virt); - impa7_map[i].virt = 0; + iounmap((void __iomem *)impa7_map[i].virt); + impa7_map[i].virt = NULL; } } } diff --git a/drivers/mtd/maps/integrator-flash.c b/drivers/mtd/maps/integrator-flash.c deleted file mode 100644 index 2aac41bde8b..00000000000 --- a/drivers/mtd/maps/integrator-flash.c +++ /dev/null @@ -1,319 +0,0 @@ -/*====================================================================== - - drivers/mtd/maps/integrator-flash.c: ARM Integrator flash map driver - - Copyright (C) 2000 ARM Limited - Copyright (C) 2003 Deep Blue Solutions Ltd. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - - This is access code for flashes using ARM's flash partitioning - standards. - -======================================================================*/ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/slab.h> -#include <linux/ioport.h> -#include <linux/platform_device.h> -#include <linux/init.h> -#include <linux/io.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> -#include <linux/mtd/concat.h> - -#include <asm/mach/flash.h> -#include <mach/hardware.h> -#include <asm/system.h> - -struct armflash_subdev_info { - char *name; - struct mtd_info *mtd; - struct map_info map; - struct flash_platform_data *plat; -}; - -struct armflash_info { - struct resource *res; - struct mtd_partition *parts; - struct mtd_info *mtd; - int nr_subdev; - struct armflash_subdev_info subdev[0]; -}; - -static void armflash_set_vpp(struct map_info *map, int on) -{ - struct armflash_subdev_info *info = - container_of(map, struct armflash_subdev_info, map); - - if (info->plat && info->plat->set_vpp) - info->plat->set_vpp(on); -} - -static const char *probes[] = { "cmdlinepart", "RedBoot", "afs", NULL }; - -static int armflash_subdev_probe(struct armflash_subdev_info *subdev, - struct resource *res) -{ - struct flash_platform_data *plat = subdev->plat; - resource_size_t size = res->end - res->start + 1; - void __iomem *base; - int err = 0; - - if (!request_mem_region(res->start, size, subdev->name)) { - err = -EBUSY; - goto out; - } - - base = ioremap(res->start, size); - if (!base) { - err = -ENOMEM; - goto no_mem; - } - - /* - * look for CFI based flash parts fitted to this board - */ - subdev->map.size = size; - subdev->map.bankwidth = plat->width; - subdev->map.phys = res->start; - subdev->map.virt = base; - subdev->map.name = subdev->name; - subdev->map.set_vpp = armflash_set_vpp; - - simple_map_init(&subdev->map); - - /* - * Also, the CFI layer automatically works out what size - * of chips we have, and does the necessary identification - * for us automatically. - */ - subdev->mtd = do_map_probe(plat->map_name, &subdev->map); - if (!subdev->mtd) { - err = -ENXIO; - goto no_device; - } - - subdev->mtd->owner = THIS_MODULE; - - /* Successful? */ - if (err == 0) - return err; - - if (subdev->mtd) - map_destroy(subdev->mtd); - no_device: - iounmap(base); - no_mem: - release_mem_region(res->start, size); - out: - return err; -} - -static void armflash_subdev_remove(struct armflash_subdev_info *subdev) -{ - if (subdev->mtd) - map_destroy(subdev->mtd); - if (subdev->map.virt) - iounmap(subdev->map.virt); - kfree(subdev->name); - subdev->name = NULL; - release_mem_region(subdev->map.phys, subdev->map.size); -} - -static int armflash_probe(struct platform_device *dev) -{ - struct flash_platform_data *plat = dev->dev.platform_data; - unsigned int size; - struct armflash_info *info; - int i, nr, err; - - /* Count the number of devices */ - for (nr = 0; ; nr++) - if (!platform_get_resource(dev, IORESOURCE_MEM, nr)) - break; - if (nr == 0) { - err = -ENODEV; - goto out; - } - - size = sizeof(struct armflash_info) + - sizeof(struct armflash_subdev_info) * nr; - info = kzalloc(size, GFP_KERNEL); - if (!info) { - err = -ENOMEM; - goto out; - } - - if (plat && plat->init) { - err = plat->init(); - if (err) - goto no_resource; - } - - for (i = 0; i < nr; i++) { - struct armflash_subdev_info *subdev = &info->subdev[i]; - struct resource *res; - - res = platform_get_resource(dev, IORESOURCE_MEM, i); - if (!res) - break; - - if (nr == 1) - /* No MTD concatenation, just use the default name */ - subdev->name = kstrdup(dev_name(&dev->dev), GFP_KERNEL); - else - subdev->name = kasprintf(GFP_KERNEL, "%s-%d", - dev_name(&dev->dev), i); - if (!subdev->name) { - err = -ENOMEM; - break; - } - subdev->plat = plat; - - err = armflash_subdev_probe(subdev, res); - if (err) { - kfree(subdev->name); - subdev->name = NULL; - break; - } - } - info->nr_subdev = i; - - if (err) - goto subdev_err; - - if (info->nr_subdev == 1) - info->mtd = info->subdev[0].mtd; - else if (info->nr_subdev > 1) { -#ifdef CONFIG_MTD_CONCAT - struct mtd_info *cdev[info->nr_subdev]; - - /* - * We detected multiple devices. Concatenate them together. - */ - for (i = 0; i < info->nr_subdev; i++) - cdev[i] = info->subdev[i].mtd; - - info->mtd = mtd_concat_create(cdev, info->nr_subdev, - dev_name(&dev->dev)); - if (info->mtd == NULL) - err = -ENXIO; -#else - printk(KERN_ERR "armflash: multiple devices found but " - "MTD concat support disabled.\n"); - err = -ENXIO; -#endif - } - - if (err < 0) - goto cleanup; - - err = parse_mtd_partitions(info->mtd, probes, &info->parts, 0); - if (err > 0) { - err = add_mtd_partitions(info->mtd, info->parts, err); - if (err) - printk(KERN_ERR - "mtd partition registration failed: %d\n", err); - } - - if (err == 0) { - platform_set_drvdata(dev, info); - return err; - } - - /* - * We got an error, free all resources. - */ - cleanup: - if (info->mtd) { - del_mtd_partitions(info->mtd); -#ifdef CONFIG_MTD_CONCAT - if (info->mtd != info->subdev[0].mtd) - mtd_concat_destroy(info->mtd); -#endif - } - kfree(info->parts); - subdev_err: - for (i = info->nr_subdev - 1; i >= 0; i--) - armflash_subdev_remove(&info->subdev[i]); - no_resource: - if (plat && plat->exit) - plat->exit(); - kfree(info); - out: - return err; -} - -static int armflash_remove(struct platform_device *dev) -{ - struct armflash_info *info = platform_get_drvdata(dev); - struct flash_platform_data *plat = dev->dev.platform_data; - int i; - - platform_set_drvdata(dev, NULL); - - if (info) { - if (info->mtd) { - del_mtd_partitions(info->mtd); -#ifdef CONFIG_MTD_CONCAT - if (info->mtd != info->subdev[0].mtd) - mtd_concat_destroy(info->mtd); -#endif - } - kfree(info->parts); - - for (i = info->nr_subdev - 1; i >= 0; i--) - armflash_subdev_remove(&info->subdev[i]); - - if (plat && plat->exit) - plat->exit(); - - kfree(info); - } - - return 0; -} - -static struct platform_driver armflash_driver = { - .probe = armflash_probe, - .remove = armflash_remove, - .driver = { - .name = "armflash", - .owner = THIS_MODULE, - }, -}; - -static int __init armflash_init(void) -{ - return platform_driver_register(&armflash_driver); -} - -static void __exit armflash_exit(void) -{ - platform_driver_unregister(&armflash_driver); -} - -module_init(armflash_init); -module_exit(armflash_exit); - -MODULE_AUTHOR("ARM Ltd"); -MODULE_DESCRIPTION("ARM Integrator CFI map driver"); -MODULE_LICENSE("GPL"); -MODULE_ALIAS("platform:armflash"); diff --git a/drivers/mtd/maps/intel_vr_nor.c b/drivers/mtd/maps/intel_vr_nor.c index fc1998512eb..5ab71f0e1bc 100644 --- a/drivers/mtd/maps/intel_vr_nor.c +++ b/drivers/mtd/maps/intel_vr_nor.c @@ -31,7 +31,6 @@ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/pci.h> -#include <linux/init.h> #include <linux/mtd/mtd.h> #include <linux/mtd/map.h> #include <linux/mtd/partitions.h> @@ -44,7 +43,6 @@ struct vr_nor_mtd { void __iomem *csr_base; struct map_info map; struct mtd_info *info; - int nr_parts; struct pci_dev *dev; }; @@ -64,47 +62,28 @@ struct vr_nor_mtd { #define TIMING_BYTE_EN (1 << 0) /* 8-bit vs 16-bit bus */ #define TIMING_MASK 0x3FFF0000 -static void __devexit vr_nor_destroy_partitions(struct vr_nor_mtd *p) +static void vr_nor_destroy_partitions(struct vr_nor_mtd *p) { - if (p->nr_parts > 0) { -#if defined(CONFIG_MTD_PARTITIONS) || defined(CONFIG_MTD_PARTITIONS_MODULE) - del_mtd_partitions(p->info); -#endif - } else - del_mtd_device(p->info); + mtd_device_unregister(p->info); } -static int __devinit vr_nor_init_partitions(struct vr_nor_mtd *p) +static int vr_nor_init_partitions(struct vr_nor_mtd *p) { - int err = 0; -#if defined(CONFIG_MTD_PARTITIONS) || defined(CONFIG_MTD_PARTITIONS_MODULE) - struct mtd_partition *parts; - static const char *part_probes[] = { "cmdlinepart", NULL }; -#endif - /* register the flash bank */ -#if defined(CONFIG_MTD_PARTITIONS) || defined(CONFIG_MTD_PARTITIONS_MODULE) /* partition the flash bank */ - p->nr_parts = parse_mtd_partitions(p->info, part_probes, &parts, 0); - if (p->nr_parts > 0) - err = add_mtd_partitions(p->info, parts, p->nr_parts); -#endif - if (p->nr_parts <= 0) - err = add_mtd_device(p->info); - - return err; + return mtd_device_parse_register(p->info, NULL, NULL, NULL, 0); } -static void __devexit vr_nor_destroy_mtd_setup(struct vr_nor_mtd *p) +static void vr_nor_destroy_mtd_setup(struct vr_nor_mtd *p) { map_destroy(p->info); } -static int __devinit vr_nor_mtd_setup(struct vr_nor_mtd *p) +static int vr_nor_mtd_setup(struct vr_nor_mtd *p) { - static const char *probe_types[] = + static const char * const probe_types[] = { "cfi_probe", "jedec_probe", NULL }; - const char **type; + const char * const *type; for (type = probe_types; !p->info && *type; type++) p->info = do_map_probe(*type, &p->map); @@ -116,7 +95,7 @@ static int __devinit vr_nor_mtd_setup(struct vr_nor_mtd *p) return 0; } -static void __devexit vr_nor_destroy_maps(struct vr_nor_mtd *p) +static void vr_nor_destroy_maps(struct vr_nor_mtd *p) { unsigned int exp_timing_cs0; @@ -136,7 +115,7 @@ static void __devexit vr_nor_destroy_maps(struct vr_nor_mtd *p) * Initialize the map_info structure and map the flash. * Returns 0 on success, nonzero otherwise. */ -static int __devinit vr_nor_init_maps(struct vr_nor_mtd *p) +static int vr_nor_init_maps(struct vr_nor_mtd *p) { unsigned long csr_phys, csr_len; unsigned long win_phys, win_len; @@ -196,11 +175,10 @@ static struct pci_device_id vr_nor_pci_ids[] = { {0,} }; -static void __devexit vr_nor_pci_remove(struct pci_dev *dev) +static void vr_nor_pci_remove(struct pci_dev *dev) { struct vr_nor_mtd *p = pci_get_drvdata(dev); - pci_set_drvdata(dev, NULL); vr_nor_destroy_partitions(p); vr_nor_destroy_mtd_setup(p); vr_nor_destroy_maps(p); @@ -209,8 +187,7 @@ static void __devexit vr_nor_pci_remove(struct pci_dev *dev) pci_disable_device(dev); } -static int __devinit -vr_nor_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) +static int vr_nor_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) { struct vr_nor_mtd *p = NULL; unsigned int exp_timing_cs0; @@ -276,22 +253,11 @@ vr_nor_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) static struct pci_driver vr_nor_pci_driver = { .name = DRV_NAME, .probe = vr_nor_pci_probe, - .remove = __devexit_p(vr_nor_pci_remove), + .remove = vr_nor_pci_remove, .id_table = vr_nor_pci_ids, }; -static int __init vr_nor_mtd_init(void) -{ - return pci_register_driver(&vr_nor_pci_driver); -} - -static void __exit vr_nor_mtd_exit(void) -{ - pci_unregister_driver(&vr_nor_pci_driver); -} - -module_init(vr_nor_mtd_init); -module_exit(vr_nor_mtd_exit); +module_pci_driver(vr_nor_pci_driver); MODULE_AUTHOR("Andy Lowe"); MODULE_DESCRIPTION("MTD map driver for NOR flash on Intel Vermilion Range"); diff --git a/drivers/mtd/maps/ixp2000.c b/drivers/mtd/maps/ixp2000.c deleted file mode 100644 index 9639d83a9d6..00000000000 --- a/drivers/mtd/maps/ixp2000.c +++ /dev/null @@ -1,271 +0,0 @@ -/* - * drivers/mtd/maps/ixp2000.c - * - * Mapping for the Intel XScale IXP2000 based systems - * - * Copyright (C) 2002 Intel Corp. - * Copyright (C) 2003-2004 MontaVista Software, Inc. - * - * Original Author: Naeem M Afzal <naeem.m.afzal@intel.com> - * Maintainer: Deepak Saxena <dsaxena@plexity.net> - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/init.h> -#include <linux/kernel.h> -#include <linux/string.h> -#include <linux/slab.h> -#include <linux/ioport.h> -#include <linux/device.h> -#include <linux/platform_device.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> - -#include <asm/io.h> -#include <mach/hardware.h> -#include <asm/mach/flash.h> - -#include <linux/reboot.h> - -struct ixp2000_flash_info { - struct mtd_info *mtd; - struct map_info map; - struct mtd_partition *partitions; - struct resource *res; -}; - -static inline unsigned long flash_bank_setup(struct map_info *map, unsigned long ofs) -{ - unsigned long (*set_bank)(unsigned long) = - (unsigned long(*)(unsigned long))map->map_priv_2; - - return (set_bank ? set_bank(ofs) : ofs); -} - -#ifdef __ARMEB__ -/* - * Rev A0 and A1 of IXP2400 silicon have a broken addressing unit which - * causes the lower address bits to be XORed with 0x11 on 8 bit accesses - * and XORed with 0x10 on 16 bit accesses. See the spec update, erratum 44. - */ -static int erratum44_workaround = 0; - -static inline unsigned long address_fix8_write(unsigned long addr) -{ - if (erratum44_workaround) { - return (addr ^ 3); - } - return addr; -} -#else - -#define address_fix8_write(x) (x) -#endif - -static map_word ixp2000_flash_read8(struct map_info *map, unsigned long ofs) -{ - map_word val; - - val.x[0] = *((u8 *)(map->map_priv_1 + flash_bank_setup(map, ofs))); - return val; -} - -/* - * We can't use the standard memcpy due to the broken SlowPort - * address translation on rev A0 and A1 silicon and the fact that - * we have banked flash. - */ -static void ixp2000_flash_copy_from(struct map_info *map, void *to, - unsigned long from, ssize_t len) -{ - from = flash_bank_setup(map, from); - while(len--) - *(__u8 *) to++ = *(__u8 *)(map->map_priv_1 + from++); -} - -static void ixp2000_flash_write8(struct map_info *map, map_word d, unsigned long ofs) -{ - *(__u8 *) (address_fix8_write(map->map_priv_1 + - flash_bank_setup(map, ofs))) = d.x[0]; -} - -static void ixp2000_flash_copy_to(struct map_info *map, unsigned long to, - const void *from, ssize_t len) -{ - to = flash_bank_setup(map, to); - while(len--) { - unsigned long tmp = address_fix8_write(map->map_priv_1 + to++); - *(__u8 *)(tmp) = *(__u8 *)(from++); - } -} - - -static int ixp2000_flash_remove(struct platform_device *dev) -{ - struct flash_platform_data *plat = dev->dev.platform_data; - struct ixp2000_flash_info *info = platform_get_drvdata(dev); - - platform_set_drvdata(dev, NULL); - - if(!info) - return 0; - - if (info->mtd) { - del_mtd_partitions(info->mtd); - map_destroy(info->mtd); - } - if (info->map.map_priv_1) - iounmap((void *) info->map.map_priv_1); - - kfree(info->partitions); - - if (info->res) { - release_resource(info->res); - kfree(info->res); - } - - if (plat->exit) - plat->exit(); - - return 0; -} - - -static int ixp2000_flash_probe(struct platform_device *dev) -{ - static const char *probes[] = { "RedBoot", "cmdlinepart", NULL }; - struct ixp2000_flash_data *ixp_data = dev->dev.platform_data; - struct flash_platform_data *plat; - struct ixp2000_flash_info *info; - unsigned long window_size; - int err = -1; - - if (!ixp_data) - return -ENODEV; - - plat = ixp_data->platform_data; - if (!plat) - return -ENODEV; - - window_size = dev->resource->end - dev->resource->start + 1; - dev_info(&dev->dev, "Probe of IXP2000 flash(%d banks x %dMiB)\n", - ixp_data->nr_banks, ((u32)window_size >> 20)); - - if (plat->width != 1) { - dev_err(&dev->dev, "IXP2000 MTD map only supports 8-bit mode, asking for %d\n", - plat->width * 8); - return -EIO; - } - - info = kzalloc(sizeof(struct ixp2000_flash_info), GFP_KERNEL); - if(!info) { - err = -ENOMEM; - goto Error; - } - - platform_set_drvdata(dev, info); - - /* - * Tell the MTD layer we're not 1:1 mapped so that it does - * not attempt to do a direct access on us. - */ - info->map.phys = NO_XIP; - - info->map.size = ixp_data->nr_banks * window_size; - info->map.bankwidth = 1; - - /* - * map_priv_2 is used to store a ptr to the bank_setup routine - */ - info->map.map_priv_2 = (unsigned long) ixp_data->bank_setup; - - info->map.name = dev_name(&dev->dev); - info->map.read = ixp2000_flash_read8; - info->map.write = ixp2000_flash_write8; - info->map.copy_from = ixp2000_flash_copy_from; - info->map.copy_to = ixp2000_flash_copy_to; - - info->res = request_mem_region(dev->resource->start, - dev->resource->end - dev->resource->start + 1, - dev_name(&dev->dev)); - if (!info->res) { - dev_err(&dev->dev, "Could not reserve memory region\n"); - err = -ENOMEM; - goto Error; - } - - info->map.map_priv_1 = (unsigned long) ioremap(dev->resource->start, - dev->resource->end - dev->resource->start + 1); - if (!info->map.map_priv_1) { - dev_err(&dev->dev, "Failed to ioremap flash region\n"); - err = -EIO; - goto Error; - } - -#if defined(__ARMEB__) - /* - * Enable erratum 44 workaround for NPUs with broken slowport - */ - - erratum44_workaround = ixp2000_has_broken_slowport(); - dev_info(&dev->dev, "Erratum 44 workaround %s\n", - erratum44_workaround ? "enabled" : "disabled"); -#endif - - info->mtd = do_map_probe(plat->map_name, &info->map); - if (!info->mtd) { - dev_err(&dev->dev, "map_probe failed\n"); - err = -ENXIO; - goto Error; - } - info->mtd->owner = THIS_MODULE; - - err = parse_mtd_partitions(info->mtd, probes, &info->partitions, 0); - if (err > 0) { - err = add_mtd_partitions(info->mtd, info->partitions, err); - if(err) - dev_err(&dev->dev, "Could not parse partitions\n"); - } - - if (err) - goto Error; - - return 0; - -Error: - ixp2000_flash_remove(dev); - return err; -} - -static struct platform_driver ixp2000_flash_driver = { - .probe = ixp2000_flash_probe, - .remove = ixp2000_flash_remove, - .driver = { - .name = "IXP2000-Flash", - .owner = THIS_MODULE, - }, -}; - -static int __init ixp2000_flash_init(void) -{ - return platform_driver_register(&ixp2000_flash_driver); -} - -static void __exit ixp2000_flash_exit(void) -{ - platform_driver_unregister(&ixp2000_flash_driver); -} - -module_init(ixp2000_flash_init); -module_exit(ixp2000_flash_exit); -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Deepak Saxena <dsaxena@plexity.net>"); -MODULE_ALIAS("platform:IXP2000-Flash"); diff --git a/drivers/mtd/maps/ixp4xx.c b/drivers/mtd/maps/ixp4xx.c index e0a5e0426ea..6a589f1e288 100644 --- a/drivers/mtd/maps/ixp4xx.c +++ b/drivers/mtd/maps/ixp4xx.c @@ -13,9 +13,9 @@ * */ +#include <linux/err.h> #include <linux/module.h> #include <linux/types.h> -#include <linux/init.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/slab.h> @@ -118,7 +118,7 @@ static void ixp4xx_copy_from(struct map_info *map, void *to, *dest++ = BYTE1(data); src += 2; len -= 2; - } + } if (len > 0) *dest++ = BYTE0(flash_read16(src)); @@ -145,35 +145,23 @@ static void ixp4xx_write16(struct map_info *map, map_word d, unsigned long adr) struct ixp4xx_flash_info { struct mtd_info *mtd; struct map_info map; - struct mtd_partition *partitions; struct resource *res; }; -static const char *probes[] = { "RedBoot", "cmdlinepart", NULL }; +static const char * const probes[] = { "RedBoot", "cmdlinepart", NULL }; static int ixp4xx_flash_remove(struct platform_device *dev) { - struct flash_platform_data *plat = dev->dev.platform_data; + struct flash_platform_data *plat = dev_get_platdata(&dev->dev); struct ixp4xx_flash_info *info = platform_get_drvdata(dev); - platform_set_drvdata(dev, NULL); - if(!info) return 0; if (info->mtd) { - del_mtd_partitions(info->mtd); + mtd_device_unregister(info->mtd); map_destroy(info->mtd); } - if (info->map.virt) - iounmap(info->map.virt); - - kfree(info->partitions); - - if (info->res) { - release_resource(info->res); - kfree(info->res); - } if (plat->exit) plat->exit(); @@ -183,8 +171,11 @@ static int ixp4xx_flash_remove(struct platform_device *dev) static int ixp4xx_flash_probe(struct platform_device *dev) { - struct flash_platform_data *plat = dev->dev.platform_data; + struct flash_platform_data *plat = dev_get_platdata(&dev->dev); struct ixp4xx_flash_info *info; + struct mtd_part_parser_data ppdata = { + .origin = dev->resource->start, + }; int err = -1; if (!plat) @@ -196,7 +187,8 @@ static int ixp4xx_flash_probe(struct platform_device *dev) return err; } - info = kzalloc(sizeof(struct ixp4xx_flash_info), GFP_KERNEL); + info = devm_kzalloc(&dev->dev, sizeof(struct ixp4xx_flash_info), + GFP_KERNEL); if(!info) { err = -ENOMEM; goto Error; @@ -218,24 +210,13 @@ static int ixp4xx_flash_probe(struct platform_device *dev) */ info->map.bankwidth = 2; info->map.name = dev_name(&dev->dev); - info->map.read = ixp4xx_read16, - info->map.write = ixp4xx_probe_write16, - info->map.copy_from = ixp4xx_copy_from, - - info->res = request_mem_region(dev->resource->start, - resource_size(dev->resource), - "IXP4XXFlash"); - if (!info->res) { - printk(KERN_ERR "IXP4XXFlash: Could not reserve memory region\n"); - err = -ENOMEM; - goto Error; - } + info->map.read = ixp4xx_read16; + info->map.write = ixp4xx_probe_write16; + info->map.copy_from = ixp4xx_copy_from; - info->map.virt = ioremap(dev->resource->start, - resource_size(dev->resource)); - if (!info->map.virt) { - printk(KERN_ERR "IXP4XXFlash: Failed to ioremap region\n"); - err = -EIO; + info->map.virt = devm_ioremap_resource(&dev->dev, dev->resource); + if (IS_ERR(info->map.virt)) { + err = PTR_ERR(info->map.virt); goto Error; } @@ -248,17 +229,14 @@ static int ixp4xx_flash_probe(struct platform_device *dev) info->mtd->owner = THIS_MODULE; /* Use the fast version */ - info->map.write = ixp4xx_write16, - - err = parse_mtd_partitions(info->mtd, probes, &info->partitions, dev->resource->start); - if (err > 0) { - err = add_mtd_partitions(info->mtd, info->partitions, err); - if(err) - printk(KERN_ERR "Could not parse partitions\n"); - } + info->map.write = ixp4xx_write16; - if (err) + err = mtd_device_parse_register(info->mtd, probes, &ppdata, + plat->parts, plat->nr_parts); + if (err) { + printk(KERN_ERR "Could not parse partitions\n"); goto Error; + } return 0; @@ -276,19 +254,7 @@ static struct platform_driver ixp4xx_flash_driver = { }, }; -static int __init ixp4xx_flash_init(void) -{ - return platform_driver_register(&ixp4xx_flash_driver); -} - -static void __exit ixp4xx_flash_exit(void) -{ - platform_driver_unregister(&ixp4xx_flash_driver); -} - - -module_init(ixp4xx_flash_init); -module_exit(ixp4xx_flash_exit); +module_platform_driver(ixp4xx_flash_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("MTD map driver for Intel IXP4xx systems"); diff --git a/drivers/mtd/maps/l440gx.c b/drivers/mtd/maps/l440gx.c index 9e054503c4c..74bd98ee635 100644 --- a/drivers/mtd/maps/l440gx.c +++ b/drivers/mtd/maps/l440gx.c @@ -27,17 +27,21 @@ static struct mtd_info *mymtd; /* Is this really the vpp port? */ +static DEFINE_SPINLOCK(l440gx_vpp_lock); +static int l440gx_vpp_refcnt; static void l440gx_set_vpp(struct map_info *map, int vpp) { - unsigned long l; + unsigned long flags; - l = inl(VPP_PORT); + spin_lock_irqsave(&l440gx_vpp_lock, flags); if (vpp) { - l |= 1; + if (++l440gx_vpp_refcnt == 1) /* first nested 'on' */ + outl(inl(VPP_PORT) | 1, VPP_PORT); } else { - l &= ~1; + if (--l440gx_vpp_refcnt == 0) /* last nested 'off' */ + outl(inl(VPP_PORT) & ~1, VPP_PORT); } - outl(l, VPP_PORT); + spin_unlock_irqrestore(&l440gx_vpp_lock, flags); } static struct map_info l440gx_map = { @@ -138,7 +142,7 @@ static int __init init_l440gx(void) if (mymtd) { mymtd->owner = THIS_MODULE; - add_mtd_device(mymtd); + mtd_device_register(mymtd, NULL, 0); return 0; } @@ -148,7 +152,7 @@ static int __init init_l440gx(void) static void __exit cleanup_l440gx(void) { - del_mtd_device(mymtd); + mtd_device_unregister(mymtd); map_destroy(mymtd); iounmap(l440gx_map.virt); diff --git a/drivers/mtd/maps/lantiq-flash.c b/drivers/mtd/maps/lantiq-flash.c new file mode 100644 index 00000000000..7aa682cd4d7 --- /dev/null +++ b/drivers/mtd/maps/lantiq-flash.c @@ -0,0 +1,217 @@ +/* + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published + * by the Free Software Foundation. + * + * Copyright (C) 2004 Liu Peng Infineon IFAP DC COM CPE + * Copyright (C) 2010 John Crispin <blogic@openwrt.org> + */ + +#include <linux/err.h> +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/io.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/cfi.h> +#include <linux/platform_device.h> +#include <linux/mtd/physmap.h> +#include <linux/of.h> + +#include <lantiq_soc.h> + +/* + * The NOR flash is connected to the same external bus unit (EBU) as PCI. + * To make PCI work we need to enable the endianness swapping for the address + * written to the EBU. This endianness swapping works for PCI correctly but + * fails for attached NOR devices. To workaround this we need to use a complex + * map. The workaround involves swapping all addresses whilst probing the chip. + * Once probing is complete we stop swapping the addresses but swizzle the + * unlock addresses to ensure that access to the NOR device works correctly. + */ + +enum { + LTQ_NOR_PROBING, + LTQ_NOR_NORMAL +}; + +struct ltq_mtd { + struct resource *res; + struct mtd_info *mtd; + struct map_info *map; +}; + +static const char ltq_map_name[] = "ltq_nor"; +static const char * const ltq_probe_types[] = { "cmdlinepart", "ofpart", NULL }; + +static map_word +ltq_read16(struct map_info *map, unsigned long adr) +{ + unsigned long flags; + map_word temp; + + if (map->map_priv_1 == LTQ_NOR_PROBING) + adr ^= 2; + spin_lock_irqsave(&ebu_lock, flags); + temp.x[0] = *(u16 *)(map->virt + adr); + spin_unlock_irqrestore(&ebu_lock, flags); + return temp; +} + +static void +ltq_write16(struct map_info *map, map_word d, unsigned long adr) +{ + unsigned long flags; + + if (map->map_priv_1 == LTQ_NOR_PROBING) + adr ^= 2; + spin_lock_irqsave(&ebu_lock, flags); + *(u16 *)(map->virt + adr) = d.x[0]; + spin_unlock_irqrestore(&ebu_lock, flags); +} + +/* + * The following 2 functions copy data between iomem and a cached memory + * section. As memcpy() makes use of pre-fetching we cannot use it here. + * The normal alternative of using memcpy_{to,from}io also makes use of + * memcpy() on MIPS so it is not applicable either. We are therefore stuck + * with having to use our own loop. + */ +static void +ltq_copy_from(struct map_info *map, void *to, + unsigned long from, ssize_t len) +{ + unsigned char *f = (unsigned char *)map->virt + from; + unsigned char *t = (unsigned char *)to; + unsigned long flags; + + spin_lock_irqsave(&ebu_lock, flags); + while (len--) + *t++ = *f++; + spin_unlock_irqrestore(&ebu_lock, flags); +} + +static void +ltq_copy_to(struct map_info *map, unsigned long to, + const void *from, ssize_t len) +{ + unsigned char *f = (unsigned char *)from; + unsigned char *t = (unsigned char *)map->virt + to; + unsigned long flags; + + spin_lock_irqsave(&ebu_lock, flags); + while (len--) + *t++ = *f++; + spin_unlock_irqrestore(&ebu_lock, flags); +} + +static int +ltq_mtd_probe(struct platform_device *pdev) +{ + struct mtd_part_parser_data ppdata; + struct ltq_mtd *ltq_mtd; + struct cfi_private *cfi; + int err; + + if (of_machine_is_compatible("lantiq,falcon") && + (ltq_boot_select() != BS_FLASH)) { + dev_err(&pdev->dev, "invalid bootstrap options\n"); + return -ENODEV; + } + + ltq_mtd = devm_kzalloc(&pdev->dev, sizeof(struct ltq_mtd), GFP_KERNEL); + if (!ltq_mtd) + return -ENOMEM; + + platform_set_drvdata(pdev, ltq_mtd); + + ltq_mtd->res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!ltq_mtd->res) { + dev_err(&pdev->dev, "failed to get memory resource\n"); + return -ENOENT; + } + + ltq_mtd->map = devm_kzalloc(&pdev->dev, sizeof(struct map_info), + GFP_KERNEL); + if (!ltq_mtd->map) + return -ENOMEM; + + ltq_mtd->map->phys = ltq_mtd->res->start; + ltq_mtd->map->size = resource_size(ltq_mtd->res); + ltq_mtd->map->virt = devm_ioremap_resource(&pdev->dev, ltq_mtd->res); + if (IS_ERR(ltq_mtd->map->virt)) + return PTR_ERR(ltq_mtd->map->virt); + + ltq_mtd->map->name = ltq_map_name; + ltq_mtd->map->bankwidth = 2; + ltq_mtd->map->read = ltq_read16; + ltq_mtd->map->write = ltq_write16; + ltq_mtd->map->copy_from = ltq_copy_from; + ltq_mtd->map->copy_to = ltq_copy_to; + + ltq_mtd->map->map_priv_1 = LTQ_NOR_PROBING; + ltq_mtd->mtd = do_map_probe("cfi_probe", ltq_mtd->map); + ltq_mtd->map->map_priv_1 = LTQ_NOR_NORMAL; + + if (!ltq_mtd->mtd) { + dev_err(&pdev->dev, "probing failed\n"); + return -ENXIO; + } + + ltq_mtd->mtd->owner = THIS_MODULE; + + cfi = ltq_mtd->map->fldrv_priv; + cfi->addr_unlock1 ^= 1; + cfi->addr_unlock2 ^= 1; + + ppdata.of_node = pdev->dev.of_node; + err = mtd_device_parse_register(ltq_mtd->mtd, ltq_probe_types, + &ppdata, NULL, 0); + if (err) { + dev_err(&pdev->dev, "failed to add partitions\n"); + goto err_destroy; + } + + return 0; + +err_destroy: + map_destroy(ltq_mtd->mtd); + return err; +} + +static int +ltq_mtd_remove(struct platform_device *pdev) +{ + struct ltq_mtd *ltq_mtd = platform_get_drvdata(pdev); + + if (ltq_mtd && ltq_mtd->mtd) { + mtd_device_unregister(ltq_mtd->mtd); + map_destroy(ltq_mtd->mtd); + } + return 0; +} + +static const struct of_device_id ltq_mtd_match[] = { + { .compatible = "lantiq,nor" }, + {}, +}; +MODULE_DEVICE_TABLE(of, ltq_mtd_match); + +static struct platform_driver ltq_mtd_driver = { + .probe = ltq_mtd_probe, + .remove = ltq_mtd_remove, + .driver = { + .name = "ltq-nor", + .owner = THIS_MODULE, + .of_match_table = ltq_mtd_match, + }, +}; + +module_platform_driver(ltq_mtd_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("John Crispin <blogic@openwrt.org>"); +MODULE_DESCRIPTION("Lantiq SoC NOR"); diff --git a/drivers/mtd/maps/latch-addr-flash.c b/drivers/mtd/maps/latch-addr-flash.c new file mode 100644 index 00000000000..cadfbe05187 --- /dev/null +++ b/drivers/mtd/maps/latch-addr-flash.c @@ -0,0 +1,230 @@ +/* + * Interface for NOR flash driver whose high address lines are latched + * + * Copyright © 2000 Nicolas Pitre <nico@cam.org> + * Copyright © 2005-2008 Analog Devices Inc. + * Copyright © 2008 MontaVista Software, Inc. <source@mvista.com> + * + * This file is licensed under the terms of the GNU General Public License + * version 2. This program is licensed "as is" without any warranty of any + * kind, whether express or implied. + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/partitions.h> +#include <linux/platform_device.h> +#include <linux/mtd/latch-addr-flash.h> +#include <linux/slab.h> + +#define DRIVER_NAME "latch-addr-flash" + +struct latch_addr_flash_info { + struct mtd_info *mtd; + struct map_info map; + struct resource *res; + + void (*set_window)(unsigned long offset, void *data); + void *data; + + /* cache; could be found out of res */ + unsigned long win_mask; + + spinlock_t lock; +}; + +static map_word lf_read(struct map_info *map, unsigned long ofs) +{ + struct latch_addr_flash_info *info; + map_word datum; + + info = (struct latch_addr_flash_info *)map->map_priv_1; + + spin_lock(&info->lock); + + info->set_window(ofs, info->data); + datum = inline_map_read(map, info->win_mask & ofs); + + spin_unlock(&info->lock); + + return datum; +} + +static void lf_write(struct map_info *map, map_word datum, unsigned long ofs) +{ + struct latch_addr_flash_info *info; + + info = (struct latch_addr_flash_info *)map->map_priv_1; + + spin_lock(&info->lock); + + info->set_window(ofs, info->data); + inline_map_write(map, datum, info->win_mask & ofs); + + spin_unlock(&info->lock); +} + +static void lf_copy_from(struct map_info *map, void *to, + unsigned long from, ssize_t len) +{ + struct latch_addr_flash_info *info = + (struct latch_addr_flash_info *) map->map_priv_1; + unsigned n; + + while (len > 0) { + n = info->win_mask + 1 - (from & info->win_mask); + if (n > len) + n = len; + + spin_lock(&info->lock); + + info->set_window(from, info->data); + memcpy_fromio(to, map->virt + (from & info->win_mask), n); + + spin_unlock(&info->lock); + + to += n; + from += n; + len -= n; + } +} + +static char *rom_probe_types[] = { "cfi_probe", NULL }; + +static int latch_addr_flash_remove(struct platform_device *dev) +{ + struct latch_addr_flash_info *info; + struct latch_addr_flash_data *latch_addr_data; + + info = platform_get_drvdata(dev); + if (info == NULL) + return 0; + + latch_addr_data = dev_get_platdata(&dev->dev); + + if (info->mtd != NULL) { + mtd_device_unregister(info->mtd); + map_destroy(info->mtd); + } + + if (info->map.virt != NULL) + iounmap(info->map.virt); + + if (info->res != NULL) + release_mem_region(info->res->start, resource_size(info->res)); + + kfree(info); + + if (latch_addr_data->done) + latch_addr_data->done(latch_addr_data->data); + + return 0; +} + +static int latch_addr_flash_probe(struct platform_device *dev) +{ + struct latch_addr_flash_data *latch_addr_data; + struct latch_addr_flash_info *info; + resource_size_t win_base = dev->resource->start; + resource_size_t win_size = resource_size(dev->resource); + char **probe_type; + int chipsel; + int err; + + latch_addr_data = dev_get_platdata(&dev->dev); + if (latch_addr_data == NULL) + return -ENODEV; + + pr_notice("latch-addr platform flash device: %#llx byte " + "window at %#.8llx\n", + (unsigned long long)win_size, (unsigned long long)win_base); + + chipsel = dev->id; + + if (latch_addr_data->init) { + err = latch_addr_data->init(latch_addr_data->data, chipsel); + if (err != 0) + return err; + } + + info = kzalloc(sizeof(struct latch_addr_flash_info), GFP_KERNEL); + if (info == NULL) { + err = -ENOMEM; + goto done; + } + + platform_set_drvdata(dev, info); + + info->res = request_mem_region(win_base, win_size, DRIVER_NAME); + if (info->res == NULL) { + dev_err(&dev->dev, "Could not reserve memory region\n"); + err = -EBUSY; + goto free_info; + } + + info->map.name = DRIVER_NAME; + info->map.size = latch_addr_data->size; + info->map.bankwidth = latch_addr_data->width; + + info->map.phys = NO_XIP; + info->map.virt = ioremap(win_base, win_size); + if (!info->map.virt) { + err = -ENOMEM; + goto free_res; + } + + info->map.map_priv_1 = (unsigned long)info; + + info->map.read = lf_read; + info->map.copy_from = lf_copy_from; + info->map.write = lf_write; + info->set_window = latch_addr_data->set_window; + info->data = latch_addr_data->data; + info->win_mask = win_size - 1; + + spin_lock_init(&info->lock); + + for (probe_type = rom_probe_types; !info->mtd && *probe_type; + probe_type++) + info->mtd = do_map_probe(*probe_type, &info->map); + + if (info->mtd == NULL) { + dev_err(&dev->dev, "map_probe failed\n"); + err = -ENODEV; + goto iounmap; + } + info->mtd->owner = THIS_MODULE; + + mtd_device_parse_register(info->mtd, NULL, NULL, + latch_addr_data->parts, + latch_addr_data->nr_parts); + return 0; + +iounmap: + iounmap(info->map.virt); +free_res: + release_mem_region(info->res->start, resource_size(info->res)); +free_info: + kfree(info); +done: + if (latch_addr_data->done) + latch_addr_data->done(latch_addr_data->data); + return err; +} + +static struct platform_driver latch_addr_flash_driver = { + .probe = latch_addr_flash_probe, + .remove = latch_addr_flash_remove, + .driver = { + .name = DRIVER_NAME, + }, +}; + +module_platform_driver(latch_addr_flash_driver); + +MODULE_AUTHOR("David Griego <dgriego@mvista.com>"); +MODULE_DESCRIPTION("MTD map driver for flashes addressed physically with upper " + "address lines being set board specifically"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/maps/mbx860.c b/drivers/mtd/maps/mbx860.c deleted file mode 100644 index 0eb5a7c8538..00000000000 --- a/drivers/mtd/maps/mbx860.c +++ /dev/null @@ -1,98 +0,0 @@ -/* - * Handle mapping of the flash on MBX860 boards - * - * Author: Anton Todorov - * Copyright: (C) 2001 Emness Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <asm/io.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> - - -#define WINDOW_ADDR 0xfe000000 -#define WINDOW_SIZE 0x00200000 - -/* Flash / Partition sizing */ -#define MAX_SIZE_KiB 8192 -#define BOOT_PARTITION_SIZE_KiB 512 -#define KERNEL_PARTITION_SIZE_KiB 5632 -#define APP_PARTITION_SIZE_KiB 2048 - -#define NUM_PARTITIONS 3 - -/* partition_info gives details on the logical partitions that the split the - * single flash device into. If the size if zero we use up to the end of the - * device. */ -static struct mtd_partition partition_info[]={ - { .name = "MBX flash BOOT partition", - .offset = 0, - .size = BOOT_PARTITION_SIZE_KiB*1024 }, - { .name = "MBX flash DATA partition", - .offset = BOOT_PARTITION_SIZE_KiB*1024, - .size = (KERNEL_PARTITION_SIZE_KiB)*1024 }, - { .name = "MBX flash APPLICATION partition", - .offset = (BOOT_PARTITION_SIZE_KiB+KERNEL_PARTITION_SIZE_KiB)*1024 } -}; - - -static struct mtd_info *mymtd; - -struct map_info mbx_map = { - .name = "MBX flash", - .size = WINDOW_SIZE, - .phys = WINDOW_ADDR, - .bankwidth = 4, -}; - -static int __init init_mbx(void) -{ - printk(KERN_NOTICE "Motorola MBX flash device: 0x%x at 0x%x\n", WINDOW_SIZE*4, WINDOW_ADDR); - mbx_map.virt = ioremap(WINDOW_ADDR, WINDOW_SIZE * 4); - - if (!mbx_map.virt) { - printk("Failed to ioremap\n"); - return -EIO; - } - simple_map_init(&mbx_map); - - mymtd = do_map_probe("jedec_probe", &mbx_map); - if (mymtd) { - mymtd->owner = THIS_MODULE; - add_mtd_device(mymtd); - add_mtd_partitions(mymtd, partition_info, NUM_PARTITIONS); - return 0; - } - - iounmap((void *)mbx_map.virt); - return -ENXIO; -} - -static void __exit cleanup_mbx(void) -{ - if (mymtd) { - del_mtd_device(mymtd); - map_destroy(mymtd); - } - if (mbx_map.virt) { - iounmap((void *)mbx_map.virt); - mbx_map.virt = 0; - } -} - -module_init(init_mbx); -module_exit(cleanup_mbx); - -MODULE_AUTHOR("Anton Todorov <a.todorov@emness.com>"); -MODULE_DESCRIPTION("MTD map driver for Motorola MBX860 board"); -MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/maps/netsc520.c b/drivers/mtd/maps/netsc520.c index c0cb319b2b7..81dc2598bc0 100644 --- a/drivers/mtd/maps/netsc520.c +++ b/drivers/mtd/maps/netsc520.c @@ -116,14 +116,14 @@ static int __init init_netsc520(void) } mymtd->owner = THIS_MODULE; - add_mtd_partitions( mymtd, partition_info, NUM_PARTITIONS ); + mtd_device_register(mymtd, partition_info, NUM_PARTITIONS); return 0; } static void __exit cleanup_netsc520(void) { if (mymtd) { - del_mtd_partitions(mymtd); + mtd_device_unregister(mymtd); map_destroy(mymtd); } if (netsc520_map.virt) { diff --git a/drivers/mtd/maps/nettel.c b/drivers/mtd/maps/nettel.c index a97133eb9d7..eadcfffc4f9 100644 --- a/drivers/mtd/maps/nettel.c +++ b/drivers/mtd/maps/nettel.c @@ -383,13 +383,13 @@ static int __init nettel_init(void) /* No BIOS regions when AMD boot */ num_intel_partitions -= 2; } - rc = add_mtd_partitions(intel_mtd, nettel_intel_partitions, - num_intel_partitions); + rc = mtd_device_register(intel_mtd, nettel_intel_partitions, + num_intel_partitions); #endif if (amd_mtd) { - rc = add_mtd_partitions(amd_mtd, nettel_amd_partitions, - num_amd_partitions); + rc = mtd_device_register(amd_mtd, nettel_amd_partitions, + num_amd_partitions); } #ifdef CONFIG_MTD_CFI_INTELEXT @@ -419,7 +419,7 @@ static void __exit nettel_cleanup(void) unregister_reboot_notifier(&nettel_notifier_block); #endif if (amd_mtd) { - del_mtd_partitions(amd_mtd); + mtd_device_unregister(amd_mtd); map_destroy(amd_mtd); } if (nettel_mmcrp) { @@ -432,7 +432,7 @@ static void __exit nettel_cleanup(void) } #ifdef CONFIG_MTD_CFI_INTELEXT if (intel_mtd) { - del_mtd_partitions(intel_mtd); + mtd_device_unregister(intel_mtd); map_destroy(intel_mtd); } if (nettel_intel_map.virt) { diff --git a/drivers/mtd/maps/octagon-5066.c b/drivers/mtd/maps/octagon-5066.c deleted file mode 100644 index 23fe1786770..00000000000 --- a/drivers/mtd/maps/octagon-5066.c +++ /dev/null @@ -1,246 +0,0 @@ -/* ###################################################################### - - Octagon 5066 MTD Driver. - - The Octagon 5066 is a SBC based on AMD's 586-WB running at 133 MHZ. It - comes with a builtin AMD 29F016 flash chip and a socketed EEPROM that - is replacable by flash. Both units are mapped through a multiplexer - into a 32k memory window at 0xe8000. The control register for the - multiplexing unit is located at IO 0x208 with a bit map of - 0-5 Page Selection in 32k increments - 6-7 Device selection: - 00 SSD off - 01 SSD 0 (Socket) - 10 SSD 1 (Flash chip) - 11 undefined - - On each SSD, the first 128k is reserved for use by the bios - (actually it IS the bios..) This only matters if you are booting off the - flash, you must not put a file system starting there. - - The driver tries to do a detection algorithm to guess what sort of devices - are plugged into the sockets. - - ##################################################################### */ - -#include <linux/module.h> -#include <linux/ioport.h> -#include <linux/init.h> -#include <asm/io.h> - -#include <linux/mtd/map.h> -#include <linux/mtd/mtd.h> - -#define WINDOW_START 0xe8000 -#define WINDOW_LENGTH 0x8000 -#define WINDOW_SHIFT 27 -#define WINDOW_MASK 0x7FFF -#define PAGE_IO 0x208 - -static volatile char page_n_dev = 0; -static unsigned long iomapadr; -static DEFINE_SPINLOCK(oct5066_spin); - -/* - * We use map_priv_1 to identify which device we are. - */ - -static void __oct5066_page(struct map_info *map, __u8 byte) -{ - outb(byte,PAGE_IO); - page_n_dev = byte; -} - -static inline void oct5066_page(struct map_info *map, unsigned long ofs) -{ - __u8 byte = map->map_priv_1 | (ofs >> WINDOW_SHIFT); - - if (page_n_dev != byte) - __oct5066_page(map, byte); -} - - -static map_word oct5066_read8(struct map_info *map, unsigned long ofs) -{ - map_word ret; - spin_lock(&oct5066_spin); - oct5066_page(map, ofs); - ret.x[0] = readb(iomapadr + (ofs & WINDOW_MASK)); - spin_unlock(&oct5066_spin); - return ret; -} - -static void oct5066_copy_from(struct map_info *map, void *to, unsigned long from, ssize_t len) -{ - while(len) { - unsigned long thislen = len; - if (len > (WINDOW_LENGTH - (from & WINDOW_MASK))) - thislen = WINDOW_LENGTH-(from & WINDOW_MASK); - - spin_lock(&oct5066_spin); - oct5066_page(map, from); - memcpy_fromio(to, iomapadr + from, thislen); - spin_unlock(&oct5066_spin); - to += thislen; - from += thislen; - len -= thislen; - } -} - -static void oct5066_write8(struct map_info *map, map_word d, unsigned long adr) -{ - spin_lock(&oct5066_spin); - oct5066_page(map, adr); - writeb(d.x[0], iomapadr + (adr & WINDOW_MASK)); - spin_unlock(&oct5066_spin); -} - -static void oct5066_copy_to(struct map_info *map, unsigned long to, const void *from, ssize_t len) -{ - while(len) { - unsigned long thislen = len; - if (len > (WINDOW_LENGTH - (to & WINDOW_MASK))) - thislen = WINDOW_LENGTH-(to & WINDOW_MASK); - - spin_lock(&oct5066_spin); - oct5066_page(map, to); - memcpy_toio(iomapadr + to, from, thislen); - spin_unlock(&oct5066_spin); - to += thislen; - from += thislen; - len -= thislen; - } -} - -static struct map_info oct5066_map[2] = { - { - .name = "Octagon 5066 Socket", - .phys = NO_XIP, - .size = 512 * 1024, - .bankwidth = 1, - .read = oct5066_read8, - .copy_from = oct5066_copy_from, - .write = oct5066_write8, - .copy_to = oct5066_copy_to, - .map_priv_1 = 1<<6 - }, - { - .name = "Octagon 5066 Internal Flash", - .phys = NO_XIP, - .size = 2 * 1024 * 1024, - .bankwidth = 1, - .read = oct5066_read8, - .copy_from = oct5066_copy_from, - .write = oct5066_write8, - .copy_to = oct5066_copy_to, - .map_priv_1 = 2<<6 - } -}; - -static struct mtd_info *oct5066_mtd[2] = {NULL, NULL}; - -// OctProbe - Sense if this is an octagon card -// --------------------------------------------------------------------- -/* Perform a simple validity test, we map the window select SSD0 and - change pages while monitoring the window. A change in the window, - controlled by the PAGE_IO port is a functioning 5066 board. This will - fail if the thing in the socket is set to a uniform value. */ -static int __init OctProbe(void) -{ - unsigned int Base = (1 << 6); - unsigned long I; - unsigned long Values[10]; - for (I = 0; I != 20; I++) - { - outb(Base + (I%10),PAGE_IO); - if (I < 10) - { - // Record the value and check for uniqueness - Values[I%10] = readl(iomapadr); - if (I > 0 && Values[I%10] == Values[0]) - return -EAGAIN; - } - else - { - // Make sure we get the same values on the second pass - if (Values[I%10] != readl(iomapadr)) - return -EAGAIN; - } - } - return 0; -} - -void cleanup_oct5066(void) -{ - int i; - for (i=0; i<2; i++) { - if (oct5066_mtd[i]) { - del_mtd_device(oct5066_mtd[i]); - map_destroy(oct5066_mtd[i]); - } - } - iounmap((void *)iomapadr); - release_region(PAGE_IO, 1); -} - -static int __init init_oct5066(void) -{ - int i; - int ret = 0; - - // Do an autoprobe sequence - if (!request_region(PAGE_IO,1,"Octagon SSD")) { - printk(KERN_NOTICE "5066: Page Register in Use\n"); - return -EAGAIN; - } - iomapadr = (unsigned long)ioremap(WINDOW_START, WINDOW_LENGTH); - if (!iomapadr) { - printk(KERN_NOTICE "Failed to ioremap memory region\n"); - ret = -EIO; - goto out_rel; - } - if (OctProbe() != 0) { - printk(KERN_NOTICE "5066: Octagon Probe Failed, is this an Octagon 5066 SBC?\n"); - iounmap((void *)iomapadr); - ret = -EAGAIN; - goto out_unmap; - } - - // Print out our little header.. - printk("Octagon 5066 SSD IO:0x%x MEM:0x%x-0x%x\n",PAGE_IO,WINDOW_START, - WINDOW_START+WINDOW_LENGTH); - - for (i=0; i<2; i++) { - oct5066_mtd[i] = do_map_probe("cfi_probe", &oct5066_map[i]); - if (!oct5066_mtd[i]) - oct5066_mtd[i] = do_map_probe("jedec", &oct5066_map[i]); - if (!oct5066_mtd[i]) - oct5066_mtd[i] = do_map_probe("map_ram", &oct5066_map[i]); - if (!oct5066_mtd[i]) - oct5066_mtd[i] = do_map_probe("map_rom", &oct5066_map[i]); - if (oct5066_mtd[i]) { - oct5066_mtd[i]->owner = THIS_MODULE; - add_mtd_device(oct5066_mtd[i]); - } - } - - if (!oct5066_mtd[0] && !oct5066_mtd[1]) { - cleanup_oct5066(); - return -ENXIO; - } - - return 0; - - out_unmap: - iounmap((void *)iomapadr); - out_rel: - release_region(PAGE_IO, 1); - return ret; -} - -module_init(init_oct5066); -module_exit(cleanup_oct5066); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Jason Gunthorpe <jgg@deltatee.com>, David Woodhouse <dwmw2@infradead.org>"); -MODULE_DESCRIPTION("MTD map driver for Octagon 5066 Single Board Computer"); diff --git a/drivers/mtd/maps/pci.c b/drivers/mtd/maps/pci.c index 48f4cf5cb9d..eb0242e0b2d 100644 --- a/drivers/mtd/maps/pci.c +++ b/drivers/mtd/maps/pci.c @@ -14,7 +14,6 @@ #include <linux/module.h> #include <linux/kernel.h> #include <linux/pci.h> -#include <linux/init.h> #include <linux/slab.h> #include <linux/mtd/mtd.h> @@ -43,26 +42,14 @@ static map_word mtd_pci_read8(struct map_info *_map, unsigned long ofs) struct map_pci_info *map = (struct map_pci_info *)_map; map_word val; val.x[0]= readb(map->base + map->translate(map, ofs)); -// printk("read8 : %08lx => %02x\n", ofs, val.x[0]); return val; } -#if 0 -static map_word mtd_pci_read16(struct map_info *_map, unsigned long ofs) -{ - struct map_pci_info *map = (struct map_pci_info *)_map; - map_word val; - val.x[0] = readw(map->base + map->translate(map, ofs)); -// printk("read16: %08lx => %04x\n", ofs, val.x[0]); - return val; -} -#endif static map_word mtd_pci_read32(struct map_info *_map, unsigned long ofs) { struct map_pci_info *map = (struct map_pci_info *)_map; map_word val; val.x[0] = readl(map->base + map->translate(map, ofs)); -// printk("read32: %08lx => %08x\n", ofs, val.x[0]); return val; } @@ -75,22 +62,12 @@ static void mtd_pci_copyfrom(struct map_info *_map, void *to, unsigned long from static void mtd_pci_write8(struct map_info *_map, map_word val, unsigned long ofs) { struct map_pci_info *map = (struct map_pci_info *)_map; -// printk("write8 : %08lx <= %02x\n", ofs, val.x[0]); writeb(val.x[0], map->base + map->translate(map, ofs)); } -#if 0 -static void mtd_pci_write16(struct map_info *_map, map_word val, unsigned long ofs) -{ - struct map_pci_info *map = (struct map_pci_info *)_map; -// printk("write16: %08lx <= %04x\n", ofs, val.x[0]); - writew(val.x[0], map->base + map->translate(map, ofs)); -} -#endif static void mtd_pci_write32(struct map_info *_map, map_word val, unsigned long ofs) { struct map_pci_info *map = (struct map_pci_info *)_map; -// printk("write32: %08lx <= %08x\n", ofs, val.x[0]); writel(val.x[0], map->base + map->translate(map, ofs)); } @@ -275,8 +252,7 @@ static struct pci_device_id mtd_pci_ids[] = { * Generic code follows. */ -static int __devinit -mtd_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) +static int mtd_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) { struct mtd_pci_info *info = (struct mtd_pci_info *)id->driver_data; struct map_pci_info *map = NULL; @@ -306,14 +282,13 @@ mtd_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) if (err) goto release; - /* tsk - do_map_probe should take const char * */ - mtd = do_map_probe((char *)info->map_name, &map->map); + mtd = do_map_probe(info->map_name, &map->map); err = -ENODEV; if (!mtd) goto release; mtd->owner = THIS_MODULE; - add_mtd_device(mtd); + mtd_device_register(mtd, NULL, 0); pci_set_drvdata(dev, mtd); @@ -330,43 +305,29 @@ out: return err; } -static void __devexit -mtd_pci_remove(struct pci_dev *dev) +static void mtd_pci_remove(struct pci_dev *dev) { struct mtd_info *mtd = pci_get_drvdata(dev); struct map_pci_info *map = mtd->priv; - del_mtd_device(mtd); + mtd_device_unregister(mtd); map_destroy(mtd); map->exit(dev, map); kfree(map); - pci_set_drvdata(dev, NULL); pci_release_regions(dev); } static struct pci_driver mtd_pci_driver = { .name = "MTD PCI", .probe = mtd_pci_probe, - .remove = __devexit_p(mtd_pci_remove), + .remove = mtd_pci_remove, .id_table = mtd_pci_ids, }; -static int __init mtd_pci_maps_init(void) -{ - return pci_register_driver(&mtd_pci_driver); -} - -static void __exit mtd_pci_maps_exit(void) -{ - pci_unregister_driver(&mtd_pci_driver); -} - -module_init(mtd_pci_maps_init); -module_exit(mtd_pci_maps_exit); +module_pci_driver(mtd_pci_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>"); MODULE_DESCRIPTION("Generic PCI map driver"); MODULE_DEVICE_TABLE(pci, mtd_pci_ids); - diff --git a/drivers/mtd/maps/pcmciamtd.c b/drivers/mtd/maps/pcmciamtd.c index e699e6ac23d..a3cfad392ed 100644 --- a/drivers/mtd/maps/pcmciamtd.c +++ b/drivers/mtd/maps/pcmciamtd.c @@ -14,32 +14,13 @@ #include <linux/timer.h> #include <linux/init.h> #include <asm/io.h> -#include <asm/system.h> -#include <pcmcia/cs_types.h> -#include <pcmcia/cs.h> #include <pcmcia/cistpl.h> #include <pcmcia/ds.h> #include <linux/mtd/map.h> #include <linux/mtd/mtd.h> -#ifdef CONFIG_MTD_DEBUG -static int debug = CONFIG_MTD_DEBUG_VERBOSE; -module_param(debug, int, 0); -MODULE_PARM_DESC(debug, "Set Debug Level 0=quiet, 5=noisy"); -#undef DEBUG -#define DEBUG(n, format, arg...) \ - if (n <= debug) { \ - printk(KERN_DEBUG __FILE__ ":%s(): " format "\n", __func__ , ## arg); \ - } - -#else -#undef DEBUG -#define DEBUG(n, arg...) -static const int debug = 0; -#endif - #define info(format, arg...) printk(KERN_INFO "pcmciamtd: " format "\n" , ## arg) #define DRIVER_DESC "PCMCIA Flash memory card driver" @@ -102,24 +83,23 @@ MODULE_PARM_DESC(mem_type, "Set Memory type (0=Flash, 1=RAM, 2=ROM, default=0)") static caddr_t remap_window(struct map_info *map, unsigned long to) { struct pcmciamtd_dev *dev = (struct pcmciamtd_dev *)map->map_priv_1; - window_handle_t win = (window_handle_t)map->map_priv_2; - memreq_t mrq; + struct resource *win = (struct resource *) map->map_priv_2; + unsigned int offset; int ret; if (!pcmcia_dev_present(dev->p_dev)) { - DEBUG(1, "device removed"); + pr_debug("device removed\n"); return 0; } - mrq.CardOffset = to & ~(dev->win_size-1); - if(mrq.CardOffset != dev->offset) { - DEBUG(2, "Remapping window from 0x%8.8x to 0x%8.8x", - dev->offset, mrq.CardOffset); - mrq.Page = 0; - ret = pcmcia_map_mem_page(dev->p_dev, win, &mrq); + offset = to & ~(dev->win_size-1); + if (offset != dev->offset) { + pr_debug("Remapping window from 0x%8.8x to 0x%8.8x\n", + dev->offset, offset); + ret = pcmcia_map_mem_page(dev->p_dev, win, offset); if (ret != 0) return NULL; - dev->offset = mrq.CardOffset; + dev->offset = offset; } return dev->win_base + (to & (dev->win_size-1)); } @@ -135,7 +115,7 @@ static map_word pcmcia_read8_remap(struct map_info *map, unsigned long ofs) return d; d.x[0] = readb(addr); - DEBUG(3, "ofs = 0x%08lx (%p) data = 0x%02lx", ofs, addr, d.x[0]); + pr_debug("ofs = 0x%08lx (%p) data = 0x%02lx\n", ofs, addr, d.x[0]); return d; } @@ -150,7 +130,7 @@ static map_word pcmcia_read16_remap(struct map_info *map, unsigned long ofs) return d; d.x[0] = readw(addr); - DEBUG(3, "ofs = 0x%08lx (%p) data = 0x%04lx", ofs, addr, d.x[0]); + pr_debug("ofs = 0x%08lx (%p) data = 0x%04lx\n", ofs, addr, d.x[0]); return d; } @@ -160,7 +140,7 @@ static void pcmcia_copy_from_remap(struct map_info *map, void *to, unsigned long struct pcmciamtd_dev *dev = (struct pcmciamtd_dev *)map->map_priv_1; unsigned long win_size = dev->win_size; - DEBUG(3, "to = %p from = %lu len = %zd", to, from, len); + pr_debug("to = %p from = %lu len = %zd\n", to, from, len); while(len) { int toread = win_size - (from & (win_size-1)); caddr_t addr; @@ -172,7 +152,7 @@ static void pcmcia_copy_from_remap(struct map_info *map, void *to, unsigned long if(!addr) return; - DEBUG(4, "memcpy from %p to %p len = %d", addr, to, toread); + pr_debug("memcpy from %p to %p len = %d\n", addr, to, toread); memcpy_fromio(to, addr, toread); len -= toread; to += toread; @@ -188,7 +168,7 @@ static void pcmcia_write8_remap(struct map_info *map, map_word d, unsigned long if(!addr) return; - DEBUG(3, "adr = 0x%08lx (%p) data = 0x%02lx", adr, addr, d.x[0]); + pr_debug("adr = 0x%08lx (%p) data = 0x%02lx\n", adr, addr, d.x[0]); writeb(d.x[0], addr); } @@ -199,7 +179,7 @@ static void pcmcia_write16_remap(struct map_info *map, map_word d, unsigned long if(!addr) return; - DEBUG(3, "adr = 0x%08lx (%p) data = 0x%04lx", adr, addr, d.x[0]); + pr_debug("adr = 0x%08lx (%p) data = 0x%04lx\n", adr, addr, d.x[0]); writew(d.x[0], addr); } @@ -209,7 +189,7 @@ static void pcmcia_copy_to_remap(struct map_info *map, unsigned long to, const v struct pcmciamtd_dev *dev = (struct pcmciamtd_dev *)map->map_priv_1; unsigned long win_size = dev->win_size; - DEBUG(3, "to = %lu from = %p len = %zd", to, from, len); + pr_debug("to = %lu from = %p len = %zd\n", to, from, len); while(len) { int towrite = win_size - (to & (win_size-1)); caddr_t addr; @@ -221,7 +201,7 @@ static void pcmcia_copy_to_remap(struct map_info *map, unsigned long to, const v if(!addr) return; - DEBUG(4, "memcpy from %p to %p len = %d", from, addr, towrite); + pr_debug("memcpy from %p to %p len = %d\n", from, addr, towrite); memcpy_toio(addr, from, towrite); len -= towrite; to += towrite; @@ -243,7 +223,7 @@ static map_word pcmcia_read8(struct map_info *map, unsigned long ofs) return d; d.x[0] = readb(win_base + ofs); - DEBUG(3, "ofs = 0x%08lx (%p) data = 0x%02lx", + pr_debug("ofs = 0x%08lx (%p) data = 0x%02lx\n", ofs, win_base + ofs, d.x[0]); return d; } @@ -258,7 +238,7 @@ static map_word pcmcia_read16(struct map_info *map, unsigned long ofs) return d; d.x[0] = readw(win_base + ofs); - DEBUG(3, "ofs = 0x%08lx (%p) data = 0x%04lx", + pr_debug("ofs = 0x%08lx (%p) data = 0x%04lx\n", ofs, win_base + ofs, d.x[0]); return d; } @@ -271,7 +251,7 @@ static void pcmcia_copy_from(struct map_info *map, void *to, unsigned long from, if(DEV_REMOVED(map)) return; - DEBUG(3, "to = %p from = %lu len = %zd", to, from, len); + pr_debug("to = %p from = %lu len = %zd\n", to, from, len); memcpy_fromio(to, win_base + from, len); } @@ -283,7 +263,7 @@ static void pcmcia_write8(struct map_info *map, map_word d, unsigned long adr) if(DEV_REMOVED(map)) return; - DEBUG(3, "adr = 0x%08lx (%p) data = 0x%02lx", + pr_debug("adr = 0x%08lx (%p) data = 0x%02lx\n", adr, win_base + adr, d.x[0]); writeb(d.x[0], win_base + adr); } @@ -296,7 +276,7 @@ static void pcmcia_write16(struct map_info *map, map_word d, unsigned long adr) if(DEV_REMOVED(map)) return; - DEBUG(3, "adr = 0x%08lx (%p) data = 0x%04lx", + pr_debug("adr = 0x%08lx (%p) data = 0x%04lx\n", adr, win_base + adr, d.x[0]); writew(d.x[0], win_base + adr); } @@ -309,50 +289,48 @@ static void pcmcia_copy_to(struct map_info *map, unsigned long to, const void *f if(DEV_REMOVED(map)) return; - DEBUG(3, "to = %lu from = %p len = %zd", to, from, len); + pr_debug("to = %lu from = %p len = %zd\n", to, from, len); memcpy_toio(win_base + to, from, len); } +static DEFINE_SPINLOCK(pcmcia_vpp_lock); +static int pcmcia_vpp_refcnt; static void pcmciamtd_set_vpp(struct map_info *map, int on) { struct pcmciamtd_dev *dev = (struct pcmciamtd_dev *)map->map_priv_1; struct pcmcia_device *link = dev->p_dev; - modconf_t mod; - int ret; - - mod.Attributes = CONF_VPP1_CHANGE_VALID | CONF_VPP2_CHANGE_VALID; - mod.Vcc = 0; - mod.Vpp1 = mod.Vpp2 = on ? dev->vpp : 0; + unsigned long flags; - DEBUG(2, "dev = %p on = %d vpp = %d\n", dev, on, dev->vpp); - ret = pcmcia_modify_configuration(link, &mod); + pr_debug("dev = %p on = %d vpp = %d\n\n", dev, on, dev->vpp); + spin_lock_irqsave(&pcmcia_vpp_lock, flags); + if (on) { + if (++pcmcia_vpp_refcnt == 1) /* first nested 'on' */ + pcmcia_fixup_vpp(link, dev->vpp); + } else { + if (--pcmcia_vpp_refcnt == 0) /* last nested 'off' */ + pcmcia_fixup_vpp(link, 0); + } + spin_unlock_irqrestore(&pcmcia_vpp_lock, flags); } -/* After a card is removed, pcmciamtd_release() will unregister the - * device, and release the PCMCIA configuration. If the device is - * still open, this will be postponed until it is closed. - */ - static void pcmciamtd_release(struct pcmcia_device *link) { struct pcmciamtd_dev *dev = link->priv; - DEBUG(3, "link = 0x%p", link); + pr_debug("link = 0x%p\n", link); - if (link->win) { + if (link->resource[2]->end) { if(dev->win_base) { iounmap(dev->win_base); dev->win_base = NULL; } - pcmcia_release_window(link, link->win); } pcmcia_disable_device(link); } -#ifdef CONFIG_MTD_DEBUG static int pcmciamtd_cistpl_format(struct pcmcia_device *p_dev, tuple_t *tuple, void *priv_data) @@ -362,7 +340,7 @@ static int pcmciamtd_cistpl_format(struct pcmcia_device *p_dev, if (!pcmcia_parse_tuple(tuple, &parse)) { cistpl_format_t *t = &parse.format; (void)t; /* Shut up, gcc */ - DEBUG(2, "Format type: %u, Error Detection: %u, offset = %u, length =%u", + pr_debug("Format type: %u, Error Detection: %u, offset = %u, length =%u\n", t->type, t->edc, t->offset, t->length); } return -ENOSPC; @@ -378,12 +356,11 @@ static int pcmciamtd_cistpl_jedec(struct pcmcia_device *p_dev, if (!pcmcia_parse_tuple(tuple, &parse)) { cistpl_jedec_t *t = &parse.jedec; for (i = 0; i < t->nid; i++) - DEBUG(2, "JEDEC: 0x%02x 0x%02x", + pr_debug("JEDEC: 0x%02x 0x%02x\n", t->id[i].mfr, t->id[i].info); } return -ENOSPC; } -#endif static int pcmciamtd_cistpl_device(struct pcmcia_device *p_dev, tuple_t *tuple, @@ -397,14 +374,14 @@ static int pcmciamtd_cistpl_device(struct pcmcia_device *p_dev, if (pcmcia_parse_tuple(tuple, &parse)) return -EINVAL; - DEBUG(2, "Common memory:"); + pr_debug("Common memory:\n"); dev->pcmcia_map.size = t->dev[0].size; /* from here on: DEBUG only */ for (i = 0; i < t->ndev; i++) { - DEBUG(2, "Region %d, type = %u", i, t->dev[i].type); - DEBUG(2, "Region %d, wp = %u", i, t->dev[i].wp); - DEBUG(2, "Region %d, speed = %u ns", i, t->dev[i].speed); - DEBUG(2, "Region %d, size = %u bytes", i, t->dev[i].size); + pr_debug("Region %d, type = %u\n", i, t->dev[i].type); + pr_debug("Region %d, wp = %u\n", i, t->dev[i].wp); + pr_debug("Region %d, speed = %u ns\n", i, t->dev[i].speed); + pr_debug("Region %d, size = %u bytes\n", i, t->dev[i].size); } return 0; } @@ -424,12 +401,12 @@ static int pcmciamtd_cistpl_geo(struct pcmcia_device *p_dev, dev->pcmcia_map.bankwidth = t->geo[0].buswidth; /* from here on: DEBUG only */ for (i = 0; i < t->ngeo; i++) { - DEBUG(2, "region: %d bankwidth = %u", i, t->geo[i].buswidth); - DEBUG(2, "region: %d erase_block = %u", i, t->geo[i].erase_block); - DEBUG(2, "region: %d read_block = %u", i, t->geo[i].read_block); - DEBUG(2, "region: %d write_block = %u", i, t->geo[i].write_block); - DEBUG(2, "region: %d partition = %u", i, t->geo[i].partition); - DEBUG(2, "region: %d interleave = %u", i, t->geo[i].interleave); + pr_debug("region: %d bankwidth = %u\n", i, t->geo[i].buswidth); + pr_debug("region: %d erase_block = %u\n", i, t->geo[i].erase_block); + pr_debug("region: %d read_block = %u\n", i, t->geo[i].read_block); + pr_debug("region: %d write_block = %u\n", i, t->geo[i].write_block); + pr_debug("region: %d partition = %u\n", i, t->geo[i].partition); + pr_debug("region: %d interleave = %u\n", i, t->geo[i].interleave); } return 0; } @@ -447,13 +424,11 @@ static void card_settings(struct pcmciamtd_dev *dev, struct pcmcia_device *p_dev if (p_dev->prod_id[i]) strcat(dev->mtd_name, p_dev->prod_id[i]); } - DEBUG(2, "Found name: %s", dev->mtd_name); + pr_debug("Found name: %s\n", dev->mtd_name); } -#ifdef CONFIG_MTD_DEBUG pcmcia_loop_tuple(p_dev, CISTPL_FORMAT, pcmciamtd_cistpl_format, NULL); pcmcia_loop_tuple(p_dev, CISTPL_JEDEC_C, pcmciamtd_cistpl_jedec, NULL); -#endif pcmcia_loop_tuple(p_dev, CISTPL_DEVICE, pcmciamtd_cistpl_device, dev); pcmcia_loop_tuple(p_dev, CISTPL_DEVICE_GEO, pcmciamtd_cistpl_geo, dev); @@ -465,12 +440,12 @@ static void card_settings(struct pcmciamtd_dev *dev, struct pcmcia_device *p_dev if(force_size) { dev->pcmcia_map.size = force_size << 20; - DEBUG(2, "size forced to %dM", force_size); + pr_debug("size forced to %dM\n", force_size); } if(bankwidth) { dev->pcmcia_map.bankwidth = bankwidth; - DEBUG(2, "bankwidth forced to %d", bankwidth); + pr_debug("bankwidth forced to %d\n", bankwidth); } dev->pcmcia_map.name = dev->mtd_name; @@ -479,28 +454,22 @@ static void card_settings(struct pcmciamtd_dev *dev, struct pcmcia_device *p_dev *new_name = 1; } - DEBUG(1, "Device: Size: %lu Width:%d Name: %s", + pr_debug("Device: Size: %lu Width:%d Name: %s\n", dev->pcmcia_map.size, dev->pcmcia_map.bankwidth << 3, dev->mtd_name); } -/* pcmciamtd_config() is scheduled to run after a CARD_INSERTION event - * is received, to configure the PCMCIA socket, and to make the - * MTD device available to the system. - */ - static int pcmciamtd_config(struct pcmcia_device *link) { struct pcmciamtd_dev *dev = link->priv; struct mtd_info *mtd = NULL; - win_req_t req; int ret; - int i; + int i, j = 0; static char *probes[] = { "jedec_probe", "cfi_probe" }; int new_name = 0; - DEBUG(3, "link=0x%p", link); + pr_debug("link=0x%p\n", link); card_settings(dev, link, &new_name); @@ -518,71 +487,75 @@ static int pcmciamtd_config(struct pcmcia_device *link) dev->pcmcia_map.set_vpp = pcmciamtd_set_vpp; /* Request a memory window for PCMCIA. Some architeures can map windows - * upto the maximum that PCMCIA can support (64MiB) - this is ideal and + * up to the maximum that PCMCIA can support (64MiB) - this is ideal and * we aim for a window the size of the whole card - otherwise we try * smaller windows until we succeed */ - req.Attributes = WIN_MEMORY_TYPE_CM | WIN_ENABLE; - req.Attributes |= (dev->pcmcia_map.bankwidth == 1) ? WIN_DATA_WIDTH_8 : WIN_DATA_WIDTH_16; - req.Base = 0; - req.AccessSpeed = mem_speed; - link->win = (window_handle_t)link; - req.Size = (force_size) ? force_size << 20 : MAX_PCMCIA_ADDR; + link->resource[2]->flags |= WIN_MEMORY_TYPE_CM | WIN_ENABLE; + link->resource[2]->flags |= (dev->pcmcia_map.bankwidth == 1) ? + WIN_DATA_WIDTH_8 : WIN_DATA_WIDTH_16; + link->resource[2]->start = 0; + link->resource[2]->end = (force_size) ? force_size << 20 : + MAX_PCMCIA_ADDR; dev->win_size = 0; do { int ret; - DEBUG(2, "requesting window with size = %dKiB memspeed = %d", - req.Size >> 10, req.AccessSpeed); - ret = pcmcia_request_window(link, &req, &link->win); - DEBUG(2, "ret = %d dev->win_size = %d", ret, dev->win_size); + pr_debug("requesting window with size = %luKiB memspeed = %d\n", + (unsigned long) resource_size(link->resource[2]) >> 10, + mem_speed); + ret = pcmcia_request_window(link, link->resource[2], mem_speed); + pr_debug("ret = %d dev->win_size = %d\n", ret, dev->win_size); if(ret) { - req.Size >>= 1; + j++; + link->resource[2]->start = 0; + link->resource[2]->end = (force_size) ? + force_size << 20 : MAX_PCMCIA_ADDR; + link->resource[2]->end >>= j; } else { - DEBUG(2, "Got window of size %dKiB", req.Size >> 10); - dev->win_size = req.Size; + pr_debug("Got window of size %luKiB\n", (unsigned long) + resource_size(link->resource[2]) >> 10); + dev->win_size = resource_size(link->resource[2]); break; } - } while(req.Size >= 0x1000); + } while (link->resource[2]->end >= 0x1000); - DEBUG(2, "dev->win_size = %d", dev->win_size); + pr_debug("dev->win_size = %d\n", dev->win_size); if(!dev->win_size) { dev_err(&dev->p_dev->dev, "Cannot allocate memory window\n"); pcmciamtd_release(link); return -ENODEV; } - DEBUG(1, "Allocated a window of %dKiB", dev->win_size >> 10); + pr_debug("Allocated a window of %dKiB\n", dev->win_size >> 10); /* Get write protect status */ - DEBUG(2, "window handle = 0x%8.8lx", (unsigned long)link->win); - dev->win_base = ioremap(req.Base, req.Size); + dev->win_base = ioremap(link->resource[2]->start, + resource_size(link->resource[2])); if(!dev->win_base) { - dev_err(&dev->p_dev->dev, "ioremap(%lu, %u) failed\n", - req.Base, req.Size); + dev_err(&dev->p_dev->dev, "ioremap(%pR) failed\n", + link->resource[2]); pcmciamtd_release(link); return -ENODEV; } - DEBUG(1, "mapped window dev = %p req.base = 0x%lx base = %p size = 0x%x", - dev, req.Base, dev->win_base, req.Size); + pr_debug("mapped window dev = %p @ %pR, base = %p\n", + dev, link->resource[2], dev->win_base); dev->offset = 0; dev->pcmcia_map.map_priv_1 = (unsigned long)dev; - dev->pcmcia_map.map_priv_2 = (unsigned long)link->win; + dev->pcmcia_map.map_priv_2 = (unsigned long)link->resource[2]; dev->vpp = (vpp) ? vpp : link->socket->socket.Vpp; - link->conf.Attributes = 0; if(setvpp == 2) { - link->conf.Vpp = dev->vpp; + link->vpp = dev->vpp; } else { - link->conf.Vpp = 0; + link->vpp = 0; } - link->conf.IntType = INT_MEMORY; - link->conf.ConfigIndex = 0; - DEBUG(2, "Setting Configuration"); - ret = pcmcia_request_configuration(link, &link->conf); + link->config_index = 0; + pr_debug("Setting Configuration\n"); + ret = pcmcia_enable_device(link); if (ret != 0) { if (dev->win_base) { iounmap(dev->win_base); @@ -597,17 +570,17 @@ static int pcmciamtd_config(struct pcmcia_device *link) mtd = do_map_probe("map_rom", &dev->pcmcia_map); } else { for(i = 0; i < ARRAY_SIZE(probes); i++) { - DEBUG(1, "Trying %s", probes[i]); + pr_debug("Trying %s\n", probes[i]); mtd = do_map_probe(probes[i], &dev->pcmcia_map); if(mtd) break; - DEBUG(1, "FAILED: %s", probes[i]); + pr_debug("FAILED: %s\n", probes[i]); } } if(!mtd) { - DEBUG(1, "Can not find an MTD"); + pr_debug("Can not find an MTD\n"); pcmciamtd_release(link); return -ENODEV; } @@ -634,7 +607,7 @@ static int pcmciamtd_config(struct pcmcia_device *link) /* If the memory found is fits completely into the mapped PCMCIA window, use the faster non-remapping read/write functions */ if(mtd->size <= dev->win_size) { - DEBUG(1, "Using non remapping memory functions"); + pr_debug("Using non remapping memory functions\n"); dev->pcmcia_map.map_priv_2 = (unsigned long)dev->win_base; if (dev->pcmcia_map.bankwidth == 1) { dev->pcmcia_map.read = pcmcia_read8; @@ -647,7 +620,7 @@ static int pcmciamtd_config(struct pcmcia_device *link) dev->pcmcia_map.copy_to = pcmcia_copy_to; } - if(add_mtd_device(mtd)) { + if (mtd_device_register(mtd, NULL, 0)) { map_destroy(mtd); dev->mtd_info = NULL; dev_err(&dev->p_dev->dev, @@ -657,16 +630,12 @@ static int pcmciamtd_config(struct pcmcia_device *link) } dev_info(&dev->p_dev->dev, "mtd%d: %s\n", mtd->index, mtd->name); return 0; - - dev_err(&dev->p_dev->dev, "CS Error, exiting\n"); - pcmciamtd_release(link); - return -ENODEV; } static int pcmciamtd_suspend(struct pcmcia_device *dev) { - DEBUG(2, "EVENT_PM_RESUME"); + pr_debug("EVENT_PM_RESUME\n"); /* get_lock(link); */ @@ -675,7 +644,7 @@ static int pcmciamtd_suspend(struct pcmcia_device *dev) static int pcmciamtd_resume(struct pcmcia_device *dev) { - DEBUG(2, "EVENT_PM_SUSPEND"); + pr_debug("EVENT_PM_SUSPEND\n"); /* free_lock(link); */ @@ -683,20 +652,14 @@ static int pcmciamtd_resume(struct pcmcia_device *dev) } -/* This deletes a driver "instance". The device is de-registered - * with Card Services. If it has been released, all local data - * structures are freed. Otherwise, the structures will be freed - * when the device is released. - */ - static void pcmciamtd_detach(struct pcmcia_device *link) { struct pcmciamtd_dev *dev = link->priv; - DEBUG(3, "link=0x%p", link); + pr_debug("link=0x%p\n", link); if(dev->mtd_info) { - del_mtd_device(dev->mtd_info); + mtd_device_unregister(dev->mtd_info); dev_info(&dev->p_dev->dev, "mtd%d: Removing\n", dev->mtd_info->index); map_destroy(dev->mtd_info); @@ -706,11 +669,6 @@ static void pcmciamtd_detach(struct pcmcia_device *link) } -/* pcmciamtd_attach() creates an "instance" of the driver, allocating - * local data structures for one device. The device is registered - * with Card Services. - */ - static int pcmciamtd_probe(struct pcmcia_device *link) { struct pcmciamtd_dev *dev; @@ -718,18 +676,15 @@ static int pcmciamtd_probe(struct pcmcia_device *link) /* Create new memory card device */ dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; - DEBUG(1, "dev=0x%p", dev); + pr_debug("dev=0x%p\n", dev); dev->p_dev = link; link->priv = dev; - link->conf.Attributes = 0; - link->conf.IntType = INT_MEMORY; - return pcmciamtd_config(link); } -static struct pcmcia_device_id pcmciamtd_ids[] = { +static const struct pcmcia_device_id pcmciamtd_ids[] = { PCMCIA_DEVICE_FUNC_ID(1), PCMCIA_DEVICE_PROD_ID123("IO DATA", "PCS-2M", "2MB SRAM", 0x547e66dc, 0x1fed36cd, 0x36eadd21), PCMCIA_DEVICE_PROD_ID12("IBM", "2MB SRAM", 0xb569a6e5, 0x36eadd21), @@ -760,9 +715,7 @@ static struct pcmcia_device_id pcmciamtd_ids[] = { MODULE_DEVICE_TABLE(pcmcia, pcmciamtd_ids); static struct pcmcia_driver pcmciamtd_driver = { - .drv = { - .name = "pcmciamtd" - }, + .name = "pcmciamtd", .probe = pcmciamtd_probe, .remove = pcmciamtd_detach, .owner = THIS_MODULE, @@ -774,8 +727,6 @@ static struct pcmcia_driver pcmciamtd_driver = { static int __init init_pcmciamtd(void) { - info(DRIVER_DESC); - if(bankwidth && bankwidth != 1 && bankwidth != 2) { info("bad bankwidth (%d), using default", bankwidth); bankwidth = 2; @@ -794,7 +745,7 @@ static int __init init_pcmciamtd(void) static void __exit exit_pcmciamtd(void) { - DEBUG(1, DRIVER_DESC " unloading"); + pr_debug(DRIVER_DESC " unloading"); pcmcia_unregister_driver(&pcmciamtd_driver); } diff --git a/drivers/mtd/maps/physmap.c b/drivers/mtd/maps/physmap.c index 426461a5f0d..f73cd461257 100644 --- a/drivers/mtd/maps/physmap.c +++ b/drivers/mtd/maps/physmap.c @@ -27,10 +27,8 @@ struct physmap_flash_info { struct mtd_info *mtd[MAX_RESOURCES]; struct mtd_info *cmtd; struct map_info map[MAX_RESOURCES]; -#ifdef CONFIG_MTD_PARTITIONS - int nr_parts; - struct mtd_partition *parts; -#endif + spinlock_t vpp_lock; + int vpp_refcnt; }; static int physmap_flash_remove(struct platform_device *dev) @@ -42,56 +40,69 @@ static int physmap_flash_remove(struct platform_device *dev) info = platform_get_drvdata(dev); if (info == NULL) return 0; - platform_set_drvdata(dev, NULL); - physmap_data = dev->dev.platform_data; + physmap_data = dev_get_platdata(&dev->dev); if (info->cmtd) { -#ifdef CONFIG_MTD_PARTITIONS - if (info->nr_parts || physmap_data->nr_parts) { - del_mtd_partitions(info->cmtd); - - if (info->nr_parts) - kfree(info->parts); - } else { - del_mtd_device(info->cmtd); - } -#else - del_mtd_device(info->cmtd); -#endif -#ifdef CONFIG_MTD_CONCAT + mtd_device_unregister(info->cmtd); if (info->cmtd != info->mtd[0]) mtd_concat_destroy(info->cmtd); -#endif } for (i = 0; i < MAX_RESOURCES; i++) { if (info->mtd[i] != NULL) map_destroy(info->mtd[i]); } + + if (physmap_data->exit) + physmap_data->exit(dev); + return 0; } -static const char *rom_probe_types[] = { - "cfi_probe", - "jedec_probe", - "qinfo_probe", - "map_rom", - NULL }; -#ifdef CONFIG_MTD_PARTITIONS -static const char *part_probe_types[] = { "cmdlinepart", "RedBoot", NULL }; -#endif +static void physmap_set_vpp(struct map_info *map, int state) +{ + struct platform_device *pdev; + struct physmap_flash_data *physmap_data; + struct physmap_flash_info *info; + unsigned long flags; + + pdev = (struct platform_device *)map->map_priv_1; + physmap_data = dev_get_platdata(&pdev->dev); + + if (!physmap_data->set_vpp) + return; + + info = platform_get_drvdata(pdev); + + spin_lock_irqsave(&info->vpp_lock, flags); + if (state) { + if (++info->vpp_refcnt == 1) /* first nested 'on' */ + physmap_data->set_vpp(pdev, 1); + } else { + if (--info->vpp_refcnt == 0) /* last nested 'off' */ + physmap_data->set_vpp(pdev, 0); + } + spin_unlock_irqrestore(&info->vpp_lock, flags); +} + +static const char * const rom_probe_types[] = { + "cfi_probe", "jedec_probe", "qinfo_probe", "map_rom", NULL }; + +static const char * const part_probe_types[] = { + "cmdlinepart", "RedBoot", "afs", NULL }; static int physmap_flash_probe(struct platform_device *dev) { struct physmap_flash_data *physmap_data; struct physmap_flash_info *info; - const char **probe_type; + const char * const *probe_type; + const char * const *part_types; int err = 0; int i; int devices_found = 0; - physmap_data = dev->dev.platform_data; + physmap_data = dev_get_platdata(&dev->dev); if (physmap_data == NULL) return -ENODEV; @@ -102,16 +113,22 @@ static int physmap_flash_probe(struct platform_device *dev) goto err_out; } + if (physmap_data->init) { + err = physmap_data->init(dev); + if (err) + goto err_out; + } + platform_set_drvdata(dev, info); for (i = 0; i < dev->num_resources; i++) { printk(KERN_NOTICE "physmap platform flash device: %.8llx at %.8llx\n", - (unsigned long long)(dev->resource[i].end - dev->resource[i].start + 1), + (unsigned long long)resource_size(&dev->resource[i]), (unsigned long long)dev->resource[i].start); if (!devm_request_mem_region(&dev->dev, dev->resource[i].start, - dev->resource[i].end - dev->resource[i].start + 1, + resource_size(&dev->resource[i]), dev_name(&dev->dev))) { dev_err(&dev->dev, "Could not reserve memory region\n"); err = -ENOMEM; @@ -120,10 +137,11 @@ static int physmap_flash_probe(struct platform_device *dev) info->map[i].name = dev_name(&dev->dev); info->map[i].phys = dev->resource[i].start; - info->map[i].size = dev->resource[i].end - dev->resource[i].start + 1; + info->map[i].size = resource_size(&dev->resource[i]); info->map[i].bankwidth = physmap_data->width; - info->map[i].set_vpp = physmap_data->set_vpp; + info->map[i].set_vpp = physmap_set_vpp; info->map[i].pfow_base = physmap_data->pfow_base; + info->map[i].map_priv_1 = (unsigned long)dev; info->map[i].virt = devm_ioremap(&dev->dev, info->map[i].phys, info->map[i].size); @@ -136,8 +154,12 @@ static int physmap_flash_probe(struct platform_device *dev) simple_map_init(&info->map[i]); probe_type = rom_probe_types; - for (; info->mtd[i] == NULL && *probe_type != NULL; probe_type++) - info->mtd[i] = do_map_probe(*probe_type, &info->map[i]); + if (physmap_data->probe_type == NULL) { + for (; info->mtd[i] == NULL && *probe_type != NULL; probe_type++) + info->mtd[i] = do_map_probe(*probe_type, &info->map[i]); + } else + info->mtd[i] = do_map_probe(physmap_data->probe_type, &info->map[i]); + if (info->mtd[i] == NULL) { dev_err(&dev->dev, "map_probe failed\n"); err = -ENXIO; @@ -155,37 +177,19 @@ static int physmap_flash_probe(struct platform_device *dev) /* * We detected multiple devices. Concatenate them together. */ -#ifdef CONFIG_MTD_CONCAT info->cmtd = mtd_concat_create(info->mtd, devices_found, dev_name(&dev->dev)); if (info->cmtd == NULL) err = -ENXIO; -#else - printk(KERN_ERR "physmap-flash: multiple devices " - "found but MTD concat support disabled.\n"); - err = -ENXIO; -#endif } if (err) goto err_out; -#ifdef CONFIG_MTD_PARTITIONS - err = parse_mtd_partitions(info->cmtd, part_probe_types, - &info->parts, 0); - if (err > 0) { - add_mtd_partitions(info->cmtd, info->parts, err); - info->nr_parts = err; - return 0; - } + spin_lock_init(&info->vpp_lock); - if (physmap_data->nr_parts) { - printk(KERN_NOTICE "Using physmap partition information\n"); - add_mtd_partitions(info->cmtd, physmap_data->parts, - physmap_data->nr_parts); - return 0; - } -#endif + part_types = physmap_data->part_probe_types ? : part_probe_types; - add_mtd_device(info->cmtd); + mtd_device_parse_register(info->cmtd, part_types, NULL, + physmap_data->parts, physmap_data->nr_parts); return 0; err_out: @@ -200,9 +204,8 @@ static void physmap_flash_shutdown(struct platform_device *dev) int i; for (i = 0; i < MAX_RESOURCES && info->mtd[i]; i++) - if (info->mtd[i]->suspend && info->mtd[i]->resume) - if (info->mtd[i]->suspend(info->mtd[i]) == 0) - info->mtd[i]->resume(info->mtd[i]); + if (mtd_suspend(info->mtd[i]) == 0) + mtd_resume(info->mtd[i]); } #else #define physmap_flash_shutdown NULL @@ -239,23 +242,6 @@ static struct platform_device physmap_flash = { .num_resources = 1, .resource = &physmap_flash_resource, }; - -void physmap_configure(unsigned long addr, unsigned long size, - int bankwidth, void (*set_vpp)(struct map_info *, int)) -{ - physmap_flash_resource.start = addr; - physmap_flash_resource.end = addr + size - 1; - physmap_flash_data.width = bankwidth; - physmap_flash_data.set_vpp = set_vpp; -} - -#ifdef CONFIG_MTD_PARTITIONS -void physmap_set_partitions(struct mtd_partition *parts, int num_parts) -{ - physmap_flash_data.nr_parts = num_parts; - physmap_flash_data.parts = parts; -} -#endif #endif static int __init physmap_init(void) diff --git a/drivers/mtd/maps/physmap_of.c b/drivers/mtd/maps/physmap_of.c index ba124baa646..217c25d7381 100644 --- a/drivers/mtd/maps/physmap_of.c +++ b/drivers/mtd/maps/physmap_of.c @@ -15,13 +15,13 @@ #include <linux/module.h> #include <linux/types.h> -#include <linux/init.h> #include <linux/device.h> #include <linux/mtd/mtd.h> #include <linux/mtd/map.h> #include <linux/mtd/partitions.h> #include <linux/mtd/concat.h> #include <linux/of.h> +#include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/slab.h> @@ -33,67 +33,11 @@ struct of_flash_list { struct of_flash { struct mtd_info *cmtd; -#ifdef CONFIG_MTD_PARTITIONS - struct mtd_partition *parts; -#endif int list_size; /* number of elements in of_flash_list */ struct of_flash_list list[0]; }; -#ifdef CONFIG_MTD_PARTITIONS -#define OF_FLASH_PARTS(info) ((info)->parts) - -static int parse_obsolete_partitions(struct of_device *dev, - struct of_flash *info, - struct device_node *dp) -{ - int i, plen, nr_parts; - const struct { - u32 offset, len; - } *part; - const char *names; - - part = of_get_property(dp, "partitions", &plen); - if (!part) - return 0; /* No partitions found */ - - dev_warn(&dev->dev, "Device tree uses obsolete partition map binding\n"); - - nr_parts = plen / sizeof(part[0]); - - info->parts = kzalloc(nr_parts * sizeof(*info->parts), GFP_KERNEL); - if (!info->parts) - return -ENOMEM; - - names = of_get_property(dp, "partition-names", &plen); - - for (i = 0; i < nr_parts; i++) { - info->parts[i].offset = part->offset; - info->parts[i].size = part->len & ~1; - if (part->len & 1) /* bit 0 set signifies read only partition */ - info->parts[i].mask_flags = MTD_WRITEABLE; - - if (names && (plen > 0)) { - int len = strlen(names) + 1; - - info->parts[i].name = (char *)names; - plen -= len; - names += len; - } else { - info->parts[i].name = "unnamed"; - } - - part++; - } - - return nr_parts; -} -#else /* MTD_PARTITIONS */ -#define OF_FLASH_PARTS(info) (0) -#define parse_partitions(info, dev) (0) -#endif /* MTD_PARTITIONS */ - -static int of_flash_remove(struct of_device *dev) +static int of_flash_remove(struct platform_device *dev) { struct of_flash *info; int i; @@ -103,21 +47,13 @@ static int of_flash_remove(struct of_device *dev) return 0; dev_set_drvdata(&dev->dev, NULL); -#ifdef CONFIG_MTD_CONCAT if (info->cmtd != info->list[0].mtd) { - del_mtd_device(info->cmtd); + mtd_device_unregister(info->cmtd); mtd_concat_destroy(info->cmtd); } -#endif - if (info->cmtd) { - if (OF_FLASH_PARTS(info)) { - del_mtd_partitions(info->cmtd); - kfree(OF_FLASH_PARTS(info)); - } else { - del_mtd_device(info->cmtd); - } - } + if (info->cmtd) + mtd_device_unregister(info->cmtd); for (i = 0; i < info->list_size; i++) { if (info->list[i].mtd) @@ -131,23 +67,21 @@ static int of_flash_remove(struct of_device *dev) kfree(info->list[i].res); } } - - kfree(info); - return 0; } +static const char * const rom_probe_types[] = { + "cfi_probe", "jedec_probe", "map_rom" }; + /* Helper function to handle probing of the obsolete "direct-mapped" * compatible binding, which has an extra "probe-type" property * describing the type of flash probe necessary. */ -static struct mtd_info * __devinit obsolete_probe(struct of_device *dev, - struct map_info *map) +static struct mtd_info *obsolete_probe(struct platform_device *dev, + struct map_info *map) { struct device_node *dp = dev->dev.of_node; const char *of_probe; struct mtd_info *mtd; - static const char *rom_probe_types[] - = { "cfi_probe", "jedec_probe", "map_rom"}; int i; dev_warn(&dev->dev, "Device tree uses obsolete \"direct-mapped\" " @@ -173,13 +107,14 @@ static struct mtd_info * __devinit obsolete_probe(struct of_device *dev, } } -#ifdef CONFIG_MTD_PARTITIONS /* When partitions are set we look for a linux,part-probe property which specifies the list of partition probers to use. If none is given then the default is use. These take precedence over other device tree information. */ -static const char *part_probe_types_def[] = { "cmdlinepart", "RedBoot", NULL }; -static const char ** __devinit of_get_probes(struct device_node *dp) +static const char * const part_probe_types_def[] = { + "cmdlinepart", "RedBoot", "ofpart", "ofoldpart", NULL }; + +static const char * const *of_get_probes(struct device_node *dp) { const char *cp; int cplen; @@ -208,34 +143,42 @@ static const char ** __devinit of_get_probes(struct device_node *dp) return res; } -static void __devinit of_free_probes(const char **probes) +static void of_free_probes(const char * const *probes) { if (probes != part_probe_types_def) kfree(probes); } -#endif -static int __devinit of_flash_probe(struct of_device *dev, - const struct of_device_id *match) +static struct of_device_id of_flash_match[]; +static int of_flash_probe(struct platform_device *dev) { -#ifdef CONFIG_MTD_PARTITIONS - const char **part_probe_types; -#endif + const char * const *part_probe_types; + const struct of_device_id *match; struct device_node *dp = dev->dev.of_node; struct resource res; struct of_flash *info; - const char *probe_type = match->data; - const u32 *width; + const char *probe_type; + const __be32 *width; int err; int i; int count; - const u32 *p; + const __be32 *p; int reg_tuple_size; struct mtd_info **mtd_list = NULL; resource_size_t res_size; + struct mtd_part_parser_data ppdata; + bool map_indirect; + const char *mtd_name = NULL; + + match = of_match_device(of_flash_match, &dev->dev); + if (!match) + return -EINVAL; + probe_type = match->data; reg_tuple_size = (of_n_addr_cells(dp) + of_n_size_cells(dp)) * sizeof(u32); + of_property_read_string(dp, "linux,mtd-name", &mtd_name); + /* * Get number of "reg" tuples. Scan for MTD devices on area's * described by each "reg" region. This makes it possible (including @@ -251,9 +194,12 @@ static int __devinit of_flash_probe(struct of_device *dev, } count /= reg_tuple_size; + map_indirect = of_property_read_bool(dp, "no-unaligned-direct-access"); + err = -ENOMEM; - info = kzalloc(sizeof(struct of_flash) + - sizeof(struct of_flash_list) * count, GFP_KERNEL); + info = devm_kzalloc(&dev->dev, + sizeof(struct of_flash) + + sizeof(struct of_flash_list) * count, GFP_KERNEL); if (!info) goto err_flash_remove; @@ -266,14 +212,14 @@ static int __devinit of_flash_probe(struct of_device *dev, for (i = 0; i < count; i++) { err = -ENXIO; if (of_address_to_resource(dp, i, &res)) { - dev_err(&dev->dev, "Can't get IO address from device" - " tree\n"); - goto err_out; + /* + * Continue with next register tuple if this + * one is not mappable + */ + continue; } - dev_dbg(&dev->dev, "of_flash device: %.8llx-%.8llx\n", - (unsigned long long)res.start, - (unsigned long long)res.end); + dev_dbg(&dev->dev, "of_flash device: %pR\n", &res); err = -EBUSY; res_size = resource_size(&res); @@ -290,10 +236,11 @@ static int __devinit of_flash_probe(struct of_device *dev, goto err_out; } - info->list[i].map.name = dev_name(&dev->dev); + info->list[i].map.name = mtd_name ?: dev_name(&dev->dev); info->list[i].map.phys = res.start; info->list[i].map.size = res_size; - info->list[i].map.bankwidth = *width; + info->list[i].map.bankwidth = be32_to_cpup(width); + info->list[i].map.device_node = dp; err = -ENOMEM; info->list[i].map.virt = ioremap(info->list[i].map.phys, @@ -306,6 +253,17 @@ static int __devinit of_flash_probe(struct of_device *dev, simple_map_init(&info->list[i].map); + /* + * On some platforms (e.g. MPC5200) a direct 1:1 mapping + * may cause problems with JFFS2 usage, as the local bus (LPB) + * doesn't support unaligned accesses as implemented in the + * JFFS2 code via memcpy(). By setting NO_XIP, the + * flash will not be exposed directly to the MTD users + * (e.g. JFFS2) any more. + */ + if (map_indirect) + info->list[i].map.phys = NO_XIP; + if (probe_type) { info->list[i].mtd = do_map_probe(probe_type, &info->list[i].map); @@ -327,56 +285,28 @@ static int __devinit of_flash_probe(struct of_device *dev, } err = 0; + info->cmtd = NULL; if (info->list_size == 1) { info->cmtd = info->list[0].mtd; } else if (info->list_size > 1) { /* * We detected multiple devices. Concatenate them together. */ -#ifdef CONFIG_MTD_CONCAT info->cmtd = mtd_concat_create(mtd_list, info->list_size, dev_name(&dev->dev)); - if (info->cmtd == NULL) - err = -ENXIO; -#else - printk(KERN_ERR "physmap_of: multiple devices " - "found but MTD concat support disabled.\n"); - err = -ENXIO; -#endif } + if (info->cmtd == NULL) + err = -ENXIO; + if (err) goto err_out; -#ifdef CONFIG_MTD_PARTITIONS + ppdata.of_node = dp; part_probe_types = of_get_probes(dp); - err = parse_mtd_partitions(info->cmtd, part_probe_types, - &info->parts, 0); - if (err < 0) { - of_free_probes(part_probe_types); - return err; - } + mtd_device_parse_register(info->cmtd, part_probe_types, &ppdata, + NULL, 0); of_free_probes(part_probe_types); -#ifdef CONFIG_MTD_OF_PARTS - if (err == 0) { - err = of_mtd_parse_partitions(&dev->dev, dp, &info->parts); - if (err < 0) - return err; - } -#endif - - if (err == 0) { - err = parse_obsolete_partitions(dev, info, dp); - if (err < 0) - return err; - } - - if (err > 0) - add_mtd_partitions(info->cmtd, info->parts, err); - else -#endif - add_mtd_device(info->cmtd); - kfree(mtd_list); return 0; @@ -417,7 +347,7 @@ static struct of_device_id of_flash_match[] = { }; MODULE_DEVICE_TABLE(of, of_flash_match); -static struct of_platform_driver of_flash_driver = { +static struct platform_driver of_flash_driver = { .driver = { .name = "of-flash", .owner = THIS_MODULE, @@ -427,18 +357,7 @@ static struct of_platform_driver of_flash_driver = { .remove = of_flash_remove, }; -static int __init of_flash_init(void) -{ - return of_register_platform_driver(&of_flash_driver); -} - -static void __exit of_flash_exit(void) -{ - of_unregister_platform_driver(&of_flash_driver); -} - -module_init(of_flash_init); -module_exit(of_flash_exit); +module_platform_driver(of_flash_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Vitaly Wool <vwool@ru.mvista.com>"); diff --git a/drivers/mtd/maps/pismo.c b/drivers/mtd/maps/pismo.c index f4ce273e93f..dc6df9abea0 100644 --- a/drivers/mtd/maps/pismo.c +++ b/drivers/mtd/maps/pismo.c @@ -50,41 +50,15 @@ struct pismo_data { struct platform_device *dev[PISMO_NUM_CS]; }; -/* FIXME: set_vpp could do with a better calling convention */ -static struct pismo_data *vpp_pismo; -static DEFINE_MUTEX(pismo_mutex); - -static int pismo_setvpp_probe_fix(struct pismo_data *pismo) +static void pismo_set_vpp(struct platform_device *pdev, int on) { - mutex_lock(&pismo_mutex); - if (vpp_pismo) { - mutex_unlock(&pismo_mutex); - kfree(pismo); - return -EBUSY; - } - vpp_pismo = pismo; - mutex_unlock(&pismo_mutex); - return 0; -} - -static void pismo_setvpp_remove_fix(struct pismo_data *pismo) -{ - mutex_lock(&pismo_mutex); - if (vpp_pismo == pismo) - vpp_pismo = NULL; - mutex_unlock(&pismo_mutex); -} - -static void pismo_set_vpp(struct map_info *map, int on) -{ - struct pismo_data *pismo = vpp_pismo; + struct i2c_client *client = to_i2c_client(pdev->dev.parent); + struct pismo_data *pismo = i2c_get_clientdata(client); pismo->vpp(pismo->vpp_data, on); } -/* end of hack */ - -static unsigned int __devinit pismo_width_to_bytes(unsigned int width) +static unsigned int pismo_width_to_bytes(unsigned int width) { width &= 15; if (width > 2) @@ -92,8 +66,8 @@ static unsigned int __devinit pismo_width_to_bytes(unsigned int width) return 1 << width; } -static int __devinit pismo_eeprom_read(struct i2c_client *client, void *buf, - u8 addr, size_t size) +static int pismo_eeprom_read(struct i2c_client *client, void *buf, u8 addr, + size_t size) { int ret; struct i2c_msg msg[] = { @@ -114,8 +88,9 @@ static int __devinit pismo_eeprom_read(struct i2c_client *client, void *buf, return ret == ARRAY_SIZE(msg) ? size : -EIO; } -static int __devinit pismo_add_device(struct pismo_data *pismo, int i, - struct pismo_mem *region, const char *name, void *pdata, size_t psize) +static int pismo_add_device(struct pismo_data *pismo, int i, + struct pismo_mem *region, const char *name, + void *pdata, size_t psize) { struct platform_device *dev; struct resource res = { }; @@ -155,8 +130,8 @@ static int __devinit pismo_add_device(struct pismo_data *pismo, int i, return ret; } -static int __devinit pismo_add_nor(struct pismo_data *pismo, int i, - struct pismo_mem *region) +static int pismo_add_nor(struct pismo_data *pismo, int i, + struct pismo_mem *region) { struct physmap_flash_data data = { .width = region->width, @@ -169,8 +144,8 @@ static int __devinit pismo_add_nor(struct pismo_data *pismo, int i, &data, sizeof(data)); } -static int __devinit pismo_add_sram(struct pismo_data *pismo, int i, - struct pismo_mem *region) +static int pismo_add_sram(struct pismo_data *pismo, int i, + struct pismo_mem *region) { struct platdata_mtd_ram data = { .bankwidth = region->width, @@ -180,8 +155,8 @@ static int __devinit pismo_add_sram(struct pismo_data *pismo, int i, &data, sizeof(data)); } -static void __devinit pismo_add_one(struct pismo_data *pismo, int i, - const struct pismo_cs_block *cs, phys_addr_t base) +static void pismo_add_one(struct pismo_data *pismo, int i, + const struct pismo_cs_block *cs, phys_addr_t base) { struct device *dev = &pismo->client->dev; struct pismo_mem region; @@ -223,7 +198,7 @@ static void __devinit pismo_add_one(struct pismo_data *pismo, int i, } } -static int __devexit pismo_remove(struct i2c_client *client) +static int pismo_remove(struct i2c_client *client) { struct pismo_data *pismo = i2c_get_clientdata(client); int i; @@ -231,16 +206,13 @@ static int __devexit pismo_remove(struct i2c_client *client) for (i = 0; i < ARRAY_SIZE(pismo->dev); i++) platform_device_unregister(pismo->dev[i]); - /* FIXME: set_vpp needs saner arguments */ - pismo_setvpp_remove_fix(pismo); - kfree(pismo); return 0; } -static int __devinit pismo_probe(struct i2c_client *client, - const struct i2c_device_id *id) +static int pismo_probe(struct i2c_client *client, + const struct i2c_device_id *id) { struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent); struct pismo_pdata *pdata = client->dev.platform_data; @@ -257,11 +229,6 @@ static int __devinit pismo_probe(struct i2c_client *client, if (!pismo) return -ENOMEM; - /* FIXME: set_vpp needs saner arguments */ - ret = pismo_setvpp_probe_fix(pismo); - if (ret) - return ret; - pismo->client = client; if (pdata) { pismo->vpp = pdata->set_vpp; @@ -301,7 +268,7 @@ static struct i2c_driver pismo_driver = { .owner = THIS_MODULE, }, .probe = pismo_probe, - .remove = __devexit_p(pismo_remove), + .remove = pismo_remove, .id_table = pismo_id, }; diff --git a/drivers/mtd/maps/plat-ram.c b/drivers/mtd/maps/plat-ram.c index 76a76be5a7b..d597e89f269 100644 --- a/drivers/mtd/maps/plat-ram.c +++ b/drivers/mtd/maps/plat-ram.c @@ -23,7 +23,6 @@ #include <linux/module.h> #include <linux/types.h> -#include <linux/init.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/ioport.h> @@ -44,8 +43,6 @@ struct platram_info { struct device *dev; struct mtd_info *mtd; struct map_info map; - struct mtd_partition *partitions; - bool free_partitions; struct resource *area; struct platdata_mtd_ram *pdata; }; @@ -57,7 +54,7 @@ struct platram_info { static inline struct platram_info *to_platram_info(struct platform_device *dev) { - return (struct platram_info *)platform_get_drvdata(dev); + return platform_get_drvdata(dev); } /* platram_setrw @@ -86,22 +83,13 @@ static int platram_remove(struct platform_device *pdev) { struct platram_info *info = to_platram_info(pdev); - platform_set_drvdata(pdev, NULL); - dev_dbg(&pdev->dev, "removing device\n"); if (info == NULL) return 0; if (info->mtd) { -#ifdef CONFIG_MTD_PARTITIONS - if (info->partitions) { - del_mtd_partitions(info->mtd); - if (info->free_partitions) - kfree(info->partitions); - } -#endif - del_mtd_device(info->mtd); + mtd_device_unregister(info->mtd); map_destroy(info->mtd); } @@ -139,17 +127,16 @@ static int platram_probe(struct platform_device *pdev) dev_dbg(&pdev->dev, "probe entered\n"); - if (pdev->dev.platform_data == NULL) { + if (dev_get_platdata(&pdev->dev) == NULL) { dev_err(&pdev->dev, "no platform data supplied\n"); err = -ENOENT; goto exit_error; } - pdata = pdev->dev.platform_data; + pdata = dev_get_platdata(&pdev->dev); info = kzalloc(sizeof(*info), GFP_KERNEL); if (info == NULL) { - dev_err(&pdev->dev, "no memory for flash info\n"); err = -ENOMEM; goto exit_error; } @@ -208,7 +195,7 @@ static int platram_probe(struct platform_device *pdev) * supplied by the platform_data struct */ if (pdata->map_probes) { - const char **map_probes = pdata->map_probes; + const char * const *map_probes = pdata->map_probes; for ( ; !info->mtd && *map_probes; map_probes++) info->mtd = do_map_probe(*map_probes , &info->map); @@ -228,35 +215,24 @@ static int platram_probe(struct platform_device *pdev) platram_setrw(info, PLATRAM_RW); - /* check to see if there are any available partitions, or wether + /* check to see if there are any available partitions, or whether * to add this device whole */ -#ifdef CONFIG_MTD_PARTITIONS - if (!pdata->nr_partitions) { - /* try to probe using the supplied probe type */ - if (pdata->probes) { - err = parse_mtd_partitions(info->mtd, pdata->probes, - &info->partitions, 0); - info->free_partitions = 1; - if (err > 0) - err = add_mtd_partitions(info->mtd, - info->partitions, err); - } - } - /* use the static mapping */ - else - err = add_mtd_partitions(info->mtd, pdata->partitions, - pdata->nr_partitions); -#endif /* CONFIG_MTD_PARTITIONS */ - - if (add_mtd_device(info->mtd)) { - dev_err(&pdev->dev, "add_mtd_device() failed\n"); - err = -ENOMEM; - } - + err = mtd_device_parse_register(info->mtd, pdata->probes, NULL, + pdata->partitions, + pdata->nr_partitions); if (!err) dev_info(&pdev->dev, "registered mtd device\n"); + if (pdata->nr_partitions) { + /* add the whole device. */ + err = mtd_device_register(info->mtd, NULL, 0); + if (err) { + dev_err(&pdev->dev, + "failed to register the entire device\n"); + } + } + return err; exit_free: @@ -279,21 +255,7 @@ static struct platform_driver platram_driver = { }, }; -/* module init/exit */ - -static int __init platram_init(void) -{ - printk("Generic platform RAM MTD, (c) 2004 Simtec Electronics\n"); - return platform_driver_register(&platram_driver); -} - -static void __exit platram_exit(void) -{ - platform_driver_unregister(&platram_driver); -} - -module_init(platram_init); -module_exit(platram_exit); +module_platform_driver(platram_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); diff --git a/drivers/mtd/maps/pmcmsp-flash.c b/drivers/mtd/maps/pmcmsp-flash.c index acb13fa5001..744ca5cacc9 100644 --- a/drivers/mtd/maps/pmcmsp-flash.c +++ b/drivers/mtd/maps/pmcmsp-flash.c @@ -3,7 +3,7 @@ * Config with both CFI and JEDEC device support. * * Basically physmap.c with the addition of partitions and - * an array of mapping info to accomodate more than one flash type per board. + * an array of mapping info to accommodate more than one flash type per board. * * Copyright 2005-2007 PMC-Sierra, Inc. * @@ -173,7 +173,7 @@ static int __init init_msp_flash(void) msp_flash[i] = do_map_probe("cfi_probe", &msp_maps[i]); if (msp_flash[i]) { msp_flash[i]->owner = THIS_MODULE; - add_mtd_partitions(msp_flash[i], msp_parts[i], pcnt); + mtd_device_register(msp_flash[i], msp_parts[i], pcnt); } else { printk(KERN_ERR "map probe failed for flash\n"); ret = -ENXIO; @@ -188,7 +188,7 @@ static int __init init_msp_flash(void) cleanup_loop: while (i--) { - del_mtd_partitions(msp_flash[i]); + mtd_device_unregister(msp_flash[i]); map_destroy(msp_flash[i]); kfree(msp_maps[i].name); iounmap(msp_maps[i].virt); @@ -207,7 +207,7 @@ static void __exit cleanup_msp_flash(void) int i; for (i = 0; i < fcnt; i++) { - del_mtd_partitions(msp_flash[i]); + mtd_device_unregister(msp_flash[i]); map_destroy(msp_flash[i]); iounmap((void *)msp_maps[i].virt); diff --git a/drivers/mtd/maps/pxa2xx-flash.c b/drivers/mtd/maps/pxa2xx-flash.c index dd90880048c..cb4d92eea9f 100644 --- a/drivers/mtd/maps/pxa2xx-flash.c +++ b/drivers/mtd/maps/pxa2xx-flash.c @@ -13,7 +13,6 @@ #include <linux/types.h> #include <linux/slab.h> #include <linux/kernel.h> -#include <linux/init.h> #include <linux/platform_device.h> #include <linux/mtd/mtd.h> #include <linux/mtd/map.h> @@ -41,23 +40,17 @@ static void pxa2xx_map_inval_cache(struct map_info *map, unsigned long from, } struct pxa2xx_flash_info { - struct mtd_partition *parts; - int nr_parts; struct mtd_info *mtd; struct map_info map; }; +static const char * const probes[] = { "RedBoot", "cmdlinepart", NULL }; -static const char *probes[] = { "RedBoot", "cmdlinepart", NULL }; - - -static int __init pxa2xx_flash_probe(struct platform_device *pdev) +static int pxa2xx_flash_probe(struct platform_device *pdev) { - struct flash_platform_data *flash = pdev->dev.platform_data; + struct flash_platform_data *flash = dev_get_platdata(&pdev->dev); struct pxa2xx_flash_info *info; - struct mtd_partition *parts; struct resource *res; - int ret = 0; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) @@ -67,12 +60,10 @@ static int __init pxa2xx_flash_probe(struct platform_device *pdev) if (!info) return -ENOMEM; - info->map.name = (char *) flash->name; + info->map.name = flash->name; info->map.bankwidth = flash->width; info->map.phys = res->start; - info->map.size = res->end - res->start + 1; - info->parts = flash->parts; - info->nr_parts = flash->nr_parts; + info->map.size = resource_size(res); info->map.virt = ioremap(info->map.phys, info->map.size); if (!info->map.virt) { @@ -81,7 +72,7 @@ static int __init pxa2xx_flash_probe(struct platform_device *pdev) return -ENOMEM; } info->map.cached = - ioremap_cached(info->map.phys, info->map.size); + ioremap_cache(info->map.phys, info->map.size); if (!info->map.cached) printk(KERN_WARNING "Failed to ioremap cached %s\n", info->map.name); @@ -104,46 +95,23 @@ static int __init pxa2xx_flash_probe(struct platform_device *pdev) } info->mtd->owner = THIS_MODULE; -#ifdef CONFIG_MTD_PARTITIONS - ret = parse_mtd_partitions(info->mtd, probes, &parts, 0); - - if (ret > 0) { - info->nr_parts = ret; - info->parts = parts; - } -#endif - - if (info->nr_parts) { - add_mtd_partitions(info->mtd, info->parts, - info->nr_parts); - } else { - printk("Registering %s as whole device\n", - info->map.name); - add_mtd_device(info->mtd); - } + mtd_device_parse_register(info->mtd, probes, NULL, flash->parts, + flash->nr_parts); platform_set_drvdata(pdev, info); return 0; } -static int __devexit pxa2xx_flash_remove(struct platform_device *dev) +static int pxa2xx_flash_remove(struct platform_device *dev) { struct pxa2xx_flash_info *info = platform_get_drvdata(dev); - platform_set_drvdata(dev, NULL); - -#ifdef CONFIG_MTD_PARTITIONS - if (info->nr_parts) - del_mtd_partitions(info->mtd); - else -#endif - del_mtd_device(info->mtd); + mtd_device_unregister(info->mtd); map_destroy(info->mtd); iounmap(info->map.virt); if (info->map.cached) iounmap(info->map.cached); - kfree(info->parts); kfree(info); return 0; } @@ -153,8 +121,8 @@ static void pxa2xx_flash_shutdown(struct platform_device *dev) { struct pxa2xx_flash_info *info = platform_get_drvdata(dev); - if (info && info->mtd->suspend(info->mtd) == 0) - info->mtd->resume(info->mtd); + if (info && mtd_suspend(info->mtd) == 0) + mtd_resume(info->mtd); } #else #define pxa2xx_flash_shutdown NULL @@ -166,22 +134,11 @@ static struct platform_driver pxa2xx_flash_driver = { .owner = THIS_MODULE, }, .probe = pxa2xx_flash_probe, - .remove = __devexit_p(pxa2xx_flash_remove), + .remove = pxa2xx_flash_remove, .shutdown = pxa2xx_flash_shutdown, }; -static int __init init_pxa2xx_flash(void) -{ - return platform_driver_register(&pxa2xx_flash_driver); -} - -static void __exit cleanup_pxa2xx_flash(void) -{ - platform_driver_unregister(&pxa2xx_flash_driver); -} - -module_init(init_pxa2xx_flash); -module_exit(cleanup_pxa2xx_flash); +module_platform_driver(pxa2xx_flash_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Nicolas Pitre <nico@fluxnic.net>"); diff --git a/drivers/mtd/maps/rbtx4939-flash.c b/drivers/mtd/maps/rbtx4939-flash.c index 83ed64512c5..146b6047ed2 100644 --- a/drivers/mtd/maps/rbtx4939-flash.c +++ b/drivers/mtd/maps/rbtx4939-flash.c @@ -13,7 +13,6 @@ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> -#include <linux/init.h> #include <linux/slab.h> #include <linux/device.h> #include <linux/platform_device.h> @@ -25,10 +24,6 @@ struct rbtx4939_flash_info { struct mtd_info *mtd; struct map_info map; -#ifdef CONFIG_MTD_PARTITIONS - int nr_parts; - struct mtd_partition *parts; -#endif }; static int rbtx4939_flash_remove(struct platform_device *dev) @@ -38,42 +33,29 @@ static int rbtx4939_flash_remove(struct platform_device *dev) info = platform_get_drvdata(dev); if (!info) return 0; - platform_set_drvdata(dev, NULL); if (info->mtd) { -#ifdef CONFIG_MTD_PARTITIONS - struct rbtx4939_flash_data *pdata = dev->dev.platform_data; - - if (info->nr_parts) { - del_mtd_partitions(info->mtd); - kfree(info->parts); - } else if (pdata->nr_parts) - del_mtd_partitions(info->mtd); - else - del_mtd_device(info->mtd); -#else - del_mtd_device(info->mtd); -#endif + struct rbtx4939_flash_data *pdata = dev_get_platdata(&dev->dev); + + mtd_device_unregister(info->mtd); map_destroy(info->mtd); } return 0; } -static const char *rom_probe_types[] = { "cfi_probe", "jedec_probe", NULL }; -#ifdef CONFIG_MTD_PARTITIONS -static const char *part_probe_types[] = { "cmdlinepart", NULL }; -#endif +static const char * const rom_probe_types[] = { + "cfi_probe", "jedec_probe", NULL }; static int rbtx4939_flash_probe(struct platform_device *dev) { struct rbtx4939_flash_data *pdata; struct rbtx4939_flash_info *info; struct resource *res; - const char **probe_type; + const char * const *probe_type; int err = 0; unsigned long size; - pdata = dev->dev.platform_data; + pdata = dev_get_platdata(&dev->dev); if (!pdata) return -ENODEV; @@ -117,26 +99,11 @@ static int rbtx4939_flash_probe(struct platform_device *dev) goto err_out; } info->mtd->owner = THIS_MODULE; + err = mtd_device_parse_register(info->mtd, NULL, NULL, pdata->parts, + pdata->nr_parts); + if (err) goto err_out; - -#ifdef CONFIG_MTD_PARTITIONS - err = parse_mtd_partitions(info->mtd, part_probe_types, - &info->parts, 0); - if (err > 0) { - add_mtd_partitions(info->mtd, info->parts, err); - info->nr_parts = err; - return 0; - } - - if (pdata->nr_parts) { - pr_notice("Using rbtx4939 partition information\n"); - add_mtd_partitions(info->mtd, pdata->parts, pdata->nr_parts); - return 0; - } -#endif - - add_mtd_device(info->mtd); return 0; err_out: @@ -149,9 +116,8 @@ static void rbtx4939_flash_shutdown(struct platform_device *dev) { struct rbtx4939_flash_info *info = platform_get_drvdata(dev); - if (info->mtd->suspend && info->mtd->resume) - if (info->mtd->suspend(info->mtd) == 0) - info->mtd->resume(info->mtd); + if (mtd_suspend(info->mtd) == 0) + mtd_resume(info->mtd); } #else #define rbtx4939_flash_shutdown NULL @@ -167,18 +133,7 @@ static struct platform_driver rbtx4939_flash_driver = { }, }; -static int __init rbtx4939_flash_init(void) -{ - return platform_driver_register(&rbtx4939_flash_driver); -} - -static void __exit rbtx4939_flash_exit(void) -{ - platform_driver_unregister(&rbtx4939_flash_driver); -} - -module_init(rbtx4939_flash_init); -module_exit(rbtx4939_flash_exit); +module_platform_driver(rbtx4939_flash_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("RBTX4939 MTD map driver"); diff --git a/drivers/mtd/maps/redwood.c b/drivers/mtd/maps/redwood.c deleted file mode 100644 index 933c0b63b01..00000000000 --- a/drivers/mtd/maps/redwood.c +++ /dev/null @@ -1,174 +0,0 @@ -/* - * drivers/mtd/maps/redwood.c - * - * FLASH map for the IBM Redwood 4/5/6 boards. - * - * Author: MontaVista Software, Inc. <source@mvista.com> - * - * 2001-2003 (c) MontaVista, Software, Inc. This file is licensed under - * the terms of the GNU General Public License version 2. This program - * is licensed "as is" without any warranty of any kind, whether express - * or implied. - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/init.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> - -#include <asm/io.h> - -#if !defined (CONFIG_REDWOOD_6) - -#define WINDOW_ADDR 0xffc00000 -#define WINDOW_SIZE 0x00400000 - -#define RW_PART0_OF 0 -#define RW_PART0_SZ 0x10000 -#define RW_PART1_OF RW_PART0_SZ -#define RW_PART1_SZ 0x200000 - 0x10000 -#define RW_PART2_OF 0x200000 -#define RW_PART2_SZ 0x10000 -#define RW_PART3_OF 0x210000 -#define RW_PART3_SZ 0x200000 - (0x10000 + 0x20000) -#define RW_PART4_OF 0x3e0000 -#define RW_PART4_SZ 0x20000 - -static struct mtd_partition redwood_flash_partitions[] = { - { - .name = "Redwood OpenBIOS Vital Product Data", - .offset = RW_PART0_OF, - .size = RW_PART0_SZ, - .mask_flags = MTD_WRITEABLE /* force read-only */ - }, - { - .name = "Redwood kernel", - .offset = RW_PART1_OF, - .size = RW_PART1_SZ - }, - { - .name = "Redwood OpenBIOS non-volatile storage", - .offset = RW_PART2_OF, - .size = RW_PART2_SZ, - .mask_flags = MTD_WRITEABLE /* force read-only */ - }, - { - .name = "Redwood filesystem", - .offset = RW_PART3_OF, - .size = RW_PART3_SZ - }, - { - .name = "Redwood OpenBIOS", - .offset = RW_PART4_OF, - .size = RW_PART4_SZ, - .mask_flags = MTD_WRITEABLE /* force read-only */ - } -}; - -#else /* CONFIG_REDWOOD_6 */ -/* FIXME: the window is bigger - armin */ -#define WINDOW_ADDR 0xff800000 -#define WINDOW_SIZE 0x00800000 - -#define RW_PART0_OF 0 -#define RW_PART0_SZ 0x400000 /* 4 MiB data */ -#define RW_PART1_OF RW_PART0_OF + RW_PART0_SZ -#define RW_PART1_SZ 0x10000 /* 64K VPD */ -#define RW_PART2_OF RW_PART1_OF + RW_PART1_SZ -#define RW_PART2_SZ 0x400000 - (0x10000 + 0x20000) -#define RW_PART3_OF RW_PART2_OF + RW_PART2_SZ -#define RW_PART3_SZ 0x20000 - -static struct mtd_partition redwood_flash_partitions[] = { - { - .name = "Redwood filesystem", - .offset = RW_PART0_OF, - .size = RW_PART0_SZ - }, - { - .name = "Redwood OpenBIOS Vital Product Data", - .offset = RW_PART1_OF, - .size = RW_PART1_SZ, - .mask_flags = MTD_WRITEABLE /* force read-only */ - }, - { - .name = "Redwood kernel", - .offset = RW_PART2_OF, - .size = RW_PART2_SZ - }, - { - .name = "Redwood OpenBIOS", - .offset = RW_PART3_OF, - .size = RW_PART3_SZ, - .mask_flags = MTD_WRITEABLE /* force read-only */ - } -}; - -#endif /* CONFIG_REDWOOD_6 */ - -struct map_info redwood_flash_map = { - .name = "IBM Redwood", - .size = WINDOW_SIZE, - .bankwidth = 2, - .phys = WINDOW_ADDR, -}; - - -#define NUM_REDWOOD_FLASH_PARTITIONS ARRAY_SIZE(redwood_flash_partitions) - -static struct mtd_info *redwood_mtd; - -static int __init init_redwood_flash(void) -{ - int err; - - printk(KERN_NOTICE "redwood: flash mapping: %x at %x\n", - WINDOW_SIZE, WINDOW_ADDR); - - redwood_flash_map.virt = ioremap(WINDOW_ADDR, WINDOW_SIZE); - - if (!redwood_flash_map.virt) { - printk("init_redwood_flash: failed to ioremap\n"); - return -EIO; - } - simple_map_init(&redwood_flash_map); - - redwood_mtd = do_map_probe("cfi_probe",&redwood_flash_map); - - if (redwood_mtd) { - redwood_mtd->owner = THIS_MODULE; - err = add_mtd_partitions(redwood_mtd, - redwood_flash_partitions, - NUM_REDWOOD_FLASH_PARTITIONS); - if (err) { - printk("init_redwood_flash: add_mtd_partitions failed\n"); - iounmap(redwood_flash_map.virt); - } - return err; - - } - - iounmap(redwood_flash_map.virt); - return -ENXIO; -} - -static void __exit cleanup_redwood_flash(void) -{ - if (redwood_mtd) { - del_mtd_partitions(redwood_mtd); - /* moved iounmap after map_destroy - armin */ - map_destroy(redwood_mtd); - iounmap((void *)redwood_flash_map.virt); - } -} - -module_init(init_redwood_flash); -module_exit(cleanup_redwood_flash); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("MontaVista Software <source@mvista.com>"); -MODULE_DESCRIPTION("MTD map driver for the IBM Redwood reference boards"); diff --git a/drivers/mtd/maps/rpxlite.c b/drivers/mtd/maps/rpxlite.c deleted file mode 100644 index 3e3ef53d4fd..00000000000 --- a/drivers/mtd/maps/rpxlite.c +++ /dev/null @@ -1,64 +0,0 @@ -/* - * Handle mapping of the flash on the RPX Lite and CLLF boards - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <asm/io.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> - - -#define WINDOW_ADDR 0xfe000000 -#define WINDOW_SIZE 0x800000 - -static struct mtd_info *mymtd; - -static struct map_info rpxlite_map = { - .name = "RPX", - .size = WINDOW_SIZE, - .bankwidth = 4, - .phys = WINDOW_ADDR, -}; - -static int __init init_rpxlite(void) -{ - printk(KERN_NOTICE "RPX Lite or CLLF flash device: %x at %x\n", WINDOW_SIZE*4, WINDOW_ADDR); - rpxlite_map.virt = ioremap(WINDOW_ADDR, WINDOW_SIZE * 4); - - if (!rpxlite_map.virt) { - printk("Failed to ioremap\n"); - return -EIO; - } - simple_map_init(&rpxlite_map); - mymtd = do_map_probe("cfi_probe", &rpxlite_map); - if (mymtd) { - mymtd->owner = THIS_MODULE; - add_mtd_device(mymtd); - return 0; - } - - iounmap((void *)rpxlite_map.virt); - return -ENXIO; -} - -static void __exit cleanup_rpxlite(void) -{ - if (mymtd) { - del_mtd_device(mymtd); - map_destroy(mymtd); - } - if (rpxlite_map.virt) { - iounmap((void *)rpxlite_map.virt); - rpxlite_map.virt = 0; - } -} - -module_init(init_rpxlite); -module_exit(cleanup_rpxlite); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Arnold Christensen <AKC@pel.dk>"); -MODULE_DESCRIPTION("MTD map driver for RPX Lite and CLLF boards"); diff --git a/drivers/mtd/maps/sa1100-flash.c b/drivers/mtd/maps/sa1100-flash.c index f3af87e08ec..8fc06bf111c 100644 --- a/drivers/mtd/maps/sa1100-flash.c +++ b/drivers/mtd/maps/sa1100-flash.c @@ -23,106 +23,6 @@ #include <asm/sizes.h> #include <asm/mach/flash.h> -#if 0 -/* - * This is here for documentation purposes only - until these people - * submit their machine types. It will be gone January 2005. - */ -static struct mtd_partition consus_partitions[] = { - { - .name = "Consus boot firmware", - .offset = 0, - .size = 0x00040000, - .mask_flags = MTD_WRITABLE, /* force read-only */ - }, { - .name = "Consus kernel", - .offset = 0x00040000, - .size = 0x00100000, - .mask_flags = 0, - }, { - .name = "Consus disk", - .offset = 0x00140000, - /* The rest (up to 16M) for jffs. We could put 0 and - make it find the size automatically, but right now - i have 32 megs. jffs will use all 32 megs if given - the chance, and this leads to horrible problems - when you try to re-flash the image because blob - won't erase the whole partition. */ - .size = 0x01000000 - 0x00140000, - .mask_flags = 0, - }, { - /* this disk is a secondary disk, which can be used as - needed, for simplicity, make it the size of the other - consus partition, although realistically it could be - the remainder of the disk (depending on the file - system used) */ - .name = "Consus disk2", - .offset = 0x01000000, - .size = 0x01000000 - 0x00140000, - .mask_flags = 0, - } -}; - -/* Frodo has 2 x 16M 28F128J3A flash chips in bank 0: */ -static struct mtd_partition frodo_partitions[] = -{ - { - .name = "bootloader", - .size = 0x00040000, - .offset = 0x00000000, - .mask_flags = MTD_WRITEABLE - }, { - .name = "bootloader params", - .size = 0x00040000, - .offset = MTDPART_OFS_APPEND, - .mask_flags = MTD_WRITEABLE - }, { - .name = "kernel", - .size = 0x00100000, - .offset = MTDPART_OFS_APPEND, - .mask_flags = MTD_WRITEABLE - }, { - .name = "ramdisk", - .size = 0x00400000, - .offset = MTDPART_OFS_APPEND, - .mask_flags = MTD_WRITEABLE - }, { - .name = "file system", - .size = MTDPART_SIZ_FULL, - .offset = MTDPART_OFS_APPEND - } -}; - -static struct mtd_partition jornada56x_partitions[] = { - { - .name = "bootldr", - .size = 0x00040000, - .offset = 0, - .mask_flags = MTD_WRITEABLE, - }, { - .name = "rootfs", - .size = MTDPART_SIZ_FULL, - .offset = MTDPART_OFS_APPEND, - } -}; - -static void jornada56x_set_vpp(int vpp) -{ - if (vpp) - GPSR = GPIO_GPIO26; - else - GPCR = GPIO_GPIO26; - GPDR |= GPIO_GPIO26; -} - -/* - * Machine Phys Size set_vpp - * Consus : SA1100_CS0_PHYS SZ_32M - * Frodo : SA1100_CS0_PHYS SZ_32M - * Jornada56x: SA1100_CS0_PHYS SZ_32M jornada56x_set_vpp - */ -#endif - struct sa_subdev_info { char name[16]; struct map_info map; @@ -131,17 +31,27 @@ struct sa_subdev_info { }; struct sa_info { - struct mtd_partition *parts; struct mtd_info *mtd; int num_subdev; - unsigned int nr_parts; struct sa_subdev_info subdev[0]; }; +static DEFINE_SPINLOCK(sa1100_vpp_lock); +static int sa1100_vpp_refcnt; static void sa1100_set_vpp(struct map_info *map, int on) { struct sa_subdev_info *subdev = container_of(map, struct sa_subdev_info, map); - subdev->plat->set_vpp(on); + unsigned long flags; + + spin_lock_irqsave(&sa1100_vpp_lock, flags); + if (on) { + if (++sa1100_vpp_refcnt == 1) /* first nested 'on' */ + subdev->plat->set_vpp(1); + } else { + if (--sa1100_vpp_refcnt == 0) /* last nested 'off' */ + subdev->plat->set_vpp(0); + } + spin_unlock_irqrestore(&sa1100_vpp_lock, flags); } static void sa1100_destroy_subdev(struct sa_subdev_info *subdev) @@ -226,20 +136,11 @@ static void sa1100_destroy(struct sa_info *info, struct flash_platform_data *pla int i; if (info->mtd) { - if (info->nr_parts == 0) - del_mtd_device(info->mtd); -#ifdef CONFIG_MTD_PARTITIONS - else - del_mtd_partitions(info->mtd); -#endif -#ifdef CONFIG_MTD_CONCAT + mtd_device_unregister(info->mtd); if (info->mtd != info->subdev[0].mtd) mtd_concat_destroy(info->mtd); -#endif } - kfree(info->parts); - for (i = info->num_subdev - 1; i >= 0; i--) sa1100_destroy_subdev(&info->subdev[i]); kfree(info); @@ -248,8 +149,8 @@ static void sa1100_destroy(struct sa_info *info, struct flash_platform_data *pla plat->exit(); } -static struct sa_info *__devinit -sa1100_setup_mtd(struct platform_device *pdev, struct flash_platform_data *plat) +static struct sa_info *sa1100_setup_mtd(struct platform_device *pdev, + struct flash_platform_data *plat) { struct sa_info *info; int nr, size, i, ret = 0; @@ -321,7 +222,6 @@ sa1100_setup_mtd(struct platform_device *pdev, struct flash_platform_data *plat) info->mtd = info->subdev[0].mtd; ret = 0; } else if (info->num_subdev > 1) { -#ifdef CONFIG_MTD_CONCAT struct mtd_info *cdev[nr]; /* * We detected multiple devices. Concatenate them together. @@ -333,11 +233,6 @@ sa1100_setup_mtd(struct platform_device *pdev, struct flash_platform_data *plat) plat->name); if (info->mtd == NULL) ret = -ENXIO; -#else - printk(KERN_ERR "SA1100 flash: multiple devices " - "found but MTD concat support disabled.\n"); - ret = -ENXIO; -#endif } if (ret == 0) @@ -349,15 +244,13 @@ sa1100_setup_mtd(struct platform_device *pdev, struct flash_platform_data *plat) return ERR_PTR(ret); } -static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL }; +static const char * const part_probes[] = { "cmdlinepart", "RedBoot", NULL }; -static int __devinit sa1100_mtd_probe(struct platform_device *pdev) +static int sa1100_mtd_probe(struct platform_device *pdev) { - struct flash_platform_data *plat = pdev->dev.platform_data; - struct mtd_partition *parts; - const char *part_type = NULL; + struct flash_platform_data *plat = dev_get_platdata(&pdev->dev); struct sa_info *info; - int err, nr_parts = 0; + int err; if (!plat) return -ENODEV; @@ -371,30 +264,8 @@ static int __devinit sa1100_mtd_probe(struct platform_device *pdev) /* * Partition selection stuff. */ -#ifdef CONFIG_MTD_PARTITIONS - nr_parts = parse_mtd_partitions(info->mtd, part_probes, &parts, 0); - if (nr_parts > 0) { - info->parts = parts; - part_type = "dynamic"; - } else -#endif - { - parts = plat->parts; - nr_parts = plat->nr_parts; - part_type = "static"; - } - - if (nr_parts == 0) { - printk(KERN_NOTICE "SA1100 flash: no partition info " - "available, registering whole flash\n"); - add_mtd_device(info->mtd); - } else { - printk(KERN_NOTICE "SA1100 flash: using %s partition " - "definition\n", part_type); - add_mtd_partitions(info->mtd, parts, nr_parts); - } - - info->nr_parts = nr_parts; + mtd_device_parse_register(info->mtd, part_probes, NULL, plat->parts, + plat->nr_parts); platform_set_drvdata(pdev, info); err = 0; @@ -406,47 +277,23 @@ static int __devinit sa1100_mtd_probe(struct platform_device *pdev) static int __exit sa1100_mtd_remove(struct platform_device *pdev) { struct sa_info *info = platform_get_drvdata(pdev); - struct flash_platform_data *plat = pdev->dev.platform_data; + struct flash_platform_data *plat = dev_get_platdata(&pdev->dev); - platform_set_drvdata(pdev, NULL); sa1100_destroy(info, plat); return 0; } -#ifdef CONFIG_PM -static void sa1100_mtd_shutdown(struct platform_device *dev) -{ - struct sa_info *info = platform_get_drvdata(dev); - if (info && info->mtd->suspend(info->mtd) == 0) - info->mtd->resume(info->mtd); -} -#else -#define sa1100_mtd_shutdown NULL -#endif - static struct platform_driver sa1100_mtd_driver = { .probe = sa1100_mtd_probe, .remove = __exit_p(sa1100_mtd_remove), - .shutdown = sa1100_mtd_shutdown, .driver = { .name = "sa1100-mtd", .owner = THIS_MODULE, }, }; -static int __init sa1100_mtd_init(void) -{ - return platform_driver_register(&sa1100_mtd_driver); -} - -static void __exit sa1100_mtd_exit(void) -{ - platform_driver_unregister(&sa1100_mtd_driver); -} - -module_init(sa1100_mtd_init); -module_exit(sa1100_mtd_exit); +module_platform_driver(sa1100_mtd_driver); MODULE_AUTHOR("Nicolas Pitre"); MODULE_DESCRIPTION("SA1100 CFI map driver"); diff --git a/drivers/mtd/maps/sbc_gxx.c b/drivers/mtd/maps/sbc_gxx.c index 04b2781fc62..556a2dfe94c 100644 --- a/drivers/mtd/maps/sbc_gxx.c +++ b/drivers/mtd/maps/sbc_gxx.c @@ -182,7 +182,7 @@ static struct mtd_info *all_mtd; static void cleanup_sbc_gxx(void) { if( all_mtd ) { - del_mtd_partitions( all_mtd ); + mtd_device_unregister(all_mtd); map_destroy( all_mtd ); } @@ -223,7 +223,7 @@ static int __init init_sbc_gxx(void) all_mtd->owner = THIS_MODULE; /* Create MTD devices for each partition. */ - add_mtd_partitions(all_mtd, partition_info, NUM_PARTITIONS ); + mtd_device_register(all_mtd, partition_info, NUM_PARTITIONS); return 0; } diff --git a/drivers/mtd/maps/sc520cdp.c b/drivers/mtd/maps/sc520cdp.c index 85c1e56309e..093edd51bdc 100644 --- a/drivers/mtd/maps/sc520cdp.c +++ b/drivers/mtd/maps/sc520cdp.c @@ -183,7 +183,7 @@ static const struct sc520_par_table par_table[NUM_FLASH_BANKS] = static void sc520cdp_setup_par(void) { - volatile unsigned long __iomem *mmcr; + unsigned long __iomem *mmcr; unsigned long mmcr_val; int i, j; @@ -197,17 +197,17 @@ static void sc520cdp_setup_par(void) } /* - ** Find the PARxx registers that are reponsible for activating + ** Find the PARxx registers that are responsible for activating ** ROMCS0, ROMCS1 and BOOTCS. Reprogram each of these with a ** new value from the table. */ for(i = 0; i < NUM_FLASH_BANKS; i++) { /* for each par_table entry */ for(j = 0; j < NUM_SC520_PAR; j++) { /* for each PAR register */ - mmcr_val = mmcr[SC520_PAR(j)]; + mmcr_val = readl(&mmcr[SC520_PAR(j)]); /* if target device field matches, reprogram the PAR */ if((mmcr_val & SC520_PAR_TRGDEV) == par_table[i].trgdev) { - mmcr[SC520_PAR(j)] = par_table[i].new_par; + writel(par_table[i].new_par, &mmcr[SC520_PAR(j)]); break; } } @@ -266,10 +266,10 @@ static int __init init_sc520cdp(void) /* Combine the two flash banks into a single MTD device & register it: */ merged_mtd = mtd_concat_create(mymtd, 2, "SC520CDP Flash Banks #0 and #1"); if(merged_mtd) - add_mtd_device(merged_mtd); + mtd_device_register(merged_mtd, NULL, 0); } if(devices_found == 3) /* register the third (DIL-Flash) device */ - add_mtd_device(mymtd[2]); + mtd_device_register(mymtd[2], NULL, 0); return(devices_found ? 0 : -ENXIO); } @@ -278,11 +278,11 @@ static void __exit cleanup_sc520cdp(void) int i; if (merged_mtd) { - del_mtd_device(merged_mtd); + mtd_device_unregister(merged_mtd); mtd_concat_destroy(merged_mtd); } if (mymtd[2]) - del_mtd_device(mymtd[2]); + mtd_device_unregister(mymtd[2]); for (i = 0; i < NUM_FLASH_BANKS; i++) { if (mymtd[i]) diff --git a/drivers/mtd/maps/scb2_flash.c b/drivers/mtd/maps/scb2_flash.c index 7e329f09a54..b7a22a612a4 100644 --- a/drivers/mtd/maps/scb2_flash.c +++ b/drivers/mtd/maps/scb2_flash.c @@ -47,7 +47,6 @@ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> -#include <linux/init.h> #include <asm/io.h> #include <linux/mtd/mtd.h> #include <linux/mtd/map.h> @@ -69,8 +68,7 @@ static struct map_info scb2_map = { }; static int region_fail; -static int __devinit -scb2_fixup_mtd(struct mtd_info *mtd) +static int scb2_fixup_mtd(struct mtd_info *mtd) { int i; int done = 0; @@ -133,8 +131,8 @@ scb2_fixup_mtd(struct mtd_info *mtd) /* CSB5's 'Function Control Register' has bits for decoding @ >= 0xffc00000 */ #define CSB5_FCR 0x41 #define CSB5_FCR_DECODE_ALL 0x0e -static int __devinit -scb2_flash_probe(struct pci_dev *dev, const struct pci_device_id *ent) +static int scb2_flash_probe(struct pci_dev *dev, + const struct pci_device_id *ent) { u8 reg; @@ -180,7 +178,7 @@ scb2_flash_probe(struct pci_dev *dev, const struct pci_device_id *ent) scb2_mtd->owner = THIS_MODULE; if (scb2_fixup_mtd(scb2_mtd) < 0) { - del_mtd_device(scb2_mtd); + mtd_device_unregister(scb2_mtd); map_destroy(scb2_mtd); iounmap(scb2_ioaddr); if (!region_fail) @@ -192,22 +190,20 @@ scb2_flash_probe(struct pci_dev *dev, const struct pci_device_id *ent) (unsigned long long)scb2_mtd->size, (unsigned long long)(SCB2_WINDOW - scb2_mtd->size)); - add_mtd_device(scb2_mtd); + mtd_device_register(scb2_mtd, NULL, 0); return 0; } -static void __devexit -scb2_flash_remove(struct pci_dev *dev) +static void scb2_flash_remove(struct pci_dev *dev) { if (!scb2_mtd) return; /* disable flash writes */ - if (scb2_mtd->lock) - scb2_mtd->lock(scb2_mtd, 0, scb2_mtd->size); + mtd_lock(scb2_mtd, 0, scb2_mtd->size); - del_mtd_device(scb2_mtd); + mtd_device_unregister(scb2_mtd); map_destroy(scb2_mtd); iounmap(scb2_ioaddr); @@ -215,7 +211,6 @@ scb2_flash_remove(struct pci_dev *dev) if (!region_fail) release_mem_region(SCB2_ADDR, SCB2_WINDOW); - pci_set_drvdata(dev, NULL); } static struct pci_device_id scb2_flash_pci_ids[] = { @@ -232,23 +227,10 @@ static struct pci_driver scb2_flash_driver = { .name = "Intel SCB2 BIOS Flash", .id_table = scb2_flash_pci_ids, .probe = scb2_flash_probe, - .remove = __devexit_p(scb2_flash_remove), + .remove = scb2_flash_remove, }; -static int __init -scb2_flash_init(void) -{ - return pci_register_driver(&scb2_flash_driver); -} - -static void __exit -scb2_flash_exit(void) -{ - pci_unregister_driver(&scb2_flash_driver); -} - -module_init(scb2_flash_init); -module_exit(scb2_flash_exit); +module_pci_driver(scb2_flash_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Tim Hockin <thockin@sun.com>"); diff --git a/drivers/mtd/maps/scx200_docflash.c b/drivers/mtd/maps/scx200_docflash.c index b5391ebb736..f1c1f737d0d 100644 --- a/drivers/mtd/maps/scx200_docflash.c +++ b/drivers/mtd/maps/scx200_docflash.c @@ -44,7 +44,6 @@ static struct resource docmem = { static struct mtd_info *mymtd; -#ifdef CONFIG_MTD_PARTITIONS static struct mtd_partition partition_info[] = { { .name = "DOCCS Boot kernel", @@ -68,8 +67,6 @@ static struct mtd_partition partition_info[] = { }, }; #define NUM_PARTITIONS ARRAY_SIZE(partition_info) -#endif - static struct map_info scx200_docflash_map = { .name = "NatSemi SCx200 DOCCS Flash", @@ -166,9 +163,8 @@ static int __init init_scx200_docflash(void) outl(pmr, scx200_cb_base + SCx200_PMR); } - printk(KERN_INFO NAME ": DOCCS mapped at 0x%llx-0x%llx, width %d\n", - (unsigned long long)docmem.start, - (unsigned long long)docmem.end, width); + printk(KERN_INFO NAME ": DOCCS mapped at %pR, width %d\n", + &docmem, width); scx200_docflash_map.size = size; if (width == 8) @@ -199,24 +195,17 @@ static int __init init_scx200_docflash(void) mymtd->owner = THIS_MODULE; -#ifdef CONFIG_MTD_PARTITIONS partition_info[3].offset = mymtd->size-partition_info[3].size; partition_info[2].size = partition_info[3].offset-partition_info[2].offset; - add_mtd_partitions(mymtd, partition_info, NUM_PARTITIONS); -#else - add_mtd_device(mymtd); -#endif + mtd_device_register(mymtd, partition_info, NUM_PARTITIONS); + return 0; } static void __exit cleanup_scx200_docflash(void) { if (mymtd) { -#ifdef CONFIG_MTD_PARTITIONS - del_mtd_partitions(mymtd); -#else - del_mtd_device(mymtd); -#endif + mtd_device_unregister(mymtd); map_destroy(mymtd); } if (scx200_docflash_map.virt) { diff --git a/drivers/mtd/maps/solutionengine.c b/drivers/mtd/maps/solutionengine.c index 0eb41d9c678..bb580bc1644 100644 --- a/drivers/mtd/maps/solutionengine.c +++ b/drivers/mtd/maps/solutionengine.c @@ -19,8 +19,6 @@ static struct mtd_info *flash_mtd; static struct mtd_info *eprom_mtd; -static struct mtd_partition *parsed_parts; - struct map_info soleng_eprom_map = { .name = "Solution Engine EPROM", .size = 0x400000, @@ -33,30 +31,10 @@ struct map_info soleng_flash_map = { .bankwidth = 4, }; -static const char *probes[] = { "RedBoot", "cmdlinepart", NULL }; - -#ifdef CONFIG_MTD_SUPERH_RESERVE -static struct mtd_partition superh_se_partitions[] = { - /* Reserved for boot code, read-only */ - { - .name = "flash_boot", - .offset = 0x00000000, - .size = CONFIG_MTD_SUPERH_RESERVE, - .mask_flags = MTD_WRITEABLE, - }, - /* All else is writable (e.g. JFFS) */ - { - .name = "Flash FS", - .offset = MTDPART_OFS_NXTBLK, - .size = MTDPART_SIZ_FULL, - } -}; -#endif /* CONFIG_MTD_SUPERH_RESERVE */ +static const char * const probes[] = { "RedBoot", "cmdlinepart", NULL }; static int __init init_soleng_maps(void) { - int nr_parts = 0; - /* First probe at offset 0 */ soleng_flash_map.phys = 0; soleng_flash_map.virt = (void __iomem *)P2SEGADDR(0); @@ -89,24 +67,10 @@ static int __init init_soleng_maps(void) eprom_mtd = do_map_probe("map_rom", &soleng_eprom_map); if (eprom_mtd) { eprom_mtd->owner = THIS_MODULE; - add_mtd_device(eprom_mtd); - } - - nr_parts = parse_mtd_partitions(flash_mtd, probes, &parsed_parts, 0); - -#ifdef CONFIG_MTD_SUPERH_RESERVE - if (nr_parts <= 0) { - printk(KERN_NOTICE "Using configured partition at 0x%08x.\n", - CONFIG_MTD_SUPERH_RESERVE); - parsed_parts = superh_se_partitions; - nr_parts = sizeof(superh_se_partitions)/sizeof(*parsed_parts); + mtd_device_register(eprom_mtd, NULL, 0); } -#endif /* CONFIG_MTD_SUPERH_RESERVE */ - if (nr_parts > 0) - add_mtd_partitions(flash_mtd, parsed_parts, nr_parts); - else - add_mtd_device(flash_mtd); + mtd_device_parse_register(flash_mtd, probes, NULL, NULL, 0); return 0; } @@ -114,14 +78,11 @@ static int __init init_soleng_maps(void) static void __exit cleanup_soleng_maps(void) { if (eprom_mtd) { - del_mtd_device(eprom_mtd); + mtd_device_unregister(eprom_mtd); map_destroy(eprom_mtd); } - if (parsed_parts) - del_mtd_partitions(flash_mtd); - else - del_mtd_device(flash_mtd); + mtd_device_unregister(flash_mtd); map_destroy(flash_mtd); } diff --git a/drivers/mtd/maps/sun_uflash.c b/drivers/mtd/maps/sun_uflash.c index 0391c2527bd..b6f1aac3510 100644 --- a/drivers/mtd/maps/sun_uflash.c +++ b/drivers/mtd/maps/sun_uflash.c @@ -11,7 +11,6 @@ #include <linux/module.h> #include <linux/fs.h> #include <linux/errno.h> -#include <linux/init.h> #include <linux/ioport.h> #include <linux/of.h> #include <linux/of_device.h> @@ -48,7 +47,7 @@ struct map_info uflash_map_templ = { .bankwidth = UFLASH_BUSWIDTH, }; -int uflash_devinit(struct of_device *op, struct device_node *dp) +int uflash_devinit(struct platform_device *op, struct device_node *dp) { struct uflash_dev *up; @@ -75,7 +74,7 @@ int uflash_devinit(struct of_device *op, struct device_node *dp) up->name = of_get_property(dp, "model", NULL); if (up->name && 0 < strlen(up->name)) - up->map.name = (char *)up->name; + up->map.name = up->name; up->map.phys = op->resource[0].start; @@ -101,14 +100,14 @@ int uflash_devinit(struct of_device *op, struct device_node *dp) up->mtd->owner = THIS_MODULE; - add_mtd_device(up->mtd); + mtd_device_register(up->mtd, NULL, 0); dev_set_drvdata(&op->dev, up); return 0; } -static int __devinit uflash_probe(struct of_device *op, const struct of_device_id *match) +static int uflash_probe(struct platform_device *op) { struct device_node *dp = op->dev.of_node; @@ -121,12 +120,12 @@ static int __devinit uflash_probe(struct of_device *op, const struct of_device_i return uflash_devinit(op, dp); } -static int __devexit uflash_remove(struct of_device *op) +static int uflash_remove(struct platform_device *op) { struct uflash_dev *up = dev_get_drvdata(&op->dev); if (up->mtd) { - del_mtd_device(up->mtd); + mtd_device_unregister(up->mtd); map_destroy(up->mtd); } if (up->map.virt) { @@ -148,25 +147,14 @@ static const struct of_device_id uflash_match[] = { MODULE_DEVICE_TABLE(of, uflash_match); -static struct of_platform_driver uflash_driver = { +static struct platform_driver uflash_driver = { .driver = { .name = DRIVER_NAME, .owner = THIS_MODULE, .of_match_table = uflash_match, }, .probe = uflash_probe, - .remove = __devexit_p(uflash_remove), + .remove = uflash_remove, }; -static int __init uflash_init(void) -{ - return of_register_driver(&uflash_driver, &of_bus_type); -} - -static void __exit uflash_exit(void) -{ - of_unregister_driver(&uflash_driver); -} - -module_init(uflash_init); -module_exit(uflash_exit); +module_platform_driver(uflash_driver); diff --git a/drivers/mtd/maps/tqm8xxl.c b/drivers/mtd/maps/tqm8xxl.c deleted file mode 100644 index 60146984f4b..00000000000 --- a/drivers/mtd/maps/tqm8xxl.c +++ /dev/null @@ -1,259 +0,0 @@ -/* - * Handle mapping of the flash memory access routines - * on TQM8xxL based devices. - * - * based on rpxlite.c - * - * Copyright(C) 2001 Kirk Lee <kirk@hpc.ee.ntu.edu.tw> - * - * This code is GPLed - * - */ - -/* - * According to TQM8xxL hardware manual, TQM8xxL series have - * following flash memory organisations: - * | capacity | | chip type | | bank0 | | bank1 | - * 2MiB 512Kx16 2MiB 0 - * 4MiB 1Mx16 4MiB 0 - * 8MiB 1Mx16 4MiB 4MiB - * Thus, we choose CONFIG_MTD_CFI_I2 & CONFIG_MTD_CFI_B4 at - * kernel configuration. - */ -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <linux/slab.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> - -#include <asm/io.h> - -#define FLASH_ADDR 0x40000000 -#define FLASH_SIZE 0x00800000 -#define FLASH_BANK_MAX 4 - -// trivial struct to describe partition information -struct mtd_part_def -{ - int nums; - unsigned char *type; - struct mtd_partition* mtd_part; -}; - -//static struct mtd_info *mymtd; -static struct mtd_info* mtd_banks[FLASH_BANK_MAX]; -static struct map_info* map_banks[FLASH_BANK_MAX]; -static struct mtd_part_def part_banks[FLASH_BANK_MAX]; -static unsigned long num_banks; -static void __iomem *start_scan_addr; - -/* - * Here are partition information for all known TQM8xxL series devices. - * See include/linux/mtd/partitions.h for definition of the mtd_partition - * structure. - * - * The *_max_flash_size is the maximum possible mapped flash size which - * is not necessarily the actual flash size. It must correspond to the - * value specified in the mapping definition defined by the - * "struct map_desc *_io_desc" for the corresponding machine. - */ - -#ifdef CONFIG_MTD_PARTITIONS -/* Currently, TQM8xxL has upto 8MiB flash */ -static unsigned long tqm8xxl_max_flash_size = 0x00800000; - -/* partition definition for first flash bank - * (cf. "drivers/char/flash_config.c") - */ -static struct mtd_partition tqm8xxl_partitions[] = { - { - .name = "ppcboot", - .offset = 0x00000000, - .size = 0x00020000, /* 128KB */ - .mask_flags = MTD_WRITEABLE, /* force read-only */ - }, - { - .name = "kernel", /* default kernel image */ - .offset = 0x00020000, - .size = 0x000e0000, - .mask_flags = MTD_WRITEABLE, /* force read-only */ - }, - { - .name = "user", - .offset = 0x00100000, - .size = 0x00100000, - }, - { - .name = "initrd", - .offset = 0x00200000, - .size = 0x00200000, - } -}; -/* partition definition for second flash bank */ -static struct mtd_partition tqm8xxl_fs_partitions[] = { - { - .name = "cramfs", - .offset = 0x00000000, - .size = 0x00200000, - }, - { - .name = "jffs", - .offset = 0x00200000, - .size = 0x00200000, - //.size = MTDPART_SIZ_FULL, - } -}; -#endif - -static int __init init_tqm_mtd(void) -{ - int idx = 0, ret = 0; - unsigned long flash_addr, flash_size, mtd_size = 0; - /* pointer to TQM8xxL board info data */ - bd_t *bd = (bd_t *)__res; - - flash_addr = bd->bi_flashstart; - flash_size = bd->bi_flashsize; - - //request maximum flash size address space - start_scan_addr = ioremap(flash_addr, flash_size); - if (!start_scan_addr) { - printk(KERN_WARNING "%s:Failed to ioremap address:0x%x\n", __func__, flash_addr); - return -EIO; - } - - for (idx = 0 ; idx < FLASH_BANK_MAX ; idx++) { - if(mtd_size >= flash_size) - break; - - printk(KERN_INFO "%s: chip probing count %d\n", __func__, idx); - - map_banks[idx] = kzalloc(sizeof(struct map_info), GFP_KERNEL); - if(map_banks[idx] == NULL) { - ret = -ENOMEM; - /* FIXME: What if some MTD devices were probed already? */ - goto error_mem; - } - - map_banks[idx]->name = (char *)kmalloc(16, GFP_KERNEL); - - if (!map_banks[idx]->name) { - ret = -ENOMEM; - /* FIXME: What if some MTD devices were probed already? */ - goto error_mem; - } - sprintf(map_banks[idx]->name, "TQM8xxL%d", idx); - - map_banks[idx]->size = flash_size; - map_banks[idx]->bankwidth = 4; - - simple_map_init(map_banks[idx]); - - map_banks[idx]->virt = start_scan_addr; - map_banks[idx]->phys = flash_addr; - /* FIXME: This looks utterly bogus, but I'm trying to - preserve the behaviour of the original (shown here)... - - map_banks[idx]->map_priv_1 = - start_scan_addr + ((idx > 0) ? - (mtd_banks[idx-1] ? mtd_banks[idx-1]->size : 0) : 0); - */ - - if (idx && mtd_banks[idx-1]) { - map_banks[idx]->virt += mtd_banks[idx-1]->size; - map_banks[idx]->phys += mtd_banks[idx-1]->size; - } - - //start to probe flash chips - mtd_banks[idx] = do_map_probe("cfi_probe", map_banks[idx]); - - if (mtd_banks[idx]) { - mtd_banks[idx]->owner = THIS_MODULE; - mtd_size += mtd_banks[idx]->size; - num_banks++; - - printk(KERN_INFO "%s: bank%d, name:%s, size:%dbytes \n", __func__, num_banks, - mtd_banks[idx]->name, mtd_banks[idx]->size); - } - } - - /* no supported flash chips found */ - if (!num_banks) { - printk(KERN_NOTICE "TQM8xxL: No support flash chips found!\n"); - ret = -ENXIO; - goto error_mem; - } - -#ifdef CONFIG_MTD_PARTITIONS - /* - * Select Static partition definitions - */ - part_banks[0].mtd_part = tqm8xxl_partitions; - part_banks[0].type = "Static image"; - part_banks[0].nums = ARRAY_SIZE(tqm8xxl_partitions); - - part_banks[1].mtd_part = tqm8xxl_fs_partitions; - part_banks[1].type = "Static file system"; - part_banks[1].nums = ARRAY_SIZE(tqm8xxl_fs_partitions); - - for(idx = 0; idx < num_banks ; idx++) { - if (part_banks[idx].nums == 0) { - printk(KERN_NOTICE "TQM flash%d: no partition info available, registering whole flash at once\n", idx); - add_mtd_device(mtd_banks[idx]); - } else { - printk(KERN_NOTICE "TQM flash%d: Using %s partition definition\n", - idx, part_banks[idx].type); - add_mtd_partitions(mtd_banks[idx], part_banks[idx].mtd_part, - part_banks[idx].nums); - } - } -#else - printk(KERN_NOTICE "TQM flash: registering %d whole flash banks at once\n", num_banks); - for(idx = 0 ; idx < num_banks ; idx++) - add_mtd_device(mtd_banks[idx]); -#endif - return 0; -error_mem: - for(idx = 0 ; idx < FLASH_BANK_MAX ; idx++) { - if(map_banks[idx] != NULL) { - kfree(map_banks[idx]->name); - map_banks[idx]->name = NULL; - kfree(map_banks[idx]); - map_banks[idx] = NULL; - } - } -error: - iounmap(start_scan_addr); - return ret; -} - -static void __exit cleanup_tqm_mtd(void) -{ - unsigned int idx = 0; - for(idx = 0 ; idx < num_banks ; idx++) { - /* destroy mtd_info previously allocated */ - if (mtd_banks[idx]) { - del_mtd_partitions(mtd_banks[idx]); - map_destroy(mtd_banks[idx]); - } - /* release map_info not used anymore */ - kfree(map_banks[idx]->name); - kfree(map_banks[idx]); - } - - if (start_scan_addr) { - iounmap(start_scan_addr); - start_scan_addr = 0; - } -} - -module_init(init_tqm_mtd); -module_exit(cleanup_tqm_mtd); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Kirk Lee <kirk@hpc.ee.ntu.edu.tw>"); -MODULE_DESCRIPTION("MTD map driver for TQM8xxL boards"); diff --git a/drivers/mtd/maps/ts5500_flash.c b/drivers/mtd/maps/ts5500_flash.c index e2147bf11c8..d1d671daf23 100644 --- a/drivers/mtd/maps/ts5500_flash.c +++ b/drivers/mtd/maps/ts5500_flash.c @@ -89,12 +89,11 @@ static int __init init_ts5500_map(void) } mymtd->owner = THIS_MODULE; - add_mtd_partitions(mymtd, ts5500_partitions, NUM_PARTITIONS); + mtd_device_register(mymtd, ts5500_partitions, NUM_PARTITIONS); return 0; err1: - map_destroy(mymtd); iounmap(ts5500_map.virt); err2: return rc; @@ -103,7 +102,7 @@ err2: static void __exit cleanup_ts5500_map(void) { if (mymtd) { - del_mtd_partitions(mymtd); + mtd_device_unregister(mymtd); map_destroy(mymtd); } diff --git a/drivers/mtd/maps/tsunami_flash.c b/drivers/mtd/maps/tsunami_flash.c index 77a8bfc0257..da2cdb5fd6d 100644 --- a/drivers/mtd/maps/tsunami_flash.c +++ b/drivers/mtd/maps/tsunami_flash.c @@ -76,17 +76,18 @@ static void __exit cleanup_tsunami_flash(void) struct mtd_info *mtd; mtd = tsunami_flash_mtd; if (mtd) { - del_mtd_device(mtd); + mtd_device_unregister(mtd); map_destroy(mtd); } tsunami_flash_mtd = 0; } +static const char * const rom_probe_types[] = { + "cfi_probe", "jedec_probe", "map_rom", NULL }; static int __init init_tsunami_flash(void) { - static const char *rom_probe_types[] = { "cfi_probe", "jedec_probe", "map_rom", NULL }; - char **type; + const char * const *type; tsunami_tig_writeb(FLASH_ENABLE_BYTE, FLASH_ENABLE_PORT); @@ -97,7 +98,7 @@ static int __init init_tsunami_flash(void) } if (tsunami_flash_mtd) { tsunami_flash_mtd->owner = THIS_MODULE; - add_mtd_device(tsunami_flash_mtd); + mtd_device_register(tsunami_flash_mtd, NULL, 0); return 0; } return -ENXIO; diff --git a/drivers/mtd/maps/uclinux.c b/drivers/mtd/maps/uclinux.c index 35009294b43..c1af83db520 100644 --- a/drivers/mtd/maps/uclinux.c +++ b/drivers/mtd/maps/uclinux.c @@ -19,17 +19,30 @@ #include <linux/mtd/map.h> #include <linux/mtd/partitions.h> #include <asm/io.h> +#include <asm/sections.h> /****************************************************************************/ -extern char _ebss; +#ifdef CONFIG_MTD_ROM +#define MAP_NAME "rom" +#else +#define MAP_NAME "ram" +#endif + +/* + * Blackfin uses uclinux_ram_map during startup, so it must not be static. + * Provide a dummy declaration to make sparse happy. + */ +extern struct map_info uclinux_ram_map; struct map_info uclinux_ram_map = { - .name = "RAM", - .phys = (unsigned long)&_ebss, + .name = MAP_NAME, .size = 0, }; +static unsigned long physaddr = -1; +module_param(physaddr, ulong, S_IRUGO); + static struct mtd_info *uclinux_ram_mtdinfo; /****************************************************************************/ @@ -61,39 +74,46 @@ static int __init uclinux_mtd_init(void) struct map_info *mapp; mapp = &uclinux_ram_map; + + if (physaddr == -1) + mapp->phys = (resource_size_t)__bss_stop; + else + mapp->phys = physaddr; + if (!mapp->size) mapp->size = PAGE_ALIGN(ntohl(*((unsigned long *)(mapp->phys + 8)))); mapp->bankwidth = 4; - printk("uclinux[mtd]: RAM probe address=0x%x size=0x%x\n", + printk("uclinux[mtd]: probe address=0x%x size=0x%x\n", (int) mapp->phys, (int) mapp->size); - mapp->virt = ioremap_nocache(mapp->phys, mapp->size); + /* + * The filesystem is guaranteed to be in direct mapped memory. It is + * directly following the kernels own bss region. Following the same + * mechanism used by architectures setting up traditional initrds we + * use phys_to_virt to get the virtual address of its start. + */ + mapp->virt = phys_to_virt(mapp->phys); if (mapp->virt == 0) { - printk("uclinux[mtd]: ioremap_nocache() failed\n"); + printk("uclinux[mtd]: no virtual mapping?\n"); return(-EIO); } simple_map_init(mapp); - mtd = do_map_probe("map_ram", mapp); + mtd = do_map_probe("map_" MAP_NAME, mapp); if (!mtd) { printk("uclinux[mtd]: failed to find a mapping?\n"); - iounmap(mapp->virt); return(-ENXIO); } mtd->owner = THIS_MODULE; - mtd->point = uclinux_point; + mtd->_point = uclinux_point; mtd->priv = mapp; uclinux_ram_mtdinfo = mtd; -#ifdef CONFIG_MTD_PARTITIONS - add_mtd_partitions(mtd, uclinux_romfs, NUM_PARTITIONS); -#else - add_mtd_device(mtd); -#endif + mtd_device_register(mtd, uclinux_romfs, NUM_PARTITIONS); return(0); } @@ -103,18 +123,12 @@ static int __init uclinux_mtd_init(void) static void __exit uclinux_mtd_cleanup(void) { if (uclinux_ram_mtdinfo) { -#ifdef CONFIG_MTD_PARTITIONS - del_mtd_partitions(uclinux_ram_mtdinfo); -#else - del_mtd_device(uclinux_ram_mtdinfo); -#endif + mtd_device_unregister(uclinux_ram_mtdinfo); map_destroy(uclinux_ram_mtdinfo); uclinux_ram_mtdinfo = NULL; } - if (uclinux_ram_map.virt) { - iounmap((void *) uclinux_ram_map.virt); + if (uclinux_ram_map.virt) uclinux_ram_map.virt = 0; - } } /****************************************************************************/ @@ -124,6 +138,6 @@ module_exit(uclinux_mtd_cleanup); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Greg Ungerer <gerg@snapgear.com>"); -MODULE_DESCRIPTION("Generic RAM based MTD for uClinux"); +MODULE_DESCRIPTION("Generic MTD for uClinux"); /****************************************************************************/ diff --git a/drivers/mtd/maps/vmax301.c b/drivers/mtd/maps/vmax301.c deleted file mode 100644 index 6adaa6acc19..00000000000 --- a/drivers/mtd/maps/vmax301.c +++ /dev/null @@ -1,196 +0,0 @@ -/* ###################################################################### - - Tempustech VMAX SBC301 MTD Driver. - - The VMAx 301 is a SBC based on . It - comes with three builtin AMD 29F016B flash chips and a socket for SRAM or - more flash. Each unit has it's own 8k mapping into a settable region - (0xD8000). There are two 8k mappings for each MTD, the first is always set - to the lower 8k of the device the second is paged. Writing a 16 bit page - value to anywhere in the first 8k will cause the second 8k to page around. - - To boot the device a bios extension must be installed into the first 8k - of flash that is smart enough to copy itself down, page in the rest of - itself and begin executing. - - ##################################################################### */ - -#include <linux/module.h> -#include <linux/ioport.h> -#include <linux/init.h> -#include <linux/spinlock.h> -#include <asm/io.h> - -#include <linux/mtd/map.h> -#include <linux/mtd/mtd.h> - - -#define WINDOW_START 0xd8000 -#define WINDOW_LENGTH 0x2000 -#define WINDOW_SHIFT 25 -#define WINDOW_MASK 0x1FFF - -/* Actually we could use two spinlocks, but we'd have to have - more private space in the struct map_info. We lose a little - performance like this, but we'd probably lose more by having - the extra indirection from having one of the map->map_priv - fields pointing to yet another private struct. -*/ -static DEFINE_SPINLOCK(vmax301_spin); - -static void __vmax301_page(struct map_info *map, unsigned long page) -{ - writew(page, map->map_priv_2 - WINDOW_LENGTH); - map->map_priv_1 = page; -} - -static inline void vmax301_page(struct map_info *map, - unsigned long ofs) -{ - unsigned long page = (ofs >> WINDOW_SHIFT); - if (map->map_priv_1 != page) - __vmax301_page(map, page); -} - -static map_word vmax301_read8(struct map_info *map, unsigned long ofs) -{ - map_word ret; - spin_lock(&vmax301_spin); - vmax301_page(map, ofs); - ret.x[0] = readb(map->map_priv_2 + (ofs & WINDOW_MASK)); - spin_unlock(&vmax301_spin); - return ret; -} - -static void vmax301_copy_from(struct map_info *map, void *to, unsigned long from, ssize_t len) -{ - while(len) { - unsigned long thislen = len; - if (len > (WINDOW_LENGTH - (from & WINDOW_MASK))) - thislen = WINDOW_LENGTH-(from & WINDOW_MASK); - spin_lock(&vmax301_spin); - vmax301_page(map, from); - memcpy_fromio(to, map->map_priv_2 + from, thislen); - spin_unlock(&vmax301_spin); - to += thislen; - from += thislen; - len -= thislen; - } -} - -static void vmax301_write8(struct map_info *map, map_word d, unsigned long adr) -{ - spin_lock(&vmax301_spin); - vmax301_page(map, adr); - writeb(d.x[0], map->map_priv_2 + (adr & WINDOW_MASK)); - spin_unlock(&vmax301_spin); -} - -static void vmax301_copy_to(struct map_info *map, unsigned long to, const void *from, ssize_t len) -{ - while(len) { - unsigned long thislen = len; - if (len > (WINDOW_LENGTH - (to & WINDOW_MASK))) - thislen = WINDOW_LENGTH-(to & WINDOW_MASK); - - spin_lock(&vmax301_spin); - vmax301_page(map, to); - memcpy_toio(map->map_priv_2 + to, from, thislen); - spin_unlock(&vmax301_spin); - to += thislen; - from += thislen; - len -= thislen; - } -} - -static struct map_info vmax_map[2] = { - { - .name = "VMAX301 Internal Flash", - .phys = NO_XIP, - .size = 3*2*1024*1024, - .bankwidth = 1, - .read = vmax301_read8, - .copy_from = vmax301_copy_from, - .write = vmax301_write8, - .copy_to = vmax301_copy_to, - .map_priv_1 = WINDOW_START + WINDOW_LENGTH, - .map_priv_2 = 0xFFFFFFFF - }, - { - .name = "VMAX301 Socket", - .phys = NO_XIP, - .size = 0, - .bankwidth = 1, - .read = vmax301_read8, - .copy_from = vmax301_copy_from, - .write = vmax301_write8, - .copy_to = vmax301_copy_to, - .map_priv_1 = WINDOW_START + (3*WINDOW_LENGTH), - .map_priv_2 = 0xFFFFFFFF - } -}; - -static struct mtd_info *vmax_mtd[2] = {NULL, NULL}; - -static void __exit cleanup_vmax301(void) -{ - int i; - - for (i=0; i<2; i++) { - if (vmax_mtd[i]) { - del_mtd_device(vmax_mtd[i]); - map_destroy(vmax_mtd[i]); - } - } - iounmap((void *)vmax_map[0].map_priv_1 - WINDOW_START); -} - -static int __init init_vmax301(void) -{ - int i; - unsigned long iomapadr; - // Print out our little header.. - printk("Tempustech VMAX 301 MEM:0x%x-0x%x\n",WINDOW_START, - WINDOW_START+4*WINDOW_LENGTH); - - iomapadr = (unsigned long)ioremap(WINDOW_START, WINDOW_LENGTH*4); - if (!iomapadr) { - printk("Failed to ioremap memory region\n"); - return -EIO; - } - /* Put the address in the map's private data area. - We store the actual MTD IO address rather than the - address of the first half, because it's used more - often. - */ - vmax_map[0].map_priv_2 = iomapadr + WINDOW_START; - vmax_map[1].map_priv_2 = iomapadr + (3*WINDOW_START); - - for (i=0; i<2; i++) { - vmax_mtd[i] = do_map_probe("cfi_probe", &vmax_map[i]); - if (!vmax_mtd[i]) - vmax_mtd[i] = do_map_probe("jedec", &vmax_map[i]); - if (!vmax_mtd[i]) - vmax_mtd[i] = do_map_probe("map_ram", &vmax_map[i]); - if (!vmax_mtd[i]) - vmax_mtd[i] = do_map_probe("map_rom", &vmax_map[i]); - if (vmax_mtd[i]) { - vmax_mtd[i]->owner = THIS_MODULE; - add_mtd_device(vmax_mtd[i]); - } - } - - if (!vmax_mtd[0] && !vmax_mtd[1]) { - iounmap((void *)iomapadr); - return -ENXIO; - } - - return 0; -} - -module_init(init_vmax301); -module_exit(cleanup_vmax301); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); -MODULE_DESCRIPTION("MTD map driver for Tempustech VMAX SBC301 board"); diff --git a/drivers/mtd/maps/vmu-flash.c b/drivers/mtd/maps/vmu-flash.c index 4afc167731e..6b223cfe92b 100644 --- a/drivers/mtd/maps/vmu-flash.c +++ b/drivers/mtd/maps/vmu-flash.c @@ -360,9 +360,6 @@ static int vmu_flash_read(struct mtd_info *mtd, loff_t from, size_t len, int index = 0, retval, partition, leftover, numblocks; unsigned char cx; - if (len < 1) - return -EIO; - mpart = mtd->priv; mdev = mpart->mdev; partition = mpart->partition; @@ -434,11 +431,6 @@ static int vmu_flash_write(struct mtd_info *mtd, loff_t to, size_t len, partition = mpart->partition; card = maple_get_drvdata(mdev); - /* simple sanity checks */ - if (len < 1) { - error = -EIO; - goto failed; - } numblocks = card->parts[partition].numblocks; if (to + len > numblocks * card->blocklen) len = numblocks * card->blocklen - to; @@ -544,9 +536,9 @@ static void vmu_queryblocks(struct mapleq *mq) mtd_cur->flags = MTD_WRITEABLE|MTD_NO_ERASE; mtd_cur->size = part_cur->numblocks * card->blocklen; mtd_cur->erasesize = card->blocklen; - mtd_cur->write = vmu_flash_write; - mtd_cur->read = vmu_flash_read; - mtd_cur->sync = vmu_flash_sync; + mtd_cur->_write = vmu_flash_write; + mtd_cur->_read = vmu_flash_read; + mtd_cur->_sync = vmu_flash_sync; mtd_cur->writesize = card->blocklen; mpart = kmalloc(sizeof(struct mdev_part), GFP_KERNEL); @@ -563,7 +555,7 @@ static void vmu_queryblocks(struct mapleq *mq) goto fail_cache_create; part_cur->pcache = pcache; - error = add_mtd_device(mtd_cur); + error = mtd_device_register(mtd_cur, NULL, 0); if (error) goto fail_mtd_register; @@ -604,7 +596,7 @@ fail_name: } /* Handles very basic info about the flash, queries for details */ -static int __devinit vmu_connect(struct maple_device *mdev) +static int vmu_connect(struct maple_device *mdev) { unsigned long test_flash_data, basic_flash_data; int c, error; @@ -698,7 +690,7 @@ fail_nomem: return error; } -static void __devexit vmu_disconnect(struct maple_device *mdev) +static void vmu_disconnect(struct maple_device *mdev) { struct memcard *card; struct mdev_part *mpart; @@ -709,7 +701,7 @@ static void __devexit vmu_disconnect(struct maple_device *mdev) for (x = 0; x < card->partitions; x++) { mpart = ((card->mtd)[x]).priv; mpart->mdev = NULL; - del_mtd_device(&((card->mtd)[x])); + mtd_device_unregister(&((card->mtd)[x])); kfree(((card->parts)[x]).name); } kfree(card->parts); @@ -780,7 +772,7 @@ static void vmu_file_error(struct maple_device *mdev, void *recvbuf) } -static int __devinit probe_maple_vmu(struct device *dev) +static int probe_maple_vmu(struct device *dev) { int error; struct maple_device *mdev = to_maple_dev(dev); @@ -797,7 +789,7 @@ static int __devinit probe_maple_vmu(struct device *dev) return 0; } -static int __devexit remove_maple_vmu(struct device *dev) +static int remove_maple_vmu(struct device *dev) { struct maple_device *mdev = to_maple_dev(dev); @@ -810,7 +802,7 @@ static struct maple_driver vmu_flash_driver = { .drv = { .name = "Dreamcast_visual_memory", .probe = probe_maple_vmu, - .remove = __devexit_p(remove_maple_vmu), + .remove = remove_maple_vmu, }, }; diff --git a/drivers/mtd/maps/wr_sbc82xx_flash.c b/drivers/mtd/maps/wr_sbc82xx_flash.c deleted file mode 100644 index 933a2b6598b..00000000000 --- a/drivers/mtd/maps/wr_sbc82xx_flash.c +++ /dev/null @@ -1,178 +0,0 @@ -/* - * Map for flash chips on Wind River PowerQUICC II SBC82xx board. - * - * Copyright (C) 2004 Red Hat, Inc. - * - * Author: David Woodhouse <dwmw2@infradead.org> - * - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <linux/slab.h> -#include <asm/io.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> - -#include <asm/immap_cpm2.h> - -static struct mtd_info *sbcmtd[3]; -static struct mtd_partition *sbcmtd_parts[3]; - -struct map_info sbc82xx_flash_map[3] = { - {.name = "Boot flash"}, - {.name = "Alternate boot flash"}, - {.name = "User flash"} -}; - -static struct mtd_partition smallflash_parts[] = { - { - .name = "space", - .size = 0x100000, - .offset = 0, - }, { - .name = "bootloader", - .size = MTDPART_SIZ_FULL, - .offset = MTDPART_OFS_APPEND, - } -}; - -static struct mtd_partition bigflash_parts[] = { - { - .name = "bootloader", - .size = 0x00100000, - .offset = 0, - }, { - .name = "file system", - .size = 0x01f00000, - .offset = MTDPART_OFS_APPEND, - }, { - .name = "boot config", - .size = 0x00100000, - .offset = MTDPART_OFS_APPEND, - }, { - .name = "space", - .size = 0x01f00000, - .offset = MTDPART_OFS_APPEND, - } -}; - -static const char *part_probes[] __initdata = {"cmdlinepart", "RedBoot", NULL}; - -#define init_sbc82xx_one_flash(map, br, or) \ -do { \ - (map).phys = (br & 1) ? (br & 0xffff8000) : 0; \ - (map).size = (br & 1) ? (~(or & 0xffff8000) + 1) : 0; \ - switch (br & 0x00001800) { \ - case 0x00000000: \ - case 0x00000800: (map).bankwidth = 1; break; \ - case 0x00001000: (map).bankwidth = 2; break; \ - case 0x00001800: (map).bankwidth = 4; break; \ - } \ -} while (0); - -static int __init init_sbc82xx_flash(void) -{ - volatile memctl_cpm2_t *mc = &cpm2_immr->im_memctl; - int bigflash; - int i; - -#ifdef CONFIG_SBC8560 - mc = ioremap(0xff700000 + 0x5000, sizeof(memctl_cpm2_t)); -#else - mc = &cpm2_immr->im_memctl; -#endif - - bigflash = 1; - if ((mc->memc_br0 & 0x00001800) == 0x00001800) - bigflash = 0; - - init_sbc82xx_one_flash(sbc82xx_flash_map[0], mc->memc_br0, mc->memc_or0); - init_sbc82xx_one_flash(sbc82xx_flash_map[1], mc->memc_br6, mc->memc_or6); - init_sbc82xx_one_flash(sbc82xx_flash_map[2], mc->memc_br1, mc->memc_or1); - -#ifdef CONFIG_SBC8560 - iounmap((void *) mc); -#endif - - for (i=0; i<3; i++) { - int8_t flashcs[3] = { 0, 6, 1 }; - int nr_parts; - - printk(KERN_NOTICE "PowerQUICC II %s (%ld MiB on CS%d", - sbc82xx_flash_map[i].name, - (sbc82xx_flash_map[i].size >> 20), - flashcs[i]); - if (!sbc82xx_flash_map[i].phys) { - /* We know it can't be at zero. */ - printk("): disabled by bootloader.\n"); - continue; - } - printk(" at %08lx)\n", sbc82xx_flash_map[i].phys); - - sbc82xx_flash_map[i].virt = ioremap(sbc82xx_flash_map[i].phys, sbc82xx_flash_map[i].size); - - if (!sbc82xx_flash_map[i].virt) { - printk("Failed to ioremap\n"); - continue; - } - - simple_map_init(&sbc82xx_flash_map[i]); - - sbcmtd[i] = do_map_probe("cfi_probe", &sbc82xx_flash_map[i]); - - if (!sbcmtd[i]) - continue; - - sbcmtd[i]->owner = THIS_MODULE; - - nr_parts = parse_mtd_partitions(sbcmtd[i], part_probes, - &sbcmtd_parts[i], 0); - if (nr_parts > 0) { - add_mtd_partitions (sbcmtd[i], sbcmtd_parts[i], nr_parts); - continue; - } - - /* No partitioning detected. Use default */ - if (i == 2) { - add_mtd_device(sbcmtd[i]); - } else if (i == bigflash) { - add_mtd_partitions (sbcmtd[i], bigflash_parts, ARRAY_SIZE(bigflash_parts)); - } else { - add_mtd_partitions (sbcmtd[i], smallflash_parts, ARRAY_SIZE(smallflash_parts)); - } - } - return 0; -} - -static void __exit cleanup_sbc82xx_flash(void) -{ - int i; - - for (i=0; i<3; i++) { - if (!sbcmtd[i]) - continue; - - if (i<2 || sbcmtd_parts[i]) - del_mtd_partitions(sbcmtd[i]); - else - del_mtd_device(sbcmtd[i]); - - kfree(sbcmtd_parts[i]); - map_destroy(sbcmtd[i]); - - iounmap((void *)sbc82xx_flash_map[i].virt); - sbc82xx_flash_map[i].virt = 0; - } -} - -module_init(init_sbc82xx_flash); -module_exit(cleanup_sbc82xx_flash); - - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); -MODULE_DESCRIPTION("Flash map driver for WindRiver PowerQUICC II"); diff --git a/drivers/mtd/mtd_blkdevs.c b/drivers/mtd/mtd_blkdevs.c index 03e19c1965c..43e30992a36 100644 --- a/drivers/mtd/mtd_blkdevs.c +++ b/drivers/mtd/mtd_blkdevs.c @@ -1,7 +1,21 @@ /* - * (C) 2003 David Woodhouse <dwmw2@infradead.org> + * Interface to Linux block layer for MTD 'translation layers'. * - * Interface to Linux 2.5 block layer for MTD 'translation layers'. + * Copyright © 2003-2010 David Woodhouse <dwmw2@infradead.org> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ @@ -16,9 +30,7 @@ #include <linux/blkpg.h> #include <linux/spinlock.h> #include <linux/hdreg.h> -#include <linux/init.h> #include <linux/mutex.h> -#include <linux/kthread.h> #include <asm/uaccess.h> #include "mtdcore.h" @@ -26,7 +38,7 @@ static LIST_HEAD(blktrans_majors); static DEFINE_MUTEX(blktrans_ref_mutex); -void blktrans_dev_release(struct kref *kref) +static void blktrans_dev_release(struct kref *kref) { struct mtd_blktrans_dev *dev = container_of(kref, struct mtd_blktrans_dev, ref); @@ -53,7 +65,7 @@ unlock: return dev; } -void blktrans_dev_put(struct mtd_blktrans_dev *dev) +static void blktrans_dev_put(struct mtd_blktrans_dev *dev) { mutex_lock(&blktrans_ref_mutex); kref_put(&dev->ref, blktrans_dev_release); @@ -70,17 +82,19 @@ static int do_blktrans_request(struct mtd_blktrans_ops *tr, block = blk_rq_pos(req) << 9 >> tr->blkshift; nsect = blk_rq_cur_bytes(req) >> tr->blkshift; + buf = bio_data(req->bio); - buf = req->buffer; - - if (!blk_fs_request(req)) + if (req->cmd_type != REQ_TYPE_FS) return -EIO; + if (req->cmd_flags & REQ_FLUSH) + return tr->flush(dev); + if (blk_rq_pos(req) + blk_rq_cur_sectors(req) > get_capacity(req->rq_disk)) return -EIO; - if (blk_discard_rq(req)) + if (req->cmd_flags & REQ_DISCARD) return tr->discard(dev, block, nsect); switch(rq_data_dir(req)) { @@ -105,23 +119,42 @@ static int do_blktrans_request(struct mtd_blktrans_ops *tr, } } -static int mtd_blktrans_thread(void *arg) +int mtd_blktrans_cease_background(struct mtd_blktrans_dev *dev) { - struct mtd_blktrans_dev *dev = arg; + return dev->bg_stop; +} +EXPORT_SYMBOL_GPL(mtd_blktrans_cease_background); + +static void mtd_blktrans_work(struct work_struct *work) +{ + struct mtd_blktrans_dev *dev = + container_of(work, struct mtd_blktrans_dev, work); + struct mtd_blktrans_ops *tr = dev->tr; struct request_queue *rq = dev->rq; struct request *req = NULL; + int background_done = 0; spin_lock_irq(rq->queue_lock); - while (!kthread_should_stop()) { + while (1) { int res; + dev->bg_stop = false; if (!req && !(req = blk_fetch_request(rq))) { - set_current_state(TASK_INTERRUPTIBLE); - spin_unlock_irq(rq->queue_lock); - schedule(); - spin_lock_irq(rq->queue_lock); - continue; + if (tr->background && !background_done) { + spin_unlock_irq(rq->queue_lock); + mutex_lock(&dev->lock); + tr->background(dev); + mutex_unlock(&dev->lock); + spin_lock_irq(rq->queue_lock); + /* + * Do background processing just once per idle + * period. + */ + background_done = !dev->bg_stop; + continue; + } + break; } spin_unlock_irq(rq->queue_lock); @@ -134,14 +167,14 @@ static int mtd_blktrans_thread(void *arg) if (!__blk_end_request_cur(req, res)) req = NULL; + + background_done = 0; } if (req) __blk_end_request_all(req, -EIO); spin_unlock_irq(rq->queue_lock); - - return 0; } static void mtd_blktrans_request(struct request_queue *rq) @@ -155,57 +188,79 @@ static void mtd_blktrans_request(struct request_queue *rq) while ((req = blk_fetch_request(rq)) != NULL) __blk_end_request_all(req, -ENODEV); else - wake_up_process(dev->thread); + queue_work(dev->wq, &dev->work); } static int blktrans_open(struct block_device *bdev, fmode_t mode) { struct mtd_blktrans_dev *dev = blktrans_dev_get(bdev->bd_disk); - int ret; + int ret = 0; if (!dev) - return -ERESTARTSYS; + return -ERESTARTSYS; /* FIXME: busy loop! -arnd*/ mutex_lock(&dev->lock); - if (!dev->mtd) { - ret = -ENXIO; + if (dev->open) + goto unlock; + + kref_get(&dev->ref); + __module_get(dev->tr->owner); + + if (!dev->mtd) goto unlock; + + if (dev->tr->open) { + ret = dev->tr->open(dev); + if (ret) + goto error_put; } - ret = !dev->open++ && dev->tr->open ? dev->tr->open(dev) : 0; + ret = __get_mtd_device(dev->mtd); + if (ret) + goto error_release; + dev->file_mode = mode; - /* Take another reference on the device so it won't go away till - last release */ - if (!ret) - kref_get(&dev->ref); unlock: + dev->open++; + mutex_unlock(&dev->lock); + blktrans_dev_put(dev); + return ret; + +error_release: + if (dev->tr->release) + dev->tr->release(dev); +error_put: + module_put(dev->tr->owner); + kref_put(&dev->ref, blktrans_dev_release); mutex_unlock(&dev->lock); blktrans_dev_put(dev); return ret; } -static int blktrans_release(struct gendisk *disk, fmode_t mode) +static void blktrans_release(struct gendisk *disk, fmode_t mode) { struct mtd_blktrans_dev *dev = blktrans_dev_get(disk); - int ret = -ENXIO; if (!dev) - return ret; + return; mutex_lock(&dev->lock); - /* Release one reference, we sure its not the last one here*/ - kref_put(&dev->ref, blktrans_dev_release); - - if (!dev->mtd) + if (--dev->open) goto unlock; - ret = !--dev->open && dev->tr->release ? dev->tr->release(dev) : 0; + kref_put(&dev->ref, blktrans_dev_release); + module_put(dev->tr->owner); + + if (dev->mtd) { + if (dev->tr->release) + dev->tr->release(dev); + __put_mtd_device(dev->mtd); + } unlock: mutex_unlock(&dev->lock); blktrans_dev_put(dev); - return ret; } static int blktrans_getgeo(struct block_device *bdev, struct hd_geometry *geo) @@ -245,6 +300,7 @@ static int blktrans_ioctl(struct block_device *bdev, fmode_t mode, switch (cmd) { case BLKFLSBUF: ret = dev->tr->flush ? dev->tr->flush(dev) : 0; + break; default: ret = -ENOTTY; } @@ -254,11 +310,11 @@ unlock: return ret; } -static const struct block_device_operations mtd_blktrans_ops = { +static const struct block_device_operations mtd_block_ops = { .owner = THIS_MODULE, .open = blktrans_open, .release = blktrans_release, - .locked_ioctl = blktrans_ioctl, + .ioctl = blktrans_ioctl, .getgeo = blktrans_getgeo, }; @@ -330,7 +386,7 @@ int add_mtd_blktrans_dev(struct mtd_blktrans_dev *new) gd->private_data = new; gd->major = tr->major; gd->first_minor = (new->devnum) << tr->part_bits; - gd->fops = &mtd_blktrans_ops; + gd->fops = &mtd_block_ops; if (tr->part_bits) if (new->devnum < 26) @@ -354,26 +410,28 @@ int add_mtd_blktrans_dev(struct mtd_blktrans_dev *new) if (!new->rq) goto error3; + if (tr->flush) + blk_queue_flush(new->rq, REQ_FLUSH); + new->rq->queuedata = new; blk_queue_logical_block_size(new->rq, tr->blksize); - if (tr->discard) - queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, - new->rq); + queue_flag_set_unlocked(QUEUE_FLAG_NONROT, new->rq); - gd->queue = new->rq; + if (tr->discard) { + queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, new->rq); + new->rq->limits.max_discard_sectors = UINT_MAX; + } - __get_mtd_device(new->mtd); - __module_get(tr->owner); + gd->queue = new->rq; - /* Create processing thread */ - /* TODO: workqueue ? */ - new->thread = kthread_run(mtd_blktrans_thread, new, - "%s%d", tr->name, new->mtd->index); - if (IS_ERR(new->thread)) { - ret = PTR_ERR(new->thread); + /* Create processing workqueue */ + new->wq = alloc_workqueue("%s%d", 0, 0, + tr->name, new->mtd->index); + if (!new->wq) goto error4; - } + INIT_WORK(&new->work, mtd_blktrans_work); + gd->driverfs_dev = &new->mtd->dev; if (new->readonly) @@ -388,15 +446,12 @@ int add_mtd_blktrans_dev(struct mtd_blktrans_dev *new) } return 0; error4: - module_put(tr->owner); - __put_mtd_device(new->mtd); blk_cleanup_queue(new->rq); error3: put_disk(new->disk); error2: list_del(&new->list); error1: - kfree(new); return ret; } @@ -409,15 +464,15 @@ int del_mtd_blktrans_dev(struct mtd_blktrans_dev *old) BUG(); } - /* Stop new requests to arrive */ - del_gendisk(old->disk); - if (old->disk_attributes) sysfs_remove_group(&disk_to_dev(old->disk)->kobj, old->disk_attributes); - /* Stop the thread */ - kthread_stop(old->thread); + /* Stop new requests to arrive */ + del_gendisk(old->disk); + + /* Stop workqueue. This will perform any pending request. */ + destroy_workqueue(old->wq); /* Kill current requests */ spin_lock_irqsave(&old->queue_lock, flags); @@ -425,17 +480,15 @@ int del_mtd_blktrans_dev(struct mtd_blktrans_dev *old) blk_start_queue(old->rq); spin_unlock_irqrestore(&old->queue_lock, flags); - /* Ask trans driver for release to the mtd device */ + /* If the device is currently open, tell trans driver to close it, + then put mtd device, and don't touch it again */ mutex_lock(&old->lock); - if (old->open && old->tr->release) { - old->tr->release(old); - old->open = 0; + if (old->open) { + if (old->tr->release) + old->tr->release(old); + __put_mtd_device(old->mtd); } - __put_mtd_device(old->mtd); - module_put(old->tr->owner); - - /* At that point, we don't touch the mtd anymore */ old->mtd = NULL; mutex_unlock(&old->lock); @@ -485,13 +538,16 @@ int register_mtd_blktrans(struct mtd_blktrans_ops *tr) mutex_lock(&mtd_table_mutex); ret = register_blkdev(tr->major, tr->name); - if (ret) { + if (ret < 0) { printk(KERN_WARNING "Unable to register %s block device on major %d: %d\n", tr->name, tr->major, ret); mutex_unlock(&mtd_table_mutex); return ret; } + if (ret) + tr->major = ret; + tr->blkshift = ffs(tr->blksize) - 1; INIT_LIST_HEAD(&tr->devs); diff --git a/drivers/mtd/mtdblock.c b/drivers/mtd/mtdblock.c index e6edbec609f..485ea751c7f 100644 --- a/drivers/mtd/mtdblock.c +++ b/drivers/mtd/mtdblock.c @@ -1,8 +1,23 @@ /* * Direct MTD block device access * - * (C) 2000-2003 Nicolas Pitre <nico@fluxnic.net> - * (C) 1999-2003 David Woodhouse <dwmw2@infradead.org> + * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> + * Copyright © 2000-2003 Nicolas Pitre <nico@fluxnic.net> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * */ #include <linux/fs.h> @@ -17,6 +32,7 @@ #include <linux/mtd/mtd.h> #include <linux/mtd/blktrans.h> #include <linux/mutex.h> +#include <linux/major.h> struct mtdblk_dev { @@ -29,7 +45,7 @@ struct mtdblk_dev { enum { STATE_EMPTY, STATE_CLEAN, STATE_DIRTY } cache_state; }; -static struct mutex mtdblks_lock; +static DEFINE_MUTEX(mtdblks_lock); /* * Cache stuff... @@ -70,7 +86,7 @@ static int erase_write (struct mtd_info *mtd, unsigned long pos, set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&wait_q, &wait); - ret = mtd->erase(mtd, &erase); + ret = mtd_erase(mtd, &erase); if (ret) { set_current_state(TASK_RUNNING); remove_wait_queue(&wait_q, &wait); @@ -87,7 +103,7 @@ static int erase_write (struct mtd_info *mtd, unsigned long pos, * Next, write the data to flash. */ - ret = mtd->write(mtd, pos, len, &retlen, buf); + ret = mtd_write(mtd, pos, len, &retlen, buf); if (ret) return ret; if (retlen != len) @@ -104,7 +120,7 @@ static int write_cached_data (struct mtdblk_dev *mtdblk) if (mtdblk->cache_state != STATE_DIRTY) return 0; - DEBUG(MTD_DEBUG_LEVEL2, "mtdblock: writing cached data for \"%s\" " + pr_debug("mtdblock: writing cached data for \"%s\" " "at 0x%lx, size 0x%x\n", mtd->name, mtdblk->cache_offset, mtdblk->cache_size); @@ -114,7 +130,7 @@ static int write_cached_data (struct mtdblk_dev *mtdblk) return ret; /* - * Here we could argubly set the cache state to STATE_CLEAN. + * Here we could arguably set the cache state to STATE_CLEAN. * However this could lead to inconsistency since we will not * be notified if this content is altered on the flash by other * means. Let's declare it empty and leave buffering tasks to @@ -133,11 +149,11 @@ static int do_cached_write (struct mtdblk_dev *mtdblk, unsigned long pos, size_t retlen; int ret; - DEBUG(MTD_DEBUG_LEVEL2, "mtdblock: write on \"%s\" at 0x%lx, size 0x%x\n", + pr_debug("mtdblock: write on \"%s\" at 0x%lx, size 0x%x\n", mtd->name, pos, len); if (!sect_size) - return mtd->write(mtd, pos, len, &retlen, buf); + return mtd_write(mtd, pos, len, &retlen, buf); while (len > 0) { unsigned long sect_start = (pos/sect_size)*sect_size; @@ -169,8 +185,8 @@ static int do_cached_write (struct mtdblk_dev *mtdblk, unsigned long pos, mtdblk->cache_offset != sect_start) { /* fill the cache with the current sector */ mtdblk->cache_state = STATE_EMPTY; - ret = mtd->read(mtd, sect_start, sect_size, - &retlen, mtdblk->cache_data); + ret = mtd_read(mtd, sect_start, sect_size, + &retlen, mtdblk->cache_data); if (ret) return ret; if (retlen != sect_size) @@ -203,11 +219,11 @@ static int do_cached_read (struct mtdblk_dev *mtdblk, unsigned long pos, size_t retlen; int ret; - DEBUG(MTD_DEBUG_LEVEL2, "mtdblock: read on \"%s\" at 0x%lx, size 0x%x\n", + pr_debug("mtdblock: read on \"%s\" at 0x%lx, size 0x%x\n", mtd->name, pos, len); if (!sect_size) - return mtd->read(mtd, pos, len, &retlen, buf); + return mtd_read(mtd, pos, len, &retlen, buf); while (len > 0) { unsigned long sect_start = (pos/sect_size)*sect_size; @@ -226,7 +242,7 @@ static int do_cached_read (struct mtdblk_dev *mtdblk, unsigned long pos, mtdblk->cache_offset == sect_start) { memcpy (buf, mtdblk->cache_data + offset, size); } else { - ret = mtd->read(mtd, pos, size, &retlen, buf); + ret = mtd_read(mtd, pos, size, &retlen, buf); if (ret) return ret; if (retlen != size) @@ -268,7 +284,7 @@ static int mtdblock_open(struct mtd_blktrans_dev *mbd) { struct mtdblk_dev *mtdblk = container_of(mbd, struct mtdblk_dev, mbd); - DEBUG(MTD_DEBUG_LEVEL1,"mtdblock_open\n"); + pr_debug("mtdblock_open\n"); mutex_lock(&mtdblks_lock); if (mtdblk->count) { @@ -288,16 +304,16 @@ static int mtdblock_open(struct mtd_blktrans_dev *mbd) mutex_unlock(&mtdblks_lock); - DEBUG(MTD_DEBUG_LEVEL1, "ok\n"); + pr_debug("ok\n"); return 0; } -static int mtdblock_release(struct mtd_blktrans_dev *mbd) +static void mtdblock_release(struct mtd_blktrans_dev *mbd) { struct mtdblk_dev *mtdblk = container_of(mbd, struct mtdblk_dev, mbd); - DEBUG(MTD_DEBUG_LEVEL1, "mtdblock_release\n"); + pr_debug("mtdblock_release\n"); mutex_lock(&mtdblks_lock); @@ -306,17 +322,18 @@ static int mtdblock_release(struct mtd_blktrans_dev *mbd) mutex_unlock(&mtdblk->cache_mutex); if (!--mtdblk->count) { - /* It was the last usage. Free the cache */ - if (mbd->mtd->sync) - mbd->mtd->sync(mbd->mtd); + /* + * It was the last usage. Free the cache, but only sync if + * opened for writing. + */ + if (mbd->file_mode & FMODE_WRITE) + mtd_sync(mbd->mtd); vfree(mtdblk->cache_data); } mutex_unlock(&mtdblks_lock); - DEBUG(MTD_DEBUG_LEVEL1, "ok\n"); - - return 0; + pr_debug("ok\n"); } static int mtdblock_flush(struct mtd_blktrans_dev *dev) @@ -326,9 +343,7 @@ static int mtdblock_flush(struct mtd_blktrans_dev *dev) mutex_lock(&mtdblk->cache_mutex); write_cached_data(mtdblk); mutex_unlock(&mtdblk->cache_mutex); - - if (dev->mtd->sync) - dev->mtd->sync(dev->mtd); + mtd_sync(dev->mtd); return 0; } @@ -359,7 +374,7 @@ static void mtdblock_remove_dev(struct mtd_blktrans_dev *dev) static struct mtd_blktrans_ops mtdblock_tr = { .name = "mtdblock", - .major = 31, + .major = MTD_BLOCK_MAJOR, .part_bits = 0, .blksize = 512, .open = mtdblock_open, @@ -374,8 +389,6 @@ static struct mtd_blktrans_ops mtdblock_tr = { static int __init init_mtdblock(void) { - mutex_init(&mtdblks_lock); - return register_mtd_blktrans(&mtdblock_tr); } diff --git a/drivers/mtd/mtdblock_ro.c b/drivers/mtd/mtdblock_ro.c index d0d3f79f9d0..fb5dc89369d 100644 --- a/drivers/mtd/mtdblock_ro.c +++ b/drivers/mtd/mtdblock_ro.c @@ -1,20 +1,37 @@ /* - * (C) 2003 David Woodhouse <dwmw2@infradead.org> - * * Simple read-only (writable only for RAM) mtdblock driver + * + * Copyright © 2001-2010 David Woodhouse <dwmw2@infradead.org> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * */ #include <linux/init.h> #include <linux/slab.h> #include <linux/mtd/mtd.h> #include <linux/mtd/blktrans.h> +#include <linux/module.h> +#include <linux/major.h> static int mtdblock_readsect(struct mtd_blktrans_dev *dev, unsigned long block, char *buf) { size_t retlen; - if (dev->mtd->read(dev->mtd, (block * 512), 512, &retlen, buf)) + if (mtd_read(dev->mtd, (block * 512), 512, &retlen, buf)) return 1; return 0; } @@ -24,7 +41,7 @@ static int mtdblock_writesect(struct mtd_blktrans_dev *dev, { size_t retlen; - if (dev->mtd->write(dev->mtd, (block * 512), 512, &retlen, buf)) + if (mtd_write(dev->mtd, (block * 512), 512, &retlen, buf)) return 1; return 0; } @@ -54,7 +71,7 @@ static void mtdblock_remove_dev(struct mtd_blktrans_dev *dev) static struct mtd_blktrans_ops mtdblock_tr = { .name = "mtdblock", - .major = 31, + .major = MTD_BLOCK_MAJOR, .part_bits = 0, .blksize = 512, .readsect = mtdblock_readsect, diff --git a/drivers/mtd/mtdchar.c b/drivers/mtd/mtdchar.c index 91c8013cf0d..a0f54e80670 100644 --- a/drivers/mtd/mtdchar.c +++ b/drivers/mtd/mtdchar.c @@ -1,5 +1,19 @@ /* - * Character-device access to raw MTD devices. + * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ @@ -12,22 +26,26 @@ #include <linux/module.h> #include <linux/slab.h> #include <linux/sched.h> -#include <linux/smp_lock.h> +#include <linux/mutex.h> #include <linux/backing-dev.h> #include <linux/compat.h> #include <linux/mount.h> - +#include <linux/blkpg.h> +#include <linux/magic.h> +#include <linux/major.h> #include <linux/mtd/mtd.h> -#include <linux/mtd/compatmac.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/map.h> #include <asm/uaccess.h> -#define MTD_INODE_FS_MAGIC 0x11307854 -static struct vfsmount *mtd_inode_mnt __read_mostly; +#include "mtdcore.h" + +static DEFINE_MUTEX(mtd_mutex); /* * Data structure to hold the pointer to the mtd device as well - * as mode information ofr various use cases. + * as mode information of various use cases. */ struct mtd_file_info { struct mtd_info *mtd; @@ -35,33 +53,17 @@ struct mtd_file_info { enum mtd_file_modes mode; }; -static loff_t mtd_lseek (struct file *file, loff_t offset, int orig) +static loff_t mtdchar_lseek(struct file *file, loff_t offset, int orig) { struct mtd_file_info *mfi = file->private_data; - struct mtd_info *mtd = mfi->mtd; - - switch (orig) { - case SEEK_SET: - break; - case SEEK_CUR: - offset += file->f_pos; - break; - case SEEK_END: - offset += mtd->size; - break; - default: - return -EINVAL; - } - - if (offset >= 0 && offset <= mtd->size) - return file->f_pos = offset; - - return -EINVAL; + return fixed_size_llseek(file, offset, orig, mfi->mtd->size); } +static int count; +static struct vfsmount *mnt; +static struct file_system_type mtd_inodefs_type; - -static int mtd_open(struct inode *inode, struct file *file) +static int mtdchar_open(struct inode *inode, struct file *file) { int minor = iminor(inode); int devnum = minor >> 1; @@ -70,13 +72,17 @@ static int mtd_open(struct inode *inode, struct file *file) struct mtd_file_info *mfi; struct inode *mtd_ino; - DEBUG(MTD_DEBUG_LEVEL0, "MTD_open\n"); + pr_debug("MTD_open\n"); /* You can't open the RO devices RW */ if ((file->f_mode & FMODE_WRITE) && (minor & 1)) return -EACCES; - lock_kernel(); + ret = simple_pin_fs(&mtd_inodefs_type, &mnt, &count); + if (ret) + return ret; + + mutex_lock(&mtd_mutex); mtd = get_mtd_device(NULL, devnum); if (IS_ERR(mtd)) { @@ -85,16 +91,14 @@ static int mtd_open(struct inode *inode, struct file *file) } if (mtd->type == MTD_ABSENT) { - put_mtd_device(mtd); ret = -ENODEV; - goto out; + goto out1; } - mtd_ino = iget_locked(mtd_inode_mnt->mnt_sb, devnum); + mtd_ino = iget_locked(mnt->mnt_sb, devnum); if (!mtd_ino) { - put_mtd_device(mtd); ret = -ENOMEM; - goto out; + goto out1; } if (mtd_ino->i_state & I_NEW) { mtd_ino->i_private = mtd; @@ -106,66 +110,85 @@ static int mtd_open(struct inode *inode, struct file *file) /* You can't open it RW if it's not a writeable device */ if ((file->f_mode & FMODE_WRITE) && !(mtd->flags & MTD_WRITEABLE)) { - iput(mtd_ino); - put_mtd_device(mtd); ret = -EACCES; - goto out; + goto out2; } mfi = kzalloc(sizeof(*mfi), GFP_KERNEL); if (!mfi) { - iput(mtd_ino); - put_mtd_device(mtd); ret = -ENOMEM; - goto out; + goto out2; } mfi->ino = mtd_ino; mfi->mtd = mtd; file->private_data = mfi; + mutex_unlock(&mtd_mutex); + return 0; +out2: + iput(mtd_ino); +out1: + put_mtd_device(mtd); out: - unlock_kernel(); + mutex_unlock(&mtd_mutex); + simple_release_fs(&mnt, &count); return ret; -} /* mtd_open */ +} /* mtdchar_open */ /*====================================================================*/ -static int mtd_close(struct inode *inode, struct file *file) +static int mtdchar_close(struct inode *inode, struct file *file) { struct mtd_file_info *mfi = file->private_data; struct mtd_info *mtd = mfi->mtd; - DEBUG(MTD_DEBUG_LEVEL0, "MTD_close\n"); + pr_debug("MTD_close\n"); /* Only sync if opened RW */ - if ((file->f_mode & FMODE_WRITE) && mtd->sync) - mtd->sync(mtd); + if ((file->f_mode & FMODE_WRITE)) + mtd_sync(mtd); iput(mfi->ino); put_mtd_device(mtd); file->private_data = NULL; kfree(mfi); + simple_release_fs(&mnt, &count); return 0; -} /* mtd_close */ +} /* mtdchar_close */ -/* FIXME: This _really_ needs to die. In 2.5, we should lock the - userspace buffer down and use it directly with readv/writev. -*/ -#define MAX_KMALLOC_SIZE 0x20000 +/* Back in June 2001, dwmw2 wrote: + * + * FIXME: This _really_ needs to die. In 2.5, we should lock the + * userspace buffer down and use it directly with readv/writev. + * + * The implementation below, using mtd_kmalloc_up_to, mitigates + * allocation failures when the system is under low-memory situations + * or if memory is highly fragmented at the cost of reducing the + * performance of the requested transfer due to a smaller buffer size. + * + * A more complex but more memory-efficient implementation based on + * get_user_pages and iovecs to cover extents of those pages is a + * longer-term goal, as intimated by dwmw2 above. However, for the + * write case, this requires yet more complex head and tail transfer + * handling when those head and tail offsets and sizes are such that + * alignment requirements are not met in the NAND subdriver. + */ -static ssize_t mtd_read(struct file *file, char __user *buf, size_t count,loff_t *ppos) +static ssize_t mtdchar_read(struct file *file, char __user *buf, size_t count, + loff_t *ppos) { struct mtd_file_info *mfi = file->private_data; struct mtd_info *mtd = mfi->mtd; - size_t retlen=0; + size_t retlen; size_t total_retlen=0; int ret=0; int len; + size_t size = count; char *kbuf; - DEBUG(MTD_DEBUG_LEVEL0,"MTD_read\n"); + pr_debug("MTD_read\n"); if (*ppos + count > mtd->size) count = mtd->size - *ppos; @@ -173,57 +196,48 @@ static ssize_t mtd_read(struct file *file, char __user *buf, size_t count,loff_t if (!count) return 0; - /* FIXME: Use kiovec in 2.5 to lock down the user's buffers - and pass them directly to the MTD functions */ - - if (count > MAX_KMALLOC_SIZE) - kbuf=kmalloc(MAX_KMALLOC_SIZE, GFP_KERNEL); - else - kbuf=kmalloc(count, GFP_KERNEL); - + kbuf = mtd_kmalloc_up_to(mtd, &size); if (!kbuf) return -ENOMEM; while (count) { - - if (count > MAX_KMALLOC_SIZE) - len = MAX_KMALLOC_SIZE; - else - len = count; + len = min_t(size_t, count, size); switch (mfi->mode) { - case MTD_MODE_OTP_FACTORY: - ret = mtd->read_fact_prot_reg(mtd, *ppos, len, &retlen, kbuf); + case MTD_FILE_MODE_OTP_FACTORY: + ret = mtd_read_fact_prot_reg(mtd, *ppos, len, + &retlen, kbuf); break; - case MTD_MODE_OTP_USER: - ret = mtd->read_user_prot_reg(mtd, *ppos, len, &retlen, kbuf); + case MTD_FILE_MODE_OTP_USER: + ret = mtd_read_user_prot_reg(mtd, *ppos, len, + &retlen, kbuf); break; - case MTD_MODE_RAW: + case MTD_FILE_MODE_RAW: { struct mtd_oob_ops ops; - ops.mode = MTD_OOB_RAW; + ops.mode = MTD_OPS_RAW; ops.datbuf = kbuf; ops.oobbuf = NULL; ops.len = len; - ret = mtd->read_oob(mtd, *ppos, &ops); + ret = mtd_read_oob(mtd, *ppos, &ops); retlen = ops.retlen; break; } default: - ret = mtd->read(mtd, *ppos, len, &retlen, kbuf); + ret = mtd_read(mtd, *ppos, len, &retlen, kbuf); } - /* Nand returns -EBADMSG on ecc errors, but it returns + /* Nand returns -EBADMSG on ECC errors, but it returns * the data. For our userspace tools it is important - * to dump areas with ecc errors ! + * to dump areas with ECC errors! * For kernel internal usage it also might return -EUCLEAN - * to signal the caller that a bitflip has occured and has + * to signal the caller that a bitflip has occurred and has * been corrected by the ECC algorithm. * Userspace software which accesses NAND this way * must be aware of the fact that it deals with NAND */ - if (!ret || (ret == -EUCLEAN) || (ret == -EBADMSG)) { + if (!ret || mtd_is_bitflip_or_eccerr(ret)) { *ppos += retlen; if (copy_to_user(buf, kbuf, retlen)) { kfree(kbuf); @@ -246,19 +260,21 @@ static ssize_t mtd_read(struct file *file, char __user *buf, size_t count,loff_t kfree(kbuf); return total_retlen; -} /* mtd_read */ +} /* mtdchar_read */ -static ssize_t mtd_write(struct file *file, const char __user *buf, size_t count,loff_t *ppos) +static ssize_t mtdchar_write(struct file *file, const char __user *buf, size_t count, + loff_t *ppos) { struct mtd_file_info *mfi = file->private_data; struct mtd_info *mtd = mfi->mtd; + size_t size = count; char *kbuf; size_t retlen; size_t total_retlen=0; int ret=0; int len; - DEBUG(MTD_DEBUG_LEVEL0,"MTD_write\n"); + pr_debug("MTD_write\n"); if (*ppos == mtd->size) return -ENOSPC; @@ -269,20 +285,12 @@ static ssize_t mtd_write(struct file *file, const char __user *buf, size_t count if (!count) return 0; - if (count > MAX_KMALLOC_SIZE) - kbuf=kmalloc(MAX_KMALLOC_SIZE, GFP_KERNEL); - else - kbuf=kmalloc(count, GFP_KERNEL); - + kbuf = mtd_kmalloc_up_to(mtd, &size); if (!kbuf) return -ENOMEM; while (count) { - - if (count > MAX_KMALLOC_SIZE) - len = MAX_KMALLOC_SIZE; - else - len = count; + len = min_t(size_t, count, size); if (copy_from_user(kbuf, buf, len)) { kfree(kbuf); @@ -290,34 +298,41 @@ static ssize_t mtd_write(struct file *file, const char __user *buf, size_t count } switch (mfi->mode) { - case MTD_MODE_OTP_FACTORY: + case MTD_FILE_MODE_OTP_FACTORY: ret = -EROFS; break; - case MTD_MODE_OTP_USER: - if (!mtd->write_user_prot_reg) { - ret = -EOPNOTSUPP; - break; - } - ret = mtd->write_user_prot_reg(mtd, *ppos, len, &retlen, kbuf); + case MTD_FILE_MODE_OTP_USER: + ret = mtd_write_user_prot_reg(mtd, *ppos, len, + &retlen, kbuf); break; - case MTD_MODE_RAW: + case MTD_FILE_MODE_RAW: { struct mtd_oob_ops ops; - ops.mode = MTD_OOB_RAW; + ops.mode = MTD_OPS_RAW; ops.datbuf = kbuf; ops.oobbuf = NULL; + ops.ooboffs = 0; ops.len = len; - ret = mtd->write_oob(mtd, *ppos, &ops); + ret = mtd_write_oob(mtd, *ppos, &ops); retlen = ops.retlen; break; } default: - ret = (*(mtd->write))(mtd, *ppos, len, &retlen, kbuf); + ret = mtd_write(mtd, *ppos, len, &retlen, kbuf); } + + /* + * Return -ENOSPC only if no data could be written at all. + * Otherwise just return the number of bytes that actually + * have been written. + */ + if ((ret == -ENOSPC) && (total_retlen)) + break; + if (!ret) { *ppos += retlen; total_retlen += retlen; @@ -332,7 +347,7 @@ static ssize_t mtd_write(struct file *file, const char __user *buf, size_t count kfree(kbuf); return total_retlen; -} /* mtd_write */ +} /* mtdchar_write */ /*====================================================================== @@ -344,40 +359,41 @@ static void mtdchar_erase_callback (struct erase_info *instr) wake_up((wait_queue_head_t *)instr->priv); } -#ifdef CONFIG_HAVE_MTD_OTP static int otp_select_filemode(struct mtd_file_info *mfi, int mode) { struct mtd_info *mtd = mfi->mtd; - int ret = 0; + size_t retlen; switch (mode) { case MTD_OTP_FACTORY: - if (!mtd->read_fact_prot_reg) - ret = -EOPNOTSUPP; - else - mfi->mode = MTD_MODE_OTP_FACTORY; + if (mtd_read_fact_prot_reg(mtd, -1, 0, &retlen, NULL) == + -EOPNOTSUPP) + return -EOPNOTSUPP; + + mfi->mode = MTD_FILE_MODE_OTP_FACTORY; break; case MTD_OTP_USER: - if (!mtd->read_fact_prot_reg) - ret = -EOPNOTSUPP; - else - mfi->mode = MTD_MODE_OTP_USER; + if (mtd_read_user_prot_reg(mtd, -1, 0, &retlen, NULL) == + -EOPNOTSUPP) + return -EOPNOTSUPP; + + mfi->mode = MTD_FILE_MODE_OTP_USER; break; - default: - ret = -EINVAL; case MTD_OTP_OFF: + mfi->mode = MTD_FILE_MODE_NORMAL; break; + default: + return -EINVAL; } - return ret; + + return 0; } -#else -# define otp_select_filemode(f,m) -EOPNOTSUPP -#endif -static int mtd_do_writeoob(struct file *file, struct mtd_info *mtd, +static int mtdchar_writeoob(struct file *file, struct mtd_info *mtd, uint64_t start, uint32_t length, void __user *ptr, uint32_t __user *retp) { + struct mtd_file_info *mfi = file->private_data; struct mtd_oob_ops ops; uint32_t retlen; int ret = 0; @@ -388,7 +404,7 @@ static int mtd_do_writeoob(struct file *file, struct mtd_info *mtd, if (length > 4096) return -EINVAL; - if (!mtd->write_oob) + if (!mtd->_write_oob) ret = -EOPNOTSUPP; else ret = access_ok(VERIFY_READ, ptr, length) ? 0 : -EFAULT; @@ -397,9 +413,10 @@ static int mtd_do_writeoob(struct file *file, struct mtd_info *mtd, return ret; ops.ooblen = length; - ops.ooboffs = start & (mtd->oobsize - 1); + ops.ooboffs = start & (mtd->writesize - 1); ops.datbuf = NULL; - ops.mode = MTD_OOB_PLACE; + ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW : + MTD_OPS_PLACE_OOB; if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs)) return -EINVAL; @@ -408,8 +425,8 @@ static int mtd_do_writeoob(struct file *file, struct mtd_info *mtd, if (IS_ERR(ops.oobbuf)) return PTR_ERR(ops.oobbuf); - start &= ~((uint64_t)mtd->oobsize - 1); - ret = mtd->write_oob(mtd, start, &ops); + start &= ~((uint64_t)mtd->writesize - 1); + ret = mtd_write_oob(mtd, start, &ops); if (ops.oobretlen > 0xFFFFFFFFU) ret = -EOVERFLOW; @@ -421,27 +438,25 @@ static int mtd_do_writeoob(struct file *file, struct mtd_info *mtd, return ret; } -static int mtd_do_readoob(struct mtd_info *mtd, uint64_t start, - uint32_t length, void __user *ptr, uint32_t __user *retp) +static int mtdchar_readoob(struct file *file, struct mtd_info *mtd, + uint64_t start, uint32_t length, void __user *ptr, + uint32_t __user *retp) { + struct mtd_file_info *mfi = file->private_data; struct mtd_oob_ops ops; int ret = 0; if (length > 4096) return -EINVAL; - if (!mtd->read_oob) - ret = -EOPNOTSUPP; - else - ret = access_ok(VERIFY_WRITE, ptr, - length) ? 0 : -EFAULT; - if (ret) - return ret; + if (!access_ok(VERIFY_WRITE, ptr, length)) + return -EFAULT; ops.ooblen = length; - ops.ooboffs = start & (mtd->oobsize - 1); + ops.ooboffs = start & (mtd->writesize - 1); ops.datbuf = NULL; - ops.mode = MTD_OOB_PLACE; + ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW : + MTD_OPS_PLACE_OOB; if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs)) return -EINVAL; @@ -450,8 +465,8 @@ static int mtd_do_readoob(struct mtd_info *mtd, uint64_t start, if (!ops.oobbuf) return -ENOMEM; - start &= ~((uint64_t)mtd->oobsize - 1); - ret = mtd->read_oob(mtd, start, &ops); + start &= ~((uint64_t)mtd->writesize - 1); + ret = mtd_read_oob(mtd, start, &ops); if (put_user(ops.oobretlen, retp)) ret = -EFAULT; @@ -460,10 +475,146 @@ static int mtd_do_readoob(struct mtd_info *mtd, uint64_t start, ret = -EFAULT; kfree(ops.oobbuf); + + /* + * NAND returns -EBADMSG on ECC errors, but it returns the OOB + * data. For our userspace tools it is important to dump areas + * with ECC errors! + * For kernel internal usage it also might return -EUCLEAN + * to signal the caller that a bitflip has occured and has + * been corrected by the ECC algorithm. + * + * Note: currently the standard NAND function, nand_read_oob_std, + * does not calculate ECC for the OOB area, so do not rely on + * this behavior unless you have replaced it with your own. + */ + if (mtd_is_bitflip_or_eccerr(ret)) + return 0; + return ret; } -static int mtd_ioctl(struct file *file, u_int cmd, u_long arg) +/* + * Copies (and truncates, if necessary) data from the larger struct, + * nand_ecclayout, to the smaller, deprecated layout struct, + * nand_ecclayout_user. This is necessary only to support the deprecated + * API ioctl ECCGETLAYOUT while allowing all new functionality to use + * nand_ecclayout flexibly (i.e. the struct may change size in new + * releases without requiring major rewrites). + */ +static int shrink_ecclayout(const struct nand_ecclayout *from, + struct nand_ecclayout_user *to) +{ + int i; + + if (!from || !to) + return -EINVAL; + + memset(to, 0, sizeof(*to)); + + to->eccbytes = min((int)from->eccbytes, MTD_MAX_ECCPOS_ENTRIES); + for (i = 0; i < to->eccbytes; i++) + to->eccpos[i] = from->eccpos[i]; + + for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES; i++) { + if (from->oobfree[i].length == 0 && + from->oobfree[i].offset == 0) + break; + to->oobavail += from->oobfree[i].length; + to->oobfree[i] = from->oobfree[i]; + } + + return 0; +} + +static int mtdchar_blkpg_ioctl(struct mtd_info *mtd, + struct blkpg_ioctl_arg __user *arg) +{ + struct blkpg_ioctl_arg a; + struct blkpg_partition p; + + if (!capable(CAP_SYS_ADMIN)) + return -EPERM; + + if (copy_from_user(&a, arg, sizeof(struct blkpg_ioctl_arg))) + return -EFAULT; + + if (copy_from_user(&p, a.data, sizeof(struct blkpg_partition))) + return -EFAULT; + + switch (a.op) { + case BLKPG_ADD_PARTITION: + + /* Only master mtd device must be used to add partitions */ + if (mtd_is_partition(mtd)) + return -EINVAL; + + return mtd_add_partition(mtd, p.devname, p.start, p.length); + + case BLKPG_DEL_PARTITION: + + if (p.pno < 0) + return -EINVAL; + + return mtd_del_partition(mtd, p.pno); + + default: + return -EINVAL; + } +} + +static int mtdchar_write_ioctl(struct mtd_info *mtd, + struct mtd_write_req __user *argp) +{ + struct mtd_write_req req; + struct mtd_oob_ops ops; + const void __user *usr_data, *usr_oob; + int ret; + + if (copy_from_user(&req, argp, sizeof(req))) + return -EFAULT; + + usr_data = (const void __user *)(uintptr_t)req.usr_data; + usr_oob = (const void __user *)(uintptr_t)req.usr_oob; + if (!access_ok(VERIFY_READ, usr_data, req.len) || + !access_ok(VERIFY_READ, usr_oob, req.ooblen)) + return -EFAULT; + + if (!mtd->_write_oob) + return -EOPNOTSUPP; + + ops.mode = req.mode; + ops.len = (size_t)req.len; + ops.ooblen = (size_t)req.ooblen; + ops.ooboffs = 0; + + if (usr_data) { + ops.datbuf = memdup_user(usr_data, ops.len); + if (IS_ERR(ops.datbuf)) + return PTR_ERR(ops.datbuf); + } else { + ops.datbuf = NULL; + } + + if (usr_oob) { + ops.oobbuf = memdup_user(usr_oob, ops.ooblen); + if (IS_ERR(ops.oobbuf)) { + kfree(ops.datbuf); + return PTR_ERR(ops.oobbuf); + } + } else { + ops.oobbuf = NULL; + } + + ret = mtd_write_oob(mtd, (loff_t)req.start, &ops); + + kfree(ops.datbuf); + kfree(ops.oobbuf); + + return ret; +} + +static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg) { struct mtd_file_info *mfi = file->private_data; struct mtd_info *mtd = mfi->mtd; @@ -472,7 +623,7 @@ static int mtd_ioctl(struct file *file, u_int cmd, u_long arg) u_long size; struct mtd_info_user info; - DEBUG(MTD_DEBUG_LEVEL0, "MTD_ioctl\n"); + pr_debug("MTD_ioctl\n"); size = (cmd & IOCSIZE_MASK) >> IOCSIZE_SHIFT; if (cmd & IOC_IN) { @@ -499,6 +650,9 @@ static int mtd_ioctl(struct file *file, u_int cmd, u_long arg) if (get_user(ur_idx, &(ur->regionindex))) return -EFAULT; + if (ur_idx >= mtd->numeraseregions) + return -EINVAL; + kr = &(mtd->eraseregions[ur_idx]); if (put_user(kr->offset, &(ur->offset)) @@ -510,15 +664,15 @@ static int mtd_ioctl(struct file *file, u_int cmd, u_long arg) } case MEMGETINFO: + memset(&info, 0, sizeof(info)); info.type = mtd->type; info.flags = mtd->flags; info.size = mtd->size; info.erasesize = mtd->erasesize; info.writesize = mtd->writesize; info.oobsize = mtd->oobsize; - /* The below fields are obsolete */ - info.ecctype = -1; - info.eccsize = 0; + /* The below field is obsolete */ + info.padding = 0; if (copy_to_user(argp, &info, sizeof(struct mtd_info_user))) return -EFAULT; break; @@ -574,7 +728,7 @@ static int mtd_ioctl(struct file *file, u_int cmd, u_long arg) wq_head is no longer there when the callback routine tries to wake us up. */ - ret = mtd->erase(mtd, erase); + ret = mtd_erase(mtd, erase); if (!ret) { set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&waitq, &wait); @@ -600,7 +754,7 @@ static int mtd_ioctl(struct file *file, u_int cmd, u_long arg) if (copy_from_user(&buf, argp, sizeof(buf))) ret = -EFAULT; else - ret = mtd_do_writeoob(file, mtd, buf.start, buf.length, + ret = mtdchar_writeoob(file, mtd, buf.start, buf.length, buf.ptr, &buf_user->length); break; } @@ -614,7 +768,7 @@ static int mtd_ioctl(struct file *file, u_int cmd, u_long arg) if (copy_from_user(&buf, argp, sizeof(buf))) ret = -EFAULT; else - ret = mtd_do_readoob(mtd, buf.start, buf.length, + ret = mtdchar_readoob(file, mtd, buf.start, buf.length, buf.ptr, &buf_user->start); break; } @@ -627,7 +781,7 @@ static int mtd_ioctl(struct file *file, u_int cmd, u_long arg) if (copy_from_user(&buf, argp, sizeof(buf))) ret = -EFAULT; else - ret = mtd_do_writeoob(file, mtd, buf.start, buf.length, + ret = mtdchar_writeoob(file, mtd, buf.start, buf.length, (void __user *)(uintptr_t)buf.usr_ptr, &buf_user->length); break; @@ -641,12 +795,19 @@ static int mtd_ioctl(struct file *file, u_int cmd, u_long arg) if (copy_from_user(&buf, argp, sizeof(buf))) ret = -EFAULT; else - ret = mtd_do_readoob(mtd, buf.start, buf.length, + ret = mtdchar_readoob(file, mtd, buf.start, buf.length, (void __user *)(uintptr_t)buf.usr_ptr, &buf_user->length); break; } + case MEMWRITE: + { + ret = mtdchar_write_ioctl(mtd, + (struct mtd_write_req __user *)arg); + break; + } + case MEMLOCK: { struct erase_info_user einfo; @@ -654,10 +815,7 @@ static int mtd_ioctl(struct file *file, u_int cmd, u_long arg) if (copy_from_user(&einfo, argp, sizeof(einfo))) return -EFAULT; - if (!mtd->lock) - ret = -EOPNOTSUPP; - else - ret = mtd->lock(mtd, einfo.start, einfo.length); + ret = mtd_lock(mtd, einfo.start, einfo.length); break; } @@ -668,10 +826,18 @@ static int mtd_ioctl(struct file *file, u_int cmd, u_long arg) if (copy_from_user(&einfo, argp, sizeof(einfo))) return -EFAULT; - if (!mtd->unlock) - ret = -EOPNOTSUPP; - else - ret = mtd->unlock(mtd, einfo.start, einfo.length); + ret = mtd_unlock(mtd, einfo.start, einfo.length); + break; + } + + case MEMISLOCKED: + { + struct erase_info_user einfo; + + if (copy_from_user(&einfo, argp, sizeof(einfo))) + return -EFAULT; + + ret = mtd_is_locked(mtd, einfo.start, einfo.length); break; } @@ -702,10 +868,7 @@ static int mtd_ioctl(struct file *file, u_int cmd, u_long arg) if (copy_from_user(&offs, argp, sizeof(loff_t))) return -EFAULT; - if (!mtd->block_isbad) - ret = -EOPNOTSUPP; - else - return mtd->block_isbad(mtd, offs); + return mtd_block_isbad(mtd, offs); break; } @@ -715,21 +878,17 @@ static int mtd_ioctl(struct file *file, u_int cmd, u_long arg) if (copy_from_user(&offs, argp, sizeof(loff_t))) return -EFAULT; - if (!mtd->block_markbad) - ret = -EOPNOTSUPP; - else - return mtd->block_markbad(mtd, offs); + return mtd_block_markbad(mtd, offs); break; } -#ifdef CONFIG_HAVE_MTD_OTP case OTPSELECT: { int mode; if (copy_from_user(&mode, argp, sizeof(int))) return -EFAULT; - mfi->mode = MTD_MODE_NORMAL; + mfi->mode = MTD_FILE_MODE_NORMAL; ret = otp_select_filemode(mfi, mode); @@ -741,27 +900,26 @@ static int mtd_ioctl(struct file *file, u_int cmd, u_long arg) case OTPGETREGIONINFO: { struct otp_info *buf = kmalloc(4096, GFP_KERNEL); + size_t retlen; if (!buf) return -ENOMEM; - ret = -EOPNOTSUPP; switch (mfi->mode) { - case MTD_MODE_OTP_FACTORY: - if (mtd->get_fact_prot_info) - ret = mtd->get_fact_prot_info(mtd, buf, 4096); + case MTD_FILE_MODE_OTP_FACTORY: + ret = mtd_get_fact_prot_info(mtd, 4096, &retlen, buf); break; - case MTD_MODE_OTP_USER: - if (mtd->get_user_prot_info) - ret = mtd->get_user_prot_info(mtd, buf, 4096); + case MTD_FILE_MODE_OTP_USER: + ret = mtd_get_user_prot_info(mtd, 4096, &retlen, buf); break; default: + ret = -EINVAL; break; } - if (ret >= 0) { + if (!ret) { if (cmd == OTPGETREGIONCOUNT) { - int nbr = ret / sizeof(struct otp_info); + int nbr = retlen / sizeof(struct otp_info); ret = copy_to_user(argp, &nbr, sizeof(int)); } else - ret = copy_to_user(argp, buf, ret); + ret = copy_to_user(argp, buf, retlen); if (ret) ret = -EFAULT; } @@ -773,25 +931,31 @@ static int mtd_ioctl(struct file *file, u_int cmd, u_long arg) { struct otp_info oinfo; - if (mfi->mode != MTD_MODE_OTP_USER) + if (mfi->mode != MTD_FILE_MODE_OTP_USER) return -EINVAL; if (copy_from_user(&oinfo, argp, sizeof(oinfo))) return -EFAULT; - if (!mtd->lock_user_prot_reg) - return -EOPNOTSUPP; - ret = mtd->lock_user_prot_reg(mtd, oinfo.start, oinfo.length); + ret = mtd_lock_user_prot_reg(mtd, oinfo.start, oinfo.length); break; } -#endif + /* This ioctl is being deprecated - it truncates the ECC layout */ case ECCGETLAYOUT: { + struct nand_ecclayout_user *usrlay; + if (!mtd->ecclayout) return -EOPNOTSUPP; - if (copy_to_user(argp, mtd->ecclayout, - sizeof(struct nand_ecclayout))) - return -EFAULT; + usrlay = kmalloc(sizeof(*usrlay), GFP_KERNEL); + if (!usrlay) + return -ENOMEM; + + shrink_ecclayout(mtd->ecclayout, usrlay); + + if (copy_to_user(argp, usrlay, sizeof(*usrlay))) + ret = -EFAULT; + kfree(usrlay); break; } @@ -808,17 +972,17 @@ static int mtd_ioctl(struct file *file, u_int cmd, u_long arg) mfi->mode = 0; switch(arg) { - case MTD_MODE_OTP_FACTORY: - case MTD_MODE_OTP_USER: + case MTD_FILE_MODE_OTP_FACTORY: + case MTD_FILE_MODE_OTP_USER: ret = otp_select_filemode(mfi, arg); break; - case MTD_MODE_RAW: - if (!mtd->read_oob || !mtd->write_oob) + case MTD_FILE_MODE_RAW: + if (!mtd_has_oob(mtd)) return -EOPNOTSUPP; mfi->mode = arg; - case MTD_MODE_NORMAL: + case MTD_FILE_MODE_NORMAL: break; default: ret = -EINVAL; @@ -827,6 +991,20 @@ static int mtd_ioctl(struct file *file, u_int cmd, u_long arg) break; } + case BLKPG: + { + ret = mtdchar_blkpg_ioctl(mtd, + (struct blkpg_ioctl_arg __user *)arg); + break; + } + + case BLKRRPART: + { + /* No reread partition feature. Just return ok */ + ret = 0; + break; + } + default: ret = -ENOTTY; } @@ -834,13 +1012,13 @@ static int mtd_ioctl(struct file *file, u_int cmd, u_long arg) return ret; } /* memory_ioctl */ -static long mtd_unlocked_ioctl(struct file *file, u_int cmd, u_long arg) +static long mtdchar_unlocked_ioctl(struct file *file, u_int cmd, u_long arg) { int ret; - lock_kernel(); - ret = mtd_ioctl(file, cmd, arg); - unlock_kernel(); + mutex_lock(&mtd_mutex); + ret = mtdchar_ioctl(file, cmd, arg); + mutex_unlock(&mtd_mutex); return ret; } @@ -856,7 +1034,7 @@ struct mtd_oob_buf32 { #define MEMWRITEOOB32 _IOWR('M', 3, struct mtd_oob_buf32) #define MEMREADOOB32 _IOWR('M', 4, struct mtd_oob_buf32) -static long mtd_compat_ioctl(struct file *file, unsigned int cmd, +static long mtdchar_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct mtd_file_info *mfi = file->private_data; @@ -864,7 +1042,7 @@ static long mtd_compat_ioctl(struct file *file, unsigned int cmd, void __user *argp = compat_ptr(arg); int ret = 0; - lock_kernel(); + mutex_lock(&mtd_mutex); switch (cmd) { case MEMWRITEOOB32: @@ -875,7 +1053,7 @@ static long mtd_compat_ioctl(struct file *file, unsigned int cmd, if (copy_from_user(&buf, argp, sizeof(buf))) ret = -EFAULT; else - ret = mtd_do_writeoob(file, mtd, buf.start, + ret = mtdchar_writeoob(file, mtd, buf.start, buf.length, compat_ptr(buf.ptr), &buf_user->length); break; @@ -890,16 +1068,16 @@ static long mtd_compat_ioctl(struct file *file, unsigned int cmd, if (copy_from_user(&buf, argp, sizeof(buf))) ret = -EFAULT; else - ret = mtd_do_readoob(mtd, buf.start, + ret = mtdchar_readoob(file, mtd, buf.start, buf.length, compat_ptr(buf.ptr), &buf_user->start); break; } default: - ret = mtd_ioctl(file, cmd, (unsigned long)argp); + ret = mtdchar_ioctl(file, cmd, (unsigned long)argp); } - unlock_kernel(); + mutex_unlock(&mtd_mutex); return ret; } @@ -912,7 +1090,7 @@ static long mtd_compat_ioctl(struct file *file, unsigned int cmd, * mappings) */ #ifndef CONFIG_MMU -static unsigned long mtd_get_unmapped_area(struct file *file, +static unsigned long mtdchar_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, @@ -920,145 +1098,116 @@ static unsigned long mtd_get_unmapped_area(struct file *file, { struct mtd_file_info *mfi = file->private_data; struct mtd_info *mtd = mfi->mtd; + unsigned long offset; + int ret; - if (mtd->get_unmapped_area) { - unsigned long offset; - - if (addr != 0) - return (unsigned long) -EINVAL; - - if (len > mtd->size || pgoff >= (mtd->size >> PAGE_SHIFT)) - return (unsigned long) -EINVAL; + if (addr != 0) + return (unsigned long) -EINVAL; - offset = pgoff << PAGE_SHIFT; - if (offset > mtd->size - len) - return (unsigned long) -EINVAL; + if (len > mtd->size || pgoff >= (mtd->size >> PAGE_SHIFT)) + return (unsigned long) -EINVAL; - return mtd->get_unmapped_area(mtd, len, offset, flags); - } + offset = pgoff << PAGE_SHIFT; + if (offset > mtd->size - len) + return (unsigned long) -EINVAL; - /* can't map directly */ - return (unsigned long) -ENOSYS; + ret = mtd_get_unmapped_area(mtd, len, offset, flags); + return ret == -EOPNOTSUPP ? -ENODEV : ret; } #endif /* * set up a mapping for shared memory segments */ -static int mtd_mmap(struct file *file, struct vm_area_struct *vma) +static int mtdchar_mmap(struct file *file, struct vm_area_struct *vma) { #ifdef CONFIG_MMU struct mtd_file_info *mfi = file->private_data; struct mtd_info *mtd = mfi->mtd; - - if (mtd->type == MTD_RAM || mtd->type == MTD_ROM) - return 0; - return -ENOSYS; + struct map_info *map = mtd->priv; + + /* This is broken because it assumes the MTD device is map-based + and that mtd->priv is a valid struct map_info. It should be + replaced with something that uses the mtd_get_unmapped_area() + operation properly. */ + if (0 /*mtd->type == MTD_RAM || mtd->type == MTD_ROM*/) { +#ifdef pgprot_noncached + if (file->f_flags & O_DSYNC || map->phys >= __pa(high_memory)) + vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); +#endif + return vm_iomap_memory(vma, map->phys, map->size); + } + return -ENODEV; #else - return vma->vm_flags & VM_SHARED ? 0 : -ENOSYS; + return vma->vm_flags & VM_SHARED ? 0 : -EACCES; #endif } static const struct file_operations mtd_fops = { .owner = THIS_MODULE, - .llseek = mtd_lseek, - .read = mtd_read, - .write = mtd_write, - .unlocked_ioctl = mtd_unlocked_ioctl, + .llseek = mtdchar_lseek, + .read = mtdchar_read, + .write = mtdchar_write, + .unlocked_ioctl = mtdchar_unlocked_ioctl, #ifdef CONFIG_COMPAT - .compat_ioctl = mtd_compat_ioctl, + .compat_ioctl = mtdchar_compat_ioctl, #endif - .open = mtd_open, - .release = mtd_close, - .mmap = mtd_mmap, + .open = mtdchar_open, + .release = mtdchar_close, + .mmap = mtdchar_mmap, #ifndef CONFIG_MMU - .get_unmapped_area = mtd_get_unmapped_area, + .get_unmapped_area = mtdchar_get_unmapped_area, #endif }; -static int mtd_inodefs_get_sb(struct file_system_type *fs_type, int flags, - const char *dev_name, void *data, - struct vfsmount *mnt) +static const struct super_operations mtd_ops = { + .drop_inode = generic_delete_inode, + .statfs = simple_statfs, +}; + +static struct dentry *mtd_inodefs_mount(struct file_system_type *fs_type, + int flags, const char *dev_name, void *data) { - return get_sb_pseudo(fs_type, "mtd_inode:", NULL, MTD_INODE_FS_MAGIC, - mnt); + return mount_pseudo(fs_type, "mtd_inode:", &mtd_ops, NULL, MTD_INODE_FS_MAGIC); } static struct file_system_type mtd_inodefs_type = { .name = "mtd_inodefs", - .get_sb = mtd_inodefs_get_sb, + .mount = mtd_inodefs_mount, .kill_sb = kill_anon_super, }; +MODULE_ALIAS_FS("mtd_inodefs"); -static void mtdchar_notify_add(struct mtd_info *mtd) -{ -} - -static void mtdchar_notify_remove(struct mtd_info *mtd) -{ - struct inode *mtd_ino = ilookup(mtd_inode_mnt->mnt_sb, mtd->index); - - if (mtd_ino) { - /* Destroy the inode if it exists */ - mtd_ino->i_nlink = 0; - iput(mtd_ino); - } -} - -static struct mtd_notifier mtdchar_notifier = { - .add = mtdchar_notify_add, - .remove = mtdchar_notify_remove, -}; - -static int __init init_mtdchar(void) +int __init init_mtdchar(void) { int ret; ret = __register_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd", &mtd_fops); if (ret < 0) { - pr_notice("Can't allocate major number %d for " - "Memory Technology Devices.\n", MTD_CHAR_MAJOR); + pr_err("Can't allocate major number %d for MTD\n", + MTD_CHAR_MAJOR); return ret; } ret = register_filesystem(&mtd_inodefs_type); if (ret) { - pr_notice("Can't register mtd_inodefs filesystem: %d\n", ret); + pr_err("Can't register mtd_inodefs filesystem, error %d\n", + ret); goto err_unregister_chdev; } - mtd_inode_mnt = kern_mount(&mtd_inodefs_type); - if (IS_ERR(mtd_inode_mnt)) { - ret = PTR_ERR(mtd_inode_mnt); - pr_notice("Error mounting mtd_inodefs filesystem: %d\n", ret); - goto err_unregister_filesystem; - } - register_mtd_user(&mtdchar_notifier); - return ret; -err_unregister_filesystem: - unregister_filesystem(&mtd_inodefs_type); err_unregister_chdev: __unregister_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd"); return ret; } -static void __exit cleanup_mtdchar(void) +void __exit cleanup_mtdchar(void) { - unregister_mtd_user(&mtdchar_notifier); - mntput(mtd_inode_mnt); unregister_filesystem(&mtd_inodefs_type); __unregister_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd"); } -module_init(init_mtdchar); -module_exit(cleanup_mtdchar); - -MODULE_ALIAS_CHARDEV_MAJOR(MTD_CHAR_MAJOR); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); -MODULE_DESCRIPTION("Direct character-device access to MTD devices"); MODULE_ALIAS_CHARDEV_MAJOR(MTD_CHAR_MAJOR); diff --git a/drivers/mtd/mtdconcat.c b/drivers/mtd/mtdconcat.c index 7e075621bbf..b9000563b9f 100644 --- a/drivers/mtd/mtdconcat.c +++ b/drivers/mtd/mtdconcat.c @@ -1,11 +1,25 @@ /* * MTD device concatenation layer * - * (C) 2002 Robert Kaiser <rkaiser@sysgo.de> + * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de> + * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org> * * NAND support by Christian Gan <cgan@iders.ca> * - * This code is GPL + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * */ #include <linux/kernel.h> @@ -58,8 +72,6 @@ concat_read(struct mtd_info *mtd, loff_t from, size_t len, int ret = 0, err; int i; - *retlen = 0; - for (i = 0; i < concat->num_subdev; i++) { struct mtd_info *subdev = concat->subdev[i]; size_t size, retsize; @@ -77,14 +89,14 @@ concat_read(struct mtd_info *mtd, loff_t from, size_t len, /* Entire transaction goes into this subdev */ size = len; - err = subdev->read(subdev, from, size, &retsize, buf); + err = mtd_read(subdev, from, size, &retsize, buf); /* Save information about bitflips! */ if (unlikely(err)) { - if (err == -EBADMSG) { + if (mtd_is_eccerr(err)) { mtd->ecc_stats.failed++; ret = err; - } else if (err == -EUCLEAN) { + } else if (mtd_is_bitflip(err)) { mtd->ecc_stats.corrected++; /* Do not overwrite -EBADMSG !! */ if (!ret) @@ -112,11 +124,6 @@ concat_write(struct mtd_info *mtd, loff_t to, size_t len, int err = -EINVAL; int i; - if (!(mtd->flags & MTD_WRITEABLE)) - return -EROFS; - - *retlen = 0; - for (i = 0; i < concat->num_subdev; i++) { struct mtd_info *subdev = concat->subdev[i]; size_t size, retsize; @@ -131,11 +138,7 @@ concat_write(struct mtd_info *mtd, loff_t to, size_t len, else size = len; - if (!(subdev->flags & MTD_WRITEABLE)) - err = -EROFS; - else - err = subdev->write(subdev, to, size, &retsize, buf); - + err = mtd_write(subdev, to, size, &retsize, buf); if (err) break; @@ -162,19 +165,10 @@ concat_writev(struct mtd_info *mtd, const struct kvec *vecs, int i; int err = -EINVAL; - if (!(mtd->flags & MTD_WRITEABLE)) - return -EROFS; - - *retlen = 0; - /* Calculate total length of data */ for (i = 0; i < count; i++) total_len += vecs[i].iov_len; - /* Do not allow write past end of device */ - if ((to + total_len) > mtd->size) - return -EINVAL; - /* Check alignment */ if (mtd->writesize > 1) { uint64_t __to = to; @@ -210,11 +204,8 @@ concat_writev(struct mtd_info *mtd, const struct kvec *vecs, old_iov_len = vecs_copy[entry_high].iov_len; vecs_copy[entry_high].iov_len = size; - if (!(subdev->flags & MTD_WRITEABLE)) - err = -EROFS; - else - err = subdev->writev(subdev, &vecs_copy[entry_low], - entry_high - entry_low + 1, to, &retsize); + err = mtd_writev(subdev, &vecs_copy[entry_low], + entry_high - entry_low + 1, to, &retsize); vecs_copy[entry_high].iov_len = old_iov_len - size; vecs_copy[entry_high].iov_base += size; @@ -259,16 +250,16 @@ concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) if (from + devops.len > subdev->size) devops.len = subdev->size - from; - err = subdev->read_oob(subdev, from, &devops); + err = mtd_read_oob(subdev, from, &devops); ops->retlen += devops.retlen; ops->oobretlen += devops.oobretlen; /* Save information about bitflips! */ if (unlikely(err)) { - if (err == -EBADMSG) { + if (mtd_is_eccerr(err)) { mtd->ecc_stats.failed++; ret = err; - } else if (err == -EUCLEAN) { + } else if (mtd_is_bitflip(err)) { mtd->ecc_stats.corrected++; /* Do not overwrite -EBADMSG !! */ if (!ret) @@ -305,7 +296,7 @@ concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; - ops->retlen = 0; + ops->retlen = ops->oobretlen = 0; for (i = 0; i < concat->num_subdev; i++) { struct mtd_info *subdev = concat->subdev[i]; @@ -319,8 +310,8 @@ concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) if (to + devops.len > subdev->size) devops.len = subdev->size - to; - err = subdev->write_oob(subdev, to, &devops); - ops->retlen += devops.retlen; + err = mtd_write_oob(subdev, to, &devops); + ops->retlen += devops.oobretlen; if (err) return err; @@ -365,7 +356,7 @@ static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase) * FIXME: Allow INTERRUPTIBLE. Which means * not having the wait_queue head on the stack. */ - err = mtd->erase(mtd, erase); + err = mtd_erase(mtd, erase); if (!err) { set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&waitq, &wait); @@ -388,15 +379,6 @@ static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) uint64_t length, offset = 0; struct erase_info *erase; - if (!(mtd->flags & MTD_WRITEABLE)) - return -EROFS; - - if (instr->addr > concat->mtd.size) - return -EINVAL; - - if (instr->len + instr->addr > concat->mtd.size) - return -EINVAL; - /* * Check for proper erase block alignment of the to-be-erased area. * It is easier to do this based on the super device's erase @@ -444,8 +426,6 @@ static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) return -EINVAL; } - instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; - /* make a local copy of instr to avoid modifying the caller's struct */ erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL); @@ -484,10 +464,6 @@ static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) else erase->len = length; - if (!(subdev->flags & MTD_WRITEABLE)) { - err = -EROFS; - break; - } length -= erase->len; if ((err = concat_dev_erase(subdev, erase))) { /* sanity check: should never happen since @@ -523,9 +499,6 @@ static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) struct mtd_concat *concat = CONCAT(mtd); int i, err = -EINVAL; - if ((len + ofs) > mtd->size) - return -EINVAL; - for (i = 0; i < concat->num_subdev; i++) { struct mtd_info *subdev = concat->subdev[i]; uint64_t size; @@ -540,8 +513,7 @@ static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) else size = len; - err = subdev->lock(subdev, ofs, size); - + err = mtd_lock(subdev, ofs, size); if (err) break; @@ -561,9 +533,6 @@ static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) struct mtd_concat *concat = CONCAT(mtd); int i, err = 0; - if ((len + ofs) > mtd->size) - return -EINVAL; - for (i = 0; i < concat->num_subdev; i++) { struct mtd_info *subdev = concat->subdev[i]; uint64_t size; @@ -578,8 +547,7 @@ static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) else size = len; - err = subdev->unlock(subdev, ofs, size); - + err = mtd_unlock(subdev, ofs, size); if (err) break; @@ -601,7 +569,7 @@ static void concat_sync(struct mtd_info *mtd) for (i = 0; i < concat->num_subdev; i++) { struct mtd_info *subdev = concat->subdev[i]; - subdev->sync(subdev); + mtd_sync(subdev); } } @@ -612,7 +580,7 @@ static int concat_suspend(struct mtd_info *mtd) for (i = 0; i < concat->num_subdev; i++) { struct mtd_info *subdev = concat->subdev[i]; - if ((rc = subdev->suspend(subdev)) < 0) + if ((rc = mtd_suspend(subdev)) < 0) return rc; } return rc; @@ -625,7 +593,7 @@ static void concat_resume(struct mtd_info *mtd) for (i = 0; i < concat->num_subdev; i++) { struct mtd_info *subdev = concat->subdev[i]; - subdev->resume(subdev); + mtd_resume(subdev); } } @@ -634,12 +602,9 @@ static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs) struct mtd_concat *concat = CONCAT(mtd); int i, res = 0; - if (!concat->subdev[0]->block_isbad) + if (!mtd_can_have_bb(concat->subdev[0])) return res; - if (ofs > mtd->size) - return -EINVAL; - for (i = 0; i < concat->num_subdev; i++) { struct mtd_info *subdev = concat->subdev[i]; @@ -648,7 +613,7 @@ static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs) continue; } - res = subdev->block_isbad(subdev, ofs); + res = mtd_block_isbad(subdev, ofs); break; } @@ -660,12 +625,6 @@ static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs) struct mtd_concat *concat = CONCAT(mtd); int i, err = -EINVAL; - if (!concat->subdev[0]->block_markbad) - return 0; - - if (ofs > mtd->size) - return -EINVAL; - for (i = 0; i < concat->num_subdev; i++) { struct mtd_info *subdev = concat->subdev[i]; @@ -674,7 +633,7 @@ static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs) continue; } - err = subdev->block_markbad(subdev, ofs); + err = mtd_block_markbad(subdev, ofs); if (!err) mtd->ecc_stats.badblocks++; break; @@ -703,15 +662,7 @@ static unsigned long concat_get_unmapped_area(struct mtd_info *mtd, continue; } - /* we've found the subdev over which the mapping will reside */ - if (offset + len > subdev->size) - return (unsigned long) -EINVAL; - - if (subdev->get_unmapped_area) - return subdev->get_unmapped_area(subdev, len, offset, - flags); - - break; + return mtd_get_unmapped_area(subdev, len, offset, flags); } return (unsigned long) -ENOSYS; @@ -732,6 +683,7 @@ struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to c struct mtd_concat *concat; uint32_t max_erasesize, curr_erasesize; int num_erase_region; + int max_writebufsize = 0; printk(KERN_NOTICE "Concatenating MTD devices:\n"); for (i = 0; i < num_devs; i++) @@ -751,26 +703,32 @@ struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to c /* * Set up the new "super" device's MTD object structure, check for - * incompatibilites between the subdevices. + * incompatibilities between the subdevices. */ concat->mtd.type = subdev[0]->type; concat->mtd.flags = subdev[0]->flags; concat->mtd.size = subdev[0]->size; concat->mtd.erasesize = subdev[0]->erasesize; concat->mtd.writesize = subdev[0]->writesize; + + for (i = 0; i < num_devs; i++) + if (max_writebufsize < subdev[i]->writebufsize) + max_writebufsize = subdev[i]->writebufsize; + concat->mtd.writebufsize = max_writebufsize; + concat->mtd.subpage_sft = subdev[0]->subpage_sft; concat->mtd.oobsize = subdev[0]->oobsize; concat->mtd.oobavail = subdev[0]->oobavail; - if (subdev[0]->writev) - concat->mtd.writev = concat_writev; - if (subdev[0]->read_oob) - concat->mtd.read_oob = concat_read_oob; - if (subdev[0]->write_oob) - concat->mtd.write_oob = concat_write_oob; - if (subdev[0]->block_isbad) - concat->mtd.block_isbad = concat_block_isbad; - if (subdev[0]->block_markbad) - concat->mtd.block_markbad = concat_block_markbad; + if (subdev[0]->_writev) + concat->mtd._writev = concat_writev; + if (subdev[0]->_read_oob) + concat->mtd._read_oob = concat_read_oob; + if (subdev[0]->_write_oob) + concat->mtd._write_oob = concat_write_oob; + if (subdev[0]->_block_isbad) + concat->mtd._block_isbad = concat_block_isbad; + if (subdev[0]->_block_markbad) + concat->mtd._block_markbad = concat_block_markbad; concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks; @@ -817,8 +775,8 @@ struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to c if (concat->mtd.writesize != subdev[i]->writesize || concat->mtd.subpage_sft != subdev[i]->subpage_sft || concat->mtd.oobsize != subdev[i]->oobsize || - !concat->mtd.read_oob != !subdev[i]->read_oob || - !concat->mtd.write_oob != !subdev[i]->write_oob) { + !concat->mtd._read_oob != !subdev[i]->_read_oob || + !concat->mtd._write_oob != !subdev[i]->_write_oob) { kfree(concat); printk("Incompatible OOB or ECC data on \"%s\"\n", subdev[i]->name); @@ -833,15 +791,15 @@ struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to c concat->num_subdev = num_devs; concat->mtd.name = name; - concat->mtd.erase = concat_erase; - concat->mtd.read = concat_read; - concat->mtd.write = concat_write; - concat->mtd.sync = concat_sync; - concat->mtd.lock = concat_lock; - concat->mtd.unlock = concat_unlock; - concat->mtd.suspend = concat_suspend; - concat->mtd.resume = concat_resume; - concat->mtd.get_unmapped_area = concat_get_unmapped_area; + concat->mtd._erase = concat_erase; + concat->mtd._read = concat_read; + concat->mtd._write = concat_write; + concat->mtd._sync = concat_sync; + concat->mtd._lock = concat_lock; + concat->mtd._unlock = concat_unlock; + concat->mtd._suspend = concat_suspend; + concat->mtd._resume = concat_resume; + concat->mtd._get_unmapped_area = concat_get_unmapped_area; /* * Combine the erase block size info of the subdevices: diff --git a/drivers/mtd/mtdcore.c b/drivers/mtd/mtdcore.c index a1b8b70d2d0..d201feeb3ca 100644 --- a/drivers/mtd/mtdcore.c +++ b/drivers/mtd/mtdcore.c @@ -2,14 +2,29 @@ * Core registration and callback routines for MTD * drivers and users. * - * bdi bits are: - * Copyright © 2006 Red Hat, Inc. All Rights Reserved. - * Written by David Howells (dhowells@redhat.com) + * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> + * Copyright © 2006 Red Hat UK Limited + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/ptrace.h> +#include <linux/seq_file.h> #include <linux/string.h> #include <linux/timer.h> #include <linux/major.h> @@ -17,20 +32,22 @@ #include <linux/err.h> #include <linux/ioctl.h> #include <linux/init.h> -#include <linux/mtd/compatmac.h> #include <linux/proc_fs.h> #include <linux/idr.h> #include <linux/backing-dev.h> #include <linux/gfp.h> +#include <linux/slab.h> #include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> #include "mtdcore.h" + /* * backing device capabilities for non-mappable devices (such as NAND flash) * - permits private mappings, copies are taken of the data */ -struct backing_dev_info mtd_bdi_unmappable = { +static struct backing_dev_info mtd_bdi_unmappable = { .capabilities = BDI_CAP_MAP_COPY, }; @@ -39,7 +56,7 @@ struct backing_dev_info mtd_bdi_unmappable = { * - permits private mappings, copies are taken of the data * - permits non-writable shared mappings */ -struct backing_dev_info mtd_bdi_ro_mappable = { +static struct backing_dev_info mtd_bdi_ro_mappable = { .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP), }; @@ -49,7 +66,7 @@ struct backing_dev_info mtd_bdi_ro_mappable = { * - permits private mappings, copies are taken of the data * - permits non-writable shared mappings */ -struct backing_dev_info mtd_bdi_rw_mappable = { +static struct backing_dev_info mtd_bdi_rw_mappable = { .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP | BDI_CAP_WRITE_MAP), @@ -81,18 +98,15 @@ EXPORT_SYMBOL_GPL(__mtd_next_device); static LIST_HEAD(mtd_notifiers); -#if defined(CONFIG_MTD_CHAR) || defined(CONFIG_MTD_CHAR_MODULE) #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) -#else -#define MTD_DEVT(index) 0 -#endif /* REVISIT once MTD uses the driver model better, whoever allocates * the mtd_info will probably want to use the release() hook... */ static void mtd_release(struct device *dev) { - dev_t index = MTD_DEVT(dev_to_mtd(dev)->index); + struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev); + dev_t index = MTD_DEVT(mtd->index); /* remove /dev/mtdXro node if needed */ if (index) @@ -101,27 +115,24 @@ static void mtd_release(struct device *dev) static int mtd_cls_suspend(struct device *dev, pm_message_t state) { - struct mtd_info *mtd = dev_to_mtd(dev); + struct mtd_info *mtd = dev_get_drvdata(dev); - if (mtd && mtd->suspend) - return mtd->suspend(mtd); - else - return 0; + return mtd ? mtd_suspend(mtd) : 0; } static int mtd_cls_resume(struct device *dev) { - struct mtd_info *mtd = dev_to_mtd(dev); - - if (mtd && mtd->resume) - mtd->resume(mtd); + struct mtd_info *mtd = dev_get_drvdata(dev); + + if (mtd) + mtd_resume(mtd); return 0; } static ssize_t mtd_type_show(struct device *dev, struct device_attribute *attr, char *buf) { - struct mtd_info *mtd = dev_to_mtd(dev); + struct mtd_info *mtd = dev_get_drvdata(dev); char *type; switch (mtd->type) { @@ -146,6 +157,9 @@ static ssize_t mtd_type_show(struct device *dev, case MTD_UBIVOLUME: type = "ubi"; break; + case MTD_MLCNANDFLASH: + type = "mlc-nand"; + break; default: type = "unknown"; } @@ -157,7 +171,7 @@ static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); static ssize_t mtd_flags_show(struct device *dev, struct device_attribute *attr, char *buf) { - struct mtd_info *mtd = dev_to_mtd(dev); + struct mtd_info *mtd = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); @@ -167,7 +181,7 @@ static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); static ssize_t mtd_size_show(struct device *dev, struct device_attribute *attr, char *buf) { - struct mtd_info *mtd = dev_to_mtd(dev); + struct mtd_info *mtd = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%llu\n", (unsigned long long)mtd->size); @@ -178,7 +192,7 @@ static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); static ssize_t mtd_erasesize_show(struct device *dev, struct device_attribute *attr, char *buf) { - struct mtd_info *mtd = dev_to_mtd(dev); + struct mtd_info *mtd = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); @@ -188,7 +202,7 @@ static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); static ssize_t mtd_writesize_show(struct device *dev, struct device_attribute *attr, char *buf) { - struct mtd_info *mtd = dev_to_mtd(dev); + struct mtd_info *mtd = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); @@ -198,7 +212,7 @@ static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); static ssize_t mtd_subpagesize_show(struct device *dev, struct device_attribute *attr, char *buf) { - struct mtd_info *mtd = dev_to_mtd(dev); + struct mtd_info *mtd = dev_get_drvdata(dev); unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); @@ -209,7 +223,7 @@ static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); static ssize_t mtd_oobsize_show(struct device *dev, struct device_attribute *attr, char *buf) { - struct mtd_info *mtd = dev_to_mtd(dev); + struct mtd_info *mtd = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); @@ -219,7 +233,7 @@ static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); static ssize_t mtd_numeraseregions_show(struct device *dev, struct device_attribute *attr, char *buf) { - struct mtd_info *mtd = dev_to_mtd(dev); + struct mtd_info *mtd = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); @@ -230,13 +244,60 @@ static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, static ssize_t mtd_name_show(struct device *dev, struct device_attribute *attr, char *buf) { - struct mtd_info *mtd = dev_to_mtd(dev); + struct mtd_info *mtd = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); } static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); +static ssize_t mtd_ecc_strength_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + + return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); +} +static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); + +static ssize_t mtd_bitflip_threshold_show(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + + return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); +} + +static ssize_t mtd_bitflip_threshold_store(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + unsigned int bitflip_threshold; + int retval; + + retval = kstrtouint(buf, 0, &bitflip_threshold); + if (retval) + return retval; + + mtd->bitflip_threshold = bitflip_threshold; + return count; +} +static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, + mtd_bitflip_threshold_show, + mtd_bitflip_threshold_store); + +static ssize_t mtd_ecc_step_size_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + + return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); + +} +static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); + static struct attribute *mtd_attrs[] = { &dev_attr_type.attr, &dev_attr_flags.attr, @@ -247,17 +308,12 @@ static struct attribute *mtd_attrs[] = { &dev_attr_oobsize.attr, &dev_attr_numeraseregions.attr, &dev_attr_name.attr, + &dev_attr_ecc_strength.attr, + &dev_attr_ecc_step_size.attr, + &dev_attr_bitflip_threshold.attr, NULL, }; - -static struct attribute_group mtd_group = { - .attrs = mtd_attrs, -}; - -static const struct attribute_group *mtd_groups[] = { - &mtd_group, - NULL, -}; +ATTRIBUTE_GROUPS(mtd); static struct device_type mtd_devtype = { .name = "mtd", @@ -297,18 +353,17 @@ int add_mtd_device(struct mtd_info *mtd) BUG_ON(mtd->writesize == 0); mutex_lock(&mtd_table_mutex); - do { - if (!idr_pre_get(&mtd_idr, GFP_KERNEL)) - goto fail_locked; - error = idr_get_new(&mtd_idr, mtd, &i); - } while (error == -EAGAIN); - - if (error) + i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); + if (i < 0) goto fail_locked; mtd->index = i; mtd->usecount = 0; + /* default value if not set by driver */ + if (mtd->bitflip_threshold == 0) + mtd->bitflip_threshold = mtd->ecc_strength; + if (is_power_of_2(mtd->erasesize)) mtd->erasesize_shift = ffs(mtd->erasesize) - 1; else @@ -323,9 +378,9 @@ int add_mtd_device(struct mtd_info *mtd) mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; /* Some chips always power up locked. Unlock them now */ - if ((mtd->flags & MTD_WRITEABLE) - && (mtd->flags & MTD_POWERUP_LOCK) && mtd->unlock) { - if (mtd->unlock(mtd, 0, mtd->size)) + if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { + error = mtd_unlock(mtd, 0, mtd->size); + if (error && error != -EOPNOTSUPP) printk(KERN_WARNING "%s: unlock failed, writes may not work\n", mtd->name); @@ -347,7 +402,7 @@ int add_mtd_device(struct mtd_info *mtd) MTD_DEVT(i) + 1, NULL, "mtd%dro", i); - DEBUG(0, "mtd: Giving out device %d to %s\n", i, mtd->name); + pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); /* No need to get a refcount on the module containing the notifier, since we hold the mtd_table_mutex */ list_for_each_entry(not, &mtd_notifiers, list) @@ -378,7 +433,7 @@ fail_locked: * if the requested device does not appear to be present in the list. */ -int del_mtd_device (struct mtd_info *mtd) +int del_mtd_device(struct mtd_info *mtd) { int ret; struct mtd_notifier *not; @@ -414,6 +469,86 @@ out_error: } /** + * mtd_device_parse_register - parse partitions and register an MTD device. + * + * @mtd: the MTD device to register + * @types: the list of MTD partition probes to try, see + * 'parse_mtd_partitions()' for more information + * @parser_data: MTD partition parser-specific data + * @parts: fallback partition information to register, if parsing fails; + * only valid if %nr_parts > %0 + * @nr_parts: the number of partitions in parts, if zero then the full + * MTD device is registered if no partition info is found + * + * This function aggregates MTD partitions parsing (done by + * 'parse_mtd_partitions()') and MTD device and partitions registering. It + * basically follows the most common pattern found in many MTD drivers: + * + * * It first tries to probe partitions on MTD device @mtd using parsers + * specified in @types (if @types is %NULL, then the default list of parsers + * is used, see 'parse_mtd_partitions()' for more information). If none are + * found this functions tries to fallback to information specified in + * @parts/@nr_parts. + * * If any partitioning info was found, this function registers the found + * partitions. + * * If no partitions were found this function just registers the MTD device + * @mtd and exits. + * + * Returns zero in case of success and a negative error code in case of failure. + */ +int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, + struct mtd_part_parser_data *parser_data, + const struct mtd_partition *parts, + int nr_parts) +{ + int err; + struct mtd_partition *real_parts; + + err = parse_mtd_partitions(mtd, types, &real_parts, parser_data); + if (err <= 0 && nr_parts && parts) { + real_parts = kmemdup(parts, sizeof(*parts) * nr_parts, + GFP_KERNEL); + if (!real_parts) + err = -ENOMEM; + else + err = nr_parts; + } + + if (err > 0) { + err = add_mtd_partitions(mtd, real_parts, err); + kfree(real_parts); + } else if (err == 0) { + err = add_mtd_device(mtd); + if (err == 1) + err = -ENODEV; + } + + return err; +} +EXPORT_SYMBOL_GPL(mtd_device_parse_register); + +/** + * mtd_device_unregister - unregister an existing MTD device. + * + * @master: the MTD device to unregister. This will unregister both the master + * and any partitions if registered. + */ +int mtd_device_unregister(struct mtd_info *master) +{ + int err; + + err = del_mtd_partitions(master); + if (err) + return err; + + if (!device_is_registered(&master->dev)) + return 0; + + return del_mtd_device(master); +} +EXPORT_SYMBOL_GPL(mtd_device_unregister); + +/** * register_mtd_user - register a 'user' of MTD devices. * @new: pointer to notifier info structure * @@ -421,7 +556,6 @@ out_error: * or removal of MTD devices. Causes the 'add' callback to be immediately * invoked for each MTD device currently present in the system. */ - void register_mtd_user (struct mtd_notifier *new) { struct mtd_info *mtd; @@ -430,13 +564,14 @@ void register_mtd_user (struct mtd_notifier *new) list_add(&new->list, &mtd_notifiers); - __module_get(THIS_MODULE); + __module_get(THIS_MODULE); mtd_for_each_device(mtd) new->add(mtd); mutex_unlock(&mtd_table_mutex); } +EXPORT_SYMBOL_GPL(register_mtd_user); /** * unregister_mtd_user - unregister a 'user' of MTD devices. @@ -447,7 +582,6 @@ void register_mtd_user (struct mtd_notifier *new) * 'remove' callback to be immediately invoked for each MTD device * currently present in the system. */ - int unregister_mtd_user (struct mtd_notifier *old) { struct mtd_info *mtd; @@ -463,7 +597,7 @@ int unregister_mtd_user (struct mtd_notifier *old) mutex_unlock(&mtd_table_mutex); return 0; } - +EXPORT_SYMBOL_GPL(unregister_mtd_user); /** * get_mtd_device - obtain a validated handle for an MTD device @@ -476,7 +610,6 @@ int unregister_mtd_user (struct mtd_notifier *old) * both, return the num'th driver only if its address matches. Return * error code if not. */ - struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) { struct mtd_info *ret = NULL, *other; @@ -509,6 +642,7 @@ out: mutex_unlock(&mtd_table_mutex); return ret; } +EXPORT_SYMBOL_GPL(get_mtd_device); int __get_mtd_device(struct mtd_info *mtd) @@ -518,9 +652,8 @@ int __get_mtd_device(struct mtd_info *mtd) if (!try_module_get(mtd->owner)) return -ENODEV; - if (mtd->get_device) { - - err = mtd->get_device(mtd); + if (mtd->_get_device) { + err = mtd->_get_device(mtd); if (err) { module_put(mtd->owner); @@ -530,6 +663,7 @@ int __get_mtd_device(struct mtd_info *mtd) mtd->usecount++; return 0; } +EXPORT_SYMBOL_GPL(__get_mtd_device); /** * get_mtd_device_nm - obtain a validated handle for an MTD device by @@ -539,7 +673,6 @@ int __get_mtd_device(struct mtd_info *mtd) * This function returns MTD device description structure in case of * success and an error code in case of failure. */ - struct mtd_info *get_mtd_device_nm(const char *name) { int err = -ENODEV; @@ -557,25 +690,18 @@ struct mtd_info *get_mtd_device_nm(const char *name) if (!mtd) goto out_unlock; - if (!try_module_get(mtd->owner)) + err = __get_mtd_device(mtd); + if (err) goto out_unlock; - if (mtd->get_device) { - err = mtd->get_device(mtd); - if (err) - goto out_put; - } - - mtd->usecount++; mutex_unlock(&mtd_table_mutex); return mtd; -out_put: - module_put(mtd->owner); out_unlock: mutex_unlock(&mtd_table_mutex); return ERR_PTR(err); } +EXPORT_SYMBOL_GPL(get_mtd_device_nm); void put_mtd_device(struct mtd_info *mtd) { @@ -584,103 +710,452 @@ void put_mtd_device(struct mtd_info *mtd) mutex_unlock(&mtd_table_mutex); } +EXPORT_SYMBOL_GPL(put_mtd_device); void __put_mtd_device(struct mtd_info *mtd) { --mtd->usecount; BUG_ON(mtd->usecount < 0); - if (mtd->put_device) - mtd->put_device(mtd); + if (mtd->_put_device) + mtd->_put_device(mtd); module_put(mtd->owner); } +EXPORT_SYMBOL_GPL(__put_mtd_device); + +/* + * Erase is an asynchronous operation. Device drivers are supposed + * to call instr->callback() whenever the operation completes, even + * if it completes with a failure. + * Callers are supposed to pass a callback function and wait for it + * to be called before writing to the block. + */ +int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr) + return -EINVAL; + if (!(mtd->flags & MTD_WRITEABLE)) + return -EROFS; + instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; + if (!instr->len) { + instr->state = MTD_ERASE_DONE; + mtd_erase_callback(instr); + return 0; + } + return mtd->_erase(mtd, instr); +} +EXPORT_SYMBOL_GPL(mtd_erase); + +/* + * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. + */ +int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, + void **virt, resource_size_t *phys) +{ + *retlen = 0; + *virt = NULL; + if (phys) + *phys = 0; + if (!mtd->_point) + return -EOPNOTSUPP; + if (from < 0 || from > mtd->size || len > mtd->size - from) + return -EINVAL; + if (!len) + return 0; + return mtd->_point(mtd, from, len, retlen, virt, phys); +} +EXPORT_SYMBOL_GPL(mtd_point); + +/* We probably shouldn't allow XIP if the unpoint isn't a NULL */ +int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) +{ + if (!mtd->_point) + return -EOPNOTSUPP; + if (from < 0 || from > mtd->size || len > mtd->size - from) + return -EINVAL; + if (!len) + return 0; + return mtd->_unpoint(mtd, from, len); +} +EXPORT_SYMBOL_GPL(mtd_unpoint); + +/* + * Allow NOMMU mmap() to directly map the device (if not NULL) + * - return the address to which the offset maps + * - return -ENOSYS to indicate refusal to do the mapping + */ +unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, + unsigned long offset, unsigned long flags) +{ + if (!mtd->_get_unmapped_area) + return -EOPNOTSUPP; + if (offset > mtd->size || len > mtd->size - offset) + return -EINVAL; + return mtd->_get_unmapped_area(mtd, len, offset, flags); +} +EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); + +int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, + u_char *buf) +{ + int ret_code; + *retlen = 0; + if (from < 0 || from > mtd->size || len > mtd->size - from) + return -EINVAL; + if (!len) + return 0; + + /* + * In the absence of an error, drivers return a non-negative integer + * representing the maximum number of bitflips that were corrected on + * any one ecc region (if applicable; zero otherwise). + */ + ret_code = mtd->_read(mtd, from, len, retlen, buf); + if (unlikely(ret_code < 0)) + return ret_code; + if (mtd->ecc_strength == 0) + return 0; /* device lacks ecc */ + return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; +} +EXPORT_SYMBOL_GPL(mtd_read); + +int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, + const u_char *buf) +{ + *retlen = 0; + if (to < 0 || to > mtd->size || len > mtd->size - to) + return -EINVAL; + if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE)) + return -EROFS; + if (!len) + return 0; + return mtd->_write(mtd, to, len, retlen, buf); +} +EXPORT_SYMBOL_GPL(mtd_write); -/* default_mtd_writev - default mtd writev method for MTD devices that - * don't implement their own +/* + * In blackbox flight recorder like scenarios we want to make successful writes + * in interrupt context. panic_write() is only intended to be called when its + * known the kernel is about to panic and we need the write to succeed. Since + * the kernel is not going to be running for much longer, this function can + * break locks and delay to ensure the write succeeds (but not sleep). */ +int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, + const u_char *buf) +{ + *retlen = 0; + if (!mtd->_panic_write) + return -EOPNOTSUPP; + if (to < 0 || to > mtd->size || len > mtd->size - to) + return -EINVAL; + if (!(mtd->flags & MTD_WRITEABLE)) + return -EROFS; + if (!len) + return 0; + return mtd->_panic_write(mtd, to, len, retlen, buf); +} +EXPORT_SYMBOL_GPL(mtd_panic_write); -int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, - unsigned long count, loff_t to, size_t *retlen) +int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) +{ + int ret_code; + ops->retlen = ops->oobretlen = 0; + if (!mtd->_read_oob) + return -EOPNOTSUPP; + /* + * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics + * similar to mtd->_read(), returning a non-negative integer + * representing max bitflips. In other cases, mtd->_read_oob() may + * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). + */ + ret_code = mtd->_read_oob(mtd, from, ops); + if (unlikely(ret_code < 0)) + return ret_code; + if (mtd->ecc_strength == 0) + return 0; /* device lacks ecc */ + return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; +} +EXPORT_SYMBOL_GPL(mtd_read_oob); + +/* + * Method to access the protection register area, present in some flash + * devices. The user data is one time programmable but the factory data is read + * only. + */ +int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, + struct otp_info *buf) +{ + if (!mtd->_get_fact_prot_info) + return -EOPNOTSUPP; + if (!len) + return 0; + return mtd->_get_fact_prot_info(mtd, len, retlen, buf); +} +EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); + +int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + *retlen = 0; + if (!mtd->_read_fact_prot_reg) + return -EOPNOTSUPP; + if (!len) + return 0; + return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); +} +EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); + +int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, + struct otp_info *buf) +{ + if (!mtd->_get_user_prot_info) + return -EOPNOTSUPP; + if (!len) + return 0; + return mtd->_get_user_prot_info(mtd, len, retlen, buf); +} +EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); + +int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + *retlen = 0; + if (!mtd->_read_user_prot_reg) + return -EOPNOTSUPP; + if (!len) + return 0; + return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); +} +EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); + +int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, u_char *buf) +{ + int ret; + + *retlen = 0; + if (!mtd->_write_user_prot_reg) + return -EOPNOTSUPP; + if (!len) + return 0; + ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); + if (ret) + return ret; + + /* + * If no data could be written at all, we are out of memory and + * must return -ENOSPC. + */ + return (*retlen) ? 0 : -ENOSPC; +} +EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); + +int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) +{ + if (!mtd->_lock_user_prot_reg) + return -EOPNOTSUPP; + if (!len) + return 0; + return mtd->_lock_user_prot_reg(mtd, from, len); +} +EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); + +/* Chip-supported device locking */ +int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + if (!mtd->_lock) + return -EOPNOTSUPP; + if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) + return -EINVAL; + if (!len) + return 0; + return mtd->_lock(mtd, ofs, len); +} +EXPORT_SYMBOL_GPL(mtd_lock); + +int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + if (!mtd->_unlock) + return -EOPNOTSUPP; + if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) + return -EINVAL; + if (!len) + return 0; + return mtd->_unlock(mtd, ofs, len); +} +EXPORT_SYMBOL_GPL(mtd_unlock); + +int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + if (!mtd->_is_locked) + return -EOPNOTSUPP; + if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) + return -EINVAL; + if (!len) + return 0; + return mtd->_is_locked(mtd, ofs, len); +} +EXPORT_SYMBOL_GPL(mtd_is_locked); + +int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) +{ + if (!mtd->_block_isbad) + return 0; + if (ofs < 0 || ofs > mtd->size) + return -EINVAL; + return mtd->_block_isbad(mtd, ofs); +} +EXPORT_SYMBOL_GPL(mtd_block_isbad); + +int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + if (!mtd->_block_markbad) + return -EOPNOTSUPP; + if (ofs < 0 || ofs > mtd->size) + return -EINVAL; + if (!(mtd->flags & MTD_WRITEABLE)) + return -EROFS; + return mtd->_block_markbad(mtd, ofs); +} +EXPORT_SYMBOL_GPL(mtd_block_markbad); + +/* + * default_mtd_writev - the default writev method + * @mtd: mtd device description object pointer + * @vecs: the vectors to write + * @count: count of vectors in @vecs + * @to: the MTD device offset to write to + * @retlen: on exit contains the count of bytes written to the MTD device. + * + * This function returns zero in case of success and a negative error code in + * case of failure. + */ +static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, + unsigned long count, loff_t to, size_t *retlen) { unsigned long i; size_t totlen = 0, thislen; int ret = 0; - if(!mtd->write) { - ret = -EROFS; - } else { - for (i=0; i<count; i++) { - if (!vecs[i].iov_len) - continue; - ret = mtd->write(mtd, to, vecs[i].iov_len, &thislen, vecs[i].iov_base); - totlen += thislen; - if (ret || thislen != vecs[i].iov_len) - break; - to += vecs[i].iov_len; - } + for (i = 0; i < count; i++) { + if (!vecs[i].iov_len) + continue; + ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, + vecs[i].iov_base); + totlen += thislen; + if (ret || thislen != vecs[i].iov_len) + break; + to += vecs[i].iov_len; } - if (retlen) - *retlen = totlen; + *retlen = totlen; return ret; } -EXPORT_SYMBOL_GPL(add_mtd_device); -EXPORT_SYMBOL_GPL(del_mtd_device); -EXPORT_SYMBOL_GPL(get_mtd_device); -EXPORT_SYMBOL_GPL(get_mtd_device_nm); -EXPORT_SYMBOL_GPL(__get_mtd_device); -EXPORT_SYMBOL_GPL(put_mtd_device); -EXPORT_SYMBOL_GPL(__put_mtd_device); -EXPORT_SYMBOL_GPL(register_mtd_user); -EXPORT_SYMBOL_GPL(unregister_mtd_user); -EXPORT_SYMBOL_GPL(default_mtd_writev); +/* + * mtd_writev - the vector-based MTD write method + * @mtd: mtd device description object pointer + * @vecs: the vectors to write + * @count: count of vectors in @vecs + * @to: the MTD device offset to write to + * @retlen: on exit contains the count of bytes written to the MTD device. + * + * This function returns zero in case of success and a negative error code in + * case of failure. + */ +int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, + unsigned long count, loff_t to, size_t *retlen) +{ + *retlen = 0; + if (!(mtd->flags & MTD_WRITEABLE)) + return -EROFS; + if (!mtd->_writev) + return default_mtd_writev(mtd, vecs, count, to, retlen); + return mtd->_writev(mtd, vecs, count, to, retlen); +} +EXPORT_SYMBOL_GPL(mtd_writev); -#ifdef CONFIG_PROC_FS +/** + * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size + * @mtd: mtd device description object pointer + * @size: a pointer to the ideal or maximum size of the allocation, points + * to the actual allocation size on success. + * + * This routine attempts to allocate a contiguous kernel buffer up to + * the specified size, backing off the size of the request exponentially + * until the request succeeds or until the allocation size falls below + * the system page size. This attempts to make sure it does not adversely + * impact system performance, so when allocating more than one page, we + * ask the memory allocator to avoid re-trying, swapping, writing back + * or performing I/O. + * + * Note, this function also makes sure that the allocated buffer is aligned to + * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. + * + * This is called, for example by mtd_{read,write} and jffs2_scan_medium, + * to handle smaller (i.e. degraded) buffer allocations under low- or + * fragmented-memory situations where such reduced allocations, from a + * requested ideal, are allowed. + * + * Returns a pointer to the allocated buffer on success; otherwise, NULL. + */ +void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) +{ + gfp_t flags = __GFP_NOWARN | __GFP_WAIT | + __GFP_NORETRY | __GFP_NO_KSWAPD; + size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); + void *kbuf; -/*====================================================================*/ -/* Support for /proc/mtd */ + *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); -static struct proc_dir_entry *proc_mtd; + while (*size > min_alloc) { + kbuf = kmalloc(*size, flags); + if (kbuf) + return kbuf; -static inline int mtd_proc_info(char *buf, struct mtd_info *this) -{ - return sprintf(buf, "mtd%d: %8.8llx %8.8x \"%s\"\n", this->index, - (unsigned long long)this->size, - this->erasesize, this->name); + *size >>= 1; + *size = ALIGN(*size, mtd->writesize); + } + + /* + * For the last resort allocation allow 'kmalloc()' to do all sorts of + * things (write-back, dropping caches, etc) by using GFP_KERNEL. + */ + return kmalloc(*size, GFP_KERNEL); } +EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); -static int mtd_read_proc (char *page, char **start, off_t off, int count, - int *eof, void *data_unused) +#ifdef CONFIG_PROC_FS + +/*====================================================================*/ +/* Support for /proc/mtd */ + +static int mtd_proc_show(struct seq_file *m, void *v) { struct mtd_info *mtd; - int len, l; - off_t begin = 0; + seq_puts(m, "dev: size erasesize name\n"); mutex_lock(&mtd_table_mutex); - - len = sprintf(page, "dev: size erasesize name\n"); mtd_for_each_device(mtd) { - l = mtd_proc_info(page + len, mtd); - len += l; - if (len+begin > off+count) - goto done; - if (len+begin < off) { - begin += len; - len = 0; - } - } - - *eof = 1; - -done: + seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", + mtd->index, (unsigned long long)mtd->size, + mtd->erasesize, mtd->name); + } mutex_unlock(&mtd_table_mutex); - if (off >= len+begin) - return 0; - *start = page + (off-begin); - return ((count < begin+len-off) ? count : begin+len-off); + return 0; +} + +static int mtd_proc_open(struct inode *inode, struct file *file) +{ + return single_open(file, mtd_proc_show, NULL); } +static const struct file_operations mtd_proc_ops = { + .open = mtd_proc_open, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, +}; #endif /* CONFIG_PROC_FS */ /*====================================================================*/ @@ -692,7 +1167,7 @@ static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name) ret = bdi_init(bdi); if (!ret) - ret = bdi_register(bdi, NULL, name); + ret = bdi_register(bdi, NULL, "%s", name); if (ret) bdi_destroy(bdi); @@ -700,6 +1175,8 @@ static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name) return ret; } +static struct proc_dir_entry *proc_mtd; + static int __init init_mtd(void) { int ret; @@ -720,12 +1197,17 @@ static int __init init_mtd(void) if (ret) goto err_bdi3; -#ifdef CONFIG_PROC_FS - if ((proc_mtd = create_proc_entry( "mtd", 0, NULL ))) - proc_mtd->read_proc = mtd_read_proc; -#endif /* CONFIG_PROC_FS */ + proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); + + ret = init_mtdchar(); + if (ret) + goto out_procfs; + return 0; +out_procfs: + if (proc_mtd) + remove_proc_entry("mtd", NULL); err_bdi3: bdi_destroy(&mtd_bdi_ro_mappable); err_bdi2: @@ -739,10 +1221,9 @@ err_reg: static void __exit cleanup_mtd(void) { -#ifdef CONFIG_PROC_FS - if (proc_mtd) - remove_proc_entry( "mtd", NULL); -#endif /* CONFIG_PROC_FS */ + cleanup_mtdchar(); + if (proc_mtd) + remove_proc_entry("mtd", NULL); class_unregister(&mtd_class); bdi_destroy(&mtd_bdi_unmappable); bdi_destroy(&mtd_bdi_ro_mappable); diff --git a/drivers/mtd/mtdcore.h b/drivers/mtd/mtdcore.h index 6a64fdebc89..7b0353399a1 100644 --- a/drivers/mtd/mtdcore.h +++ b/drivers/mtd/mtdcore.h @@ -1,14 +1,21 @@ -/* linux/drivers/mtd/mtdcore.h - * - * Header file for driver private mtdcore exports - * +/* + * These are exported solely for the purpose of mtd_blkdevs.c and mtdchar.c. + * You should not use them for _anything_ else. */ -/* These are exported solely for the purpose of mtd_blkdevs.c. You - should not use them for _anything_ else */ - extern struct mutex mtd_table_mutex; -extern struct mtd_info *__mtd_next_device(int i); + +struct mtd_info *__mtd_next_device(int i); +int add_mtd_device(struct mtd_info *mtd); +int del_mtd_device(struct mtd_info *mtd); +int add_mtd_partitions(struct mtd_info *, const struct mtd_partition *, int); +int del_mtd_partitions(struct mtd_info *); +int parse_mtd_partitions(struct mtd_info *master, const char * const *types, + struct mtd_partition **pparts, + struct mtd_part_parser_data *data); + +int __init init_mtdchar(void); +void __exit cleanup_mtdchar(void); #define mtd_for_each_device(mtd) \ for ((mtd) = __mtd_next_device(0); \ diff --git a/drivers/mtd/mtdoops.c b/drivers/mtd/mtdoops.c index 328313c3dcc..97bb8f6304d 100644 --- a/drivers/mtd/mtdoops.c +++ b/drivers/mtd/mtdoops.c @@ -1,7 +1,7 @@ /* * MTD Oops/Panic logger * - * Copyright (C) 2007 Nokia Corporation. All rights reserved. + * Copyright © 2007 Nokia Corporation. All rights reserved. * * Author: Richard Purdie <rpurdie@openedhand.com> * @@ -112,7 +112,7 @@ static int mtdoops_erase_block(struct mtdoops_context *cxt, int offset) set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&wait_q, &wait); - ret = mtd->erase(mtd, &erase); + ret = mtd_erase(mtd, &erase); if (ret) { set_current_state(TASK_RUNNING); remove_wait_queue(&wait_q, &wait); @@ -169,14 +169,7 @@ static void mtdoops_workfunc_erase(struct work_struct *work) cxt->nextpage = 0; } - while (mtd->block_isbad) { - ret = mtd->block_isbad(mtd, cxt->nextpage * record_size); - if (!ret) - break; - if (ret < 0) { - printk(KERN_ERR "mtdoops: block_isbad failed, aborting\n"); - return; - } + while ((ret = mtd_block_isbad(mtd, cxt->nextpage * record_size)) > 0) { badblock: printk(KERN_WARNING "mtdoops: bad block at %08lx\n", cxt->nextpage * record_size); @@ -190,6 +183,11 @@ badblock: } } + if (ret < 0) { + printk(KERN_ERR "mtdoops: mtd_block_isbad failed, aborting\n"); + return; + } + for (j = 0, ret = -1; (j < 3) && (ret < 0); j++) ret = mtdoops_erase_block(cxt, cxt->nextpage * record_size); @@ -199,9 +197,9 @@ badblock: return; } - if (mtd->block_markbad && ret == -EIO) { - ret = mtd->block_markbad(mtd, cxt->nextpage * record_size); - if (ret < 0) { + if (ret == -EIO) { + ret = mtd_block_markbad(mtd, cxt->nextpage * record_size); + if (ret < 0 && ret != -EOPNOTSUPP) { printk(KERN_ERR "mtdoops: block_markbad failed, aborting\n"); return; } @@ -221,12 +219,16 @@ static void mtdoops_write(struct mtdoops_context *cxt, int panic) hdr[0] = cxt->nextcount; hdr[1] = MTDOOPS_KERNMSG_MAGIC; - if (panic) - ret = mtd->panic_write(mtd, cxt->nextpage * record_size, - record_size, &retlen, cxt->oops_buf); - else - ret = mtd->write(mtd, cxt->nextpage * record_size, - record_size, &retlen, cxt->oops_buf); + if (panic) { + ret = mtd_panic_write(mtd, cxt->nextpage * record_size, + record_size, &retlen, cxt->oops_buf); + if (ret == -EOPNOTSUPP) { + printk(KERN_ERR "mtdoops: Cannot write from panic without panic_write\n"); + return; + } + } else + ret = mtd_write(mtd, cxt->nextpage * record_size, + record_size, &retlen, cxt->oops_buf); if (retlen != record_size || ret < 0) printk(KERN_ERR "mtdoops: write failure at %ld (%td of %ld written), error %d\n", @@ -253,12 +255,14 @@ static void find_next_position(struct mtdoops_context *cxt) size_t retlen; for (page = 0; page < cxt->oops_pages; page++) { + if (mtd_block_isbad(mtd, page * record_size)) + continue; /* Assume the page is used */ mark_page_used(cxt, page); - ret = mtd->read(mtd, page * record_size, MTDOOPS_HEADER_SIZE, - &retlen, (u_char *) &count[0]); + ret = mtd_read(mtd, page * record_size, MTDOOPS_HEADER_SIZE, + &retlen, (u_char *)&count[0]); if (retlen != MTDOOPS_HEADER_SIZE || - (ret < 0 && ret != -EUCLEAN)) { + (ret < 0 && !mtd_is_bitflip(ret))) { printk(KERN_ERR "mtdoops: read failure at %ld (%td of %d read), err %d\n", page * record_size, retlen, MTDOOPS_HEADER_SIZE, ret); @@ -267,7 +271,7 @@ static void find_next_position(struct mtdoops_context *cxt) if (count[0] == 0xffffffff && count[1] == 0xffffffff) mark_page_unused(cxt, page); - if (count[0] == 0xffffffff) + if (count[0] == 0xffffffff || count[1] != MTDOOPS_KERNMSG_MAGIC) continue; if (maxcount == 0xffffffff) { maxcount = count[0]; @@ -285,50 +289,33 @@ static void find_next_position(struct mtdoops_context *cxt) } } if (maxcount == 0xffffffff) { - cxt->nextpage = 0; - cxt->nextcount = 1; - schedule_work(&cxt->work_erase); - return; + cxt->nextpage = cxt->oops_pages - 1; + cxt->nextcount = 0; + } + else { + cxt->nextpage = maxpos; + cxt->nextcount = maxcount; } - - cxt->nextpage = maxpos; - cxt->nextcount = maxcount; mtdoops_inc_counter(cxt); } static void mtdoops_do_dump(struct kmsg_dumper *dumper, - enum kmsg_dump_reason reason, const char *s1, unsigned long l1, - const char *s2, unsigned long l2) + enum kmsg_dump_reason reason) { struct mtdoops_context *cxt = container_of(dumper, struct mtdoops_context, dump); - unsigned long s1_start, s2_start; - unsigned long l1_cpy, l2_cpy; - char *dst; /* Only dump oopses if dump_oops is set */ if (reason == KMSG_DUMP_OOPS && !dump_oops) return; - dst = cxt->oops_buf + MTDOOPS_HEADER_SIZE; /* Skip the header */ - l2_cpy = min(l2, record_size - MTDOOPS_HEADER_SIZE); - l1_cpy = min(l1, record_size - MTDOOPS_HEADER_SIZE - l2_cpy); - - s2_start = l2 - l2_cpy; - s1_start = l1 - l1_cpy; - - memcpy(dst, s1 + s1_start, l1_cpy); - memcpy(dst + l1_cpy, s2 + s2_start, l2_cpy); + kmsg_dump_get_buffer(dumper, true, cxt->oops_buf + MTDOOPS_HEADER_SIZE, + record_size - MTDOOPS_HEADER_SIZE, NULL); /* Panics must be written immediately */ - if (reason != KMSG_DUMP_OOPS) { - if (!cxt->mtd->panic_write) - printk(KERN_ERR "mtdoops: Cannot write from panic without panic_write\n"); - else - mtdoops_write(cxt, 1); - return; - } + if (reason != KMSG_DUMP_OOPS) + mtdoops_write(cxt, 1); /* For other cases, schedule work to write it "nicely" */ schedule_work(&cxt->work_write); @@ -364,12 +351,13 @@ static void mtdoops_notify_add(struct mtd_info *mtd) /* oops_page_used is a bit field */ cxt->oops_page_used = vmalloc(DIV_ROUND_UP(mtdoops_pages, - BITS_PER_LONG)); + BITS_PER_LONG) * sizeof(unsigned long)); if (!cxt->oops_page_used) { printk(KERN_ERR "mtdoops: could not allocate page array\n"); return; } + cxt->dump.max_reason = KMSG_DUMP_OOPS; cxt->dump.dump = mtdoops_do_dump; err = kmsg_dump_register(&cxt->dump); if (err) { @@ -396,7 +384,8 @@ static void mtdoops_notify_remove(struct mtd_info *mtd) printk(KERN_WARNING "mtdoops: could not unregister kmsg_dumper\n"); cxt->mtd = NULL; - flush_scheduled_work(); + flush_work(&cxt->work_erase); + flush_work(&cxt->work_write); } diff --git a/drivers/mtd/mtdpart.c b/drivers/mtd/mtdpart.c index b8043a9ba32..1ca9aec141f 100644 --- a/drivers/mtd/mtdpart.c +++ b/drivers/mtd/mtdpart.c @@ -1,12 +1,24 @@ /* * Simple MTD partitioning layer * - * (C) 2000 Nicolas Pitre <nico@fluxnic.net> + * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net> + * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de> + * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> * - * This code is GPL + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * - * 02-21-2002 Thomas Gleixner <gleixner@autronix.de> - * added support for read_oob, write_oob */ #include <linux/module.h> @@ -17,10 +29,13 @@ #include <linux/kmod.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> -#include <linux/mtd/compatmac.h> +#include <linux/err.h> + +#include "mtdcore.h" /* Our partition linked list */ static LIST_HEAD(mtd_partitions); +static DEFINE_MUTEX(mtd_partitions_mutex); /* Our partition node structure */ struct mtd_part { @@ -50,19 +65,14 @@ static int part_read(struct mtd_info *mtd, loff_t from, size_t len, int res; stats = part->master->ecc_stats; - - if (from >= mtd->size) - len = 0; - else if (from + len > mtd->size) - len = mtd->size - from; - res = part->master->read(part->master, from + part->offset, - len, retlen, buf); - if (unlikely(res)) { - if (res == -EUCLEAN) - mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected; - if (res == -EBADMSG) - mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed; - } + res = part->master->_read(part->master, from + part->offset, len, + retlen, buf); + if (unlikely(mtd_is_eccerr(res))) + mtd->ecc_stats.failed += + part->master->ecc_stats.failed - stats.failed; + else + mtd->ecc_stats.corrected += + part->master->ecc_stats.corrected - stats.corrected; return res; } @@ -70,19 +80,16 @@ static int part_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, void **virt, resource_size_t *phys) { struct mtd_part *part = PART(mtd); - if (from >= mtd->size) - len = 0; - else if (from + len > mtd->size) - len = mtd->size - from; - return part->master->point (part->master, from + part->offset, - len, retlen, virt, phys); + + return part->master->_point(part->master, from + part->offset, len, + retlen, virt, phys); } -static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) +static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) { struct mtd_part *part = PART(mtd); - part->master->unpoint(part->master, from + part->offset, len); + return part->master->_unpoint(part->master, from + part->offset, len); } static unsigned long part_get_unmapped_area(struct mtd_info *mtd, @@ -93,8 +100,8 @@ static unsigned long part_get_unmapped_area(struct mtd_info *mtd, struct mtd_part *part = PART(mtd); offset += part->offset; - return part->master->get_unmapped_area(part->master, len, offset, - flags); + return part->master->_get_unmapped_area(part->master, len, offset, + flags); } static int part_read_oob(struct mtd_info *mtd, loff_t from, @@ -107,12 +114,29 @@ static int part_read_oob(struct mtd_info *mtd, loff_t from, return -EINVAL; if (ops->datbuf && from + ops->len > mtd->size) return -EINVAL; - res = part->master->read_oob(part->master, from + part->offset, ops); + /* + * If OOB is also requested, make sure that we do not read past the end + * of this partition. + */ + if (ops->oobbuf) { + size_t len, pages; + + if (ops->mode == MTD_OPS_AUTO_OOB) + len = mtd->oobavail; + else + len = mtd->oobsize; + pages = mtd_div_by_ws(mtd->size, mtd); + pages -= mtd_div_by_ws(from, mtd); + if (ops->ooboffs + ops->ooblen > pages * len) + return -EINVAL; + } + + res = part->master->_read_oob(part->master, from + part->offset, ops); if (unlikely(res)) { - if (res == -EUCLEAN) + if (mtd_is_bitflip(res)) mtd->ecc_stats.corrected++; - if (res == -EBADMSG) + if (mtd_is_eccerr(res)) mtd->ecc_stats.failed++; } return res; @@ -122,58 +146,48 @@ static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); - return part->master->read_user_prot_reg(part->master, from, - len, retlen, buf); + return part->master->_read_user_prot_reg(part->master, from, len, + retlen, buf); } -static int part_get_user_prot_info(struct mtd_info *mtd, - struct otp_info *buf, size_t len) +static int part_get_user_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) { struct mtd_part *part = PART(mtd); - return part->master->get_user_prot_info(part->master, buf, len); + return part->master->_get_user_prot_info(part->master, len, retlen, + buf); } static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); - return part->master->read_fact_prot_reg(part->master, from, - len, retlen, buf); + return part->master->_read_fact_prot_reg(part->master, from, len, + retlen, buf); } -static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf, - size_t len) +static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) { struct mtd_part *part = PART(mtd); - return part->master->get_fact_prot_info(part->master, buf, len); + return part->master->_get_fact_prot_info(part->master, len, retlen, + buf); } static int part_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct mtd_part *part = PART(mtd); - if (!(mtd->flags & MTD_WRITEABLE)) - return -EROFS; - if (to >= mtd->size) - len = 0; - else if (to + len > mtd->size) - len = mtd->size - to; - return part->master->write(part->master, to + part->offset, - len, retlen, buf); + return part->master->_write(part->master, to + part->offset, len, + retlen, buf); } static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct mtd_part *part = PART(mtd); - if (!(mtd->flags & MTD_WRITEABLE)) - return -EROFS; - if (to >= mtd->size) - len = 0; - else if (to + len > mtd->size) - len = mtd->size - to; - return part->master->panic_write(part->master, to + part->offset, - len, retlen, buf); + return part->master->_panic_write(part->master, to + part->offset, len, + retlen, buf); } static int part_write_oob(struct mtd_info *mtd, loff_t to, @@ -181,51 +195,43 @@ static int part_write_oob(struct mtd_info *mtd, loff_t to, { struct mtd_part *part = PART(mtd); - if (!(mtd->flags & MTD_WRITEABLE)) - return -EROFS; - if (to >= mtd->size) return -EINVAL; if (ops->datbuf && to + ops->len > mtd->size) return -EINVAL; - return part->master->write_oob(part->master, to + part->offset, ops); + return part->master->_write_oob(part->master, to + part->offset, ops); } static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); - return part->master->write_user_prot_reg(part->master, from, - len, retlen, buf); + return part->master->_write_user_prot_reg(part->master, from, len, + retlen, buf); } static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) { struct mtd_part *part = PART(mtd); - return part->master->lock_user_prot_reg(part->master, from, len); + return part->master->_lock_user_prot_reg(part->master, from, len); } static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen) { struct mtd_part *part = PART(mtd); - if (!(mtd->flags & MTD_WRITEABLE)) - return -EROFS; - return part->master->writev(part->master, vecs, count, - to + part->offset, retlen); + return part->master->_writev(part->master, vecs, count, + to + part->offset, retlen); } static int part_erase(struct mtd_info *mtd, struct erase_info *instr) { struct mtd_part *part = PART(mtd); int ret; - if (!(mtd->flags & MTD_WRITEABLE)) - return -EROFS; - if (instr->addr >= mtd->size) - return -EINVAL; + instr->addr += part->offset; - ret = part->master->erase(part->master, instr); + ret = part->master->_erase(part->master, instr); if (ret) { if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) instr->fail_addr -= part->offset; @@ -236,7 +242,7 @@ static int part_erase(struct mtd_info *mtd, struct erase_info *instr) void mtd_erase_callback(struct erase_info *instr) { - if (instr->mtd->erase == part_erase) { + if (instr->mtd->_erase == part_erase) { struct mtd_part *part = PART(instr->mtd); if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) @@ -251,44 +257,44 @@ EXPORT_SYMBOL_GPL(mtd_erase_callback); static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct mtd_part *part = PART(mtd); - if ((len + ofs) > mtd->size) - return -EINVAL; - return part->master->lock(part->master, ofs + part->offset, len); + return part->master->_lock(part->master, ofs + part->offset, len); } static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct mtd_part *part = PART(mtd); - if ((len + ofs) > mtd->size) - return -EINVAL; - return part->master->unlock(part->master, ofs + part->offset, len); + return part->master->_unlock(part->master, ofs + part->offset, len); +} + +static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + struct mtd_part *part = PART(mtd); + return part->master->_is_locked(part->master, ofs + part->offset, len); } static void part_sync(struct mtd_info *mtd) { struct mtd_part *part = PART(mtd); - part->master->sync(part->master); + part->master->_sync(part->master); } static int part_suspend(struct mtd_info *mtd) { struct mtd_part *part = PART(mtd); - return part->master->suspend(part->master); + return part->master->_suspend(part->master); } static void part_resume(struct mtd_info *mtd) { struct mtd_part *part = PART(mtd); - part->master->resume(part->master); + part->master->_resume(part->master); } static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) { struct mtd_part *part = PART(mtd); - if (ofs >= mtd->size) - return -EINVAL; ofs += part->offset; - return part->master->block_isbad(part->master, ofs); + return part->master->_block_isbad(part->master, ofs); } static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) @@ -296,17 +302,19 @@ static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) struct mtd_part *part = PART(mtd); int res; - if (!(mtd->flags & MTD_WRITEABLE)) - return -EROFS; - if (ofs >= mtd->size) - return -EINVAL; ofs += part->offset; - res = part->master->block_markbad(part->master, ofs); + res = part->master->_block_markbad(part->master, ofs); if (!res) mtd->ecc_stats.badblocks++; return res; } +static inline void free_partition(struct mtd_part *p) +{ + kfree(p->mtd.name); + kfree(p); +} + /* * This function unregisters and destroy all slave MTD objects which are * attached to the given master MTD object. @@ -315,44 +323,53 @@ static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) int del_mtd_partitions(struct mtd_info *master) { struct mtd_part *slave, *next; + int ret, err = 0; + mutex_lock(&mtd_partitions_mutex); list_for_each_entry_safe(slave, next, &mtd_partitions, list) if (slave->master == master) { + ret = del_mtd_device(&slave->mtd); + if (ret < 0) { + err = ret; + continue; + } list_del(&slave->list); - del_mtd_device(&slave->mtd); - kfree(slave); + free_partition(slave); } + mutex_unlock(&mtd_partitions_mutex); - return 0; + return err; } -EXPORT_SYMBOL(del_mtd_partitions); -static struct mtd_part *add_one_partition(struct mtd_info *master, - const struct mtd_partition *part, int partno, - uint64_t cur_offset) +static struct mtd_part *allocate_partition(struct mtd_info *master, + const struct mtd_partition *part, int partno, + uint64_t cur_offset) { struct mtd_part *slave; + char *name; /* allocate the partition structure */ slave = kzalloc(sizeof(*slave), GFP_KERNEL); - if (!slave) { + name = kstrdup(part->name, GFP_KERNEL); + if (!name || !slave) { printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", - master->name); - del_mtd_partitions(master); - return NULL; + master->name); + kfree(name); + kfree(slave); + return ERR_PTR(-ENOMEM); } - list_add(&slave->list, &mtd_partitions); /* set up the MTD object for this partition */ slave->mtd.type = master->type; slave->mtd.flags = master->flags & ~part->mask_flags; slave->mtd.size = part->size; slave->mtd.writesize = master->writesize; + slave->mtd.writebufsize = master->writebufsize; slave->mtd.oobsize = master->oobsize; slave->mtd.oobavail = master->oobavail; slave->mtd.subpage_sft = master->subpage_sft; - slave->mtd.name = part->name; + slave->mtd.name = name; slave->mtd.owner = master->owner; slave->mtd.backing_dev_info = master->backing_dev_info; @@ -361,52 +378,55 @@ static struct mtd_part *add_one_partition(struct mtd_info *master, */ slave->mtd.dev.parent = master->dev.parent; - slave->mtd.read = part_read; - slave->mtd.write = part_write; + slave->mtd._read = part_read; + slave->mtd._write = part_write; - if (master->panic_write) - slave->mtd.panic_write = part_panic_write; + if (master->_panic_write) + slave->mtd._panic_write = part_panic_write; - if (master->point && master->unpoint) { - slave->mtd.point = part_point; - slave->mtd.unpoint = part_unpoint; + if (master->_point && master->_unpoint) { + slave->mtd._point = part_point; + slave->mtd._unpoint = part_unpoint; } - if (master->get_unmapped_area) - slave->mtd.get_unmapped_area = part_get_unmapped_area; - if (master->read_oob) - slave->mtd.read_oob = part_read_oob; - if (master->write_oob) - slave->mtd.write_oob = part_write_oob; - if (master->read_user_prot_reg) - slave->mtd.read_user_prot_reg = part_read_user_prot_reg; - if (master->read_fact_prot_reg) - slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg; - if (master->write_user_prot_reg) - slave->mtd.write_user_prot_reg = part_write_user_prot_reg; - if (master->lock_user_prot_reg) - slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg; - if (master->get_user_prot_info) - slave->mtd.get_user_prot_info = part_get_user_prot_info; - if (master->get_fact_prot_info) - slave->mtd.get_fact_prot_info = part_get_fact_prot_info; - if (master->sync) - slave->mtd.sync = part_sync; - if (!partno && !master->dev.class && master->suspend && master->resume) { - slave->mtd.suspend = part_suspend; - slave->mtd.resume = part_resume; + if (master->_get_unmapped_area) + slave->mtd._get_unmapped_area = part_get_unmapped_area; + if (master->_read_oob) + slave->mtd._read_oob = part_read_oob; + if (master->_write_oob) + slave->mtd._write_oob = part_write_oob; + if (master->_read_user_prot_reg) + slave->mtd._read_user_prot_reg = part_read_user_prot_reg; + if (master->_read_fact_prot_reg) + slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg; + if (master->_write_user_prot_reg) + slave->mtd._write_user_prot_reg = part_write_user_prot_reg; + if (master->_lock_user_prot_reg) + slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg; + if (master->_get_user_prot_info) + slave->mtd._get_user_prot_info = part_get_user_prot_info; + if (master->_get_fact_prot_info) + slave->mtd._get_fact_prot_info = part_get_fact_prot_info; + if (master->_sync) + slave->mtd._sync = part_sync; + if (!partno && !master->dev.class && master->_suspend && + master->_resume) { + slave->mtd._suspend = part_suspend; + slave->mtd._resume = part_resume; } - if (master->writev) - slave->mtd.writev = part_writev; - if (master->lock) - slave->mtd.lock = part_lock; - if (master->unlock) - slave->mtd.unlock = part_unlock; - if (master->block_isbad) - slave->mtd.block_isbad = part_block_isbad; - if (master->block_markbad) - slave->mtd.block_markbad = part_block_markbad; - slave->mtd.erase = part_erase; + if (master->_writev) + slave->mtd._writev = part_writev; + if (master->_lock) + slave->mtd._lock = part_lock; + if (master->_unlock) + slave->mtd._unlock = part_unlock; + if (master->_is_locked) + slave->mtd._is_locked = part_is_locked; + if (master->_block_isbad) + slave->mtd._block_isbad = part_block_isbad; + if (master->_block_markbad) + slave->mtd._block_markbad = part_block_markbad; + slave->mtd._erase = part_erase; slave->master = master; slave->offset = part->offset; @@ -422,6 +442,19 @@ static struct mtd_part *add_one_partition(struct mtd_info *master, (unsigned long long)cur_offset, (unsigned long long)slave->offset); } } + if (slave->offset == MTDPART_OFS_RETAIN) { + slave->offset = cur_offset; + if (master->size - slave->offset >= slave->mtd.size) { + slave->mtd.size = master->size - slave->offset + - slave->mtd.size; + } else { + printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n", + part->name, master->size - slave->offset, + slave->mtd.size); + /* register to preserve ordering */ + goto out_register; + } + } if (slave->mtd.size == MTDPART_SIZ_FULL) slave->mtd.size = master->size - slave->offset; @@ -485,24 +518,104 @@ static struct mtd_part *add_one_partition(struct mtd_info *master, } slave->mtd.ecclayout = master->ecclayout; - if (master->block_isbad) { + slave->mtd.ecc_step_size = master->ecc_step_size; + slave->mtd.ecc_strength = master->ecc_strength; + slave->mtd.bitflip_threshold = master->bitflip_threshold; + + if (master->_block_isbad) { uint64_t offs = 0; while (offs < slave->mtd.size) { - if (master->block_isbad(master, - offs + slave->offset)) + if (mtd_block_isbad(master, offs + slave->offset)) slave->mtd.ecc_stats.badblocks++; offs += slave->mtd.erasesize; } } out_register: - /* register our partition */ - add_mtd_device(&slave->mtd); - return slave; } +int mtd_add_partition(struct mtd_info *master, const char *name, + long long offset, long long length) +{ + struct mtd_partition part; + struct mtd_part *p, *new; + uint64_t start, end; + int ret = 0; + + /* the direct offset is expected */ + if (offset == MTDPART_OFS_APPEND || + offset == MTDPART_OFS_NXTBLK) + return -EINVAL; + + if (length == MTDPART_SIZ_FULL) + length = master->size - offset; + + if (length <= 0) + return -EINVAL; + + part.name = name; + part.size = length; + part.offset = offset; + part.mask_flags = 0; + part.ecclayout = NULL; + + new = allocate_partition(master, &part, -1, offset); + if (IS_ERR(new)) + return PTR_ERR(new); + + start = offset; + end = offset + length; + + mutex_lock(&mtd_partitions_mutex); + list_for_each_entry(p, &mtd_partitions, list) + if (p->master == master) { + if ((start >= p->offset) && + (start < (p->offset + p->mtd.size))) + goto err_inv; + + if ((end >= p->offset) && + (end < (p->offset + p->mtd.size))) + goto err_inv; + } + + list_add(&new->list, &mtd_partitions); + mutex_unlock(&mtd_partitions_mutex); + + add_mtd_device(&new->mtd); + + return ret; +err_inv: + mutex_unlock(&mtd_partitions_mutex); + free_partition(new); + return -EINVAL; +} +EXPORT_SYMBOL_GPL(mtd_add_partition); + +int mtd_del_partition(struct mtd_info *master, int partno) +{ + struct mtd_part *slave, *next; + int ret = -EINVAL; + + mutex_lock(&mtd_partitions_mutex); + list_for_each_entry_safe(slave, next, &mtd_partitions, list) + if ((slave->master == master) && + (slave->mtd.index == partno)) { + ret = del_mtd_device(&slave->mtd); + if (ret < 0) + break; + + list_del(&slave->list); + free_partition(slave); + break; + } + mutex_unlock(&mtd_partitions_mutex); + + return ret; +} +EXPORT_SYMBOL_GPL(mtd_del_partition); + /* * This function, given a master MTD object and a partition table, creates * and registers slave MTD objects which are bound to the master according to @@ -523,15 +636,21 @@ int add_mtd_partitions(struct mtd_info *master, printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); for (i = 0; i < nbparts; i++) { - slave = add_one_partition(master, parts + i, i, cur_offset); - if (!slave) - return -ENOMEM; + slave = allocate_partition(master, parts + i, i, cur_offset); + if (IS_ERR(slave)) + return PTR_ERR(slave); + + mutex_lock(&mtd_partitions_mutex); + list_add(&slave->list, &mtd_partitions); + mutex_unlock(&mtd_partitions_mutex); + + add_mtd_device(&slave->mtd); + cur_offset = slave->offset + slave->mtd.size; } return 0; } -EXPORT_SYMBOL(add_mtd_partitions); static DEFINE_SPINLOCK(part_parser_lock); static LIST_HEAD(part_parsers); @@ -553,47 +672,104 @@ static struct mtd_part_parser *get_partition_parser(const char *name) return ret; } -int register_mtd_parser(struct mtd_part_parser *p) +#define put_partition_parser(p) do { module_put((p)->owner); } while (0) + +void register_mtd_parser(struct mtd_part_parser *p) { spin_lock(&part_parser_lock); list_add(&p->list, &part_parsers); spin_unlock(&part_parser_lock); - - return 0; } EXPORT_SYMBOL_GPL(register_mtd_parser); -int deregister_mtd_parser(struct mtd_part_parser *p) +void deregister_mtd_parser(struct mtd_part_parser *p) { spin_lock(&part_parser_lock); list_del(&p->list); spin_unlock(&part_parser_lock); - return 0; } EXPORT_SYMBOL_GPL(deregister_mtd_parser); -int parse_mtd_partitions(struct mtd_info *master, const char **types, - struct mtd_partition **pparts, unsigned long origin) +/* + * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you + * are changing this array! + */ +static const char * const default_mtd_part_types[] = { + "cmdlinepart", + "ofpart", + NULL +}; + +/** + * parse_mtd_partitions - parse MTD partitions + * @master: the master partition (describes whole MTD device) + * @types: names of partition parsers to try or %NULL + * @pparts: array of partitions found is returned here + * @data: MTD partition parser-specific data + * + * This function tries to find partition on MTD device @master. It uses MTD + * partition parsers, specified in @types. However, if @types is %NULL, then + * the default list of parsers is used. The default list contains only the + * "cmdlinepart" and "ofpart" parsers ATM. + * Note: If there are more then one parser in @types, the kernel only takes the + * partitions parsed out by the first parser. + * + * This function may return: + * o a negative error code in case of failure + * o zero if no partitions were found + * o a positive number of found partitions, in which case on exit @pparts will + * point to an array containing this number of &struct mtd_info objects. + */ +int parse_mtd_partitions(struct mtd_info *master, const char *const *types, + struct mtd_partition **pparts, + struct mtd_part_parser_data *data) { struct mtd_part_parser *parser; int ret = 0; + if (!types) + types = default_mtd_part_types; + for ( ; ret <= 0 && *types; types++) { parser = get_partition_parser(*types); if (!parser && !request_module("%s", *types)) - parser = get_partition_parser(*types); - if (!parser) { - printk(KERN_NOTICE "%s partition parsing not available\n", - *types); + parser = get_partition_parser(*types); + if (!parser) continue; - } - ret = (*parser->parse_fn)(master, pparts, origin); + ret = (*parser->parse_fn)(master, pparts, data); + put_partition_parser(parser); if (ret > 0) { printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", ret, parser->name, master->name); + break; } - put_partition_parser(parser); } return ret; } -EXPORT_SYMBOL_GPL(parse_mtd_partitions); + +int mtd_is_partition(const struct mtd_info *mtd) +{ + struct mtd_part *part; + int ispart = 0; + + mutex_lock(&mtd_partitions_mutex); + list_for_each_entry(part, &mtd_partitions, list) + if (&part->mtd == mtd) { + ispart = 1; + break; + } + mutex_unlock(&mtd_partitions_mutex); + + return ispart; +} +EXPORT_SYMBOL_GPL(mtd_is_partition); + +/* Returns the size of the entire flash chip */ +uint64_t mtd_get_device_size(const struct mtd_info *mtd) +{ + if (!mtd_is_partition(mtd)) + return mtd->size; + + return PART(mtd)->master->size; +} +EXPORT_SYMBOL_GPL(mtd_get_device_size); diff --git a/drivers/mtd/mtdsuper.c b/drivers/mtd/mtdsuper.c index bd9a443ccf6..20c02a3b741 100644 --- a/drivers/mtd/mtdsuper.c +++ b/drivers/mtd/mtdsuper.c @@ -1,6 +1,8 @@ /* MTD-based superblock management * * Copyright © 2001-2007 Red Hat, Inc. All Rights Reserved. + * Copyright © 2001-2010 David Woodhouse <dwmw2@infradead.org> + * * Written by: David Howells <dhowells@redhat.com> * David Woodhouse <dwmw2@infradead.org> * @@ -12,8 +14,10 @@ #include <linux/mtd/super.h> #include <linux/namei.h> +#include <linux/export.h> #include <linux/ctype.h> #include <linux/slab.h> +#include <linux/major.h> /* * compare superblocks to see if they're equivalent @@ -24,12 +28,12 @@ static int get_sb_mtd_compare(struct super_block *sb, void *_mtd) struct mtd_info *mtd = _mtd; if (sb->s_mtd == mtd) { - DEBUG(2, "MTDSB: Match on device %d (\"%s\")\n", + pr_debug("MTDSB: Match on device %d (\"%s\")\n", mtd->index, mtd->name); return 1; } - DEBUG(2, "MTDSB: No match, device %d (\"%s\"), device %d (\"%s\")\n", + pr_debug("MTDSB: No match, device %d (\"%s\"), device %d (\"%s\")\n", sb->s_mtd->index, sb->s_mtd->name, mtd->index, mtd->name); return 0; } @@ -52,16 +56,15 @@ static int get_sb_mtd_set(struct super_block *sb, void *_mtd) /* * get a superblock on an MTD-backed filesystem */ -static int get_sb_mtd_aux(struct file_system_type *fs_type, int flags, +static struct dentry *mount_mtd_aux(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, struct mtd_info *mtd, - int (*fill_super)(struct super_block *, void *, int), - struct vfsmount *mnt) + int (*fill_super)(struct super_block *, void *, int)) { struct super_block *sb; int ret; - sb = sget(fs_type, get_sb_mtd_compare, get_sb_mtd_set, mtd); + sb = sget(fs_type, get_sb_mtd_compare, get_sb_mtd_set, flags, mtd); if (IS_ERR(sb)) goto out_error; @@ -69,65 +72,55 @@ static int get_sb_mtd_aux(struct file_system_type *fs_type, int flags, goto already_mounted; /* fresh new superblock */ - DEBUG(1, "MTDSB: New superblock for device %d (\"%s\")\n", + pr_debug("MTDSB: New superblock for device %d (\"%s\")\n", mtd->index, mtd->name); - sb->s_flags = flags; - ret = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); if (ret < 0) { deactivate_locked_super(sb); - return ret; + return ERR_PTR(ret); } /* go */ sb->s_flags |= MS_ACTIVE; - simple_set_mnt(mnt, sb); - - return 0; + return dget(sb->s_root); /* new mountpoint for an already mounted superblock */ already_mounted: - DEBUG(1, "MTDSB: Device %d (\"%s\") is already mounted\n", + pr_debug("MTDSB: Device %d (\"%s\") is already mounted\n", mtd->index, mtd->name); - simple_set_mnt(mnt, sb); - ret = 0; - goto out_put; + put_mtd_device(mtd); + return dget(sb->s_root); out_error: - ret = PTR_ERR(sb); -out_put: put_mtd_device(mtd); - return ret; + return ERR_CAST(sb); } /* * get a superblock on an MTD-backed filesystem by MTD device number */ -static int get_sb_mtd_nr(struct file_system_type *fs_type, int flags, +static struct dentry *mount_mtd_nr(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, int mtdnr, - int (*fill_super)(struct super_block *, void *, int), - struct vfsmount *mnt) + int (*fill_super)(struct super_block *, void *, int)) { struct mtd_info *mtd; mtd = get_mtd_device(NULL, mtdnr); if (IS_ERR(mtd)) { - DEBUG(0, "MTDSB: Device #%u doesn't appear to exist\n", mtdnr); - return PTR_ERR(mtd); + pr_debug("MTDSB: Device #%u doesn't appear to exist\n", mtdnr); + return ERR_CAST(mtd); } - return get_sb_mtd_aux(fs_type, flags, dev_name, data, mtd, fill_super, - mnt); + return mount_mtd_aux(fs_type, flags, dev_name, data, mtd, fill_super); } /* * set up an MTD-based superblock */ -int get_sb_mtd(struct file_system_type *fs_type, int flags, +struct dentry *mount_mtd(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, - int (*fill_super)(struct super_block *, void *, int), - struct vfsmount *mnt) + int (*fill_super)(struct super_block *, void *, int)) { #ifdef CONFIG_BLOCK struct block_device *bdev; @@ -136,9 +129,9 @@ int get_sb_mtd(struct file_system_type *fs_type, int flags, int mtdnr; if (!dev_name) - return -EINVAL; + return ERR_PTR(-EINVAL); - DEBUG(2, "MTDSB: dev_name \"%s\"\n", dev_name); + pr_debug("MTDSB: dev_name \"%s\"\n", dev_name); /* the preferred way of mounting in future; especially when * CONFIG_BLOCK=n - we specify the underlying MTD device by number or @@ -149,15 +142,15 @@ int get_sb_mtd(struct file_system_type *fs_type, int flags, struct mtd_info *mtd; /* mount by MTD device name */ - DEBUG(1, "MTDSB: mtd:%%s, name \"%s\"\n", + pr_debug("MTDSB: mtd:%%s, name \"%s\"\n", dev_name + 4); mtd = get_mtd_device_nm(dev_name + 4); if (!IS_ERR(mtd)) - return get_sb_mtd_aux( + return mount_mtd_aux( fs_type, flags, dev_name, data, mtd, - fill_super, mnt); + fill_super); printk(KERN_NOTICE "MTD:" " MTD device with name \"%s\" not found.\n", @@ -170,11 +163,11 @@ int get_sb_mtd(struct file_system_type *fs_type, int flags, mtdnr = simple_strtoul(dev_name + 3, &endptr, 0); if (!*endptr) { /* It was a valid number */ - DEBUG(1, "MTDSB: mtd%%d, mtdnr %d\n", + pr_debug("MTDSB: mtd%%d, mtdnr %d\n", mtdnr); - return get_sb_mtd_nr(fs_type, flags, + return mount_mtd_nr(fs_type, flags, dev_name, data, - mtdnr, fill_super, mnt); + mtdnr, fill_super); } } } @@ -186,10 +179,10 @@ int get_sb_mtd(struct file_system_type *fs_type, int flags, bdev = lookup_bdev(dev_name); if (IS_ERR(bdev)) { ret = PTR_ERR(bdev); - DEBUG(1, "MTDSB: lookup_bdev() returned %d\n", ret); - return ret; + pr_debug("MTDSB: lookup_bdev() returned %d\n", ret); + return ERR_PTR(ret); } - DEBUG(1, "MTDSB: lookup_bdev() returned 0\n"); + pr_debug("MTDSB: lookup_bdev() returned 0\n"); ret = -EINVAL; @@ -200,8 +193,7 @@ int get_sb_mtd(struct file_system_type *fs_type, int flags, if (major != MTD_BLOCK_MAJOR) goto not_an_MTD_device; - return get_sb_mtd_nr(fs_type, flags, dev_name, data, mtdnr, fill_super, - mnt); + return mount_mtd_nr(fs_type, flags, dev_name, data, mtdnr, fill_super); not_an_MTD_device: #endif /* CONFIG_BLOCK */ @@ -210,10 +202,10 @@ not_an_MTD_device: printk(KERN_NOTICE "MTD: Attempt to mount non-MTD device \"%s\"\n", dev_name); - return -EINVAL; + return ERR_PTR(-EINVAL); } -EXPORT_SYMBOL_GPL(get_sb_mtd); +EXPORT_SYMBOL_GPL(mount_mtd); /* * destroy an MTD-based superblock diff --git a/drivers/mtd/mtdswap.c b/drivers/mtd/mtdswap.c new file mode 100644 index 00000000000..8b33b26eb12 --- /dev/null +++ b/drivers/mtd/mtdswap.c @@ -0,0 +1,1591 @@ +/* + * Swap block device support for MTDs + * Turns an MTD device into a swap device with block wear leveling + * + * Copyright © 2007,2011 Nokia Corporation. All rights reserved. + * + * Authors: Jarkko Lavinen <jarkko.lavinen@nokia.com> + * + * Based on Richard Purdie's earlier implementation in 2007. Background + * support and lock-less operation written by Adrian Hunter. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * version 2 as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA + * 02110-1301 USA + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/blktrans.h> +#include <linux/rbtree.h> +#include <linux/sched.h> +#include <linux/slab.h> +#include <linux/vmalloc.h> +#include <linux/genhd.h> +#include <linux/swap.h> +#include <linux/debugfs.h> +#include <linux/seq_file.h> +#include <linux/device.h> +#include <linux/math64.h> + +#define MTDSWAP_PREFIX "mtdswap" + +/* + * The number of free eraseblocks when GC should stop + */ +#define CLEAN_BLOCK_THRESHOLD 20 + +/* + * Number of free eraseblocks below which GC can also collect low frag + * blocks. + */ +#define LOW_FRAG_GC_TRESHOLD 5 + +/* + * Wear level cost amortization. We want to do wear leveling on the background + * without disturbing gc too much. This is made by defining max GC frequency. + * Frequency value 6 means 1/6 of the GC passes will pick an erase block based + * on the biggest wear difference rather than the biggest dirtiness. + * + * The lower freq2 should be chosen so that it makes sure the maximum erase + * difference will decrease even if a malicious application is deliberately + * trying to make erase differences large. + */ +#define MAX_ERASE_DIFF 4000 +#define COLLECT_NONDIRTY_BASE MAX_ERASE_DIFF +#define COLLECT_NONDIRTY_FREQ1 6 +#define COLLECT_NONDIRTY_FREQ2 4 + +#define PAGE_UNDEF UINT_MAX +#define BLOCK_UNDEF UINT_MAX +#define BLOCK_ERROR (UINT_MAX - 1) +#define BLOCK_MAX (UINT_MAX - 2) + +#define EBLOCK_BAD (1 << 0) +#define EBLOCK_NOMAGIC (1 << 1) +#define EBLOCK_BITFLIP (1 << 2) +#define EBLOCK_FAILED (1 << 3) +#define EBLOCK_READERR (1 << 4) +#define EBLOCK_IDX_SHIFT 5 + +struct swap_eb { + struct rb_node rb; + struct rb_root *root; + + unsigned int flags; + unsigned int active_count; + unsigned int erase_count; + unsigned int pad; /* speeds up pointer decrement */ +}; + +#define MTDSWAP_ECNT_MIN(rbroot) (rb_entry(rb_first(rbroot), struct swap_eb, \ + rb)->erase_count) +#define MTDSWAP_ECNT_MAX(rbroot) (rb_entry(rb_last(rbroot), struct swap_eb, \ + rb)->erase_count) + +struct mtdswap_tree { + struct rb_root root; + unsigned int count; +}; + +enum { + MTDSWAP_CLEAN, + MTDSWAP_USED, + MTDSWAP_LOWFRAG, + MTDSWAP_HIFRAG, + MTDSWAP_DIRTY, + MTDSWAP_BITFLIP, + MTDSWAP_FAILING, + MTDSWAP_TREE_CNT, +}; + +struct mtdswap_dev { + struct mtd_blktrans_dev *mbd_dev; + struct mtd_info *mtd; + struct device *dev; + + unsigned int *page_data; + unsigned int *revmap; + + unsigned int eblks; + unsigned int spare_eblks; + unsigned int pages_per_eblk; + unsigned int max_erase_count; + struct swap_eb *eb_data; + + struct mtdswap_tree trees[MTDSWAP_TREE_CNT]; + + unsigned long long sect_read_count; + unsigned long long sect_write_count; + unsigned long long mtd_write_count; + unsigned long long mtd_read_count; + unsigned long long discard_count; + unsigned long long discard_page_count; + + unsigned int curr_write_pos; + struct swap_eb *curr_write; + + char *page_buf; + char *oob_buf; + + struct dentry *debugfs_root; +}; + +struct mtdswap_oobdata { + __le16 magic; + __le32 count; +} __attribute__((packed)); + +#define MTDSWAP_MAGIC_CLEAN 0x2095 +#define MTDSWAP_MAGIC_DIRTY (MTDSWAP_MAGIC_CLEAN + 1) +#define MTDSWAP_TYPE_CLEAN 0 +#define MTDSWAP_TYPE_DIRTY 1 +#define MTDSWAP_OOBSIZE sizeof(struct mtdswap_oobdata) + +#define MTDSWAP_ERASE_RETRIES 3 /* Before marking erase block bad */ +#define MTDSWAP_IO_RETRIES 3 + +enum { + MTDSWAP_SCANNED_CLEAN, + MTDSWAP_SCANNED_DIRTY, + MTDSWAP_SCANNED_BITFLIP, + MTDSWAP_SCANNED_BAD, +}; + +/* + * In the worst case mtdswap_writesect() has allocated the last clean + * page from the current block and is then pre-empted by the GC + * thread. The thread can consume a full erase block when moving a + * block. + */ +#define MIN_SPARE_EBLOCKS 2 +#define MIN_ERASE_BLOCKS (MIN_SPARE_EBLOCKS + 1) + +#define TREE_ROOT(d, name) (&d->trees[MTDSWAP_ ## name].root) +#define TREE_EMPTY(d, name) (TREE_ROOT(d, name)->rb_node == NULL) +#define TREE_NONEMPTY(d, name) (!TREE_EMPTY(d, name)) +#define TREE_COUNT(d, name) (d->trees[MTDSWAP_ ## name].count) + +#define MTDSWAP_MBD_TO_MTDSWAP(dev) ((struct mtdswap_dev *)dev->priv) + +static char partitions[128] = ""; +module_param_string(partitions, partitions, sizeof(partitions), 0444); +MODULE_PARM_DESC(partitions, "MTD partition numbers to use as swap " + "partitions=\"1,3,5\""); + +static unsigned int spare_eblocks = 10; +module_param(spare_eblocks, uint, 0444); +MODULE_PARM_DESC(spare_eblocks, "Percentage of spare erase blocks for " + "garbage collection (default 10%)"); + +static bool header; /* false */ +module_param(header, bool, 0444); +MODULE_PARM_DESC(header, + "Include builtin swap header (default 0, without header)"); + +static int mtdswap_gc(struct mtdswap_dev *d, unsigned int background); + +static loff_t mtdswap_eb_offset(struct mtdswap_dev *d, struct swap_eb *eb) +{ + return (loff_t)(eb - d->eb_data) * d->mtd->erasesize; +} + +static void mtdswap_eb_detach(struct mtdswap_dev *d, struct swap_eb *eb) +{ + unsigned int oldidx; + struct mtdswap_tree *tp; + + if (eb->root) { + tp = container_of(eb->root, struct mtdswap_tree, root); + oldidx = tp - &d->trees[0]; + + d->trees[oldidx].count--; + rb_erase(&eb->rb, eb->root); + } +} + +static void __mtdswap_rb_add(struct rb_root *root, struct swap_eb *eb) +{ + struct rb_node **p, *parent = NULL; + struct swap_eb *cur; + + p = &root->rb_node; + while (*p) { + parent = *p; + cur = rb_entry(parent, struct swap_eb, rb); + if (eb->erase_count > cur->erase_count) + p = &(*p)->rb_right; + else + p = &(*p)->rb_left; + } + + rb_link_node(&eb->rb, parent, p); + rb_insert_color(&eb->rb, root); +} + +static void mtdswap_rb_add(struct mtdswap_dev *d, struct swap_eb *eb, int idx) +{ + struct rb_root *root; + + if (eb->root == &d->trees[idx].root) + return; + + mtdswap_eb_detach(d, eb); + root = &d->trees[idx].root; + __mtdswap_rb_add(root, eb); + eb->root = root; + d->trees[idx].count++; +} + +static struct rb_node *mtdswap_rb_index(struct rb_root *root, unsigned int idx) +{ + struct rb_node *p; + unsigned int i; + + p = rb_first(root); + i = 0; + while (i < idx && p) { + p = rb_next(p); + i++; + } + + return p; +} + +static int mtdswap_handle_badblock(struct mtdswap_dev *d, struct swap_eb *eb) +{ + int ret; + loff_t offset; + + d->spare_eblks--; + eb->flags |= EBLOCK_BAD; + mtdswap_eb_detach(d, eb); + eb->root = NULL; + + /* badblocks not supported */ + if (!mtd_can_have_bb(d->mtd)) + return 1; + + offset = mtdswap_eb_offset(d, eb); + dev_warn(d->dev, "Marking bad block at %08llx\n", offset); + ret = mtd_block_markbad(d->mtd, offset); + + if (ret) { + dev_warn(d->dev, "Mark block bad failed for block at %08llx " + "error %d\n", offset, ret); + return ret; + } + + return 1; + +} + +static int mtdswap_handle_write_error(struct mtdswap_dev *d, struct swap_eb *eb) +{ + unsigned int marked = eb->flags & EBLOCK_FAILED; + struct swap_eb *curr_write = d->curr_write; + + eb->flags |= EBLOCK_FAILED; + if (curr_write == eb) { + d->curr_write = NULL; + + if (!marked && d->curr_write_pos != 0) { + mtdswap_rb_add(d, eb, MTDSWAP_FAILING); + return 0; + } + } + + return mtdswap_handle_badblock(d, eb); +} + +static int mtdswap_read_oob(struct mtdswap_dev *d, loff_t from, + struct mtd_oob_ops *ops) +{ + int ret = mtd_read_oob(d->mtd, from, ops); + + if (mtd_is_bitflip(ret)) + return ret; + + if (ret) { + dev_warn(d->dev, "Read OOB failed %d for block at %08llx\n", + ret, from); + return ret; + } + + if (ops->oobretlen < ops->ooblen) { + dev_warn(d->dev, "Read OOB return short read (%zd bytes not " + "%zd) for block at %08llx\n", + ops->oobretlen, ops->ooblen, from); + return -EIO; + } + + return 0; +} + +static int mtdswap_read_markers(struct mtdswap_dev *d, struct swap_eb *eb) +{ + struct mtdswap_oobdata *data, *data2; + int ret; + loff_t offset; + struct mtd_oob_ops ops; + + offset = mtdswap_eb_offset(d, eb); + + /* Check first if the block is bad. */ + if (mtd_can_have_bb(d->mtd) && mtd_block_isbad(d->mtd, offset)) + return MTDSWAP_SCANNED_BAD; + + ops.ooblen = 2 * d->mtd->ecclayout->oobavail; + ops.oobbuf = d->oob_buf; + ops.ooboffs = 0; + ops.datbuf = NULL; + ops.mode = MTD_OPS_AUTO_OOB; + + ret = mtdswap_read_oob(d, offset, &ops); + + if (ret && !mtd_is_bitflip(ret)) + return ret; + + data = (struct mtdswap_oobdata *)d->oob_buf; + data2 = (struct mtdswap_oobdata *) + (d->oob_buf + d->mtd->ecclayout->oobavail); + + if (le16_to_cpu(data->magic) == MTDSWAP_MAGIC_CLEAN) { + eb->erase_count = le32_to_cpu(data->count); + if (mtd_is_bitflip(ret)) + ret = MTDSWAP_SCANNED_BITFLIP; + else { + if (le16_to_cpu(data2->magic) == MTDSWAP_MAGIC_DIRTY) + ret = MTDSWAP_SCANNED_DIRTY; + else + ret = MTDSWAP_SCANNED_CLEAN; + } + } else { + eb->flags |= EBLOCK_NOMAGIC; + ret = MTDSWAP_SCANNED_DIRTY; + } + + return ret; +} + +static int mtdswap_write_marker(struct mtdswap_dev *d, struct swap_eb *eb, + u16 marker) +{ + struct mtdswap_oobdata n; + int ret; + loff_t offset; + struct mtd_oob_ops ops; + + ops.ooboffs = 0; + ops.oobbuf = (uint8_t *)&n; + ops.mode = MTD_OPS_AUTO_OOB; + ops.datbuf = NULL; + + if (marker == MTDSWAP_TYPE_CLEAN) { + n.magic = cpu_to_le16(MTDSWAP_MAGIC_CLEAN); + n.count = cpu_to_le32(eb->erase_count); + ops.ooblen = MTDSWAP_OOBSIZE; + offset = mtdswap_eb_offset(d, eb); + } else { + n.magic = cpu_to_le16(MTDSWAP_MAGIC_DIRTY); + ops.ooblen = sizeof(n.magic); + offset = mtdswap_eb_offset(d, eb) + d->mtd->writesize; + } + + ret = mtd_write_oob(d->mtd, offset, &ops); + + if (ret) { + dev_warn(d->dev, "Write OOB failed for block at %08llx " + "error %d\n", offset, ret); + if (ret == -EIO || mtd_is_eccerr(ret)) + mtdswap_handle_write_error(d, eb); + return ret; + } + + if (ops.oobretlen != ops.ooblen) { + dev_warn(d->dev, "Short OOB write for block at %08llx: " + "%zd not %zd\n", + offset, ops.oobretlen, ops.ooblen); + return ret; + } + + return 0; +} + +/* + * Are there any erase blocks without MAGIC_CLEAN header, presumably + * because power was cut off after erase but before header write? We + * need to guestimate the erase count. + */ +static void mtdswap_check_counts(struct mtdswap_dev *d) +{ + struct rb_root hist_root = RB_ROOT; + struct rb_node *medrb; + struct swap_eb *eb; + unsigned int i, cnt, median; + + cnt = 0; + for (i = 0; i < d->eblks; i++) { + eb = d->eb_data + i; + + if (eb->flags & (EBLOCK_NOMAGIC | EBLOCK_BAD | EBLOCK_READERR)) + continue; + + __mtdswap_rb_add(&hist_root, eb); + cnt++; + } + + if (cnt == 0) + return; + + medrb = mtdswap_rb_index(&hist_root, cnt / 2); + median = rb_entry(medrb, struct swap_eb, rb)->erase_count; + + d->max_erase_count = MTDSWAP_ECNT_MAX(&hist_root); + + for (i = 0; i < d->eblks; i++) { + eb = d->eb_data + i; + + if (eb->flags & (EBLOCK_NOMAGIC | EBLOCK_READERR)) + eb->erase_count = median; + + if (eb->flags & (EBLOCK_NOMAGIC | EBLOCK_BAD | EBLOCK_READERR)) + continue; + + rb_erase(&eb->rb, &hist_root); + } +} + +static void mtdswap_scan_eblks(struct mtdswap_dev *d) +{ + int status; + unsigned int i, idx; + struct swap_eb *eb; + + for (i = 0; i < d->eblks; i++) { + eb = d->eb_data + i; + + status = mtdswap_read_markers(d, eb); + if (status < 0) + eb->flags |= EBLOCK_READERR; + else if (status == MTDSWAP_SCANNED_BAD) { + eb->flags |= EBLOCK_BAD; + continue; + } + + switch (status) { + case MTDSWAP_SCANNED_CLEAN: + idx = MTDSWAP_CLEAN; + break; + case MTDSWAP_SCANNED_DIRTY: + case MTDSWAP_SCANNED_BITFLIP: + idx = MTDSWAP_DIRTY; + break; + default: + idx = MTDSWAP_FAILING; + } + + eb->flags |= (idx << EBLOCK_IDX_SHIFT); + } + + mtdswap_check_counts(d); + + for (i = 0; i < d->eblks; i++) { + eb = d->eb_data + i; + + if (eb->flags & EBLOCK_BAD) + continue; + + idx = eb->flags >> EBLOCK_IDX_SHIFT; + mtdswap_rb_add(d, eb, idx); + } +} + +/* + * Place eblk into a tree corresponding to its number of active blocks + * it contains. + */ +static void mtdswap_store_eb(struct mtdswap_dev *d, struct swap_eb *eb) +{ + unsigned int weight = eb->active_count; + unsigned int maxweight = d->pages_per_eblk; + + if (eb == d->curr_write) + return; + + if (eb->flags & EBLOCK_BITFLIP) + mtdswap_rb_add(d, eb, MTDSWAP_BITFLIP); + else if (eb->flags & (EBLOCK_READERR | EBLOCK_FAILED)) + mtdswap_rb_add(d, eb, MTDSWAP_FAILING); + if (weight == maxweight) + mtdswap_rb_add(d, eb, MTDSWAP_USED); + else if (weight == 0) + mtdswap_rb_add(d, eb, MTDSWAP_DIRTY); + else if (weight > (maxweight/2)) + mtdswap_rb_add(d, eb, MTDSWAP_LOWFRAG); + else + mtdswap_rb_add(d, eb, MTDSWAP_HIFRAG); +} + + +static void mtdswap_erase_callback(struct erase_info *done) +{ + wait_queue_head_t *wait_q = (wait_queue_head_t *)done->priv; + wake_up(wait_q); +} + +static int mtdswap_erase_block(struct mtdswap_dev *d, struct swap_eb *eb) +{ + struct mtd_info *mtd = d->mtd; + struct erase_info erase; + wait_queue_head_t wq; + unsigned int retries = 0; + int ret; + + eb->erase_count++; + if (eb->erase_count > d->max_erase_count) + d->max_erase_count = eb->erase_count; + +retry: + init_waitqueue_head(&wq); + memset(&erase, 0, sizeof(struct erase_info)); + + erase.mtd = mtd; + erase.callback = mtdswap_erase_callback; + erase.addr = mtdswap_eb_offset(d, eb); + erase.len = mtd->erasesize; + erase.priv = (u_long)&wq; + + ret = mtd_erase(mtd, &erase); + if (ret) { + if (retries++ < MTDSWAP_ERASE_RETRIES) { + dev_warn(d->dev, + "erase of erase block %#llx on %s failed", + erase.addr, mtd->name); + yield(); + goto retry; + } + + dev_err(d->dev, "Cannot erase erase block %#llx on %s\n", + erase.addr, mtd->name); + + mtdswap_handle_badblock(d, eb); + return -EIO; + } + + ret = wait_event_interruptible(wq, erase.state == MTD_ERASE_DONE || + erase.state == MTD_ERASE_FAILED); + if (ret) { + dev_err(d->dev, "Interrupted erase block %#llx erassure on %s", + erase.addr, mtd->name); + return -EINTR; + } + + if (erase.state == MTD_ERASE_FAILED) { + if (retries++ < MTDSWAP_ERASE_RETRIES) { + dev_warn(d->dev, + "erase of erase block %#llx on %s failed", + erase.addr, mtd->name); + yield(); + goto retry; + } + + mtdswap_handle_badblock(d, eb); + return -EIO; + } + + return 0; +} + +static int mtdswap_map_free_block(struct mtdswap_dev *d, unsigned int page, + unsigned int *block) +{ + int ret; + struct swap_eb *old_eb = d->curr_write; + struct rb_root *clean_root; + struct swap_eb *eb; + + if (old_eb == NULL || d->curr_write_pos >= d->pages_per_eblk) { + do { + if (TREE_EMPTY(d, CLEAN)) + return -ENOSPC; + + clean_root = TREE_ROOT(d, CLEAN); + eb = rb_entry(rb_first(clean_root), struct swap_eb, rb); + rb_erase(&eb->rb, clean_root); + eb->root = NULL; + TREE_COUNT(d, CLEAN)--; + + ret = mtdswap_write_marker(d, eb, MTDSWAP_TYPE_DIRTY); + } while (ret == -EIO || mtd_is_eccerr(ret)); + + if (ret) + return ret; + + d->curr_write_pos = 0; + d->curr_write = eb; + if (old_eb) + mtdswap_store_eb(d, old_eb); + } + + *block = (d->curr_write - d->eb_data) * d->pages_per_eblk + + d->curr_write_pos; + + d->curr_write->active_count++; + d->revmap[*block] = page; + d->curr_write_pos++; + + return 0; +} + +static unsigned int mtdswap_free_page_cnt(struct mtdswap_dev *d) +{ + return TREE_COUNT(d, CLEAN) * d->pages_per_eblk + + d->pages_per_eblk - d->curr_write_pos; +} + +static unsigned int mtdswap_enough_free_pages(struct mtdswap_dev *d) +{ + return mtdswap_free_page_cnt(d) > d->pages_per_eblk; +} + +static int mtdswap_write_block(struct mtdswap_dev *d, char *buf, + unsigned int page, unsigned int *bp, int gc_context) +{ + struct mtd_info *mtd = d->mtd; + struct swap_eb *eb; + size_t retlen; + loff_t writepos; + int ret; + +retry: + if (!gc_context) + while (!mtdswap_enough_free_pages(d)) + if (mtdswap_gc(d, 0) > 0) + return -ENOSPC; + + ret = mtdswap_map_free_block(d, page, bp); + eb = d->eb_data + (*bp / d->pages_per_eblk); + + if (ret == -EIO || mtd_is_eccerr(ret)) { + d->curr_write = NULL; + eb->active_count--; + d->revmap[*bp] = PAGE_UNDEF; + goto retry; + } + + if (ret < 0) + return ret; + + writepos = (loff_t)*bp << PAGE_SHIFT; + ret = mtd_write(mtd, writepos, PAGE_SIZE, &retlen, buf); + if (ret == -EIO || mtd_is_eccerr(ret)) { + d->curr_write_pos--; + eb->active_count--; + d->revmap[*bp] = PAGE_UNDEF; + mtdswap_handle_write_error(d, eb); + goto retry; + } + + if (ret < 0) { + dev_err(d->dev, "Write to MTD device failed: %d (%zd written)", + ret, retlen); + goto err; + } + + if (retlen != PAGE_SIZE) { + dev_err(d->dev, "Short write to MTD device: %zd written", + retlen); + ret = -EIO; + goto err; + } + + return ret; + +err: + d->curr_write_pos--; + eb->active_count--; + d->revmap[*bp] = PAGE_UNDEF; + + return ret; +} + +static int mtdswap_move_block(struct mtdswap_dev *d, unsigned int oldblock, + unsigned int *newblock) +{ + struct mtd_info *mtd = d->mtd; + struct swap_eb *eb, *oldeb; + int ret; + size_t retlen; + unsigned int page, retries; + loff_t readpos; + + page = d->revmap[oldblock]; + readpos = (loff_t) oldblock << PAGE_SHIFT; + retries = 0; + +retry: + ret = mtd_read(mtd, readpos, PAGE_SIZE, &retlen, d->page_buf); + + if (ret < 0 && !mtd_is_bitflip(ret)) { + oldeb = d->eb_data + oldblock / d->pages_per_eblk; + oldeb->flags |= EBLOCK_READERR; + + dev_err(d->dev, "Read Error: %d (block %u)\n", ret, + oldblock); + retries++; + if (retries < MTDSWAP_IO_RETRIES) + goto retry; + + goto read_error; + } + + if (retlen != PAGE_SIZE) { + dev_err(d->dev, "Short read: %zd (block %u)\n", retlen, + oldblock); + ret = -EIO; + goto read_error; + } + + ret = mtdswap_write_block(d, d->page_buf, page, newblock, 1); + if (ret < 0) { + d->page_data[page] = BLOCK_ERROR; + dev_err(d->dev, "Write error: %d\n", ret); + return ret; + } + + eb = d->eb_data + *newblock / d->pages_per_eblk; + d->page_data[page] = *newblock; + d->revmap[oldblock] = PAGE_UNDEF; + eb = d->eb_data + oldblock / d->pages_per_eblk; + eb->active_count--; + + return 0; + +read_error: + d->page_data[page] = BLOCK_ERROR; + d->revmap[oldblock] = PAGE_UNDEF; + return ret; +} + +static int mtdswap_gc_eblock(struct mtdswap_dev *d, struct swap_eb *eb) +{ + unsigned int i, block, eblk_base, newblock; + int ret, errcode; + + errcode = 0; + eblk_base = (eb - d->eb_data) * d->pages_per_eblk; + + for (i = 0; i < d->pages_per_eblk; i++) { + if (d->spare_eblks < MIN_SPARE_EBLOCKS) + return -ENOSPC; + + block = eblk_base + i; + if (d->revmap[block] == PAGE_UNDEF) + continue; + + ret = mtdswap_move_block(d, block, &newblock); + if (ret < 0 && !errcode) + errcode = ret; + } + + return errcode; +} + +static int __mtdswap_choose_gc_tree(struct mtdswap_dev *d) +{ + int idx, stopat; + + if (TREE_COUNT(d, CLEAN) < LOW_FRAG_GC_TRESHOLD) + stopat = MTDSWAP_LOWFRAG; + else + stopat = MTDSWAP_HIFRAG; + + for (idx = MTDSWAP_BITFLIP; idx >= stopat; idx--) + if (d->trees[idx].root.rb_node != NULL) + return idx; + + return -1; +} + +static int mtdswap_wlfreq(unsigned int maxdiff) +{ + unsigned int h, x, y, dist, base; + + /* + * Calculate linear ramp down from f1 to f2 when maxdiff goes from + * MAX_ERASE_DIFF to MAX_ERASE_DIFF + COLLECT_NONDIRTY_BASE. Similar + * to triangle with height f1 - f1 and width COLLECT_NONDIRTY_BASE. + */ + + dist = maxdiff - MAX_ERASE_DIFF; + if (dist > COLLECT_NONDIRTY_BASE) + dist = COLLECT_NONDIRTY_BASE; + + /* + * Modelling the slop as right angular triangle with base + * COLLECT_NONDIRTY_BASE and height freq1 - freq2. The ratio y/x is + * equal to the ratio h/base. + */ + h = COLLECT_NONDIRTY_FREQ1 - COLLECT_NONDIRTY_FREQ2; + base = COLLECT_NONDIRTY_BASE; + + x = dist - base; + y = (x * h + base / 2) / base; + + return COLLECT_NONDIRTY_FREQ2 + y; +} + +static int mtdswap_choose_wl_tree(struct mtdswap_dev *d) +{ + static unsigned int pick_cnt; + unsigned int i, idx = -1, wear, max; + struct rb_root *root; + + max = 0; + for (i = 0; i <= MTDSWAP_DIRTY; i++) { + root = &d->trees[i].root; + if (root->rb_node == NULL) + continue; + + wear = d->max_erase_count - MTDSWAP_ECNT_MIN(root); + if (wear > max) { + max = wear; + idx = i; + } + } + + if (max > MAX_ERASE_DIFF && pick_cnt >= mtdswap_wlfreq(max) - 1) { + pick_cnt = 0; + return idx; + } + + pick_cnt++; + return -1; +} + +static int mtdswap_choose_gc_tree(struct mtdswap_dev *d, + unsigned int background) +{ + int idx; + + if (TREE_NONEMPTY(d, FAILING) && + (background || (TREE_EMPTY(d, CLEAN) && TREE_EMPTY(d, DIRTY)))) + return MTDSWAP_FAILING; + + idx = mtdswap_choose_wl_tree(d); + if (idx >= MTDSWAP_CLEAN) + return idx; + + return __mtdswap_choose_gc_tree(d); +} + +static struct swap_eb *mtdswap_pick_gc_eblk(struct mtdswap_dev *d, + unsigned int background) +{ + struct rb_root *rp = NULL; + struct swap_eb *eb = NULL; + int idx; + + if (background && TREE_COUNT(d, CLEAN) > CLEAN_BLOCK_THRESHOLD && + TREE_EMPTY(d, DIRTY) && TREE_EMPTY(d, FAILING)) + return NULL; + + idx = mtdswap_choose_gc_tree(d, background); + if (idx < 0) + return NULL; + + rp = &d->trees[idx].root; + eb = rb_entry(rb_first(rp), struct swap_eb, rb); + + rb_erase(&eb->rb, rp); + eb->root = NULL; + d->trees[idx].count--; + return eb; +} + +static unsigned int mtdswap_test_patt(unsigned int i) +{ + return i % 2 ? 0x55555555 : 0xAAAAAAAA; +} + +static unsigned int mtdswap_eblk_passes(struct mtdswap_dev *d, + struct swap_eb *eb) +{ + struct mtd_info *mtd = d->mtd; + unsigned int test, i, j, patt, mtd_pages; + loff_t base, pos; + unsigned int *p1 = (unsigned int *)d->page_buf; + unsigned char *p2 = (unsigned char *)d->oob_buf; + struct mtd_oob_ops ops; + int ret; + + ops.mode = MTD_OPS_AUTO_OOB; + ops.len = mtd->writesize; + ops.ooblen = mtd->ecclayout->oobavail; + ops.ooboffs = 0; + ops.datbuf = d->page_buf; + ops.oobbuf = d->oob_buf; + base = mtdswap_eb_offset(d, eb); + mtd_pages = d->pages_per_eblk * PAGE_SIZE / mtd->writesize; + + for (test = 0; test < 2; test++) { + pos = base; + for (i = 0; i < mtd_pages; i++) { + patt = mtdswap_test_patt(test + i); + memset(d->page_buf, patt, mtd->writesize); + memset(d->oob_buf, patt, mtd->ecclayout->oobavail); + ret = mtd_write_oob(mtd, pos, &ops); + if (ret) + goto error; + + pos += mtd->writesize; + } + + pos = base; + for (i = 0; i < mtd_pages; i++) { + ret = mtd_read_oob(mtd, pos, &ops); + if (ret) + goto error; + + patt = mtdswap_test_patt(test + i); + for (j = 0; j < mtd->writesize/sizeof(int); j++) + if (p1[j] != patt) + goto error; + + for (j = 0; j < mtd->ecclayout->oobavail; j++) + if (p2[j] != (unsigned char)patt) + goto error; + + pos += mtd->writesize; + } + + ret = mtdswap_erase_block(d, eb); + if (ret) + goto error; + } + + eb->flags &= ~EBLOCK_READERR; + return 1; + +error: + mtdswap_handle_badblock(d, eb); + return 0; +} + +static int mtdswap_gc(struct mtdswap_dev *d, unsigned int background) +{ + struct swap_eb *eb; + int ret; + + if (d->spare_eblks < MIN_SPARE_EBLOCKS) + return 1; + + eb = mtdswap_pick_gc_eblk(d, background); + if (!eb) + return 1; + + ret = mtdswap_gc_eblock(d, eb); + if (ret == -ENOSPC) + return 1; + + if (eb->flags & EBLOCK_FAILED) { + mtdswap_handle_badblock(d, eb); + return 0; + } + + eb->flags &= ~EBLOCK_BITFLIP; + ret = mtdswap_erase_block(d, eb); + if ((eb->flags & EBLOCK_READERR) && + (ret || !mtdswap_eblk_passes(d, eb))) + return 0; + + if (ret == 0) + ret = mtdswap_write_marker(d, eb, MTDSWAP_TYPE_CLEAN); + + if (ret == 0) + mtdswap_rb_add(d, eb, MTDSWAP_CLEAN); + else if (ret != -EIO && !mtd_is_eccerr(ret)) + mtdswap_rb_add(d, eb, MTDSWAP_DIRTY); + + return 0; +} + +static void mtdswap_background(struct mtd_blktrans_dev *dev) +{ + struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev); + int ret; + + while (1) { + ret = mtdswap_gc(d, 1); + if (ret || mtd_blktrans_cease_background(dev)) + return; + } +} + +static void mtdswap_cleanup(struct mtdswap_dev *d) +{ + vfree(d->eb_data); + vfree(d->revmap); + vfree(d->page_data); + kfree(d->oob_buf); + kfree(d->page_buf); +} + +static int mtdswap_flush(struct mtd_blktrans_dev *dev) +{ + struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev); + + mtd_sync(d->mtd); + return 0; +} + +static unsigned int mtdswap_badblocks(struct mtd_info *mtd, uint64_t size) +{ + loff_t offset; + unsigned int badcnt; + + badcnt = 0; + + if (mtd_can_have_bb(mtd)) + for (offset = 0; offset < size; offset += mtd->erasesize) + if (mtd_block_isbad(mtd, offset)) + badcnt++; + + return badcnt; +} + +static int mtdswap_writesect(struct mtd_blktrans_dev *dev, + unsigned long page, char *buf) +{ + struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev); + unsigned int newblock, mapped; + struct swap_eb *eb; + int ret; + + d->sect_write_count++; + + if (d->spare_eblks < MIN_SPARE_EBLOCKS) + return -ENOSPC; + + if (header) { + /* Ignore writes to the header page */ + if (unlikely(page == 0)) + return 0; + + page--; + } + + mapped = d->page_data[page]; + if (mapped <= BLOCK_MAX) { + eb = d->eb_data + (mapped / d->pages_per_eblk); + eb->active_count--; + mtdswap_store_eb(d, eb); + d->page_data[page] = BLOCK_UNDEF; + d->revmap[mapped] = PAGE_UNDEF; + } + + ret = mtdswap_write_block(d, buf, page, &newblock, 0); + d->mtd_write_count++; + + if (ret < 0) + return ret; + + eb = d->eb_data + (newblock / d->pages_per_eblk); + d->page_data[page] = newblock; + + return 0; +} + +/* Provide a dummy swap header for the kernel */ +static int mtdswap_auto_header(struct mtdswap_dev *d, char *buf) +{ + union swap_header *hd = (union swap_header *)(buf); + + memset(buf, 0, PAGE_SIZE - 10); + + hd->info.version = 1; + hd->info.last_page = d->mbd_dev->size - 1; + hd->info.nr_badpages = 0; + + memcpy(buf + PAGE_SIZE - 10, "SWAPSPACE2", 10); + + return 0; +} + +static int mtdswap_readsect(struct mtd_blktrans_dev *dev, + unsigned long page, char *buf) +{ + struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev); + struct mtd_info *mtd = d->mtd; + unsigned int realblock, retries; + loff_t readpos; + struct swap_eb *eb; + size_t retlen; + int ret; + + d->sect_read_count++; + + if (header) { + if (unlikely(page == 0)) + return mtdswap_auto_header(d, buf); + + page--; + } + + realblock = d->page_data[page]; + if (realblock > BLOCK_MAX) { + memset(buf, 0x0, PAGE_SIZE); + if (realblock == BLOCK_UNDEF) + return 0; + else + return -EIO; + } + + eb = d->eb_data + (realblock / d->pages_per_eblk); + BUG_ON(d->revmap[realblock] == PAGE_UNDEF); + + readpos = (loff_t)realblock << PAGE_SHIFT; + retries = 0; + +retry: + ret = mtd_read(mtd, readpos, PAGE_SIZE, &retlen, buf); + + d->mtd_read_count++; + if (mtd_is_bitflip(ret)) { + eb->flags |= EBLOCK_BITFLIP; + mtdswap_rb_add(d, eb, MTDSWAP_BITFLIP); + ret = 0; + } + + if (ret < 0) { + dev_err(d->dev, "Read error %d\n", ret); + eb->flags |= EBLOCK_READERR; + mtdswap_rb_add(d, eb, MTDSWAP_FAILING); + retries++; + if (retries < MTDSWAP_IO_RETRIES) + goto retry; + + return ret; + } + + if (retlen != PAGE_SIZE) { + dev_err(d->dev, "Short read %zd\n", retlen); + return -EIO; + } + + return 0; +} + +static int mtdswap_discard(struct mtd_blktrans_dev *dev, unsigned long first, + unsigned nr_pages) +{ + struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev); + unsigned long page; + struct swap_eb *eb; + unsigned int mapped; + + d->discard_count++; + + for (page = first; page < first + nr_pages; page++) { + mapped = d->page_data[page]; + if (mapped <= BLOCK_MAX) { + eb = d->eb_data + (mapped / d->pages_per_eblk); + eb->active_count--; + mtdswap_store_eb(d, eb); + d->page_data[page] = BLOCK_UNDEF; + d->revmap[mapped] = PAGE_UNDEF; + d->discard_page_count++; + } else if (mapped == BLOCK_ERROR) { + d->page_data[page] = BLOCK_UNDEF; + d->discard_page_count++; + } + } + + return 0; +} + +static int mtdswap_show(struct seq_file *s, void *data) +{ + struct mtdswap_dev *d = (struct mtdswap_dev *) s->private; + unsigned long sum; + unsigned int count[MTDSWAP_TREE_CNT]; + unsigned int min[MTDSWAP_TREE_CNT]; + unsigned int max[MTDSWAP_TREE_CNT]; + unsigned int i, cw = 0, cwp = 0, cwecount = 0, bb_cnt, mapped, pages; + uint64_t use_size; + char *name[] = {"clean", "used", "low", "high", "dirty", "bitflip", + "failing"}; + + mutex_lock(&d->mbd_dev->lock); + + for (i = 0; i < MTDSWAP_TREE_CNT; i++) { + struct rb_root *root = &d->trees[i].root; + + if (root->rb_node) { + count[i] = d->trees[i].count; + min[i] = rb_entry(rb_first(root), struct swap_eb, + rb)->erase_count; + max[i] = rb_entry(rb_last(root), struct swap_eb, + rb)->erase_count; + } else + count[i] = 0; + } + + if (d->curr_write) { + cw = 1; + cwp = d->curr_write_pos; + cwecount = d->curr_write->erase_count; + } + + sum = 0; + for (i = 0; i < d->eblks; i++) + sum += d->eb_data[i].erase_count; + + use_size = (uint64_t)d->eblks * d->mtd->erasesize; + bb_cnt = mtdswap_badblocks(d->mtd, use_size); + + mapped = 0; + pages = d->mbd_dev->size; + for (i = 0; i < pages; i++) + if (d->page_data[i] != BLOCK_UNDEF) + mapped++; + + mutex_unlock(&d->mbd_dev->lock); + + for (i = 0; i < MTDSWAP_TREE_CNT; i++) { + if (!count[i]) + continue; + + if (min[i] != max[i]) + seq_printf(s, "%s:\t%5d erase blocks, erased min %d, " + "max %d times\n", + name[i], count[i], min[i], max[i]); + else + seq_printf(s, "%s:\t%5d erase blocks, all erased %d " + "times\n", name[i], count[i], min[i]); + } + + if (bb_cnt) + seq_printf(s, "bad:\t%5u erase blocks\n", bb_cnt); + + if (cw) + seq_printf(s, "current erase block: %u pages used, %u free, " + "erased %u times\n", + cwp, d->pages_per_eblk - cwp, cwecount); + + seq_printf(s, "total erasures: %lu\n", sum); + + seq_printf(s, "\n"); + + seq_printf(s, "mtdswap_readsect count: %llu\n", d->sect_read_count); + seq_printf(s, "mtdswap_writesect count: %llu\n", d->sect_write_count); + seq_printf(s, "mtdswap_discard count: %llu\n", d->discard_count); + seq_printf(s, "mtd read count: %llu\n", d->mtd_read_count); + seq_printf(s, "mtd write count: %llu\n", d->mtd_write_count); + seq_printf(s, "discarded pages count: %llu\n", d->discard_page_count); + + seq_printf(s, "\n"); + seq_printf(s, "total pages: %u\n", pages); + seq_printf(s, "pages mapped: %u\n", mapped); + + return 0; +} + +static int mtdswap_open(struct inode *inode, struct file *file) +{ + return single_open(file, mtdswap_show, inode->i_private); +} + +static const struct file_operations mtdswap_fops = { + .open = mtdswap_open, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, +}; + +static int mtdswap_add_debugfs(struct mtdswap_dev *d) +{ + struct gendisk *gd = d->mbd_dev->disk; + struct device *dev = disk_to_dev(gd); + + struct dentry *root; + struct dentry *dent; + + root = debugfs_create_dir(gd->disk_name, NULL); + if (IS_ERR(root)) + return 0; + + if (!root) { + dev_err(dev, "failed to initialize debugfs\n"); + return -1; + } + + d->debugfs_root = root; + + dent = debugfs_create_file("stats", S_IRUSR, root, d, + &mtdswap_fops); + if (!dent) { + dev_err(d->dev, "debugfs_create_file failed\n"); + debugfs_remove_recursive(root); + d->debugfs_root = NULL; + return -1; + } + + return 0; +} + +static int mtdswap_init(struct mtdswap_dev *d, unsigned int eblocks, + unsigned int spare_cnt) +{ + struct mtd_info *mtd = d->mbd_dev->mtd; + unsigned int i, eblk_bytes, pages, blocks; + int ret = -ENOMEM; + + d->mtd = mtd; + d->eblks = eblocks; + d->spare_eblks = spare_cnt; + d->pages_per_eblk = mtd->erasesize >> PAGE_SHIFT; + + pages = d->mbd_dev->size; + blocks = eblocks * d->pages_per_eblk; + + for (i = 0; i < MTDSWAP_TREE_CNT; i++) + d->trees[i].root = RB_ROOT; + + d->page_data = vmalloc(sizeof(int)*pages); + if (!d->page_data) + goto page_data_fail; + + d->revmap = vmalloc(sizeof(int)*blocks); + if (!d->revmap) + goto revmap_fail; + + eblk_bytes = sizeof(struct swap_eb)*d->eblks; + d->eb_data = vzalloc(eblk_bytes); + if (!d->eb_data) + goto eb_data_fail; + + for (i = 0; i < pages; i++) + d->page_data[i] = BLOCK_UNDEF; + + for (i = 0; i < blocks; i++) + d->revmap[i] = PAGE_UNDEF; + + d->page_buf = kmalloc(PAGE_SIZE, GFP_KERNEL); + if (!d->page_buf) + goto page_buf_fail; + + d->oob_buf = kmalloc(2 * mtd->ecclayout->oobavail, GFP_KERNEL); + if (!d->oob_buf) + goto oob_buf_fail; + + mtdswap_scan_eblks(d); + + return 0; + +oob_buf_fail: + kfree(d->page_buf); +page_buf_fail: + vfree(d->eb_data); +eb_data_fail: + vfree(d->revmap); +revmap_fail: + vfree(d->page_data); +page_data_fail: + printk(KERN_ERR "%s: init failed (%d)\n", MTDSWAP_PREFIX, ret); + return ret; +} + +static void mtdswap_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) +{ + struct mtdswap_dev *d; + struct mtd_blktrans_dev *mbd_dev; + char *parts; + char *this_opt; + unsigned long part; + unsigned int eblocks, eavailable, bad_blocks, spare_cnt; + uint64_t swap_size, use_size, size_limit; + struct nand_ecclayout *oinfo; + int ret; + + parts = &partitions[0]; + if (!*parts) + return; + + while ((this_opt = strsep(&parts, ",")) != NULL) { + if (kstrtoul(this_opt, 0, &part) < 0) + return; + + if (mtd->index == part) + break; + } + + if (mtd->index != part) + return; + + if (mtd->erasesize < PAGE_SIZE || mtd->erasesize % PAGE_SIZE) { + printk(KERN_ERR "%s: Erase size %u not multiple of PAGE_SIZE " + "%lu\n", MTDSWAP_PREFIX, mtd->erasesize, PAGE_SIZE); + return; + } + + if (PAGE_SIZE % mtd->writesize || mtd->writesize > PAGE_SIZE) { + printk(KERN_ERR "%s: PAGE_SIZE %lu not multiple of write size" + " %u\n", MTDSWAP_PREFIX, PAGE_SIZE, mtd->writesize); + return; + } + + oinfo = mtd->ecclayout; + if (!oinfo) { + printk(KERN_ERR "%s: mtd%d does not have OOB\n", + MTDSWAP_PREFIX, mtd->index); + return; + } + + if (!mtd->oobsize || oinfo->oobavail < MTDSWAP_OOBSIZE) { + printk(KERN_ERR "%s: Not enough free bytes in OOB, " + "%d available, %zu needed.\n", + MTDSWAP_PREFIX, oinfo->oobavail, MTDSWAP_OOBSIZE); + return; + } + + if (spare_eblocks > 100) + spare_eblocks = 100; + + use_size = mtd->size; + size_limit = (uint64_t) BLOCK_MAX * PAGE_SIZE; + + if (mtd->size > size_limit) { + printk(KERN_WARNING "%s: Device too large. Limiting size to " + "%llu bytes\n", MTDSWAP_PREFIX, size_limit); + use_size = size_limit; + } + + eblocks = mtd_div_by_eb(use_size, mtd); + use_size = eblocks * mtd->erasesize; + bad_blocks = mtdswap_badblocks(mtd, use_size); + eavailable = eblocks - bad_blocks; + + if (eavailable < MIN_ERASE_BLOCKS) { + printk(KERN_ERR "%s: Not enough erase blocks. %u available, " + "%d needed\n", MTDSWAP_PREFIX, eavailable, + MIN_ERASE_BLOCKS); + return; + } + + spare_cnt = div_u64((uint64_t)eavailable * spare_eblocks, 100); + + if (spare_cnt < MIN_SPARE_EBLOCKS) + spare_cnt = MIN_SPARE_EBLOCKS; + + if (spare_cnt > eavailable - 1) + spare_cnt = eavailable - 1; + + swap_size = (uint64_t)(eavailable - spare_cnt) * mtd->erasesize + + (header ? PAGE_SIZE : 0); + + printk(KERN_INFO "%s: Enabling MTD swap on device %lu, size %llu KB, " + "%u spare, %u bad blocks\n", + MTDSWAP_PREFIX, part, swap_size / 1024, spare_cnt, bad_blocks); + + d = kzalloc(sizeof(struct mtdswap_dev), GFP_KERNEL); + if (!d) + return; + + mbd_dev = kzalloc(sizeof(struct mtd_blktrans_dev), GFP_KERNEL); + if (!mbd_dev) { + kfree(d); + return; + } + + d->mbd_dev = mbd_dev; + mbd_dev->priv = d; + + mbd_dev->mtd = mtd; + mbd_dev->devnum = mtd->index; + mbd_dev->size = swap_size >> PAGE_SHIFT; + mbd_dev->tr = tr; + + if (!(mtd->flags & MTD_WRITEABLE)) + mbd_dev->readonly = 1; + + if (mtdswap_init(d, eblocks, spare_cnt) < 0) + goto init_failed; + + if (add_mtd_blktrans_dev(mbd_dev) < 0) + goto cleanup; + + d->dev = disk_to_dev(mbd_dev->disk); + + ret = mtdswap_add_debugfs(d); + if (ret < 0) + goto debugfs_failed; + + return; + +debugfs_failed: + del_mtd_blktrans_dev(mbd_dev); + +cleanup: + mtdswap_cleanup(d); + +init_failed: + kfree(mbd_dev); + kfree(d); +} + +static void mtdswap_remove_dev(struct mtd_blktrans_dev *dev) +{ + struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev); + + debugfs_remove_recursive(d->debugfs_root); + del_mtd_blktrans_dev(dev); + mtdswap_cleanup(d); + kfree(d); +} + +static struct mtd_blktrans_ops mtdswap_ops = { + .name = "mtdswap", + .major = 0, + .part_bits = 0, + .blksize = PAGE_SIZE, + .flush = mtdswap_flush, + .readsect = mtdswap_readsect, + .writesect = mtdswap_writesect, + .discard = mtdswap_discard, + .background = mtdswap_background, + .add_mtd = mtdswap_add_mtd, + .remove_dev = mtdswap_remove_dev, + .owner = THIS_MODULE, +}; + +static int __init mtdswap_modinit(void) +{ + return register_mtd_blktrans(&mtdswap_ops); +} + +static void __exit mtdswap_modexit(void) +{ + deregister_mtd_blktrans(&mtdswap_ops); +} + +module_init(mtdswap_modinit); +module_exit(mtdswap_modexit); + + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Jarkko Lavinen <jarkko.lavinen@nokia.com>"); +MODULE_DESCRIPTION("Block device access to an MTD suitable for using as " + "swap space"); diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index ffc3720929f..f1cf503517f 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -22,45 +22,51 @@ menuconfig MTD_NAND if MTD_NAND -config MTD_NAND_VERIFY_WRITE - bool "Verify NAND page writes" - help - This adds an extra check when data is written to the flash. The - NAND flash device internally checks only bits transitioning - from 1 to 0. There is a rare possibility that even though the - device thinks the write was successful, a bit could have been - flipped accidentally due to device wear or something else. - -config MTD_SM_COMMON +config MTD_NAND_BCH tristate - default n + select BCH + depends on MTD_NAND_ECC_BCH + default MTD_NAND -config MTD_NAND_MUSEUM_IDS - bool "Enable chip ids for obsolete ancient NAND devices" - depends on MTD_NAND +config MTD_NAND_ECC_BCH + bool "Support software BCH ECC" default n help - Enable this option only when your board has first generation - NAND chips (page size 256 byte, erase size 4-8KiB). The IDs - of these chips were reused by later, larger chips. + This enables support for software BCH error correction. Binary BCH + codes are more powerful and cpu intensive than traditional Hamming + ECC codes. They are used with NAND devices requiring more than 1 bit + of error correction. -config MTD_NAND_AUTCPU12 - tristate "SmartMediaCard on autronix autcpu12 board" - depends on ARCH_AUTCPU12 - help - This enables the driver for the autronix autcpu12 board to - access the SmartMediaCard. +config MTD_SM_COMMON + tristate + default n config MTD_NAND_DENALI - depends on PCI + tristate "Support Denali NAND controller" + depends on HAS_DMA + help + Enable support for the Denali NAND controller. This should be + combined with either the PCI or platform drivers to provide device + registration. + +config MTD_NAND_DENALI_PCI tristate "Support Denali NAND controller on Intel Moorestown" + depends on PCI && MTD_NAND_DENALI help Enable the driver for NAND flash on Intel Moorestown, using the Denali NAND controller core. - + +config MTD_NAND_DENALI_DT + tristate "Support Denali NAND controller as a DT device" + depends on HAVE_CLK && MTD_NAND_DENALI + help + Enable the driver for NAND flash on platforms using a Denali NAND + controller as a DT device. + config MTD_NAND_DENALI_SCRATCH_REG_ADDR hex "Denali NAND size scratch register address" default "0xFF108018" + depends on MTD_NAND_DENALI_PCI help Some platforms place the NAND chip size in a scratch register because (some versions of) the driver aren't able to automatically @@ -68,59 +74,37 @@ config MTD_NAND_DENALI_SCRATCH_REG_ADDR scratch register here to enable this feature. On Intel Moorestown boards, the scratch register is at 0xFF108018. -config MTD_NAND_EDB7312 - tristate "Support for Cirrus Logic EBD7312 evaluation board" - depends on ARCH_EDB7312 - help - This enables the driver for the Cirrus Logic EBD7312 evaluation - board to access the onboard NAND Flash. - -config MTD_NAND_H1900 - tristate "iPAQ H1900 flash" - depends on ARCH_PXA && MTD_PARTITIONS - help - This enables the driver for the iPAQ h1900 flash. - config MTD_NAND_GPIO tristate "GPIO NAND Flash driver" - depends on GENERIC_GPIO && ARM + depends on GPIOLIB help This enables a GPIO based NAND flash driver. -config MTD_NAND_SPIA - tristate "NAND Flash device on SPIA board" - depends on ARCH_P720T - help - If you had to ask, you don't have one. Say 'N'. - config MTD_NAND_AMS_DELTA tristate "NAND Flash device on Amstrad E3" depends on MACH_AMS_DELTA + default y help Support for NAND flash on Amstrad E3 (Delta). config MTD_NAND_OMAP2 - tristate "NAND Flash device on OMAP2 and OMAP3" - depends on ARM && MTD_NAND && (ARCH_OMAP2 || ARCH_OMAP3) - help - Support for NAND flash on Texas Instruments OMAP2 and OMAP3 platforms. - -config MTD_NAND_OMAP_PREFETCH - bool "GPMC prefetch support for NAND Flash device" - depends on MTD_NAND && MTD_NAND_OMAP2 - default y + tristate "NAND Flash device on OMAP2, OMAP3 and OMAP4" + depends on ARCH_OMAP2PLUS help - The NAND device can be accessed for Read/Write using GPMC PREFETCH engine - to improve the performance. + Support for NAND flash on Texas Instruments OMAP2, OMAP3 and OMAP4 + platforms. -config MTD_NAND_OMAP_PREFETCH_DMA - depends on MTD_NAND_OMAP_PREFETCH - bool "DMA mode" +config MTD_NAND_OMAP_BCH + depends on MTD_NAND_OMAP2 + tristate "Support hardware based BCH error correction" default n + select BCH help - The GPMC PREFETCH engine can be configured eigther in MPU interrupt mode - or in DMA interrupt mode. - Say y for DMA mode or MPU mode will be used + This config enables the ELM hardware engine, which can be used to + locate and correct errors when using BCH ECC scheme. This offloads + the cpu from doing ECC error searching and correction. However some + legacy OMAP families like OMAP2xxx, OMAP3xxx do not have ELM engine + so they should not enable this config symbol. config MTD_NAND_IDS tristate @@ -139,14 +123,14 @@ config MTD_NAND_RICOH config MTD_NAND_AU1550 tristate "Au1550/1200 NAND support" - depends on SOC_AU1200 || SOC_AU1550 + depends on MIPS_ALCHEMY help This enables the driver for the NAND flash controller on the AMD/Alchemy 1550 SOC. config MTD_NAND_BF5XX tristate "Blackfin on-chip NAND Flash Controller driver" - depends on (BF54x || BF52x) && MTD_NAND + depends on BF54x || BF52x help This enables the Blackfin on-chip NAND flash controller @@ -176,25 +160,9 @@ config MTD_NAND_BF5XX_BOOTROM_ECC If unsure, say N. -config MTD_NAND_RTC_FROM4 - tristate "Renesas Flash ROM 4-slot interface board (FROM_BOARD4)" - depends on SH_SOLUTION_ENGINE - select REED_SOLOMON - select REED_SOLOMON_DEC8 - select BITREVERSE - help - This enables the driver for the Renesas Technology AG-AND - flash interface board (FROM_BOARD4) - -config MTD_NAND_PPCHAMELEONEVB - tristate "NAND Flash device on PPChameleonEVB board" - depends on PPCHAMELEONEVB && BROKEN - help - This enables the NAND flash driver on the PPChameleon EVB Board. - config MTD_NAND_S3C2410 tristate "NAND Flash support for Samsung S3C SoCs" - depends on ARCH_S3C2410 || ARCH_S3C64XX + depends on ARCH_S3C24XX || ARCH_S3C64XX help This enables the NAND flash controller on the S3C24xx and S3C64xx SoCs @@ -234,25 +202,9 @@ config MTD_NAND_S3C2410_CLKSTOP when the is NAND chip selected or released, but will save approximately 5mA of power when there is nothing happening. -config MTD_NAND_BCM_UMI - tristate "NAND Flash support for BCM Reference Boards" - depends on ARCH_BCMRING && MTD_NAND - help - This enables the NAND flash controller on the BCM UMI block. - - No board specfic support is done by this driver, each board - must advertise a platform_device for the driver to attach. - -config MTD_NAND_BCM_UMI_HWCS - bool "BCM UMI NAND Hardware CS" - depends on MTD_NAND_BCM_UMI - help - Enable the use of the BCM UMI block's internal CS using NAND. - This should only be used if you know the external NAND CS can toggle. - config MTD_NAND_DISKONCHIP - tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation) (EXPERIMENTAL)" - depends on EXPERIMENTAL + tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation)" + depends on HAS_IOMEM select REED_SOLOMON select REED_SOLOMON_DEC16 help @@ -320,6 +272,26 @@ config MTD_NAND_DISKONCHIP_BBTWRITE load time (assuming you build diskonchip as a module) with the module parameter "inftl_bbt_write=1". +config MTD_NAND_DOCG4 + tristate "Support for DiskOnChip G4" + depends on HAS_IOMEM + select BCH + select BITREVERSE + help + Support for diskonchip G4 nand flash, found in various smartphones and + PDAs, among them the Palm Treo680, HTC Prophet and Wizard, Toshiba + Portege G900, Asus P526, and O2 XDA Zinc. + + With this driver you will be able to use UBI and create a ubifs on the + device, so you may wish to consider enabling UBI and UBIFS as well. + + These devices ship with the Mys/Sandisk SAFTL formatting, for which + there is currently no mtd parser, so you may want to use command line + partitioning to segregate write-protected blocks. On the Treo680, the + first five erase blocks (256KiB each) are write-protected, followed + by the block containing the saftl partition table. This is probably + typical. + config MTD_NAND_SHARPSL tristate "Support for NAND Flash on Sharp SL Series (C7xx + others)" depends on ARCH_PXA @@ -352,104 +324,90 @@ config MTD_NAND_ATMEL help Enables support for NAND Flash / Smart Media Card interface on Atmel AT91 and AVR32 processors. -choice - prompt "ECC management for NAND Flash / SmartMedia on AT91 / AVR32" - depends on MTD_NAND_ATMEL - -config MTD_NAND_ATMEL_ECC_HW - bool "Hardware ECC" - depends on ARCH_AT91SAM9263 || ARCH_AT91SAM9260 || AVR32 - help - Use hardware ECC instead of software ECC when the chip - supports it. - - The hardware ECC controller is capable of single bit error - correction and 2-bit random detection per page. - - NB : hardware and software ECC schemes are incompatible. - If you switch from one to another, you'll have to erase your - mtd partition. - - If unsure, say Y -config MTD_NAND_ATMEL_ECC_SOFT - bool "Software ECC" +config MTD_NAND_PXA3xx + tristate "NAND support on PXA3xx and Armada 370/XP" + depends on PXA3xx || ARCH_MMP || PLAT_ORION help - Use software ECC. - - NB : hardware and software ECC schemes are incompatible. - If you switch from one to another, you'll have to erase your - mtd partition. + This enables the driver for the NAND flash device found on + PXA3xx processors (NFCv1) and also on Armada 370/XP (NFCv2). -config MTD_NAND_ATMEL_ECC_NONE - bool "No ECC (testing only, DANGEROUS)" - depends on DEBUG_KERNEL +config MTD_NAND_SLC_LPC32XX + tristate "NXP LPC32xx SLC Controller" + depends on ARCH_LPC32XX help - No ECC will be used. - It's not a good idea and it should be reserved for testing - purpose only. + Enables support for NXP's LPC32XX SLC (i.e. for Single Level Cell + chips) NAND controller. This is the default for the PHYTEC 3250 + reference board which contains a NAND256R3A2CZA6 chip. - If unsure, say N + Please check the actual NAND chip connected and its support + by the SLC NAND controller. -endchoice - -config MTD_NAND_PXA3xx - tristate "Support for NAND flash devices on PXA3xx" - depends on MTD_NAND && (PXA3xx || ARCH_MMP) +config MTD_NAND_MLC_LPC32XX + tristate "NXP LPC32xx MLC Controller" + depends on ARCH_LPC32XX help - This enables the driver for the NAND flash device found on - PXA3xx processors + Uses the LPC32XX MLC (i.e. for Multi Level Cell chips) NAND + controller. This is the default for the WORK92105 controller + board. -config MTD_NAND_PXA3xx_BUILTIN - bool "Use builtin definitions for some NAND chips (deprecated)" - depends on MTD_NAND_PXA3xx - help - This enables builtin definitions for some NAND chips. This - is deprecated in favor of platform specific data. + Please check the actual NAND chip connected and its support + by the MLC NAND controller. config MTD_NAND_CM_X270 tristate "Support for NAND Flash on CM-X270 modules" - depends on MTD_NAND && MACH_ARMCORE + depends on MACH_ARMCORE config MTD_NAND_PASEMI tristate "NAND support for PA Semi PWRficient" - depends on MTD_NAND && PPC_PASEMI + depends on PPC_PASEMI help Enables support for NAND Flash interface on PA Semi PWRficient based boards config MTD_NAND_TMIO tristate "NAND Flash device on Toshiba Mobile IO Controller" - depends on MTD_NAND && MFD_TMIO + depends on MFD_TMIO help Support for NAND flash connected to a Toshiba Mobile IO Controller in some PDAs, including the Sharp SL6000x. config MTD_NAND_NANDSIM tristate "Support for NAND Flash Simulator" - depends on MTD_PARTITIONS help The simulator may simulate various NAND flash chips for the MTD nand layer. +config MTD_NAND_GPMI_NAND + tristate "GPMI NAND Flash Controller driver" + depends on MTD_NAND && MXS_DMA + help + Enables NAND Flash support for IMX23, IMX28 or IMX6. + The GPMI controller is very powerful, with the help of BCH + module, it can do the hardware ECC. The GPMI supports several + NAND flashs at the same time. The GPMI may conflicts with other + block, such as SD card. So pay attention to it when you enable + the GPMI. + +config MTD_NAND_BCM47XXNFLASH + tristate "Support for NAND flash on BCM4706 BCMA bus" + depends on BCMA_NFLASH + help + BCMA bus can have various flash memories attached, they are + registered by bcma as platform devices. This enables driver for + NAND flash memories. For now only BCM4706 is supported. + config MTD_NAND_PLATFORM tristate "Support for generic platform NAND driver" - depends on MTD_NAND + depends on HAS_IOMEM help This implements a generic NAND driver for on-SOC platform devices. You will need to provide platform-specific functions via platform_data. -config MTD_ALAUDA - tristate "MTD driver for Olympus MAUSB-10 and Fujifilm DPC-R1" - depends on MTD_NAND && USB - help - These two (and possibly other) Alauda-based cardreaders for - SmartMedia and xD allow raw flash access. - config MTD_NAND_ORION tristate "NAND Flash support for Marvell Orion SoC" - depends on PLAT_ORION && MTD_NAND + depends on PLAT_ORION help This enables the NAND flash controller on Orion machines. @@ -458,16 +416,28 @@ config MTD_NAND_ORION config MTD_NAND_FSL_ELBC tristate "NAND support for Freescale eLBC controllers" - depends on MTD_NAND && PPC_OF + depends on PPC_OF + select FSL_LBC help Various Freescale chips, including the 8313, include a NAND Flash Controller Module with built-in hardware ECC capabilities. Enabling this option will enable you to use this to control external NAND devices. +config MTD_NAND_FSL_IFC + tristate "NAND support for Freescale IFC controller" + depends on MTD_NAND && FSL_SOC + select FSL_IFC + select MEMORY + help + Various Freescale chips e.g P1010, include a NAND Flash machine + with built-in hardware ECC capabilities. + Enabling this option will enable you to use this to control + external NAND devices. + config MTD_NAND_FSL_UPM tristate "Support for NAND on Freescale UPM" - depends on MTD_NAND && (PPC_83xx || PPC_85xx) + depends on PPC_83xx || PPC_85xx select FSL_LBC help Enables support for NAND Flash chips wired onto Freescale PowerPC @@ -482,30 +452,26 @@ config MTD_NAND_MPC5121_NFC config MTD_NAND_MXC tristate "MXC NAND support" - depends on ARCH_MX2 || ARCH_MX25 || ARCH_MX3 + depends on ARCH_MXC help This enables the driver for the NAND flash controller on the MXC processors. -config MTD_NAND_NOMADIK - tristate "ST Nomadik 8815 NAND support" - depends on ARCH_NOMADIK - help - Driver for the NAND flash controller on the Nomadik, with ECC. - config MTD_NAND_SH_FLCTL tristate "Support for NAND on Renesas SuperH FLCTL" - depends on MTD_NAND && (SUPERH || ARCH_SHMOBILE) + depends on SUPERH || ARCH_SHMOBILE || COMPILE_TEST + depends on HAS_IOMEM + depends on HAS_DMA help Several Renesas SuperH CPU has FLCTL. This option enables support for NAND Flash using FLCTL. config MTD_NAND_DAVINCI - tristate "Support NAND on DaVinci SoC" - depends on ARCH_DAVINCI + tristate "Support NAND on DaVinci/Keystone SoC" + depends on ARCH_DAVINCI || (ARCH_KEYSTONE && TI_AEMIF) help Enable the driver for NAND flash chips on Texas Instruments - DaVinci processors. + DaVinci/Keystone processors. config MTD_NAND_TXX9NDFMC tristate "NAND Flash support for TXx9 SoC" @@ -515,15 +481,36 @@ config MTD_NAND_TXX9NDFMC config MTD_NAND_SOCRATES tristate "Support for NAND on Socrates board" - depends on MTD_NAND && SOCRATES + depends on SOCRATES help Enables support for NAND Flash chips wired onto Socrates board. config MTD_NAND_NUC900 tristate "Support for NAND on Nuvoton NUC9xx/w90p910 evaluation boards." - depends on ARCH_W90X900 && MTD_PARTITIONS + depends on ARCH_W90X900 help This enables the driver for the NAND Flash on evaluation board based on w90p910 / NUC9xx. +config MTD_NAND_JZ4740 + tristate "Support for JZ4740 SoC NAND controller" + depends on MACH_JZ4740 + help + Enables support for NAND Flash on JZ4740 SoC based boards. + +config MTD_NAND_FSMC + tristate "Support for NAND on ST Micros FSMC" + depends on PLAT_SPEAR || ARCH_NOMADIK || ARCH_U8500 || MACH_U300 + help + Enables support for NAND Flash chips on the ST Microelectronics + Flexible Static Memory Controller (FSMC) + +config MTD_NAND_XWAY + tristate "Support for NAND on Lantiq XWAY SoC" + depends on LANTIQ && SOC_TYPE_XWAY + select MTD_NAND_PLATFORM + help + Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached + to the External Bus Unit (EBU). + endif # MTD_NAND diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index e8ab884ba47..542b5689eb6 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -4,23 +4,22 @@ obj-$(CONFIG_MTD_NAND) += nand.o obj-$(CONFIG_MTD_NAND_ECC) += nand_ecc.o +obj-$(CONFIG_MTD_NAND_BCH) += nand_bch.o obj-$(CONFIG_MTD_NAND_IDS) += nand_ids.o obj-$(CONFIG_MTD_SM_COMMON) += sm_common.o obj-$(CONFIG_MTD_NAND_CAFE) += cafe_nand.o -obj-$(CONFIG_MTD_NAND_SPIA) += spia.o obj-$(CONFIG_MTD_NAND_AMS_DELTA) += ams-delta.o -obj-$(CONFIG_MTD_NAND_AUTCPU12) += autcpu12.o obj-$(CONFIG_MTD_NAND_DENALI) += denali.o -obj-$(CONFIG_MTD_NAND_EDB7312) += edb7312.o +obj-$(CONFIG_MTD_NAND_DENALI_PCI) += denali_pci.o +obj-$(CONFIG_MTD_NAND_DENALI_DT) += denali_dt.o obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o obj-$(CONFIG_MTD_NAND_BF5XX) += bf5xx_nand.o -obj-$(CONFIG_MTD_NAND_PPCHAMELEONEVB) += ppchameleonevb.o obj-$(CONFIG_MTD_NAND_S3C2410) += s3c2410.o obj-$(CONFIG_MTD_NAND_DAVINCI) += davinci_nand.o obj-$(CONFIG_MTD_NAND_DISKONCHIP) += diskonchip.o -obj-$(CONFIG_MTD_NAND_H1900) += h1910.o -obj-$(CONFIG_MTD_NAND_RTC_FROM4) += rtc_from4.o +obj-$(CONFIG_MTD_NAND_DOCG4) += docg4.o +obj-$(CONFIG_MTD_NAND_FSMC) += fsmc_nand.o obj-$(CONFIG_MTD_NAND_SHARPSL) += sharpsl.o obj-$(CONFIG_MTD_NAND_NANDSIM) += nandsim.o obj-$(CONFIG_MTD_NAND_CS553X) += cs553x_nand.o @@ -32,19 +31,23 @@ obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o obj-$(CONFIG_MTD_NAND_PXA3xx) += pxa3xx_nand.o obj-$(CONFIG_MTD_NAND_TMIO) += tmio_nand.o obj-$(CONFIG_MTD_NAND_PLATFORM) += plat_nand.o -obj-$(CONFIG_MTD_ALAUDA) += alauda.o obj-$(CONFIG_MTD_NAND_PASEMI) += pasemi_nand.o obj-$(CONFIG_MTD_NAND_ORION) += orion_nand.o obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o +obj-$(CONFIG_MTD_NAND_FSL_IFC) += fsl_ifc_nand.o obj-$(CONFIG_MTD_NAND_FSL_UPM) += fsl_upm.o +obj-$(CONFIG_MTD_NAND_SLC_LPC32XX) += lpc32xx_slc.o +obj-$(CONFIG_MTD_NAND_MLC_LPC32XX) += lpc32xx_mlc.o obj-$(CONFIG_MTD_NAND_SH_FLCTL) += sh_flctl.o obj-$(CONFIG_MTD_NAND_MXC) += mxc_nand.o obj-$(CONFIG_MTD_NAND_SOCRATES) += socrates_nand.o obj-$(CONFIG_MTD_NAND_TXX9NDFMC) += txx9ndfmc.o obj-$(CONFIG_MTD_NAND_NUC900) += nuc900_nand.o -obj-$(CONFIG_MTD_NAND_NOMADIK) += nomadik_nand.o -obj-$(CONFIG_MTD_NAND_BCM_UMI) += bcm_umi_nand.o nand_bcm_umi.o obj-$(CONFIG_MTD_NAND_MPC5121_NFC) += mpc5121_nfc.o obj-$(CONFIG_MTD_NAND_RICOH) += r852.o +obj-$(CONFIG_MTD_NAND_JZ4740) += jz4740_nand.o +obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi-nand/ +obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o +obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/ nand-objs := nand_base.o nand_bbt.o diff --git a/drivers/mtd/nand/alauda.c b/drivers/mtd/nand/alauda.c deleted file mode 100644 index 8691e0482ed..00000000000 --- a/drivers/mtd/nand/alauda.c +++ /dev/null @@ -1,733 +0,0 @@ -/* - * MTD driver for Alauda chips - * - * Copyright (C) 2007 Joern Engel <joern@logfs.org> - * - * Based on drivers/usb/usb-skeleton.c which is: - * Copyright (C) 2001-2004 Greg Kroah-Hartman (greg@kroah.com) - * and on drivers/usb/storage/alauda.c, which is: - * (c) 2005 Daniel Drake <dsd@gentoo.org> - * - * Idea and initial work by Arnd Bergmann <arnd@arndb.de> - */ -#include <linux/kernel.h> -#include <linux/errno.h> -#include <linux/init.h> -#include <linux/slab.h> -#include <linux/module.h> -#include <linux/kref.h> -#include <linux/usb.h> -#include <linux/mutex.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand_ecc.h> - -/* Control commands */ -#define ALAUDA_GET_XD_MEDIA_STATUS 0x08 -#define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a -#define ALAUDA_GET_XD_MEDIA_SIG 0x86 - -/* Common prefix */ -#define ALAUDA_BULK_CMD 0x40 - -/* The two ports */ -#define ALAUDA_PORT_XD 0x00 -#define ALAUDA_PORT_SM 0x01 - -/* Bulk commands */ -#define ALAUDA_BULK_READ_PAGE 0x84 -#define ALAUDA_BULK_READ_OOB 0x85 /* don't use, there's a chip bug */ -#define ALAUDA_BULK_READ_BLOCK 0x94 -#define ALAUDA_BULK_ERASE_BLOCK 0xa3 -#define ALAUDA_BULK_WRITE_PAGE 0xa4 -#define ALAUDA_BULK_WRITE_BLOCK 0xb4 -#define ALAUDA_BULK_RESET_MEDIA 0xe0 - -/* Address shifting */ -#define PBA_LO(pba) ((pba & 0xF) << 5) -#define PBA_HI(pba) (pba >> 3) -#define PBA_ZONE(pba) (pba >> 11) - -#define TIMEOUT HZ - -static const struct usb_device_id alauda_table[] = { - { USB_DEVICE(0x0584, 0x0008) }, /* Fujifilm DPC-R1 */ - { USB_DEVICE(0x07b4, 0x010a) }, /* Olympus MAUSB-10 */ - { } -}; -MODULE_DEVICE_TABLE(usb, alauda_table); - -struct alauda_card { - u8 id; /* id byte */ - u8 chipshift; /* 1<<chipshift total size */ - u8 pageshift; /* 1<<pageshift page size */ - u8 blockshift; /* 1<<blockshift block size */ -}; - -struct alauda { - struct usb_device *dev; - struct usb_interface *interface; - struct mtd_info *mtd; - struct alauda_card *card; - struct mutex card_mutex; - u32 pagemask; - u32 bytemask; - u32 blockmask; - unsigned int write_out; - unsigned int bulk_in; - unsigned int bulk_out; - u8 port; - struct kref kref; -}; - -static struct alauda_card alauda_card_ids[] = { - /* NAND flash */ - { 0x6e, 20, 8, 12}, /* 1 MB */ - { 0xe8, 20, 8, 12}, /* 1 MB */ - { 0xec, 20, 8, 12}, /* 1 MB */ - { 0x64, 21, 8, 12}, /* 2 MB */ - { 0xea, 21, 8, 12}, /* 2 MB */ - { 0x6b, 22, 9, 13}, /* 4 MB */ - { 0xe3, 22, 9, 13}, /* 4 MB */ - { 0xe5, 22, 9, 13}, /* 4 MB */ - { 0xe6, 23, 9, 13}, /* 8 MB */ - { 0x73, 24, 9, 14}, /* 16 MB */ - { 0x75, 25, 9, 14}, /* 32 MB */ - { 0x76, 26, 9, 14}, /* 64 MB */ - { 0x79, 27, 9, 14}, /* 128 MB */ - { 0x71, 28, 9, 14}, /* 256 MB */ - - /* MASK ROM */ - { 0x5d, 21, 9, 13}, /* 2 MB */ - { 0xd5, 22, 9, 13}, /* 4 MB */ - { 0xd6, 23, 9, 13}, /* 8 MB */ - { 0x57, 24, 9, 13}, /* 16 MB */ - { 0x58, 25, 9, 13}, /* 32 MB */ - { } -}; - -static struct alauda_card *get_card(u8 id) -{ - struct alauda_card *card; - - for (card = alauda_card_ids; card->id; card++) - if (card->id == id) - return card; - return NULL; -} - -static void alauda_delete(struct kref *kref) -{ - struct alauda *al = container_of(kref, struct alauda, kref); - - if (al->mtd) { - del_mtd_device(al->mtd); - kfree(al->mtd); - } - usb_put_dev(al->dev); - kfree(al); -} - -static int alauda_get_media_status(struct alauda *al, void *buf) -{ - int ret; - - mutex_lock(&al->card_mutex); - ret = usb_control_msg(al->dev, usb_rcvctrlpipe(al->dev, 0), - ALAUDA_GET_XD_MEDIA_STATUS, 0xc0, 0, 1, buf, 2, HZ); - mutex_unlock(&al->card_mutex); - return ret; -} - -static int alauda_ack_media(struct alauda *al) -{ - int ret; - - mutex_lock(&al->card_mutex); - ret = usb_control_msg(al->dev, usb_sndctrlpipe(al->dev, 0), - ALAUDA_ACK_XD_MEDIA_CHANGE, 0x40, 0, 1, NULL, 0, HZ); - mutex_unlock(&al->card_mutex); - return ret; -} - -static int alauda_get_media_signatures(struct alauda *al, void *buf) -{ - int ret; - - mutex_lock(&al->card_mutex); - ret = usb_control_msg(al->dev, usb_rcvctrlpipe(al->dev, 0), - ALAUDA_GET_XD_MEDIA_SIG, 0xc0, 0, 0, buf, 4, HZ); - mutex_unlock(&al->card_mutex); - return ret; -} - -static void alauda_reset(struct alauda *al) -{ - u8 command[] = { - ALAUDA_BULK_CMD, ALAUDA_BULK_RESET_MEDIA, 0, 0, - 0, 0, 0, 0, al->port - }; - mutex_lock(&al->card_mutex); - usb_bulk_msg(al->dev, al->bulk_out, command, 9, NULL, HZ); - mutex_unlock(&al->card_mutex); -} - -static void correct_data(void *buf, void *read_ecc, - int *corrected, int *uncorrected) -{ - u8 calc_ecc[3]; - int err; - - nand_calculate_ecc(NULL, buf, calc_ecc); - err = nand_correct_data(NULL, buf, read_ecc, calc_ecc); - if (err) { - if (err > 0) - (*corrected)++; - else - (*uncorrected)++; - } -} - -struct alauda_sg_request { - struct urb *urb[3]; - struct completion comp; -}; - -static void alauda_complete(struct urb *urb) -{ - struct completion *comp = urb->context; - - if (comp) - complete(comp); -} - -static int __alauda_read_page(struct mtd_info *mtd, loff_t from, void *buf, - void *oob) -{ - struct alauda_sg_request sg; - struct alauda *al = mtd->priv; - u32 pba = from >> al->card->blockshift; - u32 page = (from >> al->card->pageshift) & al->pagemask; - u8 command[] = { - ALAUDA_BULK_CMD, ALAUDA_BULK_READ_PAGE, PBA_HI(pba), - PBA_ZONE(pba), 0, PBA_LO(pba) + page, 1, 0, al->port - }; - int i, err; - - for (i=0; i<3; i++) - sg.urb[i] = NULL; - - err = -ENOMEM; - for (i=0; i<3; i++) { - sg.urb[i] = usb_alloc_urb(0, GFP_NOIO); - if (!sg.urb[i]) - goto out; - } - init_completion(&sg.comp); - usb_fill_bulk_urb(sg.urb[0], al->dev, al->bulk_out, command, 9, - alauda_complete, NULL); - usb_fill_bulk_urb(sg.urb[1], al->dev, al->bulk_in, buf, mtd->writesize, - alauda_complete, NULL); - usb_fill_bulk_urb(sg.urb[2], al->dev, al->bulk_in, oob, 16, - alauda_complete, &sg.comp); - - mutex_lock(&al->card_mutex); - for (i=0; i<3; i++) { - err = usb_submit_urb(sg.urb[i], GFP_NOIO); - if (err) - goto cancel; - } - if (!wait_for_completion_timeout(&sg.comp, TIMEOUT)) { - err = -ETIMEDOUT; -cancel: - for (i=0; i<3; i++) { - usb_kill_urb(sg.urb[i]); - } - } - mutex_unlock(&al->card_mutex); - -out: - usb_free_urb(sg.urb[0]); - usb_free_urb(sg.urb[1]); - usb_free_urb(sg.urb[2]); - return err; -} - -static int alauda_read_page(struct mtd_info *mtd, loff_t from, - void *buf, u8 *oob, int *corrected, int *uncorrected) -{ - int err; - - err = __alauda_read_page(mtd, from, buf, oob); - if (err) - return err; - correct_data(buf, oob+13, corrected, uncorrected); - correct_data(buf+256, oob+8, corrected, uncorrected); - return 0; -} - -static int alauda_write_page(struct mtd_info *mtd, loff_t to, void *buf, - void *oob) -{ - struct alauda_sg_request sg; - struct alauda *al = mtd->priv; - u32 pba = to >> al->card->blockshift; - u32 page = (to >> al->card->pageshift) & al->pagemask; - u8 command[] = { - ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_PAGE, PBA_HI(pba), - PBA_ZONE(pba), 0, PBA_LO(pba) + page, 32, 0, al->port - }; - int i, err; - - for (i=0; i<3; i++) - sg.urb[i] = NULL; - - err = -ENOMEM; - for (i=0; i<3; i++) { - sg.urb[i] = usb_alloc_urb(0, GFP_NOIO); - if (!sg.urb[i]) - goto out; - } - init_completion(&sg.comp); - usb_fill_bulk_urb(sg.urb[0], al->dev, al->bulk_out, command, 9, - alauda_complete, NULL); - usb_fill_bulk_urb(sg.urb[1], al->dev, al->write_out, buf,mtd->writesize, - alauda_complete, NULL); - usb_fill_bulk_urb(sg.urb[2], al->dev, al->write_out, oob, 16, - alauda_complete, &sg.comp); - - mutex_lock(&al->card_mutex); - for (i=0; i<3; i++) { - err = usb_submit_urb(sg.urb[i], GFP_NOIO); - if (err) - goto cancel; - } - if (!wait_for_completion_timeout(&sg.comp, TIMEOUT)) { - err = -ETIMEDOUT; -cancel: - for (i=0; i<3; i++) { - usb_kill_urb(sg.urb[i]); - } - } - mutex_unlock(&al->card_mutex); - -out: - usb_free_urb(sg.urb[0]); - usb_free_urb(sg.urb[1]); - usb_free_urb(sg.urb[2]); - return err; -} - -static int alauda_erase_block(struct mtd_info *mtd, loff_t ofs) -{ - struct alauda_sg_request sg; - struct alauda *al = mtd->priv; - u32 pba = ofs >> al->card->blockshift; - u8 command[] = { - ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba), - PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, al->port - }; - u8 buf[2]; - int i, err; - - for (i=0; i<2; i++) - sg.urb[i] = NULL; - - err = -ENOMEM; - for (i=0; i<2; i++) { - sg.urb[i] = usb_alloc_urb(0, GFP_NOIO); - if (!sg.urb[i]) - goto out; - } - init_completion(&sg.comp); - usb_fill_bulk_urb(sg.urb[0], al->dev, al->bulk_out, command, 9, - alauda_complete, NULL); - usb_fill_bulk_urb(sg.urb[1], al->dev, al->bulk_in, buf, 2, - alauda_complete, &sg.comp); - - mutex_lock(&al->card_mutex); - for (i=0; i<2; i++) { - err = usb_submit_urb(sg.urb[i], GFP_NOIO); - if (err) - goto cancel; - } - if (!wait_for_completion_timeout(&sg.comp, TIMEOUT)) { - err = -ETIMEDOUT; -cancel: - for (i=0; i<2; i++) { - usb_kill_urb(sg.urb[i]); - } - } - mutex_unlock(&al->card_mutex); - -out: - usb_free_urb(sg.urb[0]); - usb_free_urb(sg.urb[1]); - return err; -} - -static int alauda_read_oob(struct mtd_info *mtd, loff_t from, void *oob) -{ - static u8 ignore_buf[512]; /* write only */ - - return __alauda_read_page(mtd, from, ignore_buf, oob); -} - -static int alauda_isbad(struct mtd_info *mtd, loff_t ofs) -{ - u8 oob[16]; - int err; - - err = alauda_read_oob(mtd, ofs, oob); - if (err) - return err; - - /* A block is marked bad if two or more bits are zero */ - return hweight8(oob[5]) >= 7 ? 0 : 1; -} - -static int alauda_bounce_read(struct mtd_info *mtd, loff_t from, size_t len, - size_t *retlen, u_char *buf) -{ - struct alauda *al = mtd->priv; - void *bounce_buf; - int err, corrected=0, uncorrected=0; - - bounce_buf = kmalloc(mtd->writesize, GFP_KERNEL); - if (!bounce_buf) - return -ENOMEM; - - *retlen = len; - while (len) { - u8 oob[16]; - size_t byte = from & al->bytemask; - size_t cplen = min(len, mtd->writesize - byte); - - err = alauda_read_page(mtd, from, bounce_buf, oob, - &corrected, &uncorrected); - if (err) - goto out; - - memcpy(buf, bounce_buf + byte, cplen); - buf += cplen; - from += cplen; - len -= cplen; - } - err = 0; - if (corrected) - err = -EUCLEAN; - if (uncorrected) - err = -EBADMSG; -out: - kfree(bounce_buf); - return err; -} - -static int alauda_read(struct mtd_info *mtd, loff_t from, size_t len, - size_t *retlen, u_char *buf) -{ - struct alauda *al = mtd->priv; - int err, corrected=0, uncorrected=0; - - if ((from & al->bytemask) || (len & al->bytemask)) - return alauda_bounce_read(mtd, from, len, retlen, buf); - - *retlen = len; - while (len) { - u8 oob[16]; - - err = alauda_read_page(mtd, from, buf, oob, - &corrected, &uncorrected); - if (err) - return err; - - buf += mtd->writesize; - from += mtd->writesize; - len -= mtd->writesize; - } - err = 0; - if (corrected) - err = -EUCLEAN; - if (uncorrected) - err = -EBADMSG; - return err; -} - -static int alauda_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, const u_char *buf) -{ - struct alauda *al = mtd->priv; - int err; - - if ((to & al->bytemask) || (len & al->bytemask)) - return -EINVAL; - - *retlen = len; - while (len) { - u32 page = (to >> al->card->pageshift) & al->pagemask; - u8 oob[16] = { 'h', 'e', 'l', 'l', 'o', 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; - - /* don't write to bad blocks */ - if (page == 0) { - err = alauda_isbad(mtd, to); - if (err) { - return -EIO; - } - } - nand_calculate_ecc(mtd, buf, &oob[13]); - nand_calculate_ecc(mtd, buf+256, &oob[8]); - - err = alauda_write_page(mtd, to, (void*)buf, oob); - if (err) - return err; - - buf += mtd->writesize; - to += mtd->writesize; - len -= mtd->writesize; - } - return 0; -} - -static int __alauda_erase(struct mtd_info *mtd, struct erase_info *instr) -{ - struct alauda *al = mtd->priv; - u32 ofs = instr->addr; - u32 len = instr->len; - int err; - - if ((ofs & al->blockmask) || (len & al->blockmask)) - return -EINVAL; - - while (len) { - /* don't erase bad blocks */ - err = alauda_isbad(mtd, ofs); - if (err > 0) - err = -EIO; - if (err < 0) - return err; - - err = alauda_erase_block(mtd, ofs); - if (err < 0) - return err; - - ofs += mtd->erasesize; - len -= mtd->erasesize; - } - return 0; -} - -static int alauda_erase(struct mtd_info *mtd, struct erase_info *instr) -{ - int err; - - err = __alauda_erase(mtd, instr); - instr->state = err ? MTD_ERASE_FAILED : MTD_ERASE_DONE; - mtd_erase_callback(instr); - return err; -} - -static int alauda_init_media(struct alauda *al) -{ - u8 buf[4], *b0=buf, *b1=buf+1; - struct alauda_card *card; - struct mtd_info *mtd; - int err; - - mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); - if (!mtd) - return -ENOMEM; - - for (;;) { - err = alauda_get_media_status(al, buf); - if (err < 0) - goto error; - if (*b0 & 0x10) - break; - msleep(20); - } - - err = alauda_ack_media(al); - if (err) - goto error; - - msleep(10); - - err = alauda_get_media_status(al, buf); - if (err < 0) - goto error; - - if (*b0 != 0x14) { - /* media not ready */ - err = -EIO; - goto error; - } - err = alauda_get_media_signatures(al, buf); - if (err < 0) - goto error; - - card = get_card(*b1); - if (!card) { - printk(KERN_ERR"Alauda: unknown card id %02x\n", *b1); - err = -EIO; - goto error; - } - printk(KERN_INFO"pagesize=%x\nerasesize=%x\nsize=%xMiB\n", - 1<<card->pageshift, 1<<card->blockshift, - 1<<(card->chipshift-20)); - al->card = card; - al->pagemask = (1 << (card->blockshift - card->pageshift)) - 1; - al->bytemask = (1 << card->pageshift) - 1; - al->blockmask = (1 << card->blockshift) - 1; - - mtd->name = "alauda"; - mtd->size = 1<<card->chipshift; - mtd->erasesize = 1<<card->blockshift; - mtd->writesize = 1<<card->pageshift; - mtd->type = MTD_NANDFLASH; - mtd->flags = MTD_CAP_NANDFLASH; - mtd->read = alauda_read; - mtd->write = alauda_write; - mtd->erase = alauda_erase; - mtd->block_isbad = alauda_isbad; - mtd->priv = al; - mtd->owner = THIS_MODULE; - - err = add_mtd_device(mtd); - if (err) { - err = -ENFILE; - goto error; - } - - al->mtd = mtd; - alauda_reset(al); /* no clue whether this is necessary */ - return 0; -error: - kfree(mtd); - return err; -} - -static int alauda_check_media(struct alauda *al) -{ - u8 buf[2], *b0 = buf, *b1 = buf+1; - int err; - - err = alauda_get_media_status(al, buf); - if (err < 0) - return err; - - if ((*b1 & 0x01) == 0) { - /* door open */ - return -EIO; - } - if ((*b0 & 0x80) || ((*b0 & 0x1F) == 0x10)) { - /* no media ? */ - return -EIO; - } - if (*b0 & 0x08) { - /* media change ? */ - return alauda_init_media(al); - } - return 0; -} - -static int alauda_probe(struct usb_interface *interface, - const struct usb_device_id *id) -{ - struct alauda *al; - struct usb_host_interface *iface; - struct usb_endpoint_descriptor *ep, - *ep_in=NULL, *ep_out=NULL, *ep_wr=NULL; - int i, err = -ENOMEM; - - al = kzalloc(2*sizeof(*al), GFP_KERNEL); - if (!al) - goto error; - - kref_init(&al->kref); - usb_set_intfdata(interface, al); - - al->dev = usb_get_dev(interface_to_usbdev(interface)); - al->interface = interface; - - iface = interface->cur_altsetting; - for (i = 0; i < iface->desc.bNumEndpoints; ++i) { - ep = &iface->endpoint[i].desc; - - if (usb_endpoint_is_bulk_in(ep)) { - ep_in = ep; - } else if (usb_endpoint_is_bulk_out(ep)) { - if (i==0) - ep_wr = ep; - else - ep_out = ep; - } - } - err = -EIO; - if (!ep_wr || !ep_in || !ep_out) - goto error; - - al->write_out = usb_sndbulkpipe(al->dev, - usb_endpoint_num(ep_wr)); - al->bulk_in = usb_rcvbulkpipe(al->dev, - usb_endpoint_num(ep_in)); - al->bulk_out = usb_sndbulkpipe(al->dev, - usb_endpoint_num(ep_out)); - - /* second device is identical up to now */ - memcpy(al+1, al, sizeof(*al)); - - mutex_init(&al[0].card_mutex); - mutex_init(&al[1].card_mutex); - - al[0].port = ALAUDA_PORT_XD; - al[1].port = ALAUDA_PORT_SM; - - dev_info(&interface->dev, "alauda probed\n"); - alauda_check_media(al); - alauda_check_media(al+1); - - return 0; - -error: - if (al) - kref_put(&al->kref, alauda_delete); - return err; -} - -static void alauda_disconnect(struct usb_interface *interface) -{ - struct alauda *al; - - al = usb_get_intfdata(interface); - usb_set_intfdata(interface, NULL); - - /* FIXME: prevent more I/O from starting */ - - /* decrement our usage count */ - if (al) - kref_put(&al->kref, alauda_delete); - - dev_info(&interface->dev, "alauda gone"); -} - -static struct usb_driver alauda_driver = { - .name = "alauda", - .probe = alauda_probe, - .disconnect = alauda_disconnect, - .id_table = alauda_table, -}; - -static int __init alauda_init(void) -{ - return usb_register(&alauda_driver); -} - -static void __exit alauda_exit(void) -{ - usb_deregister(&alauda_driver); -} - -module_init(alauda_init); -module_exit(alauda_exit); - -MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/ams-delta.c b/drivers/mtd/nand/ams-delta.c index 2548e1065bf..4936e9e0002 100644 --- a/drivers/mtd/nand/ams-delta.c +++ b/drivers/mtd/nand/ams-delta.c @@ -4,6 +4,8 @@ * Copyright (C) 2006 Jonathan McDowell <noodles@earth.li> * * Derived from drivers/mtd/toto.c + * Converted to platform driver by Janusz Krzysztofik <jkrzyszt@tis.icnet.pl> + * Partially stolen from drivers/mtd/nand/plat_nand.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as @@ -15,25 +17,26 @@ */ #include <linux/slab.h> -#include <linux/init.h> #include <linux/module.h> #include <linux/delay.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> +#include <linux/gpio.h> +#include <linux/platform_data/gpio-omap.h> + #include <asm/io.h> -#include <mach/hardware.h> #include <asm/sizes.h> -#include <mach/gpio.h> -#include <plat/board-ams-delta.h> + +#include <mach/board-ams-delta.h> + +#include <mach/hardware.h> /* * MTD structure for E3 (Delta) */ static struct mtd_info *ams_delta_mtd = NULL; -#define NAND_MASK (AMS_DELTA_LATCH2_NAND_NRE | AMS_DELTA_LATCH2_NAND_NWE | AMS_DELTA_LATCH2_NAND_CLE | AMS_DELTA_LATCH2_NAND_ALE | AMS_DELTA_LATCH2_NAND_NCE | AMS_DELTA_LATCH2_NAND_NWP) - /* * Define partitions for flash devices */ @@ -62,26 +65,26 @@ static struct mtd_partition partition_info[] = { static void ams_delta_write_byte(struct mtd_info *mtd, u_char byte) { struct nand_chip *this = mtd->priv; + void __iomem *io_base = this->priv; - omap_writew(0, (OMAP1_MPUIO_BASE + OMAP_MPUIO_IO_CNTL)); - omap_writew(byte, this->IO_ADDR_W); - ams_delta_latch2_write(AMS_DELTA_LATCH2_NAND_NWE, 0); + writew(0, io_base + OMAP_MPUIO_IO_CNTL); + writew(byte, this->IO_ADDR_W); + gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NWE, 0); ndelay(40); - ams_delta_latch2_write(AMS_DELTA_LATCH2_NAND_NWE, - AMS_DELTA_LATCH2_NAND_NWE); + gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NWE, 1); } static u_char ams_delta_read_byte(struct mtd_info *mtd) { u_char res; struct nand_chip *this = mtd->priv; + void __iomem *io_base = this->priv; - ams_delta_latch2_write(AMS_DELTA_LATCH2_NAND_NRE, 0); + gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NRE, 0); ndelay(40); - omap_writew(~0, (OMAP1_MPUIO_BASE + OMAP_MPUIO_IO_CNTL)); - res = omap_readw(this->IO_ADDR_R); - ams_delta_latch2_write(AMS_DELTA_LATCH2_NAND_NRE, - AMS_DELTA_LATCH2_NAND_NRE); + writew(~0, io_base + OMAP_MPUIO_IO_CNTL); + res = readw(this->IO_ADDR_R); + gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NRE, 1); return res; } @@ -103,18 +106,6 @@ static void ams_delta_read_buf(struct mtd_info *mtd, u_char *buf, int len) buf[i] = ams_delta_read_byte(mtd); } -static int ams_delta_verify_buf(struct mtd_info *mtd, const u_char *buf, - int len) -{ - int i; - - for (i=0; i<len; i++) - if (buf[i] != ams_delta_read_byte(mtd)) - return -EFAULT; - - return 0; -} - /* * Command control function * @@ -128,15 +119,12 @@ static void ams_delta_hwcontrol(struct mtd_info *mtd, int cmd, { if (ctrl & NAND_CTRL_CHANGE) { - unsigned long bits; - - bits = (~ctrl & NAND_NCE) ? AMS_DELTA_LATCH2_NAND_NCE : 0; - bits |= (ctrl & NAND_CLE) ? AMS_DELTA_LATCH2_NAND_CLE : 0; - bits |= (ctrl & NAND_ALE) ? AMS_DELTA_LATCH2_NAND_ALE : 0; - - ams_delta_latch2_write(AMS_DELTA_LATCH2_NAND_CLE | - AMS_DELTA_LATCH2_NAND_ALE | - AMS_DELTA_LATCH2_NAND_NCE, bits); + gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NCE, + (ctrl & NAND_NCE) == 0); + gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_CLE, + (ctrl & NAND_CLE) != 0); + gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_ALE, + (ctrl & NAND_ALE) != 0); } if (cmd != NAND_CMD_NONE) @@ -148,14 +136,52 @@ static int ams_delta_nand_ready(struct mtd_info *mtd) return gpio_get_value(AMS_DELTA_GPIO_PIN_NAND_RB); } +static const struct gpio _mandatory_gpio[] = { + { + .gpio = AMS_DELTA_GPIO_PIN_NAND_NCE, + .flags = GPIOF_OUT_INIT_HIGH, + .label = "nand_nce", + }, + { + .gpio = AMS_DELTA_GPIO_PIN_NAND_NRE, + .flags = GPIOF_OUT_INIT_HIGH, + .label = "nand_nre", + }, + { + .gpio = AMS_DELTA_GPIO_PIN_NAND_NWP, + .flags = GPIOF_OUT_INIT_HIGH, + .label = "nand_nwp", + }, + { + .gpio = AMS_DELTA_GPIO_PIN_NAND_NWE, + .flags = GPIOF_OUT_INIT_HIGH, + .label = "nand_nwe", + }, + { + .gpio = AMS_DELTA_GPIO_PIN_NAND_ALE, + .flags = GPIOF_OUT_INIT_LOW, + .label = "nand_ale", + }, + { + .gpio = AMS_DELTA_GPIO_PIN_NAND_CLE, + .flags = GPIOF_OUT_INIT_LOW, + .label = "nand_cle", + }, +}; + /* * Main initialization routine */ -static int __init ams_delta_init(void) +static int ams_delta_init(struct platform_device *pdev) { struct nand_chip *this; + struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + void __iomem *io_base; int err = 0; + if (!res) + return -ENXIO; + /* Allocate memory for MTD device structure and private data */ ams_delta_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); @@ -177,13 +203,27 @@ static int __init ams_delta_init(void) /* Link the private data with the MTD structure */ ams_delta_mtd->priv = this; + /* + * Don't try to request the memory region from here, + * it should have been already requested from the + * gpio-omap driver and requesting it again would fail. + */ + + io_base = ioremap(res->start, resource_size(res)); + if (io_base == NULL) { + dev_err(&pdev->dev, "ioremap failed\n"); + err = -EIO; + goto out_free; + } + + this->priv = io_base; + /* Set address of NAND IO lines */ - this->IO_ADDR_R = (OMAP1_MPUIO_BASE + OMAP_MPUIO_INPUT_LATCH); - this->IO_ADDR_W = (OMAP1_MPUIO_BASE + OMAP_MPUIO_OUTPUT); + this->IO_ADDR_R = io_base + OMAP_MPUIO_INPUT_LATCH; + this->IO_ADDR_W = io_base + OMAP_MPUIO_OUTPUT; this->read_byte = ams_delta_read_byte; this->write_buf = ams_delta_write_buf; this->read_buf = ams_delta_read_buf; - this->verify_buf = ams_delta_verify_buf; this->cmd_ctrl = ams_delta_hwcontrol; if (gpio_request(AMS_DELTA_GPIO_PIN_NAND_RB, "nand_rdy") == 0) { this->dev_ready = ams_delta_nand_ready; @@ -195,44 +235,66 @@ static int __init ams_delta_init(void) this->chip_delay = 30; this->ecc.mode = NAND_ECC_SOFT; + platform_set_drvdata(pdev, io_base); + /* Set chip enabled, but */ - ams_delta_latch2_write(NAND_MASK, AMS_DELTA_LATCH2_NAND_NRE | - AMS_DELTA_LATCH2_NAND_NWE | - AMS_DELTA_LATCH2_NAND_NCE | - AMS_DELTA_LATCH2_NAND_NWP); + err = gpio_request_array(_mandatory_gpio, ARRAY_SIZE(_mandatory_gpio)); + if (err) + goto out_gpio; - /* Scan to find existance of the device */ + /* Scan to find existence of the device */ if (nand_scan(ams_delta_mtd, 1)) { err = -ENXIO; goto out_mtd; } /* Register the partitions */ - add_mtd_partitions(ams_delta_mtd, partition_info, - ARRAY_SIZE(partition_info)); + mtd_device_register(ams_delta_mtd, partition_info, + ARRAY_SIZE(partition_info)); goto out; out_mtd: + gpio_free_array(_mandatory_gpio, ARRAY_SIZE(_mandatory_gpio)); +out_gpio: + gpio_free(AMS_DELTA_GPIO_PIN_NAND_RB); + iounmap(io_base); +out_free: kfree(ams_delta_mtd); out: return err; } -module_init(ams_delta_init); - /* * Clean up routine */ -static void __exit ams_delta_cleanup(void) +static int ams_delta_cleanup(struct platform_device *pdev) { + void __iomem *io_base = platform_get_drvdata(pdev); + /* Release resources, unregister device */ nand_release(ams_delta_mtd); + gpio_free_array(_mandatory_gpio, ARRAY_SIZE(_mandatory_gpio)); + gpio_free(AMS_DELTA_GPIO_PIN_NAND_RB); + iounmap(io_base); + /* Free the MTD device structure */ kfree(ams_delta_mtd); + + return 0; } -module_exit(ams_delta_cleanup); + +static struct platform_driver ams_delta_nand_driver = { + .probe = ams_delta_init, + .remove = ams_delta_cleanup, + .driver = { + .name = "ams-delta-nand", + .owner = THIS_MODULE, + }, +}; + +module_platform_driver(ams_delta_nand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Jonathan McDowell <noodles@earth.li>"); diff --git a/drivers/mtd/nand/atmel_nand.c b/drivers/mtd/nand/atmel_nand.c index 04d30887ca7..4ce181a35bc 100644 --- a/drivers/mtd/nand/atmel_nand.c +++ b/drivers/mtd/nand/atmel_nand.c @@ -1,20 +1,25 @@ /* - * Copyright (C) 2003 Rick Bronson + * Copyright © 2003 Rick Bronson * * Derived from drivers/mtd/nand/autcpu12.c - * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de) + * Copyright © 2001 Thomas Gleixner (gleixner@autronix.de) * * Derived from drivers/mtd/spia.c - * Copyright (C) 2000 Steven J. Hill (sjhill@cotw.com) + * Copyright © 2000 Steven J. Hill (sjhill@cotw.com) * * * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 - * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright (C) 2007 + * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007 * * Derived from Das U-Boot source code * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) - * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas + * © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas * + * Add Programmable Multibit ECC support for various AT91 SoC + * © Copyright 2012 ATMEL, Hong Xu + * + * Add Nand Flash Controller support for SAMA5 SoC + * © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as @@ -22,31 +27,28 @@ * */ +#include <linux/dma-mapping.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/platform_device.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/of_gpio.h> +#include <linux/of_mtd.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> +#include <linux/delay.h> +#include <linux/dmaengine.h> #include <linux/gpio.h> +#include <linux/interrupt.h> #include <linux/io.h> +#include <linux/platform_data/atmel.h> -#include <mach/board.h> -#include <mach/cpu.h> - -#ifdef CONFIG_MTD_NAND_ATMEL_ECC_HW -#define hard_ecc 1 -#else -#define hard_ecc 0 -#endif - -#ifdef CONFIG_MTD_NAND_ATMEL_ECC_NONE -#define no_ecc 1 -#else -#define no_ecc 0 -#endif +static int use_dma = 1; +module_param(use_dma, int, 0); static int on_flash_bbt = 0; module_param(on_flash_bbt, int, 0); @@ -58,6 +60,7 @@ module_param(on_flash_bbt, int, 0); __raw_writel((value), add + ATMEL_ECC_##reg) #include "atmel_nand_ecc.h" /* Hardware ECC registers */ +#include "atmel_nand_nfc.h" /* Nand Flash Controller definition */ /* oob layout for large page size * bad block info is on bytes 0 and 1 @@ -85,22 +88,75 @@ static struct nand_ecclayout atmel_oobinfo_small = { }, }; +struct atmel_nfc { + void __iomem *base_cmd_regs; + void __iomem *hsmc_regs; + void __iomem *sram_bank0; + dma_addr_t sram_bank0_phys; + bool use_nfc_sram; + bool write_by_sram; + + bool is_initialized; + struct completion comp_nfc; + + /* Point to the sram bank which include readed data via NFC */ + void __iomem *data_in_sram; + bool will_write_sram; +}; +static struct atmel_nfc nand_nfc; + struct atmel_nand_host { struct nand_chip nand_chip; struct mtd_info mtd; void __iomem *io_base; - struct atmel_nand_data *board; + dma_addr_t io_phys; + struct atmel_nand_data board; struct device *dev; void __iomem *ecc; + + struct completion comp; + struct dma_chan *dma_chan; + + struct atmel_nfc *nfc; + + bool has_pmecc; + u8 pmecc_corr_cap; + u16 pmecc_sector_size; + u32 pmecc_lookup_table_offset; + u32 pmecc_lookup_table_offset_512; + u32 pmecc_lookup_table_offset_1024; + + int pmecc_bytes_per_sector; + int pmecc_sector_number; + int pmecc_degree; /* Degree of remainders */ + int pmecc_cw_len; /* Length of codeword */ + + void __iomem *pmerrloc_base; + void __iomem *pmecc_rom_base; + + /* lookup table for alpha_to and index_of */ + void __iomem *pmecc_alpha_to; + void __iomem *pmecc_index_of; + + /* data for pmecc computation */ + int16_t *pmecc_partial_syn; + int16_t *pmecc_si; + int16_t *pmecc_smu; /* Sigma table */ + int16_t *pmecc_lmu; /* polynomal order */ + int *pmecc_mu; + int *pmecc_dmu; + int *pmecc_delta; }; +static struct nand_ecclayout atmel_pmecc_oobinfo; + /* * Enable NAND. */ static void atmel_nand_enable(struct atmel_nand_host *host) { - if (host->board->enable_pin) - gpio_set_value(host->board->enable_pin, 0); + if (gpio_is_valid(host->board.enable_pin)) + gpio_set_value(host->board.enable_pin, 0); } /* @@ -108,8 +164,8 @@ static void atmel_nand_enable(struct atmel_nand_host *host) */ static void atmel_nand_disable(struct atmel_nand_host *host) { - if (host->board->enable_pin) - gpio_set_value(host->board->enable_pin, 1); + if (gpio_is_valid(host->board.enable_pin)) + gpio_set_value(host->board.enable_pin, 1); } /* @@ -130,9 +186,9 @@ static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl return; if (ctrl & NAND_CLE) - writeb(cmd, host->io_base + (1 << host->board->cle)); + writeb(cmd, host->io_base + (1 << host->board.cle)); else - writeb(cmd, host->io_base + (1 << host->board->ale)); + writeb(cmd, host->io_base + (1 << host->board.ale)); } /* @@ -143,28 +199,110 @@ static int atmel_nand_device_ready(struct mtd_info *mtd) struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; - return gpio_get_value(host->board->rdy_pin) ^ - !!host->board->rdy_pin_active_low; + return gpio_get_value(host->board.rdy_pin) ^ + !!host->board.rdy_pin_active_low; +} + +/* Set up for hardware ready pin and enable pin. */ +static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct atmel_nand_host *host = chip->priv; + int res = 0; + + if (gpio_is_valid(host->board.rdy_pin)) { + res = devm_gpio_request(host->dev, + host->board.rdy_pin, "nand_rdy"); + if (res < 0) { + dev_err(host->dev, + "can't request rdy gpio %d\n", + host->board.rdy_pin); + return res; + } + + res = gpio_direction_input(host->board.rdy_pin); + if (res < 0) { + dev_err(host->dev, + "can't request input direction rdy gpio %d\n", + host->board.rdy_pin); + return res; + } + + chip->dev_ready = atmel_nand_device_ready; + } + + if (gpio_is_valid(host->board.enable_pin)) { + res = devm_gpio_request(host->dev, + host->board.enable_pin, "nand_enable"); + if (res < 0) { + dev_err(host->dev, + "can't request enable gpio %d\n", + host->board.enable_pin); + return res; + } + + res = gpio_direction_output(host->board.enable_pin, 1); + if (res < 0) { + dev_err(host->dev, + "can't request output direction enable gpio %d\n", + host->board.enable_pin); + return res; + } + } + + return res; +} + +static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size) +{ + int i; + u32 *t = trg; + const __iomem u32 *s = src; + + for (i = 0; i < (size >> 2); i++) + *t++ = readl_relaxed(s++); +} + +static void memcpy32_toio(void __iomem *trg, const void *src, int size) +{ + int i; + u32 __iomem *t = trg; + const u32 *s = src; + + for (i = 0; i < (size >> 2); i++) + writel_relaxed(*s++, t++); } /* * Minimal-overhead PIO for data access. */ -static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len) +static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len) { struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; - __raw_readsb(nand_chip->IO_ADDR_R, buf, len); + if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) { + memcpy32_fromio(buf, host->nfc->data_in_sram, len); + host->nfc->data_in_sram += len; + } else { + __raw_readsb(nand_chip->IO_ADDR_R, buf, len); + } } static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len) { struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; - __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2); + if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) { + memcpy32_fromio(buf, host->nfc->data_in_sram, len); + host->nfc->data_in_sram += len; + } else { + __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2); + } } -static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len) +static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len) { struct nand_chip *nand_chip = mtd->priv; @@ -178,6 +316,922 @@ static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len) __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2); } +static void dma_complete_func(void *completion) +{ + complete(completion); +} + +static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank) +{ + /* NFC only has two banks. Must be 0 or 1 */ + if (bank > 1) + return -EINVAL; + + if (bank) { + /* Only for a 2k-page or lower flash, NFC can handle 2 banks */ + if (host->mtd.writesize > 2048) + return -EINVAL; + nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1); + } else { + nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0); + } + + return 0; +} + +static uint nfc_get_sram_off(struct atmel_nand_host *host) +{ + if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1) + return NFC_SRAM_BANK1_OFFSET; + else + return 0; +} + +static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host) +{ + if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1) + return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET; + else + return host->nfc->sram_bank0_phys; +} + +static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len, + int is_read) +{ + struct dma_device *dma_dev; + enum dma_ctrl_flags flags; + dma_addr_t dma_src_addr, dma_dst_addr, phys_addr; + struct dma_async_tx_descriptor *tx = NULL; + dma_cookie_t cookie; + struct nand_chip *chip = mtd->priv; + struct atmel_nand_host *host = chip->priv; + void *p = buf; + int err = -EIO; + enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE; + struct atmel_nfc *nfc = host->nfc; + + if (buf >= high_memory) + goto err_buf; + + dma_dev = host->dma_chan->device; + + flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; + + phys_addr = dma_map_single(dma_dev->dev, p, len, dir); + if (dma_mapping_error(dma_dev->dev, phys_addr)) { + dev_err(host->dev, "Failed to dma_map_single\n"); + goto err_buf; + } + + if (is_read) { + if (nfc && nfc->data_in_sram) + dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram + - (nfc->sram_bank0 + nfc_get_sram_off(host))); + else + dma_src_addr = host->io_phys; + + dma_dst_addr = phys_addr; + } else { + dma_src_addr = phys_addr; + + if (nfc && nfc->write_by_sram) + dma_dst_addr = nfc_sram_phys(host); + else + dma_dst_addr = host->io_phys; + } + + tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr, + dma_src_addr, len, flags); + if (!tx) { + dev_err(host->dev, "Failed to prepare DMA memcpy\n"); + goto err_dma; + } + + init_completion(&host->comp); + tx->callback = dma_complete_func; + tx->callback_param = &host->comp; + + cookie = tx->tx_submit(tx); + if (dma_submit_error(cookie)) { + dev_err(host->dev, "Failed to do DMA tx_submit\n"); + goto err_dma; + } + + dma_async_issue_pending(host->dma_chan); + wait_for_completion(&host->comp); + + if (is_read && nfc && nfc->data_in_sram) + /* After read data from SRAM, need to increase the position */ + nfc->data_in_sram += len; + + err = 0; + +err_dma: + dma_unmap_single(dma_dev->dev, phys_addr, len, dir); +err_buf: + if (err != 0) + dev_dbg(host->dev, "Fall back to CPU I/O\n"); + return err; +} + +static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct atmel_nand_host *host = chip->priv; + + if (use_dma && len > mtd->oobsize) + /* only use DMA for bigger than oob size: better performances */ + if (atmel_nand_dma_op(mtd, buf, len, 1) == 0) + return; + + if (host->board.bus_width_16) + atmel_read_buf16(mtd, buf, len); + else + atmel_read_buf8(mtd, buf, len); +} + +static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct atmel_nand_host *host = chip->priv; + + if (use_dma && len > mtd->oobsize) + /* only use DMA for bigger than oob size: better performances */ + if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0) + return; + + if (host->board.bus_width_16) + atmel_write_buf16(mtd, buf, len); + else + atmel_write_buf8(mtd, buf, len); +} + +/* + * Return number of ecc bytes per sector according to sector size and + * correction capability + * + * Following table shows what at91 PMECC supported: + * Correction Capability Sector_512_bytes Sector_1024_bytes + * ===================== ================ ================= + * 2-bits 4-bytes 4-bytes + * 4-bits 7-bytes 7-bytes + * 8-bits 13-bytes 14-bytes + * 12-bits 20-bytes 21-bytes + * 24-bits 39-bytes 42-bytes + */ +static int pmecc_get_ecc_bytes(int cap, int sector_size) +{ + int m = 12 + sector_size / 512; + return (m * cap + 7) / 8; +} + +static void pmecc_config_ecc_layout(struct nand_ecclayout *layout, + int oobsize, int ecc_len) +{ + int i; + + layout->eccbytes = ecc_len; + + /* ECC will occupy the last ecc_len bytes continuously */ + for (i = 0; i < ecc_len; i++) + layout->eccpos[i] = oobsize - ecc_len + i; + + layout->oobfree[0].offset = 2; + layout->oobfree[0].length = + oobsize - ecc_len - layout->oobfree[0].offset; +} + +static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host) +{ + int table_size; + + table_size = host->pmecc_sector_size == 512 ? + PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024; + + return host->pmecc_rom_base + host->pmecc_lookup_table_offset + + table_size * sizeof(int16_t); +} + +static int pmecc_data_alloc(struct atmel_nand_host *host) +{ + const int cap = host->pmecc_corr_cap; + int size; + + size = (2 * cap + 1) * sizeof(int16_t); + host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL); + host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL); + host->pmecc_lmu = devm_kzalloc(host->dev, + (cap + 1) * sizeof(int16_t), GFP_KERNEL); + host->pmecc_smu = devm_kzalloc(host->dev, + (cap + 2) * size, GFP_KERNEL); + + size = (cap + 1) * sizeof(int); + host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL); + host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL); + host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL); + + if (!host->pmecc_partial_syn || + !host->pmecc_si || + !host->pmecc_lmu || + !host->pmecc_smu || + !host->pmecc_mu || + !host->pmecc_dmu || + !host->pmecc_delta) + return -ENOMEM; + + return 0; +} + +static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + int i; + uint32_t value; + + /* Fill odd syndromes */ + for (i = 0; i < host->pmecc_corr_cap; i++) { + value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2); + if (i & 1) + value >>= 16; + value &= 0xffff; + host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value; + } +} + +static void pmecc_substitute(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + int16_t __iomem *alpha_to = host->pmecc_alpha_to; + int16_t __iomem *index_of = host->pmecc_index_of; + int16_t *partial_syn = host->pmecc_partial_syn; + const int cap = host->pmecc_corr_cap; + int16_t *si; + int i, j; + + /* si[] is a table that holds the current syndrome value, + * an element of that table belongs to the field + */ + si = host->pmecc_si; + + memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1)); + + /* Computation 2t syndromes based on S(x) */ + /* Odd syndromes */ + for (i = 1; i < 2 * cap; i += 2) { + for (j = 0; j < host->pmecc_degree; j++) { + if (partial_syn[i] & ((unsigned short)0x1 << j)) + si[i] = readw_relaxed(alpha_to + i * j) ^ si[i]; + } + } + /* Even syndrome = (Odd syndrome) ** 2 */ + for (i = 2, j = 1; j <= cap; i = ++j << 1) { + if (si[j] == 0) { + si[i] = 0; + } else { + int16_t tmp; + + tmp = readw_relaxed(index_of + si[j]); + tmp = (tmp * 2) % host->pmecc_cw_len; + si[i] = readw_relaxed(alpha_to + tmp); + } + } + + return; +} + +static void pmecc_get_sigma(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + + int16_t *lmu = host->pmecc_lmu; + int16_t *si = host->pmecc_si; + int *mu = host->pmecc_mu; + int *dmu = host->pmecc_dmu; /* Discrepancy */ + int *delta = host->pmecc_delta; /* Delta order */ + int cw_len = host->pmecc_cw_len; + const int16_t cap = host->pmecc_corr_cap; + const int num = 2 * cap + 1; + int16_t __iomem *index_of = host->pmecc_index_of; + int16_t __iomem *alpha_to = host->pmecc_alpha_to; + int i, j, k; + uint32_t dmu_0_count, tmp; + int16_t *smu = host->pmecc_smu; + + /* index of largest delta */ + int ro; + int largest; + int diff; + + dmu_0_count = 0; + + /* First Row */ + + /* Mu */ + mu[0] = -1; + + memset(smu, 0, sizeof(int16_t) * num); + smu[0] = 1; + + /* discrepancy set to 1 */ + dmu[0] = 1; + /* polynom order set to 0 */ + lmu[0] = 0; + delta[0] = (mu[0] * 2 - lmu[0]) >> 1; + + /* Second Row */ + + /* Mu */ + mu[1] = 0; + /* Sigma(x) set to 1 */ + memset(&smu[num], 0, sizeof(int16_t) * num); + smu[num] = 1; + + /* discrepancy set to S1 */ + dmu[1] = si[1]; + + /* polynom order set to 0 */ + lmu[1] = 0; + + delta[1] = (mu[1] * 2 - lmu[1]) >> 1; + + /* Init the Sigma(x) last row */ + memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num); + + for (i = 1; i <= cap; i++) { + mu[i + 1] = i << 1; + /* Begin Computing Sigma (Mu+1) and L(mu) */ + /* check if discrepancy is set to 0 */ + if (dmu[i] == 0) { + dmu_0_count++; + + tmp = ((cap - (lmu[i] >> 1) - 1) / 2); + if ((cap - (lmu[i] >> 1) - 1) & 0x1) + tmp += 2; + else + tmp += 1; + + if (dmu_0_count == tmp) { + for (j = 0; j <= (lmu[i] >> 1) + 1; j++) + smu[(cap + 1) * num + j] = + smu[i * num + j]; + + lmu[cap + 1] = lmu[i]; + return; + } + + /* copy polynom */ + for (j = 0; j <= lmu[i] >> 1; j++) + smu[(i + 1) * num + j] = smu[i * num + j]; + + /* copy previous polynom order to the next */ + lmu[i + 1] = lmu[i]; + } else { + ro = 0; + largest = -1; + /* find largest delta with dmu != 0 */ + for (j = 0; j < i; j++) { + if ((dmu[j]) && (delta[j] > largest)) { + largest = delta[j]; + ro = j; + } + } + + /* compute difference */ + diff = (mu[i] - mu[ro]); + + /* Compute degree of the new smu polynomial */ + if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff)) + lmu[i + 1] = lmu[i]; + else + lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2; + + /* Init smu[i+1] with 0 */ + for (k = 0; k < num; k++) + smu[(i + 1) * num + k] = 0; + + /* Compute smu[i+1] */ + for (k = 0; k <= lmu[ro] >> 1; k++) { + int16_t a, b, c; + + if (!(smu[ro * num + k] && dmu[i])) + continue; + a = readw_relaxed(index_of + dmu[i]); + b = readw_relaxed(index_of + dmu[ro]); + c = readw_relaxed(index_of + smu[ro * num + k]); + tmp = a + (cw_len - b) + c; + a = readw_relaxed(alpha_to + tmp % cw_len); + smu[(i + 1) * num + (k + diff)] = a; + } + + for (k = 0; k <= lmu[i] >> 1; k++) + smu[(i + 1) * num + k] ^= smu[i * num + k]; + } + + /* End Computing Sigma (Mu+1) and L(mu) */ + /* In either case compute delta */ + delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1; + + /* Do not compute discrepancy for the last iteration */ + if (i >= cap) + continue; + + for (k = 0; k <= (lmu[i + 1] >> 1); k++) { + tmp = 2 * (i - 1); + if (k == 0) { + dmu[i + 1] = si[tmp + 3]; + } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) { + int16_t a, b, c; + a = readw_relaxed(index_of + + smu[(i + 1) * num + k]); + b = si[2 * (i - 1) + 3 - k]; + c = readw_relaxed(index_of + b); + tmp = a + c; + tmp %= cw_len; + dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^ + dmu[i + 1]; + } + } + } + + return; +} + +static int pmecc_err_location(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + unsigned long end_time; + const int cap = host->pmecc_corr_cap; + const int num = 2 * cap + 1; + int sector_size = host->pmecc_sector_size; + int err_nbr = 0; /* number of error */ + int roots_nbr; /* number of roots */ + int i; + uint32_t val; + int16_t *smu = host->pmecc_smu; + + pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE); + + for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) { + pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i, + smu[(cap + 1) * num + i]); + err_nbr++; + } + + val = (err_nbr - 1) << 16; + if (sector_size == 1024) + val |= 1; + + pmerrloc_writel(host->pmerrloc_base, ELCFG, val); + pmerrloc_writel(host->pmerrloc_base, ELEN, + sector_size * 8 + host->pmecc_degree * cap); + + end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS); + while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR) + & PMERRLOC_CALC_DONE)) { + if (unlikely(time_after(jiffies, end_time))) { + dev_err(host->dev, "PMECC: Timeout to calculate error location.\n"); + return -1; + } + cpu_relax(); + } + + roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR) + & PMERRLOC_ERR_NUM_MASK) >> 8; + /* Number of roots == degree of smu hence <= cap */ + if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1) + return err_nbr - 1; + + /* Number of roots does not match the degree of smu + * unable to correct error */ + return -1; +} + +static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc, + int sector_num, int extra_bytes, int err_nbr) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + int i = 0; + int byte_pos, bit_pos, sector_size, pos; + uint32_t tmp; + uint8_t err_byte; + + sector_size = host->pmecc_sector_size; + + while (err_nbr) { + tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1; + byte_pos = tmp / 8; + bit_pos = tmp % 8; + + if (byte_pos >= (sector_size + extra_bytes)) + BUG(); /* should never happen */ + + if (byte_pos < sector_size) { + err_byte = *(buf + byte_pos); + *(buf + byte_pos) ^= (1 << bit_pos); + + pos = sector_num * host->pmecc_sector_size + byte_pos; + dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", + pos, bit_pos, err_byte, *(buf + byte_pos)); + } else { + /* Bit flip in OOB area */ + tmp = sector_num * host->pmecc_bytes_per_sector + + (byte_pos - sector_size); + err_byte = ecc[tmp]; + ecc[tmp] ^= (1 << bit_pos); + + pos = tmp + nand_chip->ecc.layout->eccpos[0]; + dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", + pos, bit_pos, err_byte, ecc[tmp]); + } + + i++; + err_nbr--; + } + + return; +} + +static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf, + u8 *ecc) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + int i, err_nbr, eccbytes; + uint8_t *buf_pos; + int total_err = 0; + + eccbytes = nand_chip->ecc.bytes; + for (i = 0; i < eccbytes; i++) + if (ecc[i] != 0xff) + goto normal_check; + /* Erased page, return OK */ + return 0; + +normal_check: + for (i = 0; i < host->pmecc_sector_number; i++) { + err_nbr = 0; + if (pmecc_stat & 0x1) { + buf_pos = buf + i * host->pmecc_sector_size; + + pmecc_gen_syndrome(mtd, i); + pmecc_substitute(mtd); + pmecc_get_sigma(mtd); + + err_nbr = pmecc_err_location(mtd); + if (err_nbr == -1) { + dev_err(host->dev, "PMECC: Too many errors\n"); + mtd->ecc_stats.failed++; + return -EIO; + } else { + pmecc_correct_data(mtd, buf_pos, ecc, i, + host->pmecc_bytes_per_sector, err_nbr); + mtd->ecc_stats.corrected += err_nbr; + total_err += err_nbr; + } + } + pmecc_stat >>= 1; + } + + return total_err; +} + +static void pmecc_enable(struct atmel_nand_host *host, int ecc_op) +{ + u32 val; + + if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) { + dev_err(host->dev, "atmel_nand: wrong pmecc operation type!"); + return; + } + + pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST); + pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); + val = pmecc_readl_relaxed(host->ecc, CFG); + + if (ecc_op == NAND_ECC_READ) + pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP) + | PMECC_CFG_AUTO_ENABLE); + else + pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP) + & ~PMECC_CFG_AUTO_ENABLE); + + pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE); + pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA); +} + +static int atmel_nand_pmecc_read_page(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, int oob_required, int page) +{ + struct atmel_nand_host *host = chip->priv; + int eccsize = chip->ecc.size; + uint8_t *oob = chip->oob_poi; + uint32_t *eccpos = chip->ecc.layout->eccpos; + uint32_t stat; + unsigned long end_time; + int bitflips = 0; + + if (!host->nfc || !host->nfc->use_nfc_sram) + pmecc_enable(host, NAND_ECC_READ); + + chip->read_buf(mtd, buf, eccsize); + chip->read_buf(mtd, oob, mtd->oobsize); + + end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS); + while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) { + if (unlikely(time_after(jiffies, end_time))) { + dev_err(host->dev, "PMECC: Timeout to get error status.\n"); + return -EIO; + } + cpu_relax(); + } + + stat = pmecc_readl_relaxed(host->ecc, ISR); + if (stat != 0) { + bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]); + if (bitflips < 0) + /* uncorrectable errors */ + return 0; + } + + return bitflips; +} + +static int atmel_nand_pmecc_write_page(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf, int oob_required) +{ + struct atmel_nand_host *host = chip->priv; + uint32_t *eccpos = chip->ecc.layout->eccpos; + int i, j; + unsigned long end_time; + + if (!host->nfc || !host->nfc->write_by_sram) { + pmecc_enable(host, NAND_ECC_WRITE); + chip->write_buf(mtd, (u8 *)buf, mtd->writesize); + } + + end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS); + while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) { + if (unlikely(time_after(jiffies, end_time))) { + dev_err(host->dev, "PMECC: Timeout to get ECC value.\n"); + return -EIO; + } + cpu_relax(); + } + + for (i = 0; i < host->pmecc_sector_number; i++) { + for (j = 0; j < host->pmecc_bytes_per_sector; j++) { + int pos; + + pos = i * host->pmecc_bytes_per_sector + j; + chip->oob_poi[eccpos[pos]] = + pmecc_readb_ecc_relaxed(host->ecc, i, j); + } + } + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + +static void atmel_pmecc_core_init(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + uint32_t val = 0; + struct nand_ecclayout *ecc_layout; + + pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST); + pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); + + switch (host->pmecc_corr_cap) { + case 2: + val = PMECC_CFG_BCH_ERR2; + break; + case 4: + val = PMECC_CFG_BCH_ERR4; + break; + case 8: + val = PMECC_CFG_BCH_ERR8; + break; + case 12: + val = PMECC_CFG_BCH_ERR12; + break; + case 24: + val = PMECC_CFG_BCH_ERR24; + break; + } + + if (host->pmecc_sector_size == 512) + val |= PMECC_CFG_SECTOR512; + else if (host->pmecc_sector_size == 1024) + val |= PMECC_CFG_SECTOR1024; + + switch (host->pmecc_sector_number) { + case 1: + val |= PMECC_CFG_PAGE_1SECTOR; + break; + case 2: + val |= PMECC_CFG_PAGE_2SECTORS; + break; + case 4: + val |= PMECC_CFG_PAGE_4SECTORS; + break; + case 8: + val |= PMECC_CFG_PAGE_8SECTORS; + break; + } + + val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE + | PMECC_CFG_AUTO_DISABLE); + pmecc_writel(host->ecc, CFG, val); + + ecc_layout = nand_chip->ecc.layout; + pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1); + pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]); + pmecc_writel(host->ecc, EADDR, + ecc_layout->eccpos[ecc_layout->eccbytes - 1]); + /* See datasheet about PMECC Clock Control Register */ + pmecc_writel(host->ecc, CLK, 2); + pmecc_writel(host->ecc, IDR, 0xff); + pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE); +} + +/* + * Get minimum ecc requirements from NAND. + * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function + * will set them according to minimum ecc requirement. Otherwise, use the + * value in DTS file. + * return 0 if success. otherwise return error code. + */ +static int pmecc_choose_ecc(struct atmel_nand_host *host, + int *cap, int *sector_size) +{ + /* Get minimum ECC requirements */ + if (host->nand_chip.ecc_strength_ds) { + *cap = host->nand_chip.ecc_strength_ds; + *sector_size = host->nand_chip.ecc_step_ds; + dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n", + *cap, *sector_size); + } else { + *cap = 2; + *sector_size = 512; + dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n"); + } + + /* If device tree doesn't specify, use NAND's minimum ECC parameters */ + if (host->pmecc_corr_cap == 0) { + /* use the most fitable ecc bits (the near bigger one ) */ + if (*cap <= 2) + host->pmecc_corr_cap = 2; + else if (*cap <= 4) + host->pmecc_corr_cap = 4; + else if (*cap <= 8) + host->pmecc_corr_cap = 8; + else if (*cap <= 12) + host->pmecc_corr_cap = 12; + else if (*cap <= 24) + host->pmecc_corr_cap = 24; + else + return -EINVAL; + } + if (host->pmecc_sector_size == 0) { + /* use the most fitable sector size (the near smaller one ) */ + if (*sector_size >= 1024) + host->pmecc_sector_size = 1024; + else if (*sector_size >= 512) + host->pmecc_sector_size = 512; + else + return -EINVAL; + } + return 0; +} + +static int atmel_pmecc_nand_init_params(struct platform_device *pdev, + struct atmel_nand_host *host) +{ + struct mtd_info *mtd = &host->mtd; + struct nand_chip *nand_chip = &host->nand_chip; + struct resource *regs, *regs_pmerr, *regs_rom; + int cap, sector_size, err_no; + + err_no = pmecc_choose_ecc(host, &cap, §or_size); + if (err_no) { + dev_err(host->dev, "The NAND flash's ECC requirement are not support!"); + return err_no; + } + + if (cap > host->pmecc_corr_cap || + sector_size != host->pmecc_sector_size) + dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n"); + + cap = host->pmecc_corr_cap; + sector_size = host->pmecc_sector_size; + host->pmecc_lookup_table_offset = (sector_size == 512) ? + host->pmecc_lookup_table_offset_512 : + host->pmecc_lookup_table_offset_1024; + + dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n", + cap, sector_size); + + regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); + if (!regs) { + dev_warn(host->dev, + "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n"); + nand_chip->ecc.mode = NAND_ECC_SOFT; + return 0; + } + + host->ecc = devm_ioremap_resource(&pdev->dev, regs); + if (IS_ERR(host->ecc)) { + dev_err(host->dev, "ioremap failed\n"); + err_no = PTR_ERR(host->ecc); + goto err; + } + + regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2); + host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr); + if (IS_ERR(host->pmerrloc_base)) { + dev_err(host->dev, + "Can not get I/O resource for PMECC ERRLOC controller!\n"); + err_no = PTR_ERR(host->pmerrloc_base); + goto err; + } + + regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3); + host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev, regs_rom); + if (IS_ERR(host->pmecc_rom_base)) { + dev_err(host->dev, "Can not get I/O resource for ROM!\n"); + err_no = PTR_ERR(host->pmecc_rom_base); + goto err; + } + + /* ECC is calculated for the whole page (1 step) */ + nand_chip->ecc.size = mtd->writesize; + + /* set ECC page size and oob layout */ + switch (mtd->writesize) { + case 2048: + host->pmecc_degree = (sector_size == 512) ? + PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14; + host->pmecc_cw_len = (1 << host->pmecc_degree) - 1; + host->pmecc_sector_number = mtd->writesize / sector_size; + host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes( + cap, sector_size); + host->pmecc_alpha_to = pmecc_get_alpha_to(host); + host->pmecc_index_of = host->pmecc_rom_base + + host->pmecc_lookup_table_offset; + + nand_chip->ecc.steps = 1; + nand_chip->ecc.strength = cap; + nand_chip->ecc.bytes = host->pmecc_bytes_per_sector * + host->pmecc_sector_number; + if (nand_chip->ecc.bytes > mtd->oobsize - 2) { + dev_err(host->dev, "No room for ECC bytes\n"); + err_no = -EINVAL; + goto err; + } + pmecc_config_ecc_layout(&atmel_pmecc_oobinfo, + mtd->oobsize, + nand_chip->ecc.bytes); + nand_chip->ecc.layout = &atmel_pmecc_oobinfo; + break; + case 512: + case 1024: + case 4096: + /* TODO */ + dev_warn(host->dev, + "Unsupported page size for PMECC, use Software ECC\n"); + default: + /* page size not handled by HW ECC */ + /* switching back to soft ECC */ + nand_chip->ecc.mode = NAND_ECC_SOFT; + return 0; + } + + /* Allocate data for PMECC computation */ + err_no = pmecc_data_alloc(host); + if (err_no) { + dev_err(host->dev, + "Cannot allocate memory for PMECC computation!\n"); + goto err; + } + + nand_chip->options |= NAND_NO_SUBPAGE_WRITE; + nand_chip->ecc.read_page = atmel_nand_pmecc_read_page; + nand_chip->ecc.write_page = atmel_nand_pmecc_write_page; + + atmel_pmecc_core_init(mtd); + + return 0; + +err: + return err_no; +} + /* * Calculate HW ECC * @@ -215,9 +1269,10 @@ static int atmel_nand_calculate(struct mtd_info *mtd, * mtd: mtd info structure * chip: nand chip info structure * buf: buffer to store read data + * oob_required: caller expects OOB data read to chip->oob_poi */ -static int atmel_nand_read_page(struct mtd_info *mtd, - struct nand_chip *chip, uint8_t *buf, int page) +static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) { int eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; @@ -226,6 +1281,7 @@ static int atmel_nand_read_page(struct mtd_info *mtd, uint8_t *oob = chip->oob_poi; uint8_t *ecc_pos; int stat; + unsigned int max_bitflips = 0; /* * Errata: ALE is incorrectly wired up to the ECC controller @@ -235,10 +1291,9 @@ static int atmel_nand_read_page(struct mtd_info *mtd, * Workaround: Reset the parity registers before reading the * actual data. */ - if (cpu_is_at32ap7000()) { - struct atmel_nand_host *host = chip->priv; + struct atmel_nand_host *host = chip->priv; + if (host->board.need_reset_workaround) ecc_writel(host->ecc, CR, ATMEL_ECC_RST); - } /* read the page */ chip->read_buf(mtd, p, eccsize); @@ -262,10 +1317,12 @@ static int atmel_nand_read_page(struct mtd_info *mtd, /* check if there's an error */ stat = chip->ecc.correct(mtd, p, oob, NULL); - if (stat < 0) + if (stat < 0) { mtd->ecc_stats.failed++; - else + } else { mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } /* get back to oob start (end of page) */ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1); @@ -273,7 +1330,7 @@ static int atmel_nand_read_page(struct mtd_info *mtd, /* read the oob */ chip->read_buf(mtd, oob, mtd->oobsize); - return 0; + return max_bitflips; } /* @@ -357,58 +1414,583 @@ static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat, */ static void atmel_nand_hwctl(struct mtd_info *mtd, int mode) { - if (cpu_is_at32ap7000()) { - struct nand_chip *nand_chip = mtd->priv; - struct atmel_nand_host *host = nand_chip->priv; + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + + if (host->board.need_reset_workaround) ecc_writel(host->ecc, CR, ATMEL_ECC_RST); +} + +static int atmel_of_init_port(struct atmel_nand_host *host, + struct device_node *np) +{ + u32 val; + u32 offset[2]; + int ecc_mode; + struct atmel_nand_data *board = &host->board; + enum of_gpio_flags flags = 0; + + if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) { + if (val >= 32) { + dev_err(host->dev, "invalid addr-offset %u\n", val); + return -EINVAL; + } + board->ale = val; + } + + if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) { + if (val >= 32) { + dev_err(host->dev, "invalid cmd-offset %u\n", val); + return -EINVAL; + } + board->cle = val; + } + + ecc_mode = of_get_nand_ecc_mode(np); + + board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode; + + board->on_flash_bbt = of_get_nand_on_flash_bbt(np); + + board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma"); + + if (of_get_nand_bus_width(np) == 16) + board->bus_width_16 = 1; + + board->rdy_pin = of_get_gpio_flags(np, 0, &flags); + board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW); + + board->enable_pin = of_get_gpio(np, 1); + board->det_pin = of_get_gpio(np, 2); + + host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc"); + + /* load the nfc driver if there is */ + of_platform_populate(np, NULL, NULL, host->dev); + + if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc) + return 0; /* Not using PMECC */ + + /* use PMECC, get correction capability, sector size and lookup + * table offset. + * If correction bits and sector size are not specified, then find + * them from NAND ONFI parameters. + */ + if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) { + if ((val != 2) && (val != 4) && (val != 8) && (val != 12) && + (val != 24)) { + dev_err(host->dev, + "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n", + val); + return -EINVAL; + } + host->pmecc_corr_cap = (u8)val; } + + if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) { + if ((val != 512) && (val != 1024)) { + dev_err(host->dev, + "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n", + val); + return -EINVAL; + } + host->pmecc_sector_size = (u16)val; + } + + if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset", + offset, 2) != 0) { + dev_err(host->dev, "Cannot get PMECC lookup table offset\n"); + return -EINVAL; + } + if (!offset[0] && !offset[1]) { + dev_err(host->dev, "Invalid PMECC lookup table offset\n"); + return -EINVAL; + } + host->pmecc_lookup_table_offset_512 = offset[0]; + host->pmecc_lookup_table_offset_1024 = offset[1]; + + return 0; +} + +static int atmel_hw_nand_init_params(struct platform_device *pdev, + struct atmel_nand_host *host) +{ + struct mtd_info *mtd = &host->mtd; + struct nand_chip *nand_chip = &host->nand_chip; + struct resource *regs; + + regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); + if (!regs) { + dev_err(host->dev, + "Can't get I/O resource regs, use software ECC\n"); + nand_chip->ecc.mode = NAND_ECC_SOFT; + return 0; + } + + host->ecc = devm_ioremap_resource(&pdev->dev, regs); + if (IS_ERR(host->ecc)) { + dev_err(host->dev, "ioremap failed\n"); + return PTR_ERR(host->ecc); + } + + /* ECC is calculated for the whole page (1 step) */ + nand_chip->ecc.size = mtd->writesize; + + /* set ECC page size and oob layout */ + switch (mtd->writesize) { + case 512: + nand_chip->ecc.layout = &atmel_oobinfo_small; + ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528); + break; + case 1024: + nand_chip->ecc.layout = &atmel_oobinfo_large; + ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056); + break; + case 2048: + nand_chip->ecc.layout = &atmel_oobinfo_large; + ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112); + break; + case 4096: + nand_chip->ecc.layout = &atmel_oobinfo_large; + ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224); + break; + default: + /* page size not handled by HW ECC */ + /* switching back to soft ECC */ + nand_chip->ecc.mode = NAND_ECC_SOFT; + return 0; + } + + /* set up for HW ECC */ + nand_chip->ecc.calculate = atmel_nand_calculate; + nand_chip->ecc.correct = atmel_nand_correct; + nand_chip->ecc.hwctl = atmel_nand_hwctl; + nand_chip->ecc.read_page = atmel_nand_read_page; + nand_chip->ecc.bytes = 4; + nand_chip->ecc.strength = 1; + + return 0; +} + +/* SMC interrupt service routine */ +static irqreturn_t hsmc_interrupt(int irq, void *dev_id) +{ + struct atmel_nand_host *host = dev_id; + u32 status, mask, pending; + irqreturn_t ret = IRQ_HANDLED; + + status = nfc_readl(host->nfc->hsmc_regs, SR); + mask = nfc_readl(host->nfc->hsmc_regs, IMR); + pending = status & mask; + + if (pending & NFC_SR_XFR_DONE) { + complete(&host->nfc->comp_nfc); + nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE); + } else if (pending & NFC_SR_RB_EDGE) { + complete(&host->nfc->comp_nfc); + nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE); + } else if (pending & NFC_SR_CMD_DONE) { + complete(&host->nfc->comp_nfc); + nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE); + } else { + ret = IRQ_NONE; + } + + return ret; } -#ifdef CONFIG_MTD_PARTITIONS -static const char *part_probes[] = { "cmdlinepart", NULL }; -#endif +/* NFC(Nand Flash Controller) related functions */ +static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag) +{ + unsigned long timeout; + init_completion(&host->nfc->comp_nfc); + + /* Enable interrupt that need to wait for */ + nfc_writel(host->nfc->hsmc_regs, IER, flag); + + timeout = wait_for_completion_timeout(&host->nfc->comp_nfc, + msecs_to_jiffies(NFC_TIME_OUT_MS)); + if (timeout) + return 0; + + /* Time out to wait for the interrupt */ + dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag); + return -ETIMEDOUT; +} + +static int nfc_send_command(struct atmel_nand_host *host, + unsigned int cmd, unsigned int addr, unsigned char cycle0) +{ + unsigned long timeout; + dev_dbg(host->dev, + "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n", + cmd, addr, cycle0); + + timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS); + while (nfc_cmd_readl(NFCADDR_CMD_NFCBUSY, host->nfc->base_cmd_regs) + & NFCADDR_CMD_NFCBUSY) { + if (time_after(jiffies, timeout)) { + dev_err(host->dev, + "Time out to wait CMD_NFCBUSY ready!\n"); + return -ETIMEDOUT; + } + } + nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0); + nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs); + return nfc_wait_interrupt(host, NFC_SR_CMD_DONE); +} + +static int nfc_device_ready(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + if (!nfc_wait_interrupt(host, NFC_SR_RB_EDGE)) + return 1; + return 0; +} + +static void nfc_select_chip(struct mtd_info *mtd, int chip) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + if (chip == -1) + nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE); + else + nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE); +} + +static int nfc_make_addr(struct mtd_info *mtd, int command, int column, + int page_addr, unsigned int *addr1234, unsigned int *cycle0) +{ + struct nand_chip *chip = mtd->priv; + + int acycle = 0; + unsigned char addr_bytes[8]; + int index = 0, bit_shift; + + BUG_ON(addr1234 == NULL || cycle0 == NULL); + + *cycle0 = 0; + *addr1234 = 0; + + if (column != -1) { + if (chip->options & NAND_BUSWIDTH_16 && + !nand_opcode_8bits(command)) + column >>= 1; + addr_bytes[acycle++] = column & 0xff; + if (mtd->writesize > 512) + addr_bytes[acycle++] = (column >> 8) & 0xff; + } + + if (page_addr != -1) { + addr_bytes[acycle++] = page_addr & 0xff; + addr_bytes[acycle++] = (page_addr >> 8) & 0xff; + if (chip->chipsize > (128 << 20)) + addr_bytes[acycle++] = (page_addr >> 16) & 0xff; + } + + if (acycle > 4) + *cycle0 = addr_bytes[index++]; + + for (bit_shift = 0; index < acycle; bit_shift += 8) + *addr1234 += addr_bytes[index++] << bit_shift; + + /* return acycle in cmd register */ + return acycle << NFCADDR_CMD_ACYCLE_BIT_POS; +} + +static void nfc_nand_command(struct mtd_info *mtd, unsigned int command, + int column, int page_addr) +{ + struct nand_chip *chip = mtd->priv; + struct atmel_nand_host *host = chip->priv; + unsigned long timeout; + unsigned int nfc_addr_cmd = 0; + + unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS; + + /* Set default settings: no cmd2, no addr cycle. read from nand */ + unsigned int cmd2 = 0; + unsigned int vcmd2 = 0; + int acycle = NFCADDR_CMD_ACYCLE_NONE; + int csid = NFCADDR_CMD_CSID_3; + int dataen = NFCADDR_CMD_DATADIS; + int nfcwr = NFCADDR_CMD_NFCRD; + unsigned int addr1234 = 0; + unsigned int cycle0 = 0; + bool do_addr = true; + host->nfc->data_in_sram = NULL; + + dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n", + __func__, command, column, page_addr); + + switch (command) { + case NAND_CMD_RESET: + nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr; + nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0); + udelay(chip->chip_delay); + + nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1); + timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS); + while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) { + if (time_after(jiffies, timeout)) { + dev_err(host->dev, + "Time out to wait status ready!\n"); + break; + } + } + return; + case NAND_CMD_STATUS: + do_addr = false; + break; + case NAND_CMD_PARAM: + case NAND_CMD_READID: + do_addr = false; + acycle = NFCADDR_CMD_ACYCLE_1; + if (column != -1) + addr1234 = column; + break; + case NAND_CMD_RNDOUT: + cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS; + vcmd2 = NFCADDR_CMD_VCMD2; + break; + case NAND_CMD_READ0: + case NAND_CMD_READOOB: + if (command == NAND_CMD_READOOB) { + column += mtd->writesize; + command = NAND_CMD_READ0; /* only READ0 is valid */ + cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS; + } + if (host->nfc->use_nfc_sram) { + /* Enable Data transfer to sram */ + dataen = NFCADDR_CMD_DATAEN; + + /* Need enable PMECC now, since NFC will transfer + * data in bus after sending nfc read command. + */ + if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) + pmecc_enable(host, NAND_ECC_READ); + } + + cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS; + vcmd2 = NFCADDR_CMD_VCMD2; + break; + /* For prgramming command, the cmd need set to write enable */ + case NAND_CMD_PAGEPROG: + case NAND_CMD_SEQIN: + case NAND_CMD_RNDIN: + nfcwr = NFCADDR_CMD_NFCWR; + if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN) + dataen = NFCADDR_CMD_DATAEN; + break; + default: + break; + } + + if (do_addr) + acycle = nfc_make_addr(mtd, command, column, page_addr, + &addr1234, &cycle0); + + nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr; + nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0); + + if (dataen == NFCADDR_CMD_DATAEN) + if (nfc_wait_interrupt(host, NFC_SR_XFR_DONE)) + dev_err(host->dev, "something wrong, No XFR_DONE interrupt comes.\n"); + + /* + * Program and erase have their own busy handlers status, sequential + * in, and deplete1 need no delay. + */ + switch (command) { + case NAND_CMD_CACHEDPROG: + case NAND_CMD_PAGEPROG: + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_RNDIN: + case NAND_CMD_STATUS: + case NAND_CMD_RNDOUT: + case NAND_CMD_SEQIN: + case NAND_CMD_READID: + return; + + case NAND_CMD_READ0: + if (dataen == NFCADDR_CMD_DATAEN) { + host->nfc->data_in_sram = host->nfc->sram_bank0 + + nfc_get_sram_off(host); + return; + } + /* fall through */ + default: + nfc_wait_interrupt(host, NFC_SR_RB_EDGE); + } +} + +static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip, + uint32_t offset, int data_len, const uint8_t *buf, + int oob_required, int page, int cached, int raw) +{ + int cfg, len; + int status = 0; + struct atmel_nand_host *host = chip->priv; + void __iomem *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host); + + /* Subpage write is not supported */ + if (offset || (data_len < mtd->writesize)) + return -EINVAL; + + cfg = nfc_readl(host->nfc->hsmc_regs, CFG); + len = mtd->writesize; + + if (unlikely(raw)) { + len += mtd->oobsize; + nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE); + } else + nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE); + + /* Copy page data to sram that will write to nand via NFC */ + if (use_dma) { + if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0) + /* Fall back to use cpu copy */ + memcpy32_toio(sram, buf, len); + } else { + memcpy32_toio(sram, buf, len); + } + + if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) + /* + * When use NFC sram, need set up PMECC before send + * NAND_CMD_SEQIN command. Since when the nand command + * is sent, nfc will do transfer from sram and nand. + */ + pmecc_enable(host, NAND_ECC_WRITE); + + host->nfc->will_write_sram = true; + chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); + host->nfc->will_write_sram = false; + + if (likely(!raw)) + /* Need to write ecc into oob */ + status = chip->ecc.write_page(mtd, chip, buf, oob_required); + + if (status < 0) + return status; + + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + status = chip->waitfunc(mtd, chip); + + if ((status & NAND_STATUS_FAIL) && (chip->errstat)) + status = chip->errstat(mtd, chip, FL_WRITING, status, page); + + if (status & NAND_STATUS_FAIL) + return -EIO; + + return 0; +} + +static int nfc_sram_init(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct atmel_nand_host *host = chip->priv; + int res = 0; + + /* Initialize the NFC CFG register */ + unsigned int cfg_nfc = 0; + + /* set page size and oob layout */ + switch (mtd->writesize) { + case 512: + cfg_nfc = NFC_CFG_PAGESIZE_512; + break; + case 1024: + cfg_nfc = NFC_CFG_PAGESIZE_1024; + break; + case 2048: + cfg_nfc = NFC_CFG_PAGESIZE_2048; + break; + case 4096: + cfg_nfc = NFC_CFG_PAGESIZE_4096; + break; + case 8192: + cfg_nfc = NFC_CFG_PAGESIZE_8192; + break; + default: + dev_err(host->dev, "Unsupported page size for NFC.\n"); + res = -ENXIO; + return res; + } + + /* oob bytes size = (NFCSPARESIZE + 1) * 4 + * Max support spare size is 512 bytes. */ + cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS + & NFC_CFG_NFC_SPARESIZE); + /* default set a max timeout */ + cfg_nfc |= NFC_CFG_RSPARE | + NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL; + + nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc); + + host->nfc->will_write_sram = false; + nfc_set_sram_bank(host, 0); + + /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */ + if (host->nfc->write_by_sram) { + if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) || + chip->ecc.mode == NAND_ECC_NONE) + chip->write_page = nfc_sram_write_page; + else + host->nfc->write_by_sram = false; + } + + dev_info(host->dev, "Using NFC Sram read %s\n", + host->nfc->write_by_sram ? "and write" : ""); + return 0; +} + +static struct platform_driver atmel_nand_nfc_driver; /* * Probe for the NAND device. */ -static int __init atmel_nand_probe(struct platform_device *pdev) +static int atmel_nand_probe(struct platform_device *pdev) { struct atmel_nand_host *host; struct mtd_info *mtd; struct nand_chip *nand_chip; - struct resource *regs; struct resource *mem; - int res; - -#ifdef CONFIG_MTD_PARTITIONS - struct mtd_partition *partitions = NULL; - int num_partitions = 0; -#endif - - mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); - if (!mem) { - printk(KERN_ERR "atmel_nand: can't get I/O resource mem\n"); - return -ENXIO; - } + struct mtd_part_parser_data ppdata = {}; + int res, irq; /* Allocate memory for the device structure (and zero it) */ - host = kzalloc(sizeof(struct atmel_nand_host), GFP_KERNEL); - if (!host) { - printk(KERN_ERR "atmel_nand: failed to allocate device structure.\n"); + host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); + if (!host) return -ENOMEM; - } - host->io_base = ioremap(mem->start, mem->end - mem->start + 1); - if (host->io_base == NULL) { - printk(KERN_ERR "atmel_nand: ioremap failed\n"); - res = -EIO; + res = platform_driver_register(&atmel_nand_nfc_driver); + if (res) + dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n"); + + mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); + host->io_base = devm_ioremap_resource(&pdev->dev, mem); + if (IS_ERR(host->io_base)) { + dev_err(&pdev->dev, "atmel_nand: ioremap resource failed\n"); + res = PTR_ERR(host->io_base); goto err_nand_ioremap; } + host->io_phys = (dma_addr_t)mem->start; mtd = &host->mtd; nand_chip = &host->nand_chip; - host->board = pdev->dev.platform_data; host->dev = &pdev->dev; + if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) { + /* Only when CONFIG_OF is enabled of_node can be parsed */ + res = atmel_of_init_port(host, pdev->dev.of_node); + if (res) + goto err_nand_ioremap; + } else { + memcpy(&host->board, dev_get_platdata(&pdev->dev), + sizeof(struct atmel_nand_data)); + } nand_chip->priv = host; /* link the private data structures */ mtd->priv = nand_chip; @@ -417,62 +1999,100 @@ static int __init atmel_nand_probe(struct platform_device *pdev) /* Set address of NAND IO lines */ nand_chip->IO_ADDR_R = host->io_base; nand_chip->IO_ADDR_W = host->io_base; - nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl; - if (host->board->rdy_pin) - nand_chip->dev_ready = atmel_nand_device_ready; + if (nand_nfc.is_initialized) { + /* NFC driver is probed and initialized */ + host->nfc = &nand_nfc; - regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); - if (!regs && hard_ecc) { - printk(KERN_ERR "atmel_nand: can't get I/O resource " - "regs\nFalling back on software ECC\n"); - } + nand_chip->select_chip = nfc_select_chip; + nand_chip->dev_ready = nfc_device_ready; + nand_chip->cmdfunc = nfc_nand_command; - nand_chip->ecc.mode = NAND_ECC_SOFT; /* enable ECC */ - if (no_ecc) - nand_chip->ecc.mode = NAND_ECC_NONE; - if (hard_ecc && regs) { - host->ecc = ioremap(regs->start, regs->end - regs->start + 1); - if (host->ecc == NULL) { - printk(KERN_ERR "atmel_nand: ioremap failed\n"); - res = -EIO; - goto err_ecc_ioremap; + /* Initialize the interrupt for NFC */ + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_err(host->dev, "Cannot get HSMC irq!\n"); + res = irq; + goto err_nand_ioremap; } - nand_chip->ecc.mode = NAND_ECC_HW; - nand_chip->ecc.calculate = atmel_nand_calculate; - nand_chip->ecc.correct = atmel_nand_correct; - nand_chip->ecc.hwctl = atmel_nand_hwctl; - nand_chip->ecc.read_page = atmel_nand_read_page; - nand_chip->ecc.bytes = 4; + + res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt, + 0, "hsmc", host); + if (res) { + dev_err(&pdev->dev, "Unable to request HSMC irq %d\n", + irq); + goto err_nand_ioremap; + } + } else { + res = atmel_nand_set_enable_ready_pins(mtd); + if (res) + goto err_nand_ioremap; + + nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl; } + nand_chip->ecc.mode = host->board.ecc_mode; nand_chip->chip_delay = 20; /* 20us command delay time */ - if (host->board->bus_width_16) { /* 16-bit bus width */ + if (host->board.bus_width_16) /* 16-bit bus width */ nand_chip->options |= NAND_BUSWIDTH_16; - nand_chip->read_buf = atmel_read_buf16; - nand_chip->write_buf = atmel_write_buf16; - } else { - nand_chip->read_buf = atmel_read_buf; - nand_chip->write_buf = atmel_write_buf; - } + + nand_chip->read_buf = atmel_read_buf; + nand_chip->write_buf = atmel_write_buf; platform_set_drvdata(pdev, host); atmel_nand_enable(host); - if (host->board->det_pin) { - if (gpio_get_value(host->board->det_pin)) { - printk(KERN_INFO "No SmartMedia card inserted.\n"); + if (gpio_is_valid(host->board.det_pin)) { + res = devm_gpio_request(&pdev->dev, + host->board.det_pin, "nand_det"); + if (res < 0) { + dev_err(&pdev->dev, + "can't request det gpio %d\n", + host->board.det_pin); + goto err_no_card; + } + + res = gpio_direction_input(host->board.det_pin); + if (res < 0) { + dev_err(&pdev->dev, + "can't request input direction det gpio %d\n", + host->board.det_pin); + goto err_no_card; + } + + if (gpio_get_value(host->board.det_pin)) { + dev_info(&pdev->dev, "No SmartMedia card inserted.\n"); res = -ENXIO; goto err_no_card; } } - if (on_flash_bbt) { - printk(KERN_INFO "atmel_nand: Use On Flash BBT\n"); - nand_chip->options |= NAND_USE_FLASH_BBT; + if (host->board.on_flash_bbt || on_flash_bbt) { + dev_info(&pdev->dev, "Use On Flash BBT\n"); + nand_chip->bbt_options |= NAND_BBT_USE_FLASH; } + if (!host->board.has_dma) + use_dma = 0; + + if (use_dma) { + dma_cap_mask_t mask; + + dma_cap_zero(mask); + dma_cap_set(DMA_MEMCPY, mask); + host->dma_chan = dma_request_channel(mask, NULL, NULL); + if (!host->dma_chan) { + dev_err(host->dev, "Failed to request DMA channel\n"); + use_dma = 0; + } + } + if (use_dma) + dev_info(host->dev, "Using %s for DMA transfers.\n", + dma_chan_name(host->dma_chan)); + else + dev_info(host->dev, "No DMA support for NAND access.\n"); + /* first scan to find the device and get the page size */ if (nand_scan_ident(mtd, 1, NULL)) { res = -ENXIO; @@ -480,39 +2100,21 @@ static int __init atmel_nand_probe(struct platform_device *pdev) } if (nand_chip->ecc.mode == NAND_ECC_HW) { - /* ECC is calculated for the whole page (1 step) */ - nand_chip->ecc.size = mtd->writesize; - - /* set ECC page size and oob layout */ - switch (mtd->writesize) { - case 512: - nand_chip->ecc.layout = &atmel_oobinfo_small; - ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528); - break; - case 1024: - nand_chip->ecc.layout = &atmel_oobinfo_large; - ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056); - break; - case 2048: - nand_chip->ecc.layout = &atmel_oobinfo_large; - ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112); - break; - case 4096: - nand_chip->ecc.layout = &atmel_oobinfo_large; - ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224); - break; - default: - /* page size not handled by HW ECC */ - /* switching back to soft ECC */ - nand_chip->ecc.mode = NAND_ECC_SOFT; - nand_chip->ecc.calculate = NULL; - nand_chip->ecc.correct = NULL; - nand_chip->ecc.hwctl = NULL; - nand_chip->ecc.read_page = NULL; - nand_chip->ecc.postpad = 0; - nand_chip->ecc.prepad = 0; - nand_chip->ecc.bytes = 0; - break; + if (host->has_pmecc) + res = atmel_pmecc_nand_init_params(pdev, host); + else + res = atmel_hw_nand_init_params(pdev, host); + + if (res != 0) + goto err_hw_ecc; + } + + /* initialize the nfc configuration register */ + if (host->nfc && host->nfc->use_nfc_sram) { + res = nfc_sram_init(mtd); + if (res) { + host->nfc->use_nfc_sram = false; + dev_err(host->dev, "Disable use nfc sram for data transfer.\n"); } } @@ -522,52 +2124,30 @@ static int __init atmel_nand_probe(struct platform_device *pdev) goto err_scan_tail; } -#ifdef CONFIG_MTD_PARTITIONS -#ifdef CONFIG_MTD_CMDLINE_PARTS mtd->name = "atmel_nand"; - num_partitions = parse_mtd_partitions(mtd, part_probes, - &partitions, 0); -#endif - if (num_partitions <= 0 && host->board->partition_info) - partitions = host->board->partition_info(mtd->size, - &num_partitions); - - if ((!partitions) || (num_partitions == 0)) { - printk(KERN_ERR "atmel_nand: No partitions defined, or unsupported device.\n"); - res = -ENXIO; - goto err_no_partitions; - } - - res = add_mtd_partitions(mtd, partitions, num_partitions); -#else - res = add_mtd_device(mtd); -#endif - + ppdata.of_node = pdev->dev.of_node; + res = mtd_device_parse_register(mtd, NULL, &ppdata, + host->board.parts, host->board.num_parts); if (!res) return res; -#ifdef CONFIG_MTD_PARTITIONS -err_no_partitions: -#endif - nand_release(mtd); err_scan_tail: + if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) + pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); +err_hw_ecc: err_scan_ident: err_no_card: atmel_nand_disable(host); - platform_set_drvdata(pdev, NULL); - if (host->ecc) - iounmap(host->ecc); -err_ecc_ioremap: - iounmap(host->io_base); + if (host->dma_chan) + dma_release_channel(host->dma_chan); err_nand_ioremap: - kfree(host); return res; } /* * Remove a NAND device. */ -static int __exit atmel_nand_remove(struct platform_device *pdev) +static int atmel_nand_remove(struct platform_device *pdev) { struct atmel_nand_host *host = platform_get_drvdata(pdev); struct mtd_info *mtd = &host->mtd; @@ -576,36 +2156,90 @@ static int __exit atmel_nand_remove(struct platform_device *pdev) atmel_nand_disable(host); - if (host->ecc) - iounmap(host->ecc); - iounmap(host->io_base); - kfree(host); + if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) { + pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); + pmerrloc_writel(host->pmerrloc_base, ELDIS, + PMERRLOC_DISABLE); + } + + if (host->dma_chan) + dma_release_channel(host->dma_chan); + + platform_driver_unregister(&atmel_nand_nfc_driver); return 0; } -static struct platform_driver atmel_nand_driver = { - .remove = __exit_p(atmel_nand_remove), - .driver = { - .name = "atmel_nand", - .owner = THIS_MODULE, - }, +static const struct of_device_id atmel_nand_dt_ids[] = { + { .compatible = "atmel,at91rm9200-nand" }, + { /* sentinel */ } }; -static int __init atmel_nand_init(void) +MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids); + +static int atmel_nand_nfc_probe(struct platform_device *pdev) { - return platform_driver_probe(&atmel_nand_driver, atmel_nand_probe); + struct atmel_nfc *nfc = &nand_nfc; + struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram; + + nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); + nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs); + if (IS_ERR(nfc->base_cmd_regs)) + return PTR_ERR(nfc->base_cmd_regs); + + nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); + nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs); + if (IS_ERR(nfc->hsmc_regs)) + return PTR_ERR(nfc->hsmc_regs); + + nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2); + if (nfc_sram) { + nfc->sram_bank0 = devm_ioremap_resource(&pdev->dev, nfc_sram); + if (IS_ERR(nfc->sram_bank0)) { + dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n", + PTR_ERR(nfc->sram_bank0)); + } else { + nfc->use_nfc_sram = true; + nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start; + + if (pdev->dev.of_node) + nfc->write_by_sram = of_property_read_bool( + pdev->dev.of_node, + "atmel,write-by-sram"); + } + } + + nfc->is_initialized = true; + dev_info(&pdev->dev, "NFC is probed.\n"); + return 0; } +static const struct of_device_id atmel_nand_nfc_match[] = { + { .compatible = "atmel,sama5d3-nfc" }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match); -static void __exit atmel_nand_exit(void) -{ - platform_driver_unregister(&atmel_nand_driver); -} +static struct platform_driver atmel_nand_nfc_driver = { + .driver = { + .name = "atmel_nand_nfc", + .owner = THIS_MODULE, + .of_match_table = of_match_ptr(atmel_nand_nfc_match), + }, + .probe = atmel_nand_nfc_probe, +}; +static struct platform_driver atmel_nand_driver = { + .probe = atmel_nand_probe, + .remove = atmel_nand_remove, + .driver = { + .name = "atmel_nand", + .owner = THIS_MODULE, + .of_match_table = of_match_ptr(atmel_nand_dt_ids), + }, +}; -module_init(atmel_nand_init); -module_exit(atmel_nand_exit); +module_platform_driver(atmel_nand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Rick Bronson"); diff --git a/drivers/mtd/nand/atmel_nand_ecc.h b/drivers/mtd/nand/atmel_nand_ecc.h index 578c776e135..8a1e9a68675 100644 --- a/drivers/mtd/nand/atmel_nand_ecc.h +++ b/drivers/mtd/nand/atmel_nand_ecc.h @@ -3,7 +3,7 @@ * Based on AT91SAM9260 datasheet revision B. * * Copyright (C) 2007 Andrew Victor - * Copyright (C) 2007 Atmel Corporation. + * Copyright (C) 2007 - 2012 Atmel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the @@ -36,4 +36,116 @@ #define ATMEL_ECC_NPR 0x10 /* NParity register */ #define ATMEL_ECC_NPARITY (0xffff << 0) /* NParity */ +/* PMECC Register Definitions */ +#define ATMEL_PMECC_CFG 0x000 /* Configuration Register */ +#define PMECC_CFG_BCH_ERR2 (0 << 0) +#define PMECC_CFG_BCH_ERR4 (1 << 0) +#define PMECC_CFG_BCH_ERR8 (2 << 0) +#define PMECC_CFG_BCH_ERR12 (3 << 0) +#define PMECC_CFG_BCH_ERR24 (4 << 0) + +#define PMECC_CFG_SECTOR512 (0 << 4) +#define PMECC_CFG_SECTOR1024 (1 << 4) + +#define PMECC_CFG_PAGE_1SECTOR (0 << 8) +#define PMECC_CFG_PAGE_2SECTORS (1 << 8) +#define PMECC_CFG_PAGE_4SECTORS (2 << 8) +#define PMECC_CFG_PAGE_8SECTORS (3 << 8) + +#define PMECC_CFG_READ_OP (0 << 12) +#define PMECC_CFG_WRITE_OP (1 << 12) + +#define PMECC_CFG_SPARE_ENABLE (1 << 16) +#define PMECC_CFG_SPARE_DISABLE (0 << 16) + +#define PMECC_CFG_AUTO_ENABLE (1 << 20) +#define PMECC_CFG_AUTO_DISABLE (0 << 20) + +#define ATMEL_PMECC_SAREA 0x004 /* Spare area size */ +#define ATMEL_PMECC_SADDR 0x008 /* PMECC starting address */ +#define ATMEL_PMECC_EADDR 0x00c /* PMECC ending address */ +#define ATMEL_PMECC_CLK 0x010 /* PMECC clock control */ +#define PMECC_CLK_133MHZ (2 << 0) + +#define ATMEL_PMECC_CTRL 0x014 /* PMECC control register */ +#define PMECC_CTRL_RST (1 << 0) +#define PMECC_CTRL_DATA (1 << 1) +#define PMECC_CTRL_USER (1 << 2) +#define PMECC_CTRL_ENABLE (1 << 4) +#define PMECC_CTRL_DISABLE (1 << 5) + +#define ATMEL_PMECC_SR 0x018 /* PMECC status register */ +#define PMECC_SR_BUSY (1 << 0) +#define PMECC_SR_ENABLE (1 << 4) + +#define ATMEL_PMECC_IER 0x01c /* PMECC interrupt enable */ +#define PMECC_IER_ENABLE (1 << 0) +#define ATMEL_PMECC_IDR 0x020 /* PMECC interrupt disable */ +#define PMECC_IER_DISABLE (1 << 0) +#define ATMEL_PMECC_IMR 0x024 /* PMECC interrupt mask */ +#define PMECC_IER_MASK (1 << 0) +#define ATMEL_PMECC_ISR 0x028 /* PMECC interrupt status */ +#define ATMEL_PMECC_ECCx 0x040 /* PMECC ECC x */ +#define ATMEL_PMECC_REMx 0x240 /* PMECC REM x */ + +/* PMERRLOC Register Definitions */ +#define ATMEL_PMERRLOC_ELCFG 0x000 /* Error location config */ +#define PMERRLOC_ELCFG_SECTOR_512 (0 << 0) +#define PMERRLOC_ELCFG_SECTOR_1024 (1 << 0) +#define PMERRLOC_ELCFG_NUM_ERRORS(n) ((n) << 16) + +#define ATMEL_PMERRLOC_ELPRIM 0x004 /* Error location primitive */ +#define ATMEL_PMERRLOC_ELEN 0x008 /* Error location enable */ +#define ATMEL_PMERRLOC_ELDIS 0x00c /* Error location disable */ +#define PMERRLOC_DISABLE (1 << 0) + +#define ATMEL_PMERRLOC_ELSR 0x010 /* Error location status */ +#define PMERRLOC_ELSR_BUSY (1 << 0) +#define ATMEL_PMERRLOC_ELIER 0x014 /* Error location int enable */ +#define ATMEL_PMERRLOC_ELIDR 0x018 /* Error location int disable */ +#define ATMEL_PMERRLOC_ELIMR 0x01c /* Error location int mask */ +#define ATMEL_PMERRLOC_ELISR 0x020 /* Error location int status */ +#define PMERRLOC_ERR_NUM_MASK (0x1f << 8) +#define PMERRLOC_CALC_DONE (1 << 0) +#define ATMEL_PMERRLOC_SIGMAx 0x028 /* Error location SIGMA x */ +#define ATMEL_PMERRLOC_ELx 0x08c /* Error location x */ + +/* Register access macros for PMECC */ +#define pmecc_readl_relaxed(addr, reg) \ + readl_relaxed((addr) + ATMEL_PMECC_##reg) + +#define pmecc_writel(addr, reg, value) \ + writel((value), (addr) + ATMEL_PMECC_##reg) + +#define pmecc_readb_ecc_relaxed(addr, sector, n) \ + readb_relaxed((addr) + ATMEL_PMECC_ECCx + ((sector) * 0x40) + (n)) + +#define pmecc_readl_rem_relaxed(addr, sector, n) \ + readl_relaxed((addr) + ATMEL_PMECC_REMx + ((sector) * 0x40) + ((n) * 4)) + +#define pmerrloc_readl_relaxed(addr, reg) \ + readl_relaxed((addr) + ATMEL_PMERRLOC_##reg) + +#define pmerrloc_writel(addr, reg, value) \ + writel((value), (addr) + ATMEL_PMERRLOC_##reg) + +#define pmerrloc_writel_sigma_relaxed(addr, n, value) \ + writel_relaxed((value), (addr) + ATMEL_PMERRLOC_SIGMAx + ((n) * 4)) + +#define pmerrloc_readl_sigma_relaxed(addr, n) \ + readl_relaxed((addr) + ATMEL_PMERRLOC_SIGMAx + ((n) * 4)) + +#define pmerrloc_readl_el_relaxed(addr, n) \ + readl_relaxed((addr) + ATMEL_PMERRLOC_ELx + ((n) * 4)) + +/* Galois field dimension */ +#define PMECC_GF_DIMENSION_13 13 +#define PMECC_GF_DIMENSION_14 14 + +#define PMECC_LOOKUP_TABLE_SIZE_512 0x2000 +#define PMECC_LOOKUP_TABLE_SIZE_1024 0x4000 + +/* Time out value for reading PMECC status register */ +#define PMECC_MAX_TIMEOUT_MS 100 + #endif diff --git a/drivers/mtd/nand/atmel_nand_nfc.h b/drivers/mtd/nand/atmel_nand_nfc.h new file mode 100644 index 00000000000..4efd117cd3a --- /dev/null +++ b/drivers/mtd/nand/atmel_nand_nfc.h @@ -0,0 +1,98 @@ +/* + * Atmel Nand Flash Controller (NFC) - System peripherals regsters. + * Based on SAMA5D3 datasheet. + * + * © Copyright 2013 Atmel Corporation. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 of the License, or (at your + * option) any later version. + */ + +#ifndef ATMEL_NAND_NFC_H +#define ATMEL_NAND_NFC_H + +/* + * HSMC NFC registers + */ +#define ATMEL_HSMC_NFC_CFG 0x00 /* NFC Configuration Register */ +#define NFC_CFG_PAGESIZE (7 << 0) +#define NFC_CFG_PAGESIZE_512 (0 << 0) +#define NFC_CFG_PAGESIZE_1024 (1 << 0) +#define NFC_CFG_PAGESIZE_2048 (2 << 0) +#define NFC_CFG_PAGESIZE_4096 (3 << 0) +#define NFC_CFG_PAGESIZE_8192 (4 << 0) +#define NFC_CFG_WSPARE (1 << 8) +#define NFC_CFG_RSPARE (1 << 9) +#define NFC_CFG_NFC_DTOCYC (0xf << 16) +#define NFC_CFG_NFC_DTOMUL (0x7 << 20) +#define NFC_CFG_NFC_SPARESIZE (0x7f << 24) +#define NFC_CFG_NFC_SPARESIZE_BIT_POS 24 + +#define ATMEL_HSMC_NFC_CTRL 0x04 /* NFC Control Register */ +#define NFC_CTRL_ENABLE (1 << 0) +#define NFC_CTRL_DISABLE (1 << 1) + +#define ATMEL_HSMC_NFC_SR 0x08 /* NFC Status Register */ +#define NFC_SR_XFR_DONE (1 << 16) +#define NFC_SR_CMD_DONE (1 << 17) +#define NFC_SR_RB_EDGE (1 << 24) + +#define ATMEL_HSMC_NFC_IER 0x0c +#define ATMEL_HSMC_NFC_IDR 0x10 +#define ATMEL_HSMC_NFC_IMR 0x14 +#define ATMEL_HSMC_NFC_CYCLE0 0x18 /* NFC Address Cycle Zero */ +#define ATMEL_HSMC_NFC_ADDR_CYCLE0 (0xff) + +#define ATMEL_HSMC_NFC_BANK 0x1c /* NFC Bank Register */ +#define ATMEL_HSMC_NFC_BANK0 (0 << 0) +#define ATMEL_HSMC_NFC_BANK1 (1 << 0) + +#define nfc_writel(addr, reg, value) \ + writel((value), (addr) + ATMEL_HSMC_NFC_##reg) + +#define nfc_readl(addr, reg) \ + readl_relaxed((addr) + ATMEL_HSMC_NFC_##reg) + +/* + * NFC Address Command definitions + */ +#define NFCADDR_CMD_CMD1 (0xff << 2) /* Command for Cycle 1 */ +#define NFCADDR_CMD_CMD1_BIT_POS 2 +#define NFCADDR_CMD_CMD2 (0xff << 10) /* Command for Cycle 2 */ +#define NFCADDR_CMD_CMD2_BIT_POS 10 +#define NFCADDR_CMD_VCMD2 (0x1 << 18) /* Valid Cycle 2 Command */ +#define NFCADDR_CMD_ACYCLE (0x7 << 19) /* Number of Address required */ +#define NFCADDR_CMD_ACYCLE_NONE (0x0 << 19) +#define NFCADDR_CMD_ACYCLE_1 (0x1 << 19) +#define NFCADDR_CMD_ACYCLE_2 (0x2 << 19) +#define NFCADDR_CMD_ACYCLE_3 (0x3 << 19) +#define NFCADDR_CMD_ACYCLE_4 (0x4 << 19) +#define NFCADDR_CMD_ACYCLE_5 (0x5 << 19) +#define NFCADDR_CMD_ACYCLE_BIT_POS 19 +#define NFCADDR_CMD_CSID (0x7 << 22) /* Chip Select Identifier */ +#define NFCADDR_CMD_CSID_0 (0x0 << 22) +#define NFCADDR_CMD_CSID_1 (0x1 << 22) +#define NFCADDR_CMD_CSID_2 (0x2 << 22) +#define NFCADDR_CMD_CSID_3 (0x3 << 22) +#define NFCADDR_CMD_CSID_4 (0x4 << 22) +#define NFCADDR_CMD_CSID_5 (0x5 << 22) +#define NFCADDR_CMD_CSID_6 (0x6 << 22) +#define NFCADDR_CMD_CSID_7 (0x7 << 22) +#define NFCADDR_CMD_DATAEN (0x1 << 25) /* Data Transfer Enable */ +#define NFCADDR_CMD_DATADIS (0x0 << 25) /* Data Transfer Disable */ +#define NFCADDR_CMD_NFCRD (0x0 << 26) /* NFC Read Enable */ +#define NFCADDR_CMD_NFCWR (0x1 << 26) /* NFC Write Enable */ +#define NFCADDR_CMD_NFCBUSY (0x1 << 27) /* NFC Busy */ + +#define nfc_cmd_addr1234_writel(cmd, addr1234, nfc_base) \ + writel((addr1234), (cmd) + nfc_base) + +#define nfc_cmd_readl(bitstatus, nfc_base) \ + readl_relaxed((bitstatus) + nfc_base) + +#define NFC_TIME_OUT_MS 100 +#define NFC_SRAM_BANK1_OFFSET 0x1200 + +#endif diff --git a/drivers/mtd/nand/au1550nd.c b/drivers/mtd/nand/au1550nd.c index 3ffe05db492..bc5c518828d 100644 --- a/drivers/mtd/nand/au1550nd.c +++ b/drivers/mtd/nand/au1550nd.c @@ -10,44 +10,32 @@ */ #include <linux/slab.h> -#include <linux/init.h> +#include <linux/gpio.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> +#include <linux/platform_device.h> #include <asm/io.h> +#include <asm/mach-au1x00/au1000.h> +#include <asm/mach-au1x00/au1550nd.h> -#include <asm/mach-au1x00/au1xxx.h> -#include <asm/mach-db1x00/bcsr.h> -/* - * MTD structure for NAND controller - */ -static struct mtd_info *au1550_mtd = NULL; -static void __iomem *p_nand; -static int nand_width = 1; /* default x8 */ -static void (*au1550_write_byte)(struct mtd_info *, u_char); +struct au1550nd_ctx { + struct mtd_info info; + struct nand_chip chip; -/* - * Define partitions for flash device - */ -static const struct mtd_partition partition_info[] = { - { - .name = "NAND FS 0", - .offset = 0, - .size = 8 * 1024 * 1024}, - { - .name = "NAND FS 1", - .offset = MTDPART_OFS_APPEND, - .size = MTDPART_SIZ_FULL} + int cs; + void __iomem *base; + void (*write_byte)(struct mtd_info *, u_char); }; /** * au_read_byte - read one byte from the chip * @mtd: MTD device structure * - * read function for 8bit buswith + * read function for 8bit buswidth */ static u_char au_read_byte(struct mtd_info *mtd) { @@ -62,7 +50,7 @@ static u_char au_read_byte(struct mtd_info *mtd) * @mtd: MTD device structure * @byte: pointer to data byte to write * - * write function for 8it buswith + * write function for 8it buswidth */ static void au_write_byte(struct mtd_info *mtd, u_char byte) { @@ -72,11 +60,10 @@ static void au_write_byte(struct mtd_info *mtd, u_char byte) } /** - * au_read_byte16 - read one byte endianess aware from the chip + * au_read_byte16 - read one byte endianness aware from the chip * @mtd: MTD device structure * - * read function for 16bit buswith with - * endianess conversion + * read function for 16bit buswidth with endianness conversion */ static u_char au_read_byte16(struct mtd_info *mtd) { @@ -87,12 +74,11 @@ static u_char au_read_byte16(struct mtd_info *mtd) } /** - * au_write_byte16 - write one byte endianess aware to the chip + * au_write_byte16 - write one byte endianness aware to the chip * @mtd: MTD device structure * @byte: pointer to data byte to write * - * write function for 16bit buswith with - * endianess conversion + * write function for 16bit buswidth with endianness conversion */ static void au_write_byte16(struct mtd_info *mtd, u_char byte) { @@ -105,8 +91,7 @@ static void au_write_byte16(struct mtd_info *mtd, u_char byte) * au_read_word - read one word from the chip * @mtd: MTD device structure * - * read function for 16bit buswith without - * endianess conversion + * read function for 16bit buswidth without endianness conversion */ static u16 au_read_word(struct mtd_info *mtd) { @@ -122,7 +107,7 @@ static u16 au_read_word(struct mtd_info *mtd) * @buf: data buffer * @len: number of bytes to write * - * write function for 8bit buswith + * write function for 8bit buswidth */ static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len) { @@ -141,7 +126,7 @@ static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len) * @buf: buffer to store date * @len: number of bytes to read * - * read function for 8bit buswith + * read function for 8bit buswidth */ static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len) { @@ -155,34 +140,12 @@ static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len) } /** - * au_verify_buf - Verify chip data against buffer - * @mtd: MTD device structure - * @buf: buffer containing the data to compare - * @len: number of bytes to compare - * - * verify function for 8bit buswith - */ -static int au_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) -{ - int i; - struct nand_chip *this = mtd->priv; - - for (i = 0; i < len; i++) { - if (buf[i] != readb(this->IO_ADDR_R)) - return -EFAULT; - au_sync(); - } - - return 0; -} - -/** * au_write_buf16 - write buffer to chip * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write * - * write function for 16bit buswith + * write function for 16bit buswidth */ static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len) { @@ -204,7 +167,7 @@ static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len) * @buf: buffer to store date * @len: number of bytes to read * - * read function for 16bit buswith + * read function for 16bit buswidth */ static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len) { @@ -219,29 +182,6 @@ static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len) } } -/** - * au_verify_buf16 - Verify chip data against buffer - * @mtd: MTD device structure - * @buf: buffer containing the data to compare - * @len: number of bytes to compare - * - * verify function for 16bit buswith - */ -static int au_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len) -{ - int i; - struct nand_chip *this = mtd->priv; - u16 *p = (u16 *) buf; - len >>= 1; - - for (i = 0; i < len; i++) { - if (p[i] != readw(this->IO_ADDR_R)) - return -EFAULT; - au_sync(); - } - return 0; -} - /* Select the chip by setting nCE to low */ #define NAND_CTL_SETNCE 1 /* Deselect the chip by setting nCE to high */ @@ -257,24 +197,25 @@ static int au_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len) static void au1550_hwcontrol(struct mtd_info *mtd, int cmd) { - register struct nand_chip *this = mtd->priv; + struct au1550nd_ctx *ctx = container_of(mtd, struct au1550nd_ctx, info); + struct nand_chip *this = mtd->priv; switch (cmd) { case NAND_CTL_SETCLE: - this->IO_ADDR_W = p_nand + MEM_STNAND_CMD; + this->IO_ADDR_W = ctx->base + MEM_STNAND_CMD; break; case NAND_CTL_CLRCLE: - this->IO_ADDR_W = p_nand + MEM_STNAND_DATA; + this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA; break; case NAND_CTL_SETALE: - this->IO_ADDR_W = p_nand + MEM_STNAND_ADDR; + this->IO_ADDR_W = ctx->base + MEM_STNAND_ADDR; break; case NAND_CTL_CLRALE: - this->IO_ADDR_W = p_nand + MEM_STNAND_DATA; + this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA; /* FIXME: Nobody knows why this is necessary, * but it works only that way */ udelay(1); @@ -282,7 +223,7 @@ static void au1550_hwcontrol(struct mtd_info *mtd, int cmd) case NAND_CTL_SETNCE: /* assert (force assert) chip enable */ - au_writel((1 << (4 + NAND_CS)), MEM_STNDCTL); + au_writel((1 << (4 + ctx->cs)), MEM_STNDCTL); break; case NAND_CTL_CLRNCE: @@ -329,9 +270,10 @@ static void au1550_select_chip(struct mtd_info *mtd, int chip) */ static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr) { - register struct nand_chip *this = mtd->priv; + struct au1550nd_ctx *ctx = container_of(mtd, struct au1550nd_ctx, info); + struct nand_chip *this = mtd->priv; int ce_override = 0, i; - ulong flags; + unsigned long flags = 0; /* Begin command latch cycle */ au1550_hwcontrol(mtd, NAND_CTL_SETCLE); @@ -352,9 +294,9 @@ static void au1550_command(struct mtd_info *mtd, unsigned command, int column, i column -= 256; readcmd = NAND_CMD_READ1; } - au1550_write_byte(mtd, readcmd); + ctx->write_byte(mtd, readcmd); } - au1550_write_byte(mtd, command); + ctx->write_byte(mtd, command); /* Set ALE and clear CLE to start address cycle */ au1550_hwcontrol(mtd, NAND_CTL_CLRCLE); @@ -365,12 +307,13 @@ static void au1550_command(struct mtd_info *mtd, unsigned command, int column, i /* Serially input address */ if (column != -1) { /* Adjust columns for 16 bit buswidth */ - if (this->options & NAND_BUSWIDTH_16) + if (this->options & NAND_BUSWIDTH_16 && + !nand_opcode_8bits(command)) column >>= 1; - au1550_write_byte(mtd, column); + ctx->write_byte(mtd, column); } if (page_addr != -1) { - au1550_write_byte(mtd, (u8)(page_addr & 0xff)); + ctx->write_byte(mtd, (u8)(page_addr & 0xff)); if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || @@ -388,11 +331,12 @@ static void au1550_command(struct mtd_info *mtd, unsigned command, int column, i au1550_hwcontrol(mtd, NAND_CTL_SETNCE); } - au1550_write_byte(mtd, (u8)(page_addr >> 8)); + ctx->write_byte(mtd, (u8)(page_addr >> 8)); /* One more address cycle for devices > 32MiB */ if (this->chipsize > (32 << 20)) - au1550_write_byte(mtd, (u8)((page_addr >> 16) & 0x0f)); + ctx->write_byte(mtd, + ((page_addr >> 16) & 0x0f)); } /* Latch in address */ au1550_hwcontrol(mtd, NAND_CTL_CLRALE); @@ -438,121 +382,77 @@ static void au1550_command(struct mtd_info *mtd, unsigned command, int column, i while(!this->dev_ready(mtd)); } - -/* - * Main initialization routine - */ -static int __init au1xxx_nand_init(void) +static int find_nand_cs(unsigned long nand_base) { - struct nand_chip *this; - u16 boot_swapboot = 0; /* default value */ - int retval; - u32 mem_staddr; - u32 nand_phys; - - /* Allocate memory for MTD device structure and private data */ - au1550_mtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); - if (!au1550_mtd) { - printk("Unable to allocate NAND MTD dev structure.\n"); - return -ENOMEM; - } - - /* Get pointer to private data */ - this = (struct nand_chip *)(&au1550_mtd[1]); + void __iomem *base = + (void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR); + unsigned long addr, staddr, start, mask, end; + int i; - /* Link the private data with the MTD structure */ - au1550_mtd->priv = this; - au1550_mtd->owner = THIS_MODULE; + for (i = 0; i < 4; i++) { + addr = 0x1000 + (i * 0x10); /* CSx */ + staddr = __raw_readl(base + addr + 0x08); /* STADDRx */ + /* figure out the decoded range of this CS */ + start = (staddr << 4) & 0xfffc0000; + mask = (staddr << 18) & 0xfffc0000; + end = (start | (start - 1)) & ~(start ^ mask); + if ((nand_base >= start) && (nand_base < end)) + return i; + } + return -ENODEV; +} - /* MEM_STNDCTL: disable ints, disable nand boot */ - au_writel(0, MEM_STNDCTL); +static int au1550nd_probe(struct platform_device *pdev) +{ + struct au1550nd_platdata *pd; + struct au1550nd_ctx *ctx; + struct nand_chip *this; + struct resource *r; + int ret, cs; -#ifdef CONFIG_MIPS_PB1550 - /* set gpio206 high */ - au_writel(au_readl(GPIO2_DIR) & ~(1 << 6), GPIO2_DIR); + pd = dev_get_platdata(&pdev->dev); + if (!pd) { + dev_err(&pdev->dev, "missing platform data\n"); + return -ENODEV; + } - boot_swapboot = (au_readl(MEM_STSTAT) & (0x7 << 1)) | ((bcsr_read(BCSR_STATUS) >> 6) & 0x1); + ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); + if (!ctx) + return -ENOMEM; - switch (boot_swapboot) { - case 0: - case 2: - case 8: - case 0xC: - case 0xD: - /* x16 NAND Flash */ - nand_width = 0; - break; - case 1: - case 9: - case 3: - case 0xE: - case 0xF: - /* x8 NAND Flash */ - nand_width = 1; - break; - default: - printk("Pb1550 NAND: bad boot:swap\n"); - retval = -EINVAL; - goto outmem; + r = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!r) { + dev_err(&pdev->dev, "no NAND memory resource\n"); + ret = -ENODEV; + goto out1; } -#endif - - /* Configure chip-select; normally done by boot code, e.g. YAMON */ -#ifdef NAND_STCFG - if (NAND_CS == 0) { - au_writel(NAND_STCFG, MEM_STCFG0); - au_writel(NAND_STTIME, MEM_STTIME0); - au_writel(NAND_STADDR, MEM_STADDR0); + if (request_mem_region(r->start, resource_size(r), "au1550-nand")) { + dev_err(&pdev->dev, "cannot claim NAND memory area\n"); + ret = -ENOMEM; + goto out1; } - if (NAND_CS == 1) { - au_writel(NAND_STCFG, MEM_STCFG1); - au_writel(NAND_STTIME, MEM_STTIME1); - au_writel(NAND_STADDR, MEM_STADDR1); - } - if (NAND_CS == 2) { - au_writel(NAND_STCFG, MEM_STCFG2); - au_writel(NAND_STTIME, MEM_STTIME2); - au_writel(NAND_STADDR, MEM_STADDR2); - } - if (NAND_CS == 3) { - au_writel(NAND_STCFG, MEM_STCFG3); - au_writel(NAND_STTIME, MEM_STTIME3); - au_writel(NAND_STADDR, MEM_STADDR3); - } -#endif - - /* Locate NAND chip-select in order to determine NAND phys address */ - mem_staddr = 0x00000000; - if (((au_readl(MEM_STCFG0) & 0x7) == 0x5) && (NAND_CS == 0)) - mem_staddr = au_readl(MEM_STADDR0); - else if (((au_readl(MEM_STCFG1) & 0x7) == 0x5) && (NAND_CS == 1)) - mem_staddr = au_readl(MEM_STADDR1); - else if (((au_readl(MEM_STCFG2) & 0x7) == 0x5) && (NAND_CS == 2)) - mem_staddr = au_readl(MEM_STADDR2); - else if (((au_readl(MEM_STCFG3) & 0x7) == 0x5) && (NAND_CS == 3)) - mem_staddr = au_readl(MEM_STADDR3); - - if (mem_staddr == 0x00000000) { - printk("Au1xxx NAND: ERROR WITH NAND CHIP-SELECT\n"); - kfree(au1550_mtd); - return 1; + + ctx->base = ioremap_nocache(r->start, 0x1000); + if (!ctx->base) { + dev_err(&pdev->dev, "cannot remap NAND memory area\n"); + ret = -ENODEV; + goto out2; } - nand_phys = (mem_staddr << 4) & 0xFFFC0000; - p_nand = ioremap(nand_phys, 0x1000); + this = &ctx->chip; + ctx->info.priv = this; + ctx->info.owner = THIS_MODULE; - /* make controller and MTD agree */ - if (NAND_CS == 0) - nand_width = au_readl(MEM_STCFG0) & (1 << 22); - if (NAND_CS == 1) - nand_width = au_readl(MEM_STCFG1) & (1 << 22); - if (NAND_CS == 2) - nand_width = au_readl(MEM_STCFG2) & (1 << 22); - if (NAND_CS == 3) - nand_width = au_readl(MEM_STCFG3) & (1 << 22); + /* figure out which CS# r->start belongs to */ + cs = find_nand_cs(r->start); + if (cs < 0) { + dev_err(&pdev->dev, "cannot detect NAND chipselect\n"); + ret = -ENODEV; + goto out3; + } + ctx->cs = cs; - /* Set address of hardware control function */ this->dev_ready = au1550_device_ready; this->select_chip = au1550_select_chip; this->cmdfunc = au1550_command; @@ -561,55 +461,58 @@ static int __init au1xxx_nand_init(void) this->chip_delay = 30; this->ecc.mode = NAND_ECC_SOFT; - this->options = NAND_NO_AUTOINCR; - - if (!nand_width) + if (pd->devwidth) this->options |= NAND_BUSWIDTH_16; - this->read_byte = (!nand_width) ? au_read_byte16 : au_read_byte; - au1550_write_byte = (!nand_width) ? au_write_byte16 : au_write_byte; + this->read_byte = (pd->devwidth) ? au_read_byte16 : au_read_byte; + ctx->write_byte = (pd->devwidth) ? au_write_byte16 : au_write_byte; this->read_word = au_read_word; - this->write_buf = (!nand_width) ? au_write_buf16 : au_write_buf; - this->read_buf = (!nand_width) ? au_read_buf16 : au_read_buf; - this->verify_buf = (!nand_width) ? au_verify_buf16 : au_verify_buf; - - /* Scan to find existence of the device */ - if (nand_scan(au1550_mtd, 1)) { - retval = -ENXIO; - goto outio; + this->write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf; + this->read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf; + + ret = nand_scan(&ctx->info, 1); + if (ret) { + dev_err(&pdev->dev, "NAND scan failed with %d\n", ret); + goto out3; } - /* Register the partitions */ - add_mtd_partitions(au1550_mtd, partition_info, ARRAY_SIZE(partition_info)); + mtd_device_register(&ctx->info, pd->parts, pd->num_parts); - return 0; + platform_set_drvdata(pdev, ctx); - outio: - iounmap(p_nand); + return 0; - outmem: - kfree(au1550_mtd); - return retval; +out3: + iounmap(ctx->base); +out2: + release_mem_region(r->start, resource_size(r)); +out1: + kfree(ctx); + return ret; } -module_init(au1xxx_nand_init); - -/* - * Clean up routine - */ -static void __exit au1550_cleanup(void) +static int au1550nd_remove(struct platform_device *pdev) { - /* Release resources, unregister device */ - nand_release(au1550_mtd); + struct au1550nd_ctx *ctx = platform_get_drvdata(pdev); + struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0); - /* Free the MTD device structure */ - kfree(au1550_mtd); - - /* Unmap */ - iounmap(p_nand); + nand_release(&ctx->info); + iounmap(ctx->base); + release_mem_region(r->start, 0x1000); + kfree(ctx); + return 0; } -module_exit(au1550_cleanup); +static struct platform_driver au1550nd_driver = { + .driver = { + .name = "au1550-nand", + .owner = THIS_MODULE, + }, + .probe = au1550nd_probe, + .remove = au1550nd_remove, +}; + +module_platform_driver(au1550nd_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Embedded Edge, LLC"); diff --git a/drivers/mtd/nand/autcpu12.c b/drivers/mtd/nand/autcpu12.c deleted file mode 100644 index 7c95da1f612..00000000000 --- a/drivers/mtd/nand/autcpu12.c +++ /dev/null @@ -1,239 +0,0 @@ -/* - * drivers/mtd/autcpu12.c - * - * Copyright (c) 2002 Thomas Gleixner <tgxl@linutronix.de> - * - * Derived from drivers/mtd/spia.c - * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Overview: - * This is a device driver for the NAND flash device found on the - * autronix autcpu12 board, which is a SmartMediaCard. It supports - * 16MiB, 32MiB and 64MiB cards. - * - * - * 02-12-2002 TG Cleanup of module params - * - * 02-20-2002 TG adjusted for different rd/wr address support - * added support for read device ready/busy line - * added page_cache - * - * 10-06-2002 TG 128K card support added - */ - -#include <linux/slab.h> -#include <linux/init.h> -#include <linux/module.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/partitions.h> -#include <asm/io.h> -#include <mach/hardware.h> -#include <asm/sizes.h> -#include <mach/autcpu12.h> - -/* - * MTD structure for AUTCPU12 board - */ -static struct mtd_info *autcpu12_mtd = NULL; -static void __iomem *autcpu12_fio_base; - -/* - * Define partitions for flash devices - */ -static struct mtd_partition partition_info16k[] = { - { .name = "AUTCPU12 flash partition 1", - .offset = 0, - .size = 8 * SZ_1M }, - { .name = "AUTCPU12 flash partition 2", - .offset = 8 * SZ_1M, - .size = 8 * SZ_1M }, -}; - -static struct mtd_partition partition_info32k[] = { - { .name = "AUTCPU12 flash partition 1", - .offset = 0, - .size = 8 * SZ_1M }, - { .name = "AUTCPU12 flash partition 2", - .offset = 8 * SZ_1M, - .size = 24 * SZ_1M }, -}; - -static struct mtd_partition partition_info64k[] = { - { .name = "AUTCPU12 flash partition 1", - .offset = 0, - .size = 16 * SZ_1M }, - { .name = "AUTCPU12 flash partition 2", - .offset = 16 * SZ_1M, - .size = 48 * SZ_1M }, -}; - -static struct mtd_partition partition_info128k[] = { - { .name = "AUTCPU12 flash partition 1", - .offset = 0, - .size = 16 * SZ_1M }, - { .name = "AUTCPU12 flash partition 2", - .offset = 16 * SZ_1M, - .size = 112 * SZ_1M }, -}; - -#define NUM_PARTITIONS16K 2 -#define NUM_PARTITIONS32K 2 -#define NUM_PARTITIONS64K 2 -#define NUM_PARTITIONS128K 2 -/* - * hardware specific access to control-lines - * - * ALE bit 4 autcpu12_pedr - * CLE bit 5 autcpu12_pedr - * NCE bit 0 fio_ctrl - * - */ -static void autcpu12_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct nand_chip *chip = mtd->priv; - - if (ctrl & NAND_CTRL_CHANGE) { - void __iomem *addr; - unsigned char bits; - - addr = CS89712_VIRT_BASE + AUTCPU12_SMC_PORT_OFFSET; - bits = (ctrl & NAND_CLE) << 4; - bits |= (ctrl & NAND_ALE) << 2; - writeb((readb(addr) & ~0x30) | bits, addr); - - addr = autcpu12_fio_base + AUTCPU12_SMC_SELECT_OFFSET; - writeb((readb(addr) & ~0x1) | (ctrl & NAND_NCE), addr); - } - - if (cmd != NAND_CMD_NONE) - writeb(cmd, chip->IO_ADDR_W); -} - -/* - * read device ready pin - */ -int autcpu12_device_ready(struct mtd_info *mtd) -{ - void __iomem *addr = CS89712_VIRT_BASE + AUTCPU12_SMC_PORT_OFFSET; - - return readb(addr) & AUTCPU12_SMC_RDY; -} - -/* - * Main initialization routine - */ -static int __init autcpu12_init(void) -{ - struct nand_chip *this; - int err = 0; - - /* Allocate memory for MTD device structure and private data */ - autcpu12_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), - GFP_KERNEL); - if (!autcpu12_mtd) { - printk("Unable to allocate AUTCPU12 NAND MTD device structure.\n"); - err = -ENOMEM; - goto out; - } - - /* map physical address */ - autcpu12_fio_base = ioremap(AUTCPU12_PHYS_SMC, SZ_1K); - if (!autcpu12_fio_base) { - printk("Ioremap autcpu12 SmartMedia Card failed\n"); - err = -EIO; - goto out_mtd; - } - - /* Get pointer to private data */ - this = (struct nand_chip *)(&autcpu12_mtd[1]); - - /* Initialize structures */ - memset(autcpu12_mtd, 0, sizeof(struct mtd_info)); - memset(this, 0, sizeof(struct nand_chip)); - - /* Link the private data with the MTD structure */ - autcpu12_mtd->priv = this; - autcpu12_mtd->owner = THIS_MODULE; - - /* Set address of NAND IO lines */ - this->IO_ADDR_R = autcpu12_fio_base; - this->IO_ADDR_W = autcpu12_fio_base; - this->cmd_ctrl = autcpu12_hwcontrol; - this->dev_ready = autcpu12_device_ready; - /* 20 us command delay time */ - this->chip_delay = 20; - this->ecc.mode = NAND_ECC_SOFT; - - /* Enable the following for a flash based bad block table */ - /* - this->options = NAND_USE_FLASH_BBT; - */ - this->options = NAND_USE_FLASH_BBT; - - /* Scan to find existance of the device */ - if (nand_scan(autcpu12_mtd, 1)) { - err = -ENXIO; - goto out_ior; - } - - /* Register the partitions */ - switch (autcpu12_mtd->size) { - case SZ_16M: - add_mtd_partitions(autcpu12_mtd, partition_info16k, - NUM_PARTITIONS16K); - break; - case SZ_32M: - add_mtd_partitions(autcpu12_mtd, partition_info32k, - NUM_PARTITIONS32K); - break; - case SZ_64M: - add_mtd_partitions(autcpu12_mtd, partition_info64k, - NUM_PARTITIONS64K); - break; - case SZ_128M: - add_mtd_partitions(autcpu12_mtd, partition_info128k, - NUM_PARTITIONS128K); - break; - default: - printk("Unsupported SmartMedia device\n"); - err = -ENXIO; - goto out_ior; - } - goto out; - - out_ior: - iounmap(autcpu12_fio_base); - out_mtd: - kfree(autcpu12_mtd); - out: - return err; -} - -module_init(autcpu12_init); - -/* - * Clean up routine - */ -static void __exit autcpu12_cleanup(void) -{ - /* Release resources, unregister device */ - nand_release(autcpu12_mtd); - - /* unmap physical address */ - iounmap(autcpu12_fio_base); - - /* Free the MTD device structure */ - kfree(autcpu12_mtd); -} - -module_exit(autcpu12_cleanup); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); -MODULE_DESCRIPTION("Glue layer for SmartMediaCard on autronix autcpu12"); diff --git a/drivers/mtd/nand/bcm47xxnflash/Makefile b/drivers/mtd/nand/bcm47xxnflash/Makefile new file mode 100644 index 00000000000..f05b119e134 --- /dev/null +++ b/drivers/mtd/nand/bcm47xxnflash/Makefile @@ -0,0 +1,4 @@ +bcm47xxnflash-y += main.o +bcm47xxnflash-y += ops_bcm4706.o + +obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash.o diff --git a/drivers/mtd/nand/bcm47xxnflash/bcm47xxnflash.h b/drivers/mtd/nand/bcm47xxnflash/bcm47xxnflash.h new file mode 100644 index 00000000000..c005a62330b --- /dev/null +++ b/drivers/mtd/nand/bcm47xxnflash/bcm47xxnflash.h @@ -0,0 +1,26 @@ +#ifndef __BCM47XXNFLASH_H +#define __BCM47XXNFLASH_H + +#ifndef pr_fmt +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt +#endif + +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> + +struct bcm47xxnflash { + struct bcma_drv_cc *cc; + + struct nand_chip nand_chip; + struct mtd_info mtd; + + unsigned curr_command; + int curr_page_addr; + int curr_column; + + u8 id_data[8]; +}; + +int bcm47xxnflash_ops_bcm4706_init(struct bcm47xxnflash *b47n); + +#endif /* BCM47XXNFLASH */ diff --git a/drivers/mtd/nand/bcm47xxnflash/main.c b/drivers/mtd/nand/bcm47xxnflash/main.c new file mode 100644 index 00000000000..10744591131 --- /dev/null +++ b/drivers/mtd/nand/bcm47xxnflash/main.c @@ -0,0 +1,80 @@ +/* + * BCM47XX NAND flash driver + * + * Copyright (C) 2012 Rafał Miłecki <zajec5@gmail.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include "bcm47xxnflash.h" + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/platform_device.h> +#include <linux/bcma/bcma.h> + +MODULE_DESCRIPTION("NAND flash driver for BCMA bus"); +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Rafał Miłecki"); + +static const char *probes[] = { "bcm47xxpart", NULL }; + +static int bcm47xxnflash_probe(struct platform_device *pdev) +{ + struct bcma_nflash *nflash = dev_get_platdata(&pdev->dev); + struct bcm47xxnflash *b47n; + int err = 0; + + b47n = devm_kzalloc(&pdev->dev, sizeof(*b47n), GFP_KERNEL); + if (!b47n) + return -ENOMEM; + + b47n->nand_chip.priv = b47n; + b47n->mtd.owner = THIS_MODULE; + b47n->mtd.priv = &b47n->nand_chip; /* Required */ + b47n->cc = container_of(nflash, struct bcma_drv_cc, nflash); + + if (b47n->cc->core->bus->chipinfo.id == BCMA_CHIP_ID_BCM4706) { + err = bcm47xxnflash_ops_bcm4706_init(b47n); + } else { + pr_err("Device not supported\n"); + err = -ENOTSUPP; + } + if (err) { + pr_err("Initialization failed: %d\n", err); + return err; + } + + err = mtd_device_parse_register(&b47n->mtd, probes, NULL, NULL, 0); + if (err) { + pr_err("Failed to register MTD device: %d\n", err); + return err; + } + + return 0; +} + +static int bcm47xxnflash_remove(struct platform_device *pdev) +{ + struct bcma_nflash *nflash = dev_get_platdata(&pdev->dev); + + if (nflash->mtd) + mtd_device_unregister(nflash->mtd); + + return 0; +} + +static struct platform_driver bcm47xxnflash_driver = { + .probe = bcm47xxnflash_probe, + .remove = bcm47xxnflash_remove, + .driver = { + .name = "bcma_nflash", + .owner = THIS_MODULE, + }, +}; + +module_platform_driver(bcm47xxnflash_driver); diff --git a/drivers/mtd/nand/bcm47xxnflash/ops_bcm4706.c b/drivers/mtd/nand/bcm47xxnflash/ops_bcm4706.c new file mode 100644 index 00000000000..b2ab373c9ee --- /dev/null +++ b/drivers/mtd/nand/bcm47xxnflash/ops_bcm4706.c @@ -0,0 +1,413 @@ +/* + * BCM47XX NAND flash driver + * + * Copyright (C) 2012 Rafał Miłecki <zajec5@gmail.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include "bcm47xxnflash.h" + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/bcma/bcma.h> + +/* Broadcom uses 1'000'000 but it seems to be too many. Tests on WNDR4500 has + * shown ~1000 retries as maxiumum. */ +#define NFLASH_READY_RETRIES 10000 + +#define NFLASH_SECTOR_SIZE 512 + +#define NCTL_CMD0 0x00010000 +#define NCTL_CMD1W 0x00080000 +#define NCTL_READ 0x00100000 +#define NCTL_WRITE 0x00200000 +#define NCTL_SPECADDR 0x01000000 +#define NCTL_READY 0x04000000 +#define NCTL_ERR 0x08000000 +#define NCTL_CSA 0x40000000 +#define NCTL_START 0x80000000 + +/************************************************** + * Various helpers + **************************************************/ + +static inline u8 bcm47xxnflash_ops_bcm4706_ns_to_cycle(u16 ns, u16 clock) +{ + return ((ns * 1000 * clock) / 1000000) + 1; +} + +static int bcm47xxnflash_ops_bcm4706_ctl_cmd(struct bcma_drv_cc *cc, u32 code) +{ + int i = 0; + + bcma_cc_write32(cc, BCMA_CC_NFLASH_CTL, NCTL_START | code); + for (i = 0; i < NFLASH_READY_RETRIES; i++) { + if (!(bcma_cc_read32(cc, BCMA_CC_NFLASH_CTL) & NCTL_START)) { + i = 0; + break; + } + } + if (i) { + pr_err("NFLASH control command not ready!\n"); + return -EBUSY; + } + return 0; +} + +static int bcm47xxnflash_ops_bcm4706_poll(struct bcma_drv_cc *cc) +{ + int i; + + for (i = 0; i < NFLASH_READY_RETRIES; i++) { + if (bcma_cc_read32(cc, BCMA_CC_NFLASH_CTL) & NCTL_READY) { + if (bcma_cc_read32(cc, BCMA_CC_NFLASH_CTL) & + BCMA_CC_NFLASH_CTL_ERR) { + pr_err("Error on polling\n"); + return -EBUSY; + } else { + return 0; + } + } + } + + pr_err("Polling timeout!\n"); + return -EBUSY; +} + +/************************************************** + * R/W + **************************************************/ + +static void bcm47xxnflash_ops_bcm4706_read(struct mtd_info *mtd, uint8_t *buf, + int len) +{ + struct nand_chip *nand_chip = (struct nand_chip *)mtd->priv; + struct bcm47xxnflash *b47n = (struct bcm47xxnflash *)nand_chip->priv; + + u32 ctlcode; + u32 *dest = (u32 *)buf; + int i; + int toread; + + BUG_ON(b47n->curr_page_addr & ~nand_chip->pagemask); + /* Don't validate column using nand_chip->page_shift, it may be bigger + * when accessing OOB */ + + while (len) { + /* We can read maximum of 0x200 bytes at once */ + toread = min(len, 0x200); + + /* Set page and column */ + bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_COL_ADDR, + b47n->curr_column); + bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_ROW_ADDR, + b47n->curr_page_addr); + + /* Prepare to read */ + ctlcode = NCTL_CSA | NCTL_CMD1W | 0x00040000 | 0x00020000 | + NCTL_CMD0; + ctlcode |= NAND_CMD_READSTART << 8; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, ctlcode)) + return; + if (bcm47xxnflash_ops_bcm4706_poll(b47n->cc)) + return; + + /* Eventually read some data :) */ + for (i = 0; i < toread; i += 4, dest++) { + ctlcode = NCTL_CSA | 0x30000000 | NCTL_READ; + if (i == toread - 4) /* Last read goes without that */ + ctlcode &= ~NCTL_CSA; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, + ctlcode)) + return; + *dest = bcma_cc_read32(b47n->cc, BCMA_CC_NFLASH_DATA); + } + + b47n->curr_column += toread; + len -= toread; + } +} + +static void bcm47xxnflash_ops_bcm4706_write(struct mtd_info *mtd, + const uint8_t *buf, int len) +{ + struct nand_chip *nand_chip = (struct nand_chip *)mtd->priv; + struct bcm47xxnflash *b47n = (struct bcm47xxnflash *)nand_chip->priv; + struct bcma_drv_cc *cc = b47n->cc; + + u32 ctlcode; + const u32 *data = (u32 *)buf; + int i; + + BUG_ON(b47n->curr_page_addr & ~nand_chip->pagemask); + /* Don't validate column using nand_chip->page_shift, it may be bigger + * when accessing OOB */ + + for (i = 0; i < len; i += 4, data++) { + bcma_cc_write32(cc, BCMA_CC_NFLASH_DATA, *data); + + ctlcode = NCTL_CSA | 0x30000000 | NCTL_WRITE; + if (i == len - 4) /* Last read goes without that */ + ctlcode &= ~NCTL_CSA; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode)) { + pr_err("%s ctl_cmd didn't work!\n", __func__); + return; + } + } + + b47n->curr_column += len; +} + +/************************************************** + * NAND chip ops + **************************************************/ + +/* Default nand_select_chip calls cmd_ctrl, which is not used in BCM4706 */ +static void bcm47xxnflash_ops_bcm4706_select_chip(struct mtd_info *mtd, + int chip) +{ + return; +} + +/* + * Default nand_command and nand_command_lp don't match BCM4706 hardware layout. + * For example, reading chip id is performed in a non-standard way. + * Setting column and page is also handled differently, we use a special + * registers of ChipCommon core. Hacking cmd_ctrl to understand and convert + * standard commands would be much more complicated. + */ +static void bcm47xxnflash_ops_bcm4706_cmdfunc(struct mtd_info *mtd, + unsigned command, int column, + int page_addr) +{ + struct nand_chip *nand_chip = (struct nand_chip *)mtd->priv; + struct bcm47xxnflash *b47n = (struct bcm47xxnflash *)nand_chip->priv; + struct bcma_drv_cc *cc = b47n->cc; + u32 ctlcode; + int i; + + if (column != -1) + b47n->curr_column = column; + if (page_addr != -1) + b47n->curr_page_addr = page_addr; + + switch (command) { + case NAND_CMD_RESET: + pr_warn("Chip reset not implemented yet\n"); + break; + case NAND_CMD_READID: + ctlcode = NCTL_CSA | 0x01000000 | NCTL_CMD1W | NCTL_CMD0; + ctlcode |= NAND_CMD_READID; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, ctlcode)) { + pr_err("READID error\n"); + break; + } + + /* + * Reading is specific, last one has to go without NCTL_CSA + * bit. We don't know how many reads NAND subsystem is going + * to perform, so cache everything. + */ + for (i = 0; i < ARRAY_SIZE(b47n->id_data); i++) { + ctlcode = NCTL_CSA | NCTL_READ; + if (i == ARRAY_SIZE(b47n->id_data) - 1) + ctlcode &= ~NCTL_CSA; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, + ctlcode)) { + pr_err("READID error\n"); + break; + } + b47n->id_data[i] = + bcma_cc_read32(b47n->cc, BCMA_CC_NFLASH_DATA) + & 0xFF; + } + + break; + case NAND_CMD_STATUS: + ctlcode = NCTL_CSA | NCTL_CMD0 | NAND_CMD_STATUS; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode)) + pr_err("STATUS command error\n"); + break; + case NAND_CMD_READ0: + break; + case NAND_CMD_READOOB: + if (page_addr != -1) + b47n->curr_column += mtd->writesize; + break; + case NAND_CMD_ERASE1: + bcma_cc_write32(cc, BCMA_CC_NFLASH_ROW_ADDR, + b47n->curr_page_addr); + ctlcode = 0x00040000 | NCTL_CMD1W | NCTL_CMD0 | + NAND_CMD_ERASE1 | (NAND_CMD_ERASE2 << 8); + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode)) + pr_err("ERASE1 failed\n"); + break; + case NAND_CMD_ERASE2: + break; + case NAND_CMD_SEQIN: + /* Set page and column */ + bcma_cc_write32(cc, BCMA_CC_NFLASH_COL_ADDR, + b47n->curr_column); + bcma_cc_write32(cc, BCMA_CC_NFLASH_ROW_ADDR, + b47n->curr_page_addr); + + /* Prepare to write */ + ctlcode = 0x40000000 | 0x00040000 | 0x00020000 | 0x00010000; + ctlcode |= NAND_CMD_SEQIN; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode)) + pr_err("SEQIN failed\n"); + break; + case NAND_CMD_PAGEPROG: + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, 0x00010000 | + NAND_CMD_PAGEPROG)) + pr_err("PAGEPROG failed\n"); + if (bcm47xxnflash_ops_bcm4706_poll(cc)) + pr_err("PAGEPROG not ready\n"); + break; + default: + pr_err("Command 0x%X unsupported\n", command); + break; + } + b47n->curr_command = command; +} + +static u8 bcm47xxnflash_ops_bcm4706_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = (struct nand_chip *)mtd->priv; + struct bcm47xxnflash *b47n = (struct bcm47xxnflash *)nand_chip->priv; + struct bcma_drv_cc *cc = b47n->cc; + u32 tmp = 0; + + switch (b47n->curr_command) { + case NAND_CMD_READID: + if (b47n->curr_column >= ARRAY_SIZE(b47n->id_data)) { + pr_err("Requested invalid id_data: %d\n", + b47n->curr_column); + return 0; + } + return b47n->id_data[b47n->curr_column++]; + case NAND_CMD_STATUS: + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, NCTL_READ)) + return 0; + return bcma_cc_read32(cc, BCMA_CC_NFLASH_DATA) & 0xff; + case NAND_CMD_READOOB: + bcm47xxnflash_ops_bcm4706_read(mtd, (u8 *)&tmp, 4); + return tmp & 0xFF; + } + + pr_err("Invalid command for byte read: 0x%X\n", b47n->curr_command); + return 0; +} + +static void bcm47xxnflash_ops_bcm4706_read_buf(struct mtd_info *mtd, + uint8_t *buf, int len) +{ + struct nand_chip *nand_chip = (struct nand_chip *)mtd->priv; + struct bcm47xxnflash *b47n = (struct bcm47xxnflash *)nand_chip->priv; + + switch (b47n->curr_command) { + case NAND_CMD_READ0: + case NAND_CMD_READOOB: + bcm47xxnflash_ops_bcm4706_read(mtd, buf, len); + return; + } + + pr_err("Invalid command for buf read: 0x%X\n", b47n->curr_command); +} + +static void bcm47xxnflash_ops_bcm4706_write_buf(struct mtd_info *mtd, + const uint8_t *buf, int len) +{ + struct nand_chip *nand_chip = (struct nand_chip *)mtd->priv; + struct bcm47xxnflash *b47n = (struct bcm47xxnflash *)nand_chip->priv; + + switch (b47n->curr_command) { + case NAND_CMD_SEQIN: + bcm47xxnflash_ops_bcm4706_write(mtd, buf, len); + return; + } + + pr_err("Invalid command for buf write: 0x%X\n", b47n->curr_command); +} + +/************************************************** + * Init + **************************************************/ + +int bcm47xxnflash_ops_bcm4706_init(struct bcm47xxnflash *b47n) +{ + int err; + u32 freq; + u16 clock; + u8 w0, w1, w2, w3, w4; + + unsigned long chipsize; /* MiB */ + u8 tbits, col_bits, col_size, row_bits, row_bsize; + u32 val; + + b47n->nand_chip.select_chip = bcm47xxnflash_ops_bcm4706_select_chip; + b47n->nand_chip.cmdfunc = bcm47xxnflash_ops_bcm4706_cmdfunc; + b47n->nand_chip.read_byte = bcm47xxnflash_ops_bcm4706_read_byte; + b47n->nand_chip.read_buf = bcm47xxnflash_ops_bcm4706_read_buf; + b47n->nand_chip.write_buf = bcm47xxnflash_ops_bcm4706_write_buf; + b47n->nand_chip.bbt_options = NAND_BBT_USE_FLASH; + b47n->nand_chip.ecc.mode = NAND_ECC_NONE; /* TODO: implement ECC */ + + /* Enable NAND flash access */ + bcma_cc_set32(b47n->cc, BCMA_CC_4706_FLASHSCFG, + BCMA_CC_4706_FLASHSCFG_NF1); + + /* Configure wait counters */ + if (b47n->cc->status & BCMA_CC_CHIPST_4706_PKG_OPTION) { + freq = 100000000; + } else { + freq = bcma_chipco_pll_read(b47n->cc, 4); + freq = (freq * 0xFFF) >> 3; + freq = (freq * 25000000) >> 3; + } + clock = freq / 1000000; + w0 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(15, clock); + w1 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(20, clock); + w2 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(10, clock); + w3 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(10, clock); + w4 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(100, clock); + bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_WAITCNT0, + (w4 << 24 | w3 << 18 | w2 << 12 | w1 << 6 | w0)); + + /* Scan NAND */ + err = nand_scan(&b47n->mtd, 1); + if (err) { + pr_err("Could not scan NAND flash: %d\n", err); + goto exit; + } + + /* Configure FLASH */ + chipsize = b47n->nand_chip.chipsize >> 20; + tbits = ffs(chipsize); /* find first bit set */ + if (!tbits || tbits != fls(chipsize)) { + pr_err("Invalid flash size: 0x%lX\n", chipsize); + err = -ENOTSUPP; + goto exit; + } + tbits += 19; /* Broadcom increases *index* by 20, we increase *pos* */ + + col_bits = b47n->nand_chip.page_shift + 1; + col_size = (col_bits + 7) / 8; + + row_bits = tbits - col_bits + 1; + row_bsize = (row_bits + 7) / 8; + + val = ((row_bsize - 1) << 6) | ((col_size - 1) << 4) | 2; + bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_CONF, val); + +exit: + if (err) + bcma_cc_mask32(b47n->cc, BCMA_CC_4706_FLASHSCFG, + ~BCMA_CC_4706_FLASHSCFG_NF1); + return err; +} diff --git a/drivers/mtd/nand/bcm_umi_bch.c b/drivers/mtd/nand/bcm_umi_bch.c deleted file mode 100644 index a930666d068..00000000000 --- a/drivers/mtd/nand/bcm_umi_bch.c +++ /dev/null @@ -1,213 +0,0 @@ -/***************************************************************************** -* Copyright 2004 - 2009 Broadcom Corporation. All rights reserved. -* -* Unless you and Broadcom execute a separate written software license -* agreement governing use of this software, this software is licensed to you -* under the terms of the GNU General Public License version 2, available at -* http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). -* -* Notwithstanding the above, under no circumstances may you combine this -* software in any way with any other Broadcom software provided under a -* license other than the GPL, without Broadcom's express prior written -* consent. -*****************************************************************************/ - -/* ---- Include Files ---------------------------------------------------- */ -#include "nand_bcm_umi.h" - -/* ---- External Variable Declarations ----------------------------------- */ -/* ---- External Function Prototypes ------------------------------------- */ -/* ---- Public Variables ------------------------------------------------- */ -/* ---- Private Constants and Types -------------------------------------- */ - -/* ---- Private Function Prototypes -------------------------------------- */ -static int bcm_umi_bch_read_page_hwecc(struct mtd_info *mtd, - struct nand_chip *chip, uint8_t *buf, int page); -static void bcm_umi_bch_write_page_hwecc(struct mtd_info *mtd, - struct nand_chip *chip, const uint8_t *buf); - -/* ---- Private Variables ------------------------------------------------ */ - -/* -** nand_hw_eccoob -** New oob placement block for use with hardware ecc generation. -*/ -static struct nand_ecclayout nand_hw_eccoob_512 = { - /* Reserve 5 for BI indicator */ - .oobfree = { -#if (NAND_ECC_NUM_BYTES > 3) - {.offset = 0, .length = 2} -#else - {.offset = 0, .length = 5}, - {.offset = 6, .length = 7} -#endif - } -}; - -/* -** We treat the OOB for a 2K page as if it were 4 512 byte oobs, -** except the BI is at byte 0. -*/ -static struct nand_ecclayout nand_hw_eccoob_2048 = { - /* Reserve 0 as BI indicator */ - .oobfree = { -#if (NAND_ECC_NUM_BYTES > 10) - {.offset = 1, .length = 2}, -#elif (NAND_ECC_NUM_BYTES > 7) - {.offset = 1, .length = 5}, - {.offset = 16, .length = 6}, - {.offset = 32, .length = 6}, - {.offset = 48, .length = 6} -#else - {.offset = 1, .length = 8}, - {.offset = 16, .length = 9}, - {.offset = 32, .length = 9}, - {.offset = 48, .length = 9} -#endif - } -}; - -/* We treat the OOB for a 4K page as if it were 8 512 byte oobs, - * except the BI is at byte 0. */ -static struct nand_ecclayout nand_hw_eccoob_4096 = { - /* Reserve 0 as BI indicator */ - .oobfree = { -#if (NAND_ECC_NUM_BYTES > 10) - {.offset = 1, .length = 2}, - {.offset = 16, .length = 3}, - {.offset = 32, .length = 3}, - {.offset = 48, .length = 3}, - {.offset = 64, .length = 3}, - {.offset = 80, .length = 3}, - {.offset = 96, .length = 3}, - {.offset = 112, .length = 3} -#else - {.offset = 1, .length = 5}, - {.offset = 16, .length = 6}, - {.offset = 32, .length = 6}, - {.offset = 48, .length = 6}, - {.offset = 64, .length = 6}, - {.offset = 80, .length = 6}, - {.offset = 96, .length = 6}, - {.offset = 112, .length = 6} -#endif - } -}; - -/* ---- Private Functions ------------------------------------------------ */ -/* ==== Public Functions ================================================= */ - -/**************************************************************************** -* -* bcm_umi_bch_read_page_hwecc - hardware ecc based page read function -* @mtd: mtd info structure -* @chip: nand chip info structure -* @buf: buffer to store read data -* -***************************************************************************/ -static int bcm_umi_bch_read_page_hwecc(struct mtd_info *mtd, - struct nand_chip *chip, uint8_t * buf, - int page) -{ - int sectorIdx = 0; - int eccsize = chip->ecc.size; - int eccsteps = chip->ecc.steps; - uint8_t *datap = buf; - uint8_t eccCalc[NAND_ECC_NUM_BYTES]; - int sectorOobSize = mtd->oobsize / eccsteps; - int stat; - - for (sectorIdx = 0; sectorIdx < eccsteps; - sectorIdx++, datap += eccsize) { - if (sectorIdx > 0) { - /* Seek to page location within sector */ - chip->cmdfunc(mtd, NAND_CMD_RNDOUT, sectorIdx * eccsize, - -1); - } - - /* Enable hardware ECC before reading the buf */ - nand_bcm_umi_bch_enable_read_hwecc(); - - /* Read in data */ - bcm_umi_nand_read_buf(mtd, datap, eccsize); - - /* Pause hardware ECC after reading the buf */ - nand_bcm_umi_bch_pause_read_ecc_calc(); - - /* Read the OOB ECC */ - chip->cmdfunc(mtd, NAND_CMD_RNDOUT, - mtd->writesize + sectorIdx * sectorOobSize, -1); - nand_bcm_umi_bch_read_oobEcc(mtd->writesize, eccCalc, - NAND_ECC_NUM_BYTES, - chip->oob_poi + - sectorIdx * sectorOobSize); - - /* Correct any ECC detected errors */ - stat = - nand_bcm_umi_bch_correct_page(datap, eccCalc, - NAND_ECC_NUM_BYTES); - - /* Update Stats */ - if (stat < 0) { -#if defined(NAND_BCM_UMI_DEBUG) - printk(KERN_WARNING "%s uncorr_err sectorIdx=%d\n", - __func__, sectorIdx); - printk(KERN_WARNING - "%s data %02x %02x %02x %02x " - "%02x %02x %02x %02x\n", - __func__, datap[0], datap[1], datap[2], datap[3], - datap[4], datap[5], datap[6], datap[7]); - printk(KERN_WARNING - "%s ecc %02x %02x %02x %02x " - "%02x %02x %02x %02x %02x %02x " - "%02x %02x %02x\n", - __func__, eccCalc[0], eccCalc[1], eccCalc[2], - eccCalc[3], eccCalc[4], eccCalc[5], eccCalc[6], - eccCalc[7], eccCalc[8], eccCalc[9], eccCalc[10], - eccCalc[11], eccCalc[12]); - BUG(); -#endif - mtd->ecc_stats.failed++; - } else { -#if defined(NAND_BCM_UMI_DEBUG) - if (stat > 0) { - printk(KERN_INFO - "%s %d correctable_errors detected\n", - __func__, stat); - } -#endif - mtd->ecc_stats.corrected += stat; - } - } - return 0; -} - -/**************************************************************************** -* -* bcm_umi_bch_write_page_hwecc - hardware ecc based page write function -* @mtd: mtd info structure -* @chip: nand chip info structure -* @buf: data buffer -* -***************************************************************************/ -static void bcm_umi_bch_write_page_hwecc(struct mtd_info *mtd, - struct nand_chip *chip, const uint8_t *buf) -{ - int sectorIdx = 0; - int eccsize = chip->ecc.size; - int eccsteps = chip->ecc.steps; - const uint8_t *datap = buf; - uint8_t *oobp = chip->oob_poi; - int sectorOobSize = mtd->oobsize / eccsteps; - - for (sectorIdx = 0; sectorIdx < eccsteps; - sectorIdx++, datap += eccsize, oobp += sectorOobSize) { - /* Enable hardware ECC before writing the buf */ - nand_bcm_umi_bch_enable_write_hwecc(); - bcm_umi_nand_write_buf(mtd, datap, eccsize); - nand_bcm_umi_bch_write_oobEcc(mtd->writesize, oobp, - NAND_ECC_NUM_BYTES); - } - - bcm_umi_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); -} diff --git a/drivers/mtd/nand/bcm_umi_nand.c b/drivers/mtd/nand/bcm_umi_nand.c deleted file mode 100644 index dfe262c726f..00000000000 --- a/drivers/mtd/nand/bcm_umi_nand.c +++ /dev/null @@ -1,581 +0,0 @@ -/***************************************************************************** -* Copyright 2004 - 2009 Broadcom Corporation. All rights reserved. -* -* Unless you and Broadcom execute a separate written software license -* agreement governing use of this software, this software is licensed to you -* under the terms of the GNU General Public License version 2, available at -* http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). -* -* Notwithstanding the above, under no circumstances may you combine this -* software in any way with any other Broadcom software provided under a -* license other than the GPL, without Broadcom's express prior written -* consent. -*****************************************************************************/ - -/* ---- Include Files ---------------------------------------------------- */ -#include <linux/module.h> -#include <linux/types.h> -#include <linux/init.h> -#include <linux/kernel.h> -#include <linux/slab.h> -#include <linux/string.h> -#include <linux/ioport.h> -#include <linux/device.h> -#include <linux/delay.h> -#include <linux/err.h> -#include <linux/io.h> -#include <linux/platform_device.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/nand_ecc.h> -#include <linux/mtd/partitions.h> - -#include <asm/mach-types.h> -#include <asm/system.h> - -#include <mach/reg_nand.h> -#include <mach/reg_umi.h> - -#include "nand_bcm_umi.h" - -#include <mach/memory_settings.h> - -#define USE_DMA 1 -#include <mach/dma.h> -#include <linux/dma-mapping.h> -#include <linux/completion.h> - -/* ---- External Variable Declarations ----------------------------------- */ -/* ---- External Function Prototypes ------------------------------------- */ -/* ---- Public Variables ------------------------------------------------- */ -/* ---- Private Constants and Types -------------------------------------- */ -static const __devinitconst char gBanner[] = KERN_INFO \ - "BCM UMI MTD NAND Driver: 1.00\n"; - -#ifdef CONFIG_MTD_PARTITIONS -const char *part_probes[] = { "cmdlinepart", NULL }; -#endif - -#if NAND_ECC_BCH -static uint8_t scan_ff_pattern[] = { 0xff }; - -static struct nand_bbt_descr largepage_bbt = { - .options = 0, - .offs = 0, - .len = 1, - .pattern = scan_ff_pattern -}; -#endif - -/* -** Preallocate a buffer to avoid having to do this every dma operation. -** This is the size of the preallocated coherent DMA buffer. -*/ -#if USE_DMA -#define DMA_MIN_BUFLEN 512 -#define DMA_MAX_BUFLEN PAGE_SIZE -#define USE_DIRECT_IO(len) (((len) < DMA_MIN_BUFLEN) || \ - ((len) > DMA_MAX_BUFLEN)) - -/* - * The current NAND data space goes from 0x80001900 to 0x80001FFF, - * which is only 0x700 = 1792 bytes long. This is too small for 2K, 4K page - * size NAND flash. Need to break the DMA down to multiple 1Ks. - * - * Need to make sure REG_NAND_DATA_PADDR + DMA_MAX_LEN < 0x80002000 - */ -#define DMA_MAX_LEN 1024 - -#else /* !USE_DMA */ -#define DMA_MIN_BUFLEN 0 -#define DMA_MAX_BUFLEN 0 -#define USE_DIRECT_IO(len) 1 -#endif -/* ---- Private Function Prototypes -------------------------------------- */ -static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len); -static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf, - int len); - -/* ---- Private Variables ------------------------------------------------ */ -static struct mtd_info *board_mtd; -static void __iomem *bcm_umi_io_base; -static void *virtPtr; -static dma_addr_t physPtr; -static struct completion nand_comp; - -/* ---- Private Functions ------------------------------------------------ */ -#if NAND_ECC_BCH -#include "bcm_umi_bch.c" -#else -#include "bcm_umi_hamming.c" -#endif - -#if USE_DMA - -/* Handler called when the DMA finishes. */ -static void nand_dma_handler(DMA_Device_t dev, int reason, void *userData) -{ - complete(&nand_comp); -} - -static int nand_dma_init(void) -{ - int rc; - - rc = dma_set_device_handler(DMA_DEVICE_NAND_MEM_TO_MEM, - nand_dma_handler, NULL); - if (rc != 0) { - printk(KERN_ERR "dma_set_device_handler failed: %d\n", rc); - return rc; - } - - virtPtr = - dma_alloc_coherent(NULL, DMA_MAX_BUFLEN, &physPtr, GFP_KERNEL); - if (virtPtr == NULL) { - printk(KERN_ERR "NAND - Failed to allocate memory for DMA buffer\n"); - return -ENOMEM; - } - - return 0; -} - -static void nand_dma_term(void) -{ - if (virtPtr != NULL) - dma_free_coherent(NULL, DMA_MAX_BUFLEN, virtPtr, physPtr); -} - -static void nand_dma_read(void *buf, int len) -{ - int offset = 0; - int tmp_len = 0; - int len_left = len; - DMA_Handle_t hndl; - - if (virtPtr == NULL) - panic("nand_dma_read: virtPtr == NULL\n"); - - if ((void *)physPtr == NULL) - panic("nand_dma_read: physPtr == NULL\n"); - - hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM); - if (hndl < 0) { - printk(KERN_ERR - "nand_dma_read: unable to allocate dma channel: %d\n", - (int)hndl); - panic("\n"); - } - - while (len_left > 0) { - if (len_left > DMA_MAX_LEN) { - tmp_len = DMA_MAX_LEN; - len_left -= DMA_MAX_LEN; - } else { - tmp_len = len_left; - len_left = 0; - } - - init_completion(&nand_comp); - dma_transfer_mem_to_mem(hndl, REG_NAND_DATA_PADDR, - physPtr + offset, tmp_len); - wait_for_completion(&nand_comp); - - offset += tmp_len; - } - - dma_free_channel(hndl); - - if (buf != NULL) - memcpy(buf, virtPtr, len); -} - -static void nand_dma_write(const void *buf, int len) -{ - int offset = 0; - int tmp_len = 0; - int len_left = len; - DMA_Handle_t hndl; - - if (buf == NULL) - panic("nand_dma_write: buf == NULL\n"); - - if (virtPtr == NULL) - panic("nand_dma_write: virtPtr == NULL\n"); - - if ((void *)physPtr == NULL) - panic("nand_dma_write: physPtr == NULL\n"); - - memcpy(virtPtr, buf, len); - - - hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM); - if (hndl < 0) { - printk(KERN_ERR - "nand_dma_write: unable to allocate dma channel: %d\n", - (int)hndl); - panic("\n"); - } - - while (len_left > 0) { - if (len_left > DMA_MAX_LEN) { - tmp_len = DMA_MAX_LEN; - len_left -= DMA_MAX_LEN; - } else { - tmp_len = len_left; - len_left = 0; - } - - init_completion(&nand_comp); - dma_transfer_mem_to_mem(hndl, physPtr + offset, - REG_NAND_DATA_PADDR, tmp_len); - wait_for_completion(&nand_comp); - - offset += tmp_len; - } - - dma_free_channel(hndl); -} - -#endif - -static int nand_dev_ready(struct mtd_info *mtd) -{ - return nand_bcm_umi_dev_ready(); -} - -/**************************************************************************** -* -* bcm_umi_nand_inithw -* -* This routine does the necessary hardware (board-specific) -* initializations. This includes setting up the timings, etc. -* -***************************************************************************/ -int bcm_umi_nand_inithw(void) -{ - /* Configure nand timing parameters */ - REG_UMI_NAND_TCR &= ~0x7ffff; - REG_UMI_NAND_TCR |= HW_CFG_NAND_TCR; - -#if !defined(CONFIG_MTD_NAND_BCM_UMI_HWCS) - /* enable software control of CS */ - REG_UMI_NAND_TCR |= REG_UMI_NAND_TCR_CS_SWCTRL; -#endif - - /* keep NAND chip select asserted */ - REG_UMI_NAND_RCSR |= REG_UMI_NAND_RCSR_CS_ASSERTED; - - REG_UMI_NAND_TCR &= ~REG_UMI_NAND_TCR_WORD16; - /* enable writes to flash */ - REG_UMI_MMD_ICR |= REG_UMI_MMD_ICR_FLASH_WP; - - writel(NAND_CMD_RESET, bcm_umi_io_base + REG_NAND_CMD_OFFSET); - nand_bcm_umi_wait_till_ready(); - -#if NAND_ECC_BCH - nand_bcm_umi_bch_config_ecc(NAND_ECC_NUM_BYTES); -#endif - - return 0; -} - -/* Used to turn latch the proper register for access. */ -static void bcm_umi_nand_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - /* send command to hardware */ - struct nand_chip *chip = mtd->priv; - if (ctrl & NAND_CTRL_CHANGE) { - if (ctrl & NAND_CLE) { - chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_CMD_OFFSET; - goto CMD; - } - if (ctrl & NAND_ALE) { - chip->IO_ADDR_W = - bcm_umi_io_base + REG_NAND_ADDR_OFFSET; - goto CMD; - } - chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET; - } - -CMD: - /* Send command to chip directly */ - if (cmd != NAND_CMD_NONE) - writeb(cmd, chip->IO_ADDR_W); -} - -static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf, - int len) -{ - if (USE_DIRECT_IO(len)) { - /* Do it the old way if the buffer is small or too large. - * Probably quicker than starting and checking dma. */ - int i; - struct nand_chip *this = mtd->priv; - - for (i = 0; i < len; i++) - writeb(buf[i], this->IO_ADDR_W); - } -#if USE_DMA - else - nand_dma_write(buf, len); -#endif -} - -static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len) -{ - if (USE_DIRECT_IO(len)) { - int i; - struct nand_chip *this = mtd->priv; - - for (i = 0; i < len; i++) - buf[i] = readb(this->IO_ADDR_R); - } -#if USE_DMA - else - nand_dma_read(buf, len); -#endif -} - -static uint8_t readbackbuf[NAND_MAX_PAGESIZE]; -static int bcm_umi_nand_verify_buf(struct mtd_info *mtd, const u_char * buf, - int len) -{ - /* - * Try to readback page with ECC correction. This is necessary - * for MLC parts which may have permanently stuck bits. - */ - struct nand_chip *chip = mtd->priv; - int ret = chip->ecc.read_page(mtd, chip, readbackbuf, 0); - if (ret < 0) - return -EFAULT; - else { - if (memcmp(readbackbuf, buf, len) == 0) - return 0; - - return -EFAULT; - } - return 0; -} - -static int __devinit bcm_umi_nand_probe(struct platform_device *pdev) -{ - struct nand_chip *this; - struct resource *r; - int err = 0; - - printk(gBanner); - - /* Allocate memory for MTD device structure and private data */ - board_mtd = - kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), - GFP_KERNEL); - if (!board_mtd) { - printk(KERN_WARNING - "Unable to allocate NAND MTD device structure.\n"); - return -ENOMEM; - } - - r = platform_get_resource(pdev, IORESOURCE_MEM, 0); - - if (!r) - return -ENXIO; - - /* map physical address */ - bcm_umi_io_base = ioremap(r->start, r->end - r->start + 1); - - if (!bcm_umi_io_base) { - printk(KERN_ERR "ioremap to access BCM UMI NAND chip failed\n"); - kfree(board_mtd); - return -EIO; - } - - /* Get pointer to private data */ - this = (struct nand_chip *)(&board_mtd[1]); - - /* Initialize structures */ - memset((char *)board_mtd, 0, sizeof(struct mtd_info)); - memset((char *)this, 0, sizeof(struct nand_chip)); - - /* Link the private data with the MTD structure */ - board_mtd->priv = this; - - /* Initialize the NAND hardware. */ - if (bcm_umi_nand_inithw() < 0) { - printk(KERN_ERR "BCM UMI NAND chip could not be initialized\n"); - iounmap(bcm_umi_io_base); - kfree(board_mtd); - return -EIO; - } - - /* Set address of NAND IO lines */ - this->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET; - this->IO_ADDR_R = bcm_umi_io_base + REG_NAND_DATA8_OFFSET; - - /* Set command delay time, see datasheet for correct value */ - this->chip_delay = 0; - /* Assign the device ready function, if available */ - this->dev_ready = nand_dev_ready; - this->options = 0; - - this->write_buf = bcm_umi_nand_write_buf; - this->read_buf = bcm_umi_nand_read_buf; - this->verify_buf = bcm_umi_nand_verify_buf; - - this->cmd_ctrl = bcm_umi_nand_hwcontrol; - this->ecc.mode = NAND_ECC_HW; - this->ecc.size = 512; - this->ecc.bytes = NAND_ECC_NUM_BYTES; -#if NAND_ECC_BCH - this->ecc.read_page = bcm_umi_bch_read_page_hwecc; - this->ecc.write_page = bcm_umi_bch_write_page_hwecc; -#else - this->ecc.correct = nand_correct_data512; - this->ecc.calculate = bcm_umi_hamming_get_hw_ecc; - this->ecc.hwctl = bcm_umi_hamming_enable_hwecc; -#endif - -#if USE_DMA - err = nand_dma_init(); - if (err != 0) - return err; -#endif - - /* Figure out the size of the device that we have. - * We need to do this to figure out which ECC - * layout we'll be using. - */ - - err = nand_scan_ident(board_mtd, 1, NULL); - if (err) { - printk(KERN_ERR "nand_scan failed: %d\n", err); - iounmap(bcm_umi_io_base); - kfree(board_mtd); - return err; - } - - /* Now that we know the nand size, we can setup the ECC layout */ - - switch (board_mtd->writesize) { /* writesize is the pagesize */ - case 4096: - this->ecc.layout = &nand_hw_eccoob_4096; - break; - case 2048: - this->ecc.layout = &nand_hw_eccoob_2048; - break; - case 512: - this->ecc.layout = &nand_hw_eccoob_512; - break; - default: - { - printk(KERN_ERR "NAND - Unrecognized pagesize: %d\n", - board_mtd->writesize); - return -EINVAL; - } - } - -#if NAND_ECC_BCH - if (board_mtd->writesize > 512) { - if (this->options & NAND_USE_FLASH_BBT) - largepage_bbt.options = NAND_BBT_SCAN2NDPAGE; - this->badblock_pattern = &largepage_bbt; - } -#endif - - /* Now finish off the scan, now that ecc.layout has been initialized. */ - - err = nand_scan_tail(board_mtd); - if (err) { - printk(KERN_ERR "nand_scan failed: %d\n", err); - iounmap(bcm_umi_io_base); - kfree(board_mtd); - return err; - } - - /* Register the partitions */ - { - int nr_partitions; - struct mtd_partition *partition_info; - - board_mtd->name = "bcm_umi-nand"; - nr_partitions = - parse_mtd_partitions(board_mtd, part_probes, - &partition_info, 0); - - if (nr_partitions <= 0) { - printk(KERN_ERR "BCM UMI NAND: Too few partitions - %d\n", - nr_partitions); - iounmap(bcm_umi_io_base); - kfree(board_mtd); - return -EIO; - } - add_mtd_partitions(board_mtd, partition_info, nr_partitions); - } - - /* Return happy */ - return 0; -} - -static int bcm_umi_nand_remove(struct platform_device *pdev) -{ -#if USE_DMA - nand_dma_term(); -#endif - - /* Release resources, unregister device */ - nand_release(board_mtd); - - /* unmap physical address */ - iounmap(bcm_umi_io_base); - - /* Free the MTD device structure */ - kfree(board_mtd); - - return 0; -} - -#ifdef CONFIG_PM -static int bcm_umi_nand_suspend(struct platform_device *pdev, - pm_message_t state) -{ - printk(KERN_ERR "MTD NAND suspend is being called\n"); - return 0; -} - -static int bcm_umi_nand_resume(struct platform_device *pdev) -{ - printk(KERN_ERR "MTD NAND resume is being called\n"); - return 0; -} -#else -#define bcm_umi_nand_suspend NULL -#define bcm_umi_nand_resume NULL -#endif - -static struct platform_driver nand_driver = { - .driver = { - .name = "bcm-nand", - .owner = THIS_MODULE, - }, - .probe = bcm_umi_nand_probe, - .remove = bcm_umi_nand_remove, - .suspend = bcm_umi_nand_suspend, - .resume = bcm_umi_nand_resume, -}; - -static int __init nand_init(void) -{ - return platform_driver_register(&nand_driver); -} - -static void __exit nand_exit(void) -{ - platform_driver_unregister(&nand_driver); -} - -module_init(nand_init); -module_exit(nand_exit); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Broadcom"); -MODULE_DESCRIPTION("BCM UMI MTD NAND driver"); diff --git a/drivers/mtd/nand/bf5xx_nand.c b/drivers/mtd/nand/bf5xx_nand.c index 2974995e194..722898aea7a 100644 --- a/drivers/mtd/nand/bf5xx_nand.c +++ b/drivers/mtd/nand/bf5xx_nand.c @@ -20,9 +20,6 @@ * - DMA supported in ECC_HW * - YAFFS tested as rootfs in both ECC_HW and ECC_SW * - * TODO: - * Enable JFFS2 over NAND as rootfs - * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or @@ -40,7 +37,6 @@ #include <linux/module.h> #include <linux/types.h> -#include <linux/init.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/ioport.h> @@ -113,15 +109,6 @@ static const unsigned short bfin_nfc_pin_req[] = 0}; #ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC -static uint8_t bbt_pattern[] = { 0xff }; - -static struct nand_bbt_descr bootrom_bbt = { - .options = 0, - .offs = 63, - .len = 1, - .pattern = bbt_pattern, -}; - static struct nand_ecclayout bootrom_ecclayout = { .eccbytes = 24, .eccpos = { @@ -183,7 +170,7 @@ static struct bf5xx_nand_info *to_nand_info(struct platform_device *pdev) static struct bf5xx_nand_platform *to_nand_plat(struct platform_device *pdev) { - return pdev->dev.platform_data; + return dev_get_platdata(&pdev->dev); } /* @@ -206,7 +193,7 @@ static void bf5xx_nand_hwcontrol(struct mtd_info *mtd, int cmd, if (ctrl & NAND_CLE) bfin_write_NFC_CMD(cmd); - else + else if (ctrl & NAND_ALE) bfin_write_NFC_ADDR(cmd); SSYNC(); } @@ -218,9 +205,9 @@ static void bf5xx_nand_hwcontrol(struct mtd_info *mtd, int cmd, */ static int bf5xx_nand_devready(struct mtd_info *mtd) { - unsigned short val = bfin_read_NFC_IRQSTAT(); + unsigned short val = bfin_read_NFC_STAT(); - if ((val & NBUSYIRQ) == NBUSYIRQ) + if ((val & NBUSY) == NBUSY) return 1; else return 0; @@ -317,18 +304,16 @@ static int bf5xx_nand_correct_data_256(struct mtd_info *mtd, u_char *dat, static int bf5xx_nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { - struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); - struct bf5xx_nand_platform *plat = info->platform; - unsigned short page_size = (plat->page_size ? 512 : 256); + struct nand_chip *chip = mtd->priv; int ret; ret = bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc); - /* If page size is 512, correct second 256 bytes */ - if (page_size == 512) { + /* If ecc size is 512, correct second 256 bytes */ + if (chip->ecc.size == 512) { dat += 256; - read_ecc += 8; - calc_ecc += 8; + read_ecc += 3; + calc_ecc += 3; ret |= bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc); } @@ -344,13 +329,12 @@ static int bf5xx_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); - struct bf5xx_nand_platform *plat = info->platform; - u16 page_size = (plat->page_size ? 512 : 256); + struct nand_chip *chip = mtd->priv; u16 ecc0, ecc1; u32 code[2]; u8 *p; - /* first 4 bytes ECC code for 256 page size */ + /* first 3 bytes ECC code for 256 page size */ ecc0 = bfin_read_NFC_ECC0(); ecc1 = bfin_read_NFC_ECC1(); @@ -358,12 +342,11 @@ static int bf5xx_nand_calculate_ecc(struct mtd_info *mtd, dev_dbg(info->device, "returning ecc 0x%08x\n", code[0]); - /* first 3 bytes in ecc_code for 256 page size */ p = (u8 *) code; memcpy(ecc_code, p, 3); - /* second 4 bytes ECC code for 512 page size */ - if (page_size == 512) { + /* second 3 bytes ECC code for 512 ecc size */ + if (chip->ecc.size == 512) { ecc0 = bfin_read_NFC_ECC2(); ecc1 = bfin_read_NFC_ECC3(); code[1] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11); @@ -483,8 +466,7 @@ static void bf5xx_nand_dma_rw(struct mtd_info *mtd, uint8_t *buf, int is_read) { struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); - struct bf5xx_nand_platform *plat = info->platform; - unsigned short page_size = (plat->page_size ? 512 : 256); + struct nand_chip *chip = mtd->priv; unsigned short val; dev_dbg(info->device, " mtd->%p, buf->%p, is_read %d\n", @@ -498,10 +480,10 @@ static void bf5xx_nand_dma_rw(struct mtd_info *mtd, */ if (is_read) invalidate_dcache_range((unsigned int)buf, - (unsigned int)(buf + page_size)); + (unsigned int)(buf + chip->ecc.size)); else flush_dcache_range((unsigned int)buf, - (unsigned int)(buf + page_size)); + (unsigned int)(buf + chip->ecc.size)); /* * This register must be written before each page is @@ -510,6 +492,8 @@ static void bf5xx_nand_dma_rw(struct mtd_info *mtd, */ bfin_write_NFC_RST(ECC_RST); SSYNC(); + while (bfin_read_NFC_RST() & ECC_RST) + cpu_relax(); disable_dma(CH_NFC); clear_dma_irqstat(CH_NFC); @@ -520,13 +504,13 @@ static void bf5xx_nand_dma_rw(struct mtd_info *mtd, /* The DMAs have different size on BF52x and BF54x */ #ifdef CONFIG_BF52x - set_dma_x_count(CH_NFC, (page_size >> 1)); + set_dma_x_count(CH_NFC, (chip->ecc.size >> 1)); set_dma_x_modify(CH_NFC, 2); val = DI_EN | WDSIZE_16; #endif #ifdef CONFIG_BF54x - set_dma_x_count(CH_NFC, (page_size >> 2)); + set_dma_x_count(CH_NFC, (chip->ecc.size >> 2)); set_dma_x_modify(CH_NFC, 4); val = DI_EN | WDSIZE_32; #endif @@ -548,12 +532,11 @@ static void bf5xx_nand_dma_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); - struct bf5xx_nand_platform *plat = info->platform; - unsigned short page_size = (plat->page_size ? 512 : 256); + struct nand_chip *chip = mtd->priv; dev_dbg(info->device, "mtd->%p, buf->%p, int %d\n", mtd, buf, len); - if (len == page_size) + if (len == chip->ecc.size) bf5xx_nand_dma_rw(mtd, buf, 1); else bf5xx_nand_read_buf(mtd, buf, len); @@ -563,17 +546,34 @@ static void bf5xx_nand_dma_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); - struct bf5xx_nand_platform *plat = info->platform; - unsigned short page_size = (plat->page_size ? 512 : 256); + struct nand_chip *chip = mtd->priv; dev_dbg(info->device, "mtd->%p, buf->%p, len %d\n", mtd, buf, len); - if (len == page_size) + if (len == chip->ecc.size) bf5xx_nand_dma_rw(mtd, (uint8_t *)buf, 0); else bf5xx_nand_write_buf(mtd, buf, len); } +static int bf5xx_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + bf5xx_nand_read_buf(mtd, buf, mtd->writesize); + bf5xx_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + +static int bf5xx_nand_write_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf, int oob_required) +{ + bf5xx_nand_write_buf(mtd, buf, mtd->writesize); + bf5xx_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + /* * System initialization functions */ @@ -627,15 +627,14 @@ static int bf5xx_nand_hw_init(struct bf5xx_nand_info *info) /* setup NFC_CTL register */ dev_info(info->device, - "page_size=%d, data_width=%d, wr_dly=%d, rd_dly=%d\n", - (plat->page_size ? 512 : 256), + "data_width=%d, wr_dly=%d, rd_dly=%d\n", (plat->data_width ? 16 : 8), plat->wr_dly, plat->rd_dly); - val = (plat->page_size << NFC_PG_SIZE_OFFSET) | + val = (1 << NFC_PG_SIZE_OFFSET) | (plat->data_width << NFC_NWIDTH_OFFSET) | (plat->rd_dly << NFC_RDDLY_OFFSET) | - (plat->rd_dly << NFC_WRDLY_OFFSET); + (plat->wr_dly << NFC_WRDLY_OFFSET); dev_dbg(info->device, "NFC_CTL is 0x%04x\n", val); bfin_write_NFC_CTL(val); @@ -658,46 +657,60 @@ static int bf5xx_nand_hw_init(struct bf5xx_nand_info *info) /* * Device management interface */ -static int __devinit bf5xx_nand_add_partition(struct bf5xx_nand_info *info) +static int bf5xx_nand_add_partition(struct bf5xx_nand_info *info) { struct mtd_info *mtd = &info->mtd; - -#ifdef CONFIG_MTD_PARTITIONS struct mtd_partition *parts = info->platform->partitions; int nr = info->platform->nr_partitions; - return add_mtd_partitions(mtd, parts, nr); -#else - return add_mtd_device(mtd); -#endif + return mtd_device_register(mtd, parts, nr); } -static int __devexit bf5xx_nand_remove(struct platform_device *pdev) +static int bf5xx_nand_remove(struct platform_device *pdev) { struct bf5xx_nand_info *info = to_nand_info(pdev); - struct mtd_info *mtd = NULL; - - platform_set_drvdata(pdev, NULL); /* first thing we need to do is release all our mtds * and their partitions, then go through freeing the * resources used */ - mtd = &info->mtd; - if (mtd) { - nand_release(mtd); - kfree(mtd); - } + nand_release(&info->mtd); peripheral_free_list(bfin_nfc_pin_req); bf5xx_nand_dma_remove(info); - /* free the common resources */ - kfree(info); - return 0; } +static int bf5xx_nand_scan(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + int ret; + + ret = nand_scan_ident(mtd, 1, NULL); + if (ret) + return ret; + + if (hardware_ecc) { + /* + * for nand with page size > 512B, think it as several sections with 512B + */ + if (likely(mtd->writesize >= 512)) { + chip->ecc.size = 512; + chip->ecc.bytes = 6; + chip->ecc.strength = 2; + } else { + chip->ecc.size = 256; + chip->ecc.bytes = 3; + chip->ecc.strength = 1; + bfin_write_NFC_CTL(bfin_read_NFC_CTL() & ~(1 << NFC_PG_SIZE_OFFSET)); + SSYNC(); + } + } + + return nand_scan_tail(mtd); +} + /* * bf5xx_nand_probe * @@ -706,7 +719,7 @@ static int __devexit bf5xx_nand_remove(struct platform_device *pdev) * it can allocate all necessary resources then calls the * nand layer to look for devices */ -static int __devinit bf5xx_nand_probe(struct platform_device *pdev) +static int bf5xx_nand_probe(struct platform_device *pdev) { struct bf5xx_nand_platform *plat = to_nand_plat(pdev); struct bf5xx_nand_info *info = NULL; @@ -726,11 +739,10 @@ static int __devinit bf5xx_nand_probe(struct platform_device *pdev) return -EFAULT; } - info = kzalloc(sizeof(*info), GFP_KERNEL); + info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); if (info == NULL) { - dev_err(&pdev->dev, "no memory for flash info\n"); err = -ENOMEM; - goto out_err_kzalloc; + goto out_err; } platform_set_drvdata(pdev, info); @@ -775,39 +787,35 @@ static int __devinit bf5xx_nand_probe(struct platform_device *pdev) /* initialise the hardware */ err = bf5xx_nand_hw_init(info); if (err) - goto out_err_hw_init; + goto out_err; /* setup hardware ECC data struct */ if (hardware_ecc) { #ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC - chip->badblock_pattern = &bootrom_bbt; chip->ecc.layout = &bootrom_ecclayout; #endif - - if (plat->page_size == NFC_PG_SIZE_256) { - chip->ecc.bytes = 3; - chip->ecc.size = 256; - } else if (plat->page_size == NFC_PG_SIZE_512) { - chip->ecc.bytes = 6; - chip->ecc.size = 512; - } - chip->read_buf = bf5xx_nand_dma_read_buf; chip->write_buf = bf5xx_nand_dma_write_buf; chip->ecc.calculate = bf5xx_nand_calculate_ecc; chip->ecc.correct = bf5xx_nand_correct_data; chip->ecc.mode = NAND_ECC_HW; chip->ecc.hwctl = bf5xx_nand_enable_hwecc; + chip->ecc.read_page_raw = bf5xx_nand_read_page_raw; + chip->ecc.write_page_raw = bf5xx_nand_write_page_raw; } else { chip->ecc.mode = NAND_ECC_SOFT; } /* scan hardware nand chip and setup mtd info data struct */ - if (nand_scan(mtd, 1)) { + if (bf5xx_nand_scan(mtd)) { err = -ENXIO; goto out_err_nand_scan; } +#ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC + chip->badblockpos = 63; +#endif + /* add NAND partition */ bf5xx_nand_add_partition(info); @@ -816,10 +824,7 @@ static int __devinit bf5xx_nand_probe(struct platform_device *pdev) out_err_nand_scan: bf5xx_nand_dma_remove(info); -out_err_hw_init: - platform_set_drvdata(pdev, NULL); - kfree(info); -out_err_kzalloc: +out_err: peripheral_free_list(bfin_nfc_pin_req); return err; @@ -850,7 +855,7 @@ static int bf5xx_nand_resume(struct platform_device *dev) /* driver device registration */ static struct platform_driver bf5xx_nand_driver = { .probe = bf5xx_nand_probe, - .remove = __devexit_p(bf5xx_nand_remove), + .remove = bf5xx_nand_remove, .suspend = bf5xx_nand_suspend, .resume = bf5xx_nand_resume, .driver = { @@ -859,21 +864,7 @@ static struct platform_driver bf5xx_nand_driver = { }, }; -static int __init bf5xx_nand_init(void) -{ - printk(KERN_INFO "%s, Version %s (c) 2007 Analog Devices, Inc.\n", - DRV_DESC, DRV_VERSION); - - return platform_driver_register(&bf5xx_nand_driver); -} - -static void __exit bf5xx_nand_exit(void) -{ - platform_driver_unregister(&bf5xx_nand_driver); -} - -module_init(bf5xx_nand_init); -module_exit(bf5xx_nand_exit); +module_platform_driver(bf5xx_nand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR(DRV_AUTHOR); diff --git a/drivers/mtd/nand/cafe_nand.c b/drivers/mtd/nand/cafe_nand.c index db1dfc5a1b1..4e66726da9a 100644 --- a/drivers/mtd/nand/cafe_nand.c +++ b/drivers/mtd/nand/cafe_nand.c @@ -2,7 +2,7 @@ * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01 * * The data sheet for this device can be found at: - * http://www.marvell.com/products/pcconn/88ALP01.jsp + * http://wiki.laptop.org/go/Datasheets * * Copyright © 2006 Red Hat, Inc. * Copyright © 2006 David Woodhouse <dwmw2@infradead.org> @@ -21,6 +21,7 @@ #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/slab.h> +#include <linux/module.h> #include <asm/io.h> #define CAFE_NAND_CTRL1 0x00 @@ -57,7 +58,6 @@ struct cafe_priv { struct nand_chip nand; - struct mtd_partition *parts; struct pci_dev *pdev; void __iomem *mmio; struct rs_control *rs; @@ -90,9 +90,7 @@ static unsigned int numtimings; static int timing[3]; module_param_array(timing, int, &numtimings, 0644); -#ifdef CONFIG_MTD_PARTITIONS static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL }; -#endif /* Hrm. Why isn't this already conditional on something in the struct device? */ #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0) @@ -104,7 +102,7 @@ static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL }; static int cafe_device_ready(struct mtd_info *mtd) { struct cafe_priv *cafe = mtd->priv; - int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000); + int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000); uint32_t irqs = cafe_readl(cafe, NAND_IRQ); cafe_writel(cafe, irqs, NAND_IRQ); @@ -305,13 +303,7 @@ static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command, case NAND_CMD_SEQIN: case NAND_CMD_RNDIN: case NAND_CMD_STATUS: - case NAND_CMD_DEPLETE1: case NAND_CMD_RNDOUT: - case NAND_CMD_STATUS_ERROR: - case NAND_CMD_STATUS_ERROR0: - case NAND_CMD_STATUS_ERROR1: - case NAND_CMD_STATUS_ERROR2: - case NAND_CMD_STATUS_ERROR3: cafe_writel(cafe, cafe->ctl2, NAND_CTRL2); return; } @@ -366,25 +358,27 @@ static int cafe_nand_write_oob(struct mtd_info *mtd, /* Don't use -- use nand_read_oob_std for now */ static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page, int sndcmd) + int page) { chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); - return 1; + return 0; } /** - * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read + * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data + * @oob_required: caller expects OOB data read to chip->oob_poi * - * The hw generator calculates the error syndrome automatically. Therefor + * The hw generator calculates the error syndrome automatically. Therefore * we need a special oob layout and handling. */ static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int page) + uint8_t *buf, int oob_required, int page) { struct cafe_priv *cafe = mtd->priv; + unsigned int max_bitflips = 0; cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n", cafe_readl(cafe, NAND_ECC_RESULT), @@ -451,10 +445,11 @@ static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, } else { dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n); mtd->ecc_stats.corrected += n; + max_bitflips = max_t(unsigned int, max_bitflips, n); } } - return 0; + return max_bitflips; } static struct nand_ecclayout cafe_oobinfo_2048 = { @@ -519,8 +514,9 @@ static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = { }; -static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd, - struct nand_chip *chip, const uint8_t *buf) +static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, int oob_required) { struct cafe_priv *cafe = mtd->priv; @@ -529,19 +525,25 @@ static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd, /* Set up ECC autogeneration */ cafe->ctl2 |= (1<<30); + + return 0; } static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int page, int cached, int raw) + uint32_t offset, int data_len, const uint8_t *buf, + int oob_required, int page, int cached, int raw) { int status; chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); if (unlikely(raw)) - chip->ecc.write_page_raw(mtd, chip, buf); + status = chip->ecc.write_page_raw(mtd, chip, buf, oob_required); else - chip->ecc.write_page(mtd, chip, buf); + status = chip->ecc.write_page(mtd, chip, buf, oob_required); + + if (status < 0) + return status; /* * Cached progamming disabled for now, Not sure if its worth the @@ -568,13 +570,6 @@ static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, status = chip->waitfunc(mtd, chip); } -#ifdef CONFIG_MTD_NAND_VERIFY_WRITE - /* Send command to read back the data */ - chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); - - if (chip->verify_buf(mtd, buf, mtd->writesize)) - return -EIO; -#endif return 0; } @@ -584,7 +579,7 @@ static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) } /* F_2[X]/(X**6+X+1) */ -static unsigned short __devinit gf64_mul(u8 a, u8 b) +static unsigned short gf64_mul(u8 a, u8 b) { u8 c; unsigned int i; @@ -603,7 +598,7 @@ static unsigned short __devinit gf64_mul(u8 a, u8 b) } /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */ -static u16 __devinit gf4096_mul(u16 a, u16 b) +static u16 gf4096_mul(u16 a, u16 b) { u8 ah, al, bh, bl, ch, cl; @@ -618,24 +613,22 @@ static u16 __devinit gf4096_mul(u16 a, u16 b) return (ch << 6) ^ cl; } -static int __devinit cafe_mul(int x) +static int cafe_mul(int x) { if (x == 0) return 1; return gf4096_mul(x, 0xe01); } -static int __devinit cafe_nand_probe(struct pci_dev *pdev, +static int cafe_nand_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct mtd_info *mtd; struct cafe_priv *cafe; uint32_t ctrl; int err = 0; -#ifdef CONFIG_MTD_PARTITIONS - struct mtd_partition *parts; - int nr_parts; -#endif + int old_dma; + struct nand_buffers *nbuf; /* Very old versions shared the same PCI ident for all three functions on the chip. Verify the class too... */ @@ -649,10 +642,8 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev, pci_set_master(pdev); mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL); - if (!mtd) { - dev_warn(&pdev->dev, "failed to alloc mtd_info\n"); + if (!mtd) return -ENOMEM; - } cafe = (void *)(&mtd[1]); mtd->dev.parent = &pdev->dev; @@ -666,13 +657,6 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev, err = -ENOMEM; goto out_free_mtd; } - cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers), - &cafe->dmaaddr, GFP_KERNEL); - if (!cafe->dmabuf) { - err = -ENOMEM; - goto out_ior; - } - cafe->nand.buffers = (void *)cafe->dmabuf + 2112; cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8); if (!cafe->rs) { @@ -690,7 +674,8 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev, cafe->nand.chip_delay = 0; /* Enable the following for a flash based bad block table */ - cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS; + cafe->nand.bbt_options = NAND_BBT_USE_FLASH; + cafe->nand.options = NAND_OWN_BUFFERS; if (skipbbt) { cafe->nand.options |= NAND_SKIP_BBTSCAN; @@ -731,7 +716,7 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev, "CAFE NAND", mtd); if (err) { dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq); - goto out_free_dma; + goto out_ior; } /* Disable master reset, enable NAND clock */ @@ -745,6 +730,32 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev, cafe_writel(cafe, 0x7006, GLOBAL_CTRL); cafe_writel(cafe, 0x700a, GLOBAL_CTRL); + /* Enable NAND IRQ in global IRQ mask register */ + cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK); + cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n", + cafe_readl(cafe, GLOBAL_CTRL), + cafe_readl(cafe, GLOBAL_IRQ_MASK)); + + /* Do not use the DMA for the nand_scan_ident() */ + old_dma = usedma; + usedma = 0; + + /* Scan to find existence of the device */ + if (nand_scan_ident(mtd, 2, NULL)) { + err = -ENXIO; + goto out_irq; + } + + cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, + 2112 + sizeof(struct nand_buffers) + + mtd->writesize + mtd->oobsize, + &cafe->dmaaddr, GFP_KERNEL); + if (!cafe->dmabuf) { + err = -ENOMEM; + goto out_irq; + } + cafe->nand.buffers = nbuf = (void *)cafe->dmabuf + 2112; + /* Set up DMA address */ cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0); if (sizeof(cafe->dmaaddr) > 4) @@ -756,16 +767,13 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev, cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n", cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf); - /* Enable NAND IRQ in global IRQ mask register */ - cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK); - cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n", - cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK)); + /* this driver does not need the @ecccalc and @ecccode */ + nbuf->ecccalc = NULL; + nbuf->ecccode = NULL; + nbuf->databuf = (uint8_t *)(nbuf + 1); - /* Scan to find existence of the device */ - if (nand_scan_ident(mtd, 2, NULL)) { - err = -ENXIO; - goto out_irq; - } + /* Restore the DMA flag */ + usedma = old_dma; cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */ if (mtd->writesize == 2048) @@ -783,11 +791,12 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev, } else { printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n", mtd->writesize); - goto out_irq; + goto out_free_dma; } cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME; cafe->nand.ecc.size = mtd->writesize; cafe->nand.ecc.bytes = 14; + cafe->nand.ecc.strength = 4; cafe->nand.ecc.hwctl = (void *)cafe_nand_bug; cafe->nand.ecc.calculate = (void *)cafe_nand_bug; cafe->nand.ecc.correct = (void *)cafe_nand_bug; @@ -799,32 +808,24 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev, err = nand_scan_tail(mtd); if (err) - goto out_irq; + goto out_free_dma; pci_set_drvdata(pdev, mtd); - /* We register the whole device first, separate from the partitions */ - add_mtd_device(mtd); - -#ifdef CONFIG_MTD_PARTITIONS -#ifdef CONFIG_MTD_CMDLINE_PARTS mtd->name = "cafe_nand"; -#endif - nr_parts = parse_mtd_partitions(mtd, part_probes, &parts, 0); - if (nr_parts > 0) { - cafe->parts = parts; - dev_info(&cafe->pdev->dev, "%d partitions found\n", nr_parts); - add_mtd_partitions(mtd, parts, nr_parts); - } -#endif + mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0); + goto out; + out_free_dma: + dma_free_coherent(&cafe->pdev->dev, + 2112 + sizeof(struct nand_buffers) + + mtd->writesize + mtd->oobsize, + cafe->dmabuf, cafe->dmaaddr); out_irq: /* Disable NAND IRQ in global IRQ mask register */ cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK); free_irq(pdev->irq, mtd); - out_free_dma: - dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr); out_ior: pci_iounmap(pdev, cafe->mmio); out_free_mtd: @@ -833,19 +834,21 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev, return err; } -static void __devexit cafe_nand_remove(struct pci_dev *pdev) +static void cafe_nand_remove(struct pci_dev *pdev) { struct mtd_info *mtd = pci_get_drvdata(pdev); struct cafe_priv *cafe = mtd->priv; - del_mtd_device(mtd); /* Disable NAND IRQ in global IRQ mask register */ cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK); free_irq(pdev->irq, mtd); nand_release(mtd); free_rs(cafe->rs); pci_iounmap(pdev, cafe->mmio); - dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr); + dma_free_coherent(&cafe->pdev->dev, + 2112 + sizeof(struct nand_buffers) + + mtd->writesize + mtd->oobsize, + cafe->dmabuf, cafe->dmaaddr); kfree(mtd); } @@ -900,21 +903,11 @@ static struct pci_driver cafe_nand_pci_driver = { .name = "CAFÉ NAND", .id_table = cafe_nand_tbl, .probe = cafe_nand_probe, - .remove = __devexit_p(cafe_nand_remove), + .remove = cafe_nand_remove, .resume = cafe_nand_resume, }; -static int __init cafe_nand_init(void) -{ - return pci_register_driver(&cafe_nand_pci_driver); -} - -static void __exit cafe_nand_exit(void) -{ - pci_unregister_driver(&cafe_nand_pci_driver); -} -module_init(cafe_nand_init); -module_exit(cafe_nand_exit); +module_pci_driver(cafe_nand_pci_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); diff --git a/drivers/mtd/nand/cmx270_nand.c b/drivers/mtd/nand/cmx270_nand.c index 6e649527825..66ec95e6ca6 100644 --- a/drivers/mtd/nand/cmx270_nand.c +++ b/drivers/mtd/nand/cmx270_nand.c @@ -22,6 +22,7 @@ #include <linux/mtd/partitions.h> #include <linux/slab.h> #include <linux/gpio.h> +#include <linux/module.h> #include <asm/io.h> #include <asm/irq.h> @@ -50,8 +51,6 @@ static struct mtd_partition partition_info[] = { }; #define NUM_PARTITIONS (ARRAY_SIZE(partition_info)) -const char *part_probes[] = { "cmdlinepart", NULL }; - static u_char cmx270_read_byte(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; @@ -77,18 +76,6 @@ static void cmx270_read_buf(struct mtd_info *mtd, u_char *buf, int len) *buf++ = readl(this->IO_ADDR_R) >> 16; } -static int cmx270_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) -{ - int i; - struct nand_chip *this = mtd->priv; - - for (i=0; i<len; i++) - if (buf[i] != (u_char)(readl(this->IO_ADDR_R) >> 16)) - return -EFAULT; - - return 0; -} - static inline void nand_cs_on(void) { gpio_set_value(GPIO_NAND_CS, 0); @@ -151,9 +138,6 @@ static int cmx270_device_ready(struct mtd_info *mtd) static int __init cmx270_init(void) { struct nand_chip *this; - const char *part_type; - struct mtd_partition *mtd_parts; - int mtd_parts_nb = 0; int ret; if (!(machine_is_armcore() && cpu_is_pxa27x())) @@ -180,7 +164,6 @@ static int __init cmx270_init(void) sizeof(struct nand_chip), GFP_KERNEL); if (!cmx270_nand_mtd) { - pr_debug("Unable to allocate CM-X270 NAND MTD device structure.\n"); ret = -ENOMEM; goto err_kzalloc; } @@ -213,7 +196,6 @@ static int __init cmx270_init(void) this->read_byte = cmx270_read_byte; this->read_buf = cmx270_read_buf; this->write_buf = cmx270_write_buf; - this->verify_buf = cmx270_verify_buf; /* Scan to find existence of the device */ if (nand_scan (cmx270_nand_mtd, 1)) { @@ -222,23 +204,9 @@ static int __init cmx270_init(void) goto err_scan; } -#ifdef CONFIG_MTD_CMDLINE_PARTS - mtd_parts_nb = parse_mtd_partitions(cmx270_nand_mtd, part_probes, - &mtd_parts, 0); - if (mtd_parts_nb > 0) - part_type = "command line"; - else - mtd_parts_nb = 0; -#endif - if (!mtd_parts_nb) { - mtd_parts = partition_info; - mtd_parts_nb = NUM_PARTITIONS; - part_type = "static"; - } - /* Register the partitions */ - pr_notice("Using %s partition definition\n", part_type); - ret = add_mtd_partitions(cmx270_nand_mtd, mtd_parts, mtd_parts_nb); + ret = mtd_device_parse_register(cmx270_nand_mtd, NULL, NULL, + partition_info, NUM_PARTITIONS); if (ret) goto err_scan; diff --git a/drivers/mtd/nand/cs553x_nand.c b/drivers/mtd/nand/cs553x_nand.c index 9f1b451005c..88109d375ae 100644 --- a/drivers/mtd/nand/cs553x_nand.c +++ b/drivers/mtd/nand/cs553x_nand.c @@ -197,9 +197,8 @@ static int __init cs553x_init_one(int cs, int mmio, unsigned long adr) } /* Allocate memory for MTD device structure and private data */ - new_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); + new_mtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); if (!new_mtd) { - printk(KERN_WARNING "Unable to allocate CS553X NAND MTD device structure.\n"); err = -ENOMEM; goto out; } @@ -207,10 +206,6 @@ static int __init cs553x_init_one(int cs, int mmio, unsigned long adr) /* Get pointer to private data */ this = (struct nand_chip *)(&new_mtd[1]); - /* Initialize structures */ - memset(new_mtd, 0, sizeof(struct mtd_info)); - memset(this, 0, sizeof(struct nand_chip)); - /* Link the private data with the MTD structure */ new_mtd->priv = this; new_mtd->owner = THIS_MODULE; @@ -237,11 +232,12 @@ static int __init cs553x_init_one(int cs, int mmio, unsigned long adr) this->ecc.hwctl = cs_enable_hwecc; this->ecc.calculate = cs_calculate_ecc; this->ecc.correct = nand_correct_data; + this->ecc.strength = 1; /* Enable the following for a flash based bad block table */ - this->options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR; + this->bbt_options = NAND_BBT_USE_FLASH; - /* Scan to find existance of the device */ + /* Scan to find existence of the device */ if (nand_scan(new_mtd, 1)) { err = -ENXIO; goto out_ior; @@ -277,23 +273,12 @@ static int is_geode(void) return 0; } - -#ifdef CONFIG_MTD_PARTITIONS -static const char *part_probes[] = { "cmdlinepart", NULL }; -#endif - - static int __init cs553x_init(void) { int err = -ENXIO; int i; uint64_t val; -#ifdef CONFIG_MTD_PARTITIONS - int mtd_parts_nb = 0; - struct mtd_partition *mtd_parts = NULL; -#endif - /* If the CPU isn't a Geode GX or LX, abort */ if (!is_geode()) return -ENXIO; @@ -322,19 +307,9 @@ static int __init cs553x_init(void) do mtdconcat etc. if we want to. */ for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { if (cs553x_mtd[i]) { - /* If any devices registered, return success. Else the last error. */ -#ifdef CONFIG_MTD_PARTITIONS - mtd_parts_nb = parse_mtd_partitions(cs553x_mtd[i], part_probes, &mtd_parts, 0); - if (mtd_parts_nb > 0) { - printk(KERN_NOTICE "Using command line partition definition\n"); - add_mtd_partitions(cs553x_mtd[i], mtd_parts, mtd_parts_nb); - } else { - add_mtd_device(cs553x_mtd[i]); - } -#else - add_mtd_device(cs553x_mtd[i]); -#endif + mtd_device_parse_register(cs553x_mtd[i], NULL, NULL, + NULL, 0); err = 0; } } diff --git a/drivers/mtd/nand/davinci_nand.c b/drivers/mtd/nand/davinci_nand.c index 9c9d893affe..b922c8efcf4 100644 --- a/drivers/mtd/nand/davinci_nand.c +++ b/drivers/mtd/nand/davinci_nand.c @@ -24,7 +24,6 @@ */ #include <linux/kernel.h> -#include <linux/init.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/err.h> @@ -33,11 +32,12 @@ #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> #include <linux/slab.h> +#include <linux/of_device.h> +#include <linux/of.h> +#include <linux/of_mtd.h> -#include <mach/nand.h> - -#include <asm/mach-types.h> - +#include <linux/platform_data/mtd-davinci.h> +#include <linux/platform_data/mtd-davinci-aemif.h> /* * This is a device driver for the NAND flash controller found on the @@ -59,7 +59,6 @@ struct davinci_nand_info { struct device *dev; struct clk *clk; - bool partitioned; bool is_readmode; @@ -74,6 +73,8 @@ struct davinci_nand_info { uint32_t mask_cle; uint32_t core_chipsel; + + struct davinci_aemif_timing *timing; }; static DEFINE_SPINLOCK(davinci_nand_lock); @@ -311,7 +312,9 @@ static int nand_davinci_correct_4bit(struct mtd_info *mtd, unsigned short ecc10[8]; unsigned short *ecc16; u32 syndrome[4]; + u32 ecc_state; unsigned num_errors, corrected; + unsigned long timeo; /* All bytes 0xff? It's an erased page; ignore its ECC. */ for (i = 0; i < 10; i++) { @@ -361,6 +364,23 @@ compare: */ davinci_nand_writel(info, NANDFCR_OFFSET, davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13)); + + /* + * ECC_STATE field reads 0x3 (Error correction complete) immediately + * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately + * begin trying to poll for the state, you may fall right out of your + * loop without any of the correction calculations having taken place. + * The recommendation from the hardware team is to initially delay as + * long as ECC_STATE reads less than 4. After that, ECC HW has entered + * correction state. + */ + timeo = jiffies + usecs_to_jiffies(100); + do { + ecc_state = (davinci_nand_readl(info, + NANDFSR_OFFSET) >> 8) & 0x0f; + cpu_relax(); + } while ((ecc_state < 4) && time_before(jiffies, timeo)); + for (;;) { u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET); @@ -461,43 +481,13 @@ static int nand_davinci_dev_ready(struct mtd_info *mtd) return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0); } -static void __init nand_dm6446evm_flash_init(struct davinci_nand_info *info) -{ - uint32_t regval, a1cr; - - /* - * NAND FLASH timings @ PLL1 == 459 MHz - * - AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz - * - AEMIF.CLK period = 1/76.5 MHz = 13.1 ns - */ - regval = 0 - | (0 << 31) /* selectStrobe */ - | (0 << 30) /* extWait (never with NAND) */ - | (1 << 26) /* writeSetup 10 ns */ - | (3 << 20) /* writeStrobe 40 ns */ - | (1 << 17) /* writeHold 10 ns */ - | (0 << 13) /* readSetup 10 ns */ - | (3 << 7) /* readStrobe 60 ns */ - | (0 << 4) /* readHold 10 ns */ - | (3 << 2) /* turnAround ?? ns */ - | (0 << 0) /* asyncSize 8-bit bus */ - ; - a1cr = davinci_nand_readl(info, A1CR_OFFSET); - if (a1cr != regval) { - dev_dbg(info->dev, "Warning: NAND config: Set A1CR " \ - "reg to 0x%08x, was 0x%08x, should be done by " \ - "bootloader.\n", regval, a1cr); - davinci_nand_writel(info, A1CR_OFFSET, regval); - } -} - /*----------------------------------------------------------------------*/ /* An ECC layout for using 4-bit ECC with small-page flash, storing * ten ECC bytes plus the manufacturer's bad block marker byte, and * and not overlapping the default BBT markers. */ -static struct nand_ecclayout hwecc4_small __initconst = { +static struct nand_ecclayout hwecc4_small = { .eccbytes = 10, .eccpos = { 0, 1, 2, 3, 4, /* offset 5 holds the badblock marker */ @@ -513,7 +503,7 @@ static struct nand_ecclayout hwecc4_small __initconst = { * storing ten ECC bytes plus the manufacturer's bad block marker byte, * and not overlapping the default BBT markers. */ -static struct nand_ecclayout hwecc4_2048 __initconst = { +static struct nand_ecclayout hwecc4_2048 = { .eccbytes = 40, .eccpos = { /* at the end of spare sector */ @@ -530,9 +520,88 @@ static struct nand_ecclayout hwecc4_2048 __initconst = { }, }; -static int __init nand_davinci_probe(struct platform_device *pdev) +#if defined(CONFIG_OF) +static const struct of_device_id davinci_nand_of_match[] = { + {.compatible = "ti,davinci-nand", }, + {.compatible = "ti,keystone-nand", }, + {}, +}; +MODULE_DEVICE_TABLE(of, davinci_nand_of_match); + +static struct davinci_nand_pdata + *nand_davinci_get_pdata(struct platform_device *pdev) +{ + if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) { + struct davinci_nand_pdata *pdata; + const char *mode; + u32 prop; + + pdata = devm_kzalloc(&pdev->dev, + sizeof(struct davinci_nand_pdata), + GFP_KERNEL); + pdev->dev.platform_data = pdata; + if (!pdata) + return ERR_PTR(-ENOMEM); + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-chipselect", &prop)) + pdev->id = prop; + else + return ERR_PTR(-EINVAL); + + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-mask-ale", &prop)) + pdata->mask_ale = prop; + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-mask-cle", &prop)) + pdata->mask_cle = prop; + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-mask-chipsel", &prop)) + pdata->mask_chipsel = prop; + if (!of_property_read_string(pdev->dev.of_node, + "nand-ecc-mode", &mode) || + !of_property_read_string(pdev->dev.of_node, + "ti,davinci-ecc-mode", &mode)) { + if (!strncmp("none", mode, 4)) + pdata->ecc_mode = NAND_ECC_NONE; + if (!strncmp("soft", mode, 4)) + pdata->ecc_mode = NAND_ECC_SOFT; + if (!strncmp("hw", mode, 2)) + pdata->ecc_mode = NAND_ECC_HW; + } + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-ecc-bits", &prop)) + pdata->ecc_bits = prop; + + prop = of_get_nand_bus_width(pdev->dev.of_node); + if (0 < prop || !of_property_read_u32(pdev->dev.of_node, + "ti,davinci-nand-buswidth", &prop)) + if (prop == 16) + pdata->options |= NAND_BUSWIDTH_16; + if (of_property_read_bool(pdev->dev.of_node, + "nand-on-flash-bbt") || + of_property_read_bool(pdev->dev.of_node, + "ti,davinci-nand-use-bbt")) + pdata->bbt_options = NAND_BBT_USE_FLASH; + + if (of_device_is_compatible(pdev->dev.of_node, + "ti,keystone-nand")) { + pdata->options |= NAND_NO_SUBPAGE_WRITE; + } + } + + return dev_get_platdata(&pdev->dev); +} +#else +static struct davinci_nand_pdata + *nand_davinci_get_pdata(struct platform_device *pdev) +{ + return dev_get_platdata(&pdev->dev); +} +#endif + +static int nand_davinci_probe(struct platform_device *pdev) { - struct davinci_nand_pdata *pdata = pdev->dev.platform_data; + struct davinci_nand_pdata *pdata; struct davinci_nand_info *info; struct resource *res1; struct resource *res2; @@ -542,6 +611,10 @@ static int __init nand_davinci_probe(struct platform_device *pdev) uint32_t val; nand_ecc_modes_t ecc_mode; + pdata = nand_davinci_get_pdata(pdev); + if (IS_ERR(pdata)) + return PTR_ERR(pdata); + /* insist on board-specific configuration */ if (!pdata) return -ENODEV; @@ -550,12 +623,9 @@ static int __init nand_davinci_probe(struct platform_device *pdev) if (pdev->id < 0 || pdev->id > 3) return -ENODEV; - info = kzalloc(sizeof(*info), GFP_KERNEL); - if (!info) { - dev_err(&pdev->dev, "unable to allocate memory\n"); - ret = -ENOMEM; - goto err_nomem; - } + info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); + if (!info) + return -ENOMEM; platform_set_drvdata(pdev, info); @@ -563,16 +633,23 @@ static int __init nand_davinci_probe(struct platform_device *pdev) res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!res1 || !res2) { dev_err(&pdev->dev, "resource missing\n"); - ret = -EINVAL; - goto err_nomem; + return -EINVAL; } - vaddr = ioremap(res1->start, resource_size(res1)); - base = ioremap(res2->start, resource_size(res2)); - if (!vaddr || !base) { - dev_err(&pdev->dev, "ioremap failed\n"); - ret = -EINVAL; - goto err_ioremap; + vaddr = devm_ioremap_resource(&pdev->dev, res1); + if (IS_ERR(vaddr)) + return PTR_ERR(vaddr); + + /* + * This registers range is used to setup NAND settings. In case with + * TI AEMIF driver, the same memory address range is requested already + * by AEMIF, so we cannot request it twice, just ioremap. + * The AEMIF and NAND drivers not use the same registers in this range. + */ + base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2)); + if (!base) { + dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2); + return -EADDRNOTAVAIL; } info->dev = &pdev->dev; @@ -590,10 +667,13 @@ static int __init nand_davinci_probe(struct platform_device *pdev) info->chip.chip_delay = 0; info->chip.select_chip = nand_davinci_select_chip; - /* options such as NAND_USE_FLASH_BBT or 16-bit widths */ + /* options such as NAND_BBT_USE_FLASH */ + info->chip.bbt_options = pdata->bbt_options; + /* options such as 16-bit widths */ info->chip.options = pdata->options; info->chip.bbt_td = pdata->bbt_td; info->chip.bbt_md = pdata->bbt_md; + info->timing = pdata->timing; info->ioaddr = (uint32_t __force) vaddr; @@ -637,7 +717,7 @@ static int __init nand_davinci_probe(struct platform_device *pdev) spin_unlock_irq(&davinci_nand_lock); if (ret == -EBUSY) - goto err_ecc; + return ret; info->chip.ecc.calculate = nand_davinci_calculate_4bit; info->chip.ecc.correct = nand_davinci_correct_4bit; @@ -650,37 +730,27 @@ static int __init nand_davinci_probe(struct platform_device *pdev) info->chip.ecc.bytes = 3; } info->chip.ecc.size = 512; + info->chip.ecc.strength = pdata->ecc_bits; break; default: - ret = -EINVAL; - goto err_ecc; + return -EINVAL; } info->chip.ecc.mode = ecc_mode; - info->clk = clk_get(&pdev->dev, "aemif"); + info->clk = devm_clk_get(&pdev->dev, "aemif"); if (IS_ERR(info->clk)) { ret = PTR_ERR(info->clk); dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret); - goto err_clk; + return ret; } - ret = clk_enable(info->clk); + ret = clk_prepare_enable(info->clk); if (ret < 0) { dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n", ret); goto err_clk_enable; } - /* EMIF timings should normally be set by the boot loader, - * especially after boot-from-NAND. The *only* reason to - * have this special casing for the DM6446 EVM is to work - * with boot-from-NOR ... with CS0 manually re-jumpered - * (after startup) so it addresses the NAND flash, not NOR. - * Even for dev boards, that's unusually rude... - */ - if (machine_is_davinci_evm()) - nand_dm6446evm_flash_init(info); - spin_lock_irq(&davinci_nand_lock); /* put CSxNAND into NAND mode */ @@ -694,7 +764,7 @@ static int __init nand_davinci_probe(struct platform_device *pdev) ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL); if (ret < 0) { dev_dbg(&pdev->dev, "no NAND chip(s) found\n"); - goto err_scan; + goto err; } /* Update ECC layout if needed ... for 1-bit HW ECC, the default @@ -708,7 +778,7 @@ static int __init nand_davinci_probe(struct platform_device *pdev) if (!chunks || info->mtd.oobsize < 16) { dev_dbg(&pdev->dev, "too small\n"); ret = -EINVAL; - goto err_scan; + goto err; } /* For small page chips, preserve the manufacturer's @@ -732,11 +802,14 @@ static int __init nand_davinci_probe(struct platform_device *pdev) * breaks userspace ioctl interface with mtd-utils. Once we * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used * for the 4KiB page chips. + * + * TODO: Note that nand_ecclayout has now been expanded and can + * hold plenty of OOB entries. */ dev_warn(&pdev->dev, "no 4-bit ECC support yet " "for 4KiB-page NAND\n"); ret = -EIO; - goto err_scan; + goto err; syndrome_done: info->chip.ecc.layout = &info->ecclayout; @@ -744,46 +817,20 @@ syndrome_done: ret = nand_scan_tail(&info->mtd); if (ret < 0) - goto err_scan; - - if (mtd_has_partitions()) { - struct mtd_partition *mtd_parts = NULL; - int mtd_parts_nb = 0; + goto err; - if (mtd_has_cmdlinepart()) { - static const char *probes[] __initconst = - { "cmdlinepart", NULL }; + if (pdata->parts) + ret = mtd_device_parse_register(&info->mtd, NULL, NULL, + pdata->parts, pdata->nr_parts); + else { + struct mtd_part_parser_data ppdata; - mtd_parts_nb = parse_mtd_partitions(&info->mtd, probes, - &mtd_parts, 0); - } - - if (mtd_parts_nb <= 0) { - mtd_parts = pdata->parts; - mtd_parts_nb = pdata->nr_parts; - } - - /* Register any partitions */ - if (mtd_parts_nb > 0) { - ret = add_mtd_partitions(&info->mtd, - mtd_parts, mtd_parts_nb); - if (ret == 0) - info->partitioned = true; - } - - } else if (pdata->nr_parts) { - dev_warn(&pdev->dev, "ignoring %d default partitions on %s\n", - pdata->nr_parts, info->mtd.name); + ppdata.of_node = pdev->dev.of_node; + ret = mtd_device_parse_register(&info->mtd, NULL, &ppdata, + NULL, 0); } - - /* If there's no partition info, just package the whole chip - * as a single MTD device. - */ - if (!info->partitioned) - ret = add_mtd_device(&info->mtd) ? -ENODEV : 0; - if (ret < 0) - goto err_scan; + goto err; val = davinci_nand_readl(info, NRCSR_OFFSET); dev_info(&pdev->dev, "controller rev. %d.%d\n", @@ -791,77 +838,45 @@ syndrome_done: return 0; -err_scan: - clk_disable(info->clk); +err: + clk_disable_unprepare(info->clk); err_clk_enable: - clk_put(info->clk); - spin_lock_irq(&davinci_nand_lock); if (ecc_mode == NAND_ECC_HW_SYNDROME) ecc4_busy = false; spin_unlock_irq(&davinci_nand_lock); - -err_ecc: -err_clk: -err_ioremap: - if (base) - iounmap(base); - if (vaddr) - iounmap(vaddr); - -err_nomem: - kfree(info); return ret; } -static int __exit nand_davinci_remove(struct platform_device *pdev) +static int nand_davinci_remove(struct platform_device *pdev) { struct davinci_nand_info *info = platform_get_drvdata(pdev); - int status; - - if (mtd_has_partitions() && info->partitioned) - status = del_mtd_partitions(&info->mtd); - else - status = del_mtd_device(&info->mtd); spin_lock_irq(&davinci_nand_lock); if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME) ecc4_busy = false; spin_unlock_irq(&davinci_nand_lock); - iounmap(info->base); - iounmap(info->vaddr); - nand_release(&info->mtd); - clk_disable(info->clk); - clk_put(info->clk); - - kfree(info); + clk_disable_unprepare(info->clk); return 0; } static struct platform_driver nand_davinci_driver = { - .remove = __exit_p(nand_davinci_remove), + .probe = nand_davinci_probe, + .remove = nand_davinci_remove, .driver = { .name = "davinci_nand", + .owner = THIS_MODULE, + .of_match_table = of_match_ptr(davinci_nand_of_match), }, }; MODULE_ALIAS("platform:davinci_nand"); -static int __init nand_davinci_init(void) -{ - return platform_driver_probe(&nand_davinci_driver, nand_davinci_probe); -} -module_init(nand_davinci_init); - -static void __exit nand_davinci_exit(void) -{ - platform_driver_unregister(&nand_davinci_driver); -} -module_exit(nand_davinci_exit); +module_platform_driver(nand_davinci_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Texas Instruments"); diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c index ca03428b59c..9f2012a3e76 100644 --- a/drivers/mtd/nand/denali.c +++ b/drivers/mtd/nand/denali.c @@ -16,12 +16,12 @@ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * */ - #include <linux/interrupt.h> #include <linux/delay.h> +#include <linux/dma-mapping.h> #include <linux/wait.h> #include <linux/mutex.h> -#include <linux/pci.h> +#include <linux/slab.h> #include <linux/mtd/mtd.h> #include <linux/module.h> @@ -29,38 +29,38 @@ MODULE_LICENSE("GPL"); -/* We define a module parameter that allows the user to override +/* We define a module parameter that allows the user to override * the hardware and decide what timing mode should be used. */ #define NAND_DEFAULT_TIMINGS -1 static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; module_param(onfi_timing_mode, int, S_IRUGO); -MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates" - " use default timings"); +MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting." + " -1 indicates use default timings"); #define DENALI_NAND_NAME "denali-nand" /* We define a macro here that combines all interrupts this driver uses into * a single constant value, for convenience. */ -#define DENALI_IRQ_ALL (INTR_STATUS0__DMA_CMD_COMP | \ - INTR_STATUS0__ECC_TRANSACTION_DONE | \ - INTR_STATUS0__ECC_ERR | \ - INTR_STATUS0__PROGRAM_FAIL | \ - INTR_STATUS0__LOAD_COMP | \ - INTR_STATUS0__PROGRAM_COMP | \ - INTR_STATUS0__TIME_OUT | \ - INTR_STATUS0__ERASE_FAIL | \ - INTR_STATUS0__RST_COMP | \ - INTR_STATUS0__ERASE_COMP) - -/* indicates whether or not the internal value for the flash bank is - valid or not */ -#define CHIP_SELECT_INVALID -1 +#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \ + INTR_STATUS__ECC_TRANSACTION_DONE | \ + INTR_STATUS__ECC_ERR | \ + INTR_STATUS__PROGRAM_FAIL | \ + INTR_STATUS__LOAD_COMP | \ + INTR_STATUS__PROGRAM_COMP | \ + INTR_STATUS__TIME_OUT | \ + INTR_STATUS__ERASE_FAIL | \ + INTR_STATUS__RST_COMP | \ + INTR_STATUS__ERASE_COMP) + +/* indicates whether or not the internal value for the flash bank is + * valid or not */ +#define CHIP_SELECT_INVALID -1 #define SUPPORT_8BITECC 1 -/* This macro divides two integers and rounds fractional values up +/* This macro divides two integers and rounds fractional values up * to the nearest integer value. */ #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y))) @@ -70,7 +70,7 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd) /* These constants are defined by the driver to enable common driver - configuration options. */ + * configuration options. */ #define SPARE_ACCESS 0x41 #define MAIN_ACCESS 0x42 #define MAIN_SPARE_ACCESS 0x43 @@ -83,85 +83,40 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates #define ADDR_CYCLE 1 #define STATUS_CYCLE 2 -/* this is a helper macro that allows us to +/* this is a helper macro that allows us to * format the bank into the proper bits for the controller */ #define BANK(x) ((x) << 24) -/* List of platforms this NAND controller has be integrated into */ -static const struct pci_device_id denali_pci_ids[] = { - { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 }, - { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST }, - { /* end: all zeroes */ } -}; - - -/* these are static lookup tables that give us easy access to - registers in the NAND controller. - */ -static const uint32_t intr_status_addresses[4] = {INTR_STATUS0, - INTR_STATUS1, - INTR_STATUS2, - INTR_STATUS3}; - -static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0, - DEVICE_RESET__BANK1, - DEVICE_RESET__BANK2, - DEVICE_RESET__BANK3}; - -static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT, - INTR_STATUS1__TIME_OUT, - INTR_STATUS2__TIME_OUT, - INTR_STATUS3__TIME_OUT}; - -static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP, - INTR_STATUS1__RST_COMP, - INTR_STATUS2__RST_COMP, - INTR_STATUS3__RST_COMP}; - -/* specifies the debug level of the driver */ -static int nand_debug_level = 0; - /* forward declarations */ static void clear_interrupts(struct denali_nand_info *denali); -static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask); -static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask); +static uint32_t wait_for_irq(struct denali_nand_info *denali, + uint32_t irq_mask); +static void denali_irq_enable(struct denali_nand_info *denali, + uint32_t int_mask); static uint32_t read_interrupt_status(struct denali_nand_info *denali); -#define DEBUG_DENALI 0 - -/* This is a wrapper for writing to the denali registers. - * this allows us to create debug information so we can - * observe how the driver is programming the device. - * it uses standard linux convention for (val, addr) */ -static void denali_write32(uint32_t value, void *addr) -{ - iowrite32(value, addr); - -#if DEBUG_DENALI - printk(KERN_ERR "wrote: 0x%x -> 0x%x\n", value, (uint32_t)((uint32_t)addr & 0x1fff)); -#endif -} - -/* Certain operations for the denali NAND controller use an indexed mode to read/write - data. The operation is performed by writing the address value of the command to - the device memory followed by the data. This function abstracts this common - operation. +/* Certain operations for the denali NAND controller use + * an indexed mode to read/write data. The operation is + * performed by writing the address value of the command + * to the device memory followed by the data. This function + * abstracts this common operation. */ -static void index_addr(struct denali_nand_info *denali, uint32_t address, uint32_t data) +static void index_addr(struct denali_nand_info *denali, + uint32_t address, uint32_t data) { - denali_write32(address, denali->flash_mem); - denali_write32(data, denali->flash_mem + 0x10); + iowrite32(address, denali->flash_mem); + iowrite32(data, denali->flash_mem + 0x10); } /* Perform an indexed read of the device */ static void index_addr_read_data(struct denali_nand_info *denali, uint32_t address, uint32_t *pdata) { - denali_write32(address, denali->flash_mem); + iowrite32(address, denali->flash_mem); *pdata = ioread32(denali->flash_mem + 0x10); } -/* We need to buffer some data for some of the NAND core routines. +/* We need to buffer some data for some of the NAND core routines. * The operations manage buffering that data. */ static void reset_buf(struct denali_nand_info *denali) { @@ -170,7 +125,6 @@ static void reset_buf(struct denali_nand_info *denali) static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte) { - BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf)); denali->buf.buf[denali->buf.tail++] = byte; } @@ -182,75 +136,67 @@ static void read_status(struct denali_nand_info *denali) /* initialize the data buffer to store status */ reset_buf(denali); - /* initiate a device status read */ - cmd = MODE_11 | BANK(denali->flash_bank); - index_addr(denali, cmd | COMMAND_CYCLE, 0x70); - denali_write32(cmd | STATUS_CYCLE, denali->flash_mem); - - /* update buffer with status value */ - write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10)); - -#if DEBUG_DENALI - printk("device reporting status value of 0x%2x\n", denali->buf.buf[0]); -#endif + cmd = ioread32(denali->flash_reg + WRITE_PROTECT); + if (cmd) + write_byte_to_buf(denali, NAND_STATUS_WP); + else + write_byte_to_buf(denali, 0); } /* resets a specific device connected to the core */ static void reset_bank(struct denali_nand_info *denali) { uint32_t irq_status = 0; - uint32_t irq_mask = reset_complete[denali->flash_bank] | - operation_timeout[denali->flash_bank]; - int bank = 0; + uint32_t irq_mask = INTR_STATUS__RST_COMP | + INTR_STATUS__TIME_OUT; clear_interrupts(denali); - bank = device_reset_banks[denali->flash_bank]; - denali_write32(bank, denali->flash_reg + DEVICE_RESET); + iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET); irq_status = wait_for_irq(denali, irq_mask); - - if (irq_status & operation_timeout[denali->flash_bank]) - { - printk(KERN_ERR "reset bank failed.\n"); - } + + if (irq_status & INTR_STATUS__TIME_OUT) + dev_err(denali->dev, "reset bank failed.\n"); } /* Reset the flash controller */ -static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali) +static uint16_t denali_nand_reset(struct denali_nand_info *denali) { uint32_t i; - nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", + dev_dbg(denali->dev, "%s, Line %d, Function: %s\n", __FILE__, __LINE__, __func__); - for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) - denali_write32(reset_complete[i] | operation_timeout[i], - denali->flash_reg + intr_status_addresses[i]); - - for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) { - denali_write32(device_reset_banks[i], denali->flash_reg + DEVICE_RESET); - while (!(ioread32(denali->flash_reg + intr_status_addresses[i]) & - (reset_complete[i] | operation_timeout[i]))) - ; - if (ioread32(denali->flash_reg + intr_status_addresses[i]) & - operation_timeout[i]) - nand_dbg_print(NAND_DBG_WARN, + for (i = 0 ; i < denali->max_banks; i++) + iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, + denali->flash_reg + INTR_STATUS(i)); + + for (i = 0 ; i < denali->max_banks; i++) { + iowrite32(1 << i, denali->flash_reg + DEVICE_RESET); + while (!(ioread32(denali->flash_reg + + INTR_STATUS(i)) & + (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT))) + cpu_relax(); + if (ioread32(denali->flash_reg + INTR_STATUS(i)) & + INTR_STATUS__TIME_OUT) + dev_dbg(denali->dev, "NAND Reset operation timed out on bank %d\n", i); } - for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) - denali_write32(reset_complete[i] | operation_timeout[i], - denali->flash_reg + intr_status_addresses[i]); + for (i = 0; i < denali->max_banks; i++) + iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, + denali->flash_reg + INTR_STATUS(i)); return PASS; } -/* this routine calculates the ONFI timing values for a given mode and programs - * the clocking register accordingly. The mode is determined by the get_onfi_nand_para - routine. +/* this routine calculates the ONFI timing values for a given mode and + * programs the clocking register accordingly. The mode is determined by + * the get_onfi_nand_para routine. */ -static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_t mode) +static void nand_onfi_timing_set(struct denali_nand_info *denali, + uint16_t mode) { uint16_t Trea[6] = {40, 30, 25, 20, 20, 16}; uint16_t Trp[6] = {50, 25, 17, 15, 12, 10}; @@ -272,7 +218,7 @@ static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_t mode uint16_t acc_clks; uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt; - nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", + dev_dbg(denali->dev, "%s, Line %d, Function: %s\n", __FILE__, __LINE__, __func__); en_lo = CEIL_DIV(Trp[mode], CLK_X); @@ -309,7 +255,7 @@ static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_t mode acc_clks++; if ((data_invalid - acc_clks * CLK_X) < 2) - nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n", + dev_warn(denali->dev, "%s, Line %d: Warning!\n", __FILE__, __LINE__); addr_2_data = CEIL_DIV(Tadl[mode], CLK_X); @@ -337,146 +283,34 @@ static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_t mode (ioread32(denali->flash_reg + DEVICE_ID) == 0x88)) acc_clks = 6; - denali_write32(acc_clks, denali->flash_reg + ACC_CLKS); - denali_write32(re_2_we, denali->flash_reg + RE_2_WE); - denali_write32(re_2_re, denali->flash_reg + RE_2_RE); - denali_write32(we_2_re, denali->flash_reg + WE_2_RE); - denali_write32(addr_2_data, denali->flash_reg + ADDR_2_DATA); - denali_write32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT); - denali_write32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT); - denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT); -} - -/* configures the initial ECC settings for the controller */ -static void set_ecc_config(struct denali_nand_info *denali) -{ -#if SUPPORT_8BITECC - if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) < 4096) || - (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) <= 128)) - denali_write32(8, denali->flash_reg + ECC_CORRECTION); -#endif - - if ((ioread32(denali->flash_reg + ECC_CORRECTION) & ECC_CORRECTION__VALUE) - == 1) { - denali->dev_info.wECCBytesPerSector = 4; - denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected; - denali->dev_info.wNumPageSpareFlag = - denali->dev_info.wPageSpareSize - - denali->dev_info.wPageDataSize / - (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) * - denali->dev_info.wECCBytesPerSector - - denali->dev_info.wSpareSkipBytes; - } else { - denali->dev_info.wECCBytesPerSector = - (ioread32(denali->flash_reg + ECC_CORRECTION) & - ECC_CORRECTION__VALUE) * 13 / 8; - if ((denali->dev_info.wECCBytesPerSector) % 2 == 0) - denali->dev_info.wECCBytesPerSector += 2; - else - denali->dev_info.wECCBytesPerSector += 1; - - denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected; - denali->dev_info.wNumPageSpareFlag = denali->dev_info.wPageSpareSize - - denali->dev_info.wPageDataSize / - (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) * - denali->dev_info.wECCBytesPerSector - - denali->dev_info.wSpareSkipBytes; - } + iowrite32(acc_clks, denali->flash_reg + ACC_CLKS); + iowrite32(re_2_we, denali->flash_reg + RE_2_WE); + iowrite32(re_2_re, denali->flash_reg + RE_2_RE); + iowrite32(we_2_re, denali->flash_reg + WE_2_RE); + iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA); + iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT); + iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT); + iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT); } /* queries the NAND device to see what ONFI modes it supports. */ static uint16_t get_onfi_nand_para(struct denali_nand_info *denali) { int i; - uint16_t blks_lun_l, blks_lun_h, n_of_luns; - uint32_t blockperlun, id; - - denali_write32(DEVICE_RESET__BANK0, denali->flash_reg + DEVICE_RESET); - - while (!((ioread32(denali->flash_reg + INTR_STATUS0) & - INTR_STATUS0__RST_COMP) | - (ioread32(denali->flash_reg + INTR_STATUS0) & - INTR_STATUS0__TIME_OUT))) - ; - - if (ioread32(denali->flash_reg + INTR_STATUS0) & INTR_STATUS0__RST_COMP) { - denali_write32(DEVICE_RESET__BANK1, denali->flash_reg + DEVICE_RESET); - while (!((ioread32(denali->flash_reg + INTR_STATUS1) & - INTR_STATUS1__RST_COMP) | - (ioread32(denali->flash_reg + INTR_STATUS1) & - INTR_STATUS1__TIME_OUT))) - ; - - if (ioread32(denali->flash_reg + INTR_STATUS1) & - INTR_STATUS1__RST_COMP) { - denali_write32(DEVICE_RESET__BANK2, - denali->flash_reg + DEVICE_RESET); - while (!((ioread32(denali->flash_reg + INTR_STATUS2) & - INTR_STATUS2__RST_COMP) | - (ioread32(denali->flash_reg + INTR_STATUS2) & - INTR_STATUS2__TIME_OUT))) - ; - - if (ioread32(denali->flash_reg + INTR_STATUS2) & - INTR_STATUS2__RST_COMP) { - denali_write32(DEVICE_RESET__BANK3, - denali->flash_reg + DEVICE_RESET); - while (!((ioread32(denali->flash_reg + INTR_STATUS3) & - INTR_STATUS3__RST_COMP) | - (ioread32(denali->flash_reg + INTR_STATUS3) & - INTR_STATUS3__TIME_OUT))) - ; - } else { - printk(KERN_ERR "Getting a time out for bank 2!\n"); - } - } else { - printk(KERN_ERR "Getting a time out for bank 1!\n"); - } - } - - denali_write32(INTR_STATUS0__TIME_OUT, denali->flash_reg + INTR_STATUS0); - denali_write32(INTR_STATUS1__TIME_OUT, denali->flash_reg + INTR_STATUS1); - denali_write32(INTR_STATUS2__TIME_OUT, denali->flash_reg + INTR_STATUS2); - denali_write32(INTR_STATUS3__TIME_OUT, denali->flash_reg + INTR_STATUS3); - - denali->dev_info.wONFIDevFeatures = - ioread32(denali->flash_reg + ONFI_DEVICE_FEATURES); - denali->dev_info.wONFIOptCommands = - ioread32(denali->flash_reg + ONFI_OPTIONAL_COMMANDS); - denali->dev_info.wONFITimingMode = - ioread32(denali->flash_reg + ONFI_TIMING_MODE); - denali->dev_info.wONFIPgmCacheTimingMode = - ioread32(denali->flash_reg + ONFI_PGM_CACHE_TIMING_MODE); - - n_of_luns = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & - ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS; - blks_lun_l = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L); - blks_lun_h = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U); - - blockperlun = (blks_lun_h << 16) | blks_lun_l; - - denali->dev_info.wTotalBlocks = n_of_luns * blockperlun; - + /* we needn't to do a reset here because driver has already + * reset all the banks before + * */ if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) & ONFI_TIMING_MODE__VALUE)) return FAIL; for (i = 5; i > 0; i--) { - if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & (0x01 << i)) + if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & + (0x01 << i)) break; } - NAND_ONFi_Timing_Mode(denali, i); - - index_addr(denali, MODE_11 | 0, 0x90); - index_addr(denali, MODE_11 | 1, 0); - - for (i = 0; i < 3; i++) - index_addr_read_data(denali, MODE_11 | 2, &id); - - nand_dbg_print(NAND_DBG_DEBUG, "3rd ID: 0x%x\n", id); - - denali->dev_info.MLCDevice = id & 0x0C; + nand_onfi_timing_set(denali, i); /* By now, all the ONFI devices we know support the page cache */ /* rw feature. So here we enable the pipeline_rw_ahead feature */ @@ -486,144 +320,92 @@ static uint16_t get_onfi_nand_para(struct denali_nand_info *denali) return PASS; } -static void get_samsung_nand_para(struct denali_nand_info *denali) +static void get_samsung_nand_para(struct denali_nand_info *denali, + uint8_t device_id) { - uint8_t no_of_planes; - uint32_t blk_size; - uint64_t plane_size, capacity; - uint32_t id_bytes[5]; - int i; - - index_addr(denali, (uint32_t)(MODE_11 | 0), 0x90); - index_addr(denali, (uint32_t)(MODE_11 | 1), 0); - for (i = 0; i < 5; i++) - index_addr_read_data(denali, (uint32_t)(MODE_11 | 2), &id_bytes[i]); - - nand_dbg_print(NAND_DBG_DEBUG, - "ID bytes: 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", - id_bytes[0], id_bytes[1], id_bytes[2], - id_bytes[3], id_bytes[4]); - - if ((id_bytes[1] & 0xff) == 0xd3) { /* Samsung K9WAG08U1A */ + if (device_id == 0xd3) { /* Samsung K9WAG08U1A */ /* Set timing register values according to datasheet */ - denali_write32(5, denali->flash_reg + ACC_CLKS); - denali_write32(20, denali->flash_reg + RE_2_WE); - denali_write32(12, denali->flash_reg + WE_2_RE); - denali_write32(14, denali->flash_reg + ADDR_2_DATA); - denali_write32(3, denali->flash_reg + RDWR_EN_LO_CNT); - denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT); - denali_write32(2, denali->flash_reg + CS_SETUP_CNT); + iowrite32(5, denali->flash_reg + ACC_CLKS); + iowrite32(20, denali->flash_reg + RE_2_WE); + iowrite32(12, denali->flash_reg + WE_2_RE); + iowrite32(14, denali->flash_reg + ADDR_2_DATA); + iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT); + iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT); + iowrite32(2, denali->flash_reg + CS_SETUP_CNT); } - - no_of_planes = 1 << ((id_bytes[4] & 0x0c) >> 2); - plane_size = (uint64_t)64 << ((id_bytes[4] & 0x70) >> 4); - blk_size = 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) & 0x30) >> 4); - capacity = (uint64_t)128 * plane_size * no_of_planes; - - do_div(capacity, blk_size); - denali->dev_info.wTotalBlocks = capacity; } static void get_toshiba_nand_para(struct denali_nand_info *denali) { - void __iomem *scratch_reg; uint32_t tmp; /* Workaround to fix a controller bug which reports a wrong */ /* spare area size for some kind of Toshiba NAND device */ if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) && (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) { - denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); + iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) * ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); - denali_write32(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); + iowrite32(tmp, + denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); #if SUPPORT_15BITECC - denali_write32(15, denali->flash_reg + ECC_CORRECTION); + iowrite32(15, denali->flash_reg + ECC_CORRECTION); #elif SUPPORT_8BITECC - denali_write32(8, denali->flash_reg + ECC_CORRECTION); + iowrite32(8, denali->flash_reg + ECC_CORRECTION); #endif } - - /* As Toshiba NAND can not provide it's block number, */ - /* so here we need user to provide the correct block */ - /* number in a scratch register before the Linux NAND */ - /* driver is loaded. If no valid value found in the scratch */ - /* register, then we use default block number value */ - scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE); - if (!scratch_reg) { - printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d", - __FILE__, __LINE__); - denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS; - } else { - nand_dbg_print(NAND_DBG_WARN, - "Spectra: ioremap reg address: 0x%p\n", scratch_reg); - denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg); - if (denali->dev_info.wTotalBlocks < 512) - denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS; - iounmap(scratch_reg); - } } -static void get_hynix_nand_para(struct denali_nand_info *denali) +static void get_hynix_nand_para(struct denali_nand_info *denali, + uint8_t device_id) { - void __iomem *scratch_reg; uint32_t main_size, spare_size; - switch (denali->dev_info.wDeviceID) { + switch (device_id) { case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */ case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */ - denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK); - denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); - denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); - main_size = 4096 * ioread32(denali->flash_reg + DEVICES_CONNECTED); - spare_size = 224 * ioread32(denali->flash_reg + DEVICES_CONNECTED); - denali_write32(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); - denali_write32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); - denali_write32(0, denali->flash_reg + DEVICE_WIDTH); + iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK); + iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); + iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); + main_size = 4096 * + ioread32(denali->flash_reg + DEVICES_CONNECTED); + spare_size = 224 * + ioread32(denali->flash_reg + DEVICES_CONNECTED); + iowrite32(main_size, + denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); + iowrite32(spare_size, + denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); + iowrite32(0, denali->flash_reg + DEVICE_WIDTH); #if SUPPORT_15BITECC - denali_write32(15, denali->flash_reg + ECC_CORRECTION); + iowrite32(15, denali->flash_reg + ECC_CORRECTION); #elif SUPPORT_8BITECC - denali_write32(8, denali->flash_reg + ECC_CORRECTION); + iowrite32(8, denali->flash_reg + ECC_CORRECTION); #endif - denali->dev_info.MLCDevice = 1; break; default: - nand_dbg_print(NAND_DBG_WARN, + dev_warn(denali->dev, "Spectra: Unknown Hynix NAND (Device ID: 0x%x)." "Will use default parameter values instead.\n", - denali->dev_info.wDeviceID); - } - - scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE); - if (!scratch_reg) { - printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d", - __FILE__, __LINE__); - denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS; - } else { - nand_dbg_print(NAND_DBG_WARN, - "Spectra: ioremap reg address: 0x%p\n", scratch_reg); - denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg); - if (denali->dev_info.wTotalBlocks < 512) - denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS; - iounmap(scratch_reg); + device_id); } } /* determines how many NAND chips are connected to the controller. Note for - Intel CE4100 devices we don't support more than one device. + * Intel CE4100 devices we don't support more than one device. */ static void find_valid_banks(struct denali_nand_info *denali) { - uint32_t id[LLD_MAX_FLASH_BANKS]; + uint32_t id[denali->max_banks]; int i; denali->total_used_banks = 1; - for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) { + for (i = 0; i < denali->max_banks; i++) { index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90); index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0); - index_addr_read_data(denali, (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]); + index_addr_read_data(denali, + (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]); - nand_dbg_print(NAND_DBG_DEBUG, + dev_dbg(denali->dev, "Return 1st ID for bank[%d]: %x\n", i, id[i]); if (i == 0) { @@ -637,332 +419,188 @@ static void find_valid_banks(struct denali_nand_info *denali) } } - if (denali->platform == INTEL_CE4100) - { + if (denali->platform == INTEL_CE4100) { /* Platform limitations of the CE4100 device limit * users to a single chip solution for NAND. - * Multichip support is not enabled. - */ - if (denali->total_used_banks != 1) - { - printk(KERN_ERR "Sorry, Intel CE4100 only supports " + * Multichip support is not enabled. + */ + if (denali->total_used_banks != 1) { + dev_err(denali->dev, + "Sorry, Intel CE4100 only supports " "a single NAND device.\n"); BUG(); } } - nand_dbg_print(NAND_DBG_DEBUG, + dev_dbg(denali->dev, "denali->total_used_banks: %d\n", denali->total_used_banks); } -static void detect_partition_feature(struct denali_nand_info *denali) +/* + * Use the configuration feature register to determine the maximum number of + * banks that the hardware supports. + */ +static void detect_max_banks(struct denali_nand_info *denali) { - if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) { - if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) & - PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) { - denali->dev_info.wSpectraStartBlock = - ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) & - MIN_MAX_BANK_1__MIN_VALUE) * - denali->dev_info.wTotalBlocks) - + - (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) & - MIN_BLK_ADDR_1__VALUE); - - denali->dev_info.wSpectraEndBlock = - (((ioread32(denali->flash_reg + MIN_MAX_BANK_1) & - MIN_MAX_BANK_1__MAX_VALUE) >> 2) * - denali->dev_info.wTotalBlocks) - + - (ioread32(denali->flash_reg + MAX_BLK_ADDR_1) & - MAX_BLK_ADDR_1__VALUE); - - denali->dev_info.wTotalBlocks *= denali->total_used_banks; - - if (denali->dev_info.wSpectraEndBlock >= - denali->dev_info.wTotalBlocks) { - denali->dev_info.wSpectraEndBlock = - denali->dev_info.wTotalBlocks - 1; - } + uint32_t features = ioread32(denali->flash_reg + FEATURES); - denali->dev_info.wDataBlockNum = - denali->dev_info.wSpectraEndBlock - - denali->dev_info.wSpectraStartBlock + 1; - } else { - denali->dev_info.wTotalBlocks *= denali->total_used_banks; - denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK; - denali->dev_info.wSpectraEndBlock = - denali->dev_info.wTotalBlocks - 1; - denali->dev_info.wDataBlockNum = - denali->dev_info.wSpectraEndBlock - - denali->dev_info.wSpectraStartBlock + 1; - } - } else { - denali->dev_info.wTotalBlocks *= denali->total_used_banks; - denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK; - denali->dev_info.wSpectraEndBlock = denali->dev_info.wTotalBlocks - 1; - denali->dev_info.wDataBlockNum = - denali->dev_info.wSpectraEndBlock - - denali->dev_info.wSpectraStartBlock + 1; - } + denali->max_banks = 2 << (features & FEATURES__N_BANKS); } -static void dump_device_info(struct denali_nand_info *denali) +static void detect_partition_feature(struct denali_nand_info *denali) { - nand_dbg_print(NAND_DBG_DEBUG, "denali->dev_info:\n"); - nand_dbg_print(NAND_DBG_DEBUG, "DeviceMaker: 0x%x\n", - denali->dev_info.wDeviceMaker); - nand_dbg_print(NAND_DBG_DEBUG, "DeviceID: 0x%x\n", - denali->dev_info.wDeviceID); - nand_dbg_print(NAND_DBG_DEBUG, "DeviceType: 0x%x\n", - denali->dev_info.wDeviceType); - nand_dbg_print(NAND_DBG_DEBUG, "SpectraStartBlock: %d\n", - denali->dev_info.wSpectraStartBlock); - nand_dbg_print(NAND_DBG_DEBUG, "SpectraEndBlock: %d\n", - denali->dev_info.wSpectraEndBlock); - nand_dbg_print(NAND_DBG_DEBUG, "TotalBlocks: %d\n", - denali->dev_info.wTotalBlocks); - nand_dbg_print(NAND_DBG_DEBUG, "PagesPerBlock: %d\n", - denali->dev_info.wPagesPerBlock); - nand_dbg_print(NAND_DBG_DEBUG, "PageSize: %d\n", - denali->dev_info.wPageSize); - nand_dbg_print(NAND_DBG_DEBUG, "PageDataSize: %d\n", - denali->dev_info.wPageDataSize); - nand_dbg_print(NAND_DBG_DEBUG, "PageSpareSize: %d\n", - denali->dev_info.wPageSpareSize); - nand_dbg_print(NAND_DBG_DEBUG, "NumPageSpareFlag: %d\n", - denali->dev_info.wNumPageSpareFlag); - nand_dbg_print(NAND_DBG_DEBUG, "ECCBytesPerSector: %d\n", - denali->dev_info.wECCBytesPerSector); - nand_dbg_print(NAND_DBG_DEBUG, "BlockSize: %d\n", - denali->dev_info.wBlockSize); - nand_dbg_print(NAND_DBG_DEBUG, "BlockDataSize: %d\n", - denali->dev_info.wBlockDataSize); - nand_dbg_print(NAND_DBG_DEBUG, "DataBlockNum: %d\n", - denali->dev_info.wDataBlockNum); - nand_dbg_print(NAND_DBG_DEBUG, "PlaneNum: %d\n", - denali->dev_info.bPlaneNum); - nand_dbg_print(NAND_DBG_DEBUG, "DeviceMainAreaSize: %d\n", - denali->dev_info.wDeviceMainAreaSize); - nand_dbg_print(NAND_DBG_DEBUG, "DeviceSpareAreaSize: %d\n", - denali->dev_info.wDeviceSpareAreaSize); - nand_dbg_print(NAND_DBG_DEBUG, "DevicesConnected: %d\n", - denali->dev_info.wDevicesConnected); - nand_dbg_print(NAND_DBG_DEBUG, "DeviceWidth: %d\n", - denali->dev_info.wDeviceWidth); - nand_dbg_print(NAND_DBG_DEBUG, "HWRevision: 0x%x\n", - denali->dev_info.wHWRevision); - nand_dbg_print(NAND_DBG_DEBUG, "HWFeatures: 0x%x\n", - denali->dev_info.wHWFeatures); - nand_dbg_print(NAND_DBG_DEBUG, "ONFIDevFeatures: 0x%x\n", - denali->dev_info.wONFIDevFeatures); - nand_dbg_print(NAND_DBG_DEBUG, "ONFIOptCommands: 0x%x\n", - denali->dev_info.wONFIOptCommands); - nand_dbg_print(NAND_DBG_DEBUG, "ONFITimingMode: 0x%x\n", - denali->dev_info.wONFITimingMode); - nand_dbg_print(NAND_DBG_DEBUG, "ONFIPgmCacheTimingMode: 0x%x\n", - denali->dev_info.wONFIPgmCacheTimingMode); - nand_dbg_print(NAND_DBG_DEBUG, "MLCDevice: %s\n", - denali->dev_info.MLCDevice ? "Yes" : "No"); - nand_dbg_print(NAND_DBG_DEBUG, "SpareSkipBytes: %d\n", - denali->dev_info.wSpareSkipBytes); - nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageNumber: %d\n", - denali->dev_info.nBitsInPageNumber); - nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageDataSize: %d\n", - denali->dev_info.nBitsInPageDataSize); - nand_dbg_print(NAND_DBG_DEBUG, "BitsInBlockDataSize: %d\n", - denali->dev_info.nBitsInBlockDataSize); + /* For MRST platform, denali->fwblks represent the + * number of blocks firmware is taken, + * FW is in protect partition and MTD driver has no + * permission to access it. So let driver know how many + * blocks it can't touch. + * */ + if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) { + if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) & + PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) { + denali->fwblks = + ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) & + MIN_MAX_BANK__MIN_VALUE) * + denali->blksperchip) + + + (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) & + MIN_BLK_ADDR__VALUE); + } else + denali->fwblks = SPECTRA_START_BLOCK; + } else + denali->fwblks = SPECTRA_START_BLOCK; } -static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali) +static uint16_t denali_nand_timing_set(struct denali_nand_info *denali) { uint16_t status = PASS; - uint8_t no_of_planes; - - nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", - __FILE__, __LINE__, __func__); - - denali->dev_info.wDeviceMaker = ioread32(denali->flash_reg + MANUFACTURER_ID); - denali->dev_info.wDeviceID = ioread32(denali->flash_reg + DEVICE_ID); - denali->dev_info.bDeviceParam0 = ioread32(denali->flash_reg + DEVICE_PARAM_0); - denali->dev_info.bDeviceParam1 = ioread32(denali->flash_reg + DEVICE_PARAM_1); - denali->dev_info.bDeviceParam2 = ioread32(denali->flash_reg + DEVICE_PARAM_2); - - denali->dev_info.MLCDevice = ioread32(denali->flash_reg + DEVICE_PARAM_0) & 0x0c; + uint32_t id_bytes[5], addr; + uint8_t i, maf_id, device_id; + + dev_dbg(denali->dev, + "%s, Line %d, Function: %s\n", + __FILE__, __LINE__, __func__); + + /* Use read id method to get device ID and other + * params. For some NAND chips, controller can't + * report the correct device ID by reading from + * DEVICE_ID register + * */ + addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); + index_addr(denali, (uint32_t)addr | 0, 0x90); + index_addr(denali, (uint32_t)addr | 1, 0); + for (i = 0; i < 5; i++) + index_addr_read_data(denali, addr | 2, &id_bytes[i]); + maf_id = id_bytes[0]; + device_id = id_bytes[1]; if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */ if (FAIL == get_onfi_nand_para(denali)) return FAIL; - } else if (denali->dev_info.wDeviceMaker == 0xEC) { /* Samsung NAND */ - get_samsung_nand_para(denali); - } else if (denali->dev_info.wDeviceMaker == 0x98) { /* Toshiba NAND */ + } else if (maf_id == 0xEC) { /* Samsung NAND */ + get_samsung_nand_para(denali, device_id); + } else if (maf_id == 0x98) { /* Toshiba NAND */ get_toshiba_nand_para(denali); - } else if (denali->dev_info.wDeviceMaker == 0xAD) { /* Hynix NAND */ - get_hynix_nand_para(denali); - } else { - denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS; + } else if (maf_id == 0xAD) { /* Hynix NAND */ + get_hynix_nand_para(denali, device_id); } - nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:" - "acc_clks: %d, re_2_we: %d, we_2_re: %d," - "addr_2_data: %d, rdwr_en_lo_cnt: %d, " + dev_info(denali->dev, + "Dump timing register values:" + "acc_clks: %d, re_2_we: %d, re_2_re: %d\n" + "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n" "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n", ioread32(denali->flash_reg + ACC_CLKS), ioread32(denali->flash_reg + RE_2_WE), + ioread32(denali->flash_reg + RE_2_RE), ioread32(denali->flash_reg + WE_2_RE), ioread32(denali->flash_reg + ADDR_2_DATA), ioread32(denali->flash_reg + RDWR_EN_LO_CNT), ioread32(denali->flash_reg + RDWR_EN_HI_CNT), ioread32(denali->flash_reg + CS_SETUP_CNT)); - denali->dev_info.wHWRevision = ioread32(denali->flash_reg + REVISION); - denali->dev_info.wHWFeatures = ioread32(denali->flash_reg + FEATURES); - - denali->dev_info.wDeviceMainAreaSize = - ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE); - denali->dev_info.wDeviceSpareAreaSize = - ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); - - denali->dev_info.wPageDataSize = - ioread32(denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); - - /* Note: When using the Micon 4K NAND device, the controller will report - * Page Spare Size as 216 bytes. But Micron's Spec say it's 218 bytes. - * And if force set it to 218 bytes, the controller can not work - * correctly. So just let it be. But keep in mind that this bug may - * cause - * other problems in future. - Yunpeng 2008-10-10 - */ - denali->dev_info.wPageSpareSize = - ioread32(denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); - - denali->dev_info.wPagesPerBlock = ioread32(denali->flash_reg + PAGES_PER_BLOCK); - - denali->dev_info.wPageSize = - denali->dev_info.wPageDataSize + denali->dev_info.wPageSpareSize; - denali->dev_info.wBlockSize = - denali->dev_info.wPageSize * denali->dev_info.wPagesPerBlock; - denali->dev_info.wBlockDataSize = - denali->dev_info.wPagesPerBlock * denali->dev_info.wPageDataSize; - - denali->dev_info.wDeviceWidth = ioread32(denali->flash_reg + DEVICE_WIDTH); - denali->dev_info.wDeviceType = - ((ioread32(denali->flash_reg + DEVICE_WIDTH) > 0) ? 16 : 8); - - denali->dev_info.wDevicesConnected = ioread32(denali->flash_reg + DEVICES_CONNECTED); - - denali->dev_info.wSpareSkipBytes = - ioread32(denali->flash_reg + SPARE_AREA_SKIP_BYTES) * - denali->dev_info.wDevicesConnected; - - denali->dev_info.nBitsInPageNumber = - ilog2(denali->dev_info.wPagesPerBlock); - denali->dev_info.nBitsInPageDataSize = - ilog2(denali->dev_info.wPageDataSize); - denali->dev_info.nBitsInBlockDataSize = - ilog2(denali->dev_info.wBlockDataSize); - - set_ecc_config(denali); - - no_of_planes = ioread32(denali->flash_reg + NUMBER_OF_PLANES) & - NUMBER_OF_PLANES__VALUE; - - switch (no_of_planes) { - case 0: - case 1: - case 3: - case 7: - denali->dev_info.bPlaneNum = no_of_planes + 1; - break; - default: - status = FAIL; - break; - } - find_valid_banks(denali); detect_partition_feature(denali); - dump_device_info(denali); - /* If the user specified to override the default timings - * with a specific ONFI mode, we apply those changes here. + * with a specific ONFI mode, we apply those changes here. */ if (onfi_timing_mode != NAND_DEFAULT_TIMINGS) - { - NAND_ONFi_Timing_Mode(denali, onfi_timing_mode); - } + nand_onfi_timing_set(denali, onfi_timing_mode); return status; } -static void NAND_LLD_Enable_Disable_Interrupts(struct denali_nand_info *denali, +static void denali_set_intr_modes(struct denali_nand_info *denali, uint16_t INT_ENABLE) { - nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", + dev_dbg(denali->dev, "%s, Line %d, Function: %s\n", __FILE__, __LINE__, __func__); if (INT_ENABLE) - denali_write32(1, denali->flash_reg + GLOBAL_INT_ENABLE); + iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE); else - denali_write32(0, denali->flash_reg + GLOBAL_INT_ENABLE); + iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE); } /* validation function to verify that the controlling software is making - a valid request + * a valid request */ static inline bool is_flash_bank_valid(int flash_bank) { - return (flash_bank >= 0 && flash_bank < 4); + return (flash_bank >= 0 && flash_bank < 4); } static void denali_irq_init(struct denali_nand_info *denali) { uint32_t int_mask = 0; + int i; /* Disable global interrupts */ - NAND_LLD_Enable_Disable_Interrupts(denali, false); + denali_set_intr_modes(denali, false); int_mask = DENALI_IRQ_ALL; /* Clear all status bits */ - denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS0); - denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS1); - denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS2); - denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS3); + for (i = 0; i < denali->max_banks; ++i) + iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i)); denali_irq_enable(denali, int_mask); } static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali) { - NAND_LLD_Enable_Disable_Interrupts(denali, false); + denali_set_intr_modes(denali, false); free_irq(irqnum, denali); } -static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask) +static void denali_irq_enable(struct denali_nand_info *denali, + uint32_t int_mask) { - denali_write32(int_mask, denali->flash_reg + INTR_EN0); - denali_write32(int_mask, denali->flash_reg + INTR_EN1); - denali_write32(int_mask, denali->flash_reg + INTR_EN2); - denali_write32(int_mask, denali->flash_reg + INTR_EN3); + int i; + + for (i = 0; i < denali->max_banks; ++i) + iowrite32(int_mask, denali->flash_reg + INTR_EN(i)); } /* This function only returns when an interrupt that this driver cares about - * occurs. This is to reduce the overhead of servicing interrupts + * occurs. This is to reduce the overhead of servicing interrupts */ static inline uint32_t denali_irq_detected(struct denali_nand_info *denali) { - return (read_interrupt_status(denali) & DENALI_IRQ_ALL); + return read_interrupt_status(denali) & DENALI_IRQ_ALL; } /* Interrupts are cleared by writing a 1 to the appropriate status bit */ -static inline void clear_interrupt(struct denali_nand_info *denali, uint32_t irq_mask) +static inline void clear_interrupt(struct denali_nand_info *denali, + uint32_t irq_mask) { uint32_t intr_status_reg = 0; - intr_status_reg = intr_status_addresses[denali->flash_bank]; + intr_status_reg = INTR_STATUS(denali->flash_bank); - denali_write32(irq_mask, denali->flash_reg + intr_status_reg); + iowrite32(irq_mask, denali->flash_reg + intr_status_reg); } static void clear_interrupts(struct denali_nand_info *denali) @@ -971,11 +609,7 @@ static void clear_interrupts(struct denali_nand_info *denali) spin_lock_irq(&denali->irq_lock); status = read_interrupt_status(denali); - -#if DEBUG_DENALI - denali->irq_debug_array[denali->idx++] = 0x30000000 | status; - denali->idx %= 32; -#endif + clear_interrupt(denali, status); denali->irq_status = 0x0; spin_unlock_irq(&denali->irq_lock); @@ -985,27 +619,14 @@ static uint32_t read_interrupt_status(struct denali_nand_info *denali) { uint32_t intr_status_reg = 0; - intr_status_reg = intr_status_addresses[denali->flash_bank]; + intr_status_reg = INTR_STATUS(denali->flash_bank); return ioread32(denali->flash_reg + intr_status_reg); } -#if DEBUG_DENALI -static void print_irq_log(struct denali_nand_info *denali) -{ - int i = 0; - - printk("ISR debug log index = %X\n", denali->idx); - for (i = 0; i < 32; i++) - { - printk("%08X: %08X\n", i, denali->irq_debug_array[i]); - } -} -#endif - -/* This is the interrupt service routine. It handles all interrupts - * sent to this device. Note that on CE4100, this is a shared - * interrupt. +/* This is the interrupt service routine. It handles all interrupts + * sent to this device. Note that on CE4100, this is a shared + * interrupt. */ static irqreturn_t denali_isr(int irq, void *dev_id) { @@ -1015,21 +636,14 @@ static irqreturn_t denali_isr(int irq, void *dev_id) spin_lock(&denali->irq_lock); - /* check to see if a valid NAND chip has - * been selected. + /* check to see if a valid NAND chip has + * been selected. */ - if (is_flash_bank_valid(denali->flash_bank)) - { - /* check to see if controller generated + if (is_flash_bank_valid(denali->flash_bank)) { + /* check to see if controller generated * the interrupt, since this is a shared interrupt */ - if ((irq_status = denali_irq_detected(denali)) != 0) - { -#if DEBUG_DENALI - denali->irq_debug_array[denali->idx++] = 0x10000000 | irq_status; - denali->idx %= 32; - - printk("IRQ status = 0x%04x\n", irq_status); -#endif + irq_status = denali_irq_detected(denali); + if (irq_status != 0) { /* handle interrupt */ /* first acknowledge it */ clear_interrupt(denali, irq_status); @@ -1054,149 +668,120 @@ static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) bool retry = false; unsigned long timeout = msecs_to_jiffies(1000); - do - { -#if DEBUG_DENALI - printk("waiting for 0x%x\n", irq_mask); -#endif - comp_res = wait_for_completion_timeout(&denali->complete, timeout); + do { + comp_res = + wait_for_completion_timeout(&denali->complete, timeout); spin_lock_irq(&denali->irq_lock); intr_status = denali->irq_status; -#if DEBUG_DENALI - denali->irq_debug_array[denali->idx++] = 0x20000000 | (irq_mask << 16) | intr_status; - denali->idx %= 32; -#endif - - if (intr_status & irq_mask) - { + if (intr_status & irq_mask) { denali->irq_status &= ~irq_mask; spin_unlock_irq(&denali->irq_lock); -#if DEBUG_DENALI - if (retry) printk("status on retry = 0x%x\n", intr_status); -#endif /* our interrupt was detected */ break; - } - else - { - /* these are not the interrupts you are looking for - - need to wait again */ + } else { + /* these are not the interrupts you are looking for - + * need to wait again */ spin_unlock_irq(&denali->irq_lock); -#if DEBUG_DENALI - print_irq_log(denali); - printk("received irq nobody cared: irq_status = 0x%x," - " irq_mask = 0x%x, timeout = %ld\n", intr_status, irq_mask, comp_res); -#endif retry = true; } } while (comp_res != 0); - if (comp_res == 0) - { + if (comp_res == 0) { /* timeout */ - printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n", - intr_status, irq_mask); + pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n", + intr_status, irq_mask); intr_status = 0; } return intr_status; } -/* This helper function setups the registers for ECC and whether or not - the spare area will be transfered. */ -static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, +/* This helper function setups the registers for ECC and whether or not + * the spare area will be transferred. */ +static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, bool transfer_spare) { - int ecc_en_flag = 0, transfer_spare_flag = 0; + int ecc_en_flag = 0, transfer_spare_flag = 0; /* set ECC, transfer spare bits if needed */ ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0; /* Enable spare area/ECC per user's request. */ - denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE); - denali_write32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG); + iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE); + iowrite32(transfer_spare_flag, + denali->flash_reg + TRANSFER_SPARE_REG); } -/* sends a pipeline command operation to the controller. See the Denali NAND - controller's user guide for more information (section 4.2.3.6). +/* sends a pipeline command operation to the controller. See the Denali NAND + * controller's user guide for more information (section 4.2.3.6). */ -static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en, - bool transfer_spare, int access_type, - int op) +static int denali_send_pipeline_cmd(struct denali_nand_info *denali, + bool ecc_en, + bool transfer_spare, + int access_type, + int op) { int status = PASS; - uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0, + uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0, irq_mask = 0; - if (op == DENALI_READ) irq_mask = INTR_STATUS0__LOAD_COMP; - else if (op == DENALI_WRITE) irq_mask = 0; - else BUG(); + if (op == DENALI_READ) + irq_mask = INTR_STATUS__LOAD_COMP; + else if (op == DENALI_WRITE) + irq_mask = 0; + else + BUG(); setup_ecc_for_xfer(denali, ecc_en, transfer_spare); -#if DEBUG_DENALI - spin_lock_irq(&denali->irq_lock); - denali->irq_debug_array[denali->idx++] = 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) | (access_type << 4); - denali->idx %= 32; - spin_unlock_irq(&denali->irq_lock); -#endif - - /* clear interrupts */ - clear_interrupts(denali); + clear_interrupts(denali); addr = BANK(denali->flash_bank) | denali->page; - if (op == DENALI_WRITE && access_type != SPARE_ACCESS) - { - cmd = MODE_01 | addr; - denali_write32(cmd, denali->flash_mem); - } - else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) - { + if (op == DENALI_WRITE && access_type != SPARE_ACCESS) { + cmd = MODE_01 | addr; + iowrite32(cmd, denali->flash_mem); + } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) { /* read spare area */ - cmd = MODE_10 | addr; + cmd = MODE_10 | addr; index_addr(denali, (uint32_t)cmd, access_type); - cmd = MODE_01 | addr; - denali_write32(cmd, denali->flash_mem); - } - else if (op == DENALI_READ) - { + cmd = MODE_01 | addr; + iowrite32(cmd, denali->flash_mem); + } else if (op == DENALI_READ) { /* setup page read request for access type */ - cmd = MODE_10 | addr; + cmd = MODE_10 | addr; index_addr(denali, (uint32_t)cmd, access_type); /* page 33 of the NAND controller spec indicates we should not - use the pipeline commands in Spare area only mode. So we + use the pipeline commands in Spare area only mode. So we don't. */ - if (access_type == SPARE_ACCESS) - { + if (access_type == SPARE_ACCESS) { cmd = MODE_01 | addr; - denali_write32(cmd, denali->flash_mem); - } - else - { - index_addr(denali, (uint32_t)cmd, 0x2000 | op | page_count); - - /* wait for command to be accepted - * can always use status0 bit as the mask is identical for each + iowrite32(cmd, denali->flash_mem); + } else { + index_addr(denali, (uint32_t)cmd, + 0x2000 | op | page_count); + + /* wait for command to be accepted + * can always use status0 bit as the + * mask is identical for each * bank. */ irq_status = wait_for_irq(denali, irq_mask); - if (irq_status == 0) - { - printk(KERN_ERR "cmd, page, addr on timeout " - "(0x%x, 0x%x, 0x%x)\n", cmd, denali->page, addr); + if (irq_status == 0) { + dev_err(denali->dev, + "cmd, page, addr on timeout " + "(0x%x, 0x%x, 0x%x)\n", + cmd, denali->page, addr); status = FAIL; - } - else - { + } else { cmd = MODE_01 | addr; - denali_write32(cmd, denali->flash_mem); + iowrite32(cmd, denali->flash_mem); } } } @@ -1204,36 +789,35 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en } /* helper function that simply writes a buffer to the flash */ -static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_t *buf, - int len) +static int write_data_to_flash_mem(struct denali_nand_info *denali, + const uint8_t *buf, + int len) { uint32_t i = 0, *buf32; - /* verify that the len is a multiple of 4. see comment in - * read_data_from_flash_mem() */ + /* verify that the len is a multiple of 4. see comment in + * read_data_from_flash_mem() */ BUG_ON((len % 4) != 0); /* write the data to the flash memory */ buf32 = (uint32_t *)buf; for (i = 0; i < len / 4; i++) - { - denali_write32(*buf32++, denali->flash_mem + 0x10); - } - return i*4; /* intent is to return the number of bytes read */ + iowrite32(*buf32++, denali->flash_mem + 0x10); + return i*4; /* intent is to return the number of bytes read */ } /* helper function that simply reads a buffer from the flash */ -static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *buf, - int len) +static int read_data_from_flash_mem(struct denali_nand_info *denali, + uint8_t *buf, + int len) { uint32_t i = 0, *buf32; /* we assume that len will be a multiple of 4, if not * it would be nice to know about it ASAP rather than - * have random failures... - * - * This assumption is based on the fact that this - * function is designed to be used to read flash pages, + * have random failures... + * This assumption is based on the fact that this + * function is designed to be used to read flash pages, * which are typically multiples of 4... */ @@ -1242,10 +826,8 @@ static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *bu /* transfer the data from the flash */ buf32 = (uint32_t *)buf; for (i = 0; i < len / 4; i++) - { *buf32++ = ioread32(denali->flash_mem + 0x10); - } - return i*4; /* intent is to return the number of bytes read */ + return i*4; /* intent is to return the number of bytes read */ } /* writes OOB data to the device */ @@ -1253,38 +835,26 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); uint32_t irq_status = 0; - uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP | - INTR_STATUS0__PROGRAM_FAIL; + uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP | + INTR_STATUS__PROGRAM_FAIL; int status = 0; denali->page = page; - if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS, - DENALI_WRITE) == PASS) - { + if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS, + DENALI_WRITE) == PASS) { write_data_to_flash_mem(denali, buf, mtd->oobsize); -#if DEBUG_DENALI - spin_lock_irq(&denali->irq_lock); - denali->irq_debug_array[denali->idx++] = 0x80000000 | mtd->oobsize; - denali->idx %= 32; - spin_unlock_irq(&denali->irq_lock); -#endif - - /* wait for operation to complete */ irq_status = wait_for_irq(denali, irq_mask); - if (irq_status == 0) - { - printk(KERN_ERR "OOB write failed\n"); + if (irq_status == 0) { + dev_err(denali->dev, "OOB write failed\n"); status = -EIO; } - } - else - { - printk(KERN_ERR "unable to send pipeline command\n"); - status = -EIO; + } else { + dev_err(denali->dev, "unable to send pipeline command\n"); + status = -EIO; } return status; } @@ -1293,60 +863,45 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); - uint32_t irq_mask = INTR_STATUS0__LOAD_COMP, irq_status = 0, addr = 0x0, cmd = 0x0; + uint32_t irq_mask = INTR_STATUS__LOAD_COMP, + irq_status = 0, addr = 0x0, cmd = 0x0; denali->page = page; -#if DEBUG_DENALI - printk("read_oob %d\n", page); -#endif - if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, - DENALI_READ) == PASS) - { - read_data_from_flash_mem(denali, buf, mtd->oobsize); + if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, + DENALI_READ) == PASS) { + read_data_from_flash_mem(denali, buf, mtd->oobsize); - /* wait for command to be accepted + /* wait for command to be accepted * can always use status0 bit as the mask is identical for each * bank. */ irq_status = wait_for_irq(denali, irq_mask); if (irq_status == 0) - { - printk(KERN_ERR "page on OOB timeout %d\n", denali->page); - } + dev_err(denali->dev, "page on OOB timeout %d\n", + denali->page); /* We set the device back to MAIN_ACCESS here as I observed * instability with the controller if you do a block erase * and the last transaction was a SPARE_ACCESS. Block erase * is reliable (according to the MTD test infrastructure) - * if you are in MAIN_ACCESS. + * if you are in MAIN_ACCESS. */ addr = BANK(denali->flash_bank) | denali->page; - cmd = MODE_10 | addr; + cmd = MODE_10 | addr; index_addr(denali, (uint32_t)cmd, MAIN_ACCESS); - -#if DEBUG_DENALI - spin_lock_irq(&denali->irq_lock); - denali->irq_debug_array[denali->idx++] = 0x60000000 | mtd->oobsize; - denali->idx %= 32; - spin_unlock_irq(&denali->irq_lock); -#endif } } -/* this function examines buffers to see if they contain data that +/* this function examines buffers to see if they contain data that * indicate that the buffer is part of an erased region of flash. */ -bool is_erased(uint8_t *buf, int len) +static bool is_erased(uint8_t *buf, int len) { int i = 0; for (i = 0; i < len; i++) - { if (buf[i] != 0xFF) - { return false; - } - } return true; } #define ECC_SECTOR_SIZE 512 @@ -1354,72 +909,74 @@ bool is_erased(uint8_t *buf, int len) #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12) #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET)) #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK) -#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO)) -#define ECC_ERR_DEVICE(x) ((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8) +#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE)) +#define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8) #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO) -static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, - uint8_t *oobbuf, uint32_t irq_status) +static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, + uint32_t irq_status, unsigned int *max_bitflips) { bool check_erased_page = false; + unsigned int bitflips = 0; - if (irq_status & INTR_STATUS0__ECC_ERR) - { + if (irq_status & INTR_STATUS__ECC_ERR) { /* read the ECC errors. we'll ignore them for now */ uint32_t err_address = 0, err_correction_info = 0; uint32_t err_byte = 0, err_sector = 0, err_device = 0; uint32_t err_correction_value = 0; + denali_set_intr_modes(denali, false); - do - { - err_address = ioread32(denali->flash_reg + + do { + err_address = ioread32(denali->flash_reg + ECC_ERROR_ADDRESS); err_sector = ECC_SECTOR(err_address); err_byte = ECC_BYTE(err_address); - - err_correction_info = ioread32(denali->flash_reg + + err_correction_info = ioread32(denali->flash_reg + ERR_CORRECTION_INFO); - err_correction_value = + err_correction_value = ECC_CORRECTION_VALUE(err_correction_info); err_device = ECC_ERR_DEVICE(err_correction_info); - if (ECC_ERROR_CORRECTABLE(err_correction_info)) - { - /* offset in our buffer is computed as: - sector number * sector size + offset in - sector - */ - int offset = err_sector * ECC_SECTOR_SIZE + - err_byte; - if (offset < denali->mtd.writesize) - { + if (ECC_ERROR_CORRECTABLE(err_correction_info)) { + /* If err_byte is larger than ECC_SECTOR_SIZE, + * means error happened in OOB, so we ignore + * it. It's no need for us to correct it + * err_device is represented the NAND error + * bits are happened in if there are more + * than one NAND connected. + * */ + if (err_byte < ECC_SECTOR_SIZE) { + int offset; + offset = (err_sector * + ECC_SECTOR_SIZE + + err_byte) * + denali->devnum + + err_device; /* correct the ECC error */ buf[offset] ^= err_correction_value; denali->mtd.ecc_stats.corrected++; + bitflips++; } - else - { - /* bummer, couldn't correct the error */ - printk(KERN_ERR "ECC offset invalid\n"); - denali->mtd.ecc_stats.failed++; - } - } - else - { - /* if the error is not correctable, need to - * look at the page to see if it is an erased page. - * if so, then it's not a real ECC error */ + } else { + /* if the error is not correctable, need to + * look at the page to see if it is an erased + * page. if so, then it's not a real ECC error + * */ check_erased_page = true; } - -#if DEBUG_DENALI - printk("Detected ECC error in page %d: err_addr = 0x%08x," - " info to fix is 0x%08x\n", denali->page, err_address, - err_correction_info); -#endif } while (!ECC_LAST_ERR(err_correction_info)); + /* Once handle all ecc errors, controller will triger + * a ECC_TRANSACTION_DONE interrupt, so here just wait + * for a while for this interrupt + * */ + while (!(read_interrupt_status(denali) & + INTR_STATUS__ECC_TRANSACTION_DONE)) + cpu_relax(); + clear_interrupts(denali); + denali_set_intr_modes(denali, true); } + *max_bitflips = bitflips; return check_erased_page; } @@ -1428,9 +985,10 @@ static void denali_enable_dma(struct denali_nand_info *denali, bool en) { uint32_t reg_val = 0x0; - if (en) reg_val = DMA_ENABLE__FLAG; + if (en) + reg_val = DMA_ENABLE__FLAG; - denali_write32(reg_val, denali->flash_reg + DMA_ENABLE); + iowrite32(reg_val, denali->flash_reg + DMA_ENABLE); ioread32(denali->flash_reg + DMA_ENABLE); } @@ -1458,20 +1016,19 @@ static void denali_setup_dma(struct denali_nand_info *denali, int op) index_addr(denali, mode | 0x14000, 0x2400); } -/* writes a page. user specifies type, and this function handles the - configuration details. */ -static void write_page(struct mtd_info *mtd, struct nand_chip *chip, +/* writes a page. user specifies type, and this function handles the + * configuration details. */ +static int write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, bool raw_xfer) { struct denali_nand_info *denali = mtd_to_denali(mtd); - struct pci_dev *pci_dev = denali->dev; dma_addr_t addr = denali->buf.dma_buf; size_t size = denali->mtd.writesize + denali->mtd.oobsize; uint32_t irq_status = 0; - uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP | - INTR_STATUS0__PROGRAM_FAIL; + uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP | + INTR_STATUS__PROGRAM_FAIL; /* if it is a raw xfer, we want to disable ecc, and send * the spare area. @@ -1483,94 +1040,103 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip, /* copy buffer into DMA buffer */ memcpy(denali->buf.buf, buf, mtd->writesize); - if (raw_xfer) - { + if (raw_xfer) { /* transfer the data to the spare area */ - memcpy(denali->buf.buf + mtd->writesize, - chip->oob_poi, - mtd->oobsize); + memcpy(denali->buf.buf + mtd->writesize, + chip->oob_poi, + mtd->oobsize); } - pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE); + dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE); clear_interrupts(denali); - denali_enable_dma(denali, true); + denali_enable_dma(denali, true); denali_setup_dma(denali, DENALI_WRITE); /* wait for operation to complete */ irq_status = wait_for_irq(denali, irq_mask); - if (irq_status == 0) - { - printk(KERN_ERR "timeout on write_page (type = %d)\n", raw_xfer); - denali->status = - (irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_FAIL : - PASS; + if (irq_status == 0) { + dev_err(denali->dev, + "timeout on write_page (type = %d)\n", + raw_xfer); + denali->status = + (irq_status & INTR_STATUS__PROGRAM_FAIL) ? + NAND_STATUS_FAIL : PASS; } - denali_enable_dma(denali, false); - pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE); + denali_enable_dma(denali, false); + dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE); + + return 0; } /* NAND core entry points */ -/* this is the callback that the NAND core calls to write a page. Since - writing a page with ECC or without is similar, all the work is done - by write_page above. */ -static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf) +/* this is the callback that the NAND core calls to write a page. Since + * writing a page with ECC or without is similar, all the work is done + * by write_page above. + * */ +static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required) { /* for regular page writes, we let HW handle all the ECC - * data written to the device. */ - write_page(mtd, chip, buf, false); + * data written to the device. */ + return write_page(mtd, chip, buf, false); } -/* This is the callback that the NAND core calls to write a page without ECC. - raw access is similiar to ECC page writes, so all the work is done in the - write_page() function above. +/* This is the callback that the NAND core calls to write a page without ECC. + * raw access is similar to ECC page writes, so all the work is done in the + * write_page() function above. */ -static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf) +static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required) { - /* for raw page writes, we want to disable ECC and simply write + /* for raw page writes, we want to disable ECC and simply write whatever data is in the buffer. */ - write_page(mtd, chip, buf, true); + return write_page(mtd, chip, buf, true); } -static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, +static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { - return write_oob_data(mtd, chip->oob_poi, page); + return write_oob_data(mtd, chip->oob_poi, page); } -static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page, int sndcmd) +static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) { read_oob_data(mtd, chip->oob_poi, page); - return 0; /* notify NAND core to send command to - * NAND device. */ + return 0; } static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int page) + uint8_t *buf, int oob_required, int page) { + unsigned int max_bitflips; struct denali_nand_info *denali = mtd_to_denali(mtd); - struct pci_dev *pci_dev = denali->dev; dma_addr_t addr = denali->buf.dma_buf; size_t size = denali->mtd.writesize + denali->mtd.oobsize; uint32_t irq_status = 0; - uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE | - INTR_STATUS0__ECC_ERR; + uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE | + INTR_STATUS__ECC_ERR; bool check_erased_page = false; + if (page != denali->page) { + dev_err(denali->dev, "IN %s: page %d is not" + " equal to denali->page %d, investigate!!", + __func__, page, denali->page); + BUG(); + } + setup_ecc_for_xfer(denali, true, false); denali_enable_dma(denali, true); - pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE); + dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE); clear_interrupts(denali); denali_setup_dma(denali, DENALI_READ); @@ -1578,49 +1144,49 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, /* wait for operation to complete */ irq_status = wait_for_irq(denali, irq_mask); - pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE); + dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE); memcpy(buf, denali->buf.buf, mtd->writesize); - - check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status); + + check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips); denali_enable_dma(denali, false); - if (check_erased_page) - { + if (check_erased_page) { read_oob_data(&denali->mtd, chip->oob_poi, denali->page); /* check ECC failures that may have occurred on erased pages */ - if (check_erased_page) - { + if (check_erased_page) { if (!is_erased(buf, denali->mtd.writesize)) - { denali->mtd.ecc_stats.failed++; - } if (!is_erased(buf, denali->mtd.oobsize)) - { denali->mtd.ecc_stats.failed++; - } - } + } } - return 0; + return max_bitflips; } static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int page) + uint8_t *buf, int oob_required, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); - struct pci_dev *pci_dev = denali->dev; dma_addr_t addr = denali->buf.dma_buf; size_t size = denali->mtd.writesize + denali->mtd.oobsize; uint32_t irq_status = 0; - uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP; - + uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP; + + if (page != denali->page) { + dev_err(denali->dev, "IN %s: page %d is not" + " equal to denali->page %d, investigate!!", + __func__, page, denali->page); + BUG(); + } + setup_ecc_for_xfer(denali, false, true); denali_enable_dma(denali, true); - pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE); + dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE); clear_interrupts(denali); denali_setup_dma(denali, DENALI_READ); @@ -1628,7 +1194,7 @@ static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, /* wait for operation to complete */ irq_status = wait_for_irq(denali, irq_mask); - pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE); + dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE); denali_enable_dma(denali, false); @@ -1644,22 +1210,15 @@ static uint8_t denali_read_byte(struct mtd_info *mtd) uint8_t result = 0xff; if (denali->buf.head < denali->buf.tail) - { result = denali->buf.buf[denali->buf.head++]; - } -#if DEBUG_DENALI - printk("read byte -> 0x%02x\n", result); -#endif return result; } static void denali_select_chip(struct mtd_info *mtd, int chip) { struct denali_nand_info *denali = mtd_to_denali(mtd); -#if DEBUG_DENALI - printk("denali select chip %d\n", chip); -#endif + spin_lock_irq(&denali->irq_lock); denali->flash_bank = chip; spin_unlock_irq(&denali->irq_lock); @@ -1671,107 +1230,101 @@ static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) int status = denali->status; denali->status = 0; -#if DEBUG_DENALI - printk("waitfunc %d\n", status); -#endif return status; } -static void denali_erase(struct mtd_info *mtd, int page) +static int denali_erase(struct mtd_info *mtd, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); uint32_t cmd = 0x0, irq_status = 0; -#if DEBUG_DENALI - printk("erase page: %d\n", page); -#endif /* clear interrupts */ - clear_interrupts(denali); + clear_interrupts(denali); /* setup page read request for access type */ cmd = MODE_10 | BANK(denali->flash_bank) | page; index_addr(denali, (uint32_t)cmd, 0x1); /* wait for erase to complete or failure to occur */ - irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP | - INTR_STATUS0__ERASE_FAIL); + irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP | + INTR_STATUS__ERASE_FAIL); - denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_STATUS_FAIL : - PASS; + return (irq_status & INTR_STATUS__ERASE_FAIL) ? NAND_STATUS_FAIL : PASS; } -static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, +static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); + uint32_t addr, id; + int i; -#if DEBUG_DENALI - printk("cmdfunc: 0x%x %d %d\n", cmd, col, page); -#endif - switch (cmd) - { - case NAND_CMD_PAGEPROG: - break; - case NAND_CMD_STATUS: - read_status(denali); - break; - case NAND_CMD_READID: - reset_buf(denali); - if (denali->flash_bank < denali->total_used_banks) - { - /* write manufacturer information into nand - buffer for NAND subsystem to fetch. - */ - write_byte_to_buf(denali, denali->dev_info.wDeviceMaker); - write_byte_to_buf(denali, denali->dev_info.wDeviceID); - write_byte_to_buf(denali, denali->dev_info.bDeviceParam0); - write_byte_to_buf(denali, denali->dev_info.bDeviceParam1); - write_byte_to_buf(denali, denali->dev_info.bDeviceParam2); - } - else - { - int i; - for (i = 0; i < 5; i++) - write_byte_to_buf(denali, 0xff); - } - break; - case NAND_CMD_READ0: - case NAND_CMD_SEQIN: - denali->page = page; - break; - case NAND_CMD_RESET: - reset_bank(denali); - break; - case NAND_CMD_READOOB: - /* TODO: Read OOB data */ - break; - default: - printk(KERN_ERR ": unsupported command received 0x%x\n", cmd); - break; + switch (cmd) { + case NAND_CMD_PAGEPROG: + break; + case NAND_CMD_STATUS: + read_status(denali); + break; + case NAND_CMD_READID: + case NAND_CMD_PARAM: + reset_buf(denali); + /*sometimes ManufactureId read from register is not right + * e.g. some of Micron MT29F32G08QAA MLC NAND chips + * So here we send READID cmd to NAND insteand + * */ + addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); + index_addr(denali, (uint32_t)addr | 0, 0x90); + index_addr(denali, (uint32_t)addr | 1, 0); + for (i = 0; i < 5; i++) { + index_addr_read_data(denali, + (uint32_t)addr | 2, + &id); + write_byte_to_buf(denali, id); + } + break; + case NAND_CMD_READ0: + case NAND_CMD_SEQIN: + denali->page = page; + break; + case NAND_CMD_RESET: + reset_bank(denali); + break; + case NAND_CMD_READOOB: + /* TODO: Read OOB data */ + break; + default: + pr_err(": unsupported command received 0x%x\n", cmd); + break; } } /* stubs for ECC functions not used by the NAND core */ -static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data, +static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data, uint8_t *ecc_code) { - printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n"); + struct denali_nand_info *denali = mtd_to_denali(mtd); + dev_err(denali->dev, + "denali_ecc_calculate called unexpectedly\n"); BUG(); return -EIO; } -static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data, +static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data, uint8_t *read_ecc, uint8_t *calc_ecc) { - printk(KERN_ERR "denali_ecc_correct called unexpectedly\n"); + struct denali_nand_info *denali = mtd_to_denali(mtd); + dev_err(denali->dev, + "denali_ecc_correct called unexpectedly\n"); BUG(); return -EIO; } static void denali_ecc_hwctl(struct mtd_info *mtd, int mode) { - printk(KERN_ERR "denali_ecc_hwctl called unexpectedly\n"); + struct denali_nand_info *denali = mtd_to_denali(mtd); + dev_err(denali->dev, + "denali_ecc_hwctl called unexpectedly\n"); BUG(); } /* end NAND core entry points */ @@ -1779,38 +1332,40 @@ static void denali_ecc_hwctl(struct mtd_info *mtd, int mode) /* Initialization code to bring the device up to a known good state */ static void denali_hw_init(struct denali_nand_info *denali) { - denali_irq_init(denali); - NAND_Flash_Reset(denali); - denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED); - denali_write32(CHIP_EN_DONT_CARE__FLAG, denali->flash_reg + CHIP_ENABLE_DONT_CARE); - - denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES); - denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER); + /* tell driver how many bit controller will skip before + * writing ECC code in OOB, this register may be already + * set by firmware. So we read this value out. + * if this value is 0, just let it be. + * */ + denali->bbtskipbytes = ioread32(denali->flash_reg + + SPARE_AREA_SKIP_BYTES); + detect_max_banks(denali); + denali_nand_reset(denali); + iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED); + iowrite32(CHIP_EN_DONT_CARE__FLAG, + denali->flash_reg + CHIP_ENABLE_DONT_CARE); + + iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER); /* Should set value for these registers when init */ - denali_write32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES); - denali_write32(1, denali->flash_reg + ECC_ENABLE); + iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES); + iowrite32(1, denali->flash_reg + ECC_ENABLE); + denali_nand_timing_set(denali); + denali_irq_init(denali); } -/* ECC layout for SLC devices. Denali spec indicates SLC fixed at 4 bytes */ -#define ECC_BYTES_SLC 4 * (2048 / ECC_SECTOR_SIZE) -static struct nand_ecclayout nand_oob_slc = { - .eccbytes = 4, - .eccpos = { 0, 1, 2, 3 }, /* not used */ - .oobfree = {{ - .offset = ECC_BYTES_SLC, - .length = 64 - ECC_BYTES_SLC - }} +/* Althogh controller spec said SLC ECC is forceb to be 4bit, + * but denali controller in MRST only support 15bit and 8bit ECC + * correction + * */ +#define ECC_8BITS 14 +static struct nand_ecclayout nand_8bit_oob = { + .eccbytes = 14, }; -#define ECC_BYTES_MLC 14 * (2048 / ECC_SECTOR_SIZE) -static struct nand_ecclayout nand_oob_mlc_14bit = { - .eccbytes = 14, - .eccpos = { 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, /* not used */ - .oobfree = {{ - .offset = ECC_BYTES_MLC, - .length = 64 - ECC_BYTES_MLC - }} +#define ECC_15BITS 26 +static struct nand_ecclayout nand_15bit_oob = { + .eccbytes = 26, }; static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; @@ -1836,18 +1391,18 @@ static struct nand_bbt_descr bbt_mirror_descr = { .pattern = mirror_pattern, }; -/* initalize driver data structures */ -void denali_drv_init(struct denali_nand_info *denali) +/* initialize driver data structures */ +static void denali_drv_init(struct denali_nand_info *denali) { denali->idx = 0; /* setup interrupt handler */ - /* the completion object will be used to notify + /* the completion object will be used to notify * the callee that the interrupt is done */ init_completion(&denali->complete); /* the spinlock will be used to synchronize the ISR - * with any element that might be access shared + * with any element that might be access shared * data (interrupt status) */ spin_lock_init(&denali->irq_lock); @@ -1858,148 +1413,41 @@ void denali_drv_init(struct denali_nand_info *denali) denali->irq_status = 0; } -/* driver entry point */ -static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) +int denali_init(struct denali_nand_info *denali) { - int ret = -ENODEV; - resource_size_t csr_base, mem_base; - unsigned long csr_len, mem_len; - struct denali_nand_info *denali; - - nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", - __FILE__, __LINE__, __func__); - - denali = kzalloc(sizeof(*denali), GFP_KERNEL); - if (!denali) - return -ENOMEM; + int ret; - ret = pci_enable_device(dev); - if (ret) { - printk(KERN_ERR "Spectra: pci_enable_device failed.\n"); - goto failed_enable; - } - - if (id->driver_data == INTEL_CE4100) { - /* Due to a silicon limitation, we can only support - * ONFI timing mode 1 and below. - */ - if (onfi_timing_mode < -1 || onfi_timing_mode > 1) - { - printk("Intel CE4100 only supports ONFI timing mode 1 " - "or below\n"); - ret = -EINVAL; - goto failed_enable; - } - denali->platform = INTEL_CE4100; - mem_base = pci_resource_start(dev, 0); - mem_len = pci_resource_len(dev, 1); - csr_base = pci_resource_start(dev, 1); - csr_len = pci_resource_len(dev, 1); - } else { - denali->platform = INTEL_MRST; - csr_base = pci_resource_start(dev, 0); - csr_len = pci_resource_start(dev, 0); - mem_base = pci_resource_start(dev, 1); - mem_len = pci_resource_len(dev, 1); - if (!mem_len) { - mem_base = csr_base + csr_len; - mem_len = csr_len; - nand_dbg_print(NAND_DBG_WARN, - "Spectra: No second BAR for PCI device; assuming %08Lx\n", - (uint64_t)csr_base); + if (denali->platform == INTEL_CE4100) { + /* Due to a silicon limitation, we can only support + * ONFI timing mode 1 and below. + */ + if (onfi_timing_mode < -1 || onfi_timing_mode > 1) { + pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n"); + return -EINVAL; } } - /* Is 32-bit DMA supported? */ - ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32)); - - if (ret) - { - printk(KERN_ERR "Spectra: no usable DMA configuration\n"); - goto failed_enable; - } - denali->buf.dma_buf = pci_map_single(dev, denali->buf.buf, DENALI_BUF_SIZE, - PCI_DMA_BIDIRECTIONAL); - - if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) - { - printk(KERN_ERR "Spectra: failed to map DMA buffer\n"); - goto failed_enable; - } - - pci_set_master(dev); - denali->dev = dev; - - ret = pci_request_regions(dev, DENALI_NAND_NAME); - if (ret) { - printk(KERN_ERR "Spectra: Unable to request memory regions\n"); - goto failed_req_csr; - } - - denali->flash_reg = ioremap_nocache(csr_base, csr_len); - if (!denali->flash_reg) { - printk(KERN_ERR "Spectra: Unable to remap memory region\n"); - ret = -ENOMEM; - goto failed_remap_csr; - } - nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08Lx -> 0x%p (0x%lx)\n", - (uint64_t)csr_base, denali->flash_reg, csr_len); - - denali->flash_mem = ioremap_nocache(mem_base, mem_len); - if (!denali->flash_mem) { - printk(KERN_ERR "Spectra: ioremap_nocache failed!"); - iounmap(denali->flash_reg); - ret = -ENOMEM; - goto failed_remap_csr; - } - - nand_dbg_print(NAND_DBG_WARN, - "Spectra: Remapped flash base address: " - "0x%p, len: %ld\n", - denali->flash_mem, csr_len); + /* allocate a temporary buffer for nand_scan_ident() */ + denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE, + GFP_DMA | GFP_KERNEL); + if (!denali->buf.buf) + return -ENOMEM; + denali->mtd.dev.parent = denali->dev; denali_hw_init(denali); denali_drv_init(denali); - nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq); - if (request_irq(dev->irq, denali_isr, IRQF_SHARED, + /* denali_isr register is done after all the hardware + * initilization is finished*/ + if (request_irq(denali->irq, denali_isr, IRQF_SHARED, DENALI_NAND_NAME, denali)) { - printk(KERN_ERR "Spectra: Unable to allocate IRQ\n"); - ret = -ENODEV; - goto failed_request_irq; + pr_err("Spectra: Unable to allocate IRQ\n"); + return -ENODEV; } /* now that our ISR is registered, we can enable interrupts */ - NAND_LLD_Enable_Disable_Interrupts(denali, true); - - pci_set_drvdata(dev, denali); - - NAND_Read_Device_ID(denali); - - /* MTD supported page sizes vary by kernel. We validate our - kernel supports the device here. - */ - if (denali->dev_info.wPageSize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) - { - ret = -ENODEV; - printk(KERN_ERR "Spectra: device size not supported by this " - "version of MTD."); - goto failed_nand; - } - - nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:" - "acc_clks: %d, re_2_we: %d, we_2_re: %d," - "addr_2_data: %d, rdwr_en_lo_cnt: %d, " - "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n", - ioread32(denali->flash_reg + ACC_CLKS), - ioread32(denali->flash_reg + RE_2_WE), - ioread32(denali->flash_reg + WE_2_RE), - ioread32(denali->flash_reg + ADDR_2_DATA), - ioread32(denali->flash_reg + RDWR_EN_LO_CNT), - ioread32(denali->flash_reg + RDWR_EN_HI_CNT), - ioread32(denali->flash_reg + CS_SETUP_CNT)); - - denali->mtd.name = "Denali NAND"; + denali_set_intr_modes(denali, true); + denali->mtd.name = "denali-nand"; denali->mtd.owner = THIS_MODULE; denali->mtd.priv = &denali->nand; @@ -2009,126 +1457,160 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) denali->nand.read_byte = denali_read_byte; denali->nand.waitfunc = denali_waitfunc; - /* scan for NAND devices attached to the controller + /* scan for NAND devices attached to the controller * this is the first stage in a two step process to register - * with the nand subsystem */ - if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) - { + * with the nand subsystem */ + if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) { ret = -ENXIO; - goto failed_nand; + goto failed_req_irq; } - - /* second stage of the NAND scan - * this stage requires information regarding ECC and - * bad block management. */ + + /* allocate the right size buffer now */ + devm_kfree(denali->dev, denali->buf.buf); + denali->buf.buf = devm_kzalloc(denali->dev, + denali->mtd.writesize + denali->mtd.oobsize, + GFP_KERNEL); + if (!denali->buf.buf) { + ret = -ENOMEM; + goto failed_req_irq; + } + + /* Is 32-bit DMA supported? */ + ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32)); + if (ret) { + pr_err("Spectra: no usable DMA configuration\n"); + goto failed_req_irq; + } + + denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf, + denali->mtd.writesize + denali->mtd.oobsize, + DMA_BIDIRECTIONAL); + if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) { + dev_err(denali->dev, "Spectra: failed to map DMA buffer\n"); + ret = -EIO; + goto failed_req_irq; + } + + /* support for multi nand + * MTD known nothing about multi nand, + * so we should tell it the real pagesize + * and anything necessery + */ + denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED); + denali->nand.chipsize <<= (denali->devnum - 1); + denali->nand.page_shift += (denali->devnum - 1); + denali->nand.pagemask = (denali->nand.chipsize >> + denali->nand.page_shift) - 1; + denali->nand.bbt_erase_shift += (denali->devnum - 1); + denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift; + denali->nand.chip_shift += (denali->devnum - 1); + denali->mtd.writesize <<= (denali->devnum - 1); + denali->mtd.oobsize <<= (denali->devnum - 1); + denali->mtd.erasesize <<= (denali->devnum - 1); + denali->mtd.size = denali->nand.numchips * denali->nand.chipsize; + denali->bbtskipbytes *= denali->devnum; + + /* second stage of the NAND scan + * this stage requires information regarding ECC and + * bad block management. */ /* Bad block management */ denali->nand.bbt_td = &bbt_main_descr; denali->nand.bbt_md = &bbt_mirror_descr; /* skip the scan for now until we have OOB read and write support */ - denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN; + denali->nand.bbt_options |= NAND_BBT_USE_FLASH; + denali->nand.options |= NAND_SKIP_BBTSCAN; denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME; - if (denali->dev_info.MLCDevice) - { - denali->nand.ecc.layout = &nand_oob_mlc_14bit; - denali->nand.ecc.bytes = ECC_BYTES_MLC; - } - else /* SLC */ - { - denali->nand.ecc.layout = &nand_oob_slc; - denali->nand.ecc.bytes = ECC_BYTES_SLC; + /* Denali Controller only support 15bit and 8bit ECC in MRST, + * so just let controller do 15bit ECC for MLC and 8bit ECC for + * SLC if possible. + * */ + if (!nand_is_slc(&denali->nand) && + (denali->mtd.oobsize > (denali->bbtskipbytes + + ECC_15BITS * (denali->mtd.writesize / + ECC_SECTOR_SIZE)))) { + /* if MLC OOB size is large enough, use 15bit ECC*/ + denali->nand.ecc.strength = 15; + denali->nand.ecc.layout = &nand_15bit_oob; + denali->nand.ecc.bytes = ECC_15BITS; + iowrite32(15, denali->flash_reg + ECC_CORRECTION); + } else if (denali->mtd.oobsize < (denali->bbtskipbytes + + ECC_8BITS * (denali->mtd.writesize / + ECC_SECTOR_SIZE))) { + pr_err("Your NAND chip OOB is not large enough to \ + contain 8bit ECC correction codes"); + goto failed_req_irq; + } else { + denali->nand.ecc.strength = 8; + denali->nand.ecc.layout = &nand_8bit_oob; + denali->nand.ecc.bytes = ECC_8BITS; + iowrite32(8, denali->flash_reg + ECC_CORRECTION); } - /* These functions are required by the NAND core framework, otherwise, - the NAND core will assert. However, we don't need them, so we'll stub - them out. */ + denali->nand.ecc.bytes *= denali->devnum; + denali->nand.ecc.strength *= denali->devnum; + denali->nand.ecc.layout->eccbytes *= + denali->mtd.writesize / ECC_SECTOR_SIZE; + denali->nand.ecc.layout->oobfree[0].offset = + denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes; + denali->nand.ecc.layout->oobfree[0].length = + denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes - + denali->bbtskipbytes; + + /* Let driver know the total blocks number and + * how many blocks contained by each nand chip. + * blksperchip will help driver to know how many + * blocks is taken by FW. + * */ + denali->totalblks = denali->mtd.size >> + denali->nand.phys_erase_shift; + denali->blksperchip = denali->totalblks / denali->nand.numchips; + + /* These functions are required by the NAND core framework, otherwise, + * the NAND core will assert. However, we don't need them, so we'll stub + * them out. */ denali->nand.ecc.calculate = denali_ecc_calculate; denali->nand.ecc.correct = denali_ecc_correct; denali->nand.ecc.hwctl = denali_ecc_hwctl; /* override the default read operations */ - denali->nand.ecc.size = denali->mtd.writesize; + denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum; denali->nand.ecc.read_page = denali_read_page; denali->nand.ecc.read_page_raw = denali_read_page_raw; denali->nand.ecc.write_page = denali_write_page; denali->nand.ecc.write_page_raw = denali_write_page_raw; denali->nand.ecc.read_oob = denali_read_oob; denali->nand.ecc.write_oob = denali_write_oob; - denali->nand.erase_cmd = denali_erase; + denali->nand.erase = denali_erase; - if (nand_scan_tail(&denali->mtd)) - { + if (nand_scan_tail(&denali->mtd)) { ret = -ENXIO; - goto failed_nand; + goto failed_req_irq; } - ret = add_mtd_device(&denali->mtd); + ret = mtd_device_register(&denali->mtd, NULL, 0); if (ret) { - printk(KERN_ERR "Spectra: Failed to register MTD device: %d\n", ret); - goto failed_nand; + dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n", + ret); + goto failed_req_irq; } return 0; - failed_nand: - denali_irq_cleanup(dev->irq, denali); - failed_request_irq: - iounmap(denali->flash_reg); - iounmap(denali->flash_mem); - failed_remap_csr: - pci_release_regions(dev); - failed_req_csr: - pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE, - PCI_DMA_BIDIRECTIONAL); - failed_enable: - kfree(denali); +failed_req_irq: + denali_irq_cleanup(denali->irq, denali); + return ret; } +EXPORT_SYMBOL(denali_init); /* driver exit point */ -static void denali_pci_remove(struct pci_dev *dev) +void denali_remove(struct denali_nand_info *denali) { - struct denali_nand_info *denali = pci_get_drvdata(dev); - - nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n", - __FILE__, __LINE__, __func__); - - nand_release(&denali->mtd); - del_mtd_device(&denali->mtd); - - denali_irq_cleanup(dev->irq, denali); - - iounmap(denali->flash_reg); - iounmap(denali->flash_mem); - pci_release_regions(dev); - pci_disable_device(dev); - pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE, - PCI_DMA_BIDIRECTIONAL); - pci_set_drvdata(dev, NULL); - kfree(denali); + denali_irq_cleanup(denali->irq, denali); + dma_unmap_single(denali->dev, denali->buf.dma_buf, + denali->mtd.writesize + denali->mtd.oobsize, + DMA_BIDIRECTIONAL); } - -MODULE_DEVICE_TABLE(pci, denali_pci_ids); - -static struct pci_driver denali_pci_driver = { - .name = DENALI_NAND_NAME, - .id_table = denali_pci_ids, - .probe = denali_pci_probe, - .remove = denali_pci_remove, -}; - -static int __devinit denali_init(void) -{ - printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n", __DATE__, __TIME__); - return pci_register_driver(&denali_pci_driver); -} - -/* Free memory */ -static void __devexit denali_exit(void) -{ - pci_unregister_driver(&denali_pci_driver); -} - -module_init(denali_init); -module_exit(denali_exit); +EXPORT_SYMBOL(denali_remove); diff --git a/drivers/mtd/nand/denali.h b/drivers/mtd/nand/denali.h index 422a29ab2f6..96681746242 100644 --- a/drivers/mtd/nand/denali.h +++ b/drivers/mtd/nand/denali.h @@ -17,7 +17,7 @@ * */ -#include <linux/mtd/nand.h> +#include <linux/mtd/nand.h> #define DEVICE_RESET 0x0 #define DEVICE_RESET__BANK0 0x0001 @@ -29,7 +29,7 @@ #define TRANSFER_SPARE_REG__FLAG 0x0001 #define LOAD_WAIT_CNT 0x20 -#define LOAD_WAIT_CNT__VALUE 0xffff +#define LOAD_WAIT_CNT__VALUE 0xffff #define PROGRAM_WAIT_CNT 0x30 #define PROGRAM_WAIT_CNT__VALUE 0xffff @@ -83,7 +83,7 @@ #define RE_2_WE 0x120 #define RE_2_WE__VALUE 0x003f -#define ACC_CLKS 0x130 +#define ACC_CLKS 0x130 #define ACC_CLKS__VALUE 0x000f #define NUMBER_OF_PLANES 0x140 @@ -140,7 +140,7 @@ #define DEVICES_CONNECTED 0x250 #define DEVICES_CONNECTED__VALUE 0x0007 -#define DIE_MASK 0x260 +#define DIE_MASK 0x260 #define DIE_MASK__VALUE 0x00ff #define FIRST_BLOCK_OF_NEXT_PLANE 0x270 @@ -152,7 +152,7 @@ #define RE_2_RE 0x290 #define RE_2_RE__VALUE 0x003f -#define MANUFACTURER_ID 0x300 +#define MANUFACTURER_ID 0x300 #define MANUFACTURER_ID__VALUE 0x00ff #define DEVICE_ID 0x310 @@ -173,13 +173,13 @@ #define LOGICAL_PAGE_SPARE_SIZE 0x360 #define LOGICAL_PAGE_SPARE_SIZE__VALUE 0xffff -#define REVISION 0x370 +#define REVISION 0x370 #define REVISION__VALUE 0xffff #define ONFI_DEVICE_FEATURES 0x380 #define ONFI_DEVICE_FEATURES__VALUE 0x003f -#define ONFI_OPTIONAL_COMMANDS 0x390 +#define ONFI_OPTIONAL_COMMANDS 0x390 #define ONFI_OPTIONAL_COMMANDS__VALUE 0x003f #define ONFI_TIMING_MODE 0x3a0 @@ -201,195 +201,56 @@ #define FEATURES 0x3f0 #define FEATURES__N_BANKS 0x0003 #define FEATURES__ECC_MAX_ERR 0x003c -#define FEATURES__DMA 0x0040 +#define FEATURES__DMA 0x0040 #define FEATURES__CMD_DMA 0x0080 #define FEATURES__PARTITION 0x0100 #define FEATURES__XDMA_SIDEBAND 0x0200 #define FEATURES__GPREG 0x0400 -#define FEATURES__INDEX_ADDR 0x0800 +#define FEATURES__INDEX_ADDR 0x0800 #define TRANSFER_MODE 0x400 #define TRANSFER_MODE__VALUE 0x0003 -#define INTR_STATUS0 0x410 -#define INTR_STATUS0__ECC_TRANSACTION_DONE 0x0001 -#define INTR_STATUS0__ECC_ERR 0x0002 -#define INTR_STATUS0__DMA_CMD_COMP 0x0004 -#define INTR_STATUS0__TIME_OUT 0x0008 -#define INTR_STATUS0__PROGRAM_FAIL 0x0010 -#define INTR_STATUS0__ERASE_FAIL 0x0020 -#define INTR_STATUS0__LOAD_COMP 0x0040 -#define INTR_STATUS0__PROGRAM_COMP 0x0080 -#define INTR_STATUS0__ERASE_COMP 0x0100 -#define INTR_STATUS0__PIPE_CPYBCK_CMD_COMP 0x0200 -#define INTR_STATUS0__LOCKED_BLK 0x0400 -#define INTR_STATUS0__UNSUP_CMD 0x0800 -#define INTR_STATUS0__INT_ACT 0x1000 -#define INTR_STATUS0__RST_COMP 0x2000 -#define INTR_STATUS0__PIPE_CMD_ERR 0x4000 -#define INTR_STATUS0__PAGE_XFER_INC 0x8000 - -#define INTR_EN0 0x420 -#define INTR_EN0__ECC_TRANSACTION_DONE 0x0001 -#define INTR_EN0__ECC_ERR 0x0002 -#define INTR_EN0__DMA_CMD_COMP 0x0004 -#define INTR_EN0__TIME_OUT 0x0008 -#define INTR_EN0__PROGRAM_FAIL 0x0010 -#define INTR_EN0__ERASE_FAIL 0x0020 -#define INTR_EN0__LOAD_COMP 0x0040 -#define INTR_EN0__PROGRAM_COMP 0x0080 -#define INTR_EN0__ERASE_COMP 0x0100 -#define INTR_EN0__PIPE_CPYBCK_CMD_COMP 0x0200 -#define INTR_EN0__LOCKED_BLK 0x0400 -#define INTR_EN0__UNSUP_CMD 0x0800 -#define INTR_EN0__INT_ACT 0x1000 -#define INTR_EN0__RST_COMP 0x2000 -#define INTR_EN0__PIPE_CMD_ERR 0x4000 -#define INTR_EN0__PAGE_XFER_INC 0x8000 - -#define PAGE_CNT0 0x430 -#define PAGE_CNT0__VALUE 0x00ff - -#define ERR_PAGE_ADDR0 0x440 -#define ERR_PAGE_ADDR0__VALUE 0xffff - -#define ERR_BLOCK_ADDR0 0x450 -#define ERR_BLOCK_ADDR0__VALUE 0xffff - -#define INTR_STATUS1 0x460 -#define INTR_STATUS1__ECC_TRANSACTION_DONE 0x0001 -#define INTR_STATUS1__ECC_ERR 0x0002 -#define INTR_STATUS1__DMA_CMD_COMP 0x0004 -#define INTR_STATUS1__TIME_OUT 0x0008 -#define INTR_STATUS1__PROGRAM_FAIL 0x0010 -#define INTR_STATUS1__ERASE_FAIL 0x0020 -#define INTR_STATUS1__LOAD_COMP 0x0040 -#define INTR_STATUS1__PROGRAM_COMP 0x0080 -#define INTR_STATUS1__ERASE_COMP 0x0100 -#define INTR_STATUS1__PIPE_CPYBCK_CMD_COMP 0x0200 -#define INTR_STATUS1__LOCKED_BLK 0x0400 -#define INTR_STATUS1__UNSUP_CMD 0x0800 -#define INTR_STATUS1__INT_ACT 0x1000 -#define INTR_STATUS1__RST_COMP 0x2000 -#define INTR_STATUS1__PIPE_CMD_ERR 0x4000 -#define INTR_STATUS1__PAGE_XFER_INC 0x8000 - -#define INTR_EN1 0x470 -#define INTR_EN1__ECC_TRANSACTION_DONE 0x0001 -#define INTR_EN1__ECC_ERR 0x0002 -#define INTR_EN1__DMA_CMD_COMP 0x0004 -#define INTR_EN1__TIME_OUT 0x0008 -#define INTR_EN1__PROGRAM_FAIL 0x0010 -#define INTR_EN1__ERASE_FAIL 0x0020 -#define INTR_EN1__LOAD_COMP 0x0040 -#define INTR_EN1__PROGRAM_COMP 0x0080 -#define INTR_EN1__ERASE_COMP 0x0100 -#define INTR_EN1__PIPE_CPYBCK_CMD_COMP 0x0200 -#define INTR_EN1__LOCKED_BLK 0x0400 -#define INTR_EN1__UNSUP_CMD 0x0800 -#define INTR_EN1__INT_ACT 0x1000 -#define INTR_EN1__RST_COMP 0x2000 -#define INTR_EN1__PIPE_CMD_ERR 0x4000 -#define INTR_EN1__PAGE_XFER_INC 0x8000 - -#define PAGE_CNT1 0x480 -#define PAGE_CNT1__VALUE 0x00ff - -#define ERR_PAGE_ADDR1 0x490 -#define ERR_PAGE_ADDR1__VALUE 0xffff - -#define ERR_BLOCK_ADDR1 0x4a0 -#define ERR_BLOCK_ADDR1__VALUE 0xffff - -#define INTR_STATUS2 0x4b0 -#define INTR_STATUS2__ECC_TRANSACTION_DONE 0x0001 -#define INTR_STATUS2__ECC_ERR 0x0002 -#define INTR_STATUS2__DMA_CMD_COMP 0x0004 -#define INTR_STATUS2__TIME_OUT 0x0008 -#define INTR_STATUS2__PROGRAM_FAIL 0x0010 -#define INTR_STATUS2__ERASE_FAIL 0x0020 -#define INTR_STATUS2__LOAD_COMP 0x0040 -#define INTR_STATUS2__PROGRAM_COMP 0x0080 -#define INTR_STATUS2__ERASE_COMP 0x0100 -#define INTR_STATUS2__PIPE_CPYBCK_CMD_COMP 0x0200 -#define INTR_STATUS2__LOCKED_BLK 0x0400 -#define INTR_STATUS2__UNSUP_CMD 0x0800 -#define INTR_STATUS2__INT_ACT 0x1000 -#define INTR_STATUS2__RST_COMP 0x2000 -#define INTR_STATUS2__PIPE_CMD_ERR 0x4000 -#define INTR_STATUS2__PAGE_XFER_INC 0x8000 - -#define INTR_EN2 0x4c0 -#define INTR_EN2__ECC_TRANSACTION_DONE 0x0001 -#define INTR_EN2__ECC_ERR 0x0002 -#define INTR_EN2__DMA_CMD_COMP 0x0004 -#define INTR_EN2__TIME_OUT 0x0008 -#define INTR_EN2__PROGRAM_FAIL 0x0010 -#define INTR_EN2__ERASE_FAIL 0x0020 -#define INTR_EN2__LOAD_COMP 0x0040 -#define INTR_EN2__PROGRAM_COMP 0x0080 -#define INTR_EN2__ERASE_COMP 0x0100 -#define INTR_EN2__PIPE_CPYBCK_CMD_COMP 0x0200 -#define INTR_EN2__LOCKED_BLK 0x0400 -#define INTR_EN2__UNSUP_CMD 0x0800 -#define INTR_EN2__INT_ACT 0x1000 -#define INTR_EN2__RST_COMP 0x2000 -#define INTR_EN2__PIPE_CMD_ERR 0x4000 -#define INTR_EN2__PAGE_XFER_INC 0x8000 - -#define PAGE_CNT2 0x4d0 -#define PAGE_CNT2__VALUE 0x00ff - -#define ERR_PAGE_ADDR2 0x4e0 -#define ERR_PAGE_ADDR2__VALUE 0xffff - -#define ERR_BLOCK_ADDR2 0x4f0 -#define ERR_BLOCK_ADDR2__VALUE 0xffff - -#define INTR_STATUS3 0x500 -#define INTR_STATUS3__ECC_TRANSACTION_DONE 0x0001 -#define INTR_STATUS3__ECC_ERR 0x0002 -#define INTR_STATUS3__DMA_CMD_COMP 0x0004 -#define INTR_STATUS3__TIME_OUT 0x0008 -#define INTR_STATUS3__PROGRAM_FAIL 0x0010 -#define INTR_STATUS3__ERASE_FAIL 0x0020 -#define INTR_STATUS3__LOAD_COMP 0x0040 -#define INTR_STATUS3__PROGRAM_COMP 0x0080 -#define INTR_STATUS3__ERASE_COMP 0x0100 -#define INTR_STATUS3__PIPE_CPYBCK_CMD_COMP 0x0200 -#define INTR_STATUS3__LOCKED_BLK 0x0400 -#define INTR_STATUS3__UNSUP_CMD 0x0800 -#define INTR_STATUS3__INT_ACT 0x1000 -#define INTR_STATUS3__RST_COMP 0x2000 -#define INTR_STATUS3__PIPE_CMD_ERR 0x4000 -#define INTR_STATUS3__PAGE_XFER_INC 0x8000 - -#define INTR_EN3 0x510 -#define INTR_EN3__ECC_TRANSACTION_DONE 0x0001 -#define INTR_EN3__ECC_ERR 0x0002 -#define INTR_EN3__DMA_CMD_COMP 0x0004 -#define INTR_EN3__TIME_OUT 0x0008 -#define INTR_EN3__PROGRAM_FAIL 0x0010 -#define INTR_EN3__ERASE_FAIL 0x0020 -#define INTR_EN3__LOAD_COMP 0x0040 -#define INTR_EN3__PROGRAM_COMP 0x0080 -#define INTR_EN3__ERASE_COMP 0x0100 -#define INTR_EN3__PIPE_CPYBCK_CMD_COMP 0x0200 -#define INTR_EN3__LOCKED_BLK 0x0400 -#define INTR_EN3__UNSUP_CMD 0x0800 -#define INTR_EN3__INT_ACT 0x1000 -#define INTR_EN3__RST_COMP 0x2000 -#define INTR_EN3__PIPE_CMD_ERR 0x4000 -#define INTR_EN3__PAGE_XFER_INC 0x8000 - -#define PAGE_CNT3 0x520 -#define PAGE_CNT3__VALUE 0x00ff - -#define ERR_PAGE_ADDR3 0x530 -#define ERR_PAGE_ADDR3__VALUE 0xffff - -#define ERR_BLOCK_ADDR3 0x540 -#define ERR_BLOCK_ADDR3__VALUE 0xffff +#define INTR_STATUS(__bank) (0x410 + ((__bank) * 0x50)) +#define INTR_EN(__bank) (0x420 + ((__bank) * 0x50)) + +#define INTR_STATUS__ECC_TRANSACTION_DONE 0x0001 +#define INTR_STATUS__ECC_ERR 0x0002 +#define INTR_STATUS__DMA_CMD_COMP 0x0004 +#define INTR_STATUS__TIME_OUT 0x0008 +#define INTR_STATUS__PROGRAM_FAIL 0x0010 +#define INTR_STATUS__ERASE_FAIL 0x0020 +#define INTR_STATUS__LOAD_COMP 0x0040 +#define INTR_STATUS__PROGRAM_COMP 0x0080 +#define INTR_STATUS__ERASE_COMP 0x0100 +#define INTR_STATUS__PIPE_CPYBCK_CMD_COMP 0x0200 +#define INTR_STATUS__LOCKED_BLK 0x0400 +#define INTR_STATUS__UNSUP_CMD 0x0800 +#define INTR_STATUS__INT_ACT 0x1000 +#define INTR_STATUS__RST_COMP 0x2000 +#define INTR_STATUS__PIPE_CMD_ERR 0x4000 +#define INTR_STATUS__PAGE_XFER_INC 0x8000 + +#define INTR_EN__ECC_TRANSACTION_DONE 0x0001 +#define INTR_EN__ECC_ERR 0x0002 +#define INTR_EN__DMA_CMD_COMP 0x0004 +#define INTR_EN__TIME_OUT 0x0008 +#define INTR_EN__PROGRAM_FAIL 0x0010 +#define INTR_EN__ERASE_FAIL 0x0020 +#define INTR_EN__LOAD_COMP 0x0040 +#define INTR_EN__PROGRAM_COMP 0x0080 +#define INTR_EN__ERASE_COMP 0x0100 +#define INTR_EN__PIPE_CPYBCK_CMD_COMP 0x0200 +#define INTR_EN__LOCKED_BLK 0x0400 +#define INTR_EN__UNSUP_CMD 0x0800 +#define INTR_EN__INT_ACT 0x1000 +#define INTR_EN__RST_COMP 0x2000 +#define INTR_EN__PIPE_CMD_ERR 0x4000 +#define INTR_EN__PAGE_XFER_INC 0x8000 + +#define PAGE_CNT(__bank) (0x430 + ((__bank) * 0x50)) +#define ERR_PAGE_ADDR(__bank) (0x440 + ((__bank) * 0x50)) +#define ERR_BLOCK_ADDR(__bank) (0x450 + ((__bank) * 0x50)) #define DATA_INTR 0x550 #define DATA_INTR__WRITE_SPACE_AV 0x0001 @@ -412,9 +273,9 @@ #define GPREG_3__VALUE 0xffff #define ECC_THRESHOLD 0x600 -#define ECC_THRESHOLD__VALUE 0x03ff +#define ECC_THRESHOLD__VALUE 0x03ff -#define ECC_ERROR_BLOCK_ADDRESS 0x610 +#define ECC_ERROR_BLOCK_ADDRESS 0x610 #define ECC_ERROR_BLOCK_ADDRESS__VALUE 0xffff #define ECC_ERROR_PAGE_ADDRESS 0x620 @@ -466,7 +327,7 @@ #define CHNL_ACTIVE__CHANNEL3 0x0008 #define ACTIVE_SRC_ID 0x800 -#define ACTIVE_SRC_ID__VALUE 0x00ff +#define ACTIVE_SRC_ID__VALUE 0x00ff #define PTN_INTR 0x810 #define PTN_INTR__CONFIG_ERROR 0x0001 @@ -484,182 +345,23 @@ #define PTN_INTR_EN__ACCESS_ERROR_BANK3 0x0010 #define PTN_INTR_EN__REG_ACCESS_ERROR 0x0020 -#define PERM_SRC_ID_0 0x830 -#define PERM_SRC_ID_0__SRCID 0x00ff -#define PERM_SRC_ID_0__DIRECT_ACCESS_ACTIVE 0x0800 -#define PERM_SRC_ID_0__WRITE_ACTIVE 0x2000 -#define PERM_SRC_ID_0__READ_ACTIVE 0x4000 -#define PERM_SRC_ID_0__PARTITION_VALID 0x8000 - -#define MIN_BLK_ADDR_0 0x840 -#define MIN_BLK_ADDR_0__VALUE 0xffff - -#define MAX_BLK_ADDR_0 0x850 -#define MAX_BLK_ADDR_0__VALUE 0xffff - -#define MIN_MAX_BANK_0 0x860 -#define MIN_MAX_BANK_0__MIN_VALUE 0x0003 -#define MIN_MAX_BANK_0__MAX_VALUE 0x000c - -#define PERM_SRC_ID_1 0x870 -#define PERM_SRC_ID_1__SRCID 0x00ff -#define PERM_SRC_ID_1__DIRECT_ACCESS_ACTIVE 0x0800 -#define PERM_SRC_ID_1__WRITE_ACTIVE 0x2000 -#define PERM_SRC_ID_1__READ_ACTIVE 0x4000 -#define PERM_SRC_ID_1__PARTITION_VALID 0x8000 - -#define MIN_BLK_ADDR_1 0x880 -#define MIN_BLK_ADDR_1__VALUE 0xffff - -#define MAX_BLK_ADDR_1 0x890 -#define MAX_BLK_ADDR_1__VALUE 0xffff - -#define MIN_MAX_BANK_1 0x8a0 -#define MIN_MAX_BANK_1__MIN_VALUE 0x0003 -#define MIN_MAX_BANK_1__MAX_VALUE 0x000c - -#define PERM_SRC_ID_2 0x8b0 -#define PERM_SRC_ID_2__SRCID 0x00ff -#define PERM_SRC_ID_2__DIRECT_ACCESS_ACTIVE 0x0800 -#define PERM_SRC_ID_2__WRITE_ACTIVE 0x2000 -#define PERM_SRC_ID_2__READ_ACTIVE 0x4000 -#define PERM_SRC_ID_2__PARTITION_VALID 0x8000 - -#define MIN_BLK_ADDR_2 0x8c0 -#define MIN_BLK_ADDR_2__VALUE 0xffff - -#define MAX_BLK_ADDR_2 0x8d0 -#define MAX_BLK_ADDR_2__VALUE 0xffff - -#define MIN_MAX_BANK_2 0x8e0 -#define MIN_MAX_BANK_2__MIN_VALUE 0x0003 -#define MIN_MAX_BANK_2__MAX_VALUE 0x000c - -#define PERM_SRC_ID_3 0x8f0 -#define PERM_SRC_ID_3__SRCID 0x00ff -#define PERM_SRC_ID_3__DIRECT_ACCESS_ACTIVE 0x0800 -#define PERM_SRC_ID_3__WRITE_ACTIVE 0x2000 -#define PERM_SRC_ID_3__READ_ACTIVE 0x4000 -#define PERM_SRC_ID_3__PARTITION_VALID 0x8000 - -#define MIN_BLK_ADDR_3 0x900 -#define MIN_BLK_ADDR_3__VALUE 0xffff - -#define MAX_BLK_ADDR_3 0x910 -#define MAX_BLK_ADDR_3__VALUE 0xffff - -#define MIN_MAX_BANK_3 0x920 -#define MIN_MAX_BANK_3__MIN_VALUE 0x0003 -#define MIN_MAX_BANK_3__MAX_VALUE 0x000c - -#define PERM_SRC_ID_4 0x930 -#define PERM_SRC_ID_4__SRCID 0x00ff -#define PERM_SRC_ID_4__DIRECT_ACCESS_ACTIVE 0x0800 -#define PERM_SRC_ID_4__WRITE_ACTIVE 0x2000 -#define PERM_SRC_ID_4__READ_ACTIVE 0x4000 -#define PERM_SRC_ID_4__PARTITION_VALID 0x8000 - -#define MIN_BLK_ADDR_4 0x940 -#define MIN_BLK_ADDR_4__VALUE 0xffff - -#define MAX_BLK_ADDR_4 0x950 -#define MAX_BLK_ADDR_4__VALUE 0xffff - -#define MIN_MAX_BANK_4 0x960 -#define MIN_MAX_BANK_4__MIN_VALUE 0x0003 -#define MIN_MAX_BANK_4__MAX_VALUE 0x000c - -#define PERM_SRC_ID_5 0x970 -#define PERM_SRC_ID_5__SRCID 0x00ff -#define PERM_SRC_ID_5__DIRECT_ACCESS_ACTIVE 0x0800 -#define PERM_SRC_ID_5__WRITE_ACTIVE 0x2000 -#define PERM_SRC_ID_5__READ_ACTIVE 0x4000 -#define PERM_SRC_ID_5__PARTITION_VALID 0x8000 - -#define MIN_BLK_ADDR_5 0x980 -#define MIN_BLK_ADDR_5__VALUE 0xffff - -#define MAX_BLK_ADDR_5 0x990 -#define MAX_BLK_ADDR_5__VALUE 0xffff - -#define MIN_MAX_BANK_5 0x9a0 -#define MIN_MAX_BANK_5__MIN_VALUE 0x0003 -#define MIN_MAX_BANK_5__MAX_VALUE 0x000c - -#define PERM_SRC_ID_6 0x9b0 -#define PERM_SRC_ID_6__SRCID 0x00ff -#define PERM_SRC_ID_6__DIRECT_ACCESS_ACTIVE 0x0800 -#define PERM_SRC_ID_6__WRITE_ACTIVE 0x2000 -#define PERM_SRC_ID_6__READ_ACTIVE 0x4000 -#define PERM_SRC_ID_6__PARTITION_VALID 0x8000 - -#define MIN_BLK_ADDR_6 0x9c0 -#define MIN_BLK_ADDR_6__VALUE 0xffff - -#define MAX_BLK_ADDR_6 0x9d0 -#define MAX_BLK_ADDR_6__VALUE 0xffff - -#define MIN_MAX_BANK_6 0x9e0 -#define MIN_MAX_BANK_6__MIN_VALUE 0x0003 -#define MIN_MAX_BANK_6__MAX_VALUE 0x000c - -#define PERM_SRC_ID_7 0x9f0 -#define PERM_SRC_ID_7__SRCID 0x00ff -#define PERM_SRC_ID_7__DIRECT_ACCESS_ACTIVE 0x0800 -#define PERM_SRC_ID_7__WRITE_ACTIVE 0x2000 -#define PERM_SRC_ID_7__READ_ACTIVE 0x4000 -#define PERM_SRC_ID_7__PARTITION_VALID 0x8000 - -#define MIN_BLK_ADDR_7 0xa00 -#define MIN_BLK_ADDR_7__VALUE 0xffff - -#define MAX_BLK_ADDR_7 0xa10 -#define MAX_BLK_ADDR_7__VALUE 0xffff - -#define MIN_MAX_BANK_7 0xa20 -#define MIN_MAX_BANK_7__MIN_VALUE 0x0003 -#define MIN_MAX_BANK_7__MAX_VALUE 0x000c - -/* flash.h */ -struct device_info_tag { - uint16_t wDeviceMaker; - uint16_t wDeviceID; - uint8_t bDeviceParam0; - uint8_t bDeviceParam1; - uint8_t bDeviceParam2; - uint32_t wDeviceType; - uint32_t wSpectraStartBlock; - uint32_t wSpectraEndBlock; - uint32_t wTotalBlocks; - uint16_t wPagesPerBlock; - uint16_t wPageSize; - uint16_t wPageDataSize; - uint16_t wPageSpareSize; - uint16_t wNumPageSpareFlag; - uint16_t wECCBytesPerSector; - uint32_t wBlockSize; - uint32_t wBlockDataSize; - uint32_t wDataBlockNum; - uint8_t bPlaneNum; - uint16_t wDeviceMainAreaSize; - uint16_t wDeviceSpareAreaSize; - uint16_t wDevicesConnected; - uint16_t wDeviceWidth; - uint16_t wHWRevision; - uint16_t wHWFeatures; - - uint16_t wONFIDevFeatures; - uint16_t wONFIOptCommands; - uint16_t wONFITimingMode; - uint16_t wONFIPgmCacheTimingMode; - - uint16_t MLCDevice; - uint16_t wSpareSkipBytes; - - uint8_t nBitsInPageNumber; - uint8_t nBitsInPageDataSize; - uint8_t nBitsInBlockDataSize; -}; +#define PERM_SRC_ID(__bank) (0x830 + ((__bank) * 0x40)) +#define PERM_SRC_ID__SRCID 0x00ff +#define PERM_SRC_ID__DIRECT_ACCESS_ACTIVE 0x0800 +#define PERM_SRC_ID__WRITE_ACTIVE 0x2000 +#define PERM_SRC_ID__READ_ACTIVE 0x4000 +#define PERM_SRC_ID__PARTITION_VALID 0x8000 + +#define MIN_BLK_ADDR(__bank) (0x840 + ((__bank) * 0x40)) +#define MIN_BLK_ADDR__VALUE 0xffff + +#define MAX_BLK_ADDR(__bank) (0x850 + ((__bank) * 0x40)) +#define MAX_BLK_ADDR__VALUE 0xffff + +#define MIN_MAX_BANK(__bank) (0x860 + ((__bank) * 0x40)) +#define MIN_MAX_BANK__MIN_VALUE 0x0003 +#define MIN_MAX_BANK__MAX_VALUE 0x000c + /* ffsdefs.h */ #define CLEAR 0 /*use this to clear a field instead of "fail"*/ @@ -676,24 +378,6 @@ struct device_info_tag { #define CLK_X 5 #define CLK_MULTI 4 -/* ffsport.h */ -#define VERBOSE 1 - -#define NAND_DBG_WARN 1 -#define NAND_DBG_DEBUG 2 -#define NAND_DBG_TRACE 3 - -#ifdef VERBOSE -#define nand_dbg_print(level, args...) \ - do { \ - if (level <= nand_debug_level) \ - printk(KERN_ALERT args); \ - } while (0) -#else -#define nand_dbg_print(level, args...) -#endif - - /* spectraswconfig.h */ #define CMD_DMA 0 @@ -770,30 +454,26 @@ struct device_info_tag { #define READ_WRITE_ENABLE_HIGH_COUNT 22 #define ECC_SECTOR_SIZE 512 -#define LLD_MAX_FLASH_BANKS 4 -#define DENALI_BUF_SIZE NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE - -struct nand_buf -{ +struct nand_buf { int head; int tail; - uint8_t buf[DENALI_BUF_SIZE]; + uint8_t *buf; dma_addr_t dma_buf; }; #define INTEL_CE4100 1 #define INTEL_MRST 2 +#define DT 3 struct denali_nand_info { struct mtd_info mtd; struct nand_chip nand; - struct device_info_tag dev_info; int flash_bank; /* currently selected chip */ int status; int platform; struct nand_buf buf; - struct pci_dev *dev; + struct device *dev; int total_used_banks; uint32_t block; /* stored for future use */ uint16_t page; @@ -806,11 +486,17 @@ struct denali_nand_info { uint32_t irq_status; int irq_debug_array[32]; int idx; + int irq; + + uint32_t devnum; /* represent how many nands connected */ + uint32_t fwblks; /* represent how many blocks FW used */ + uint32_t totalblks; + uint32_t blksperchip; + uint32_t bbtskipbytes; + uint32_t max_banks; }; -static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali); -static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali); -static void NAND_LLD_Enable_Disable_Interrupts(struct denali_nand_info *denali, uint16_t INT_ENABLE); +extern int denali_init(struct denali_nand_info *denali); +extern void denali_remove(struct denali_nand_info *denali); #endif /*_LLD_NAND_*/ - diff --git a/drivers/mtd/nand/denali_dt.c b/drivers/mtd/nand/denali_dt.c new file mode 100644 index 00000000000..35cb17f5780 --- /dev/null +++ b/drivers/mtd/nand/denali_dt.c @@ -0,0 +1,132 @@ +/* + * NAND Flash Controller Device Driver for DT + * + * Copyright © 2011, Picochip. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + */ +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/io.h> +#include <linux/ioport.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/platform_device.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/slab.h> + +#include "denali.h" + +struct denali_dt { + struct denali_nand_info denali; + struct clk *clk; +}; + +static const struct of_device_id denali_nand_dt_ids[] = { + { .compatible = "denali,denali-nand-dt" }, + { /* sentinel */ } + }; + +MODULE_DEVICE_TABLE(of, denali_nand_dt_ids); + +static u64 denali_dma_mask; + +static int denali_dt_probe(struct platform_device *ofdev) +{ + struct resource *denali_reg, *nand_data; + struct denali_dt *dt; + struct denali_nand_info *denali; + int ret; + const struct of_device_id *of_id; + + of_id = of_match_device(denali_nand_dt_ids, &ofdev->dev); + if (of_id) { + ofdev->id_entry = of_id->data; + } else { + pr_err("Failed to find the right device id.\n"); + return -ENOMEM; + } + + dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL); + if (!dt) + return -ENOMEM; + denali = &dt->denali; + + denali->platform = DT; + denali->dev = &ofdev->dev; + denali->irq = platform_get_irq(ofdev, 0); + if (denali->irq < 0) { + dev_err(&ofdev->dev, "no irq defined\n"); + return denali->irq; + } + + denali_reg = platform_get_resource_byname(ofdev, IORESOURCE_MEM, "denali_reg"); + denali->flash_reg = devm_ioremap_resource(&ofdev->dev, denali_reg); + if (IS_ERR(denali->flash_reg)) + return PTR_ERR(denali->flash_reg); + + nand_data = platform_get_resource_byname(ofdev, IORESOURCE_MEM, "nand_data"); + denali->flash_mem = devm_ioremap_resource(&ofdev->dev, nand_data); + if (IS_ERR(denali->flash_mem)) + return PTR_ERR(denali->flash_mem); + + if (!of_property_read_u32(ofdev->dev.of_node, + "dma-mask", (u32 *)&denali_dma_mask)) { + denali->dev->dma_mask = &denali_dma_mask; + } else { + denali->dev->dma_mask = NULL; + } + + dt->clk = devm_clk_get(&ofdev->dev, NULL); + if (IS_ERR(dt->clk)) { + dev_err(&ofdev->dev, "no clk available\n"); + return PTR_ERR(dt->clk); + } + clk_prepare_enable(dt->clk); + + ret = denali_init(denali); + if (ret) + goto out_disable_clk; + + platform_set_drvdata(ofdev, dt); + return 0; + +out_disable_clk: + clk_disable_unprepare(dt->clk); + + return ret; +} + +static int denali_dt_remove(struct platform_device *ofdev) +{ + struct denali_dt *dt = platform_get_drvdata(ofdev); + + denali_remove(&dt->denali); + clk_disable(dt->clk); + + return 0; +} + +static struct platform_driver denali_dt_driver = { + .probe = denali_dt_probe, + .remove = denali_dt_remove, + .driver = { + .name = "denali-nand-dt", + .owner = THIS_MODULE, + .of_match_table = denali_nand_dt_ids, + }, +}; + +module_platform_driver(denali_dt_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Jamie Iles"); +MODULE_DESCRIPTION("DT driver for Denali NAND controller"); diff --git a/drivers/mtd/nand/denali_pci.c b/drivers/mtd/nand/denali_pci.c new file mode 100644 index 00000000000..6e2f387b823 --- /dev/null +++ b/drivers/mtd/nand/denali_pci.c @@ -0,0 +1,142 @@ +/* + * NAND Flash Controller Device Driver + * Copyright © 2009-2010, Intel Corporation and its suppliers. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + */ +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/pci.h> +#include <linux/slab.h> + +#include "denali.h" + +#define DENALI_NAND_NAME "denali-nand-pci" + +/* List of platforms this NAND controller has be integrated into */ +static const struct pci_device_id denali_pci_ids[] = { + { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 }, + { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST }, + { /* end: all zeroes */ } +}; +MODULE_DEVICE_TABLE(pci, denali_pci_ids); + +static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) +{ + int ret = -ENODEV; + resource_size_t csr_base, mem_base; + unsigned long csr_len, mem_len; + struct denali_nand_info *denali; + + denali = kzalloc(sizeof(*denali), GFP_KERNEL); + if (!denali) + return -ENOMEM; + + ret = pci_enable_device(dev); + if (ret) { + pr_err("Spectra: pci_enable_device failed.\n"); + goto failed_alloc_memery; + } + + if (id->driver_data == INTEL_CE4100) { + denali->platform = INTEL_CE4100; + mem_base = pci_resource_start(dev, 0); + mem_len = pci_resource_len(dev, 1); + csr_base = pci_resource_start(dev, 1); + csr_len = pci_resource_len(dev, 1); + } else { + denali->platform = INTEL_MRST; + csr_base = pci_resource_start(dev, 0); + csr_len = pci_resource_len(dev, 0); + mem_base = pci_resource_start(dev, 1); + mem_len = pci_resource_len(dev, 1); + if (!mem_len) { + mem_base = csr_base + csr_len; + mem_len = csr_len; + } + } + + pci_set_master(dev); + denali->dev = &dev->dev; + denali->irq = dev->irq; + + ret = pci_request_regions(dev, DENALI_NAND_NAME); + if (ret) { + pr_err("Spectra: Unable to request memory regions\n"); + goto failed_enable_dev; + } + + denali->flash_reg = ioremap_nocache(csr_base, csr_len); + if (!denali->flash_reg) { + pr_err("Spectra: Unable to remap memory region\n"); + ret = -ENOMEM; + goto failed_req_regions; + } + + denali->flash_mem = ioremap_nocache(mem_base, mem_len); + if (!denali->flash_mem) { + pr_err("Spectra: ioremap_nocache failed!"); + ret = -ENOMEM; + goto failed_remap_reg; + } + + ret = denali_init(denali); + if (ret) + goto failed_remap_mem; + + pci_set_drvdata(dev, denali); + + return 0; + +failed_remap_mem: + iounmap(denali->flash_mem); +failed_remap_reg: + iounmap(denali->flash_reg); +failed_req_regions: + pci_release_regions(dev); +failed_enable_dev: + pci_disable_device(dev); +failed_alloc_memery: + kfree(denali); + + return ret; +} + +/* driver exit point */ +static void denali_pci_remove(struct pci_dev *dev) +{ + struct denali_nand_info *denali = pci_get_drvdata(dev); + + denali_remove(denali); + iounmap(denali->flash_reg); + iounmap(denali->flash_mem); + pci_release_regions(dev); + pci_disable_device(dev); + kfree(denali); +} + +static struct pci_driver denali_pci_driver = { + .name = DENALI_NAND_NAME, + .id_table = denali_pci_ids, + .probe = denali_pci_probe, + .remove = denali_pci_remove, +}; + +static int denali_init_pci(void) +{ + return pci_register_driver(&denali_pci_driver); +} +module_init(denali_init_pci); + +static void denali_exit_pci(void) +{ + pci_unregister_driver(&denali_pci_driver); +} +module_exit(denali_exit_pci); diff --git a/drivers/mtd/nand/diskonchip.c b/drivers/mtd/nand/diskonchip.c index 47067bc9824..f68a7bccecd 100644 --- a/drivers/mtd/nand/diskonchip.c +++ b/drivers/mtd/nand/diskonchip.c @@ -29,16 +29,16 @@ #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/doc2000.h> -#include <linux/mtd/compatmac.h> #include <linux/mtd/partitions.h> #include <linux/mtd/inftl.h> +#include <linux/module.h> /* Where to look for the devices? */ #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0 #endif -static unsigned long __initdata doc_locations[] = { +static unsigned long doc_locations[] __initdata = { #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__) #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, @@ -46,15 +46,13 @@ static unsigned long __initdata doc_locations[] = { 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000, -#else /* CONFIG_MTD_DOCPROBE_HIGH */ +#else 0xc8000, 0xca000, 0xcc000, 0xce000, 0xd0000, 0xd2000, 0xd4000, 0xd6000, 0xd8000, 0xda000, 0xdc000, 0xde000, 0xe0000, 0xe2000, 0xe4000, 0xe6000, 0xe8000, 0xea000, 0xec000, 0xee000, -#endif /* CONFIG_MTD_DOCPROBE_HIGH */ -#else -#warning Unknown architecture for DiskOnChip. No default probe locations defined +#endif #endif 0xffffffff }; @@ -133,12 +131,12 @@ static struct rs_control *rs_decoder; /* * The HW decoder in the DoC ASIC's provides us a error syndrome, - * which we must convert to a standard syndrom usable by the generic + * which we must convert to a standard syndrome usable by the generic * Reed-Solomon library code. * * Fabrice Bellard figured this out in the old docecc code. I added * some comments, improved a minor bit and converted it to make use - * of the generic Reed-Solomon libary. tglx + * of the generic Reed-Solomon library. tglx */ static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc) { @@ -146,6 +144,7 @@ static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc) uint8_t parity; uint16_t ds[4], s[5], tmp, errval[8], syn[4]; + memset(syn, 0, sizeof(syn)); /* Convert the ecc bytes into words */ ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8); ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6); @@ -153,7 +152,7 @@ static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc) ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2); parity = ecc[1]; - /* Initialize the syndrom buffer */ + /* Initialize the syndrome buffer */ for (i = 0; i < NROOTS; i++) s[i] = ds[0]; /* @@ -169,9 +168,9 @@ static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc) s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)]; } - /* Calc s[i] = s[i] / alpha^(v + i) */ + /* Calc syn[i] = s[i] / alpha^(v + i) */ for (i = 0; i < NROOTS; i++) { - if (syn[i]) + if (s[i]) syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i)); } /* Call the decoder library */ @@ -375,19 +374,6 @@ static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len) } } -static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct nand_chip *this = mtd->priv; - struct doc_priv *doc = this->priv; - void __iomem *docptr = doc->virtadr; - int i; - - for (i = 0; i < len; i++) - if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO)) - return -EFAULT; - return 0; -} - static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) { struct nand_chip *this = mtd->priv; @@ -400,7 +386,7 @@ static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE); doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); - /* We cant' use dev_ready here, but at least we wait for the + /* We can't use dev_ready here, but at least we wait for the * command to complete */ udelay(50); @@ -525,26 +511,6 @@ static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len) buf[i] = ReadDOC(docptr, LastDataRead); } -static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct nand_chip *this = mtd->priv; - struct doc_priv *doc = this->priv; - void __iomem *docptr = doc->virtadr; - int i; - - /* Start read pipeline */ - ReadDOC(docptr, ReadPipeInit); - - for (i = 0; i < len - 1; i++) - if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) { - ReadDOC(docptr, LastDataRead); - return i; - } - if (buf[i] != ReadDOC(docptr, LastDataRead)) - return i; - return 0; -} - static u_char doc2001plus_read_byte(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; @@ -609,33 +575,6 @@ static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len) printk("\n"); } -static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct nand_chip *this = mtd->priv; - struct doc_priv *doc = this->priv; - void __iomem *docptr = doc->virtadr; - int i; - - if (debug) - printk("verifybuf of %d bytes: ", len); - - /* Start read pipeline */ - ReadDOC(docptr, Mplus_ReadPipeInit); - ReadDOC(docptr, Mplus_ReadPipeInit); - - for (i = 0; i < len - 2; i++) - if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) { - ReadDOC(docptr, Mplus_LastDataRead); - ReadDOC(docptr, Mplus_LastDataRead); - return i; - } - if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead)) - return len - 2; - if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead)) - return len - 1; - return 0; -} - static void doc2001plus_select_chip(struct mtd_info *mtd, int chip) { struct nand_chip *this = mtd->priv; @@ -759,7 +698,8 @@ static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int colu /* Serially input address */ if (column != -1) { /* Adjust columns for 16 bit buswidth */ - if (this->options & NAND_BUSWIDTH_16) + if (this->options & NAND_BUSWIDTH_16 && + !nand_opcode_8bits(command)) column >>= 1; WriteDOC(column, docptr, Mplus_FlashAddress); } @@ -986,7 +926,7 @@ static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, dummy = ReadDOC(docptr, ECCConf); } - /* Error occured ? */ + /* Error occurred ? */ if (dummy & 0x80) { for (i = 0; i < 6; i++) { if (DoC_is_MillenniumPlus(doc)) @@ -1031,7 +971,7 @@ static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); else WriteDOC(DOC_ECC_DIS, docptr, ECCConf); - if (no_ecc_failures && (ret == -EBADMSG)) { + if (no_ecc_failures && mtd_is_eccerr(ret)) { printk(KERN_ERR "suppressing ECC failure\n"); ret = 0; } @@ -1071,7 +1011,7 @@ static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const ch size_t retlen; for (offs = 0; offs < mtd->size; offs += mtd->erasesize) { - ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf); + ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); if (retlen != mtd->writesize) continue; if (ret) { @@ -1096,7 +1036,7 @@ static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const ch /* Only one mediaheader was found. We want buf to contain a mediaheader on return, so we'll have to re-read the one we found. */ offs = doc->mh0_page << this->page_shift; - ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf); + ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); if (retlen != mtd->writesize) { /* Insanity. Give up. */ printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n"); @@ -1119,7 +1059,6 @@ static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partitio buf = kmalloc(mtd->writesize, GFP_KERNEL); if (!buf) { - printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n"); return 0; } if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1))) @@ -1160,7 +1099,7 @@ static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partitio /* NOTE: The lines below modify internal variables of the NAND and MTD layers; variables with have already been configured by nand_scan. Unfortunately, we didn't know before this point what these values - should be. Thus, this code is somewhat dependant on the exact + should be. Thus, this code is somewhat dependent on the exact implementation of the NAND layer. */ if (mh->UnitSizeFactor != 0xff) { this->bbt_erase_shift += (0xff - mh->UnitSizeFactor); @@ -1227,7 +1166,6 @@ static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partiti buf = kmalloc(mtd->writesize, GFP_KERNEL); if (!buf) { - printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n"); return 0; } @@ -1360,11 +1298,9 @@ static int __init nftl_scan_bbt(struct mtd_info *mtd) At least as nand_bbt.c is currently written. */ if ((ret = nand_scan_bbt(mtd, NULL))) return ret; - add_mtd_device(mtd); -#ifdef CONFIG_MTD_PARTITIONS + mtd_device_register(mtd, NULL, 0); if (!no_autopart) - add_mtd_partitions(mtd, parts, numparts); -#endif + mtd_device_register(mtd, parts, numparts); return 0; } @@ -1419,11 +1355,9 @@ static int __init inftl_scan_bbt(struct mtd_info *mtd) autopartitioning, but I want to give it more thought. */ if (!numparts) return -EIO; - add_mtd_device(mtd); -#ifdef CONFIG_MTD_PARTITIONS + mtd_device_register(mtd, NULL, 0); if (!no_autopart) - add_mtd_partitions(mtd, parts, numparts); -#endif + mtd_device_register(mtd, parts, numparts); return 0; } @@ -1435,7 +1369,6 @@ static inline int __init doc2000_init(struct mtd_info *mtd) this->read_byte = doc2000_read_byte; this->write_buf = doc2000_writebuf; this->read_buf = doc2000_readbuf; - this->verify_buf = doc2000_verifybuf; this->scan_bbt = nftl_scan_bbt; doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO; @@ -1452,7 +1385,6 @@ static inline int __init doc2001_init(struct mtd_info *mtd) this->read_byte = doc2001_read_byte; this->write_buf = doc2001_writebuf; this->read_buf = doc2001_readbuf; - this->verify_buf = doc2001_verifybuf; ReadDOC(doc->virtadr, ChipID); ReadDOC(doc->virtadr, ChipID); @@ -1483,7 +1415,6 @@ static inline int __init doc2001plus_init(struct mtd_info *mtd) this->read_byte = doc2001plus_read_byte; this->write_buf = doc2001plus_writebuf; this->read_buf = doc2001plus_readbuf; - this->verify_buf = doc2001plus_verifybuf; this->scan_bbt = inftl_scan_bbt; this->cmd_ctrl = NULL; this->select_chip = doc2001plus_select_chip; @@ -1508,10 +1439,13 @@ static int __init doc_probe(unsigned long physadr) int reg, len, numchips; int ret = 0; + if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip")) + return -EBUSY; virtadr = ioremap(physadr, DOC_IOREMAP_LEN); if (!virtadr) { printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr); - return -EIO; + ret = -EIO; + goto error_ioremap; } /* It's not possible to cleanly detect the DiskOnChip - the @@ -1629,7 +1563,6 @@ static int __init doc_probe(unsigned long physadr) sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr)); mtd = kzalloc(len, GFP_KERNEL); if (!mtd) { - printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len); ret = -ENOMEM; goto fail; } @@ -1656,7 +1589,8 @@ static int __init doc_probe(unsigned long physadr) nand->ecc.mode = NAND_ECC_HW_SYNDROME; nand->ecc.size = 512; nand->ecc.bytes = 6; - nand->options = NAND_USE_FLASH_BBT; + nand->ecc.strength = 2; + nand->bbt_options = NAND_BBT_USE_FLASH; doc->physadr = physadr; doc->virtadr = virtadr; @@ -1678,9 +1612,9 @@ static int __init doc_probe(unsigned long physadr) /* DBB note: i believe nand_release is necessary here, as buffers may have been allocated in nand_base. Check with Thomas. FIX ME! */ - /* nand_release will call del_mtd_device, but we haven't yet - added it. This is handled without incident by - del_mtd_device, as far as I can tell. */ + /* nand_release will call mtd_device_unregister, but we + haven't yet added it. This is handled without incident by + mtd_device_unregister, as far as I can tell. */ nand_release(mtd); kfree(mtd); goto fail; @@ -1696,6 +1630,10 @@ static int __init doc_probe(unsigned long physadr) WriteDOC(save_control, virtadr, DOCControl); fail: iounmap(virtadr); + +error_ioremap: + release_mem_region(physadr, DOC_IOREMAP_LEN); + return ret; } @@ -1712,6 +1650,7 @@ static void release_nanddoc(void) nextmtd = doc->nextdoc; nand_release(mtd); iounmap(doc->virtadr); + release_mem_region(doc->physadr, DOC_IOREMAP_LEN); kfree(mtd); } } diff --git a/drivers/mtd/nand/docg4.c b/drivers/mtd/nand/docg4.c new file mode 100644 index 00000000000..ce24637e14f --- /dev/null +++ b/drivers/mtd/nand/docg4.c @@ -0,0 +1,1394 @@ +/* + * Copyright © 2012 Mike Dunn <mikedunn@newsguy.com> + * + * mtd nand driver for M-Systems DiskOnChip G4 + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * Tested on the Palm Treo 680. The G4 is also present on Toshiba Portege, Asus + * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others. + * Should work on these as well. Let me know! + * + * TODO: + * + * Mechanism for management of password-protected areas + * + * Hamming ecc when reading oob only + * + * According to the M-Sys documentation, this device is also available in a + * "dual-die" configuration having a 256MB capacity, but no mechanism for + * detecting this variant is documented. Currently this driver assumes 128MB + * capacity. + * + * Support for multiple cascaded devices ("floors"). Not sure which gadgets + * contain multiple G4s in a cascaded configuration, if any. + * + */ + +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/string.h> +#include <linux/sched.h> +#include <linux/delay.h> +#include <linux/module.h> +#include <linux/export.h> +#include <linux/platform_device.h> +#include <linux/io.h> +#include <linux/bitops.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/bch.h> +#include <linux/bitrev.h> +#include <linux/jiffies.h> + +/* + * In "reliable mode" consecutive 2k pages are used in parallel (in some + * fashion) to store the same data. The data can be read back from the + * even-numbered pages in the normal manner; odd-numbered pages will appear to + * contain junk. Systems that boot from the docg4 typically write the secondary + * program loader (SPL) code in this mode. The SPL is loaded by the initial + * program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped + * to the reset vector address). This module parameter enables you to use this + * driver to write the SPL. When in this mode, no more than 2k of data can be + * written at a time, because the addresses do not increment in the normal + * manner, and the starting offset must be within an even-numbered 2k region; + * i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800, + * 0x1a00, ... Reliable mode is a special case and should not be used unless + * you know what you're doing. + */ +static bool reliable_mode; +module_param(reliable_mode, bool, 0); +MODULE_PARM_DESC(reliable_mode, "pages are programmed in reliable mode"); + +/* + * You'll want to ignore badblocks if you're reading a partition that contains + * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since + * it does not use mtd nand's method for marking bad blocks (using oob area). + * This will also skip the check of the "page written" flag. + */ +static bool ignore_badblocks; +module_param(ignore_badblocks, bool, 0); +MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed"); + +struct docg4_priv { + struct mtd_info *mtd; + struct device *dev; + void __iomem *virtadr; + int status; + struct { + unsigned int command; + int column; + int page; + } last_command; + uint8_t oob_buf[16]; + uint8_t ecc_buf[7]; + int oob_page; + struct bch_control *bch; +}; + +/* + * Defines prefixed with DOCG4 are unique to the diskonchip G4. All others are + * shared with other diskonchip devices (P3, G3 at least). + * + * Functions with names prefixed with docg4_ are mtd / nand interface functions + * (though they may also be called internally). All others are internal. + */ + +#define DOC_IOSPACE_DATA 0x0800 + +/* register offsets */ +#define DOC_CHIPID 0x1000 +#define DOC_DEVICESELECT 0x100a +#define DOC_ASICMODE 0x100c +#define DOC_DATAEND 0x101e +#define DOC_NOP 0x103e + +#define DOC_FLASHSEQUENCE 0x1032 +#define DOC_FLASHCOMMAND 0x1034 +#define DOC_FLASHADDRESS 0x1036 +#define DOC_FLASHCONTROL 0x1038 +#define DOC_ECCCONF0 0x1040 +#define DOC_ECCCONF1 0x1042 +#define DOC_HAMMINGPARITY 0x1046 +#define DOC_BCH_SYNDROM(idx) (0x1048 + idx) + +#define DOC_ASICMODECONFIRM 0x1072 +#define DOC_CHIPID_INV 0x1074 +#define DOC_POWERMODE 0x107c + +#define DOCG4_MYSTERY_REG 0x1050 + +/* apparently used only to write oob bytes 6 and 7 */ +#define DOCG4_OOB_6_7 0x1052 + +/* DOC_FLASHSEQUENCE register commands */ +#define DOC_SEQ_RESET 0x00 +#define DOCG4_SEQ_PAGE_READ 0x03 +#define DOCG4_SEQ_FLUSH 0x29 +#define DOCG4_SEQ_PAGEWRITE 0x16 +#define DOCG4_SEQ_PAGEPROG 0x1e +#define DOCG4_SEQ_BLOCKERASE 0x24 +#define DOCG4_SEQ_SETMODE 0x45 + +/* DOC_FLASHCOMMAND register commands */ +#define DOCG4_CMD_PAGE_READ 0x00 +#define DOC_CMD_ERASECYCLE2 0xd0 +#define DOCG4_CMD_FLUSH 0x70 +#define DOCG4_CMD_READ2 0x30 +#define DOC_CMD_PROG_BLOCK_ADDR 0x60 +#define DOCG4_CMD_PAGEWRITE 0x80 +#define DOC_CMD_PROG_CYCLE2 0x10 +#define DOCG4_CMD_FAST_MODE 0xa3 /* functionality guessed */ +#define DOC_CMD_RELIABLE_MODE 0x22 +#define DOC_CMD_RESET 0xff + +/* DOC_POWERMODE register bits */ +#define DOC_POWERDOWN_READY 0x80 + +/* DOC_FLASHCONTROL register bits */ +#define DOC_CTRL_CE 0x10 +#define DOC_CTRL_UNKNOWN 0x40 +#define DOC_CTRL_FLASHREADY 0x01 + +/* DOC_ECCCONF0 register bits */ +#define DOC_ECCCONF0_READ_MODE 0x8000 +#define DOC_ECCCONF0_UNKNOWN 0x2000 +#define DOC_ECCCONF0_ECC_ENABLE 0x1000 +#define DOC_ECCCONF0_DATA_BYTES_MASK 0x07ff + +/* DOC_ECCCONF1 register bits */ +#define DOC_ECCCONF1_BCH_SYNDROM_ERR 0x80 +#define DOC_ECCCONF1_ECC_ENABLE 0x07 +#define DOC_ECCCONF1_PAGE_IS_WRITTEN 0x20 + +/* DOC_ASICMODE register bits */ +#define DOC_ASICMODE_RESET 0x00 +#define DOC_ASICMODE_NORMAL 0x01 +#define DOC_ASICMODE_POWERDOWN 0x02 +#define DOC_ASICMODE_MDWREN 0x04 +#define DOC_ASICMODE_BDETCT_RESET 0x08 +#define DOC_ASICMODE_RSTIN_RESET 0x10 +#define DOC_ASICMODE_RAM_WE 0x20 + +/* good status values read after read/write/erase operations */ +#define DOCG4_PROGSTATUS_GOOD 0x51 +#define DOCG4_PROGSTATUS_GOOD_2 0xe0 + +/* + * On read operations (page and oob-only), the first byte read from I/O reg is a + * status. On error, it reads 0x73; otherwise, it reads either 0x71 (first read + * after reset only) or 0x51, so bit 1 is presumed to be an error indicator. + */ +#define DOCG4_READ_ERROR 0x02 /* bit 1 indicates read error */ + +/* anatomy of the device */ +#define DOCG4_CHIP_SIZE 0x8000000 +#define DOCG4_PAGE_SIZE 0x200 +#define DOCG4_PAGES_PER_BLOCK 0x200 +#define DOCG4_BLOCK_SIZE (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE) +#define DOCG4_NUMBLOCKS (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE) +#define DOCG4_OOB_SIZE 0x10 +#define DOCG4_CHIP_SHIFT 27 /* log_2(DOCG4_CHIP_SIZE) */ +#define DOCG4_PAGE_SHIFT 9 /* log_2(DOCG4_PAGE_SIZE) */ +#define DOCG4_ERASE_SHIFT 18 /* log_2(DOCG4_BLOCK_SIZE) */ + +/* all but the last byte is included in ecc calculation */ +#define DOCG4_BCH_SIZE (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1) + +#define DOCG4_USERDATA_LEN 520 /* 512 byte page plus 8 oob avail to user */ + +/* expected values from the ID registers */ +#define DOCG4_IDREG1_VALUE 0x0400 +#define DOCG4_IDREG2_VALUE 0xfbff + +/* primitive polynomial used to build the Galois field used by hw ecc gen */ +#define DOCG4_PRIMITIVE_POLY 0x4443 + +#define DOCG4_M 14 /* Galois field is of order 2^14 */ +#define DOCG4_T 4 /* BCH alg corrects up to 4 bit errors */ + +#define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */ +#define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */ + +/* + * Bytes 0, 1 are used as badblock marker. + * Bytes 2 - 6 are available to the user. + * Byte 7 is hamming ecc for first 7 oob bytes only. + * Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14. + * Byte 15 (the last) is used by the driver as a "page written" flag. + */ +static struct nand_ecclayout docg4_oobinfo = { + .eccbytes = 9, + .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15}, + .oobavail = 5, + .oobfree = { {.offset = 2, .length = 5} } +}; + +/* + * The device has a nop register which M-Sys claims is for the purpose of + * inserting precise delays. But beware; at least some operations fail if the + * nop writes are replaced with a generic delay! + */ +static inline void write_nop(void __iomem *docptr) +{ + writew(0, docptr + DOC_NOP); +} + +static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + int i; + struct nand_chip *nand = mtd->priv; + uint16_t *p = (uint16_t *) buf; + len >>= 1; + + for (i = 0; i < len; i++) + p[i] = readw(nand->IO_ADDR_R); +} + +static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + int i; + struct nand_chip *nand = mtd->priv; + uint16_t *p = (uint16_t *) buf; + len >>= 1; + + for (i = 0; i < len; i++) + writew(p[i], nand->IO_ADDR_W); +} + +static int poll_status(struct docg4_priv *doc) +{ + /* + * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL + * register. Operations known to take a long time (e.g., block erase) + * should sleep for a while before calling this. + */ + + uint16_t flash_status; + unsigned long timeo; + void __iomem *docptr = doc->virtadr; + + dev_dbg(doc->dev, "%s...\n", __func__); + + /* hardware quirk requires reading twice initially */ + flash_status = readw(docptr + DOC_FLASHCONTROL); + + timeo = jiffies + msecs_to_jiffies(200); /* generous timeout */ + do { + cpu_relax(); + flash_status = readb(docptr + DOC_FLASHCONTROL); + } while (!(flash_status & DOC_CTRL_FLASHREADY) && + time_before(jiffies, timeo)); + + if (unlikely(!(flash_status & DOC_CTRL_FLASHREADY))) { + dev_err(doc->dev, "%s: timed out!\n", __func__); + return NAND_STATUS_FAIL; + } + + return 0; +} + + +static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand) +{ + + struct docg4_priv *doc = nand->priv; + int status = NAND_STATUS_WP; /* inverse logic?? */ + dev_dbg(doc->dev, "%s...\n", __func__); + + /* report any previously unreported error */ + if (doc->status) { + status |= doc->status; + doc->status = 0; + return status; + } + + status |= poll_status(doc); + return status; +} + +static void docg4_select_chip(struct mtd_info *mtd, int chip) +{ + /* + * Select among multiple cascaded chips ("floors"). Multiple floors are + * not yet supported, so the only valid non-negative value is 0. + */ + struct nand_chip *nand = mtd->priv; + struct docg4_priv *doc = nand->priv; + void __iomem *docptr = doc->virtadr; + + dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip); + + if (chip < 0) + return; /* deselected */ + + if (chip > 0) + dev_warn(doc->dev, "multiple floors currently unsupported\n"); + + writew(0, docptr + DOC_DEVICESELECT); +} + +static void reset(struct mtd_info *mtd) +{ + /* full device reset */ + + struct nand_chip *nand = mtd->priv; + struct docg4_priv *doc = nand->priv; + void __iomem *docptr = doc->virtadr; + + writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN, + docptr + DOC_ASICMODE); + writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN), + docptr + DOC_ASICMODECONFIRM); + write_nop(docptr); + + writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN, + docptr + DOC_ASICMODE); + writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN), + docptr + DOC_ASICMODECONFIRM); + + writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1); + + poll_status(doc); +} + +static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf) +{ + /* read the 7 hw-generated ecc bytes */ + + int i; + for (i = 0; i < 7; i++) { /* hw quirk; read twice */ + ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i)); + ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i)); + } +} + +static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page) +{ + /* + * Called after a page read when hardware reports bitflips. + * Up to four bitflips can be corrected. + */ + + struct nand_chip *nand = mtd->priv; + struct docg4_priv *doc = nand->priv; + void __iomem *docptr = doc->virtadr; + int i, numerrs, errpos[4]; + const uint8_t blank_read_hwecc[8] = { + 0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 }; + + read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */ + + /* check if read error is due to a blank page */ + if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7)) + return 0; /* yes */ + + /* skip additional check of "written flag" if ignore_badblocks */ + if (ignore_badblocks == false) { + + /* + * If the hw ecc bytes are not those of a blank page, there's + * still a chance that the page is blank, but was read with + * errors. Check the "written flag" in last oob byte, which + * is set to zero when a page is written. If more than half + * the bits are set, assume a blank page. Unfortunately, the + * bit flips(s) are not reported in stats. + */ + + if (nand->oob_poi[15]) { + int bit, numsetbits = 0; + unsigned long written_flag = nand->oob_poi[15]; + for_each_set_bit(bit, &written_flag, 8) + numsetbits++; + if (numsetbits > 4) { /* assume blank */ + dev_warn(doc->dev, + "error(s) in blank page " + "at offset %08x\n", + page * DOCG4_PAGE_SIZE); + return 0; + } + } + } + + /* + * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch + * algorithm is used to decode this. However the hw operates on page + * data in a bit order that is the reverse of that of the bch alg, + * requiring that the bits be reversed on the result. Thanks to Ivan + * Djelic for his analysis! + */ + for (i = 0; i < 7; i++) + doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]); + + numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL, + doc->ecc_buf, NULL, errpos); + + if (numerrs == -EBADMSG) { + dev_warn(doc->dev, "uncorrectable errors at offset %08x\n", + page * DOCG4_PAGE_SIZE); + return -EBADMSG; + } + + BUG_ON(numerrs < 0); /* -EINVAL, or anything other than -EBADMSG */ + + /* undo last step in BCH alg (modulo mirroring not needed) */ + for (i = 0; i < numerrs; i++) + errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7)); + + /* fix the errors */ + for (i = 0; i < numerrs; i++) { + + /* ignore if error within oob ecc bytes */ + if (errpos[i] > DOCG4_USERDATA_LEN * 8) + continue; + + /* if error within oob area preceeding ecc bytes... */ + if (errpos[i] > DOCG4_PAGE_SIZE * 8) + change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8, + (unsigned long *)nand->oob_poi); + + else /* error in page data */ + change_bit(errpos[i], (unsigned long *)buf); + } + + dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n", + numerrs, page * DOCG4_PAGE_SIZE); + + return numerrs; +} + +static uint8_t docg4_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd->priv; + struct docg4_priv *doc = nand->priv; + + dev_dbg(doc->dev, "%s\n", __func__); + + if (doc->last_command.command == NAND_CMD_STATUS) { + int status; + + /* + * Previous nand command was status request, so nand + * infrastructure code expects to read the status here. If an + * error occurred in a previous operation, report it. + */ + doc->last_command.command = 0; + + if (doc->status) { + status = doc->status; + doc->status = 0; + } + + /* why is NAND_STATUS_WP inverse logic?? */ + else + status = NAND_STATUS_WP | NAND_STATUS_READY; + + return status; + } + + dev_warn(doc->dev, "unexpected call to read_byte()\n"); + + return 0; +} + +static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr) +{ + /* write the four address bytes packed in docg4_addr to the device */ + + void __iomem *docptr = doc->virtadr; + writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); + docg4_addr >>= 8; + writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); + docg4_addr >>= 8; + writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); + docg4_addr >>= 8; + writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); +} + +static int read_progstatus(struct docg4_priv *doc) +{ + /* + * This apparently checks the status of programming. Done after an + * erasure, and after page data is written. On error, the status is + * saved, to be later retrieved by the nand infrastructure code. + */ + void __iomem *docptr = doc->virtadr; + + /* status is read from the I/O reg */ + uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA); + uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA); + uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG); + + dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n", + __func__, status1, status2, status3); + + if (status1 != DOCG4_PROGSTATUS_GOOD + || status2 != DOCG4_PROGSTATUS_GOOD_2 + || status3 != DOCG4_PROGSTATUS_GOOD_2) { + doc->status = NAND_STATUS_FAIL; + dev_warn(doc->dev, "read_progstatus failed: " + "%02x, %02x, %02x\n", status1, status2, status3); + return -EIO; + } + return 0; +} + +static int pageprog(struct mtd_info *mtd) +{ + /* + * Final step in writing a page. Writes the contents of its + * internal buffer out to the flash array, or some such. + */ + + struct nand_chip *nand = mtd->priv; + struct docg4_priv *doc = nand->priv; + void __iomem *docptr = doc->virtadr; + int retval = 0; + + dev_dbg(doc->dev, "docg4: %s\n", __func__); + + writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE); + writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + write_nop(docptr); + + /* Just busy-wait; usleep_range() slows things down noticeably. */ + poll_status(doc); + + writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE); + writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND); + writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + + retval = read_progstatus(doc); + writew(0, docptr + DOC_DATAEND); + write_nop(docptr); + poll_status(doc); + write_nop(docptr); + + return retval; +} + +static void sequence_reset(struct mtd_info *mtd) +{ + /* common starting sequence for all operations */ + + struct nand_chip *nand = mtd->priv; + struct docg4_priv *doc = nand->priv; + void __iomem *docptr = doc->virtadr; + + writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL); + writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE); + writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + write_nop(docptr); + poll_status(doc); + write_nop(docptr); +} + +static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr) +{ + /* first step in reading a page */ + + struct nand_chip *nand = mtd->priv; + struct docg4_priv *doc = nand->priv; + void __iomem *docptr = doc->virtadr; + + dev_dbg(doc->dev, + "docg4: %s: g4 page %08x\n", __func__, docg4_addr); + + sequence_reset(mtd); + + writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE); + writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + + write_addr(doc, docg4_addr); + + write_nop(docptr); + writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + write_nop(docptr); + + poll_status(doc); +} + +static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr) +{ + /* first step in writing a page */ + + struct nand_chip *nand = mtd->priv; + struct docg4_priv *doc = nand->priv; + void __iomem *docptr = doc->virtadr; + + dev_dbg(doc->dev, + "docg4: %s: g4 addr: %x\n", __func__, docg4_addr); + sequence_reset(mtd); + + if (unlikely(reliable_mode)) { + writew(DOCG4_SEQ_SETMODE, docptr + DOC_FLASHSEQUENCE); + writew(DOCG4_CMD_FAST_MODE, docptr + DOC_FLASHCOMMAND); + writew(DOC_CMD_RELIABLE_MODE, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + } + + writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE); + writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + write_addr(doc, docg4_addr); + write_nop(docptr); + write_nop(docptr); + poll_status(doc); +} + +static uint32_t mtd_to_docg4_address(int page, int column) +{ + /* + * Convert mtd address to format used by the device, 32 bit packed. + * + * Some notes on G4 addressing... The M-Sys documentation on this device + * claims that pages are 2K in length, and indeed, the format of the + * address used by the device reflects that. But within each page are + * four 512 byte "sub-pages", each with its own oob data that is + * read/written immediately after the 512 bytes of page data. This oob + * data contains the ecc bytes for the preceeding 512 bytes. + * + * Rather than tell the mtd nand infrastructure that page size is 2k, + * with four sub-pages each, we engage in a little subterfuge and tell + * the infrastructure code that pages are 512 bytes in size. This is + * done because during the course of reverse-engineering the device, I + * never observed an instance where an entire 2K "page" was read or + * written as a unit. Each "sub-page" is always addressed individually, + * its data read/written, and ecc handled before the next "sub-page" is + * addressed. + * + * This requires us to convert addresses passed by the mtd nand + * infrastructure code to those used by the device. + * + * The address that is written to the device consists of four bytes: the + * first two are the 2k page number, and the second is the index into + * the page. The index is in terms of 16-bit half-words and includes + * the preceeding oob data, so e.g., the index into the second + * "sub-page" is 0x108, and the full device address of the start of mtd + * page 0x201 is 0x00800108. + */ + int g4_page = page / 4; /* device's 2K page */ + int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */ + return (g4_page << 16) | g4_index; /* pack */ +} + +static void docg4_command(struct mtd_info *mtd, unsigned command, int column, + int page_addr) +{ + /* handle standard nand commands */ + + struct nand_chip *nand = mtd->priv; + struct docg4_priv *doc = nand->priv; + uint32_t g4_addr = mtd_to_docg4_address(page_addr, column); + + dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n", + __func__, command, page_addr, column); + + /* + * Save the command and its arguments. This enables emulation of + * standard flash devices, and also some optimizations. + */ + doc->last_command.command = command; + doc->last_command.column = column; + doc->last_command.page = page_addr; + + switch (command) { + + case NAND_CMD_RESET: + reset(mtd); + break; + + case NAND_CMD_READ0: + read_page_prologue(mtd, g4_addr); + break; + + case NAND_CMD_STATUS: + /* next call to read_byte() will expect a status */ + break; + + case NAND_CMD_SEQIN: + if (unlikely(reliable_mode)) { + uint16_t g4_page = g4_addr >> 16; + + /* writes to odd-numbered 2k pages are invalid */ + if (g4_page & 0x01) + dev_warn(doc->dev, + "invalid reliable mode address\n"); + } + + write_page_prologue(mtd, g4_addr); + + /* hack for deferred write of oob bytes */ + if (doc->oob_page == page_addr) + memcpy(nand->oob_poi, doc->oob_buf, 16); + break; + + case NAND_CMD_PAGEPROG: + pageprog(mtd); + break; + + /* we don't expect these, based on review of nand_base.c */ + case NAND_CMD_READOOB: + case NAND_CMD_READID: + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + dev_warn(doc->dev, "docg4_command: " + "unexpected nand command 0x%x\n", command); + break; + + } +} + +static int read_page(struct mtd_info *mtd, struct nand_chip *nand, + uint8_t *buf, int page, bool use_ecc) +{ + struct docg4_priv *doc = nand->priv; + void __iomem *docptr = doc->virtadr; + uint16_t status, edc_err, *buf16; + int bits_corrected = 0; + + dev_dbg(doc->dev, "%s: page %08x\n", __func__, page); + + writew(DOC_ECCCONF0_READ_MODE | + DOC_ECCCONF0_ECC_ENABLE | + DOC_ECCCONF0_UNKNOWN | + DOCG4_BCH_SIZE, + docptr + DOC_ECCCONF0); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + + /* the 1st byte from the I/O reg is a status; the rest is page data */ + status = readw(docptr + DOC_IOSPACE_DATA); + if (status & DOCG4_READ_ERROR) { + dev_err(doc->dev, + "docg4_read_page: bad status: 0x%02x\n", status); + writew(0, docptr + DOC_DATAEND); + return -EIO; + } + + dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status); + + docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */ + + /* this device always reads oob after page data */ + /* first 14 oob bytes read from I/O reg */ + docg4_read_buf(mtd, nand->oob_poi, 14); + + /* last 2 read from another reg */ + buf16 = (uint16_t *)(nand->oob_poi + 14); + *buf16 = readw(docptr + DOCG4_MYSTERY_REG); + + write_nop(docptr); + + if (likely(use_ecc == true)) { + + /* read the register that tells us if bitflip(s) detected */ + edc_err = readw(docptr + DOC_ECCCONF1); + edc_err = readw(docptr + DOC_ECCCONF1); + dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err); + + /* If bitflips are reported, attempt to correct with ecc */ + if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) { + bits_corrected = correct_data(mtd, buf, page); + if (bits_corrected == -EBADMSG) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += bits_corrected; + } + } + + writew(0, docptr + DOC_DATAEND); + if (bits_corrected == -EBADMSG) /* uncorrectable errors */ + return 0; + return bits_corrected; +} + + +static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand, + uint8_t *buf, int oob_required, int page) +{ + return read_page(mtd, nand, buf, page, false); +} + +static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand, + uint8_t *buf, int oob_required, int page) +{ + return read_page(mtd, nand, buf, page, true); +} + +static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand, + int page) +{ + struct docg4_priv *doc = nand->priv; + void __iomem *docptr = doc->virtadr; + uint16_t status; + + dev_dbg(doc->dev, "%s: page %x\n", __func__, page); + + docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page); + + writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + + /* the 1st byte from the I/O reg is a status; the rest is oob data */ + status = readw(docptr + DOC_IOSPACE_DATA); + if (status & DOCG4_READ_ERROR) { + dev_warn(doc->dev, + "docg4_read_oob failed: status = 0x%02x\n", status); + return -EIO; + } + + dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status); + + docg4_read_buf(mtd, nand->oob_poi, 16); + + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + writew(0, docptr + DOC_DATAEND); + write_nop(docptr); + + return 0; +} + +static int docg4_erase_block(struct mtd_info *mtd, int page) +{ + struct nand_chip *nand = mtd->priv; + struct docg4_priv *doc = nand->priv; + void __iomem *docptr = doc->virtadr; + uint16_t g4_page; + + dev_dbg(doc->dev, "%s: page %04x\n", __func__, page); + + sequence_reset(mtd); + + writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE); + writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + + /* only 2 bytes of address are written to specify erase block */ + g4_page = (uint16_t)(page / 4); /* to g4's 2k page addressing */ + writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS); + g4_page >>= 8; + writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS); + write_nop(docptr); + + /* start the erasure */ + writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + write_nop(docptr); + + usleep_range(500, 1000); /* erasure is long; take a snooze */ + poll_status(doc); + writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE); + writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND); + writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + + read_progstatus(doc); + + writew(0, docptr + DOC_DATAEND); + write_nop(docptr); + poll_status(doc); + write_nop(docptr); + + return nand->waitfunc(mtd, nand); +} + +static int write_page(struct mtd_info *mtd, struct nand_chip *nand, + const uint8_t *buf, bool use_ecc) +{ + struct docg4_priv *doc = nand->priv; + void __iomem *docptr = doc->virtadr; + uint8_t ecc_buf[8]; + + dev_dbg(doc->dev, "%s...\n", __func__); + + writew(DOC_ECCCONF0_ECC_ENABLE | + DOC_ECCCONF0_UNKNOWN | + DOCG4_BCH_SIZE, + docptr + DOC_ECCCONF0); + write_nop(docptr); + + /* write the page data */ + docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE); + + /* oob bytes 0 through 5 are written to I/O reg */ + docg4_write_buf16(mtd, nand->oob_poi, 6); + + /* oob byte 6 written to a separate reg */ + writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7); + + write_nop(docptr); + write_nop(docptr); + + /* write hw-generated ecc bytes to oob */ + if (likely(use_ecc == true)) { + /* oob byte 7 is hamming code */ + uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY); + hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */ + writew(hamming, docptr + DOCG4_OOB_6_7); + write_nop(docptr); + + /* read the 7 bch bytes from ecc regs */ + read_hw_ecc(docptr, ecc_buf); + ecc_buf[7] = 0; /* clear the "page written" flag */ + } + + /* write user-supplied bytes to oob */ + else { + writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7); + write_nop(docptr); + memcpy(ecc_buf, &nand->oob_poi[8], 8); + } + + docg4_write_buf16(mtd, ecc_buf, 8); + write_nop(docptr); + write_nop(docptr); + writew(0, docptr + DOC_DATAEND); + write_nop(docptr); + + return 0; +} + +static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand, + const uint8_t *buf, int oob_required) +{ + return write_page(mtd, nand, buf, false); +} + +static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand, + const uint8_t *buf, int oob_required) +{ + return write_page(mtd, nand, buf, true); +} + +static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand, + int page) +{ + /* + * Writing oob-only is not really supported, because MLC nand must write + * oob bytes at the same time as page data. Nonetheless, we save the + * oob buffer contents here, and then write it along with the page data + * if the same page is subsequently written. This allows user space + * utilities that write the oob data prior to the page data to work + * (e.g., nandwrite). The disdvantage is that, if the intention was to + * write oob only, the operation is quietly ignored. Also, oob can get + * corrupted if two concurrent processes are running nandwrite. + */ + + /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */ + struct docg4_priv *doc = nand->priv; + doc->oob_page = page; + memcpy(doc->oob_buf, nand->oob_poi, 16); + return 0; +} + +static int __init read_factory_bbt(struct mtd_info *mtd) +{ + /* + * The device contains a read-only factory bad block table. Read it and + * update the memory-based bbt accordingly. + */ + + struct nand_chip *nand = mtd->priv; + struct docg4_priv *doc = nand->priv; + uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0); + uint8_t *buf; + int i, block; + __u32 eccfailed_stats = mtd->ecc_stats.failed; + + buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL); + if (buf == NULL) + return -ENOMEM; + + read_page_prologue(mtd, g4_addr); + docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE); + + /* + * If no memory-based bbt was created, exit. This will happen if module + * parameter ignore_badblocks is set. Then why even call this function? + * For an unknown reason, block erase always fails if it's the first + * operation after device power-up. The above read ensures it never is. + * Ugly, I know. + */ + if (nand->bbt == NULL) /* no memory-based bbt */ + goto exit; + + if (mtd->ecc_stats.failed > eccfailed_stats) { + /* + * Whoops, an ecc failure ocurred reading the factory bbt. + * It is stored redundantly, so we get another chance. + */ + eccfailed_stats = mtd->ecc_stats.failed; + docg4_read_page(mtd, nand, buf, 0, DOCG4_REDUNDANT_BBT_PAGE); + if (mtd->ecc_stats.failed > eccfailed_stats) { + dev_warn(doc->dev, + "The factory bbt could not be read!\n"); + goto exit; + } + } + + /* + * Parse factory bbt and update memory-based bbt. Factory bbt format is + * simple: one bit per block, block numbers increase left to right (msb + * to lsb). Bit clear means bad block. + */ + for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) { + int bitnum; + unsigned long bits = ~buf[i]; + for_each_set_bit(bitnum, &bits, 8) { + int badblock = block + 7 - bitnum; + nand->bbt[badblock / 4] |= + 0x03 << ((badblock % 4) * 2); + mtd->ecc_stats.badblocks++; + dev_notice(doc->dev, "factory-marked bad block: %d\n", + badblock); + } + } + exit: + kfree(buf); + return 0; +} + +static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + /* + * Mark a block as bad. Bad blocks are marked in the oob area of the + * first page of the block. The default scan_bbt() in the nand + * infrastructure code works fine for building the memory-based bbt + * during initialization, as does the nand infrastructure function that + * checks if a block is bad by reading the bbt. This function replaces + * the nand default because writes to oob-only are not supported. + */ + + int ret, i; + uint8_t *buf; + struct nand_chip *nand = mtd->priv; + struct docg4_priv *doc = nand->priv; + struct nand_bbt_descr *bbtd = nand->badblock_pattern; + int page = (int)(ofs >> nand->page_shift); + uint32_t g4_addr = mtd_to_docg4_address(page, 0); + + dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs); + + if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1))) + dev_warn(doc->dev, "%s: ofs %llx not start of block!\n", + __func__, ofs); + + /* allocate blank buffer for page data */ + buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL); + if (buf == NULL) + return -ENOMEM; + + /* write bit-wise negation of pattern to oob buffer */ + memset(nand->oob_poi, 0xff, mtd->oobsize); + for (i = 0; i < bbtd->len; i++) + nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i]; + + /* write first page of block */ + write_page_prologue(mtd, g4_addr); + docg4_write_page(mtd, nand, buf, 1); + ret = pageprog(mtd); + + kfree(buf); + + return ret; +} + +static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs, int getchip) +{ + /* only called when module_param ignore_badblocks is set */ + return 0; +} + +static int docg4_suspend(struct platform_device *pdev, pm_message_t state) +{ + /* + * Put the device into "deep power-down" mode. Note that CE# must be + * deasserted for this to take effect. The xscale, e.g., can be + * configured to float this signal when the processor enters power-down, + * and a suitable pull-up ensures its deassertion. + */ + + int i; + uint8_t pwr_down; + struct docg4_priv *doc = platform_get_drvdata(pdev); + void __iomem *docptr = doc->virtadr; + + dev_dbg(doc->dev, "%s...\n", __func__); + + /* poll the register that tells us we're ready to go to sleep */ + for (i = 0; i < 10; i++) { + pwr_down = readb(docptr + DOC_POWERMODE); + if (pwr_down & DOC_POWERDOWN_READY) + break; + usleep_range(1000, 4000); + } + + if (pwr_down & DOC_POWERDOWN_READY) { + dev_err(doc->dev, "suspend failed; " + "timeout polling DOC_POWERDOWN_READY\n"); + return -EIO; + } + + writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN, + docptr + DOC_ASICMODE); + writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN), + docptr + DOC_ASICMODECONFIRM); + + write_nop(docptr); + + return 0; +} + +static int docg4_resume(struct platform_device *pdev) +{ + + /* + * Exit power-down. Twelve consecutive reads of the address below + * accomplishes this, assuming CE# has been asserted. + */ + + struct docg4_priv *doc = platform_get_drvdata(pdev); + void __iomem *docptr = doc->virtadr; + int i; + + dev_dbg(doc->dev, "%s...\n", __func__); + + for (i = 0; i < 12; i++) + readb(docptr + 0x1fff); + + return 0; +} + +static void __init init_mtd_structs(struct mtd_info *mtd) +{ + /* initialize mtd and nand data structures */ + + /* + * Note that some of the following initializations are not usually + * required within a nand driver because they are performed by the nand + * infrastructure code as part of nand_scan(). In this case they need + * to be initialized here because we skip call to nand_scan_ident() (the + * first half of nand_scan()). The call to nand_scan_ident() is skipped + * because for this device the chip id is not read in the manner of a + * standard nand device. Unfortunately, nand_scan_ident() does other + * things as well, such as call nand_set_defaults(). + */ + + struct nand_chip *nand = mtd->priv; + struct docg4_priv *doc = nand->priv; + + mtd->size = DOCG4_CHIP_SIZE; + mtd->name = "Msys_Diskonchip_G4"; + mtd->writesize = DOCG4_PAGE_SIZE; + mtd->erasesize = DOCG4_BLOCK_SIZE; + mtd->oobsize = DOCG4_OOB_SIZE; + nand->chipsize = DOCG4_CHIP_SIZE; + nand->chip_shift = DOCG4_CHIP_SHIFT; + nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT; + nand->chip_delay = 20; + nand->page_shift = DOCG4_PAGE_SHIFT; + nand->pagemask = 0x3ffff; + nand->badblockpos = NAND_LARGE_BADBLOCK_POS; + nand->badblockbits = 8; + nand->ecc.layout = &docg4_oobinfo; + nand->ecc.mode = NAND_ECC_HW_SYNDROME; + nand->ecc.size = DOCG4_PAGE_SIZE; + nand->ecc.prepad = 8; + nand->ecc.bytes = 8; + nand->ecc.strength = DOCG4_T; + nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE; + nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA; + nand->controller = &nand->hwcontrol; + spin_lock_init(&nand->controller->lock); + init_waitqueue_head(&nand->controller->wq); + + /* methods */ + nand->cmdfunc = docg4_command; + nand->waitfunc = docg4_wait; + nand->select_chip = docg4_select_chip; + nand->read_byte = docg4_read_byte; + nand->block_markbad = docg4_block_markbad; + nand->read_buf = docg4_read_buf; + nand->write_buf = docg4_write_buf16; + nand->erase = docg4_erase_block; + nand->ecc.read_page = docg4_read_page; + nand->ecc.write_page = docg4_write_page; + nand->ecc.read_page_raw = docg4_read_page_raw; + nand->ecc.write_page_raw = docg4_write_page_raw; + nand->ecc.read_oob = docg4_read_oob; + nand->ecc.write_oob = docg4_write_oob; + + /* + * The way the nand infrastructure code is written, a memory-based bbt + * is not created if NAND_SKIP_BBTSCAN is set. With no memory bbt, + * nand->block_bad() is used. So when ignoring bad blocks, we skip the + * scan and define a dummy block_bad() which always returns 0. + */ + if (ignore_badblocks) { + nand->options |= NAND_SKIP_BBTSCAN; + nand->block_bad = docg4_block_neverbad; + } + +} + +static int __init read_id_reg(struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd->priv; + struct docg4_priv *doc = nand->priv; + void __iomem *docptr = doc->virtadr; + uint16_t id1, id2; + + /* check for presence of g4 chip by reading id registers */ + id1 = readw(docptr + DOC_CHIPID); + id1 = readw(docptr + DOCG4_MYSTERY_REG); + id2 = readw(docptr + DOC_CHIPID_INV); + id2 = readw(docptr + DOCG4_MYSTERY_REG); + + if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) { + dev_info(doc->dev, + "NAND device: 128MiB Diskonchip G4 detected\n"); + return 0; + } + + return -ENODEV; +} + +static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL }; + +static int __init probe_docg4(struct platform_device *pdev) +{ + struct mtd_info *mtd; + struct nand_chip *nand; + void __iomem *virtadr; + struct docg4_priv *doc; + int len, retval; + struct resource *r; + struct device *dev = &pdev->dev; + + r = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (r == NULL) { + dev_err(dev, "no io memory resource defined!\n"); + return -ENODEV; + } + + virtadr = ioremap(r->start, resource_size(r)); + if (!virtadr) { + dev_err(dev, "Diskonchip ioremap failed: %pR\n", r); + return -EIO; + } + + len = sizeof(struct mtd_info) + sizeof(struct nand_chip) + + sizeof(struct docg4_priv); + mtd = kzalloc(len, GFP_KERNEL); + if (mtd == NULL) { + retval = -ENOMEM; + goto fail; + } + nand = (struct nand_chip *) (mtd + 1); + doc = (struct docg4_priv *) (nand + 1); + mtd->priv = nand; + nand->priv = doc; + mtd->owner = THIS_MODULE; + doc->virtadr = virtadr; + doc->dev = dev; + + init_mtd_structs(mtd); + + /* initialize kernel bch algorithm */ + doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY); + if (doc->bch == NULL) { + retval = -EINVAL; + goto fail; + } + + platform_set_drvdata(pdev, doc); + + reset(mtd); + retval = read_id_reg(mtd); + if (retval == -ENODEV) { + dev_warn(dev, "No diskonchip G4 device found.\n"); + goto fail; + } + + retval = nand_scan_tail(mtd); + if (retval) + goto fail; + + retval = read_factory_bbt(mtd); + if (retval) + goto fail; + + retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0); + if (retval) + goto fail; + + doc->mtd = mtd; + return 0; + + fail: + iounmap(virtadr); + if (mtd) { + /* re-declarations avoid compiler warning */ + struct nand_chip *nand = mtd->priv; + struct docg4_priv *doc = nand->priv; + nand_release(mtd); /* deletes partitions and mtd devices */ + free_bch(doc->bch); + kfree(mtd); + } + + return retval; +} + +static int __exit cleanup_docg4(struct platform_device *pdev) +{ + struct docg4_priv *doc = platform_get_drvdata(pdev); + nand_release(doc->mtd); + free_bch(doc->bch); + kfree(doc->mtd); + iounmap(doc->virtadr); + return 0; +} + +static struct platform_driver docg4_driver = { + .driver = { + .name = "docg4", + .owner = THIS_MODULE, + }, + .suspend = docg4_suspend, + .resume = docg4_resume, + .remove = __exit_p(cleanup_docg4), +}; + +module_platform_driver_probe(docg4_driver, probe_docg4); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Mike Dunn"); +MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver"); diff --git a/drivers/mtd/nand/edb7312.c b/drivers/mtd/nand/edb7312.c deleted file mode 100644 index 86366bfba9f..00000000000 --- a/drivers/mtd/nand/edb7312.c +++ /dev/null @@ -1,210 +0,0 @@ -/* - * drivers/mtd/nand/edb7312.c - * - * Copyright (C) 2002 Marius Gröger (mag@sysgo.de) - * - * Derived from drivers/mtd/nand/autcpu12.c - * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de) - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Overview: - * This is a device driver for the NAND flash device found on the - * CLEP7312 board which utilizes the Toshiba TC58V64AFT part. This is - * a 64Mibit (8MiB x 8 bits) NAND flash device. - */ - -#include <linux/slab.h> -#include <linux/module.h> -#include <linux/init.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/partitions.h> -#include <asm/io.h> -#include <mach/hardware.h> /* for CLPS7111_VIRT_BASE */ -#include <asm/sizes.h> -#include <asm/hardware/clps7111.h> - -/* - * MTD structure for EDB7312 board - */ -static struct mtd_info *ep7312_mtd = NULL; - -/* - * Values specific to the EDB7312 board (used with EP7312 processor) - */ -#define EP7312_FIO_PBASE 0x10000000 /* Phys address of flash */ -#define EP7312_PXDR 0x0001 /* - * IO offset to Port B data register - * where the CLE, ALE and NCE pins - * are wired to. - */ -#define EP7312_PXDDR 0x0041 /* - * IO offset to Port B data direction - * register so we can control the IO - * lines. - */ - -/* - * Module stuff - */ - -static unsigned long ep7312_fio_pbase = EP7312_FIO_PBASE; -static void __iomem *ep7312_pxdr = (void __iomem *)EP7312_PXDR; -static void __iomem *ep7312_pxddr = (void __iomem *)EP7312_PXDDR; - -#ifdef CONFIG_MTD_PARTITIONS -/* - * Define static partitions for flash device - */ -static struct mtd_partition partition_info[] = { - {.name = "EP7312 Nand Flash", - .offset = 0, - .size = 8 * 1024 * 1024} -}; - -#define NUM_PARTITIONS 1 - -#endif - -/* - * hardware specific access to control-lines - * - * NAND_NCE: bit 0 -> bit 6 (bit 7 = 1) - * NAND_CLE: bit 1 -> bit 4 - * NAND_ALE: bit 2 -> bit 5 - */ -static void ep7312_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) -{ - struct nand_chip *chip = mtd->priv; - - if (ctrl & NAND_CTRL_CHANGE) { - unsigned char bits = 0x80; - - bits |= (ctrl & (NAND_CLE | NAND_ALE)) << 3; - bits |= (ctrl & NAND_NCE) ? 0x00 : 0x40; - - clps_writeb((clps_readb(ep7312_pxdr) & 0xF0) | bits, - ep7312_pxdr); - } - if (cmd != NAND_CMD_NONE) - writeb(cmd, chip->IO_ADDR_W); -} - -/* - * read device ready pin - */ -static int ep7312_device_ready(struct mtd_info *mtd) -{ - return 1; -} - -#ifdef CONFIG_MTD_PARTITIONS -const char *part_probes[] = { "cmdlinepart", NULL }; -#endif - -/* - * Main initialization routine - */ -static int __init ep7312_init(void) -{ - struct nand_chip *this; - const char *part_type = 0; - int mtd_parts_nb = 0; - struct mtd_partition *mtd_parts = 0; - void __iomem *ep7312_fio_base; - - /* Allocate memory for MTD device structure and private data */ - ep7312_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); - if (!ep7312_mtd) { - printk("Unable to allocate EDB7312 NAND MTD device structure.\n"); - return -ENOMEM; - } - - /* map physical address */ - ep7312_fio_base = ioremap(ep7312_fio_pbase, SZ_1K); - if (!ep7312_fio_base) { - printk("ioremap EDB7312 NAND flash failed\n"); - kfree(ep7312_mtd); - return -EIO; - } - - /* Get pointer to private data */ - this = (struct nand_chip *)(&ep7312_mtd[1]); - - /* Initialize structures */ - memset(ep7312_mtd, 0, sizeof(struct mtd_info)); - memset(this, 0, sizeof(struct nand_chip)); - - /* Link the private data with the MTD structure */ - ep7312_mtd->priv = this; - ep7312_mtd->owner = THIS_MODULE; - - /* - * Set GPIO Port B control register so that the pins are configured - * to be outputs for controlling the NAND flash. - */ - clps_writeb(0xf0, ep7312_pxddr); - - /* insert callbacks */ - this->IO_ADDR_R = ep7312_fio_base; - this->IO_ADDR_W = ep7312_fio_base; - this->cmd_ctrl = ep7312_hwcontrol; - this->dev_ready = ep7312_device_ready; - /* 15 us command delay time */ - this->chip_delay = 15; - - /* Scan to find existence of the device */ - if (nand_scan(ep7312_mtd, 1)) { - iounmap((void *)ep7312_fio_base); - kfree(ep7312_mtd); - return -ENXIO; - } -#ifdef CONFIG_MTD_PARTITIONS - ep7312_mtd->name = "edb7312-nand"; - mtd_parts_nb = parse_mtd_partitions(ep7312_mtd, part_probes, &mtd_parts, 0); - if (mtd_parts_nb > 0) - part_type = "command line"; - else - mtd_parts_nb = 0; -#endif - if (mtd_parts_nb == 0) { - mtd_parts = partition_info; - mtd_parts_nb = NUM_PARTITIONS; - part_type = "static"; - } - - /* Register the partitions */ - printk(KERN_NOTICE "Using %s partition definition\n", part_type); - add_mtd_partitions(ep7312_mtd, mtd_parts, mtd_parts_nb); - - /* Return happy */ - return 0; -} - -module_init(ep7312_init); - -/* - * Clean up routine - */ -static void __exit ep7312_cleanup(void) -{ - struct nand_chip *this = (struct nand_chip *)&ep7312_mtd[1]; - - /* Release resources, unregister device */ - nand_release(ap7312_mtd); - - /* Release io resource */ - iounmap(this->IO_ADDR_R); - - /* Free the MTD device structure */ - kfree(ep7312_mtd); -} - -module_exit(ep7312_cleanup); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Marius Groeger <mag@sysgo.de>"); -MODULE_DESCRIPTION("MTD map driver for Cogent EDB7312 board"); diff --git a/drivers/mtd/nand/fsl_elbc_nand.c b/drivers/mtd/nand/fsl_elbc_nand.c index 5084cc51794..545a5c002f0 100644 --- a/drivers/mtd/nand/fsl_elbc_nand.c +++ b/drivers/mtd/nand/fsl_elbc_nand.c @@ -1,9 +1,11 @@ /* Freescale Enhanced Local Bus Controller NAND driver * - * Copyright (c) 2006-2007 Freescale Semiconductor + * Copyright © 2006-2007, 2010 Freescale Semiconductor * * Authors: Nick Spence <nick.spence@freescale.com>, * Scott Wood <scottwood@freescale.com> + * Jack Lan <jack.lan@freescale.com> + * Roy Zang <tie-fei.zang@freescale.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -22,11 +24,12 @@ #include <linux/module.h> #include <linux/types.h> -#include <linux/init.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/ioport.h> +#include <linux/of_address.h> #include <linux/of_platform.h> +#include <linux/platform_device.h> #include <linux/slab.h> #include <linux/interrupt.h> @@ -42,14 +45,12 @@ #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */ #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */ -struct fsl_elbc_ctrl; - /* mtd information per set */ struct fsl_elbc_mtd { struct mtd_info mtd; struct nand_chip chip; - struct fsl_elbc_ctrl *ctrl; + struct fsl_lbc_ctrl *ctrl; struct device *dev; int bank; /* Chip select bank number */ @@ -58,18 +59,12 @@ struct fsl_elbc_mtd { unsigned int fmr; /* FCM Flash Mode Register value */ }; -/* overview of the fsl elbc controller */ +/* Freescale eLBC FCM controller information */ -struct fsl_elbc_ctrl { +struct fsl_elbc_fcm_ctrl { struct nand_hw_control controller; struct fsl_elbc_mtd *chips[MAX_BANKS]; - /* device info */ - struct device *dev; - struct fsl_lbc_regs __iomem *regs; - int irq; - wait_queue_head_t irq_wait; - unsigned int irq_status; /* status read from LTESR by irq handler */ u8 __iomem *addr; /* Address of assigned FCM buffer */ unsigned int page; /* Last page written to / read from */ unsigned int read_bytes; /* Number of bytes read during command */ @@ -79,7 +74,8 @@ struct fsl_elbc_ctrl { unsigned int mdr; /* UPM/FCM Data Register value */ unsigned int use_mdr; /* Non zero if the MDR is to be set */ unsigned int oob; /* Non zero if operating on OOB data */ - char *oob_poi; /* Place to write ECC after read back */ + unsigned int counter; /* counter for the initializations */ + unsigned int max_bitflips; /* Saved during READ0 cmd */ }; /* These map to the positions used by the FCM hardware ECC generator */ @@ -113,20 +109,6 @@ static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = { }; /* - * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset - * 1, so we have to adjust bad block pattern. This pattern should be used for - * x8 chips only. So far hardware does not support x16 chips anyway. - */ -static u8 scan_ff_pattern[] = { 0xff, }; - -static struct nand_bbt_descr largepage_memorybased = { - .options = 0, - .offs = 0, - .len = 1, - .pattern = scan_ff_pattern, -}; - -/* * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt, * interfere with ECC positions, that's why we implement our own descriptors. * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0. @@ -164,37 +146,47 @@ static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) { struct nand_chip *chip = mtd->priv; struct fsl_elbc_mtd *priv = chip->priv; - struct fsl_elbc_ctrl *ctrl = priv->ctrl; + struct fsl_lbc_ctrl *ctrl = priv->ctrl; struct fsl_lbc_regs __iomem *lbc = ctrl->regs; + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand; int buf_num; - ctrl->page = page_addr; - - out_be32(&lbc->fbar, - page_addr >> (chip->phys_erase_shift - chip->page_shift)); + elbc_fcm_ctrl->page = page_addr; if (priv->page_size) { + /* + * large page size chip : FPAR[PI] save the lowest 6 bits, + * FBAR[BLK] save the other bits. + */ + out_be32(&lbc->fbar, page_addr >> 6); out_be32(&lbc->fpar, ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) | (oob ? FPAR_LP_MS : 0) | column); buf_num = (page_addr & 1) << 2; } else { + /* + * small page size chip : FPAR[PI] save the lowest 5 bits, + * FBAR[BLK] save the other bits. + */ + out_be32(&lbc->fbar, page_addr >> 5); out_be32(&lbc->fpar, ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) | (oob ? FPAR_SP_MS : 0) | column); buf_num = page_addr & 7; } - ctrl->addr = priv->vbase + buf_num * 1024; - ctrl->index = column; + elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024; + elbc_fcm_ctrl->index = column; /* for OOB data point to the second half of the buffer */ if (oob) - ctrl->index += priv->page_size ? 2048 : 512; + elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512; - dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), " + dev_vdbg(priv->dev, "set_addr: bank=%d, " + "elbc_fcm_ctrl->addr=0x%p (0x%p), " "index %x, pes %d ps %d\n", - buf_num, ctrl->addr, priv->vbase, ctrl->index, + buf_num, elbc_fcm_ctrl->addr, priv->vbase, + elbc_fcm_ctrl->index, chip->phys_erase_shift, chip->page_shift); } @@ -205,18 +197,19 @@ static int fsl_elbc_run_command(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct fsl_elbc_mtd *priv = chip->priv; - struct fsl_elbc_ctrl *ctrl = priv->ctrl; + struct fsl_lbc_ctrl *ctrl = priv->ctrl; + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand; struct fsl_lbc_regs __iomem *lbc = ctrl->regs; /* Setup the FMR[OP] to execute without write protection */ out_be32(&lbc->fmr, priv->fmr | 3); - if (ctrl->use_mdr) - out_be32(&lbc->mdr, ctrl->mdr); + if (elbc_fcm_ctrl->use_mdr) + out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr); - dev_vdbg(ctrl->dev, + dev_vdbg(priv->dev, "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n", in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr)); - dev_vdbg(ctrl->dev, + dev_vdbg(priv->dev, "fsl_elbc_run_command: fbar=%08x fpar=%08x " "fbcr=%08x bank=%d\n", in_be32(&lbc->fbar), in_be32(&lbc->fpar), @@ -229,29 +222,54 @@ static int fsl_elbc_run_command(struct mtd_info *mtd) /* wait for FCM complete flag or timeout */ wait_event_timeout(ctrl->irq_wait, ctrl->irq_status, FCM_TIMEOUT_MSECS * HZ/1000); - ctrl->status = ctrl->irq_status; - + elbc_fcm_ctrl->status = ctrl->irq_status; /* store mdr value in case it was needed */ - if (ctrl->use_mdr) - ctrl->mdr = in_be32(&lbc->mdr); + if (elbc_fcm_ctrl->use_mdr) + elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr); - ctrl->use_mdr = 0; + elbc_fcm_ctrl->use_mdr = 0; - if (ctrl->status != LTESR_CC) { - dev_info(ctrl->dev, + if (elbc_fcm_ctrl->status != LTESR_CC) { + dev_info(priv->dev, "command failed: fir %x fcr %x status %x mdr %x\n", in_be32(&lbc->fir), in_be32(&lbc->fcr), - ctrl->status, ctrl->mdr); + elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr); return -EIO; } + if (chip->ecc.mode != NAND_ECC_HW) + return 0; + + elbc_fcm_ctrl->max_bitflips = 0; + + if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) { + uint32_t lteccr = in_be32(&lbc->lteccr); + /* + * if command was a full page read and the ELBC + * has the LTECCR register, then bits 12-15 (ppc order) of + * LTECCR indicates which 512 byte sub-pages had fixed errors. + * bits 28-31 are uncorrectable errors, marked elsewhere. + * for small page nand only 1 bit is used. + * if the ELBC doesn't have the lteccr register it reads 0 + * FIXME: 4 bits can be corrected on NANDs with 2k pages, so + * count the number of sub-pages with bitflips and update + * ecc_stats.corrected accordingly. + */ + if (lteccr & 0x000F000F) + out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */ + if (lteccr & 0x000F0000) { + mtd->ecc_stats.corrected++; + elbc_fcm_ctrl->max_bitflips = 1; + } + } + return 0; } static void fsl_elbc_do_read(struct nand_chip *chip, int oob) { struct fsl_elbc_mtd *priv = chip->priv; - struct fsl_elbc_ctrl *ctrl = priv->ctrl; + struct fsl_lbc_ctrl *ctrl = priv->ctrl; struct fsl_lbc_regs __iomem *lbc = ctrl->regs; if (priv->page_size) { @@ -284,15 +302,16 @@ static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command, { struct nand_chip *chip = mtd->priv; struct fsl_elbc_mtd *priv = chip->priv; - struct fsl_elbc_ctrl *ctrl = priv->ctrl; + struct fsl_lbc_ctrl *ctrl = priv->ctrl; + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand; struct fsl_lbc_regs __iomem *lbc = ctrl->regs; - ctrl->use_mdr = 0; + elbc_fcm_ctrl->use_mdr = 0; /* clear the read buffer */ - ctrl->read_bytes = 0; + elbc_fcm_ctrl->read_bytes = 0; if (command != NAND_CMD_PAGEPROG) - ctrl->index = 0; + elbc_fcm_ctrl->index = 0; switch (command) { /* READ0 and READ1 read the entire buffer to use hardware ECC. */ @@ -301,7 +320,7 @@ static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command, /* fall-through */ case NAND_CMD_READ0: - dev_dbg(ctrl->dev, + dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:" " 0x%x, column: 0x%x.\n", page_addr, column); @@ -309,8 +328,8 @@ static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command, out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */ set_addr(mtd, 0, page_addr, 0); - ctrl->read_bytes = mtd->writesize + mtd->oobsize; - ctrl->index += column; + elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize; + elbc_fcm_ctrl->index += column; fsl_elbc_do_read(chip, 0); fsl_elbc_run_command(mtd); @@ -318,40 +337,42 @@ static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command, /* READOOB reads only the OOB because no ECC is performed. */ case NAND_CMD_READOOB: - dev_vdbg(ctrl->dev, + dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:" " 0x%x, column: 0x%x.\n", page_addr, column); out_be32(&lbc->fbcr, mtd->oobsize - column); set_addr(mtd, column, page_addr, 1); - ctrl->read_bytes = mtd->writesize + mtd->oobsize; + elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize; fsl_elbc_do_read(chip, 1); fsl_elbc_run_command(mtd); return; - /* READID must read all 5 possible bytes while CEB is active */ case NAND_CMD_READID: - dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n"); + case NAND_CMD_PARAM: + dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command); out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) | (FIR_OP_UA << FIR_OP1_SHIFT) | (FIR_OP_RBW << FIR_OP2_SHIFT)); - out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT); - /* 5 bytes for manuf, device and exts */ - out_be32(&lbc->fbcr, 5); - ctrl->read_bytes = 5; - ctrl->use_mdr = 1; - ctrl->mdr = 0; - + out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT); + /* + * although currently it's 8 bytes for READID, we always read + * the maximum 256 bytes(for PARAM) + */ + out_be32(&lbc->fbcr, 256); + elbc_fcm_ctrl->read_bytes = 256; + elbc_fcm_ctrl->use_mdr = 1; + elbc_fcm_ctrl->mdr = column; set_addr(mtd, 0, 0, 0); fsl_elbc_run_command(mtd); return; /* ERASE1 stores the block and page address */ case NAND_CMD_ERASE1: - dev_vdbg(ctrl->dev, + dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, " "page_addr: 0x%x.\n", page_addr); set_addr(mtd, 0, page_addr, 0); @@ -359,7 +380,7 @@ static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command, /* ERASE2 uses the block and page address from ERASE1 */ case NAND_CMD_ERASE2: - dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n"); + dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n"); out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) | @@ -374,8 +395,8 @@ static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command, (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT)); out_be32(&lbc->fbcr, 0); - ctrl->read_bytes = 0; - ctrl->use_mdr = 1; + elbc_fcm_ctrl->read_bytes = 0; + elbc_fcm_ctrl->use_mdr = 1; fsl_elbc_run_command(mtd); return; @@ -383,14 +404,22 @@ static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command, /* SEQIN sets up the addr buffer and all registers except the length */ case NAND_CMD_SEQIN: { __be32 fcr; - dev_vdbg(ctrl->dev, - "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, " + dev_vdbg(priv->dev, + "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, " "page_addr: 0x%x, column: 0x%x.\n", page_addr, column); - ctrl->column = column; - ctrl->oob = 0; - ctrl->use_mdr = 1; + elbc_fcm_ctrl->column = column; + elbc_fcm_ctrl->use_mdr = 1; + + if (column >= mtd->writesize) { + /* OOB area */ + column -= mtd->writesize; + elbc_fcm_ctrl->oob = 1; + } else { + WARN_ON(column != 0); + elbc_fcm_ctrl->oob = 0; + } fcr = (NAND_CMD_STATUS << FCR_CMD1_SHIFT) | (NAND_CMD_SEQIN << FCR_CMD2_SHIFT) | @@ -416,63 +445,37 @@ static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command, (FIR_OP_CW1 << FIR_OP6_SHIFT) | (FIR_OP_RS << FIR_OP7_SHIFT)); - if (column >= mtd->writesize) { + if (elbc_fcm_ctrl->oob) /* OOB area --> READOOB */ - column -= mtd->writesize; fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT; - ctrl->oob = 1; - } else { - WARN_ON(column != 0); + else /* First 256 bytes --> READ0 */ fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT; - } } out_be32(&lbc->fcr, fcr); - set_addr(mtd, column, page_addr, ctrl->oob); + set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob); return; } /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ case NAND_CMD_PAGEPROG: { - int full_page; - dev_vdbg(ctrl->dev, + dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG " - "writing %d bytes.\n", ctrl->index); + "writing %d bytes.\n", elbc_fcm_ctrl->index); /* if the write did not start at 0 or is not a full page * then set the exact length, otherwise use a full page * write so the HW generates the ECC. */ - if (ctrl->oob || ctrl->column != 0 || - ctrl->index != mtd->writesize + mtd->oobsize) { - out_be32(&lbc->fbcr, ctrl->index); - full_page = 0; - } else { + if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 || + elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize) + out_be32(&lbc->fbcr, + elbc_fcm_ctrl->index - elbc_fcm_ctrl->column); + else out_be32(&lbc->fbcr, 0); - full_page = 1; - } fsl_elbc_run_command(mtd); - - /* Read back the page in order to fill in the ECC for the - * caller. Is this really needed? - */ - if (full_page && ctrl->oob_poi) { - out_be32(&lbc->fbcr, 3); - set_addr(mtd, 6, page_addr, 1); - - ctrl->read_bytes = mtd->writesize + 9; - - fsl_elbc_do_read(chip, 1); - fsl_elbc_run_command(mtd); - - memcpy_fromio(ctrl->oob_poi + 6, - &ctrl->addr[ctrl->index], 3); - ctrl->index += 3; - } - - ctrl->oob_poi = NULL; return; } @@ -485,26 +488,26 @@ static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command, out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT); out_be32(&lbc->fbcr, 1); set_addr(mtd, 0, 0, 0); - ctrl->read_bytes = 1; + elbc_fcm_ctrl->read_bytes = 1; fsl_elbc_run_command(mtd); /* The chip always seems to report that it is * write-protected, even when it is not. */ - setbits8(ctrl->addr, NAND_STATUS_WP); + setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP); return; /* RESET without waiting for the ready line */ case NAND_CMD_RESET: - dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n"); + dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n"); out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT); out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT); fsl_elbc_run_command(mtd); return; default: - dev_err(ctrl->dev, + dev_err(priv->dev, "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n", command); } @@ -524,24 +527,24 @@ static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) { struct nand_chip *chip = mtd->priv; struct fsl_elbc_mtd *priv = chip->priv; - struct fsl_elbc_ctrl *ctrl = priv->ctrl; + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; unsigned int bufsize = mtd->writesize + mtd->oobsize; if (len <= 0) { - dev_err(ctrl->dev, "write_buf of %d bytes", len); - ctrl->status = 0; + dev_err(priv->dev, "write_buf of %d bytes", len); + elbc_fcm_ctrl->status = 0; return; } - if ((unsigned int)len > bufsize - ctrl->index) { - dev_err(ctrl->dev, + if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) { + dev_err(priv->dev, "write_buf beyond end of buffer " "(%d requested, %u available)\n", - len, bufsize - ctrl->index); - len = bufsize - ctrl->index; + len, bufsize - elbc_fcm_ctrl->index); + len = bufsize - elbc_fcm_ctrl->index; } - memcpy_toio(&ctrl->addr[ctrl->index], buf, len); + memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len); /* * This is workaround for the weird elbc hangs during nand write, * Scott Wood says: "...perhaps difference in how long it takes a @@ -549,9 +552,9 @@ static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) * is causing problems, and sync isn't helping for some reason." * Reading back the last byte helps though. */ - in_8(&ctrl->addr[ctrl->index] + len - 1); + in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1); - ctrl->index += len; + elbc_fcm_ctrl->index += len; } /* @@ -562,13 +565,13 @@ static u8 fsl_elbc_read_byte(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct fsl_elbc_mtd *priv = chip->priv; - struct fsl_elbc_ctrl *ctrl = priv->ctrl; + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; /* If there are still bytes in the FCM, then use the next byte. */ - if (ctrl->index < ctrl->read_bytes) - return in_8(&ctrl->addr[ctrl->index++]); + if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes) + return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]); - dev_err(ctrl->dev, "read_byte beyond end of buffer\n"); + dev_err(priv->dev, "read_byte beyond end of buffer\n"); return ERR_BYTE; } @@ -579,78 +582,46 @@ static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len) { struct nand_chip *chip = mtd->priv; struct fsl_elbc_mtd *priv = chip->priv; - struct fsl_elbc_ctrl *ctrl = priv->ctrl; + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; int avail; if (len < 0) return; - avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index); - memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail); - ctrl->index += avail; + avail = min((unsigned int)len, + elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index); + memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail); + elbc_fcm_ctrl->index += avail; if (len > avail) - dev_err(ctrl->dev, + dev_err(priv->dev, "read_buf beyond end of buffer " "(%d requested, %d available)\n", len, avail); } -/* - * Verify buffer against the FCM Controller Data Buffer - */ -static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct nand_chip *chip = mtd->priv; - struct fsl_elbc_mtd *priv = chip->priv; - struct fsl_elbc_ctrl *ctrl = priv->ctrl; - int i; - - if (len < 0) { - dev_err(ctrl->dev, "write_buf of %d bytes", len); - return -EINVAL; - } - - if ((unsigned int)len > ctrl->read_bytes - ctrl->index) { - dev_err(ctrl->dev, - "verify_buf beyond end of buffer " - "(%d requested, %u available)\n", - len, ctrl->read_bytes - ctrl->index); - - ctrl->index = ctrl->read_bytes; - return -EINVAL; - } - - for (i = 0; i < len; i++) - if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i]) - break; - - ctrl->index += len; - return i == len && ctrl->status == LTESR_CC ? 0 : -EIO; -} - /* This function is called after Program and Erase Operations to * check for success or failure. */ static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip) { struct fsl_elbc_mtd *priv = chip->priv; - struct fsl_elbc_ctrl *ctrl = priv->ctrl; + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; - if (ctrl->status != LTESR_CC) + if (elbc_fcm_ctrl->status != LTESR_CC) return NAND_STATUS_FAIL; /* The chip always seems to report that it is * write-protected, even when it is not. */ - return (ctrl->mdr & 0xff) | NAND_STATUS_WP; + return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP; } static int fsl_elbc_chip_init_tail(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct fsl_elbc_mtd *priv = chip->priv; - struct fsl_elbc_ctrl *ctrl = priv->ctrl; + struct fsl_lbc_ctrl *ctrl = priv->ctrl; struct fsl_lbc_regs __iomem *lbc = ctrl->regs; unsigned int al; @@ -661,45 +632,41 @@ static int fsl_elbc_chip_init_tail(struct mtd_info *mtd) if (chip->pagemask & 0xff000000) al++; - /* add to ECCM mode set in fsl_elbc_init */ - priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */ - (al << FMR_AL_SHIFT); + priv->fmr |= al << FMR_AL_SHIFT; - dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n", + dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n", chip->numchips); - dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %lld\n", + dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n", chip->chipsize); - dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n", + dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n", chip->pagemask); - dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n", + dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n", chip->chip_delay); - dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n", + dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n", chip->badblockpos); - dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n", + dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n", chip->chip_shift); - dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n", + dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n", chip->page_shift); - dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n", + dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n", chip->phys_erase_shift); - dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n", - chip->ecclayout); - dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n", + dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n", chip->ecc.mode); - dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n", + dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n", chip->ecc.steps); - dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n", + dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n", chip->ecc.bytes); - dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n", + dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n", chip->ecc.total); - dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n", + dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n", chip->ecc.layout); - dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags); - dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size); - dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n", + dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags); + dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size); + dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n", mtd->erasesize); - dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n", + dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n", mtd->writesize); - dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n", + dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n", mtd->oobsize); /* adjust Option Register and ECC to match Flash page size */ @@ -716,10 +683,9 @@ static int fsl_elbc_chip_init_tail(struct mtd_info *mtd) chip->ecc.layout = (priv->fmr & FMR_ECCM) ? &fsl_elbc_oob_lp_eccm1 : &fsl_elbc_oob_lp_eccm0; - chip->badblock_pattern = &largepage_memorybased; } } else { - dev_err(ctrl->dev, + dev_err(priv->dev, "fsl_elbc_init: page size %d is not supported\n", mtd->writesize); return -1; @@ -728,40 +694,53 @@ static int fsl_elbc_chip_init_tail(struct mtd_info *mtd) return 0; } -static int fsl_elbc_read_page(struct mtd_info *mtd, - struct nand_chip *chip, - uint8_t *buf, - int page) +static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) { + struct fsl_elbc_mtd *priv = chip->priv; + struct fsl_lbc_ctrl *ctrl = priv->ctrl; + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand; + fsl_elbc_read_buf(mtd, buf, mtd->writesize); - fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize); + if (oob_required) + fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize); if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL) mtd->ecc_stats.failed++; - return 0; + return elbc_fcm_ctrl->max_bitflips; } /* ECC will be calculated automatically, and errors will be detected in * waitfunc. */ -static void fsl_elbc_write_page(struct mtd_info *mtd, - struct nand_chip *chip, - const uint8_t *buf) +static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required) { - struct fsl_elbc_mtd *priv = chip->priv; - struct fsl_elbc_ctrl *ctrl = priv->ctrl; + fsl_elbc_write_buf(mtd, buf, mtd->writesize); + fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize); + return 0; +} + +/* ECC will be calculated automatically, and errors will be detected in + * waitfunc. + */ +static int fsl_elbc_write_subpage(struct mtd_info *mtd, struct nand_chip *chip, + uint32_t offset, uint32_t data_len, + const uint8_t *buf, int oob_required) +{ fsl_elbc_write_buf(mtd, buf, mtd->writesize); fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize); - ctrl->oob_poi = chip->oob_poi; + return 0; } static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) { - struct fsl_elbc_ctrl *ctrl = priv->ctrl; + struct fsl_lbc_ctrl *ctrl = priv->ctrl; struct fsl_lbc_regs __iomem *lbc = ctrl->regs; + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand; struct nand_chip *chip = &priv->chip; dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank); @@ -770,15 +749,16 @@ static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) priv->mtd.priv = chip; priv->mtd.owner = THIS_MODULE; - /* Set the ECCM according to the settings in bootloader.*/ - priv->fmr = in_be32(&lbc->fmr) & FMR_ECCM; + /* set timeout to maximum */ + priv->fmr = 15 << FMR_CWTO_SHIFT; + if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS) + priv->fmr |= FMR_ECCM; /* fill in nand_chip structure */ /* set up function call table */ chip->read_byte = fsl_elbc_read_byte; chip->write_buf = fsl_elbc_write_buf; chip->read_buf = fsl_elbc_read_buf; - chip->verify_buf = fsl_elbc_verify_buf; chip->select_chip = fsl_elbc_select_chip; chip->cmdfunc = fsl_elbc_cmdfunc; chip->waitfunc = fsl_elbc_wait; @@ -787,14 +767,14 @@ static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) chip->bbt_md = &bbt_mirror_descr; /* set up nand options */ - chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR | - NAND_USE_FLASH_BBT; + chip->bbt_options = NAND_BBT_USE_FLASH; - chip->controller = &ctrl->controller; + chip->controller = &elbc_fcm_ctrl->controller; chip->priv = priv; chip->ecc.read_page = fsl_elbc_read_page; chip->ecc.write_page = fsl_elbc_write_page; + chip->ecc.write_subpage = fsl_elbc_write_subpage; /* If CS Base Register selects full hardware ECC then use it */ if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) == @@ -805,6 +785,7 @@ static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0; chip->ecc.size = 512; chip->ecc.bytes = 3; + chip->ecc.strength = 1; } else { /* otherwise fall back to default software ECC */ chip->ecc.mode = NAND_ECC_SOFT; @@ -815,8 +796,7 @@ static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv) { - struct fsl_elbc_ctrl *ctrl = priv->ctrl; - + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; nand_release(&priv->mtd); kfree(priv->mtd.name); @@ -824,30 +804,37 @@ static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv) if (priv->vbase) iounmap(priv->vbase); - ctrl->chips[priv->bank] = NULL; + elbc_fcm_ctrl->chips[priv->bank] = NULL; kfree(priv); - return 0; } -static int __devinit fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl, - struct device_node *node) +static DEFINE_MUTEX(fsl_elbc_nand_mutex); + +static int fsl_elbc_nand_probe(struct platform_device *pdev) { - struct fsl_lbc_regs __iomem *lbc = ctrl->regs; + struct fsl_lbc_regs __iomem *lbc; struct fsl_elbc_mtd *priv; struct resource res; -#ifdef CONFIG_MTD_PARTITIONS + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl; static const char *part_probe_types[] - = { "cmdlinepart", "RedBoot", NULL }; - struct mtd_partition *parts; -#endif + = { "cmdlinepart", "RedBoot", "ofpart", NULL }; int ret; int bank; + struct device *dev; + struct device_node *node = pdev->dev.of_node; + struct mtd_part_parser_data ppdata; + + ppdata.of_node = pdev->dev.of_node; + if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs) + return -ENODEV; + lbc = fsl_lbc_ctrl_dev->regs; + dev = fsl_lbc_ctrl_dev->dev; /* get, allocate and map the memory resource */ ret = of_address_to_resource(node, 0, &res); if (ret) { - dev_err(ctrl->dev, "failed to get resource\n"); + dev_err(dev, "failed to get resource\n"); return ret; } @@ -857,11 +844,11 @@ static int __devinit fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl, (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM && (in_be32(&lbc->bank[bank].br) & in_be32(&lbc->bank[bank].or) & BR_BA) - == res.start) + == fsl_lbc_addr(res.start)) break; if (bank >= MAX_BANKS) { - dev_err(ctrl->dev, "address did not match any chip selects\n"); + dev_err(dev, "address did not match any chip selects\n"); return -ENODEV; } @@ -869,19 +856,38 @@ static int __devinit fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl, if (!priv) return -ENOMEM; - ctrl->chips[bank] = priv; + mutex_lock(&fsl_elbc_nand_mutex); + if (!fsl_lbc_ctrl_dev->nand) { + elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL); + if (!elbc_fcm_ctrl) { + mutex_unlock(&fsl_elbc_nand_mutex); + ret = -ENOMEM; + goto err; + } + elbc_fcm_ctrl->counter++; + + spin_lock_init(&elbc_fcm_ctrl->controller.lock); + init_waitqueue_head(&elbc_fcm_ctrl->controller.wq); + fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl; + } else { + elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand; + } + mutex_unlock(&fsl_elbc_nand_mutex); + + elbc_fcm_ctrl->chips[bank] = priv; priv->bank = bank; - priv->ctrl = ctrl; - priv->dev = ctrl->dev; + priv->ctrl = fsl_lbc_ctrl_dev; + priv->dev = &pdev->dev; + dev_set_drvdata(priv->dev, priv); priv->vbase = ioremap(res.start, resource_size(&res)); if (!priv->vbase) { - dev_err(ctrl->dev, "failed to map chip region\n"); + dev_err(dev, "failed to map chip region\n"); ret = -ENOMEM; goto err; } - priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start); + priv->mtd.name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start); if (!priv->mtd.name) { ret = -ENOMEM; goto err; @@ -903,26 +909,10 @@ static int __devinit fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl, if (ret) goto err; -#ifdef CONFIG_MTD_PARTITIONS /* First look for RedBoot table or partitions on the command * line, these take precedence over device tree information */ - ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0); - if (ret < 0) - goto err; - -#ifdef CONFIG_MTD_OF_PARTS - if (ret == 0) { - ret = of_mtd_parse_partitions(priv->dev, node, &parts); - if (ret < 0) - goto err; - } -#endif - - if (ret > 0) - add_mtd_partitions(&priv->mtd, parts, ret); - else -#endif - add_mtd_device(&priv->mtd); + mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata, + NULL, 0); printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n", (unsigned long long)res.start, priv->bank); @@ -933,171 +923,41 @@ err: return ret; } -static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl) -{ - struct fsl_lbc_regs __iomem *lbc = ctrl->regs; - - /* - * NAND transactions can tie up the bus for a long time, so set the - * bus timeout to max by clearing LBCR[BMT] (highest base counter - * value) and setting LBCR[BMTPS] to the highest prescaler value. - */ - clrsetbits_be32(&lbc->lbcr, LBCR_BMT, 15); - - /* clear event registers */ - setbits32(&lbc->ltesr, LTESR_NAND_MASK); - out_be32(&lbc->lteatr, 0); - - /* Enable interrupts for any detected events */ - out_be32(&lbc->lteir, LTESR_NAND_MASK); - - ctrl->read_bytes = 0; - ctrl->index = 0; - ctrl->addr = NULL; - - return 0; -} - -static int fsl_elbc_ctrl_remove(struct of_device *ofdev) +static int fsl_elbc_nand_remove(struct platform_device *pdev) { - struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev); - int i; - - for (i = 0; i < MAX_BANKS; i++) - if (ctrl->chips[i]) - fsl_elbc_chip_remove(ctrl->chips[i]); - - if (ctrl->irq) - free_irq(ctrl->irq, ctrl); - - if (ctrl->regs) - iounmap(ctrl->regs); - - dev_set_drvdata(&ofdev->dev, NULL); - kfree(ctrl); - return 0; -} - -/* NOTE: This interrupt is also used to report other localbus events, - * such as transaction errors on other chipselects. If we want to - * capture those, we'll need to move the IRQ code into a shared - * LBC driver. - */ - -static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data) -{ - struct fsl_elbc_ctrl *ctrl = data; - struct fsl_lbc_regs __iomem *lbc = ctrl->regs; - __be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK; - - if (status) { - out_be32(&lbc->ltesr, status); - out_be32(&lbc->lteatr, 0); + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand; + struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev); - ctrl->irq_status = status; - smp_wmb(); - wake_up(&ctrl->irq_wait); - - return IRQ_HANDLED; - } - - return IRQ_NONE; -} - -/* fsl_elbc_ctrl_probe - * - * called by device layer when it finds a device matching - * one our driver can handled. This code allocates all of - * the resources needed for the controller only. The - * resources for the NAND banks themselves are allocated - * in the chip probe function. -*/ - -static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev, - const struct of_device_id *match) -{ - struct device_node *child; - struct fsl_elbc_ctrl *ctrl; - int ret; - - ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); - if (!ctrl) - return -ENOMEM; - - dev_set_drvdata(&ofdev->dev, ctrl); - - spin_lock_init(&ctrl->controller.lock); - init_waitqueue_head(&ctrl->controller.wq); - init_waitqueue_head(&ctrl->irq_wait); - - ctrl->regs = of_iomap(ofdev->dev.of_node, 0); - if (!ctrl->regs) { - dev_err(&ofdev->dev, "failed to get memory region\n"); - ret = -ENODEV; - goto err; - } - - ctrl->irq = of_irq_to_resource(ofdev->dev.of_node, 0, NULL); - if (ctrl->irq == NO_IRQ) { - dev_err(&ofdev->dev, "failed to get irq resource\n"); - ret = -ENODEV; - goto err; - } - - ctrl->dev = &ofdev->dev; - - ret = fsl_elbc_ctrl_init(ctrl); - if (ret < 0) - goto err; + fsl_elbc_chip_remove(priv); - ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl); - if (ret != 0) { - dev_err(&ofdev->dev, "failed to install irq (%d)\n", - ctrl->irq); - ret = ctrl->irq; - goto err; + mutex_lock(&fsl_elbc_nand_mutex); + elbc_fcm_ctrl->counter--; + if (!elbc_fcm_ctrl->counter) { + fsl_lbc_ctrl_dev->nand = NULL; + kfree(elbc_fcm_ctrl); } - - for_each_child_of_node(ofdev->dev.of_node, child) - if (of_device_is_compatible(child, "fsl,elbc-fcm-nand")) - fsl_elbc_chip_probe(ctrl, child); + mutex_unlock(&fsl_elbc_nand_mutex); return 0; -err: - fsl_elbc_ctrl_remove(ofdev); - return ret; } -static const struct of_device_id fsl_elbc_match[] = { - { - .compatible = "fsl,elbc", - }, +static const struct of_device_id fsl_elbc_nand_match[] = { + { .compatible = "fsl,elbc-fcm-nand", }, {} }; -static struct of_platform_driver fsl_elbc_ctrl_driver = { +static struct platform_driver fsl_elbc_nand_driver = { .driver = { - .name = "fsl-elbc", + .name = "fsl,elbc-fcm-nand", .owner = THIS_MODULE, - .of_match_table = fsl_elbc_match, + .of_match_table = fsl_elbc_nand_match, }, - .probe = fsl_elbc_ctrl_probe, - .remove = fsl_elbc_ctrl_remove, + .probe = fsl_elbc_nand_probe, + .remove = fsl_elbc_nand_remove, }; -static int __init fsl_elbc_init(void) -{ - return of_register_platform_driver(&fsl_elbc_ctrl_driver); -} - -static void __exit fsl_elbc_exit(void) -{ - of_unregister_platform_driver(&fsl_elbc_ctrl_driver); -} - -module_init(fsl_elbc_init); -module_exit(fsl_elbc_exit); +module_platform_driver(fsl_elbc_nand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Freescale"); diff --git a/drivers/mtd/nand/fsl_ifc_nand.c b/drivers/mtd/nand/fsl_ifc_nand.c new file mode 100644 index 00000000000..2338124dd05 --- /dev/null +++ b/drivers/mtd/nand/fsl_ifc_nand.c @@ -0,0 +1,1181 @@ +/* + * Freescale Integrated Flash Controller NAND driver + * + * Copyright 2011-2012 Freescale Semiconductor, Inc + * + * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/of_address.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/nand_ecc.h> +#include <linux/fsl_ifc.h> + +#define FSL_IFC_V1_1_0 0x01010000 +#define ERR_BYTE 0xFF /* Value returned for read + bytes when read failed */ +#define IFC_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait + for IFC NAND Machine */ + +struct fsl_ifc_ctrl; + +/* mtd information per set */ +struct fsl_ifc_mtd { + struct mtd_info mtd; + struct nand_chip chip; + struct fsl_ifc_ctrl *ctrl; + + struct device *dev; + int bank; /* Chip select bank number */ + unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */ + u8 __iomem *vbase; /* Chip select base virtual address */ +}; + +/* overview of the fsl ifc controller */ +struct fsl_ifc_nand_ctrl { + struct nand_hw_control controller; + struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT]; + + void __iomem *addr; /* Address of assigned IFC buffer */ + unsigned int page; /* Last page written to / read from */ + unsigned int read_bytes;/* Number of bytes read during command */ + unsigned int column; /* Saved column from SEQIN */ + unsigned int index; /* Pointer to next byte to 'read' */ + unsigned int oob; /* Non zero if operating on OOB data */ + unsigned int eccread; /* Non zero for a full-page ECC read */ + unsigned int counter; /* counter for the initializations */ + unsigned int max_bitflips; /* Saved during READ0 cmd */ +}; + +static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl; + +/* 512-byte page with 4-bit ECC, 8-bit */ +static struct nand_ecclayout oob_512_8bit_ecc4 = { + .eccbytes = 8, + .eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, + .oobfree = { {0, 5}, {6, 2} }, +}; + +/* 512-byte page with 4-bit ECC, 16-bit */ +static struct nand_ecclayout oob_512_16bit_ecc4 = { + .eccbytes = 8, + .eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, + .oobfree = { {2, 6}, }, +}; + +/* 2048-byte page size with 4-bit ECC */ +static struct nand_ecclayout oob_2048_ecc4 = { + .eccbytes = 32, + .eccpos = { + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, + }, + .oobfree = { {2, 6}, {40, 24} }, +}; + +/* 4096-byte page size with 4-bit ECC */ +static struct nand_ecclayout oob_4096_ecc4 = { + .eccbytes = 64, + .eccpos = { + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 66, 67, 68, 69, 70, 71, + }, + .oobfree = { {2, 6}, {72, 56} }, +}; + +/* 4096-byte page size with 8-bit ECC -- requires 218-byte OOB */ +static struct nand_ecclayout oob_4096_ecc8 = { + .eccbytes = 128, + .eccpos = { + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 66, 67, 68, 69, 70, 71, + 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, + 88, 89, 90, 91, 92, 93, 94, 95, + 96, 97, 98, 99, 100, 101, 102, 103, + 104, 105, 106, 107, 108, 109, 110, 111, + 112, 113, 114, 115, 116, 117, 118, 119, + 120, 121, 122, 123, 124, 125, 126, 127, + 128, 129, 130, 131, 132, 133, 134, 135, + }, + .oobfree = { {2, 6}, {136, 82} }, +}; + +/* 8192-byte page size with 4-bit ECC */ +static struct nand_ecclayout oob_8192_ecc4 = { + .eccbytes = 128, + .eccpos = { + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 66, 67, 68, 69, 70, 71, + 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, + 88, 89, 90, 91, 92, 93, 94, 95, + 96, 97, 98, 99, 100, 101, 102, 103, + 104, 105, 106, 107, 108, 109, 110, 111, + 112, 113, 114, 115, 116, 117, 118, 119, + 120, 121, 122, 123, 124, 125, 126, 127, + 128, 129, 130, 131, 132, 133, 134, 135, + }, + .oobfree = { {2, 6}, {136, 208} }, +}; + +/* 8192-byte page size with 8-bit ECC -- requires 218-byte OOB */ +static struct nand_ecclayout oob_8192_ecc8 = { + .eccbytes = 256, + .eccpos = { + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 66, 67, 68, 69, 70, 71, + 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, + 88, 89, 90, 91, 92, 93, 94, 95, + 96, 97, 98, 99, 100, 101, 102, 103, + 104, 105, 106, 107, 108, 109, 110, 111, + 112, 113, 114, 115, 116, 117, 118, 119, + 120, 121, 122, 123, 124, 125, 126, 127, + 128, 129, 130, 131, 132, 133, 134, 135, + 136, 137, 138, 139, 140, 141, 142, 143, + 144, 145, 146, 147, 148, 149, 150, 151, + 152, 153, 154, 155, 156, 157, 158, 159, + 160, 161, 162, 163, 164, 165, 166, 167, + 168, 169, 170, 171, 172, 173, 174, 175, + 176, 177, 178, 179, 180, 181, 182, 183, + 184, 185, 186, 187, 188, 189, 190, 191, + 192, 193, 194, 195, 196, 197, 198, 199, + 200, 201, 202, 203, 204, 205, 206, 207, + 208, 209, 210, 211, 212, 213, 214, 215, + 216, 217, 218, 219, 220, 221, 222, 223, + 224, 225, 226, 227, 228, 229, 230, 231, + 232, 233, 234, 235, 236, 237, 238, 239, + 240, 241, 242, 243, 244, 245, 246, 247, + 248, 249, 250, 251, 252, 253, 254, 255, + 256, 257, 258, 259, 260, 261, 262, 263, + }, + .oobfree = { {2, 6}, {264, 80} }, +}; + +/* + * Generic flash bbt descriptors + */ +static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; +static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 2, /* 0 on 8-bit small page */ + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = bbt_pattern, +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 2, /* 0 on 8-bit small page */ + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = mirror_pattern, +}; + +/* + * Set up the IFC hardware block and page address fields, and the ifc nand + * structure addr field to point to the correct IFC buffer in memory + */ +static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_regs __iomem *ifc = ctrl->regs; + int buf_num; + + ifc_nand_ctrl->page = page_addr; + /* Program ROW0/COL0 */ + iowrite32be(page_addr, &ifc->ifc_nand.row0); + iowrite32be((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0); + + buf_num = page_addr & priv->bufnum_mask; + + ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2); + ifc_nand_ctrl->index = column; + + /* for OOB data point to the second half of the buffer */ + if (oob) + ifc_nand_ctrl->index += mtd->writesize; +} + +static int is_blank(struct mtd_info *mtd, unsigned int bufnum) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2); + u32 __iomem *mainarea = (u32 __iomem *)addr; + u8 __iomem *oob = addr + mtd->writesize; + int i; + + for (i = 0; i < mtd->writesize / 4; i++) { + if (__raw_readl(&mainarea[i]) != 0xffffffff) + return 0; + } + + for (i = 0; i < chip->ecc.layout->eccbytes; i++) { + int pos = chip->ecc.layout->eccpos[i]; + + if (__raw_readb(&oob[pos]) != 0xff) + return 0; + } + + return 1; +} + +/* returns nonzero if entire page is blank */ +static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, + u32 *eccstat, unsigned int bufnum) +{ + u32 reg = eccstat[bufnum / 4]; + int errors; + + errors = (reg >> ((3 - bufnum % 4) * 8)) & 15; + + return errors; +} + +/* + * execute IFC NAND command and wait for it to complete + */ +static void fsl_ifc_run_command(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; + struct fsl_ifc_regs __iomem *ifc = ctrl->regs; + u32 eccstat[4]; + int i; + + /* set the chip select for NAND Transaction */ + iowrite32be(priv->bank << IFC_NAND_CSEL_SHIFT, + &ifc->ifc_nand.nand_csel); + + dev_vdbg(priv->dev, + "%s: fir0=%08x fcr0=%08x\n", + __func__, + ioread32be(&ifc->ifc_nand.nand_fir0), + ioread32be(&ifc->ifc_nand.nand_fcr0)); + + ctrl->nand_stat = 0; + + /* start read/write seq */ + iowrite32be(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt); + + /* wait for command complete flag or timeout */ + wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, + IFC_TIMEOUT_MSECS * HZ/1000); + + /* ctrl->nand_stat will be updated from IRQ context */ + if (!ctrl->nand_stat) + dev_err(priv->dev, "Controller is not responding\n"); + if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER) + dev_err(priv->dev, "NAND Flash Timeout Error\n"); + if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER) + dev_err(priv->dev, "NAND Flash Write Protect Error\n"); + + nctrl->max_bitflips = 0; + + if (nctrl->eccread) { + int errors; + int bufnum = nctrl->page & priv->bufnum_mask; + int sector = bufnum * chip->ecc.steps; + int sector_end = sector + chip->ecc.steps - 1; + + for (i = sector / 4; i <= sector_end / 4; i++) + eccstat[i] = ioread32be(&ifc->ifc_nand.nand_eccstat[i]); + + for (i = sector; i <= sector_end; i++) { + errors = check_read_ecc(mtd, ctrl, eccstat, i); + + if (errors == 15) { + /* + * Uncorrectable error. + * OK only if the whole page is blank. + * + * We disable ECCER reporting due to... + * erratum IFC-A002770 -- so report it now if we + * see an uncorrectable error in ECCSTAT. + */ + if (!is_blank(mtd, bufnum)) + ctrl->nand_stat |= + IFC_NAND_EVTER_STAT_ECCER; + break; + } + + mtd->ecc_stats.corrected += errors; + nctrl->max_bitflips = max_t(unsigned int, + nctrl->max_bitflips, + errors); + } + + nctrl->eccread = 0; + } +} + +static void fsl_ifc_do_read(struct nand_chip *chip, + int oob, + struct mtd_info *mtd) +{ + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_regs __iomem *ifc = ctrl->regs; + + /* Program FIR/IFC_NAND_FCR0 for Small/Large page */ + if (mtd->writesize > 512) { + iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | + (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT), + &ifc->ifc_nand.nand_fir0); + iowrite32be(0x0, &ifc->ifc_nand.nand_fir1); + + iowrite32be((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | + (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT), + &ifc->ifc_nand.nand_fcr0); + } else { + iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT), + &ifc->ifc_nand.nand_fir0); + iowrite32be(0x0, &ifc->ifc_nand.nand_fir1); + + if (oob) + iowrite32be(NAND_CMD_READOOB << + IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + else + iowrite32be(NAND_CMD_READ0 << + IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + } +} + +/* cmdfunc send commands to the IFC NAND Machine */ +static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, + int column, int page_addr) { + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_regs __iomem *ifc = ctrl->regs; + + /* clear the read buffer */ + ifc_nand_ctrl->read_bytes = 0; + if (command != NAND_CMD_PAGEPROG) + ifc_nand_ctrl->index = 0; + + switch (command) { + /* READ0 read the entire buffer to use hardware ECC. */ + case NAND_CMD_READ0: + iowrite32be(0, &ifc->ifc_nand.nand_fbcr); + set_addr(mtd, 0, page_addr, 0); + + ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; + ifc_nand_ctrl->index += column; + + if (chip->ecc.mode == NAND_ECC_HW) + ifc_nand_ctrl->eccread = 1; + + fsl_ifc_do_read(chip, 0, mtd); + fsl_ifc_run_command(mtd); + return; + + /* READOOB reads only the OOB because no ECC is performed. */ + case NAND_CMD_READOOB: + iowrite32be(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr); + set_addr(mtd, column, page_addr, 1); + + ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; + + fsl_ifc_do_read(chip, 1, mtd); + fsl_ifc_run_command(mtd); + + return; + + case NAND_CMD_READID: + case NAND_CMD_PARAM: { + int timing = IFC_FIR_OP_RB; + if (command == NAND_CMD_PARAM) + timing = IFC_FIR_OP_RBCD; + + iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | + (timing << IFC_NAND_FIR0_OP2_SHIFT), + &ifc->ifc_nand.nand_fir0); + iowrite32be(command << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + iowrite32be(column, &ifc->ifc_nand.row3); + + /* + * although currently it's 8 bytes for READID, we always read + * the maximum 256 bytes(for PARAM) + */ + iowrite32be(256, &ifc->ifc_nand.nand_fbcr); + ifc_nand_ctrl->read_bytes = 256; + + set_addr(mtd, 0, 0, 0); + fsl_ifc_run_command(mtd); + return; + } + + /* ERASE1 stores the block and page address */ + case NAND_CMD_ERASE1: + set_addr(mtd, 0, page_addr, 0); + return; + + /* ERASE2 uses the block and page address from ERASE1 */ + case NAND_CMD_ERASE2: + iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT), + &ifc->ifc_nand.nand_fir0); + + iowrite32be((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) | + (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT), + &ifc->ifc_nand.nand_fcr0); + + iowrite32be(0, &ifc->ifc_nand.nand_fbcr); + ifc_nand_ctrl->read_bytes = 0; + fsl_ifc_run_command(mtd); + return; + + /* SEQIN sets up the addr buffer and all registers except the length */ + case NAND_CMD_SEQIN: { + u32 nand_fcr0; + ifc_nand_ctrl->column = column; + ifc_nand_ctrl->oob = 0; + + if (mtd->writesize > 512) { + nand_fcr0 = + (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) | + (NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) | + (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT); + + iowrite32be( + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) | + (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT), + &ifc->ifc_nand.nand_fir0); + iowrite32be( + (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) | + (IFC_FIR_OP_RDSTAT << + IFC_NAND_FIR1_OP6_SHIFT) | + (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT), + &ifc->ifc_nand.nand_fir1); + } else { + nand_fcr0 = ((NAND_CMD_PAGEPROG << + IFC_NAND_FCR0_CMD1_SHIFT) | + (NAND_CMD_SEQIN << + IFC_NAND_FCR0_CMD2_SHIFT) | + (NAND_CMD_STATUS << + IFC_NAND_FCR0_CMD3_SHIFT)); + + iowrite32be( + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) | + (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT), + &ifc->ifc_nand.nand_fir0); + iowrite32be( + (IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) | + (IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) | + (IFC_FIR_OP_RDSTAT << + IFC_NAND_FIR1_OP7_SHIFT) | + (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT), + &ifc->ifc_nand.nand_fir1); + + if (column >= mtd->writesize) + nand_fcr0 |= + NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT; + else + nand_fcr0 |= + NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT; + } + + if (column >= mtd->writesize) { + /* OOB area --> READOOB */ + column -= mtd->writesize; + ifc_nand_ctrl->oob = 1; + } + iowrite32be(nand_fcr0, &ifc->ifc_nand.nand_fcr0); + set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob); + return; + } + + /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ + case NAND_CMD_PAGEPROG: { + if (ifc_nand_ctrl->oob) { + iowrite32be(ifc_nand_ctrl->index - + ifc_nand_ctrl->column, + &ifc->ifc_nand.nand_fbcr); + } else { + iowrite32be(0, &ifc->ifc_nand.nand_fbcr); + } + + fsl_ifc_run_command(mtd); + return; + } + + case NAND_CMD_STATUS: + iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT), + &ifc->ifc_nand.nand_fir0); + iowrite32be(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + iowrite32be(1, &ifc->ifc_nand.nand_fbcr); + set_addr(mtd, 0, 0, 0); + ifc_nand_ctrl->read_bytes = 1; + + fsl_ifc_run_command(mtd); + + /* + * The chip always seems to report that it is + * write-protected, even when it is not. + */ + if (chip->options & NAND_BUSWIDTH_16) + setbits16(ifc_nand_ctrl->addr, NAND_STATUS_WP); + else + setbits8(ifc_nand_ctrl->addr, NAND_STATUS_WP); + return; + + case NAND_CMD_RESET: + iowrite32be(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT, + &ifc->ifc_nand.nand_fir0); + iowrite32be(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + fsl_ifc_run_command(mtd); + return; + + default: + dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n", + __func__, command); + } +} + +static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip) +{ + /* The hardware does not seem to support multiple + * chips per bank. + */ +} + +/* + * Write buf to the IFC NAND Controller Data Buffer + */ +static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + unsigned int bufsize = mtd->writesize + mtd->oobsize; + + if (len <= 0) { + dev_err(priv->dev, "%s: len %d bytes", __func__, len); + return; + } + + if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) { + dev_err(priv->dev, + "%s: beyond end of buffer (%d requested, %u available)\n", + __func__, len, bufsize - ifc_nand_ctrl->index); + len = bufsize - ifc_nand_ctrl->index; + } + + memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len); + ifc_nand_ctrl->index += len; +} + +/* + * Read a byte from either the IFC hardware buffer + * read function for 8-bit buswidth + */ +static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + unsigned int offset; + + /* + * If there are still bytes in the IFC buffer, then use the + * next byte. + */ + if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { + offset = ifc_nand_ctrl->index++; + return in_8(ifc_nand_ctrl->addr + offset); + } + + dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); + return ERR_BYTE; +} + +/* + * Read two bytes from the IFC hardware buffer + * read function for 16-bit buswith + */ +static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + uint16_t data; + + /* + * If there are still bytes in the IFC buffer, then use the + * next byte. + */ + if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { + data = in_be16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index); + ifc_nand_ctrl->index += 2; + return (uint8_t) data; + } + + dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); + return ERR_BYTE; +} + +/* + * Read from the IFC Controller Data Buffer + */ +static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + int avail; + + if (len < 0) { + dev_err(priv->dev, "%s: len %d bytes", __func__, len); + return; + } + + avail = min((unsigned int)len, + ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index); + memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail); + ifc_nand_ctrl->index += avail; + + if (len > avail) + dev_err(priv->dev, + "%s: beyond end of buffer (%d requested, %d available)\n", + __func__, len, avail); +} + +/* + * This function is called after Program and Erase Operations to + * check for success or failure. + */ +static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip) +{ + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_regs __iomem *ifc = ctrl->regs; + u32 nand_fsr; + + /* Use READ_STATUS command, but wait for the device to be ready */ + iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT), + &ifc->ifc_nand.nand_fir0); + iowrite32be(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + iowrite32be(1, &ifc->ifc_nand.nand_fbcr); + set_addr(mtd, 0, 0, 0); + ifc_nand_ctrl->read_bytes = 1; + + fsl_ifc_run_command(mtd); + + nand_fsr = ioread32be(&ifc->ifc_nand.nand_fsr); + + /* + * The chip always seems to report that it is + * write-protected, even when it is not. + */ + return nand_fsr | NAND_STATUS_WP; +} + +static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; + + fsl_ifc_read_buf(mtd, buf, mtd->writesize); + if (oob_required) + fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize); + + if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) + dev_err(priv->dev, "NAND Flash ECC Uncorrectable Error\n"); + + if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) + mtd->ecc_stats.failed++; + + return nctrl->max_bitflips; +} + +/* ECC will be calculated automatically, and errors will be detected in + * waitfunc. + */ +static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required) +{ + fsl_ifc_write_buf(mtd, buf, mtd->writesize); + fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + +static int fsl_ifc_chip_init_tail(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + + dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__, + chip->numchips); + dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__, + chip->chipsize); + dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__, + chip->pagemask); + dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__, + chip->chip_delay); + dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__, + chip->badblockpos); + dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__, + chip->chip_shift); + dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__, + chip->page_shift); + dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__, + chip->phys_erase_shift); + dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__, + chip->ecc.mode); + dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__, + chip->ecc.steps); + dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__, + chip->ecc.bytes); + dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__, + chip->ecc.total); + dev_dbg(priv->dev, "%s: nand->ecc.layout = %p\n", __func__, + chip->ecc.layout); + dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags); + dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size); + dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__, + mtd->erasesize); + dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__, + mtd->writesize); + dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__, + mtd->oobsize); + + return 0; +} + +static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv) +{ + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_regs __iomem *ifc = ctrl->regs; + uint32_t csor = 0, csor_8k = 0, csor_ext = 0; + uint32_t cs = priv->bank; + + /* Save CSOR and CSOR_ext */ + csor = ioread32be(&ifc->csor_cs[cs].csor); + csor_ext = ioread32be(&ifc->csor_cs[cs].csor_ext); + + /* chage PageSize 8K and SpareSize 1K*/ + csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000; + iowrite32be(csor_8k, &ifc->csor_cs[cs].csor); + iowrite32be(0x0000400, &ifc->csor_cs[cs].csor_ext); + + /* READID */ + iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT), + &ifc->ifc_nand.nand_fir0); + iowrite32be(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + iowrite32be(0x0, &ifc->ifc_nand.row3); + + iowrite32be(0x0, &ifc->ifc_nand.nand_fbcr); + + /* Program ROW0/COL0 */ + iowrite32be(0x0, &ifc->ifc_nand.row0); + iowrite32be(0x0, &ifc->ifc_nand.col0); + + /* set the chip select for NAND Transaction */ + iowrite32be(cs << IFC_NAND_CSEL_SHIFT, &ifc->ifc_nand.nand_csel); + + /* start read seq */ + iowrite32be(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt); + + /* wait for command complete flag or timeout */ + wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, + IFC_TIMEOUT_MSECS * HZ/1000); + + if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) + printk(KERN_ERR "fsl-ifc: Failed to Initialise SRAM\n"); + + /* Restore CSOR and CSOR_ext */ + iowrite32be(csor, &ifc->csor_cs[cs].csor); + iowrite32be(csor_ext, &ifc->csor_cs[cs].csor_ext); +} + +static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv) +{ + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_regs __iomem *ifc = ctrl->regs; + struct nand_chip *chip = &priv->chip; + struct nand_ecclayout *layout; + u32 csor, ver; + + /* Fill in fsl_ifc_mtd structure */ + priv->mtd.priv = chip; + priv->mtd.owner = THIS_MODULE; + + /* fill in nand_chip structure */ + /* set up function call table */ + if ((ioread32be(&ifc->cspr_cs[priv->bank].cspr)) & CSPR_PORT_SIZE_16) + chip->read_byte = fsl_ifc_read_byte16; + else + chip->read_byte = fsl_ifc_read_byte; + + chip->write_buf = fsl_ifc_write_buf; + chip->read_buf = fsl_ifc_read_buf; + chip->select_chip = fsl_ifc_select_chip; + chip->cmdfunc = fsl_ifc_cmdfunc; + chip->waitfunc = fsl_ifc_wait; + + chip->bbt_td = &bbt_main_descr; + chip->bbt_md = &bbt_mirror_descr; + + iowrite32be(0x0, &ifc->ifc_nand.ncfgr); + + /* set up nand options */ + chip->bbt_options = NAND_BBT_USE_FLASH; + chip->options = NAND_NO_SUBPAGE_WRITE; + + if (ioread32be(&ifc->cspr_cs[priv->bank].cspr) & CSPR_PORT_SIZE_16) { + chip->read_byte = fsl_ifc_read_byte16; + chip->options |= NAND_BUSWIDTH_16; + } else { + chip->read_byte = fsl_ifc_read_byte; + } + + chip->controller = &ifc_nand_ctrl->controller; + chip->priv = priv; + + chip->ecc.read_page = fsl_ifc_read_page; + chip->ecc.write_page = fsl_ifc_write_page; + + csor = ioread32be(&ifc->csor_cs[priv->bank].csor); + + /* Hardware generates ECC per 512 Bytes */ + chip->ecc.size = 512; + chip->ecc.bytes = 8; + chip->ecc.strength = 4; + + switch (csor & CSOR_NAND_PGS_MASK) { + case CSOR_NAND_PGS_512: + if (chip->options & NAND_BUSWIDTH_16) { + layout = &oob_512_16bit_ecc4; + } else { + layout = &oob_512_8bit_ecc4; + + /* Avoid conflict with bad block marker */ + bbt_main_descr.offs = 0; + bbt_mirror_descr.offs = 0; + } + + priv->bufnum_mask = 15; + break; + + case CSOR_NAND_PGS_2K: + layout = &oob_2048_ecc4; + priv->bufnum_mask = 3; + break; + + case CSOR_NAND_PGS_4K: + if ((csor & CSOR_NAND_ECC_MODE_MASK) == + CSOR_NAND_ECC_MODE_4) { + layout = &oob_4096_ecc4; + } else { + layout = &oob_4096_ecc8; + chip->ecc.bytes = 16; + chip->ecc.strength = 8; + } + + priv->bufnum_mask = 1; + break; + + case CSOR_NAND_PGS_8K: + if ((csor & CSOR_NAND_ECC_MODE_MASK) == + CSOR_NAND_ECC_MODE_4) { + layout = &oob_8192_ecc4; + } else { + layout = &oob_8192_ecc8; + chip->ecc.bytes = 16; + chip->ecc.strength = 8; + } + + priv->bufnum_mask = 0; + break; + + default: + dev_err(priv->dev, "bad csor %#x: bad page size\n", csor); + return -ENODEV; + } + + /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */ + if (csor & CSOR_NAND_ECC_DEC_EN) { + chip->ecc.mode = NAND_ECC_HW; + chip->ecc.layout = layout; + } else { + chip->ecc.mode = NAND_ECC_SOFT; + } + + ver = ioread32be(&ifc->ifc_rev); + if (ver == FSL_IFC_V1_1_0) + fsl_ifc_sram_init(priv); + + return 0; +} + +static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv) +{ + nand_release(&priv->mtd); + + kfree(priv->mtd.name); + + if (priv->vbase) + iounmap(priv->vbase); + + ifc_nand_ctrl->chips[priv->bank] = NULL; + + return 0; +} + +static int match_bank(struct fsl_ifc_regs __iomem *ifc, int bank, + phys_addr_t addr) +{ + u32 cspr = ioread32be(&ifc->cspr_cs[bank].cspr); + + if (!(cspr & CSPR_V)) + return 0; + if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND) + return 0; + + return (cspr & CSPR_BA) == convert_ifc_address(addr); +} + +static DEFINE_MUTEX(fsl_ifc_nand_mutex); + +static int fsl_ifc_nand_probe(struct platform_device *dev) +{ + struct fsl_ifc_regs __iomem *ifc; + struct fsl_ifc_mtd *priv; + struct resource res; + static const char *part_probe_types[] + = { "cmdlinepart", "RedBoot", "ofpart", NULL }; + int ret; + int bank; + struct device_node *node = dev->dev.of_node; + struct mtd_part_parser_data ppdata; + + ppdata.of_node = dev->dev.of_node; + if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->regs) + return -ENODEV; + ifc = fsl_ifc_ctrl_dev->regs; + + /* get, allocate and map the memory resource */ + ret = of_address_to_resource(node, 0, &res); + if (ret) { + dev_err(&dev->dev, "%s: failed to get resource\n", __func__); + return ret; + } + + /* find which chip select it is connected to */ + for (bank = 0; bank < FSL_IFC_BANK_COUNT; bank++) { + if (match_bank(ifc, bank, res.start)) + break; + } + + if (bank >= FSL_IFC_BANK_COUNT) { + dev_err(&dev->dev, "%s: address did not match any chip selects\n", + __func__); + return -ENODEV; + } + + priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL); + if (!priv) + return -ENOMEM; + + mutex_lock(&fsl_ifc_nand_mutex); + if (!fsl_ifc_ctrl_dev->nand) { + ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL); + if (!ifc_nand_ctrl) { + mutex_unlock(&fsl_ifc_nand_mutex); + return -ENOMEM; + } + + ifc_nand_ctrl->read_bytes = 0; + ifc_nand_ctrl->index = 0; + ifc_nand_ctrl->addr = NULL; + fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl; + + spin_lock_init(&ifc_nand_ctrl->controller.lock); + init_waitqueue_head(&ifc_nand_ctrl->controller.wq); + } else { + ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand; + } + mutex_unlock(&fsl_ifc_nand_mutex); + + ifc_nand_ctrl->chips[bank] = priv; + priv->bank = bank; + priv->ctrl = fsl_ifc_ctrl_dev; + priv->dev = &dev->dev; + + priv->vbase = ioremap(res.start, resource_size(&res)); + if (!priv->vbase) { + dev_err(priv->dev, "%s: failed to map chip region\n", __func__); + ret = -ENOMEM; + goto err; + } + + dev_set_drvdata(priv->dev, priv); + + iowrite32be(IFC_NAND_EVTER_EN_OPC_EN | + IFC_NAND_EVTER_EN_FTOER_EN | + IFC_NAND_EVTER_EN_WPER_EN, + &ifc->ifc_nand.nand_evter_en); + + /* enable NAND Machine Interrupts */ + iowrite32be(IFC_NAND_EVTER_INTR_OPCIR_EN | + IFC_NAND_EVTER_INTR_FTOERIR_EN | + IFC_NAND_EVTER_INTR_WPERIR_EN, + &ifc->ifc_nand.nand_evter_intr_en); + priv->mtd.name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start); + if (!priv->mtd.name) { + ret = -ENOMEM; + goto err; + } + + ret = fsl_ifc_chip_init(priv); + if (ret) + goto err; + + ret = nand_scan_ident(&priv->mtd, 1, NULL); + if (ret) + goto err; + + ret = fsl_ifc_chip_init_tail(&priv->mtd); + if (ret) + goto err; + + ret = nand_scan_tail(&priv->mtd); + if (ret) + goto err; + + /* First look for RedBoot table or partitions on the command + * line, these take precedence over device tree information */ + mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata, + NULL, 0); + + dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n", + (unsigned long long)res.start, priv->bank); + return 0; + +err: + fsl_ifc_chip_remove(priv); + return ret; +} + +static int fsl_ifc_nand_remove(struct platform_device *dev) +{ + struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev); + + fsl_ifc_chip_remove(priv); + + mutex_lock(&fsl_ifc_nand_mutex); + ifc_nand_ctrl->counter--; + if (!ifc_nand_ctrl->counter) { + fsl_ifc_ctrl_dev->nand = NULL; + kfree(ifc_nand_ctrl); + } + mutex_unlock(&fsl_ifc_nand_mutex); + + return 0; +} + +static const struct of_device_id fsl_ifc_nand_match[] = { + { + .compatible = "fsl,ifc-nand", + }, + {} +}; + +static struct platform_driver fsl_ifc_nand_driver = { + .driver = { + .name = "fsl,ifc-nand", + .owner = THIS_MODULE, + .of_match_table = fsl_ifc_nand_match, + }, + .probe = fsl_ifc_nand_probe, + .remove = fsl_ifc_nand_remove, +}; + +module_platform_driver(fsl_ifc_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Freescale"); +MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver"); diff --git a/drivers/mtd/nand/fsl_upm.c b/drivers/mtd/nand/fsl_upm.c index 1312eda57ba..4d203e84e8c 100644 --- a/drivers/mtd/nand/fsl_upm.c +++ b/drivers/mtd/nand/fsl_upm.c @@ -18,6 +18,7 @@ #include <linux/mtd/nand_ecc.h> #include <linux/mtd/partitions.h> #include <linux/mtd/mtd.h> +#include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/of_gpio.h> #include <linux/io.h> @@ -33,10 +34,7 @@ struct fsl_upm_nand { struct mtd_info mtd; struct nand_chip chip; int last_ctrl; -#ifdef CONFIG_MTD_PARTITIONS struct mtd_partition *parts; -#endif - struct fsl_upm upm; uint8_t upm_addr_offset; uint8_t upm_cmd_offset; @@ -155,15 +153,13 @@ static void fun_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) fun_wait_rnb(fun); } -static int __devinit fun_chip_init(struct fsl_upm_nand *fun, - const struct device_node *upm_np, - const struct resource *io_res) +static int fun_chip_init(struct fsl_upm_nand *fun, + const struct device_node *upm_np, + const struct resource *io_res) { int ret; struct device_node *flash_np; -#ifdef CONFIG_MTD_PARTITIONS - static const char *part_types[] = { "cmdlinepart", NULL, }; -#endif + struct mtd_part_parser_data ppdata; fun->chip.IO_ADDR_R = fun->io_base; fun->chip.IO_ADDR_W = fun->io_base; @@ -186,7 +182,7 @@ static int __devinit fun_chip_init(struct fsl_upm_nand *fun, if (!flash_np) return -ENODEV; - fun->mtd.name = kasprintf(GFP_KERNEL, "%x.%s", io_res->start, + fun->mtd.name = kasprintf(GFP_KERNEL, "0x%llx.%s", (u64)io_res->start, flash_np->name); if (!fun->mtd.name) { ret = -ENOMEM; @@ -197,32 +193,20 @@ static int __devinit fun_chip_init(struct fsl_upm_nand *fun, if (ret) goto err; -#ifdef CONFIG_MTD_PARTITIONS - ret = parse_mtd_partitions(&fun->mtd, part_types, &fun->parts, 0); - -#ifdef CONFIG_MTD_OF_PARTS - if (ret == 0) { - ret = of_mtd_parse_partitions(fun->dev, flash_np, &fun->parts); - if (ret < 0) - goto err; - } -#endif - if (ret > 0) - ret = add_mtd_partitions(&fun->mtd, fun->parts, ret); - else -#endif - ret = add_mtd_device(&fun->mtd); + ppdata.of_node = flash_np; + ret = mtd_device_parse_register(&fun->mtd, NULL, &ppdata, NULL, 0); err: of_node_put(flash_np); + if (ret) + kfree(fun->mtd.name); return ret; } -static int __devinit fun_probe(struct of_device *ofdev, - const struct of_device_id *ofid) +static int fun_probe(struct platform_device *ofdev) { struct fsl_upm_nand *fun; struct resource io_res; - const uint32_t *prop; + const __be32 *prop; int rnb_gpio; int ret; int size; @@ -270,7 +254,7 @@ static int __devinit fun_probe(struct of_device *ofdev, goto err1; } for (i = 0; i < fun->mchip_count; i++) - fun->mchip_offsets[i] = prop[i]; + fun->mchip_offsets[i] = be32_to_cpu(prop[i]); } else { fun->mchip_count = 1; } @@ -295,13 +279,13 @@ static int __devinit fun_probe(struct of_device *ofdev, prop = of_get_property(ofdev->dev.of_node, "chip-delay", NULL); if (prop) - fun->chip_delay = *prop; + fun->chip_delay = be32_to_cpup(prop); else fun->chip_delay = 50; prop = of_get_property(ofdev->dev.of_node, "fsl,upm-wait-flags", &size); if (prop && size == sizeof(uint32_t)) - fun->wait_flags = *prop; + fun->wait_flags = be32_to_cpup(prop); else fun->wait_flags = FSL_UPM_WAIT_RUN_PATTERN | FSL_UPM_WAIT_WRITE_BYTE; @@ -335,7 +319,7 @@ err1: return ret; } -static int __devexit fun_remove(struct of_device *ofdev) +static int fun_remove(struct platform_device *ofdev) { struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev); int i; @@ -360,27 +344,17 @@ static const struct of_device_id of_fun_match[] = { }; MODULE_DEVICE_TABLE(of, of_fun_match); -static struct of_platform_driver of_fun_driver = { +static struct platform_driver of_fun_driver = { .driver = { .name = "fsl,upm-nand", .owner = THIS_MODULE, .of_match_table = of_fun_match, }, .probe = fun_probe, - .remove = __devexit_p(fun_remove), + .remove = fun_remove, }; -static int __init fun_module_init(void) -{ - return of_register_platform_driver(&of_fun_driver); -} -module_init(fun_module_init); - -static void __exit fun_module_exit(void) -{ - of_unregister_platform_driver(&of_fun_driver); -} -module_exit(fun_module_exit); +module_platform_driver(of_fun_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Anton Vorontsov <avorontsov@ru.mvista.com>"); diff --git a/drivers/mtd/nand/fsmc_nand.c b/drivers/mtd/nand/fsmc_nand.c new file mode 100644 index 00000000000..1550692973d --- /dev/null +++ b/drivers/mtd/nand/fsmc_nand.c @@ -0,0 +1,1238 @@ +/* + * drivers/mtd/nand/fsmc_nand.c + * + * ST Microelectronics + * Flexible Static Memory Controller (FSMC) + * Driver for NAND portions + * + * Copyright © 2010 ST Microelectronics + * Vipin Kumar <vipin.kumar@st.com> + * Ashish Priyadarshi + * + * Based on drivers/mtd/nand/nomadik_nand.c + * + * This file is licensed under the terms of the GNU General Public + * License version 2. This program is licensed "as is" without any + * warranty of any kind, whether express or implied. + */ + +#include <linux/clk.h> +#include <linux/completion.h> +#include <linux/dmaengine.h> +#include <linux/dma-direction.h> +#include <linux/dma-mapping.h> +#include <linux/err.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/resource.h> +#include <linux/sched.h> +#include <linux/types.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand_ecc.h> +#include <linux/platform_device.h> +#include <linux/of.h> +#include <linux/mtd/partitions.h> +#include <linux/io.h> +#include <linux/slab.h> +#include <linux/mtd/fsmc.h> +#include <linux/amba/bus.h> +#include <mtd/mtd-abi.h> + +static struct nand_ecclayout fsmc_ecc1_128_layout = { + .eccbytes = 24, + .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52, + 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116}, + .oobfree = { + {.offset = 8, .length = 8}, + {.offset = 24, .length = 8}, + {.offset = 40, .length = 8}, + {.offset = 56, .length = 8}, + {.offset = 72, .length = 8}, + {.offset = 88, .length = 8}, + {.offset = 104, .length = 8}, + {.offset = 120, .length = 8} + } +}; + +static struct nand_ecclayout fsmc_ecc1_64_layout = { + .eccbytes = 12, + .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52}, + .oobfree = { + {.offset = 8, .length = 8}, + {.offset = 24, .length = 8}, + {.offset = 40, .length = 8}, + {.offset = 56, .length = 8}, + } +}; + +static struct nand_ecclayout fsmc_ecc1_16_layout = { + .eccbytes = 3, + .eccpos = {2, 3, 4}, + .oobfree = { + {.offset = 8, .length = 8}, + } +}; + +/* + * ECC4 layout for NAND of pagesize 8192 bytes & OOBsize 256 bytes. 13*16 bytes + * of OB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 46 + * bytes are free for use. + */ +static struct nand_ecclayout fsmc_ecc4_256_layout = { + .eccbytes = 208, + .eccpos = { 2, 3, 4, 5, 6, 7, 8, + 9, 10, 11, 12, 13, 14, + 18, 19, 20, 21, 22, 23, 24, + 25, 26, 27, 28, 29, 30, + 34, 35, 36, 37, 38, 39, 40, + 41, 42, 43, 44, 45, 46, + 50, 51, 52, 53, 54, 55, 56, + 57, 58, 59, 60, 61, 62, + 66, 67, 68, 69, 70, 71, 72, + 73, 74, 75, 76, 77, 78, + 82, 83, 84, 85, 86, 87, 88, + 89, 90, 91, 92, 93, 94, + 98, 99, 100, 101, 102, 103, 104, + 105, 106, 107, 108, 109, 110, + 114, 115, 116, 117, 118, 119, 120, + 121, 122, 123, 124, 125, 126, + 130, 131, 132, 133, 134, 135, 136, + 137, 138, 139, 140, 141, 142, + 146, 147, 148, 149, 150, 151, 152, + 153, 154, 155, 156, 157, 158, + 162, 163, 164, 165, 166, 167, 168, + 169, 170, 171, 172, 173, 174, + 178, 179, 180, 181, 182, 183, 184, + 185, 186, 187, 188, 189, 190, + 194, 195, 196, 197, 198, 199, 200, + 201, 202, 203, 204, 205, 206, + 210, 211, 212, 213, 214, 215, 216, + 217, 218, 219, 220, 221, 222, + 226, 227, 228, 229, 230, 231, 232, + 233, 234, 235, 236, 237, 238, + 242, 243, 244, 245, 246, 247, 248, + 249, 250, 251, 252, 253, 254 + }, + .oobfree = { + {.offset = 15, .length = 3}, + {.offset = 31, .length = 3}, + {.offset = 47, .length = 3}, + {.offset = 63, .length = 3}, + {.offset = 79, .length = 3}, + {.offset = 95, .length = 3}, + {.offset = 111, .length = 3}, + {.offset = 127, .length = 3}, + {.offset = 143, .length = 3}, + {.offset = 159, .length = 3}, + {.offset = 175, .length = 3}, + {.offset = 191, .length = 3}, + {.offset = 207, .length = 3}, + {.offset = 223, .length = 3}, + {.offset = 239, .length = 3}, + {.offset = 255, .length = 1} + } +}; + +/* + * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes + * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118 + * bytes are free for use. + */ +static struct nand_ecclayout fsmc_ecc4_224_layout = { + .eccbytes = 104, + .eccpos = { 2, 3, 4, 5, 6, 7, 8, + 9, 10, 11, 12, 13, 14, + 18, 19, 20, 21, 22, 23, 24, + 25, 26, 27, 28, 29, 30, + 34, 35, 36, 37, 38, 39, 40, + 41, 42, 43, 44, 45, 46, + 50, 51, 52, 53, 54, 55, 56, + 57, 58, 59, 60, 61, 62, + 66, 67, 68, 69, 70, 71, 72, + 73, 74, 75, 76, 77, 78, + 82, 83, 84, 85, 86, 87, 88, + 89, 90, 91, 92, 93, 94, + 98, 99, 100, 101, 102, 103, 104, + 105, 106, 107, 108, 109, 110, + 114, 115, 116, 117, 118, 119, 120, + 121, 122, 123, 124, 125, 126 + }, + .oobfree = { + {.offset = 15, .length = 3}, + {.offset = 31, .length = 3}, + {.offset = 47, .length = 3}, + {.offset = 63, .length = 3}, + {.offset = 79, .length = 3}, + {.offset = 95, .length = 3}, + {.offset = 111, .length = 3}, + {.offset = 127, .length = 97} + } +}; + +/* + * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 128 bytes. 13*8 bytes + * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 22 + * bytes are free for use. + */ +static struct nand_ecclayout fsmc_ecc4_128_layout = { + .eccbytes = 104, + .eccpos = { 2, 3, 4, 5, 6, 7, 8, + 9, 10, 11, 12, 13, 14, + 18, 19, 20, 21, 22, 23, 24, + 25, 26, 27, 28, 29, 30, + 34, 35, 36, 37, 38, 39, 40, + 41, 42, 43, 44, 45, 46, + 50, 51, 52, 53, 54, 55, 56, + 57, 58, 59, 60, 61, 62, + 66, 67, 68, 69, 70, 71, 72, + 73, 74, 75, 76, 77, 78, + 82, 83, 84, 85, 86, 87, 88, + 89, 90, 91, 92, 93, 94, + 98, 99, 100, 101, 102, 103, 104, + 105, 106, 107, 108, 109, 110, + 114, 115, 116, 117, 118, 119, 120, + 121, 122, 123, 124, 125, 126 + }, + .oobfree = { + {.offset = 15, .length = 3}, + {.offset = 31, .length = 3}, + {.offset = 47, .length = 3}, + {.offset = 63, .length = 3}, + {.offset = 79, .length = 3}, + {.offset = 95, .length = 3}, + {.offset = 111, .length = 3}, + {.offset = 127, .length = 1} + } +}; + +/* + * ECC4 layout for NAND of pagesize 2048 bytes & OOBsize 64 bytes. 13*4 bytes of + * OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 10 + * bytes are free for use. + */ +static struct nand_ecclayout fsmc_ecc4_64_layout = { + .eccbytes = 52, + .eccpos = { 2, 3, 4, 5, 6, 7, 8, + 9, 10, 11, 12, 13, 14, + 18, 19, 20, 21, 22, 23, 24, + 25, 26, 27, 28, 29, 30, + 34, 35, 36, 37, 38, 39, 40, + 41, 42, 43, 44, 45, 46, + 50, 51, 52, 53, 54, 55, 56, + 57, 58, 59, 60, 61, 62, + }, + .oobfree = { + {.offset = 15, .length = 3}, + {.offset = 31, .length = 3}, + {.offset = 47, .length = 3}, + {.offset = 63, .length = 1}, + } +}; + +/* + * ECC4 layout for NAND of pagesize 512 bytes & OOBsize 16 bytes. 13 bytes of + * OOB size is reserved for ECC, Byte no. 4 & 5 reserved for bad block and One + * byte is free for use. + */ +static struct nand_ecclayout fsmc_ecc4_16_layout = { + .eccbytes = 13, + .eccpos = { 0, 1, 2, 3, 6, 7, 8, + 9, 10, 11, 12, 13, 14 + }, + .oobfree = { + {.offset = 15, .length = 1}, + } +}; + +/* + * ECC placement definitions in oobfree type format. + * There are 13 bytes of ecc for every 512 byte block and it has to be read + * consecutively and immediately after the 512 byte data block for hardware to + * generate the error bit offsets in 512 byte data. + * Managing the ecc bytes in the following way makes it easier for software to + * read ecc bytes consecutive to data bytes. This way is similar to + * oobfree structure maintained already in generic nand driver + */ +static struct fsmc_eccplace fsmc_ecc4_lp_place = { + .eccplace = { + {.offset = 2, .length = 13}, + {.offset = 18, .length = 13}, + {.offset = 34, .length = 13}, + {.offset = 50, .length = 13}, + {.offset = 66, .length = 13}, + {.offset = 82, .length = 13}, + {.offset = 98, .length = 13}, + {.offset = 114, .length = 13} + } +}; + +static struct fsmc_eccplace fsmc_ecc4_sp_place = { + .eccplace = { + {.offset = 0, .length = 4}, + {.offset = 6, .length = 9} + } +}; + +/** + * struct fsmc_nand_data - structure for FSMC NAND device state + * + * @pid: Part ID on the AMBA PrimeCell format + * @mtd: MTD info for a NAND flash. + * @nand: Chip related info for a NAND flash. + * @partitions: Partition info for a NAND Flash. + * @nr_partitions: Total number of partition of a NAND flash. + * + * @ecc_place: ECC placing locations in oobfree type format. + * @bank: Bank number for probed device. + * @clk: Clock structure for FSMC. + * + * @read_dma_chan: DMA channel for read access + * @write_dma_chan: DMA channel for write access to NAND + * @dma_access_complete: Completion structure + * + * @data_pa: NAND Physical port for Data. + * @data_va: NAND port for Data. + * @cmd_va: NAND port for Command. + * @addr_va: NAND port for Address. + * @regs_va: FSMC regs base address. + */ +struct fsmc_nand_data { + u32 pid; + struct mtd_info mtd; + struct nand_chip nand; + struct mtd_partition *partitions; + unsigned int nr_partitions; + + struct fsmc_eccplace *ecc_place; + unsigned int bank; + struct device *dev; + enum access_mode mode; + struct clk *clk; + + /* DMA related objects */ + struct dma_chan *read_dma_chan; + struct dma_chan *write_dma_chan; + struct completion dma_access_complete; + + struct fsmc_nand_timings *dev_timings; + + dma_addr_t data_pa; + void __iomem *data_va; + void __iomem *cmd_va; + void __iomem *addr_va; + void __iomem *regs_va; + + void (*select_chip)(uint32_t bank, uint32_t busw); +}; + +/* Assert CS signal based on chipnr */ +static void fsmc_select_chip(struct mtd_info *mtd, int chipnr) +{ + struct nand_chip *chip = mtd->priv; + struct fsmc_nand_data *host; + + host = container_of(mtd, struct fsmc_nand_data, mtd); + + switch (chipnr) { + case -1: + chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); + break; + case 0: + case 1: + case 2: + case 3: + if (host->select_chip) + host->select_chip(chipnr, + chip->options & NAND_BUSWIDTH_16); + break; + + default: + BUG(); + } +} + +/* + * fsmc_cmd_ctrl - For facilitaing Hardware access + * This routine allows hardware specific access to control-lines(ALE,CLE) + */ +static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) +{ + struct nand_chip *this = mtd->priv; + struct fsmc_nand_data *host = container_of(mtd, + struct fsmc_nand_data, mtd); + void __iomem *regs = host->regs_va; + unsigned int bank = host->bank; + + if (ctrl & NAND_CTRL_CHANGE) { + u32 pc; + + if (ctrl & NAND_CLE) { + this->IO_ADDR_R = host->cmd_va; + this->IO_ADDR_W = host->cmd_va; + } else if (ctrl & NAND_ALE) { + this->IO_ADDR_R = host->addr_va; + this->IO_ADDR_W = host->addr_va; + } else { + this->IO_ADDR_R = host->data_va; + this->IO_ADDR_W = host->data_va; + } + + pc = readl(FSMC_NAND_REG(regs, bank, PC)); + if (ctrl & NAND_NCE) + pc |= FSMC_ENABLE; + else + pc &= ~FSMC_ENABLE; + writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC)); + } + + mb(); + + if (cmd != NAND_CMD_NONE) + writeb_relaxed(cmd, this->IO_ADDR_W); +} + +/* + * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine + * + * This routine initializes timing parameters related to NAND memory access in + * FSMC registers + */ +static void fsmc_nand_setup(void __iomem *regs, uint32_t bank, + uint32_t busw, struct fsmc_nand_timings *timings) +{ + uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; + uint32_t tclr, tar, thiz, thold, twait, tset; + struct fsmc_nand_timings *tims; + struct fsmc_nand_timings default_timings = { + .tclr = FSMC_TCLR_1, + .tar = FSMC_TAR_1, + .thiz = FSMC_THIZ_1, + .thold = FSMC_THOLD_4, + .twait = FSMC_TWAIT_6, + .tset = FSMC_TSET_0, + }; + + if (timings) + tims = timings; + else + tims = &default_timings; + + tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT; + tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT; + thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT; + thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT; + twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT; + tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT; + + if (busw) + writel_relaxed(value | FSMC_DEVWID_16, + FSMC_NAND_REG(regs, bank, PC)); + else + writel_relaxed(value | FSMC_DEVWID_8, + FSMC_NAND_REG(regs, bank, PC)); + + writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar, + FSMC_NAND_REG(regs, bank, PC)); + writel_relaxed(thiz | thold | twait | tset, + FSMC_NAND_REG(regs, bank, COMM)); + writel_relaxed(thiz | thold | twait | tset, + FSMC_NAND_REG(regs, bank, ATTRIB)); +} + +/* + * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers + */ +static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode) +{ + struct fsmc_nand_data *host = container_of(mtd, + struct fsmc_nand_data, mtd); + void __iomem *regs = host->regs_va; + uint32_t bank = host->bank; + + writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256, + FSMC_NAND_REG(regs, bank, PC)); + writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN, + FSMC_NAND_REG(regs, bank, PC)); + writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN, + FSMC_NAND_REG(regs, bank, PC)); +} + +/* + * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by + * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to + * max of 8-bits) + */ +static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data, + uint8_t *ecc) +{ + struct fsmc_nand_data *host = container_of(mtd, + struct fsmc_nand_data, mtd); + void __iomem *regs = host->regs_va; + uint32_t bank = host->bank; + uint32_t ecc_tmp; + unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; + + do { + if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY) + break; + else + cond_resched(); + } while (!time_after_eq(jiffies, deadline)); + + if (time_after_eq(jiffies, deadline)) { + dev_err(host->dev, "calculate ecc timed out\n"); + return -ETIMEDOUT; + } + + ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); + ecc[0] = (uint8_t) (ecc_tmp >> 0); + ecc[1] = (uint8_t) (ecc_tmp >> 8); + ecc[2] = (uint8_t) (ecc_tmp >> 16); + ecc[3] = (uint8_t) (ecc_tmp >> 24); + + ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2)); + ecc[4] = (uint8_t) (ecc_tmp >> 0); + ecc[5] = (uint8_t) (ecc_tmp >> 8); + ecc[6] = (uint8_t) (ecc_tmp >> 16); + ecc[7] = (uint8_t) (ecc_tmp >> 24); + + ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3)); + ecc[8] = (uint8_t) (ecc_tmp >> 0); + ecc[9] = (uint8_t) (ecc_tmp >> 8); + ecc[10] = (uint8_t) (ecc_tmp >> 16); + ecc[11] = (uint8_t) (ecc_tmp >> 24); + + ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS)); + ecc[12] = (uint8_t) (ecc_tmp >> 16); + + return 0; +} + +/* + * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by + * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to + * max of 1-bit) + */ +static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data, + uint8_t *ecc) +{ + struct fsmc_nand_data *host = container_of(mtd, + struct fsmc_nand_data, mtd); + void __iomem *regs = host->regs_va; + uint32_t bank = host->bank; + uint32_t ecc_tmp; + + ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); + ecc[0] = (uint8_t) (ecc_tmp >> 0); + ecc[1] = (uint8_t) (ecc_tmp >> 8); + ecc[2] = (uint8_t) (ecc_tmp >> 16); + + return 0; +} + +/* Count the number of 0's in buff upto a max of max_bits */ +static int count_written_bits(uint8_t *buff, int size, int max_bits) +{ + int k, written_bits = 0; + + for (k = 0; k < size; k++) { + written_bits += hweight8(~buff[k]); + if (written_bits > max_bits) + break; + } + + return written_bits; +} + +static void dma_complete(void *param) +{ + struct fsmc_nand_data *host = param; + + complete(&host->dma_access_complete); +} + +static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len, + enum dma_data_direction direction) +{ + struct dma_chan *chan; + struct dma_device *dma_dev; + struct dma_async_tx_descriptor *tx; + dma_addr_t dma_dst, dma_src, dma_addr; + dma_cookie_t cookie; + unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; + int ret; + + if (direction == DMA_TO_DEVICE) + chan = host->write_dma_chan; + else if (direction == DMA_FROM_DEVICE) + chan = host->read_dma_chan; + else + return -EINVAL; + + dma_dev = chan->device; + dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction); + + if (direction == DMA_TO_DEVICE) { + dma_src = dma_addr; + dma_dst = host->data_pa; + } else { + dma_src = host->data_pa; + dma_dst = dma_addr; + } + + tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src, + len, flags); + if (!tx) { + dev_err(host->dev, "device_prep_dma_memcpy error\n"); + ret = -EIO; + goto unmap_dma; + } + + tx->callback = dma_complete; + tx->callback_param = host; + cookie = tx->tx_submit(tx); + + ret = dma_submit_error(cookie); + if (ret) { + dev_err(host->dev, "dma_submit_error %d\n", cookie); + goto unmap_dma; + } + + dma_async_issue_pending(chan); + + ret = + wait_for_completion_timeout(&host->dma_access_complete, + msecs_to_jiffies(3000)); + if (ret <= 0) { + chan->device->device_control(chan, DMA_TERMINATE_ALL, 0); + dev_err(host->dev, "wait_for_completion_timeout\n"); + if (!ret) + ret = -ETIMEDOUT; + goto unmap_dma; + } + + ret = 0; + +unmap_dma: + dma_unmap_single(dma_dev->dev, dma_addr, len, direction); + + return ret; +} + +/* + * fsmc_write_buf - write buffer to chip + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + */ +static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + int i; + struct nand_chip *chip = mtd->priv; + + if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && + IS_ALIGNED(len, sizeof(uint32_t))) { + uint32_t *p = (uint32_t *)buf; + len = len >> 2; + for (i = 0; i < len; i++) + writel_relaxed(p[i], chip->IO_ADDR_W); + } else { + for (i = 0; i < len; i++) + writeb_relaxed(buf[i], chip->IO_ADDR_W); + } +} + +/* + * fsmc_read_buf - read chip data into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + */ +static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + int i; + struct nand_chip *chip = mtd->priv; + + if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && + IS_ALIGNED(len, sizeof(uint32_t))) { + uint32_t *p = (uint32_t *)buf; + len = len >> 2; + for (i = 0; i < len; i++) + p[i] = readl_relaxed(chip->IO_ADDR_R); + } else { + for (i = 0; i < len; i++) + buf[i] = readb_relaxed(chip->IO_ADDR_R); + } +} + +/* + * fsmc_read_buf_dma - read chip data into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + */ +static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct fsmc_nand_data *host; + + host = container_of(mtd, struct fsmc_nand_data, mtd); + dma_xfer(host, buf, len, DMA_FROM_DEVICE); +} + +/* + * fsmc_write_buf_dma - write buffer to chip + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + */ +static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf, + int len) +{ + struct fsmc_nand_data *host; + + host = container_of(mtd, struct fsmc_nand_data, mtd); + dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE); +} + +/* + * fsmc_read_page_hwecc + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller expects OOB data read to chip->oob_poi + * @page: page number to read + * + * This routine is needed for fsmc version 8 as reading from NAND chip has to be + * performed in a strict sequence as follows: + * data(512 byte) -> ecc(13 byte) + * After this read, fsmc hardware generates and reports error data bits(up to a + * max of 8 bits) + */ +static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct fsmc_nand_data *host = container_of(mtd, + struct fsmc_nand_data, mtd); + struct fsmc_eccplace *ecc_place = host->ecc_place; + int i, j, s, stat, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *p = buf; + uint8_t *ecc_calc = chip->buffers->ecccalc; + uint8_t *ecc_code = chip->buffers->ecccode; + int off, len, group = 0; + /* + * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we + * end up reading 14 bytes (7 words) from oob. The local array is + * to maintain word alignment + */ + uint16_t ecc_oob[7]; + uint8_t *oob = (uint8_t *)&ecc_oob[0]; + unsigned int max_bitflips = 0; + + for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { + chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page); + chip->ecc.hwctl(mtd, NAND_ECC_READ); + chip->read_buf(mtd, p, eccsize); + + for (j = 0; j < eccbytes;) { + off = ecc_place->eccplace[group].offset; + len = ecc_place->eccplace[group].length; + group++; + + /* + * length is intentionally kept a higher multiple of 2 + * to read at least 13 bytes even in case of 16 bit NAND + * devices + */ + if (chip->options & NAND_BUSWIDTH_16) + len = roundup(len, 2); + + chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page); + chip->read_buf(mtd, oob + j, len); + j += len; + } + + memcpy(&ecc_code[i], oob, chip->ecc.bytes); + chip->ecc.calculate(mtd, p, &ecc_calc[i]); + + stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + + return max_bitflips; +} + +/* + * fsmc_bch8_correct_data + * @mtd: mtd info structure + * @dat: buffer of read data + * @read_ecc: ecc read from device spare area + * @calc_ecc: ecc calculated from read data + * + * calc_ecc is a 104 bit information containing maximum of 8 error + * offset informations of 13 bits each in 512 bytes of read data. + */ +static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat, + uint8_t *read_ecc, uint8_t *calc_ecc) +{ + struct fsmc_nand_data *host = container_of(mtd, + struct fsmc_nand_data, mtd); + struct nand_chip *chip = mtd->priv; + void __iomem *regs = host->regs_va; + unsigned int bank = host->bank; + uint32_t err_idx[8]; + uint32_t num_err, i; + uint32_t ecc1, ecc2, ecc3, ecc4; + + num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF; + + /* no bit flipping */ + if (likely(num_err == 0)) + return 0; + + /* too many errors */ + if (unlikely(num_err > 8)) { + /* + * This is a temporary erase check. A newly erased page read + * would result in an ecc error because the oob data is also + * erased to FF and the calculated ecc for an FF data is not + * FF..FF. + * This is a workaround to skip performing correction in case + * data is FF..FF + * + * Logic: + * For every page, each bit written as 0 is counted until these + * number of bits are greater than 8 (the maximum correction + * capability of FSMC for each 512 + 13 bytes) + */ + + int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8); + int bits_data = count_written_bits(dat, chip->ecc.size, 8); + + if ((bits_ecc + bits_data) <= 8) { + if (bits_data) + memset(dat, 0xff, chip->ecc.size); + return bits_data; + } + + return -EBADMSG; + } + + /* + * ------------------- calc_ecc[] bit wise -----------|--13 bits--| + * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--| + * + * calc_ecc is a 104 bit information containing maximum of 8 error + * offset informations of 13 bits each. calc_ecc is copied into a + * uint64_t array and error offset indexes are populated in err_idx + * array + */ + ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); + ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2)); + ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3)); + ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS)); + + err_idx[0] = (ecc1 >> 0) & 0x1FFF; + err_idx[1] = (ecc1 >> 13) & 0x1FFF; + err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F); + err_idx[3] = (ecc2 >> 7) & 0x1FFF; + err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF); + err_idx[5] = (ecc3 >> 1) & 0x1FFF; + err_idx[6] = (ecc3 >> 14) & 0x1FFF; + err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F); + + i = 0; + while (num_err--) { + change_bit(0, (unsigned long *)&err_idx[i]); + change_bit(1, (unsigned long *)&err_idx[i]); + + if (err_idx[i] < chip->ecc.size * 8) { + change_bit(err_idx[i], (unsigned long *)dat); + i++; + } + } + return i; +} + +static bool filter(struct dma_chan *chan, void *slave) +{ + chan->private = slave; + return true; +} + +#ifdef CONFIG_OF +static int fsmc_nand_probe_config_dt(struct platform_device *pdev, + struct device_node *np) +{ + struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); + u32 val; + + /* Set default NAND width to 8 bits */ + pdata->width = 8; + if (!of_property_read_u32(np, "bank-width", &val)) { + if (val == 2) { + pdata->width = 16; + } else if (val != 1) { + dev_err(&pdev->dev, "invalid bank-width %u\n", val); + return -EINVAL; + } + } + if (of_get_property(np, "nand-skip-bbtscan", NULL)) + pdata->options = NAND_SKIP_BBTSCAN; + + pdata->nand_timings = devm_kzalloc(&pdev->dev, + sizeof(*pdata->nand_timings), GFP_KERNEL); + if (!pdata->nand_timings) + return -ENOMEM; + of_property_read_u8_array(np, "timings", (u8 *)pdata->nand_timings, + sizeof(*pdata->nand_timings)); + + /* Set default NAND bank to 0 */ + pdata->bank = 0; + if (!of_property_read_u32(np, "bank", &val)) { + if (val > 3) { + dev_err(&pdev->dev, "invalid bank %u\n", val); + return -EINVAL; + } + pdata->bank = val; + } + return 0; +} +#else +static int fsmc_nand_probe_config_dt(struct platform_device *pdev, + struct device_node *np) +{ + return -ENOSYS; +} +#endif + +/* + * fsmc_nand_probe - Probe function + * @pdev: platform device structure + */ +static int __init fsmc_nand_probe(struct platform_device *pdev) +{ + struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); + struct device_node __maybe_unused *np = pdev->dev.of_node; + struct mtd_part_parser_data ppdata = {}; + struct fsmc_nand_data *host; + struct mtd_info *mtd; + struct nand_chip *nand; + struct resource *res; + dma_cap_mask_t mask; + int ret = 0; + u32 pid; + int i; + + if (np) { + pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); + pdev->dev.platform_data = pdata; + ret = fsmc_nand_probe_config_dt(pdev, np); + if (ret) { + dev_err(&pdev->dev, "no platform data\n"); + return -ENODEV; + } + } + + if (!pdata) { + dev_err(&pdev->dev, "platform data is NULL\n"); + return -EINVAL; + } + + /* Allocate memory for the device structure (and zero it) */ + host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); + if (!host) + return -ENOMEM; + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); + host->data_va = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->data_va)) + return PTR_ERR(host->data_va); + + host->data_pa = (dma_addr_t)res->start; + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr"); + host->addr_va = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->addr_va)) + return PTR_ERR(host->addr_va); + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd"); + host->cmd_va = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->cmd_va)) + return PTR_ERR(host->cmd_va); + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); + host->regs_va = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->regs_va)) + return PTR_ERR(host->regs_va); + + host->clk = clk_get(&pdev->dev, NULL); + if (IS_ERR(host->clk)) { + dev_err(&pdev->dev, "failed to fetch block clock\n"); + return PTR_ERR(host->clk); + } + + ret = clk_prepare_enable(host->clk); + if (ret) + goto err_clk_prepare_enable; + + /* + * This device ID is actually a common AMBA ID as used on the + * AMBA PrimeCell bus. However it is not a PrimeCell. + */ + for (pid = 0, i = 0; i < 4; i++) + pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8); + host->pid = pid; + dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, " + "revision %02x, config %02x\n", + AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid), + AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid)); + + host->bank = pdata->bank; + host->select_chip = pdata->select_bank; + host->partitions = pdata->partitions; + host->nr_partitions = pdata->nr_partitions; + host->dev = &pdev->dev; + host->dev_timings = pdata->nand_timings; + host->mode = pdata->mode; + + if (host->mode == USE_DMA_ACCESS) + init_completion(&host->dma_access_complete); + + /* Link all private pointers */ + mtd = &host->mtd; + nand = &host->nand; + mtd->priv = nand; + nand->priv = host; + + host->mtd.owner = THIS_MODULE; + nand->IO_ADDR_R = host->data_va; + nand->IO_ADDR_W = host->data_va; + nand->cmd_ctrl = fsmc_cmd_ctrl; + nand->chip_delay = 30; + + nand->ecc.mode = NAND_ECC_HW; + nand->ecc.hwctl = fsmc_enable_hwecc; + nand->ecc.size = 512; + nand->options = pdata->options; + nand->select_chip = fsmc_select_chip; + nand->badblockbits = 7; + + if (pdata->width == FSMC_NAND_BW16) + nand->options |= NAND_BUSWIDTH_16; + + switch (host->mode) { + case USE_DMA_ACCESS: + dma_cap_zero(mask); + dma_cap_set(DMA_MEMCPY, mask); + host->read_dma_chan = dma_request_channel(mask, filter, + pdata->read_dma_priv); + if (!host->read_dma_chan) { + dev_err(&pdev->dev, "Unable to get read dma channel\n"); + goto err_req_read_chnl; + } + host->write_dma_chan = dma_request_channel(mask, filter, + pdata->write_dma_priv); + if (!host->write_dma_chan) { + dev_err(&pdev->dev, "Unable to get write dma channel\n"); + goto err_req_write_chnl; + } + nand->read_buf = fsmc_read_buf_dma; + nand->write_buf = fsmc_write_buf_dma; + break; + + default: + case USE_WORD_ACCESS: + nand->read_buf = fsmc_read_buf; + nand->write_buf = fsmc_write_buf; + break; + } + + fsmc_nand_setup(host->regs_va, host->bank, + nand->options & NAND_BUSWIDTH_16, + host->dev_timings); + + if (AMBA_REV_BITS(host->pid) >= 8) { + nand->ecc.read_page = fsmc_read_page_hwecc; + nand->ecc.calculate = fsmc_read_hwecc_ecc4; + nand->ecc.correct = fsmc_bch8_correct_data; + nand->ecc.bytes = 13; + nand->ecc.strength = 8; + } else { + nand->ecc.calculate = fsmc_read_hwecc_ecc1; + nand->ecc.correct = nand_correct_data; + nand->ecc.bytes = 3; + nand->ecc.strength = 1; + } + + /* + * Scan to find existence of the device + */ + if (nand_scan_ident(&host->mtd, 1, NULL)) { + ret = -ENXIO; + dev_err(&pdev->dev, "No NAND Device found!\n"); + goto err_scan_ident; + } + + if (AMBA_REV_BITS(host->pid) >= 8) { + switch (host->mtd.oobsize) { + case 16: + nand->ecc.layout = &fsmc_ecc4_16_layout; + host->ecc_place = &fsmc_ecc4_sp_place; + break; + case 64: + nand->ecc.layout = &fsmc_ecc4_64_layout; + host->ecc_place = &fsmc_ecc4_lp_place; + break; + case 128: + nand->ecc.layout = &fsmc_ecc4_128_layout; + host->ecc_place = &fsmc_ecc4_lp_place; + break; + case 224: + nand->ecc.layout = &fsmc_ecc4_224_layout; + host->ecc_place = &fsmc_ecc4_lp_place; + break; + case 256: + nand->ecc.layout = &fsmc_ecc4_256_layout; + host->ecc_place = &fsmc_ecc4_lp_place; + break; + default: + dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n", + mtd->oobsize); + BUG(); + } + } else { + switch (host->mtd.oobsize) { + case 16: + nand->ecc.layout = &fsmc_ecc1_16_layout; + break; + case 64: + nand->ecc.layout = &fsmc_ecc1_64_layout; + break; + case 128: + nand->ecc.layout = &fsmc_ecc1_128_layout; + break; + default: + dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n", + mtd->oobsize); + BUG(); + } + } + + /* Second stage of scan to fill MTD data-structures */ + if (nand_scan_tail(&host->mtd)) { + ret = -ENXIO; + goto err_probe; + } + + /* + * The partition information can is accessed by (in the same precedence) + * + * command line through Bootloader, + * platform data, + * default partition information present in driver. + */ + /* + * Check for partition info passed + */ + host->mtd.name = "nand"; + ppdata.of_node = np; + ret = mtd_device_parse_register(&host->mtd, NULL, &ppdata, + host->partitions, host->nr_partitions); + if (ret) + goto err_probe; + + platform_set_drvdata(pdev, host); + dev_info(&pdev->dev, "FSMC NAND driver registration successful\n"); + return 0; + +err_probe: +err_scan_ident: + if (host->mode == USE_DMA_ACCESS) + dma_release_channel(host->write_dma_chan); +err_req_write_chnl: + if (host->mode == USE_DMA_ACCESS) + dma_release_channel(host->read_dma_chan); +err_req_read_chnl: + clk_disable_unprepare(host->clk); +err_clk_prepare_enable: + clk_put(host->clk); + return ret; +} + +/* + * Clean up routine + */ +static int fsmc_nand_remove(struct platform_device *pdev) +{ + struct fsmc_nand_data *host = platform_get_drvdata(pdev); + + if (host) { + nand_release(&host->mtd); + + if (host->mode == USE_DMA_ACCESS) { + dma_release_channel(host->write_dma_chan); + dma_release_channel(host->read_dma_chan); + } + clk_disable_unprepare(host->clk); + clk_put(host->clk); + } + + return 0; +} + +#ifdef CONFIG_PM_SLEEP +static int fsmc_nand_suspend(struct device *dev) +{ + struct fsmc_nand_data *host = dev_get_drvdata(dev); + if (host) + clk_disable_unprepare(host->clk); + return 0; +} + +static int fsmc_nand_resume(struct device *dev) +{ + struct fsmc_nand_data *host = dev_get_drvdata(dev); + if (host) { + clk_prepare_enable(host->clk); + fsmc_nand_setup(host->regs_va, host->bank, + host->nand.options & NAND_BUSWIDTH_16, + host->dev_timings); + } + return 0; +} +#endif + +static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume); + +#ifdef CONFIG_OF +static const struct of_device_id fsmc_nand_id_table[] = { + { .compatible = "st,spear600-fsmc-nand" }, + { .compatible = "stericsson,fsmc-nand" }, + {} +}; +MODULE_DEVICE_TABLE(of, fsmc_nand_id_table); +#endif + +static struct platform_driver fsmc_nand_driver = { + .remove = fsmc_nand_remove, + .driver = { + .owner = THIS_MODULE, + .name = "fsmc-nand", + .of_match_table = of_match_ptr(fsmc_nand_id_table), + .pm = &fsmc_nand_pm_ops, + }, +}; + +module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi"); +MODULE_DESCRIPTION("NAND driver for SPEAr Platforms"); diff --git a/drivers/mtd/nand/gpio.c b/drivers/mtd/nand/gpio.c index 0cde618bcc1..117ce333fdd 100644 --- a/drivers/mtd/nand/gpio.c +++ b/drivers/mtd/nand/gpio.c @@ -17,7 +17,7 @@ */ #include <linux/kernel.h> -#include <linux/init.h> +#include <linux/err.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/platform_device.h> @@ -27,6 +27,9 @@ #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> #include <linux/mtd/nand-gpio.h> +#include <linux/of.h> +#include <linux/of_address.h> +#include <linux/of_gpio.h> struct gpiomtd { void __iomem *io_sync; @@ -83,231 +86,201 @@ static void gpio_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) gpio_nand_dosync(gpiomtd); } -static void gpio_nand_writebuf(struct mtd_info *mtd, const u_char *buf, int len) +static int gpio_nand_devready(struct mtd_info *mtd) { - struct nand_chip *this = mtd->priv; + struct gpiomtd *gpiomtd = gpio_nand_getpriv(mtd); - writesb(this->IO_ADDR_W, buf, len); + return gpio_get_value(gpiomtd->plat.gpio_rdy); } -static void gpio_nand_readbuf(struct mtd_info *mtd, u_char *buf, int len) +#ifdef CONFIG_OF +static const struct of_device_id gpio_nand_id_table[] = { + { .compatible = "gpio-control-nand" }, + {} +}; +MODULE_DEVICE_TABLE(of, gpio_nand_id_table); + +static int gpio_nand_get_config_of(const struct device *dev, + struct gpio_nand_platdata *plat) { - struct nand_chip *this = mtd->priv; + u32 val; - readsb(this->IO_ADDR_R, buf, len); -} + if (!dev->of_node) + return -ENODEV; -static int gpio_nand_verifybuf(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct nand_chip *this = mtd->priv; - unsigned char read, *p = (unsigned char *) buf; - int i, err = 0; - - for (i = 0; i < len; i++) { - read = readb(this->IO_ADDR_R); - if (read != p[i]) { - pr_debug("%s: err at %d (read %04x vs %04x)\n", - __func__, i, read, p[i]); - err = -EFAULT; + if (!of_property_read_u32(dev->of_node, "bank-width", &val)) { + if (val == 2) { + plat->options |= NAND_BUSWIDTH_16; + } else if (val != 1) { + dev_err(dev, "invalid bank-width %u\n", val); + return -EINVAL; } } - return err; -} -static void gpio_nand_writebuf16(struct mtd_info *mtd, const u_char *buf, - int len) -{ - struct nand_chip *this = mtd->priv; + plat->gpio_rdy = of_get_gpio(dev->of_node, 0); + plat->gpio_nce = of_get_gpio(dev->of_node, 1); + plat->gpio_ale = of_get_gpio(dev->of_node, 2); + plat->gpio_cle = of_get_gpio(dev->of_node, 3); + plat->gpio_nwp = of_get_gpio(dev->of_node, 4); - if (IS_ALIGNED((unsigned long)buf, 2)) { - writesw(this->IO_ADDR_W, buf, len>>1); - } else { - int i; - unsigned short *ptr = (unsigned short *)buf; + if (!of_property_read_u32(dev->of_node, "chip-delay", &val)) + plat->chip_delay = val; - for (i = 0; i < len; i += 2, ptr++) - writew(*ptr, this->IO_ADDR_W); - } + return 0; } -static void gpio_nand_readbuf16(struct mtd_info *mtd, u_char *buf, int len) +static struct resource *gpio_nand_get_io_sync_of(struct platform_device *pdev) { - struct nand_chip *this = mtd->priv; + struct resource *r; + u64 addr; - if (IS_ALIGNED((unsigned long)buf, 2)) { - readsw(this->IO_ADDR_R, buf, len>>1); - } else { - int i; - unsigned short *ptr = (unsigned short *)buf; + if (of_property_read_u64(pdev->dev.of_node, + "gpio-control-nand,io-sync-reg", &addr)) + return NULL; - for (i = 0; i < len; i += 2, ptr++) - *ptr = readw(this->IO_ADDR_R); - } -} + r = devm_kzalloc(&pdev->dev, sizeof(*r), GFP_KERNEL); + if (!r) + return NULL; -static int gpio_nand_verifybuf16(struct mtd_info *mtd, const u_char *buf, - int len) + r->start = addr; + r->end = r->start + 0x3; + r->flags = IORESOURCE_MEM; + + return r; +} +#else /* CONFIG_OF */ +static inline int gpio_nand_get_config_of(const struct device *dev, + struct gpio_nand_platdata *plat) { - struct nand_chip *this = mtd->priv; - unsigned short read, *p = (unsigned short *) buf; - int i, err = 0; - len >>= 1; - - for (i = 0; i < len; i++) { - read = readw(this->IO_ADDR_R); - if (read != p[i]) { - pr_debug("%s: err at %d (read %04x vs %04x)\n", - __func__, i, read, p[i]); - err = -EFAULT; - } - } - return err; + return -ENOSYS; } - -static int gpio_nand_devready(struct mtd_info *mtd) +static inline struct resource * +gpio_nand_get_io_sync_of(struct platform_device *pdev) { - struct gpiomtd *gpiomtd = gpio_nand_getpriv(mtd); - return gpio_get_value(gpiomtd->plat.gpio_rdy); + return NULL; } +#endif /* CONFIG_OF */ -static int __devexit gpio_nand_remove(struct platform_device *dev) +static inline int gpio_nand_get_config(const struct device *dev, + struct gpio_nand_platdata *plat) { - struct gpiomtd *gpiomtd = platform_get_drvdata(dev); - struct resource *res; + int ret = gpio_nand_get_config_of(dev, plat); - nand_release(&gpiomtd->mtd_info); - - res = platform_get_resource(dev, IORESOURCE_MEM, 1); - iounmap(gpiomtd->io_sync); - if (res) - release_mem_region(res->start, resource_size(res)); + if (!ret) + return ret; - res = platform_get_resource(dev, IORESOURCE_MEM, 0); - iounmap(gpiomtd->nand_chip.IO_ADDR_R); - release_mem_region(res->start, resource_size(res)); + if (dev_get_platdata(dev)) { + memcpy(plat, dev_get_platdata(dev), sizeof(*plat)); + return 0; + } - if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) - gpio_set_value(gpiomtd->plat.gpio_nwp, 0); - gpio_set_value(gpiomtd->plat.gpio_nce, 1); + return -EINVAL; +} - gpio_free(gpiomtd->plat.gpio_cle); - gpio_free(gpiomtd->plat.gpio_ale); - gpio_free(gpiomtd->plat.gpio_nce); - if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) - gpio_free(gpiomtd->plat.gpio_nwp); - gpio_free(gpiomtd->plat.gpio_rdy); +static inline struct resource * +gpio_nand_get_io_sync(struct platform_device *pdev) +{ + struct resource *r = gpio_nand_get_io_sync_of(pdev); - kfree(gpiomtd); + if (r) + return r; - return 0; + return platform_get_resource(pdev, IORESOURCE_MEM, 1); } -static void __iomem *request_and_remap(struct resource *res, size_t size, - const char *name, int *err) +static int gpio_nand_remove(struct platform_device *pdev) { - void __iomem *ptr; + struct gpiomtd *gpiomtd = platform_get_drvdata(pdev); - if (!request_mem_region(res->start, resource_size(res), name)) { - *err = -EBUSY; - return NULL; - } + nand_release(&gpiomtd->mtd_info); - ptr = ioremap(res->start, size); - if (!ptr) { - release_mem_region(res->start, resource_size(res)); - *err = -ENOMEM; - } - return ptr; + if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) + gpio_set_value(gpiomtd->plat.gpio_nwp, 0); + gpio_set_value(gpiomtd->plat.gpio_nce, 1); + + return 0; } -static int __devinit gpio_nand_probe(struct platform_device *dev) +static int gpio_nand_probe(struct platform_device *pdev) { struct gpiomtd *gpiomtd; - struct nand_chip *this; - struct resource *res0, *res1; - int ret; - - if (!dev->dev.platform_data) - return -EINVAL; + struct nand_chip *chip; + struct resource *res; + struct mtd_part_parser_data ppdata = {}; + int ret = 0; - res0 = platform_get_resource(dev, IORESOURCE_MEM, 0); - if (!res0) + if (!pdev->dev.of_node && !dev_get_platdata(&pdev->dev)) return -EINVAL; - gpiomtd = kzalloc(sizeof(*gpiomtd), GFP_KERNEL); - if (gpiomtd == NULL) { - dev_err(&dev->dev, "failed to create NAND MTD\n"); + gpiomtd = devm_kzalloc(&pdev->dev, sizeof(*gpiomtd), GFP_KERNEL); + if (!gpiomtd) return -ENOMEM; - } - this = &gpiomtd->nand_chip; - this->IO_ADDR_R = request_and_remap(res0, 2, "NAND", &ret); - if (!this->IO_ADDR_R) { - dev_err(&dev->dev, "unable to map NAND\n"); - goto err_map; - } + chip = &gpiomtd->nand_chip; - res1 = platform_get_resource(dev, IORESOURCE_MEM, 1); - if (res1) { - gpiomtd->io_sync = request_and_remap(res1, 4, "NAND sync", &ret); - if (!gpiomtd->io_sync) { - dev_err(&dev->dev, "unable to map sync NAND\n"); - goto err_sync; - } + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(chip->IO_ADDR_R)) + return PTR_ERR(chip->IO_ADDR_R); + + res = gpio_nand_get_io_sync(pdev); + if (res) { + gpiomtd->io_sync = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(gpiomtd->io_sync)) + return PTR_ERR(gpiomtd->io_sync); } - memcpy(&gpiomtd->plat, dev->dev.platform_data, sizeof(gpiomtd->plat)); + ret = gpio_nand_get_config(&pdev->dev, &gpiomtd->plat); + if (ret) + return ret; - ret = gpio_request(gpiomtd->plat.gpio_nce, "NAND NCE"); + ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_nce, "NAND NCE"); if (ret) - goto err_nce; + return ret; gpio_direction_output(gpiomtd->plat.gpio_nce, 1); + if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) { - ret = gpio_request(gpiomtd->plat.gpio_nwp, "NAND NWP"); + ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_nwp, + "NAND NWP"); if (ret) - goto err_nwp; - gpio_direction_output(gpiomtd->plat.gpio_nwp, 1); + return ret; } - ret = gpio_request(gpiomtd->plat.gpio_ale, "NAND ALE"); + + ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_ale, "NAND ALE"); if (ret) - goto err_ale; + return ret; gpio_direction_output(gpiomtd->plat.gpio_ale, 0); - ret = gpio_request(gpiomtd->plat.gpio_cle, "NAND CLE"); + + ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_cle, "NAND CLE"); if (ret) - goto err_cle; + return ret; gpio_direction_output(gpiomtd->plat.gpio_cle, 0); - ret = gpio_request(gpiomtd->plat.gpio_rdy, "NAND RDY"); - if (ret) - goto err_rdy; - gpio_direction_input(gpiomtd->plat.gpio_rdy); - - - this->IO_ADDR_W = this->IO_ADDR_R; - this->ecc.mode = NAND_ECC_SOFT; - this->options = gpiomtd->plat.options; - this->chip_delay = gpiomtd->plat.chip_delay; - - /* install our routines */ - this->cmd_ctrl = gpio_nand_cmd_ctrl; - this->dev_ready = gpio_nand_devready; - - if (this->options & NAND_BUSWIDTH_16) { - this->read_buf = gpio_nand_readbuf16; - this->write_buf = gpio_nand_writebuf16; - this->verify_buf = gpio_nand_verifybuf16; - } else { - this->read_buf = gpio_nand_readbuf; - this->write_buf = gpio_nand_writebuf; - this->verify_buf = gpio_nand_verifybuf; + + if (gpio_is_valid(gpiomtd->plat.gpio_rdy)) { + ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_rdy, + "NAND RDY"); + if (ret) + return ret; + gpio_direction_input(gpiomtd->plat.gpio_rdy); + chip->dev_ready = gpio_nand_devready; } - /* set the mtd private data for the nand driver */ - gpiomtd->mtd_info.priv = this; - gpiomtd->mtd_info.owner = THIS_MODULE; + chip->IO_ADDR_W = chip->IO_ADDR_R; + chip->ecc.mode = NAND_ECC_SOFT; + chip->options = gpiomtd->plat.options; + chip->chip_delay = gpiomtd->plat.chip_delay; + chip->cmd_ctrl = gpio_nand_cmd_ctrl; + + gpiomtd->mtd_info.priv = chip; + gpiomtd->mtd_info.owner = THIS_MODULE; + + platform_set_drvdata(pdev, gpiomtd); + + if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) + gpio_direction_output(gpiomtd->plat.gpio_nwp, 1); if (nand_scan(&gpiomtd->mtd_info, 1)) { - dev_err(&dev->dev, "no nand chips found?\n"); ret = -ENXIO; goto err_wp; } @@ -316,34 +289,17 @@ static int __devinit gpio_nand_probe(struct platform_device *dev) gpiomtd->plat.adjust_parts(&gpiomtd->plat, gpiomtd->mtd_info.size); - add_mtd_partitions(&gpiomtd->mtd_info, gpiomtd->plat.parts, - gpiomtd->plat.num_parts); - platform_set_drvdata(dev, gpiomtd); - - return 0; + ppdata.of_node = pdev->dev.of_node; + ret = mtd_device_parse_register(&gpiomtd->mtd_info, NULL, &ppdata, + gpiomtd->plat.parts, + gpiomtd->plat.num_parts); + if (!ret) + return 0; err_wp: if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) gpio_set_value(gpiomtd->plat.gpio_nwp, 0); - gpio_free(gpiomtd->plat.gpio_rdy); -err_rdy: - gpio_free(gpiomtd->plat.gpio_cle); -err_cle: - gpio_free(gpiomtd->plat.gpio_ale); -err_ale: - if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) - gpio_free(gpiomtd->plat.gpio_nwp); -err_nwp: - gpio_free(gpiomtd->plat.gpio_nce); -err_nce: - iounmap(gpiomtd->io_sync); - if (res1) - release_mem_region(res1->start, resource_size(res1)); -err_sync: - iounmap(gpiomtd->nand_chip.IO_ADDR_R); - release_mem_region(res0->start, resource_size(res0)); -err_map: - kfree(gpiomtd); + return ret; } @@ -352,23 +308,12 @@ static struct platform_driver gpio_nand_driver = { .remove = gpio_nand_remove, .driver = { .name = "gpio-nand", + .owner = THIS_MODULE, + .of_match_table = of_match_ptr(gpio_nand_id_table), }, }; -static int __init gpio_nand_init(void) -{ - printk(KERN_INFO "GPIO NAND driver, © 2004 Simtec Electronics\n"); - - return platform_driver_register(&gpio_nand_driver); -} - -static void __exit gpio_nand_exit(void) -{ - platform_driver_unregister(&gpio_nand_driver); -} - -module_init(gpio_nand_init); -module_exit(gpio_nand_exit); +module_platform_driver(gpio_nand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); diff --git a/drivers/mtd/nand/gpmi-nand/Makefile b/drivers/mtd/nand/gpmi-nand/Makefile new file mode 100644 index 00000000000..3a462487c35 --- /dev/null +++ b/drivers/mtd/nand/gpmi-nand/Makefile @@ -0,0 +1,3 @@ +obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi_nand.o +gpmi_nand-objs += gpmi-nand.o +gpmi_nand-objs += gpmi-lib.o diff --git a/drivers/mtd/nand/gpmi-nand/bch-regs.h b/drivers/mtd/nand/gpmi-nand/bch-regs.h new file mode 100644 index 00000000000..05bb91f2f4c --- /dev/null +++ b/drivers/mtd/nand/gpmi-nand/bch-regs.h @@ -0,0 +1,128 @@ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright 2008-2011 Freescale Semiconductor, Inc. + * Copyright 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ +#ifndef __GPMI_NAND_BCH_REGS_H +#define __GPMI_NAND_BCH_REGS_H + +#define HW_BCH_CTRL 0x00000000 +#define HW_BCH_CTRL_SET 0x00000004 +#define HW_BCH_CTRL_CLR 0x00000008 +#define HW_BCH_CTRL_TOG 0x0000000c + +#define BM_BCH_CTRL_COMPLETE_IRQ_EN (1 << 8) +#define BM_BCH_CTRL_COMPLETE_IRQ (1 << 0) + +#define HW_BCH_STATUS0 0x00000010 +#define HW_BCH_MODE 0x00000020 +#define HW_BCH_ENCODEPTR 0x00000030 +#define HW_BCH_DATAPTR 0x00000040 +#define HW_BCH_METAPTR 0x00000050 +#define HW_BCH_LAYOUTSELECT 0x00000070 + +#define HW_BCH_FLASH0LAYOUT0 0x00000080 + +#define BP_BCH_FLASH0LAYOUT0_NBLOCKS 24 +#define BM_BCH_FLASH0LAYOUT0_NBLOCKS (0xff << BP_BCH_FLASH0LAYOUT0_NBLOCKS) +#define BF_BCH_FLASH0LAYOUT0_NBLOCKS(v) \ + (((v) << BP_BCH_FLASH0LAYOUT0_NBLOCKS) & BM_BCH_FLASH0LAYOUT0_NBLOCKS) + +#define BP_BCH_FLASH0LAYOUT0_META_SIZE 16 +#define BM_BCH_FLASH0LAYOUT0_META_SIZE (0xff << BP_BCH_FLASH0LAYOUT0_META_SIZE) +#define BF_BCH_FLASH0LAYOUT0_META_SIZE(v) \ + (((v) << BP_BCH_FLASH0LAYOUT0_META_SIZE)\ + & BM_BCH_FLASH0LAYOUT0_META_SIZE) + +#define BP_BCH_FLASH0LAYOUT0_ECC0 12 +#define BM_BCH_FLASH0LAYOUT0_ECC0 (0xf << BP_BCH_FLASH0LAYOUT0_ECC0) +#define MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0 11 +#define MX6Q_BM_BCH_FLASH0LAYOUT0_ECC0 (0x1f << MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0) +#define BF_BCH_FLASH0LAYOUT0_ECC0(v, x) \ + (GPMI_IS_MX6(x) \ + ? (((v) << MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0) \ + & MX6Q_BM_BCH_FLASH0LAYOUT0_ECC0) \ + : (((v) << BP_BCH_FLASH0LAYOUT0_ECC0) \ + & BM_BCH_FLASH0LAYOUT0_ECC0) \ + ) + +#define MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14 10 +#define MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14 \ + (0x1 << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14) +#define BF_BCH_FLASH0LAYOUT0_GF(v, x) \ + ((GPMI_IS_MX6(x) && ((v) == 14)) \ + ? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14) \ + & MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14) \ + : 0 \ + ) + +#define BP_BCH_FLASH0LAYOUT0_DATA0_SIZE 0 +#define BM_BCH_FLASH0LAYOUT0_DATA0_SIZE \ + (0xfff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE) +#define MX6Q_BM_BCH_FLASH0LAYOUT0_DATA0_SIZE \ + (0x3ff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE) +#define BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(v, x) \ + (GPMI_IS_MX6(x) \ + ? (((v) >> 2) & MX6Q_BM_BCH_FLASH0LAYOUT0_DATA0_SIZE) \ + : ((v) & BM_BCH_FLASH0LAYOUT0_DATA0_SIZE) \ + ) + +#define HW_BCH_FLASH0LAYOUT1 0x00000090 + +#define BP_BCH_FLASH0LAYOUT1_PAGE_SIZE 16 +#define BM_BCH_FLASH0LAYOUT1_PAGE_SIZE \ + (0xffff << BP_BCH_FLASH0LAYOUT1_PAGE_SIZE) +#define BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(v) \ + (((v) << BP_BCH_FLASH0LAYOUT1_PAGE_SIZE) \ + & BM_BCH_FLASH0LAYOUT1_PAGE_SIZE) + +#define BP_BCH_FLASH0LAYOUT1_ECCN 12 +#define BM_BCH_FLASH0LAYOUT1_ECCN (0xf << BP_BCH_FLASH0LAYOUT1_ECCN) +#define MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN 11 +#define MX6Q_BM_BCH_FLASH0LAYOUT1_ECCN (0x1f << MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN) +#define BF_BCH_FLASH0LAYOUT1_ECCN(v, x) \ + (GPMI_IS_MX6(x) \ + ? (((v) << MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN) \ + & MX6Q_BM_BCH_FLASH0LAYOUT1_ECCN) \ + : (((v) << BP_BCH_FLASH0LAYOUT1_ECCN) \ + & BM_BCH_FLASH0LAYOUT1_ECCN) \ + ) + +#define MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14 10 +#define MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14 \ + (0x1 << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14) +#define BF_BCH_FLASH0LAYOUT1_GF(v, x) \ + ((GPMI_IS_MX6(x) && ((v) == 14)) \ + ? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14) \ + & MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14) \ + : 0 \ + ) + +#define BP_BCH_FLASH0LAYOUT1_DATAN_SIZE 0 +#define BM_BCH_FLASH0LAYOUT1_DATAN_SIZE \ + (0xfff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE) +#define MX6Q_BM_BCH_FLASH0LAYOUT1_DATAN_SIZE \ + (0x3ff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE) +#define BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(v, x) \ + (GPMI_IS_MX6(x) \ + ? (((v) >> 2) & MX6Q_BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) \ + : ((v) & BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) \ + ) + +#define HW_BCH_VERSION 0x00000160 +#endif diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/gpmi-nand/gpmi-lib.c new file mode 100644 index 00000000000..87e658ce23e --- /dev/null +++ b/drivers/mtd/nand/gpmi-nand/gpmi-lib.c @@ -0,0 +1,1355 @@ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ +#include <linux/delay.h> +#include <linux/clk.h> +#include <linux/slab.h> + +#include "gpmi-nand.h" +#include "gpmi-regs.h" +#include "bch-regs.h" + +static struct timing_threshod timing_default_threshold = { + .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >> + BP_GPMI_TIMING0_DATA_SETUP), + .internal_data_setup_in_ns = 0, + .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >> + BP_GPMI_CTRL1_RDN_DELAY), + .max_dll_clock_period_in_ns = 32, + .max_dll_delay_in_ns = 16, +}; + +#define MXS_SET_ADDR 0x4 +#define MXS_CLR_ADDR 0x8 +/* + * Clear the bit and poll it cleared. This is usually called with + * a reset address and mask being either SFTRST(bit 31) or CLKGATE + * (bit 30). + */ +static int clear_poll_bit(void __iomem *addr, u32 mask) +{ + int timeout = 0x400; + + /* clear the bit */ + writel(mask, addr + MXS_CLR_ADDR); + + /* + * SFTRST needs 3 GPMI clocks to settle, the reference manual + * recommends to wait 1us. + */ + udelay(1); + + /* poll the bit becoming clear */ + while ((readl(addr) & mask) && --timeout) + /* nothing */; + + return !timeout; +} + +#define MODULE_CLKGATE (1 << 30) +#define MODULE_SFTRST (1 << 31) +/* + * The current mxs_reset_block() will do two things: + * [1] enable the module. + * [2] reset the module. + * + * In most of the cases, it's ok. + * But in MX23, there is a hardware bug in the BCH block (see erratum #2847). + * If you try to soft reset the BCH block, it becomes unusable until + * the next hard reset. This case occurs in the NAND boot mode. When the board + * boots by NAND, the ROM of the chip will initialize the BCH blocks itself. + * So If the driver tries to reset the BCH again, the BCH will not work anymore. + * You will see a DMA timeout in this case. The bug has been fixed + * in the following chips, such as MX28. + * + * To avoid this bug, just add a new parameter `just_enable` for + * the mxs_reset_block(), and rewrite it here. + */ +static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable) +{ + int ret; + int timeout = 0x400; + + /* clear and poll SFTRST */ + ret = clear_poll_bit(reset_addr, MODULE_SFTRST); + if (unlikely(ret)) + goto error; + + /* clear CLKGATE */ + writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR); + + if (!just_enable) { + /* set SFTRST to reset the block */ + writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR); + udelay(1); + + /* poll CLKGATE becoming set */ + while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout) + /* nothing */; + if (unlikely(!timeout)) + goto error; + } + + /* clear and poll SFTRST */ + ret = clear_poll_bit(reset_addr, MODULE_SFTRST); + if (unlikely(ret)) + goto error; + + /* clear and poll CLKGATE */ + ret = clear_poll_bit(reset_addr, MODULE_CLKGATE); + if (unlikely(ret)) + goto error; + + return 0; + +error: + pr_err("%s(%p): module reset timeout\n", __func__, reset_addr); + return -ETIMEDOUT; +} + +static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v) +{ + struct clk *clk; + int ret; + int i; + + for (i = 0; i < GPMI_CLK_MAX; i++) { + clk = this->resources.clock[i]; + if (!clk) + break; + + if (v) { + ret = clk_prepare_enable(clk); + if (ret) + goto err_clk; + } else { + clk_disable_unprepare(clk); + } + } + return 0; + +err_clk: + for (; i > 0; i--) + clk_disable_unprepare(this->resources.clock[i - 1]); + return ret; +} + +#define gpmi_enable_clk(x) __gpmi_enable_clk(x, true) +#define gpmi_disable_clk(x) __gpmi_enable_clk(x, false) + +int gpmi_init(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + int ret; + + ret = gpmi_enable_clk(this); + if (ret) + goto err_out; + ret = gpmi_reset_block(r->gpmi_regs, false); + if (ret) + goto err_out; + + /* + * Reset BCH here, too. We got failures otherwise :( + * See later BCH reset for explanation of MX23 handling + */ + ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this)); + if (ret) + goto err_out; + + + /* Choose NAND mode. */ + writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); + + /* Set the IRQ polarity. */ + writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, + r->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Disable Write-Protection. */ + writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Select BCH ECC. */ + writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* + * Decouple the chip select from dma channel. We use dma0 for all + * the chips. + */ + writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET); + + gpmi_disable_clk(this); + return 0; +err_out: + return ret; +} + +/* This function is very useful. It is called only when the bug occur. */ +void gpmi_dump_info(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + struct bch_geometry *geo = &this->bch_geometry; + u32 reg; + int i; + + dev_err(this->dev, "Show GPMI registers :\n"); + for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { + reg = readl(r->gpmi_regs + i * 0x10); + dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); + } + + /* start to print out the BCH info */ + dev_err(this->dev, "Show BCH registers :\n"); + for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) { + reg = readl(r->bch_regs + i * 0x10); + dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); + } + dev_err(this->dev, "BCH Geometry :\n" + "GF length : %u\n" + "ECC Strength : %u\n" + "Page Size in Bytes : %u\n" + "Metadata Size in Bytes : %u\n" + "ECC Chunk Size in Bytes: %u\n" + "ECC Chunk Count : %u\n" + "Payload Size in Bytes : %u\n" + "Auxiliary Size in Bytes: %u\n" + "Auxiliary Status Offset: %u\n" + "Block Mark Byte Offset : %u\n" + "Block Mark Bit Offset : %u\n", + geo->gf_len, + geo->ecc_strength, + geo->page_size, + geo->metadata_size, + geo->ecc_chunk_size, + geo->ecc_chunk_count, + geo->payload_size, + geo->auxiliary_size, + geo->auxiliary_status_offset, + geo->block_mark_byte_offset, + geo->block_mark_bit_offset); +} + +/* Configures the geometry for BCH. */ +int bch_set_geometry(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + struct bch_geometry *bch_geo = &this->bch_geometry; + unsigned int block_count; + unsigned int block_size; + unsigned int metadata_size; + unsigned int ecc_strength; + unsigned int page_size; + unsigned int gf_len; + int ret; + + if (common_nfc_set_geometry(this)) + return !0; + + block_count = bch_geo->ecc_chunk_count - 1; + block_size = bch_geo->ecc_chunk_size; + metadata_size = bch_geo->metadata_size; + ecc_strength = bch_geo->ecc_strength >> 1; + page_size = bch_geo->page_size; + gf_len = bch_geo->gf_len; + + ret = gpmi_enable_clk(this); + if (ret) + goto err_out; + + /* + * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this + * chip, otherwise it will lock up. So we skip resetting BCH on the MX23. + * On the other hand, the MX28 needs the reset, because one case has been + * seen where the BCH produced ECC errors constantly after 10000 + * consecutive reboots. The latter case has not been seen on the MX23 + * yet, still we don't know if it could happen there as well. + */ + ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this)); + if (ret) + goto err_out; + + /* Configure layout 0. */ + writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count) + | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size) + | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) + | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) + | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this), + r->bch_regs + HW_BCH_FLASH0LAYOUT0); + + writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) + | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) + | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) + | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this), + r->bch_regs + HW_BCH_FLASH0LAYOUT1); + + /* Set *all* chip selects to use layout 0. */ + writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT); + + /* Enable interrupts. */ + writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, + r->bch_regs + HW_BCH_CTRL_SET); + + gpmi_disable_clk(this); + return 0; +err_out: + return ret; +} + +/* Converts time in nanoseconds to cycles. */ +static unsigned int ns_to_cycles(unsigned int time, + unsigned int period, unsigned int min) +{ + unsigned int k; + + k = (time + period - 1) / period; + return max(k, min); +} + +#define DEF_MIN_PROP_DELAY 5 +#define DEF_MAX_PROP_DELAY 9 +/* Apply timing to current hardware conditions. */ +static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this, + struct gpmi_nfc_hardware_timing *hw) +{ + struct timing_threshod *nfc = &timing_default_threshold; + struct resources *r = &this->resources; + struct nand_chip *nand = &this->nand; + struct nand_timing target = this->timing; + bool improved_timing_is_available; + unsigned long clock_frequency_in_hz; + unsigned int clock_period_in_ns; + bool dll_use_half_periods; + unsigned int dll_delay_shift; + unsigned int max_sample_delay_in_ns; + unsigned int address_setup_in_cycles; + unsigned int data_setup_in_ns; + unsigned int data_setup_in_cycles; + unsigned int data_hold_in_cycles; + int ideal_sample_delay_in_ns; + unsigned int sample_delay_factor; + int tEYE; + unsigned int min_prop_delay_in_ns = DEF_MIN_PROP_DELAY; + unsigned int max_prop_delay_in_ns = DEF_MAX_PROP_DELAY; + + /* + * If there are multiple chips, we need to relax the timings to allow + * for signal distortion due to higher capacitance. + */ + if (nand->numchips > 2) { + target.data_setup_in_ns += 10; + target.data_hold_in_ns += 10; + target.address_setup_in_ns += 10; + } else if (nand->numchips > 1) { + target.data_setup_in_ns += 5; + target.data_hold_in_ns += 5; + target.address_setup_in_ns += 5; + } + + /* Check if improved timing information is available. */ + improved_timing_is_available = + (target.tREA_in_ns >= 0) && + (target.tRLOH_in_ns >= 0) && + (target.tRHOH_in_ns >= 0); + + /* Inspect the clock. */ + nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]); + clock_frequency_in_hz = nfc->clock_frequency_in_hz; + clock_period_in_ns = NSEC_PER_SEC / clock_frequency_in_hz; + + /* + * The NFC quantizes setup and hold parameters in terms of clock cycles. + * Here, we quantize the setup and hold timing parameters to the + * next-highest clock period to make sure we apply at least the + * specified times. + * + * For data setup and data hold, the hardware interprets a value of zero + * as the largest possible delay. This is not what's intended by a zero + * in the input parameter, so we impose a minimum of one cycle. + */ + data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns, + clock_period_in_ns, 1); + data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns, + clock_period_in_ns, 1); + address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns, + clock_period_in_ns, 0); + + /* + * The clock's period affects the sample delay in a number of ways: + * + * (1) The NFC HAL tells us the maximum clock period the sample delay + * DLL can tolerate. If the clock period is greater than half that + * maximum, we must configure the DLL to be driven by half periods. + * + * (2) We need to convert from an ideal sample delay, in ns, to a + * "sample delay factor," which the NFC uses. This factor depends on + * whether we're driving the DLL with full or half periods. + * Paraphrasing the reference manual: + * + * AD = SDF x 0.125 x RP + * + * where: + * + * AD is the applied delay, in ns. + * SDF is the sample delay factor, which is dimensionless. + * RP is the reference period, in ns, which is a full clock period + * if the DLL is being driven by full periods, or half that if + * the DLL is being driven by half periods. + * + * Let's re-arrange this in a way that's more useful to us: + * + * 8 + * SDF = AD x ---- + * RP + * + * The reference period is either the clock period or half that, so this + * is: + * + * 8 AD x DDF + * SDF = AD x ----- = -------- + * f x P P + * + * where: + * + * f is 1 or 1/2, depending on how we're driving the DLL. + * P is the clock period. + * DDF is the DLL Delay Factor, a dimensionless value that + * incorporates all the constants in the conversion. + * + * DDF will be either 8 or 16, both of which are powers of two. We can + * reduce the cost of this conversion by using bit shifts instead of + * multiplication or division. Thus: + * + * AD << DDS + * SDF = --------- + * P + * + * or + * + * AD = (SDF >> DDS) x P + * + * where: + * + * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF. + */ + if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) { + dll_use_half_periods = true; + dll_delay_shift = 3 + 1; + } else { + dll_use_half_periods = false; + dll_delay_shift = 3; + } + + /* + * Compute the maximum sample delay the NFC allows, under current + * conditions. If the clock is running too slowly, no sample delay is + * possible. + */ + if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns) + max_sample_delay_in_ns = 0; + else { + /* + * Compute the delay implied by the largest sample delay factor + * the NFC allows. + */ + max_sample_delay_in_ns = + (nfc->max_sample_delay_factor * clock_period_in_ns) >> + dll_delay_shift; + + /* + * Check if the implied sample delay larger than the NFC + * actually allows. + */ + if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns) + max_sample_delay_in_ns = nfc->max_dll_delay_in_ns; + } + + /* + * Check if improved timing information is available. If not, we have to + * use a less-sophisticated algorithm. + */ + if (!improved_timing_is_available) { + /* + * Fold the read setup time required by the NFC into the ideal + * sample delay. + */ + ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns + + nfc->internal_data_setup_in_ns; + + /* + * The ideal sample delay may be greater than the maximum + * allowed by the NFC. If so, we can trade off sample delay time + * for more data setup time. + * + * In each iteration of the following loop, we add a cycle to + * the data setup time and subtract a corresponding amount from + * the sample delay until we've satisified the constraints or + * can't do any better. + */ + while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) && + (data_setup_in_cycles < nfc->max_data_setup_cycles)) { + + data_setup_in_cycles++; + ideal_sample_delay_in_ns -= clock_period_in_ns; + + if (ideal_sample_delay_in_ns < 0) + ideal_sample_delay_in_ns = 0; + + } + + /* + * Compute the sample delay factor that corresponds most closely + * to the ideal sample delay. If the result is too large for the + * NFC, use the maximum value. + * + * Notice that we use the ns_to_cycles function to compute the + * sample delay factor. We do this because the form of the + * computation is the same as that for calculating cycles. + */ + sample_delay_factor = + ns_to_cycles( + ideal_sample_delay_in_ns << dll_delay_shift, + clock_period_in_ns, 0); + + if (sample_delay_factor > nfc->max_sample_delay_factor) + sample_delay_factor = nfc->max_sample_delay_factor; + + /* Skip to the part where we return our results. */ + goto return_results; + } + + /* + * If control arrives here, we have more detailed timing information, + * so we can use a better algorithm. + */ + + /* + * Fold the read setup time required by the NFC into the maximum + * propagation delay. + */ + max_prop_delay_in_ns += nfc->internal_data_setup_in_ns; + + /* + * Earlier, we computed the number of clock cycles required to satisfy + * the data setup time. Now, we need to know the actual nanoseconds. + */ + data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles; + + /* + * Compute tEYE, the width of the data eye when reading from the NAND + * Flash. The eye width is fundamentally determined by the data setup + * time, perturbed by propagation delays and some characteristics of the + * NAND Flash device. + * + * start of the eye = max_prop_delay + tREA + * end of the eye = min_prop_delay + tRHOH + data_setup + */ + tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns + + (int)data_setup_in_ns; + + tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns; + + /* + * The eye must be open. If it's not, we can try to open it by + * increasing its main forcer, the data setup time. + * + * In each iteration of the following loop, we increase the data setup + * time by a single clock cycle. We do this until either the eye is + * open or we run into NFC limits. + */ + while ((tEYE <= 0) && + (data_setup_in_cycles < nfc->max_data_setup_cycles)) { + /* Give a cycle to data setup. */ + data_setup_in_cycles++; + /* Synchronize the data setup time with the cycles. */ + data_setup_in_ns += clock_period_in_ns; + /* Adjust tEYE accordingly. */ + tEYE += clock_period_in_ns; + } + + /* + * When control arrives here, the eye is open. The ideal time to sample + * the data is in the center of the eye: + * + * end of the eye + start of the eye + * --------------------------------- - data_setup + * 2 + * + * After some algebra, this simplifies to the code immediately below. + */ + ideal_sample_delay_in_ns = + ((int)max_prop_delay_in_ns + + (int)target.tREA_in_ns + + (int)min_prop_delay_in_ns + + (int)target.tRHOH_in_ns - + (int)data_setup_in_ns) >> 1; + + /* + * The following figure illustrates some aspects of a NAND Flash read: + * + * + * __ _____________________________________ + * RDN \_________________/ + * + * <---- tEYE -----> + * /-----------------\ + * Read Data ----------------------------< >--------- + * \-----------------/ + * ^ ^ ^ ^ + * | | | | + * |<--Data Setup -->|<--Delay Time -->| | + * | | | | + * | | | + * | |<-- Quantized Delay Time -->| + * | | | + * + * + * We have some issues we must now address: + * + * (1) The *ideal* sample delay time must not be negative. If it is, we + * jam it to zero. + * + * (2) The *ideal* sample delay time must not be greater than that + * allowed by the NFC. If it is, we can increase the data setup + * time, which will reduce the delay between the end of the data + * setup and the center of the eye. It will also make the eye + * larger, which might help with the next issue... + * + * (3) The *quantized* sample delay time must not fall either before the + * eye opens or after it closes (the latter is the problem + * illustrated in the above figure). + */ + + /* Jam a negative ideal sample delay to zero. */ + if (ideal_sample_delay_in_ns < 0) + ideal_sample_delay_in_ns = 0; + + /* + * Extend the data setup as needed to reduce the ideal sample delay + * below the maximum permitted by the NFC. + */ + while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) && + (data_setup_in_cycles < nfc->max_data_setup_cycles)) { + + /* Give a cycle to data setup. */ + data_setup_in_cycles++; + /* Synchronize the data setup time with the cycles. */ + data_setup_in_ns += clock_period_in_ns; + /* Adjust tEYE accordingly. */ + tEYE += clock_period_in_ns; + + /* + * Decrease the ideal sample delay by one half cycle, to keep it + * in the middle of the eye. + */ + ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1); + + /* Jam a negative ideal sample delay to zero. */ + if (ideal_sample_delay_in_ns < 0) + ideal_sample_delay_in_ns = 0; + } + + /* + * Compute the sample delay factor that corresponds to the ideal sample + * delay. If the result is too large, then use the maximum allowed + * value. + * + * Notice that we use the ns_to_cycles function to compute the sample + * delay factor. We do this because the form of the computation is the + * same as that for calculating cycles. + */ + sample_delay_factor = + ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift, + clock_period_in_ns, 0); + + if (sample_delay_factor > nfc->max_sample_delay_factor) + sample_delay_factor = nfc->max_sample_delay_factor; + + /* + * These macros conveniently encapsulate a computation we'll use to + * continuously evaluate whether or not the data sample delay is inside + * the eye. + */ + #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns) + + #define QUANTIZED_DELAY \ + ((int) ((sample_delay_factor * clock_period_in_ns) >> \ + dll_delay_shift)) + + #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY)) + + #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1)) + + /* + * While the quantized sample time falls outside the eye, reduce the + * sample delay or extend the data setup to move the sampling point back + * toward the eye. Do not allow the number of data setup cycles to + * exceed the maximum allowed by the NFC. + */ + while (SAMPLE_IS_NOT_WITHIN_THE_EYE && + (data_setup_in_cycles < nfc->max_data_setup_cycles)) { + /* + * If control arrives here, the quantized sample delay falls + * outside the eye. Check if it's before the eye opens, or after + * the eye closes. + */ + if (QUANTIZED_DELAY > IDEAL_DELAY) { + /* + * If control arrives here, the quantized sample delay + * falls after the eye closes. Decrease the quantized + * delay time and then go back to re-evaluate. + */ + if (sample_delay_factor != 0) + sample_delay_factor--; + continue; + } + + /* + * If control arrives here, the quantized sample delay falls + * before the eye opens. Shift the sample point by increasing + * data setup time. This will also make the eye larger. + */ + + /* Give a cycle to data setup. */ + data_setup_in_cycles++; + /* Synchronize the data setup time with the cycles. */ + data_setup_in_ns += clock_period_in_ns; + /* Adjust tEYE accordingly. */ + tEYE += clock_period_in_ns; + + /* + * Decrease the ideal sample delay by one half cycle, to keep it + * in the middle of the eye. + */ + ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1); + + /* ...and one less period for the delay time. */ + ideal_sample_delay_in_ns -= clock_period_in_ns; + + /* Jam a negative ideal sample delay to zero. */ + if (ideal_sample_delay_in_ns < 0) + ideal_sample_delay_in_ns = 0; + + /* + * We have a new ideal sample delay, so re-compute the quantized + * delay. + */ + sample_delay_factor = + ns_to_cycles( + ideal_sample_delay_in_ns << dll_delay_shift, + clock_period_in_ns, 0); + + if (sample_delay_factor > nfc->max_sample_delay_factor) + sample_delay_factor = nfc->max_sample_delay_factor; + } + + /* Control arrives here when we're ready to return our results. */ +return_results: + hw->data_setup_in_cycles = data_setup_in_cycles; + hw->data_hold_in_cycles = data_hold_in_cycles; + hw->address_setup_in_cycles = address_setup_in_cycles; + hw->use_half_periods = dll_use_half_periods; + hw->sample_delay_factor = sample_delay_factor; + hw->device_busy_timeout = GPMI_DEFAULT_BUSY_TIMEOUT; + hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; + + /* Return success. */ + return 0; +} + +/* + * <1> Firstly, we should know what's the GPMI-clock means. + * The GPMI-clock is the internal clock in the gpmi nand controller. + * If you set 100MHz to gpmi nand controller, the GPMI-clock's period + * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. + * + * <2> Secondly, we should know what's the frequency on the nand chip pins. + * The frequency on the nand chip pins is derived from the GPMI-clock. + * We can get it from the following equation: + * + * F = G / (DS + DH) + * + * F : the frequency on the nand chip pins. + * G : the GPMI clock, such as 100MHz. + * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP + * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD + * + * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, + * the nand EDO(extended Data Out) timing could be applied. + * The GPMI implements a feedback read strobe to sample the read data. + * The feedback read strobe can be delayed to support the nand EDO timing + * where the read strobe may deasserts before the read data is valid, and + * read data is valid for some time after read strobe. + * + * The following figure illustrates some aspects of a NAND Flash read: + * + * |<---tREA---->| + * | | + * | | | + * |<--tRP-->| | + * | | | + * __ ___|__________________________________ + * RDN \________/ | + * | + * /---------\ + * Read Data --------------< >--------- + * \---------/ + * | | + * |<-D->| + * FeedbackRDN ________ ____________ + * \___________/ + * + * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. + * + * + * <4> Now, we begin to describe how to compute the right RDN_DELAY. + * + * 4.1) From the aspect of the nand chip pins: + * Delay = (tREA + C - tRP) {1} + * + * tREA : the maximum read access time. From the ONFI nand standards, + * we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4. + * Please check it in : www.onfi.org + * C : a constant for adjust the delay. default is 4. + * tRP : the read pulse width. + * Specified by the HW_GPMI_TIMING0:DATA_SETUP: + * tRP = (GPMI-clock-period) * DATA_SETUP + * + * 4.2) From the aspect of the GPMI nand controller: + * Delay = RDN_DELAY * 0.125 * RP {2} + * + * RP : the DLL reference period. + * if (GPMI-clock-period > DLL_THRETHOLD) + * RP = GPMI-clock-period / 2; + * else + * RP = GPMI-clock-period; + * + * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period + * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD + * is 16ns, but in mx6q, we use 12ns. + * + * 4.3) since {1} equals {2}, we get: + * + * (tREA + 4 - tRP) * 8 + * RDN_DELAY = --------------------- {3} + * RP + * + * 4.4) We only support the fastest asynchronous mode of ONFI nand. + * For some ONFI nand, the mode 4 is the fastest mode; + * while for some ONFI nand, the mode 5 is the fastest mode. + * So we only support the mode 4 and mode 5. It is no need to + * support other modes. + */ +static void gpmi_compute_edo_timing(struct gpmi_nand_data *this, + struct gpmi_nfc_hardware_timing *hw) +{ + struct resources *r = &this->resources; + unsigned long rate = clk_get_rate(r->clock[0]); + int mode = this->timing_mode; + int dll_threshold = this->devdata->max_chain_delay; + unsigned long delay; + unsigned long clk_period; + int t_rea; + int c = 4; + int t_rp; + int rp; + + /* + * [1] for GPMI_HW_GPMI_TIMING0: + * The async mode requires 40MHz for mode 4, 50MHz for mode 5. + * The GPMI can support 100MHz at most. So if we want to + * get the 40MHz or 50MHz, we have to set DS=1, DH=1. + * Set the ADDRESS_SETUP to 0 in mode 4. + */ + hw->data_setup_in_cycles = 1; + hw->data_hold_in_cycles = 1; + hw->address_setup_in_cycles = ((mode == 5) ? 1 : 0); + + /* [2] for GPMI_HW_GPMI_TIMING1 */ + hw->device_busy_timeout = 0x9000; + + /* [3] for GPMI_HW_GPMI_CTRL1 */ + hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; + + /* + * Enlarge 10 times for the numerator and denominator in {3}. + * This make us to get more accurate result. + */ + clk_period = NSEC_PER_SEC / (rate / 10); + dll_threshold *= 10; + t_rea = ((mode == 5) ? 16 : 20) * 10; + c *= 10; + + t_rp = clk_period * 1; /* DATA_SETUP is 1 */ + + if (clk_period > dll_threshold) { + hw->use_half_periods = 1; + rp = clk_period / 2; + } else { + hw->use_half_periods = 0; + rp = clk_period; + } + + /* + * Multiply the numerator with 10, we could do a round off: + * 7.8 round up to 8; 7.4 round down to 7. + */ + delay = (((t_rea + c - t_rp) * 8) * 10) / rp; + delay = (delay + 5) / 10; + + hw->sample_delay_factor = delay; +} + +static int enable_edo_mode(struct gpmi_nand_data *this, int mode) +{ + struct resources *r = &this->resources; + struct nand_chip *nand = &this->nand; + struct mtd_info *mtd = &this->mtd; + uint8_t *feature; + unsigned long rate; + int ret; + + feature = kzalloc(ONFI_SUBFEATURE_PARAM_LEN, GFP_KERNEL); + if (!feature) + return -ENOMEM; + + nand->select_chip(mtd, 0); + + /* [1] send SET FEATURE commond to NAND */ + feature[0] = mode; + ret = nand->onfi_set_features(mtd, nand, + ONFI_FEATURE_ADDR_TIMING_MODE, feature); + if (ret) + goto err_out; + + /* [2] send GET FEATURE command to double-check the timing mode */ + memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN); + ret = nand->onfi_get_features(mtd, nand, + ONFI_FEATURE_ADDR_TIMING_MODE, feature); + if (ret || feature[0] != mode) + goto err_out; + + nand->select_chip(mtd, -1); + + /* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */ + rate = (mode == 5) ? 100000000 : 80000000; + clk_set_rate(r->clock[0], rate); + + /* Let the gpmi_begin() re-compute the timing again. */ + this->flags &= ~GPMI_TIMING_INIT_OK; + + this->flags |= GPMI_ASYNC_EDO_ENABLED; + this->timing_mode = mode; + kfree(feature); + dev_info(this->dev, "enable the asynchronous EDO mode %d\n", mode); + return 0; + +err_out: + nand->select_chip(mtd, -1); + kfree(feature); + dev_err(this->dev, "mode:%d ,failed in set feature.\n", mode); + return -EINVAL; +} + +int gpmi_extra_init(struct gpmi_nand_data *this) +{ + struct nand_chip *chip = &this->nand; + + /* Enable the asynchronous EDO feature. */ + if (GPMI_IS_MX6(this) && chip->onfi_version) { + int mode = onfi_get_async_timing_mode(chip); + + /* We only support the timing mode 4 and mode 5. */ + if (mode & ONFI_TIMING_MODE_5) + mode = 5; + else if (mode & ONFI_TIMING_MODE_4) + mode = 4; + else + return 0; + + return enable_edo_mode(this, mode); + } + return 0; +} + +/* Begin the I/O */ +void gpmi_begin(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + void __iomem *gpmi_regs = r->gpmi_regs; + unsigned int clock_period_in_ns; + uint32_t reg; + unsigned int dll_wait_time_in_us; + struct gpmi_nfc_hardware_timing hw; + int ret; + + /* Enable the clock. */ + ret = gpmi_enable_clk(this); + if (ret) { + dev_err(this->dev, "We failed in enable the clk\n"); + goto err_out; + } + + /* Only initialize the timing once */ + if (this->flags & GPMI_TIMING_INIT_OK) + return; + this->flags |= GPMI_TIMING_INIT_OK; + + if (this->flags & GPMI_ASYNC_EDO_ENABLED) + gpmi_compute_edo_timing(this, &hw); + else + gpmi_nfc_compute_hardware_timing(this, &hw); + + /* [1] Set HW_GPMI_TIMING0 */ + reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) | + BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) | + BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles); + + writel(reg, gpmi_regs + HW_GPMI_TIMING0); + + /* [2] Set HW_GPMI_TIMING1 */ + writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout), + gpmi_regs + HW_GPMI_TIMING1); + + /* [3] The following code is to set the HW_GPMI_CTRL1. */ + + /* Set the WRN_DLY_SEL */ + writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR); + writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel), + gpmi_regs + HW_GPMI_CTRL1_SET); + + /* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */ + writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR); + + /* Clear out the DLL control fields. */ + reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD; + writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR); + + /* If no sample delay is called for, return immediately. */ + if (!hw.sample_delay_factor) + return; + + /* Set RDN_DELAY or HALF_PERIOD. */ + reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0) + | BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor); + + writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET); + + /* At last, we enable the DLL. */ + writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET); + + /* + * After we enable the GPMI DLL, we have to wait 64 clock cycles before + * we can use the GPMI. Calculate the amount of time we need to wait, + * in microseconds. + */ + clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]); + dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000; + + if (!dll_wait_time_in_us) + dll_wait_time_in_us = 1; + + /* Wait for the DLL to settle. */ + udelay(dll_wait_time_in_us); + +err_out: + return; +} + +void gpmi_end(struct gpmi_nand_data *this) +{ + gpmi_disable_clk(this); +} + +/* Clears a BCH interrupt. */ +void gpmi_clear_bch(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR); +} + +/* Returns the Ready/Busy status of the given chip. */ +int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip) +{ + struct resources *r = &this->resources; + uint32_t mask = 0; + uint32_t reg = 0; + + if (GPMI_IS_MX23(this)) { + mask = MX23_BM_GPMI_DEBUG_READY0 << chip; + reg = readl(r->gpmi_regs + HW_GPMI_DEBUG); + } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) { + /* + * In the imx6, all the ready/busy pins are bound + * together. So we only need to check chip 0. + */ + if (GPMI_IS_MX6(this)) + chip = 0; + + /* MX28 shares the same R/B register as MX6Q. */ + mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip); + reg = readl(r->gpmi_regs + HW_GPMI_STAT); + } else + dev_err(this->dev, "unknow arch.\n"); + return reg & mask; +} + +static inline void set_dma_type(struct gpmi_nand_data *this, + enum dma_ops_type type) +{ + this->last_dma_type = this->dma_type; + this->dma_type = type; +} + +int gpmi_send_command(struct gpmi_nand_data *this) +{ + struct dma_chan *channel = get_dma_chan(this); + struct dma_async_tx_descriptor *desc; + struct scatterlist *sgl; + int chip = this->current_chip; + u32 pio[3]; + + /* [1] send out the PIO words */ + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE) + | BM_GPMI_CTRL0_ADDRESS_INCREMENT + | BF_GPMI_CTRL0_XFER_COUNT(this->command_length); + pio[1] = pio[2] = 0; + desc = dmaengine_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); + if (!desc) + return -EINVAL; + + /* [2] send out the COMMAND + ADDRESS string stored in @buffer */ + sgl = &this->cmd_sgl; + + sg_init_one(sgl, this->cmd_buffer, this->command_length); + dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE); + desc = dmaengine_prep_slave_sg(channel, + sgl, 1, DMA_MEM_TO_DEV, + DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + if (!desc) + return -EINVAL; + + /* [3] submit the DMA */ + set_dma_type(this, DMA_FOR_COMMAND); + return start_dma_without_bch_irq(this, desc); +} + +int gpmi_send_data(struct gpmi_nand_data *this) +{ + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + int chip = this->current_chip; + uint32_t command_mode; + uint32_t address; + u32 pio[2]; + + /* [1] PIO */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len); + pio[1] = 0; + desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); + if (!desc) + return -EINVAL; + + /* [2] send DMA request */ + prepare_data_dma(this, DMA_TO_DEVICE); + desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, + 1, DMA_MEM_TO_DEV, + DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + if (!desc) + return -EINVAL; + + /* [3] submit the DMA */ + set_dma_type(this, DMA_FOR_WRITE_DATA); + return start_dma_without_bch_irq(this, desc); +} + +int gpmi_read_data(struct gpmi_nand_data *this) +{ + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + int chip = this->current_chip; + u32 pio[2]; + + /* [1] : send PIO */ + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) + | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len); + pio[1] = 0; + desc = dmaengine_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); + if (!desc) + return -EINVAL; + + /* [2] : send DMA request */ + prepare_data_dma(this, DMA_FROM_DEVICE); + desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, + 1, DMA_DEV_TO_MEM, + DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + if (!desc) + return -EINVAL; + + /* [3] : submit the DMA */ + set_dma_type(this, DMA_FOR_READ_DATA); + return start_dma_without_bch_irq(this, desc); +} + +int gpmi_send_page(struct gpmi_nand_data *this, + dma_addr_t payload, dma_addr_t auxiliary) +{ + struct bch_geometry *geo = &this->bch_geometry; + uint32_t command_mode; + uint32_t address; + uint32_t ecc_command; + uint32_t buffer_mask; + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + int chip = this->current_chip; + u32 pio[6]; + + /* A DMA descriptor that does an ECC page read. */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE; + buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | + BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(0); + pio[1] = 0; + pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC + | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) + | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); + pio[3] = geo->page_size; + pio[4] = payload; + pio[5] = auxiliary; + + desc = dmaengine_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_TRANS_NONE, + DMA_CTRL_ACK); + if (!desc) + return -EINVAL; + + set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE); + return start_dma_with_bch_irq(this, desc); +} + +int gpmi_read_page(struct gpmi_nand_data *this, + dma_addr_t payload, dma_addr_t auxiliary) +{ + struct bch_geometry *geo = &this->bch_geometry; + uint32_t command_mode; + uint32_t address; + uint32_t ecc_command; + uint32_t buffer_mask; + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + int chip = this->current_chip; + u32 pio[6]; + + /* [1] Wait for the chip to report ready. */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(0); + pio[1] = 0; + desc = dmaengine_prep_slave_sg(channel, + (struct scatterlist *)pio, 2, + DMA_TRANS_NONE, 0); + if (!desc) + return -EINVAL; + + /* [2] Enable the BCH block and read. */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE; + buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE + | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); + + pio[1] = 0; + pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC + | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) + | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); + pio[3] = geo->page_size; + pio[4] = payload; + pio[5] = auxiliary; + desc = dmaengine_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_TRANS_NONE, + DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + if (!desc) + return -EINVAL; + + /* [3] Disable the BCH block */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); + pio[1] = 0; + pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */ + desc = dmaengine_prep_slave_sg(channel, + (struct scatterlist *)pio, 3, + DMA_TRANS_NONE, + DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + if (!desc) + return -EINVAL; + + /* [4] submit the DMA */ + set_dma_type(this, DMA_FOR_READ_ECC_PAGE); + return start_dma_with_bch_irq(this, desc); +} diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/gpmi-nand/gpmi-nand.c new file mode 100644 index 00000000000..f638cd8077c --- /dev/null +++ b/drivers/mtd/nand/gpmi-nand/gpmi-nand.c @@ -0,0 +1,1844 @@ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ +#include <linux/clk.h> +#include <linux/slab.h> +#include <linux/interrupt.h> +#include <linux/module.h> +#include <linux/mtd/partitions.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/of_mtd.h> +#include "gpmi-nand.h" +#include "bch-regs.h" + +/* Resource names for the GPMI NAND driver. */ +#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand" +#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch" +#define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch" + +/* add our owner bbt descriptor */ +static uint8_t scan_ff_pattern[] = { 0xff }; +static struct nand_bbt_descr gpmi_bbt_descr = { + .options = 0, + .offs = 0, + .len = 1, + .pattern = scan_ff_pattern +}; + +/* + * We may change the layout if we can get the ECC info from the datasheet, + * else we will use all the (page + OOB). + */ +static struct nand_ecclayout gpmi_hw_ecclayout = { + .eccbytes = 0, + .eccpos = { 0, }, + .oobfree = { {.offset = 0, .length = 0} } +}; + +static const struct gpmi_devdata gpmi_devdata_imx23 = { + .type = IS_MX23, + .bch_max_ecc_strength = 20, + .max_chain_delay = 16, +}; + +static const struct gpmi_devdata gpmi_devdata_imx28 = { + .type = IS_MX28, + .bch_max_ecc_strength = 20, + .max_chain_delay = 16, +}; + +static const struct gpmi_devdata gpmi_devdata_imx6q = { + .type = IS_MX6Q, + .bch_max_ecc_strength = 40, + .max_chain_delay = 12, +}; + +static const struct gpmi_devdata gpmi_devdata_imx6sx = { + .type = IS_MX6SX, + .bch_max_ecc_strength = 62, + .max_chain_delay = 12, +}; + +static irqreturn_t bch_irq(int irq, void *cookie) +{ + struct gpmi_nand_data *this = cookie; + + gpmi_clear_bch(this); + complete(&this->bch_done); + return IRQ_HANDLED; +} + +/* + * Calculate the ECC strength by hand: + * E : The ECC strength. + * G : the length of Galois Field. + * N : The chunk count of per page. + * O : the oobsize of the NAND chip. + * M : the metasize of per page. + * + * The formula is : + * E * G * N + * ------------ <= (O - M) + * 8 + * + * So, we get E by: + * (O - M) * 8 + * E <= ------------- + * G * N + */ +static inline int get_ecc_strength(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct mtd_info *mtd = &this->mtd; + int ecc_strength; + + ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) + / (geo->gf_len * geo->ecc_chunk_count); + + /* We need the minor even number. */ + return round_down(ecc_strength, 2); +} + +static inline bool gpmi_check_ecc(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + + /* Do the sanity check. */ + if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) { + /* The mx23/mx28 only support the GF13. */ + if (geo->gf_len == 14) + return false; + } + return geo->ecc_strength <= this->devdata->bch_max_ecc_strength; +} + +/* + * If we can get the ECC information from the nand chip, we do not + * need to calculate them ourselves. + * + * We may have available oob space in this case. + */ +static bool set_geometry_by_ecc_info(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct mtd_info *mtd = &this->mtd; + struct nand_chip *chip = mtd->priv; + struct nand_oobfree *of = gpmi_hw_ecclayout.oobfree; + unsigned int block_mark_bit_offset; + + if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0)) + return false; + + switch (chip->ecc_step_ds) { + case SZ_512: + geo->gf_len = 13; + break; + case SZ_1K: + geo->gf_len = 14; + break; + default: + dev_err(this->dev, + "unsupported nand chip. ecc bits : %d, ecc size : %d\n", + chip->ecc_strength_ds, chip->ecc_step_ds); + return false; + } + geo->ecc_chunk_size = chip->ecc_step_ds; + geo->ecc_strength = round_up(chip->ecc_strength_ds, 2); + if (!gpmi_check_ecc(this)) + return false; + + /* Keep the C >= O */ + if (geo->ecc_chunk_size < mtd->oobsize) { + dev_err(this->dev, + "unsupported nand chip. ecc size: %d, oob size : %d\n", + chip->ecc_step_ds, mtd->oobsize); + return false; + } + + /* The default value, see comment in the legacy_set_geometry(). */ + geo->metadata_size = 10; + + geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; + + /* + * Now, the NAND chip with 2K page(data chunk is 512byte) shows below: + * + * | P | + * |<----------------------------------------------------->| + * | | + * | (Block Mark) | + * | P' | | | | + * |<-------------------------------------------->| D | | O' | + * | |<---->| |<--->| + * V V V V V + * +---+----------+-+----------+-+----------+-+----------+-+-----+ + * | M | data |E| data |E| data |E| data |E| | + * +---+----------+-+----------+-+----------+-+----------+-+-----+ + * ^ ^ + * | O | + * |<------------>| + * | | + * + * P : the page size for BCH module. + * E : The ECC strength. + * G : the length of Galois Field. + * N : The chunk count of per page. + * M : the metasize of per page. + * C : the ecc chunk size, aka the "data" above. + * P': the nand chip's page size. + * O : the nand chip's oob size. + * O': the free oob. + * + * The formula for P is : + * + * E * G * N + * P = ------------ + P' + M + * 8 + * + * The position of block mark moves forward in the ECC-based view + * of page, and the delta is: + * + * E * G * (N - 1) + * D = (---------------- + M) + * 8 + * + * Please see the comment in legacy_set_geometry(). + * With the condition C >= O , we still can get same result. + * So the bit position of the physical block mark within the ECC-based + * view of the page is : + * (P' - D) * 8 + */ + geo->page_size = mtd->writesize + geo->metadata_size + + (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; + + /* The available oob size we have. */ + if (geo->page_size < mtd->writesize + mtd->oobsize) { + of->offset = geo->page_size - mtd->writesize; + of->length = mtd->oobsize - of->offset; + } + + geo->payload_size = mtd->writesize; + + geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); + geo->auxiliary_size = ALIGN(geo->metadata_size, 4) + + ALIGN(geo->ecc_chunk_count, 4); + + if (!this->swap_block_mark) + return true; + + /* For bit swap. */ + block_mark_bit_offset = mtd->writesize * 8 - + (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) + + geo->metadata_size * 8); + + geo->block_mark_byte_offset = block_mark_bit_offset / 8; + geo->block_mark_bit_offset = block_mark_bit_offset % 8; + return true; +} + +static int legacy_set_geometry(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct mtd_info *mtd = &this->mtd; + unsigned int metadata_size; + unsigned int status_size; + unsigned int block_mark_bit_offset; + + /* + * The size of the metadata can be changed, though we set it to 10 + * bytes now. But it can't be too large, because we have to save + * enough space for BCH. + */ + geo->metadata_size = 10; + + /* The default for the length of Galois Field. */ + geo->gf_len = 13; + + /* The default for chunk size. */ + geo->ecc_chunk_size = 512; + while (geo->ecc_chunk_size < mtd->oobsize) { + geo->ecc_chunk_size *= 2; /* keep C >= O */ + geo->gf_len = 14; + } + + geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; + + /* We use the same ECC strength for all chunks. */ + geo->ecc_strength = get_ecc_strength(this); + if (!gpmi_check_ecc(this)) { + dev_err(this->dev, + "We can not support this nand chip." + " Its required ecc strength(%d) is beyond our" + " capability(%d).\n", geo->ecc_strength, + this->devdata->bch_max_ecc_strength); + return -EINVAL; + } + + geo->page_size = mtd->writesize + mtd->oobsize; + geo->payload_size = mtd->writesize; + + /* + * The auxiliary buffer contains the metadata and the ECC status. The + * metadata is padded to the nearest 32-bit boundary. The ECC status + * contains one byte for every ECC chunk, and is also padded to the + * nearest 32-bit boundary. + */ + metadata_size = ALIGN(geo->metadata_size, 4); + status_size = ALIGN(geo->ecc_chunk_count, 4); + + geo->auxiliary_size = metadata_size + status_size; + geo->auxiliary_status_offset = metadata_size; + + if (!this->swap_block_mark) + return 0; + + /* + * We need to compute the byte and bit offsets of + * the physical block mark within the ECC-based view of the page. + * + * NAND chip with 2K page shows below: + * (Block Mark) + * | | + * | D | + * |<---->| + * V V + * +---+----------+-+----------+-+----------+-+----------+-+ + * | M | data |E| data |E| data |E| data |E| + * +---+----------+-+----------+-+----------+-+----------+-+ + * + * The position of block mark moves forward in the ECC-based view + * of page, and the delta is: + * + * E * G * (N - 1) + * D = (---------------- + M) + * 8 + * + * With the formula to compute the ECC strength, and the condition + * : C >= O (C is the ecc chunk size) + * + * It's easy to deduce to the following result: + * + * E * G (O - M) C - M C - M + * ----------- <= ------- <= -------- < --------- + * 8 N N (N - 1) + * + * So, we get: + * + * E * G * (N - 1) + * D = (---------------- + M) < C + * 8 + * + * The above inequality means the position of block mark + * within the ECC-based view of the page is still in the data chunk, + * and it's NOT in the ECC bits of the chunk. + * + * Use the following to compute the bit position of the + * physical block mark within the ECC-based view of the page: + * (page_size - D) * 8 + * + * --Huang Shijie + */ + block_mark_bit_offset = mtd->writesize * 8 - + (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) + + geo->metadata_size * 8); + + geo->block_mark_byte_offset = block_mark_bit_offset / 8; + geo->block_mark_bit_offset = block_mark_bit_offset % 8; + return 0; +} + +int common_nfc_set_geometry(struct gpmi_nand_data *this) +{ + if (of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc") + && set_geometry_by_ecc_info(this)) + return 0; + return legacy_set_geometry(this); +} + +struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) +{ + /* We use the DMA channel 0 to access all the nand chips. */ + return this->dma_chans[0]; +} + +/* Can we use the upper's buffer directly for DMA? */ +void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr) +{ + struct scatterlist *sgl = &this->data_sgl; + int ret; + + /* first try to map the upper buffer directly */ + if (virt_addr_valid(this->upper_buf) && + !object_is_on_stack(this->upper_buf)) { + sg_init_one(sgl, this->upper_buf, this->upper_len); + ret = dma_map_sg(this->dev, sgl, 1, dr); + if (ret == 0) + goto map_fail; + + this->direct_dma_map_ok = true; + return; + } + +map_fail: + /* We have to use our own DMA buffer. */ + sg_init_one(sgl, this->data_buffer_dma, this->upper_len); + + if (dr == DMA_TO_DEVICE) + memcpy(this->data_buffer_dma, this->upper_buf, this->upper_len); + + dma_map_sg(this->dev, sgl, 1, dr); + + this->direct_dma_map_ok = false; +} + +/* This will be called after the DMA operation is finished. */ +static void dma_irq_callback(void *param) +{ + struct gpmi_nand_data *this = param; + struct completion *dma_c = &this->dma_done; + + switch (this->dma_type) { + case DMA_FOR_COMMAND: + dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE); + break; + + case DMA_FOR_READ_DATA: + dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE); + if (this->direct_dma_map_ok == false) + memcpy(this->upper_buf, this->data_buffer_dma, + this->upper_len); + break; + + case DMA_FOR_WRITE_DATA: + dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE); + break; + + case DMA_FOR_READ_ECC_PAGE: + case DMA_FOR_WRITE_ECC_PAGE: + /* We have to wait the BCH interrupt to finish. */ + break; + + default: + dev_err(this->dev, "in wrong DMA operation.\n"); + } + + complete(dma_c); +} + +int start_dma_without_bch_irq(struct gpmi_nand_data *this, + struct dma_async_tx_descriptor *desc) +{ + struct completion *dma_c = &this->dma_done; + int err; + + init_completion(dma_c); + + desc->callback = dma_irq_callback; + desc->callback_param = this; + dmaengine_submit(desc); + dma_async_issue_pending(get_dma_chan(this)); + + /* Wait for the interrupt from the DMA block. */ + err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000)); + if (!err) { + dev_err(this->dev, "DMA timeout, last DMA :%d\n", + this->last_dma_type); + gpmi_dump_info(this); + return -ETIMEDOUT; + } + return 0; +} + +/* + * This function is used in BCH reading or BCH writing pages. + * It will wait for the BCH interrupt as long as ONE second. + * Actually, we must wait for two interrupts : + * [1] firstly the DMA interrupt and + * [2] secondly the BCH interrupt. + */ +int start_dma_with_bch_irq(struct gpmi_nand_data *this, + struct dma_async_tx_descriptor *desc) +{ + struct completion *bch_c = &this->bch_done; + int err; + + /* Prepare to receive an interrupt from the BCH block. */ + init_completion(bch_c); + + /* start the DMA */ + start_dma_without_bch_irq(this, desc); + + /* Wait for the interrupt from the BCH block. */ + err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000)); + if (!err) { + dev_err(this->dev, "BCH timeout, last DMA :%d\n", + this->last_dma_type); + gpmi_dump_info(this); + return -ETIMEDOUT; + } + return 0; +} + +static int acquire_register_block(struct gpmi_nand_data *this, + const char *res_name) +{ + struct platform_device *pdev = this->pdev; + struct resources *res = &this->resources; + struct resource *r; + void __iomem *p; + + r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); + p = devm_ioremap_resource(&pdev->dev, r); + if (IS_ERR(p)) + return PTR_ERR(p); + + if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) + res->gpmi_regs = p; + else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) + res->bch_regs = p; + else + dev_err(this->dev, "unknown resource name : %s\n", res_name); + + return 0; +} + +static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) +{ + struct platform_device *pdev = this->pdev; + const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; + struct resource *r; + int err; + + r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name); + if (!r) { + dev_err(this->dev, "Can't get resource for %s\n", res_name); + return -ENODEV; + } + + err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this); + if (err) + dev_err(this->dev, "error requesting BCH IRQ\n"); + + return err; +} + +static void release_dma_channels(struct gpmi_nand_data *this) +{ + unsigned int i; + for (i = 0; i < DMA_CHANS; i++) + if (this->dma_chans[i]) { + dma_release_channel(this->dma_chans[i]); + this->dma_chans[i] = NULL; + } +} + +static int acquire_dma_channels(struct gpmi_nand_data *this) +{ + struct platform_device *pdev = this->pdev; + struct dma_chan *dma_chan; + + /* request dma channel */ + dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx"); + if (!dma_chan) { + dev_err(this->dev, "Failed to request DMA channel.\n"); + goto acquire_err; + } + + this->dma_chans[0] = dma_chan; + return 0; + +acquire_err: + release_dma_channels(this); + return -EINVAL; +} + +static char *extra_clks_for_mx6q[GPMI_CLK_MAX] = { + "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", +}; + +static int gpmi_get_clks(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + char **extra_clks = NULL; + struct clk *clk; + int err, i; + + /* The main clock is stored in the first. */ + r->clock[0] = devm_clk_get(this->dev, "gpmi_io"); + if (IS_ERR(r->clock[0])) { + err = PTR_ERR(r->clock[0]); + goto err_clock; + } + + /* Get extra clocks */ + if (GPMI_IS_MX6(this)) + extra_clks = extra_clks_for_mx6q; + if (!extra_clks) + return 0; + + for (i = 1; i < GPMI_CLK_MAX; i++) { + if (extra_clks[i - 1] == NULL) + break; + + clk = devm_clk_get(this->dev, extra_clks[i - 1]); + if (IS_ERR(clk)) { + err = PTR_ERR(clk); + goto err_clock; + } + + r->clock[i] = clk; + } + + if (GPMI_IS_MX6(this)) + /* + * Set the default value for the gpmi clock. + * + * If you want to use the ONFI nand which is in the + * Synchronous Mode, you should change the clock as you need. + */ + clk_set_rate(r->clock[0], 22000000); + + return 0; + +err_clock: + dev_dbg(this->dev, "failed in finding the clocks.\n"); + return err; +} + +static int acquire_resources(struct gpmi_nand_data *this) +{ + int ret; + + ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); + if (ret) + goto exit_regs; + + ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); + if (ret) + goto exit_regs; + + ret = acquire_bch_irq(this, bch_irq); + if (ret) + goto exit_regs; + + ret = acquire_dma_channels(this); + if (ret) + goto exit_regs; + + ret = gpmi_get_clks(this); + if (ret) + goto exit_clock; + return 0; + +exit_clock: + release_dma_channels(this); +exit_regs: + return ret; +} + +static void release_resources(struct gpmi_nand_data *this) +{ + release_dma_channels(this); +} + +static int init_hardware(struct gpmi_nand_data *this) +{ + int ret; + + /* + * This structure contains the "safe" GPMI timing that should succeed + * with any NAND Flash device + * (although, with less-than-optimal performance). + */ + struct nand_timing safe_timing = { + .data_setup_in_ns = 80, + .data_hold_in_ns = 60, + .address_setup_in_ns = 25, + .gpmi_sample_delay_in_ns = 6, + .tREA_in_ns = -1, + .tRLOH_in_ns = -1, + .tRHOH_in_ns = -1, + }; + + /* Initialize the hardwares. */ + ret = gpmi_init(this); + if (ret) + return ret; + + this->timing = safe_timing; + return 0; +} + +static int read_page_prepare(struct gpmi_nand_data *this, + void *destination, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + void **use_virt, dma_addr_t *use_phys) +{ + struct device *dev = this->dev; + + if (virt_addr_valid(destination)) { + dma_addr_t dest_phys; + + dest_phys = dma_map_single(dev, destination, + length, DMA_FROM_DEVICE); + if (dma_mapping_error(dev, dest_phys)) { + if (alt_size < length) { + dev_err(dev, "Alternate buffer is too small\n"); + return -ENOMEM; + } + goto map_failed; + } + *use_virt = destination; + *use_phys = dest_phys; + this->direct_dma_map_ok = true; + return 0; + } + +map_failed: + *use_virt = alt_virt; + *use_phys = alt_phys; + this->direct_dma_map_ok = false; + return 0; +} + +static inline void read_page_end(struct gpmi_nand_data *this, + void *destination, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + void *used_virt, dma_addr_t used_phys) +{ + if (this->direct_dma_map_ok) + dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE); +} + +static inline void read_page_swap_end(struct gpmi_nand_data *this, + void *destination, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + void *used_virt, dma_addr_t used_phys) +{ + if (!this->direct_dma_map_ok) + memcpy(destination, alt_virt, length); +} + +static int send_page_prepare(struct gpmi_nand_data *this, + const void *source, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + const void **use_virt, dma_addr_t *use_phys) +{ + struct device *dev = this->dev; + + if (virt_addr_valid(source)) { + dma_addr_t source_phys; + + source_phys = dma_map_single(dev, (void *)source, length, + DMA_TO_DEVICE); + if (dma_mapping_error(dev, source_phys)) { + if (alt_size < length) { + dev_err(dev, "Alternate buffer is too small\n"); + return -ENOMEM; + } + goto map_failed; + } + *use_virt = source; + *use_phys = source_phys; + return 0; + } +map_failed: + /* + * Copy the content of the source buffer into the alternate + * buffer and set up the return values accordingly. + */ + memcpy(alt_virt, source, length); + + *use_virt = alt_virt; + *use_phys = alt_phys; + return 0; +} + +static void send_page_end(struct gpmi_nand_data *this, + const void *source, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + const void *used_virt, dma_addr_t used_phys) +{ + struct device *dev = this->dev; + if (used_virt == source) + dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE); +} + +static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) +{ + struct device *dev = this->dev; + + if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt)) + dma_free_coherent(dev, this->page_buffer_size, + this->page_buffer_virt, + this->page_buffer_phys); + kfree(this->cmd_buffer); + kfree(this->data_buffer_dma); + + this->cmd_buffer = NULL; + this->data_buffer_dma = NULL; + this->page_buffer_virt = NULL; + this->page_buffer_size = 0; +} + +/* Allocate the DMA buffers */ +static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct device *dev = this->dev; + struct mtd_info *mtd = &this->mtd; + + /* [1] Allocate a command buffer. PAGE_SIZE is enough. */ + this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL); + if (this->cmd_buffer == NULL) + goto error_alloc; + + /* + * [2] Allocate a read/write data buffer. + * The gpmi_alloc_dma_buffer can be called twice. + * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer + * is called before the nand_scan_ident; and we allocate a buffer + * of the real NAND page size when the gpmi_alloc_dma_buffer is + * called after the nand_scan_ident. + */ + this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE, + GFP_DMA | GFP_KERNEL); + if (this->data_buffer_dma == NULL) + goto error_alloc; + + /* + * [3] Allocate the page buffer. + * + * Both the payload buffer and the auxiliary buffer must appear on + * 32-bit boundaries. We presume the size of the payload buffer is a + * power of two and is much larger than four, which guarantees the + * auxiliary buffer will appear on a 32-bit boundary. + */ + this->page_buffer_size = geo->payload_size + geo->auxiliary_size; + this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size, + &this->page_buffer_phys, GFP_DMA); + if (!this->page_buffer_virt) + goto error_alloc; + + + /* Slice up the page buffer. */ + this->payload_virt = this->page_buffer_virt; + this->payload_phys = this->page_buffer_phys; + this->auxiliary_virt = this->payload_virt + geo->payload_size; + this->auxiliary_phys = this->payload_phys + geo->payload_size; + return 0; + +error_alloc: + gpmi_free_dma_buffer(this); + return -ENOMEM; +} + +static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + int ret; + + /* + * Every operation begins with a command byte and a series of zero or + * more address bytes. These are distinguished by either the Address + * Latch Enable (ALE) or Command Latch Enable (CLE) signals being + * asserted. When MTD is ready to execute the command, it will deassert + * both latch enables. + * + * Rather than run a separate DMA operation for every single byte, we + * queue them up and run a single DMA operation for the entire series + * of command and data bytes. NAND_CMD_NONE means the END of the queue. + */ + if ((ctrl & (NAND_ALE | NAND_CLE))) { + if (data != NAND_CMD_NONE) + this->cmd_buffer[this->command_length++] = data; + return; + } + + if (!this->command_length) + return; + + ret = gpmi_send_command(this); + if (ret) + dev_err(this->dev, "Chip: %u, Error %d\n", + this->current_chip, ret); + + this->command_length = 0; +} + +static int gpmi_dev_ready(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + + return gpmi_is_ready(this, this->current_chip); +} + +static void gpmi_select_chip(struct mtd_info *mtd, int chipnr) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + + if ((this->current_chip < 0) && (chipnr >= 0)) + gpmi_begin(this); + else if ((this->current_chip >= 0) && (chipnr < 0)) + gpmi_end(this); + + this->current_chip = chipnr; +} + +static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + + dev_dbg(this->dev, "len is %d\n", len); + this->upper_buf = buf; + this->upper_len = len; + + gpmi_read_data(this); +} + +static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + + dev_dbg(this->dev, "len is %d\n", len); + this->upper_buf = (uint8_t *)buf; + this->upper_len = len; + + gpmi_send_data(this); +} + +static uint8_t gpmi_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + uint8_t *buf = this->data_buffer_dma; + + gpmi_read_buf(mtd, buf, 1); + return buf[0]; +} + +/* + * Handles block mark swapping. + * It can be called in swapping the block mark, or swapping it back, + * because the the operations are the same. + */ +static void block_mark_swapping(struct gpmi_nand_data *this, + void *payload, void *auxiliary) +{ + struct bch_geometry *nfc_geo = &this->bch_geometry; + unsigned char *p; + unsigned char *a; + unsigned int bit; + unsigned char mask; + unsigned char from_data; + unsigned char from_oob; + + if (!this->swap_block_mark) + return; + + /* + * If control arrives here, we're swapping. Make some convenience + * variables. + */ + bit = nfc_geo->block_mark_bit_offset; + p = payload + nfc_geo->block_mark_byte_offset; + a = auxiliary; + + /* + * Get the byte from the data area that overlays the block mark. Since + * the ECC engine applies its own view to the bits in the page, the + * physical block mark won't (in general) appear on a byte boundary in + * the data. + */ + from_data = (p[0] >> bit) | (p[1] << (8 - bit)); + + /* Get the byte from the OOB. */ + from_oob = a[0]; + + /* Swap them. */ + a[0] = from_data; + + mask = (0x1 << bit) - 1; + p[0] = (p[0] & mask) | (from_oob << bit); + + mask = ~0 << bit; + p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); +} + +static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct gpmi_nand_data *this = chip->priv; + struct bch_geometry *nfc_geo = &this->bch_geometry; + void *payload_virt; + dma_addr_t payload_phys; + void *auxiliary_virt; + dma_addr_t auxiliary_phys; + unsigned int i; + unsigned char *status; + unsigned int max_bitflips = 0; + int ret; + + dev_dbg(this->dev, "page number is : %d\n", page); + ret = read_page_prepare(this, buf, nfc_geo->payload_size, + this->payload_virt, this->payload_phys, + nfc_geo->payload_size, + &payload_virt, &payload_phys); + if (ret) { + dev_err(this->dev, "Inadequate DMA buffer\n"); + ret = -ENOMEM; + return ret; + } + auxiliary_virt = this->auxiliary_virt; + auxiliary_phys = this->auxiliary_phys; + + /* go! */ + ret = gpmi_read_page(this, payload_phys, auxiliary_phys); + read_page_end(this, buf, nfc_geo->payload_size, + this->payload_virt, this->payload_phys, + nfc_geo->payload_size, + payload_virt, payload_phys); + if (ret) { + dev_err(this->dev, "Error in ECC-based read: %d\n", ret); + return ret; + } + + /* handle the block mark swapping */ + block_mark_swapping(this, payload_virt, auxiliary_virt); + + /* Loop over status bytes, accumulating ECC status. */ + status = auxiliary_virt + nfc_geo->auxiliary_status_offset; + + for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) { + if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) + continue; + + if (*status == STATUS_UNCORRECTABLE) { + mtd->ecc_stats.failed++; + continue; + } + mtd->ecc_stats.corrected += *status; + max_bitflips = max_t(unsigned int, max_bitflips, *status); + } + + if (oob_required) { + /* + * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() + * for details about our policy for delivering the OOB. + * + * We fill the caller's buffer with set bits, and then copy the + * block mark to th caller's buffer. Note that, if block mark + * swapping was necessary, it has already been done, so we can + * rely on the first byte of the auxiliary buffer to contain + * the block mark. + */ + memset(chip->oob_poi, ~0, mtd->oobsize); + chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0]; + } + + read_page_swap_end(this, buf, nfc_geo->payload_size, + this->payload_virt, this->payload_phys, + nfc_geo->payload_size, + payload_virt, payload_phys); + + return max_bitflips; +} + +/* Fake a virtual small page for the subpage read */ +static int gpmi_ecc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, + uint32_t offs, uint32_t len, uint8_t *buf, int page) +{ + struct gpmi_nand_data *this = chip->priv; + void __iomem *bch_regs = this->resources.bch_regs; + struct bch_geometry old_geo = this->bch_geometry; + struct bch_geometry *geo = &this->bch_geometry; + int size = chip->ecc.size; /* ECC chunk size */ + int meta, n, page_size; + u32 r1_old, r2_old, r1_new, r2_new; + unsigned int max_bitflips; + int first, last, marker_pos; + int ecc_parity_size; + int col = 0; + + /* The size of ECC parity */ + ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; + + /* Align it with the chunk size */ + first = offs / size; + last = (offs + len - 1) / size; + + /* + * Find the chunk which contains the Block Marker. If this chunk is + * in the range of [first, last], we have to read out the whole page. + * Why? since we had swapped the data at the position of Block Marker + * to the metadata which is bound with the chunk 0. + */ + marker_pos = geo->block_mark_byte_offset / size; + if (last >= marker_pos && first <= marker_pos) { + dev_dbg(this->dev, "page:%d, first:%d, last:%d, marker at:%d\n", + page, first, last, marker_pos); + return gpmi_ecc_read_page(mtd, chip, buf, 0, page); + } + + meta = geo->metadata_size; + if (first) { + col = meta + (size + ecc_parity_size) * first; + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, col, -1); + + meta = 0; + buf = buf + first * size; + } + + /* Save the old environment */ + r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0); + r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1); + + /* change the BCH registers and bch_geometry{} */ + n = last - first + 1; + page_size = meta + (size + ecc_parity_size) * n; + + r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS | + BM_BCH_FLASH0LAYOUT0_META_SIZE); + r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) + | BF_BCH_FLASH0LAYOUT0_META_SIZE(meta); + writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0); + + r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE; + r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size); + writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1); + + geo->ecc_chunk_count = n; + geo->payload_size = n * size; + geo->page_size = page_size; + geo->auxiliary_status_offset = ALIGN(meta, 4); + + dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n", + page, offs, len, col, first, n, page_size); + + /* Read the subpage now */ + this->swap_block_mark = false; + max_bitflips = gpmi_ecc_read_page(mtd, chip, buf, 0, page); + + /* Restore */ + writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0); + writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1); + this->bch_geometry = old_geo; + this->swap_block_mark = true; + + return max_bitflips; +} + +static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required) +{ + struct gpmi_nand_data *this = chip->priv; + struct bch_geometry *nfc_geo = &this->bch_geometry; + const void *payload_virt; + dma_addr_t payload_phys; + const void *auxiliary_virt; + dma_addr_t auxiliary_phys; + int ret; + + dev_dbg(this->dev, "ecc write page.\n"); + if (this->swap_block_mark) { + /* + * If control arrives here, we're doing block mark swapping. + * Since we can't modify the caller's buffers, we must copy them + * into our own. + */ + memcpy(this->payload_virt, buf, mtd->writesize); + payload_virt = this->payload_virt; + payload_phys = this->payload_phys; + + memcpy(this->auxiliary_virt, chip->oob_poi, + nfc_geo->auxiliary_size); + auxiliary_virt = this->auxiliary_virt; + auxiliary_phys = this->auxiliary_phys; + + /* Handle block mark swapping. */ + block_mark_swapping(this, + (void *) payload_virt, (void *) auxiliary_virt); + } else { + /* + * If control arrives here, we're not doing block mark swapping, + * so we can to try and use the caller's buffers. + */ + ret = send_page_prepare(this, + buf, mtd->writesize, + this->payload_virt, this->payload_phys, + nfc_geo->payload_size, + &payload_virt, &payload_phys); + if (ret) { + dev_err(this->dev, "Inadequate payload DMA buffer\n"); + return 0; + } + + ret = send_page_prepare(this, + chip->oob_poi, mtd->oobsize, + this->auxiliary_virt, this->auxiliary_phys, + nfc_geo->auxiliary_size, + &auxiliary_virt, &auxiliary_phys); + if (ret) { + dev_err(this->dev, "Inadequate auxiliary DMA buffer\n"); + goto exit_auxiliary; + } + } + + /* Ask the NFC. */ + ret = gpmi_send_page(this, payload_phys, auxiliary_phys); + if (ret) + dev_err(this->dev, "Error in ECC-based write: %d\n", ret); + + if (!this->swap_block_mark) { + send_page_end(this, chip->oob_poi, mtd->oobsize, + this->auxiliary_virt, this->auxiliary_phys, + nfc_geo->auxiliary_size, + auxiliary_virt, auxiliary_phys); +exit_auxiliary: + send_page_end(this, buf, mtd->writesize, + this->payload_virt, this->payload_phys, + nfc_geo->payload_size, + payload_virt, payload_phys); + } + + return 0; +} + +/* + * There are several places in this driver where we have to handle the OOB and + * block marks. This is the function where things are the most complicated, so + * this is where we try to explain it all. All the other places refer back to + * here. + * + * These are the rules, in order of decreasing importance: + * + * 1) Nothing the caller does can be allowed to imperil the block mark. + * + * 2) In read operations, the first byte of the OOB we return must reflect the + * true state of the block mark, no matter where that block mark appears in + * the physical page. + * + * 3) ECC-based read operations return an OOB full of set bits (since we never + * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads + * return). + * + * 4) "Raw" read operations return a direct view of the physical bytes in the + * page, using the conventional definition of which bytes are data and which + * are OOB. This gives the caller a way to see the actual, physical bytes + * in the page, without the distortions applied by our ECC engine. + * + * + * What we do for this specific read operation depends on two questions: + * + * 1) Are we doing a "raw" read, or an ECC-based read? + * + * 2) Are we using block mark swapping or transcription? + * + * There are four cases, illustrated by the following Karnaugh map: + * + * | Raw | ECC-based | + * -------------+-------------------------+-------------------------+ + * | Read the conventional | | + * | OOB at the end of the | | + * Swapping | page and return it. It | | + * | contains exactly what | | + * | we want. | Read the block mark and | + * -------------+-------------------------+ return it in a buffer | + * | Read the conventional | full of set bits. | + * | OOB at the end of the | | + * | page and also the block | | + * Transcribing | mark in the metadata. | | + * | Copy the block mark | | + * | into the first byte of | | + * | the OOB. | | + * -------------+-------------------------+-------------------------+ + * + * Note that we break rule #4 in the Transcribing/Raw case because we're not + * giving an accurate view of the actual, physical bytes in the page (we're + * overwriting the block mark). That's OK because it's more important to follow + * rule #2. + * + * It turns out that knowing whether we want an "ECC-based" or "raw" read is not + * easy. When reading a page, for example, the NAND Flash MTD code calls our + * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an + * ECC-based or raw view of the page is implicit in which function it calls + * (there is a similar pair of ECC-based/raw functions for writing). + * + * FIXME: The following paragraph is incorrect, now that there exist + * ecc.read_oob_raw and ecc.write_oob_raw functions. + * + * Since MTD assumes the OOB is not covered by ECC, there is no pair of + * ECC-based/raw functions for reading or or writing the OOB. The fact that the + * caller wants an ECC-based or raw view of the page is not propagated down to + * this driver. + */ +static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + struct gpmi_nand_data *this = chip->priv; + + dev_dbg(this->dev, "page number is %d\n", page); + /* clear the OOB buffer */ + memset(chip->oob_poi, ~0, mtd->oobsize); + + /* Read out the conventional OOB. */ + chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + + /* + * Now, we want to make sure the block mark is correct. In the + * Swapping/Raw case, we already have it. Otherwise, we need to + * explicitly read it. + */ + if (!this->swap_block_mark) { + /* Read the block mark into the first byte of the OOB buffer. */ + chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); + chip->oob_poi[0] = chip->read_byte(mtd); + } + + return 0; +} + +static int +gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) +{ + struct nand_oobfree *of = mtd->ecclayout->oobfree; + int status = 0; + + /* Do we have available oob area? */ + if (!of->length) + return -EPERM; + + if (!nand_is_slc(chip)) + return -EPERM; + + chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize + of->offset, page); + chip->write_buf(mtd, chip->oob_poi + of->offset, of->length); + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + + status = chip->waitfunc(mtd, chip); + return status & NAND_STATUS_FAIL ? -EIO : 0; +} + +static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + int ret = 0; + uint8_t *block_mark; + int column, page, status, chipnr; + + chipnr = (int)(ofs >> chip->chip_shift); + chip->select_chip(mtd, chipnr); + + column = this->swap_block_mark ? mtd->writesize : 0; + + /* Write the block mark. */ + block_mark = this->data_buffer_dma; + block_mark[0] = 0; /* bad block marker */ + + /* Shift to get page */ + page = (int)(ofs >> chip->page_shift); + + chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page); + chip->write_buf(mtd, block_mark, 1); + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + + status = chip->waitfunc(mtd, chip); + if (status & NAND_STATUS_FAIL) + ret = -EIO; + + chip->select_chip(mtd, -1); + + return ret; +} + +static int nand_boot_set_geometry(struct gpmi_nand_data *this) +{ + struct boot_rom_geometry *geometry = &this->rom_geometry; + + /* + * Set the boot block stride size. + * + * In principle, we should be reading this from the OTP bits, since + * that's where the ROM is going to get it. In fact, we don't have any + * way to read the OTP bits, so we go with the default and hope for the + * best. + */ + geometry->stride_size_in_pages = 64; + + /* + * Set the search area stride exponent. + * + * In principle, we should be reading this from the OTP bits, since + * that's where the ROM is going to get it. In fact, we don't have any + * way to read the OTP bits, so we go with the default and hope for the + * best. + */ + geometry->search_area_stride_exponent = 2; + return 0; +} + +static const char *fingerprint = "STMP"; +static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) +{ + struct boot_rom_geometry *rom_geo = &this->rom_geometry; + struct device *dev = this->dev; + struct mtd_info *mtd = &this->mtd; + struct nand_chip *chip = &this->nand; + unsigned int search_area_size_in_strides; + unsigned int stride; + unsigned int page; + uint8_t *buffer = chip->buffers->databuf; + int saved_chip_number; + int found_an_ncb_fingerprint = false; + + /* Compute the number of strides in a search area. */ + search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; + + saved_chip_number = this->current_chip; + chip->select_chip(mtd, 0); + + /* + * Loop through the first search area, looking for the NCB fingerprint. + */ + dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); + + for (stride = 0; stride < search_area_size_in_strides; stride++) { + /* Compute the page addresses. */ + page = stride * rom_geo->stride_size_in_pages; + + dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); + + /* + * Read the NCB fingerprint. The fingerprint is four bytes long + * and starts in the 12th byte of the page. + */ + chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page); + chip->read_buf(mtd, buffer, strlen(fingerprint)); + + /* Look for the fingerprint. */ + if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { + found_an_ncb_fingerprint = true; + break; + } + + } + + chip->select_chip(mtd, saved_chip_number); + + if (found_an_ncb_fingerprint) + dev_dbg(dev, "\tFound a fingerprint\n"); + else + dev_dbg(dev, "\tNo fingerprint found\n"); + return found_an_ncb_fingerprint; +} + +/* Writes a transcription stamp. */ +static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) +{ + struct device *dev = this->dev; + struct boot_rom_geometry *rom_geo = &this->rom_geometry; + struct mtd_info *mtd = &this->mtd; + struct nand_chip *chip = &this->nand; + unsigned int block_size_in_pages; + unsigned int search_area_size_in_strides; + unsigned int search_area_size_in_pages; + unsigned int search_area_size_in_blocks; + unsigned int block; + unsigned int stride; + unsigned int page; + uint8_t *buffer = chip->buffers->databuf; + int saved_chip_number; + int status; + + /* Compute the search area geometry. */ + block_size_in_pages = mtd->erasesize / mtd->writesize; + search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; + search_area_size_in_pages = search_area_size_in_strides * + rom_geo->stride_size_in_pages; + search_area_size_in_blocks = + (search_area_size_in_pages + (block_size_in_pages - 1)) / + block_size_in_pages; + + dev_dbg(dev, "Search Area Geometry :\n"); + dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); + dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); + dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); + + /* Select chip 0. */ + saved_chip_number = this->current_chip; + chip->select_chip(mtd, 0); + + /* Loop over blocks in the first search area, erasing them. */ + dev_dbg(dev, "Erasing the search area...\n"); + + for (block = 0; block < search_area_size_in_blocks; block++) { + /* Compute the page address. */ + page = block * block_size_in_pages; + + /* Erase this block. */ + dev_dbg(dev, "\tErasing block 0x%x\n", block); + chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); + chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); + + /* Wait for the erase to finish. */ + status = chip->waitfunc(mtd, chip); + if (status & NAND_STATUS_FAIL) + dev_err(dev, "[%s] Erase failed.\n", __func__); + } + + /* Write the NCB fingerprint into the page buffer. */ + memset(buffer, ~0, mtd->writesize); + memcpy(buffer + 12, fingerprint, strlen(fingerprint)); + + /* Loop through the first search area, writing NCB fingerprints. */ + dev_dbg(dev, "Writing NCB fingerprints...\n"); + for (stride = 0; stride < search_area_size_in_strides; stride++) { + /* Compute the page addresses. */ + page = stride * rom_geo->stride_size_in_pages; + + /* Write the first page of the current stride. */ + dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); + chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); + chip->ecc.write_page_raw(mtd, chip, buffer, 0); + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + + /* Wait for the write to finish. */ + status = chip->waitfunc(mtd, chip); + if (status & NAND_STATUS_FAIL) + dev_err(dev, "[%s] Write failed.\n", __func__); + } + + /* Deselect chip 0. */ + chip->select_chip(mtd, saved_chip_number); + return 0; +} + +static int mx23_boot_init(struct gpmi_nand_data *this) +{ + struct device *dev = this->dev; + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = &this->mtd; + unsigned int block_count; + unsigned int block; + int chipnr; + int page; + loff_t byte; + uint8_t block_mark; + int ret = 0; + + /* + * If control arrives here, we can't use block mark swapping, which + * means we're forced to use transcription. First, scan for the + * transcription stamp. If we find it, then we don't have to do + * anything -- the block marks are already transcribed. + */ + if (mx23_check_transcription_stamp(this)) + return 0; + + /* + * If control arrives here, we couldn't find a transcription stamp, so + * so we presume the block marks are in the conventional location. + */ + dev_dbg(dev, "Transcribing bad block marks...\n"); + + /* Compute the number of blocks in the entire medium. */ + block_count = chip->chipsize >> chip->phys_erase_shift; + + /* + * Loop over all the blocks in the medium, transcribing block marks as + * we go. + */ + for (block = 0; block < block_count; block++) { + /* + * Compute the chip, page and byte addresses for this block's + * conventional mark. + */ + chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); + page = block << (chip->phys_erase_shift - chip->page_shift); + byte = block << chip->phys_erase_shift; + + /* Send the command to read the conventional block mark. */ + chip->select_chip(mtd, chipnr); + chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); + block_mark = chip->read_byte(mtd); + chip->select_chip(mtd, -1); + + /* + * Check if the block is marked bad. If so, we need to mark it + * again, but this time the result will be a mark in the + * location where we transcribe block marks. + */ + if (block_mark != 0xff) { + dev_dbg(dev, "Transcribing mark in block %u\n", block); + ret = chip->block_markbad(mtd, byte); + if (ret) + dev_err(dev, "Failed to mark block bad with " + "ret %d\n", ret); + } + } + + /* Write the stamp that indicates we've transcribed the block marks. */ + mx23_write_transcription_stamp(this); + return 0; +} + +static int nand_boot_init(struct gpmi_nand_data *this) +{ + nand_boot_set_geometry(this); + + /* This is ROM arch-specific initilization before the BBT scanning. */ + if (GPMI_IS_MX23(this)) + return mx23_boot_init(this); + return 0; +} + +static int gpmi_set_geometry(struct gpmi_nand_data *this) +{ + int ret; + + /* Free the temporary DMA memory for reading ID. */ + gpmi_free_dma_buffer(this); + + /* Set up the NFC geometry which is used by BCH. */ + ret = bch_set_geometry(this); + if (ret) { + dev_err(this->dev, "Error setting BCH geometry : %d\n", ret); + return ret; + } + + /* Alloc the new DMA buffers according to the pagesize and oobsize */ + return gpmi_alloc_dma_buffer(this); +} + +static void gpmi_nand_exit(struct gpmi_nand_data *this) +{ + nand_release(&this->mtd); + gpmi_free_dma_buffer(this); +} + +static int gpmi_init_last(struct gpmi_nand_data *this) +{ + struct mtd_info *mtd = &this->mtd; + struct nand_chip *chip = mtd->priv; + struct nand_ecc_ctrl *ecc = &chip->ecc; + struct bch_geometry *bch_geo = &this->bch_geometry; + int ret; + + /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ + this->swap_block_mark = !GPMI_IS_MX23(this); + + /* Set up the medium geometry */ + ret = gpmi_set_geometry(this); + if (ret) + return ret; + + /* Init the nand_ecc_ctrl{} */ + ecc->read_page = gpmi_ecc_read_page; + ecc->write_page = gpmi_ecc_write_page; + ecc->read_oob = gpmi_ecc_read_oob; + ecc->write_oob = gpmi_ecc_write_oob; + ecc->mode = NAND_ECC_HW; + ecc->size = bch_geo->ecc_chunk_size; + ecc->strength = bch_geo->ecc_strength; + ecc->layout = &gpmi_hw_ecclayout; + + /* + * We only enable the subpage read when: + * (1) the chip is imx6, and + * (2) the size of the ECC parity is byte aligned. + */ + if (GPMI_IS_MX6(this) && + ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) { + ecc->read_subpage = gpmi_ecc_read_subpage; + chip->options |= NAND_SUBPAGE_READ; + } + + /* + * Can we enable the extra features? such as EDO or Sync mode. + * + * We do not check the return value now. That's means if we fail in + * enable the extra features, we still can run in the normal way. + */ + gpmi_extra_init(this); + + return 0; +} + +static int gpmi_nand_init(struct gpmi_nand_data *this) +{ + struct mtd_info *mtd = &this->mtd; + struct nand_chip *chip = &this->nand; + struct mtd_part_parser_data ppdata = {}; + int ret; + + /* init current chip */ + this->current_chip = -1; + + /* init the MTD data structures */ + mtd->priv = chip; + mtd->name = "gpmi-nand"; + mtd->owner = THIS_MODULE; + + /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ + chip->priv = this; + chip->select_chip = gpmi_select_chip; + chip->cmd_ctrl = gpmi_cmd_ctrl; + chip->dev_ready = gpmi_dev_ready; + chip->read_byte = gpmi_read_byte; + chip->read_buf = gpmi_read_buf; + chip->write_buf = gpmi_write_buf; + chip->badblock_pattern = &gpmi_bbt_descr; + chip->block_markbad = gpmi_block_markbad; + chip->options |= NAND_NO_SUBPAGE_WRITE; + if (of_get_nand_on_flash_bbt(this->dev->of_node)) + chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; + + /* + * Allocate a temporary DMA buffer for reading ID in the + * nand_scan_ident(). + */ + this->bch_geometry.payload_size = 1024; + this->bch_geometry.auxiliary_size = 128; + ret = gpmi_alloc_dma_buffer(this); + if (ret) + goto err_out; + + ret = nand_scan_ident(mtd, GPMI_IS_MX6(this) ? 2 : 1, NULL); + if (ret) + goto err_out; + + ret = gpmi_init_last(this); + if (ret) + goto err_out; + + chip->options |= NAND_SKIP_BBTSCAN; + ret = nand_scan_tail(mtd); + if (ret) + goto err_out; + + ret = nand_boot_init(this); + if (ret) + goto err_out; + chip->scan_bbt(mtd); + + ppdata.of_node = this->pdev->dev.of_node; + ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0); + if (ret) + goto err_out; + return 0; + +err_out: + gpmi_nand_exit(this); + return ret; +} + +static const struct of_device_id gpmi_nand_id_table[] = { + { + .compatible = "fsl,imx23-gpmi-nand", + .data = (void *)&gpmi_devdata_imx23, + }, { + .compatible = "fsl,imx28-gpmi-nand", + .data = (void *)&gpmi_devdata_imx28, + }, { + .compatible = "fsl,imx6q-gpmi-nand", + .data = (void *)&gpmi_devdata_imx6q, + }, { + .compatible = "fsl,imx6sx-gpmi-nand", + .data = (void *)&gpmi_devdata_imx6sx, + }, {} +}; +MODULE_DEVICE_TABLE(of, gpmi_nand_id_table); + +static int gpmi_nand_probe(struct platform_device *pdev) +{ + struct gpmi_nand_data *this; + const struct of_device_id *of_id; + int ret; + + this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL); + if (!this) + return -ENOMEM; + + of_id = of_match_device(gpmi_nand_id_table, &pdev->dev); + if (of_id) { + this->devdata = of_id->data; + } else { + dev_err(&pdev->dev, "Failed to find the right device id.\n"); + return -ENODEV; + } + + platform_set_drvdata(pdev, this); + this->pdev = pdev; + this->dev = &pdev->dev; + + ret = acquire_resources(this); + if (ret) + goto exit_acquire_resources; + + ret = init_hardware(this); + if (ret) + goto exit_nfc_init; + + ret = gpmi_nand_init(this); + if (ret) + goto exit_nfc_init; + + dev_info(this->dev, "driver registered.\n"); + + return 0; + +exit_nfc_init: + release_resources(this); +exit_acquire_resources: + dev_err(this->dev, "driver registration failed: %d\n", ret); + + return ret; +} + +static int gpmi_nand_remove(struct platform_device *pdev) +{ + struct gpmi_nand_data *this = platform_get_drvdata(pdev); + + gpmi_nand_exit(this); + release_resources(this); + return 0; +} + +static struct platform_driver gpmi_nand_driver = { + .driver = { + .name = "gpmi-nand", + .of_match_table = gpmi_nand_id_table, + }, + .probe = gpmi_nand_probe, + .remove = gpmi_nand_remove, +}; +module_platform_driver(gpmi_nand_driver); + +MODULE_AUTHOR("Freescale Semiconductor, Inc."); +MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/gpmi-nand/gpmi-nand.h new file mode 100644 index 00000000000..32c6ba49f98 --- /dev/null +++ b/drivers/mtd/nand/gpmi-nand/gpmi-nand.h @@ -0,0 +1,305 @@ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ +#ifndef __DRIVERS_MTD_NAND_GPMI_NAND_H +#define __DRIVERS_MTD_NAND_GPMI_NAND_H + +#include <linux/mtd/nand.h> +#include <linux/platform_device.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> + +#define GPMI_CLK_MAX 5 /* MX6Q needs five clocks */ +struct resources { + void __iomem *gpmi_regs; + void __iomem *bch_regs; + unsigned int dma_low_channel; + unsigned int dma_high_channel; + struct clk *clock[GPMI_CLK_MAX]; +}; + +/** + * struct bch_geometry - BCH geometry description. + * @gf_len: The length of Galois Field. (e.g., 13 or 14) + * @ecc_strength: A number that describes the strength of the ECC + * algorithm. + * @page_size: The size, in bytes, of a physical page, including + * both data and OOB. + * @metadata_size: The size, in bytes, of the metadata. + * @ecc_chunk_size: The size, in bytes, of a single ECC chunk. Note + * the first chunk in the page includes both data and + * metadata, so it's a bit larger than this value. + * @ecc_chunk_count: The number of ECC chunks in the page, + * @payload_size: The size, in bytes, of the payload buffer. + * @auxiliary_size: The size, in bytes, of the auxiliary buffer. + * @auxiliary_status_offset: The offset into the auxiliary buffer at which + * the ECC status appears. + * @block_mark_byte_offset: The byte offset in the ECC-based page view at + * which the underlying physical block mark appears. + * @block_mark_bit_offset: The bit offset into the ECC-based page view at + * which the underlying physical block mark appears. + */ +struct bch_geometry { + unsigned int gf_len; + unsigned int ecc_strength; + unsigned int page_size; + unsigned int metadata_size; + unsigned int ecc_chunk_size; + unsigned int ecc_chunk_count; + unsigned int payload_size; + unsigned int auxiliary_size; + unsigned int auxiliary_status_offset; + unsigned int block_mark_byte_offset; + unsigned int block_mark_bit_offset; +}; + +/** + * struct boot_rom_geometry - Boot ROM geometry description. + * @stride_size_in_pages: The size of a boot block stride, in pages. + * @search_area_stride_exponent: The logarithm to base 2 of the size of a + * search area in boot block strides. + */ +struct boot_rom_geometry { + unsigned int stride_size_in_pages; + unsigned int search_area_stride_exponent; +}; + +/* DMA operations types */ +enum dma_ops_type { + DMA_FOR_COMMAND = 1, + DMA_FOR_READ_DATA, + DMA_FOR_WRITE_DATA, + DMA_FOR_READ_ECC_PAGE, + DMA_FOR_WRITE_ECC_PAGE +}; + +/** + * struct nand_timing - Fundamental timing attributes for NAND. + * @data_setup_in_ns: The data setup time, in nanoseconds. Usually the + * maximum of tDS and tWP. A negative value + * indicates this characteristic isn't known. + * @data_hold_in_ns: The data hold time, in nanoseconds. Usually the + * maximum of tDH, tWH and tREH. A negative value + * indicates this characteristic isn't known. + * @address_setup_in_ns: The address setup time, in nanoseconds. Usually + * the maximum of tCLS, tCS and tALS. A negative + * value indicates this characteristic isn't known. + * @gpmi_sample_delay_in_ns: A GPMI-specific timing parameter. A negative value + * indicates this characteristic isn't known. + * @tREA_in_ns: tREA, in nanoseconds, from the data sheet. A + * negative value indicates this characteristic isn't + * known. + * @tRLOH_in_ns: tRLOH, in nanoseconds, from the data sheet. A + * negative value indicates this characteristic isn't + * known. + * @tRHOH_in_ns: tRHOH, in nanoseconds, from the data sheet. A + * negative value indicates this characteristic isn't + * known. + */ +struct nand_timing { + int8_t data_setup_in_ns; + int8_t data_hold_in_ns; + int8_t address_setup_in_ns; + int8_t gpmi_sample_delay_in_ns; + int8_t tREA_in_ns; + int8_t tRLOH_in_ns; + int8_t tRHOH_in_ns; +}; + +enum gpmi_type { + IS_MX23, + IS_MX28, + IS_MX6Q, + IS_MX6SX +}; + +struct gpmi_devdata { + enum gpmi_type type; + int bch_max_ecc_strength; + int max_chain_delay; /* See the async EDO mode */ +}; + +struct gpmi_nand_data { + /* flags */ +#define GPMI_ASYNC_EDO_ENABLED (1 << 0) +#define GPMI_TIMING_INIT_OK (1 << 1) + int flags; + const struct gpmi_devdata *devdata; + + /* System Interface */ + struct device *dev; + struct platform_device *pdev; + + /* Resources */ + struct resources resources; + + /* Flash Hardware */ + struct nand_timing timing; + int timing_mode; + + /* BCH */ + struct bch_geometry bch_geometry; + struct completion bch_done; + + /* NAND Boot issue */ + bool swap_block_mark; + struct boot_rom_geometry rom_geometry; + + /* MTD / NAND */ + struct nand_chip nand; + struct mtd_info mtd; + + /* General-use Variables */ + int current_chip; + unsigned int command_length; + + /* passed from upper layer */ + uint8_t *upper_buf; + int upper_len; + + /* for DMA operations */ + bool direct_dma_map_ok; + + struct scatterlist cmd_sgl; + char *cmd_buffer; + + struct scatterlist data_sgl; + char *data_buffer_dma; + + void *page_buffer_virt; + dma_addr_t page_buffer_phys; + unsigned int page_buffer_size; + + void *payload_virt; + dma_addr_t payload_phys; + + void *auxiliary_virt; + dma_addr_t auxiliary_phys; + + /* DMA channels */ +#define DMA_CHANS 8 + struct dma_chan *dma_chans[DMA_CHANS]; + enum dma_ops_type last_dma_type; + enum dma_ops_type dma_type; + struct completion dma_done; + + /* private */ + void *private; +}; + +/** + * struct gpmi_nfc_hardware_timing - GPMI hardware timing parameters. + * @data_setup_in_cycles: The data setup time, in cycles. + * @data_hold_in_cycles: The data hold time, in cycles. + * @address_setup_in_cycles: The address setup time, in cycles. + * @device_busy_timeout: The timeout waiting for NAND Ready/Busy, + * this value is the number of cycles multiplied + * by 4096. + * @use_half_periods: Indicates the clock is running slowly, so the + * NFC DLL should use half-periods. + * @sample_delay_factor: The sample delay factor. + * @wrn_dly_sel: The delay on the GPMI write strobe. + */ +struct gpmi_nfc_hardware_timing { + /* for HW_GPMI_TIMING0 */ + uint8_t data_setup_in_cycles; + uint8_t data_hold_in_cycles; + uint8_t address_setup_in_cycles; + + /* for HW_GPMI_TIMING1 */ + uint16_t device_busy_timeout; +#define GPMI_DEFAULT_BUSY_TIMEOUT 0x500 /* default busy timeout value.*/ + + /* for HW_GPMI_CTRL1 */ + bool use_half_periods; + uint8_t sample_delay_factor; + uint8_t wrn_dly_sel; +}; + +/** + * struct timing_threshod - Timing threshold + * @max_data_setup_cycles: The maximum number of data setup cycles that + * can be expressed in the hardware. + * @internal_data_setup_in_ns: The time, in ns, that the NFC hardware requires + * for data read internal setup. In the Reference + * Manual, see the chapter "High-Speed NAND + * Timing" for more details. + * @max_sample_delay_factor: The maximum sample delay factor that can be + * expressed in the hardware. + * @max_dll_clock_period_in_ns: The maximum period of the GPMI clock that the + * sample delay DLL hardware can possibly work + * with (the DLL is unusable with longer periods). + * If the full-cycle period is greater than HALF + * this value, the DLL must be configured to use + * half-periods. + * @max_dll_delay_in_ns: The maximum amount of delay, in ns, that the + * DLL can implement. + * @clock_frequency_in_hz: The clock frequency, in Hz, during the current + * I/O transaction. If no I/O transaction is in + * progress, this is the clock frequency during + * the most recent I/O transaction. + */ +struct timing_threshod { + const unsigned int max_chip_count; + const unsigned int max_data_setup_cycles; + const unsigned int internal_data_setup_in_ns; + const unsigned int max_sample_delay_factor; + const unsigned int max_dll_clock_period_in_ns; + const unsigned int max_dll_delay_in_ns; + unsigned long clock_frequency_in_hz; + +}; + +/* Common Services */ +extern int common_nfc_set_geometry(struct gpmi_nand_data *); +extern struct dma_chan *get_dma_chan(struct gpmi_nand_data *); +extern void prepare_data_dma(struct gpmi_nand_data *, + enum dma_data_direction dr); +extern int start_dma_without_bch_irq(struct gpmi_nand_data *, + struct dma_async_tx_descriptor *); +extern int start_dma_with_bch_irq(struct gpmi_nand_data *, + struct dma_async_tx_descriptor *); + +/* GPMI-NAND helper function library */ +extern int gpmi_init(struct gpmi_nand_data *); +extern int gpmi_extra_init(struct gpmi_nand_data *); +extern void gpmi_clear_bch(struct gpmi_nand_data *); +extern void gpmi_dump_info(struct gpmi_nand_data *); +extern int bch_set_geometry(struct gpmi_nand_data *); +extern int gpmi_is_ready(struct gpmi_nand_data *, unsigned chip); +extern int gpmi_send_command(struct gpmi_nand_data *); +extern void gpmi_begin(struct gpmi_nand_data *); +extern void gpmi_end(struct gpmi_nand_data *); +extern int gpmi_read_data(struct gpmi_nand_data *); +extern int gpmi_send_data(struct gpmi_nand_data *); +extern int gpmi_send_page(struct gpmi_nand_data *, + dma_addr_t payload, dma_addr_t auxiliary); +extern int gpmi_read_page(struct gpmi_nand_data *, + dma_addr_t payload, dma_addr_t auxiliary); + +/* BCH : Status Block Completion Codes */ +#define STATUS_GOOD 0x00 +#define STATUS_ERASED 0xff +#define STATUS_UNCORRECTABLE 0xfe + +/* Use the devdata to distinguish different Archs. */ +#define GPMI_IS_MX23(x) ((x)->devdata->type == IS_MX23) +#define GPMI_IS_MX28(x) ((x)->devdata->type == IS_MX28) +#define GPMI_IS_MX6Q(x) ((x)->devdata->type == IS_MX6Q) +#define GPMI_IS_MX6SX(x) ((x)->devdata->type == IS_MX6SX) + +#define GPMI_IS_MX6(x) (GPMI_IS_MX6Q(x) || GPMI_IS_MX6SX(x)) +#endif diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-regs.h b/drivers/mtd/nand/gpmi-nand/gpmi-regs.h new file mode 100644 index 00000000000..82114cdc833 --- /dev/null +++ b/drivers/mtd/nand/gpmi-nand/gpmi-regs.h @@ -0,0 +1,187 @@ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright 2008-2011 Freescale Semiconductor, Inc. + * Copyright 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ +#ifndef __GPMI_NAND_GPMI_REGS_H +#define __GPMI_NAND_GPMI_REGS_H + +#define HW_GPMI_CTRL0 0x00000000 +#define HW_GPMI_CTRL0_SET 0x00000004 +#define HW_GPMI_CTRL0_CLR 0x00000008 +#define HW_GPMI_CTRL0_TOG 0x0000000c + +#define BP_GPMI_CTRL0_COMMAND_MODE 24 +#define BM_GPMI_CTRL0_COMMAND_MODE (3 << BP_GPMI_CTRL0_COMMAND_MODE) +#define BF_GPMI_CTRL0_COMMAND_MODE(v) \ + (((v) << BP_GPMI_CTRL0_COMMAND_MODE) & BM_GPMI_CTRL0_COMMAND_MODE) +#define BV_GPMI_CTRL0_COMMAND_MODE__WRITE 0x0 +#define BV_GPMI_CTRL0_COMMAND_MODE__READ 0x1 +#define BV_GPMI_CTRL0_COMMAND_MODE__READ_AND_COMPARE 0x2 +#define BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY 0x3 + +#define BM_GPMI_CTRL0_WORD_LENGTH (1 << 23) +#define BV_GPMI_CTRL0_WORD_LENGTH__16_BIT 0x0 +#define BV_GPMI_CTRL0_WORD_LENGTH__8_BIT 0x1 + +/* + * Difference in LOCK_CS between imx23 and imx28 : + * This bit may impact the _POWER_ consumption. So some chips + * do not set it. + */ +#define MX23_BP_GPMI_CTRL0_LOCK_CS 22 +#define MX28_BP_GPMI_CTRL0_LOCK_CS 27 +#define LOCK_CS_ENABLE 0x1 +#define BF_GPMI_CTRL0_LOCK_CS(v, x) 0x0 + +/* Difference in CS between imx23 and imx28 */ +#define BP_GPMI_CTRL0_CS 20 +#define MX23_BM_GPMI_CTRL0_CS (3 << BP_GPMI_CTRL0_CS) +#define MX28_BM_GPMI_CTRL0_CS (7 << BP_GPMI_CTRL0_CS) +#define BF_GPMI_CTRL0_CS(v, x) (((v) << BP_GPMI_CTRL0_CS) & \ + (GPMI_IS_MX23((x)) \ + ? MX23_BM_GPMI_CTRL0_CS \ + : MX28_BM_GPMI_CTRL0_CS)) + +#define BP_GPMI_CTRL0_ADDRESS 17 +#define BM_GPMI_CTRL0_ADDRESS (3 << BP_GPMI_CTRL0_ADDRESS) +#define BF_GPMI_CTRL0_ADDRESS(v) \ + (((v) << BP_GPMI_CTRL0_ADDRESS) & BM_GPMI_CTRL0_ADDRESS) +#define BV_GPMI_CTRL0_ADDRESS__NAND_DATA 0x0 +#define BV_GPMI_CTRL0_ADDRESS__NAND_CLE 0x1 +#define BV_GPMI_CTRL0_ADDRESS__NAND_ALE 0x2 + +#define BM_GPMI_CTRL0_ADDRESS_INCREMENT (1 << 16) +#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__DISABLED 0x0 +#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__ENABLED 0x1 + +#define BP_GPMI_CTRL0_XFER_COUNT 0 +#define BM_GPMI_CTRL0_XFER_COUNT (0xffff << BP_GPMI_CTRL0_XFER_COUNT) +#define BF_GPMI_CTRL0_XFER_COUNT(v) \ + (((v) << BP_GPMI_CTRL0_XFER_COUNT) & BM_GPMI_CTRL0_XFER_COUNT) + +#define HW_GPMI_COMPARE 0x00000010 + +#define HW_GPMI_ECCCTRL 0x00000020 +#define HW_GPMI_ECCCTRL_SET 0x00000024 +#define HW_GPMI_ECCCTRL_CLR 0x00000028 +#define HW_GPMI_ECCCTRL_TOG 0x0000002c + +#define BP_GPMI_ECCCTRL_ECC_CMD 13 +#define BM_GPMI_ECCCTRL_ECC_CMD (3 << BP_GPMI_ECCCTRL_ECC_CMD) +#define BF_GPMI_ECCCTRL_ECC_CMD(v) \ + (((v) << BP_GPMI_ECCCTRL_ECC_CMD) & BM_GPMI_ECCCTRL_ECC_CMD) +#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE 0x0 +#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE 0x1 + +#define BM_GPMI_ECCCTRL_ENABLE_ECC (1 << 12) +#define BV_GPMI_ECCCTRL_ENABLE_ECC__ENABLE 0x1 +#define BV_GPMI_ECCCTRL_ENABLE_ECC__DISABLE 0x0 + +#define BP_GPMI_ECCCTRL_BUFFER_MASK 0 +#define BM_GPMI_ECCCTRL_BUFFER_MASK (0x1ff << BP_GPMI_ECCCTRL_BUFFER_MASK) +#define BF_GPMI_ECCCTRL_BUFFER_MASK(v) \ + (((v) << BP_GPMI_ECCCTRL_BUFFER_MASK) & BM_GPMI_ECCCTRL_BUFFER_MASK) +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY 0x100 +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE 0x1FF + +#define HW_GPMI_ECCCOUNT 0x00000030 +#define HW_GPMI_PAYLOAD 0x00000040 +#define HW_GPMI_AUXILIARY 0x00000050 +#define HW_GPMI_CTRL1 0x00000060 +#define HW_GPMI_CTRL1_SET 0x00000064 +#define HW_GPMI_CTRL1_CLR 0x00000068 +#define HW_GPMI_CTRL1_TOG 0x0000006c + +#define BP_GPMI_CTRL1_DECOUPLE_CS 24 +#define BM_GPMI_CTRL1_DECOUPLE_CS (1 << BP_GPMI_CTRL1_DECOUPLE_CS) + +#define BP_GPMI_CTRL1_WRN_DLY_SEL 22 +#define BM_GPMI_CTRL1_WRN_DLY_SEL (0x3 << BP_GPMI_CTRL1_WRN_DLY_SEL) +#define BF_GPMI_CTRL1_WRN_DLY_SEL(v) \ + (((v) << BP_GPMI_CTRL1_WRN_DLY_SEL) & BM_GPMI_CTRL1_WRN_DLY_SEL) +#define BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS 0x0 +#define BV_GPMI_CTRL1_WRN_DLY_SEL_6_TO_10NS 0x1 +#define BV_GPMI_CTRL1_WRN_DLY_SEL_7_TO_12NS 0x2 +#define BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY 0x3 + +#define BM_GPMI_CTRL1_BCH_MODE (1 << 18) + +#define BP_GPMI_CTRL1_DLL_ENABLE 17 +#define BM_GPMI_CTRL1_DLL_ENABLE (1 << BP_GPMI_CTRL1_DLL_ENABLE) + +#define BP_GPMI_CTRL1_HALF_PERIOD 16 +#define BM_GPMI_CTRL1_HALF_PERIOD (1 << BP_GPMI_CTRL1_HALF_PERIOD) + +#define BP_GPMI_CTRL1_RDN_DELAY 12 +#define BM_GPMI_CTRL1_RDN_DELAY (0xf << BP_GPMI_CTRL1_RDN_DELAY) +#define BF_GPMI_CTRL1_RDN_DELAY(v) \ + (((v) << BP_GPMI_CTRL1_RDN_DELAY) & BM_GPMI_CTRL1_RDN_DELAY) + +#define BM_GPMI_CTRL1_DEV_RESET (1 << 3) +#define BV_GPMI_CTRL1_DEV_RESET__ENABLED 0x0 +#define BV_GPMI_CTRL1_DEV_RESET__DISABLED 0x1 + +#define BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY (1 << 2) +#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVELOW 0x0 +#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVEHIGH 0x1 + +#define BM_GPMI_CTRL1_CAMERA_MODE (1 << 1) +#define BV_GPMI_CTRL1_GPMI_MODE__NAND 0x0 +#define BV_GPMI_CTRL1_GPMI_MODE__ATA 0x1 + +#define BM_GPMI_CTRL1_GPMI_MODE (1 << 0) + +#define HW_GPMI_TIMING0 0x00000070 + +#define BP_GPMI_TIMING0_ADDRESS_SETUP 16 +#define BM_GPMI_TIMING0_ADDRESS_SETUP (0xff << BP_GPMI_TIMING0_ADDRESS_SETUP) +#define BF_GPMI_TIMING0_ADDRESS_SETUP(v) \ + (((v) << BP_GPMI_TIMING0_ADDRESS_SETUP) & BM_GPMI_TIMING0_ADDRESS_SETUP) + +#define BP_GPMI_TIMING0_DATA_HOLD 8 +#define BM_GPMI_TIMING0_DATA_HOLD (0xff << BP_GPMI_TIMING0_DATA_HOLD) +#define BF_GPMI_TIMING0_DATA_HOLD(v) \ + (((v) << BP_GPMI_TIMING0_DATA_HOLD) & BM_GPMI_TIMING0_DATA_HOLD) + +#define BP_GPMI_TIMING0_DATA_SETUP 0 +#define BM_GPMI_TIMING0_DATA_SETUP (0xff << BP_GPMI_TIMING0_DATA_SETUP) +#define BF_GPMI_TIMING0_DATA_SETUP(v) \ + (((v) << BP_GPMI_TIMING0_DATA_SETUP) & BM_GPMI_TIMING0_DATA_SETUP) + +#define HW_GPMI_TIMING1 0x00000080 +#define BP_GPMI_TIMING1_BUSY_TIMEOUT 16 +#define BM_GPMI_TIMING1_BUSY_TIMEOUT (0xffff << BP_GPMI_TIMING1_BUSY_TIMEOUT) +#define BF_GPMI_TIMING1_BUSY_TIMEOUT(v) \ + (((v) << BP_GPMI_TIMING1_BUSY_TIMEOUT) & BM_GPMI_TIMING1_BUSY_TIMEOUT) + +#define HW_GPMI_TIMING2 0x00000090 +#define HW_GPMI_DATA 0x000000a0 + +/* MX28 uses this to detect READY. */ +#define HW_GPMI_STAT 0x000000b0 +#define MX28_BP_GPMI_STAT_READY_BUSY 24 +#define MX28_BM_GPMI_STAT_READY_BUSY (0xff << MX28_BP_GPMI_STAT_READY_BUSY) +#define MX28_BF_GPMI_STAT_READY_BUSY(v) \ + (((v) << MX28_BP_GPMI_STAT_READY_BUSY) & MX28_BM_GPMI_STAT_READY_BUSY) + +/* MX23 uses this to detect READY. */ +#define HW_GPMI_DEBUG 0x000000c0 +#define MX23_BP_GPMI_DEBUG_READY0 28 +#define MX23_BM_GPMI_DEBUG_READY0 (1 << MX23_BP_GPMI_DEBUG_READY0) +#endif diff --git a/drivers/mtd/nand/h1910.c b/drivers/mtd/nand/h1910.c deleted file mode 100644 index f8ce79b446e..00000000000 --- a/drivers/mtd/nand/h1910.c +++ /dev/null @@ -1,186 +0,0 @@ -/* - * drivers/mtd/nand/h1910.c - * - * Copyright (C) 2003 Joshua Wise (joshua@joshuawise.com) - * - * Derived from drivers/mtd/nand/edb7312.c - * Copyright (C) 2002 Marius Gröger (mag@sysgo.de) - * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de) - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Overview: - * This is a device driver for the NAND flash device found on the - * iPAQ h1910 board which utilizes the Samsung K9F2808 part. This is - * a 128Mibit (16MiB x 8 bits) NAND flash device. - */ - -#include <linux/slab.h> -#include <linux/init.h> -#include <linux/module.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/partitions.h> -#include <asm/io.h> -#include <mach/hardware.h> /* for CLPS7111_VIRT_BASE */ -#include <asm/sizes.h> -#include <mach/h1900-gpio.h> -#include <mach/ipaq.h> - -/* - * MTD structure for EDB7312 board - */ -static struct mtd_info *h1910_nand_mtd = NULL; - -/* - * Module stuff - */ - -#ifdef CONFIG_MTD_PARTITIONS -/* - * Define static partitions for flash device - */ -static struct mtd_partition partition_info[] = { - {name:"h1910 NAND Flash", - offset:0, - size:16 * 1024 * 1024} -}; - -#define NUM_PARTITIONS 1 - -#endif - -/* - * hardware specific access to control-lines - * - * NAND_NCE: bit 0 - don't care - * NAND_CLE: bit 1 - address bit 2 - * NAND_ALE: bit 2 - address bit 3 - */ -static void h1910_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct nand_chip *chip = mtd->priv; - - if (cmd != NAND_CMD_NONE) - writeb(cmd, chip->IO_ADDR_W | ((ctrl & 0x6) << 1)); -} - -/* - * read device ready pin - */ -#if 0 -static int h1910_device_ready(struct mtd_info *mtd) -{ - return (GPLR(55) & GPIO_bit(55)); -} -#endif - -/* - * Main initialization routine - */ -static int __init h1910_init(void) -{ - struct nand_chip *this; - const char *part_type = 0; - int mtd_parts_nb = 0; - struct mtd_partition *mtd_parts = 0; - void __iomem *nandaddr; - - if (!machine_is_h1900()) - return -ENODEV; - - nandaddr = ioremap(0x08000000, 0x1000); - if (!nandaddr) { - printk("Failed to ioremap nand flash.\n"); - return -ENOMEM; - } - - /* Allocate memory for MTD device structure and private data */ - h1910_nand_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); - if (!h1910_nand_mtd) { - printk("Unable to allocate h1910 NAND MTD device structure.\n"); - iounmap((void *)nandaddr); - return -ENOMEM; - } - - /* Get pointer to private data */ - this = (struct nand_chip *)(&h1910_nand_mtd[1]); - - /* Initialize structures */ - memset(h1910_nand_mtd, 0, sizeof(struct mtd_info)); - memset(this, 0, sizeof(struct nand_chip)); - - /* Link the private data with the MTD structure */ - h1910_nand_mtd->priv = this; - h1910_nand_mtd->owner = THIS_MODULE; - - /* - * Enable VPEN - */ - GPSR(37) = GPIO_bit(37); - - /* insert callbacks */ - this->IO_ADDR_R = nandaddr; - this->IO_ADDR_W = nandaddr; - this->cmd_ctrl = h1910_hwcontrol; - this->dev_ready = NULL; /* unknown whether that was correct or not so we will just do it like this */ - /* 15 us command delay time */ - this->chip_delay = 50; - this->ecc.mode = NAND_ECC_SOFT; - this->options = NAND_NO_AUTOINCR; - - /* Scan to find existence of the device */ - if (nand_scan(h1910_nand_mtd, 1)) { - printk(KERN_NOTICE "No NAND device - returning -ENXIO\n"); - kfree(h1910_nand_mtd); - iounmap((void *)nandaddr); - return -ENXIO; - } -#ifdef CONFIG_MTD_CMDLINE_PARTS - mtd_parts_nb = parse_cmdline_partitions(h1910_nand_mtd, &mtd_parts, "h1910-nand"); - if (mtd_parts_nb > 0) - part_type = "command line"; - else - mtd_parts_nb = 0; -#endif - if (mtd_parts_nb == 0) { - mtd_parts = partition_info; - mtd_parts_nb = NUM_PARTITIONS; - part_type = "static"; - } - - /* Register the partitions */ - printk(KERN_NOTICE "Using %s partition definition\n", part_type); - add_mtd_partitions(h1910_nand_mtd, mtd_parts, mtd_parts_nb); - - /* Return happy */ - return 0; -} - -module_init(h1910_init); - -/* - * Clean up routine - */ -static void __exit h1910_cleanup(void) -{ - struct nand_chip *this = (struct nand_chip *)&h1910_nand_mtd[1]; - - /* Release resources, unregister device */ - nand_release(h1910_nand_mtd); - - /* Release io resource */ - iounmap((void *)this->IO_ADDR_W); - - /* Free the MTD device structure */ - kfree(h1910_nand_mtd); -} - -module_exit(h1910_cleanup); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Joshua Wise <joshua at joshuawise dot com>"); -MODULE_DESCRIPTION("NAND flash driver for iPAQ h1910"); diff --git a/drivers/mtd/nand/jz4740_nand.c b/drivers/mtd/nand/jz4740_nand.c new file mode 100644 index 00000000000..a2c804de156 --- /dev/null +++ b/drivers/mtd/nand/jz4740_nand.c @@ -0,0 +1,589 @@ +/* + * Copyright (C) 2009-2010, Lars-Peter Clausen <lars@metafoo.de> + * JZ4740 SoC NAND controller driver + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 of the License, or (at your + * option) any later version. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 675 Mass Ave, Cambridge, MA 02139, USA. + * + */ + +#include <linux/ioport.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/platform_device.h> +#include <linux/slab.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> + +#include <linux/gpio.h> + +#include <asm/mach-jz4740/jz4740_nand.h> + +#define JZ_REG_NAND_CTRL 0x50 +#define JZ_REG_NAND_ECC_CTRL 0x100 +#define JZ_REG_NAND_DATA 0x104 +#define JZ_REG_NAND_PAR0 0x108 +#define JZ_REG_NAND_PAR1 0x10C +#define JZ_REG_NAND_PAR2 0x110 +#define JZ_REG_NAND_IRQ_STAT 0x114 +#define JZ_REG_NAND_IRQ_CTRL 0x118 +#define JZ_REG_NAND_ERR(x) (0x11C + ((x) << 2)) + +#define JZ_NAND_ECC_CTRL_PAR_READY BIT(4) +#define JZ_NAND_ECC_CTRL_ENCODING BIT(3) +#define JZ_NAND_ECC_CTRL_RS BIT(2) +#define JZ_NAND_ECC_CTRL_RESET BIT(1) +#define JZ_NAND_ECC_CTRL_ENABLE BIT(0) + +#define JZ_NAND_STATUS_ERR_COUNT (BIT(31) | BIT(30) | BIT(29)) +#define JZ_NAND_STATUS_PAD_FINISH BIT(4) +#define JZ_NAND_STATUS_DEC_FINISH BIT(3) +#define JZ_NAND_STATUS_ENC_FINISH BIT(2) +#define JZ_NAND_STATUS_UNCOR_ERROR BIT(1) +#define JZ_NAND_STATUS_ERROR BIT(0) + +#define JZ_NAND_CTRL_ENABLE_CHIP(x) BIT((x) << 1) +#define JZ_NAND_CTRL_ASSERT_CHIP(x) BIT(((x) << 1) + 1) +#define JZ_NAND_CTRL_ASSERT_CHIP_MASK 0xaa + +#define JZ_NAND_MEM_CMD_OFFSET 0x08000 +#define JZ_NAND_MEM_ADDR_OFFSET 0x10000 + +struct jz_nand { + struct mtd_info mtd; + struct nand_chip chip; + void __iomem *base; + struct resource *mem; + + unsigned char banks[JZ_NAND_NUM_BANKS]; + void __iomem *bank_base[JZ_NAND_NUM_BANKS]; + struct resource *bank_mem[JZ_NAND_NUM_BANKS]; + + int selected_bank; + + struct jz_nand_platform_data *pdata; + bool is_reading; +}; + +static inline struct jz_nand *mtd_to_jz_nand(struct mtd_info *mtd) +{ + return container_of(mtd, struct jz_nand, mtd); +} + +static void jz_nand_select_chip(struct mtd_info *mtd, int chipnr) +{ + struct jz_nand *nand = mtd_to_jz_nand(mtd); + struct nand_chip *chip = mtd->priv; + uint32_t ctrl; + int banknr; + + ctrl = readl(nand->base + JZ_REG_NAND_CTRL); + ctrl &= ~JZ_NAND_CTRL_ASSERT_CHIP_MASK; + + if (chipnr == -1) { + banknr = -1; + } else { + banknr = nand->banks[chipnr] - 1; + chip->IO_ADDR_R = nand->bank_base[banknr]; + chip->IO_ADDR_W = nand->bank_base[banknr]; + } + writel(ctrl, nand->base + JZ_REG_NAND_CTRL); + + nand->selected_bank = banknr; +} + +static void jz_nand_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl) +{ + struct jz_nand *nand = mtd_to_jz_nand(mtd); + struct nand_chip *chip = mtd->priv; + uint32_t reg; + void __iomem *bank_base = nand->bank_base[nand->selected_bank]; + + BUG_ON(nand->selected_bank < 0); + + if (ctrl & NAND_CTRL_CHANGE) { + BUG_ON((ctrl & NAND_ALE) && (ctrl & NAND_CLE)); + if (ctrl & NAND_ALE) + bank_base += JZ_NAND_MEM_ADDR_OFFSET; + else if (ctrl & NAND_CLE) + bank_base += JZ_NAND_MEM_CMD_OFFSET; + chip->IO_ADDR_W = bank_base; + + reg = readl(nand->base + JZ_REG_NAND_CTRL); + if (ctrl & NAND_NCE) + reg |= JZ_NAND_CTRL_ASSERT_CHIP(nand->selected_bank); + else + reg &= ~JZ_NAND_CTRL_ASSERT_CHIP(nand->selected_bank); + writel(reg, nand->base + JZ_REG_NAND_CTRL); + } + if (dat != NAND_CMD_NONE) + writeb(dat, chip->IO_ADDR_W); +} + +static int jz_nand_dev_ready(struct mtd_info *mtd) +{ + struct jz_nand *nand = mtd_to_jz_nand(mtd); + return gpio_get_value_cansleep(nand->pdata->busy_gpio); +} + +static void jz_nand_hwctl(struct mtd_info *mtd, int mode) +{ + struct jz_nand *nand = mtd_to_jz_nand(mtd); + uint32_t reg; + + writel(0, nand->base + JZ_REG_NAND_IRQ_STAT); + reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL); + + reg |= JZ_NAND_ECC_CTRL_RESET; + reg |= JZ_NAND_ECC_CTRL_ENABLE; + reg |= JZ_NAND_ECC_CTRL_RS; + + switch (mode) { + case NAND_ECC_READ: + reg &= ~JZ_NAND_ECC_CTRL_ENCODING; + nand->is_reading = true; + break; + case NAND_ECC_WRITE: + reg |= JZ_NAND_ECC_CTRL_ENCODING; + nand->is_reading = false; + break; + default: + break; + } + + writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL); +} + +static int jz_nand_calculate_ecc_rs(struct mtd_info *mtd, const uint8_t *dat, + uint8_t *ecc_code) +{ + struct jz_nand *nand = mtd_to_jz_nand(mtd); + uint32_t reg, status; + int i; + unsigned int timeout = 1000; + static uint8_t empty_block_ecc[] = {0xcd, 0x9d, 0x90, 0x58, 0xf4, + 0x8b, 0xff, 0xb7, 0x6f}; + + if (nand->is_reading) + return 0; + + do { + status = readl(nand->base + JZ_REG_NAND_IRQ_STAT); + } while (!(status & JZ_NAND_STATUS_ENC_FINISH) && --timeout); + + if (timeout == 0) + return -1; + + reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL); + reg &= ~JZ_NAND_ECC_CTRL_ENABLE; + writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL); + + for (i = 0; i < 9; ++i) + ecc_code[i] = readb(nand->base + JZ_REG_NAND_PAR0 + i); + + /* If the written data is completly 0xff, we also want to write 0xff as + * ecc, otherwise we will get in trouble when doing subpage writes. */ + if (memcmp(ecc_code, empty_block_ecc, 9) == 0) + memset(ecc_code, 0xff, 9); + + return 0; +} + +static void jz_nand_correct_data(uint8_t *dat, int index, int mask) +{ + int offset = index & 0x7; + uint16_t data; + + index += (index >> 3); + + data = dat[index]; + data |= dat[index+1] << 8; + + mask ^= (data >> offset) & 0x1ff; + data &= ~(0x1ff << offset); + data |= (mask << offset); + + dat[index] = data & 0xff; + dat[index+1] = (data >> 8) & 0xff; +} + +static int jz_nand_correct_ecc_rs(struct mtd_info *mtd, uint8_t *dat, + uint8_t *read_ecc, uint8_t *calc_ecc) +{ + struct jz_nand *nand = mtd_to_jz_nand(mtd); + int i, error_count, index; + uint32_t reg, status, error; + uint32_t t; + unsigned int timeout = 1000; + + t = read_ecc[0]; + + if (t == 0xff) { + for (i = 1; i < 9; ++i) + t &= read_ecc[i]; + + t &= dat[0]; + t &= dat[nand->chip.ecc.size / 2]; + t &= dat[nand->chip.ecc.size - 1]; + + if (t == 0xff) { + for (i = 1; i < nand->chip.ecc.size - 1; ++i) + t &= dat[i]; + if (t == 0xff) + return 0; + } + } + + for (i = 0; i < 9; ++i) + writeb(read_ecc[i], nand->base + JZ_REG_NAND_PAR0 + i); + + reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL); + reg |= JZ_NAND_ECC_CTRL_PAR_READY; + writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL); + + do { + status = readl(nand->base + JZ_REG_NAND_IRQ_STAT); + } while (!(status & JZ_NAND_STATUS_DEC_FINISH) && --timeout); + + if (timeout == 0) + return -1; + + reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL); + reg &= ~JZ_NAND_ECC_CTRL_ENABLE; + writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL); + + if (status & JZ_NAND_STATUS_ERROR) { + if (status & JZ_NAND_STATUS_UNCOR_ERROR) + return -1; + + error_count = (status & JZ_NAND_STATUS_ERR_COUNT) >> 29; + + for (i = 0; i < error_count; ++i) { + error = readl(nand->base + JZ_REG_NAND_ERR(i)); + index = ((error >> 16) & 0x1ff) - 1; + if (index >= 0 && index < 512) + jz_nand_correct_data(dat, index, error & 0x1ff); + } + + return error_count; + } + + return 0; +} + +static int jz_nand_ioremap_resource(struct platform_device *pdev, + const char *name, struct resource **res, void *__iomem *base) +{ + int ret; + + *res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name); + if (!*res) { + dev_err(&pdev->dev, "Failed to get platform %s memory\n", name); + ret = -ENXIO; + goto err; + } + + *res = request_mem_region((*res)->start, resource_size(*res), + pdev->name); + if (!*res) { + dev_err(&pdev->dev, "Failed to request %s memory region\n", name); + ret = -EBUSY; + goto err; + } + + *base = ioremap((*res)->start, resource_size(*res)); + if (!*base) { + dev_err(&pdev->dev, "Failed to ioremap %s memory region\n", name); + ret = -EBUSY; + goto err_release_mem; + } + + return 0; + +err_release_mem: + release_mem_region((*res)->start, resource_size(*res)); +err: + *res = NULL; + *base = NULL; + return ret; +} + +static inline void jz_nand_iounmap_resource(struct resource *res, + void __iomem *base) +{ + iounmap(base); + release_mem_region(res->start, resource_size(res)); +} + +static int jz_nand_detect_bank(struct platform_device *pdev, + struct jz_nand *nand, unsigned char bank, + size_t chipnr, uint8_t *nand_maf_id, + uint8_t *nand_dev_id) +{ + int ret; + int gpio; + char gpio_name[9]; + char res_name[6]; + uint32_t ctrl; + struct mtd_info *mtd = &nand->mtd; + struct nand_chip *chip = &nand->chip; + + /* Request GPIO port. */ + gpio = JZ_GPIO_MEM_CS0 + bank - 1; + sprintf(gpio_name, "NAND CS%d", bank); + ret = gpio_request(gpio, gpio_name); + if (ret) { + dev_warn(&pdev->dev, + "Failed to request %s gpio %d: %d\n", + gpio_name, gpio, ret); + goto notfound_gpio; + } + + /* Request I/O resource. */ + sprintf(res_name, "bank%d", bank); + ret = jz_nand_ioremap_resource(pdev, res_name, + &nand->bank_mem[bank - 1], + &nand->bank_base[bank - 1]); + if (ret) + goto notfound_resource; + + /* Enable chip in bank. */ + jz_gpio_set_function(gpio, JZ_GPIO_FUNC_MEM_CS0); + ctrl = readl(nand->base + JZ_REG_NAND_CTRL); + ctrl |= JZ_NAND_CTRL_ENABLE_CHIP(bank - 1); + writel(ctrl, nand->base + JZ_REG_NAND_CTRL); + + if (chipnr == 0) { + /* Detect first chip. */ + ret = nand_scan_ident(mtd, 1, NULL); + if (ret) + goto notfound_id; + + /* Retrieve the IDs from the first chip. */ + chip->select_chip(mtd, 0); + chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); + *nand_maf_id = chip->read_byte(mtd); + *nand_dev_id = chip->read_byte(mtd); + } else { + /* Detect additional chip. */ + chip->select_chip(mtd, chipnr); + chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); + if (*nand_maf_id != chip->read_byte(mtd) + || *nand_dev_id != chip->read_byte(mtd)) { + ret = -ENODEV; + goto notfound_id; + } + + /* Update size of the MTD. */ + chip->numchips++; + mtd->size += chip->chipsize; + } + + dev_info(&pdev->dev, "Found chip %i on bank %i\n", chipnr, bank); + return 0; + +notfound_id: + dev_info(&pdev->dev, "No chip found on bank %i\n", bank); + ctrl &= ~(JZ_NAND_CTRL_ENABLE_CHIP(bank - 1)); + writel(ctrl, nand->base + JZ_REG_NAND_CTRL); + jz_gpio_set_function(gpio, JZ_GPIO_FUNC_NONE); + jz_nand_iounmap_resource(nand->bank_mem[bank - 1], + nand->bank_base[bank - 1]); +notfound_resource: + gpio_free(gpio); +notfound_gpio: + return ret; +} + +static int jz_nand_probe(struct platform_device *pdev) +{ + int ret; + struct jz_nand *nand; + struct nand_chip *chip; + struct mtd_info *mtd; + struct jz_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); + size_t chipnr, bank_idx; + uint8_t nand_maf_id = 0, nand_dev_id = 0; + + nand = kzalloc(sizeof(*nand), GFP_KERNEL); + if (!nand) + return -ENOMEM; + + ret = jz_nand_ioremap_resource(pdev, "mmio", &nand->mem, &nand->base); + if (ret) + goto err_free; + + if (pdata && gpio_is_valid(pdata->busy_gpio)) { + ret = gpio_request(pdata->busy_gpio, "NAND busy pin"); + if (ret) { + dev_err(&pdev->dev, + "Failed to request busy gpio %d: %d\n", + pdata->busy_gpio, ret); + goto err_iounmap_mmio; + } + } + + mtd = &nand->mtd; + chip = &nand->chip; + mtd->priv = chip; + mtd->owner = THIS_MODULE; + mtd->name = "jz4740-nand"; + + chip->ecc.hwctl = jz_nand_hwctl; + chip->ecc.calculate = jz_nand_calculate_ecc_rs; + chip->ecc.correct = jz_nand_correct_ecc_rs; + chip->ecc.mode = NAND_ECC_HW_OOB_FIRST; + chip->ecc.size = 512; + chip->ecc.bytes = 9; + chip->ecc.strength = 4; + + if (pdata) + chip->ecc.layout = pdata->ecc_layout; + + chip->chip_delay = 50; + chip->cmd_ctrl = jz_nand_cmd_ctrl; + chip->select_chip = jz_nand_select_chip; + + if (pdata && gpio_is_valid(pdata->busy_gpio)) + chip->dev_ready = jz_nand_dev_ready; + + nand->pdata = pdata; + platform_set_drvdata(pdev, nand); + + /* We are going to autodetect NAND chips in the banks specified in the + * platform data. Although nand_scan_ident() can detect multiple chips, + * it requires those chips to be numbered consecuitively, which is not + * always the case for external memory banks. And a fixed chip-to-bank + * mapping is not practical either, since for example Dingoo units + * produced at different times have NAND chips in different banks. + */ + chipnr = 0; + for (bank_idx = 0; bank_idx < JZ_NAND_NUM_BANKS; bank_idx++) { + unsigned char bank; + + /* If there is no platform data, look for NAND in bank 1, + * which is the most likely bank since it is the only one + * that can be booted from. + */ + bank = pdata ? pdata->banks[bank_idx] : bank_idx ^ 1; + if (bank == 0) + break; + if (bank > JZ_NAND_NUM_BANKS) { + dev_warn(&pdev->dev, + "Skipping non-existing bank: %d\n", bank); + continue; + } + /* The detection routine will directly or indirectly call + * jz_nand_select_chip(), so nand->banks has to contain the + * bank we're checking. + */ + nand->banks[chipnr] = bank; + if (jz_nand_detect_bank(pdev, nand, bank, chipnr, + &nand_maf_id, &nand_dev_id) == 0) + chipnr++; + else + nand->banks[chipnr] = 0; + } + if (chipnr == 0) { + dev_err(&pdev->dev, "No NAND chips found\n"); + goto err_gpio_busy; + } + + if (pdata && pdata->ident_callback) { + pdata->ident_callback(pdev, chip, &pdata->partitions, + &pdata->num_partitions); + } + + ret = nand_scan_tail(mtd); + if (ret) { + dev_err(&pdev->dev, "Failed to scan NAND\n"); + goto err_unclaim_banks; + } + + ret = mtd_device_parse_register(mtd, NULL, NULL, + pdata ? pdata->partitions : NULL, + pdata ? pdata->num_partitions : 0); + + if (ret) { + dev_err(&pdev->dev, "Failed to add mtd device\n"); + goto err_nand_release; + } + + dev_info(&pdev->dev, "Successfully registered JZ4740 NAND driver\n"); + + return 0; + +err_nand_release: + nand_release(mtd); +err_unclaim_banks: + while (chipnr--) { + unsigned char bank = nand->banks[chipnr]; + gpio_free(JZ_GPIO_MEM_CS0 + bank - 1); + jz_nand_iounmap_resource(nand->bank_mem[bank - 1], + nand->bank_base[bank - 1]); + } + writel(0, nand->base + JZ_REG_NAND_CTRL); +err_gpio_busy: + if (pdata && gpio_is_valid(pdata->busy_gpio)) + gpio_free(pdata->busy_gpio); +err_iounmap_mmio: + jz_nand_iounmap_resource(nand->mem, nand->base); +err_free: + kfree(nand); + return ret; +} + +static int jz_nand_remove(struct platform_device *pdev) +{ + struct jz_nand *nand = platform_get_drvdata(pdev); + struct jz_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); + size_t i; + + nand_release(&nand->mtd); + + /* Deassert and disable all chips */ + writel(0, nand->base + JZ_REG_NAND_CTRL); + + for (i = 0; i < JZ_NAND_NUM_BANKS; ++i) { + unsigned char bank = nand->banks[i]; + if (bank != 0) { + jz_nand_iounmap_resource(nand->bank_mem[bank - 1], + nand->bank_base[bank - 1]); + gpio_free(JZ_GPIO_MEM_CS0 + bank - 1); + } + } + if (pdata && gpio_is_valid(pdata->busy_gpio)) + gpio_free(pdata->busy_gpio); + + jz_nand_iounmap_resource(nand->mem, nand->base); + + kfree(nand); + + return 0; +} + +static struct platform_driver jz_nand_driver = { + .probe = jz_nand_probe, + .remove = jz_nand_remove, + .driver = { + .name = "jz4740-nand", + .owner = THIS_MODULE, + }, +}; + +module_platform_driver(jz_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>"); +MODULE_DESCRIPTION("NAND controller driver for JZ4740 SoC"); +MODULE_ALIAS("platform:jz4740-nand"); diff --git a/drivers/mtd/nand/lpc32xx_mlc.c b/drivers/mtd/nand/lpc32xx_mlc.c new file mode 100644 index 00000000000..687478c9f09 --- /dev/null +++ b/drivers/mtd/nand/lpc32xx_mlc.c @@ -0,0 +1,896 @@ +/* + * Driver for NAND MLC Controller in LPC32xx + * + * Author: Roland Stigge <stigge@antcom.de> + * + * Copyright © 2011 WORK Microwave GmbH + * Copyright © 2011, 2012 Roland Stigge + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * + * NAND Flash Controller Operation: + * - Read: Auto Decode + * - Write: Auto Encode + * - Tested Page Sizes: 2048, 4096 + */ + +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/platform_device.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/delay.h> +#include <linux/completion.h> +#include <linux/interrupt.h> +#include <linux/of.h> +#include <linux/of_mtd.h> +#include <linux/of_gpio.h> +#include <linux/mtd/lpc32xx_mlc.h> +#include <linux/io.h> +#include <linux/mm.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/mtd/nand_ecc.h> + +#define DRV_NAME "lpc32xx_mlc" + +/********************************************************************** +* MLC NAND controller register offsets +**********************************************************************/ + +#define MLC_BUFF(x) (x + 0x00000) +#define MLC_DATA(x) (x + 0x08000) +#define MLC_CMD(x) (x + 0x10000) +#define MLC_ADDR(x) (x + 0x10004) +#define MLC_ECC_ENC_REG(x) (x + 0x10008) +#define MLC_ECC_DEC_REG(x) (x + 0x1000C) +#define MLC_ECC_AUTO_ENC_REG(x) (x + 0x10010) +#define MLC_ECC_AUTO_DEC_REG(x) (x + 0x10014) +#define MLC_RPR(x) (x + 0x10018) +#define MLC_WPR(x) (x + 0x1001C) +#define MLC_RUBP(x) (x + 0x10020) +#define MLC_ROBP(x) (x + 0x10024) +#define MLC_SW_WP_ADD_LOW(x) (x + 0x10028) +#define MLC_SW_WP_ADD_HIG(x) (x + 0x1002C) +#define MLC_ICR(x) (x + 0x10030) +#define MLC_TIME_REG(x) (x + 0x10034) +#define MLC_IRQ_MR(x) (x + 0x10038) +#define MLC_IRQ_SR(x) (x + 0x1003C) +#define MLC_LOCK_PR(x) (x + 0x10044) +#define MLC_ISR(x) (x + 0x10048) +#define MLC_CEH(x) (x + 0x1004C) + +/********************************************************************** +* MLC_CMD bit definitions +**********************************************************************/ +#define MLCCMD_RESET 0xFF + +/********************************************************************** +* MLC_ICR bit definitions +**********************************************************************/ +#define MLCICR_WPROT (1 << 3) +#define MLCICR_LARGEBLOCK (1 << 2) +#define MLCICR_LONGADDR (1 << 1) +#define MLCICR_16BIT (1 << 0) /* unsupported by LPC32x0! */ + +/********************************************************************** +* MLC_TIME_REG bit definitions +**********************************************************************/ +#define MLCTIMEREG_TCEA_DELAY(n) (((n) & 0x03) << 24) +#define MLCTIMEREG_BUSY_DELAY(n) (((n) & 0x1F) << 19) +#define MLCTIMEREG_NAND_TA(n) (((n) & 0x07) << 16) +#define MLCTIMEREG_RD_HIGH(n) (((n) & 0x0F) << 12) +#define MLCTIMEREG_RD_LOW(n) (((n) & 0x0F) << 8) +#define MLCTIMEREG_WR_HIGH(n) (((n) & 0x0F) << 4) +#define MLCTIMEREG_WR_LOW(n) (((n) & 0x0F) << 0) + +/********************************************************************** +* MLC_IRQ_MR and MLC_IRQ_SR bit definitions +**********************************************************************/ +#define MLCIRQ_NAND_READY (1 << 5) +#define MLCIRQ_CONTROLLER_READY (1 << 4) +#define MLCIRQ_DECODE_FAILURE (1 << 3) +#define MLCIRQ_DECODE_ERROR (1 << 2) +#define MLCIRQ_ECC_READY (1 << 1) +#define MLCIRQ_WRPROT_FAULT (1 << 0) + +/********************************************************************** +* MLC_LOCK_PR bit definitions +**********************************************************************/ +#define MLCLOCKPR_MAGIC 0xA25E + +/********************************************************************** +* MLC_ISR bit definitions +**********************************************************************/ +#define MLCISR_DECODER_FAILURE (1 << 6) +#define MLCISR_ERRORS ((1 << 4) | (1 << 5)) +#define MLCISR_ERRORS_DETECTED (1 << 3) +#define MLCISR_ECC_READY (1 << 2) +#define MLCISR_CONTROLLER_READY (1 << 1) +#define MLCISR_NAND_READY (1 << 0) + +/********************************************************************** +* MLC_CEH bit definitions +**********************************************************************/ +#define MLCCEH_NORMAL (1 << 0) + +struct lpc32xx_nand_cfg_mlc { + uint32_t tcea_delay; + uint32_t busy_delay; + uint32_t nand_ta; + uint32_t rd_high; + uint32_t rd_low; + uint32_t wr_high; + uint32_t wr_low; + int wp_gpio; + struct mtd_partition *parts; + unsigned num_parts; +}; + +static struct nand_ecclayout lpc32xx_nand_oob = { + .eccbytes = 40, + .eccpos = { 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, + 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 }, + .oobfree = { + { .offset = 0, + .length = 6, }, + { .offset = 16, + .length = 6, }, + { .offset = 32, + .length = 6, }, + { .offset = 48, + .length = 6, }, + }, +}; + +static struct nand_bbt_descr lpc32xx_nand_bbt = { + .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB | + NAND_BBT_WRITE, + .pages = { 524224, 0, 0, 0, 0, 0, 0, 0 }, +}; + +static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = { + .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB | + NAND_BBT_WRITE, + .pages = { 524160, 0, 0, 0, 0, 0, 0, 0 }, +}; + +struct lpc32xx_nand_host { + struct nand_chip nand_chip; + struct lpc32xx_mlc_platform_data *pdata; + struct clk *clk; + struct mtd_info mtd; + void __iomem *io_base; + int irq; + struct lpc32xx_nand_cfg_mlc *ncfg; + struct completion comp_nand; + struct completion comp_controller; + uint32_t llptr; + /* + * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer + */ + dma_addr_t oob_buf_phy; + /* + * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer + */ + uint8_t *oob_buf; + /* Physical address of DMA base address */ + dma_addr_t io_base_phy; + + struct completion comp_dma; + struct dma_chan *dma_chan; + struct dma_slave_config dma_slave_config; + struct scatterlist sgl; + uint8_t *dma_buf; + uint8_t *dummy_buf; + int mlcsubpages; /* number of 512bytes-subpages */ +}; + +/* + * Activate/Deactivate DMA Operation: + * + * Using the PL080 DMA Controller for transferring the 512 byte subpages + * instead of doing readl() / writel() in a loop slows it down significantly. + * Measurements via getnstimeofday() upon 512 byte subpage reads reveal: + * + * - readl() of 128 x 32 bits in a loop: ~20us + * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us + * - DMA read of 512 bytes (32 bit, no bursts): ~100us + * + * This applies to the transfer itself. In the DMA case: only the + * wait_for_completion() (DMA setup _not_ included). + * + * Note that the 512 bytes subpage transfer is done directly from/to a + * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a + * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND + * controller transferring data between its internal buffer to/from the NAND + * chip.) + * + * Therefore, using the PL080 DMA is disabled by default, for now. + * + */ +static int use_dma; + +static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) +{ + uint32_t clkrate, tmp; + + /* Reset MLC controller */ + writel(MLCCMD_RESET, MLC_CMD(host->io_base)); + udelay(1000); + + /* Get base clock for MLC block */ + clkrate = clk_get_rate(host->clk); + if (clkrate == 0) + clkrate = 104000000; + + /* Unlock MLC_ICR + * (among others, will be locked again automatically) */ + writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base)); + + /* Configure MLC Controller: Large Block, 5 Byte Address */ + tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR; + writel(tmp, MLC_ICR(host->io_base)); + + /* Unlock MLC_TIME_REG + * (among others, will be locked again automatically) */ + writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base)); + + /* Compute clock setup values, see LPC and NAND manual */ + tmp = 0; + tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1); + tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1); + tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1); + tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1); + tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low); + tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1); + tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low); + writel(tmp, MLC_TIME_REG(host->io_base)); + + /* Enable IRQ for CONTROLLER_READY and NAND_READY */ + writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY, + MLC_IRQ_MR(host->io_base)); + + /* Normal nCE operation: nCE controlled by controller */ + writel(MLCCEH_NORMAL, MLC_CEH(host->io_base)); +} + +/* + * Hardware specific access to control lines + */ +static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct nand_chip *nand_chip = mtd->priv; + struct lpc32xx_nand_host *host = nand_chip->priv; + + if (cmd != NAND_CMD_NONE) { + if (ctrl & NAND_CLE) + writel(cmd, MLC_CMD(host->io_base)); + else + writel(cmd, MLC_ADDR(host->io_base)); + } +} + +/* + * Read Device Ready (NAND device _and_ controller ready) + */ +static int lpc32xx_nand_device_ready(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct lpc32xx_nand_host *host = nand_chip->priv; + + if ((readb(MLC_ISR(host->io_base)) & + (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) == + (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) + return 1; + + return 0; +} + +static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host) +{ + uint8_t sr; + + /* Clear interrupt flag by reading status */ + sr = readb(MLC_IRQ_SR(host->io_base)); + if (sr & MLCIRQ_NAND_READY) + complete(&host->comp_nand); + if (sr & MLCIRQ_CONTROLLER_READY) + complete(&host->comp_controller); + + return IRQ_HANDLED; +} + +static int lpc32xx_waitfunc_nand(struct mtd_info *mtd, struct nand_chip *chip) +{ + struct lpc32xx_nand_host *host = chip->priv; + + if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY) + goto exit; + + wait_for_completion(&host->comp_nand); + + while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) { + /* Seems to be delayed sometimes by controller */ + dev_dbg(&mtd->dev, "Warning: NAND not ready.\n"); + cpu_relax(); + } + +exit: + return NAND_STATUS_READY; +} + +static int lpc32xx_waitfunc_controller(struct mtd_info *mtd, + struct nand_chip *chip) +{ + struct lpc32xx_nand_host *host = chip->priv; + + if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY) + goto exit; + + wait_for_completion(&host->comp_controller); + + while (!(readb(MLC_ISR(host->io_base)) & + MLCISR_CONTROLLER_READY)) { + dev_dbg(&mtd->dev, "Warning: Controller not ready.\n"); + cpu_relax(); + } + +exit: + return NAND_STATUS_READY; +} + +static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) +{ + lpc32xx_waitfunc_nand(mtd, chip); + lpc32xx_waitfunc_controller(mtd, chip); + + return NAND_STATUS_READY; +} + +/* + * Enable NAND write protect + */ +static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) +{ + if (gpio_is_valid(host->ncfg->wp_gpio)) + gpio_set_value(host->ncfg->wp_gpio, 0); +} + +/* + * Disable NAND write protect + */ +static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) +{ + if (gpio_is_valid(host->ncfg->wp_gpio)) + gpio_set_value(host->ncfg->wp_gpio, 1); +} + +static void lpc32xx_dma_complete_func(void *completion) +{ + complete(completion); +} + +static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len, + enum dma_transfer_direction dir) +{ + struct nand_chip *chip = mtd->priv; + struct lpc32xx_nand_host *host = chip->priv; + struct dma_async_tx_descriptor *desc; + int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; + int res; + + sg_init_one(&host->sgl, mem, len); + + res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + if (res != 1) { + dev_err(mtd->dev.parent, "Failed to map sg list\n"); + return -ENXIO; + } + desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, + flags); + if (!desc) { + dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); + goto out1; + } + + init_completion(&host->comp_dma); + desc->callback = lpc32xx_dma_complete_func; + desc->callback_param = &host->comp_dma; + + dmaengine_submit(desc); + dma_async_issue_pending(host->dma_chan); + + wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000)); + + dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + return 0; +out1: + dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + return -ENXIO; +} + +static int lpc32xx_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct lpc32xx_nand_host *host = chip->priv; + int i, j; + uint8_t *oobbuf = chip->oob_poi; + uint32_t mlc_isr; + int res; + uint8_t *dma_buf; + bool dma_mapped; + + if ((void *)buf <= high_memory) { + dma_buf = buf; + dma_mapped = true; + } else { + dma_buf = host->dma_buf; + dma_mapped = false; + } + + /* Writing Command and Address */ + chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); + + /* For all sub-pages */ + for (i = 0; i < host->mlcsubpages; i++) { + /* Start Auto Decode Command */ + writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base)); + + /* Wait for Controller Ready */ + lpc32xx_waitfunc_controller(mtd, chip); + + /* Check ECC Error status */ + mlc_isr = readl(MLC_ISR(host->io_base)); + if (mlc_isr & MLCISR_DECODER_FAILURE) { + mtd->ecc_stats.failed++; + dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__); + } else if (mlc_isr & MLCISR_ERRORS_DETECTED) { + mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1; + } + + /* Read 512 + 16 Bytes */ + if (use_dma) { + res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512, + DMA_DEV_TO_MEM); + if (res) + return res; + } else { + for (j = 0; j < (512 >> 2); j++) { + *((uint32_t *)(buf)) = + readl(MLC_BUFF(host->io_base)); + buf += 4; + } + } + for (j = 0; j < (16 >> 2); j++) { + *((uint32_t *)(oobbuf)) = + readl(MLC_BUFF(host->io_base)); + oobbuf += 4; + } + } + + if (use_dma && !dma_mapped) + memcpy(buf, dma_buf, mtd->writesize); + + return 0; +} + +static int lpc32xx_write_page_lowlevel(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, int oob_required) +{ + struct lpc32xx_nand_host *host = chip->priv; + const uint8_t *oobbuf = chip->oob_poi; + uint8_t *dma_buf = (uint8_t *)buf; + int res; + int i, j; + + if (use_dma && (void *)buf >= high_memory) { + dma_buf = host->dma_buf; + memcpy(dma_buf, buf, mtd->writesize); + } + + for (i = 0; i < host->mlcsubpages; i++) { + /* Start Encode */ + writeb(0x00, MLC_ECC_ENC_REG(host->io_base)); + + /* Write 512 + 6 Bytes to Buffer */ + if (use_dma) { + res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512, + DMA_MEM_TO_DEV); + if (res) + return res; + } else { + for (j = 0; j < (512 >> 2); j++) { + writel(*((uint32_t *)(buf)), + MLC_BUFF(host->io_base)); + buf += 4; + } + } + writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base)); + oobbuf += 4; + writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base)); + oobbuf += 12; + + /* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */ + writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base)); + + /* Wait for Controller Ready */ + lpc32xx_waitfunc_controller(mtd, chip); + } + return 0; +} + +static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + struct lpc32xx_nand_host *host = chip->priv; + + /* Read whole page - necessary with MLC controller! */ + lpc32xx_read_page(mtd, chip, host->dummy_buf, 1, page); + + return 0; +} + +static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + /* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */ + return 0; +} + +/* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */ +static void lpc32xx_ecc_enable(struct mtd_info *mtd, int mode) +{ + /* Always enabled! */ +} + +static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host) +{ + struct mtd_info *mtd = &host->mtd; + dma_cap_mask_t mask; + + if (!host->pdata || !host->pdata->dma_filter) { + dev_err(mtd->dev.parent, "no DMA platform data\n"); + return -ENOENT; + } + + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, + "nand-mlc"); + if (!host->dma_chan) { + dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); + return -EBUSY; + } + + /* + * Set direction to a sensible value even if the dmaengine driver + * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x + * driver criticizes it as "alien transfer direction". + */ + host->dma_slave_config.direction = DMA_DEV_TO_MEM; + host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + host->dma_slave_config.src_maxburst = 128; + host->dma_slave_config.dst_maxburst = 128; + /* DMA controller does flow control: */ + host->dma_slave_config.device_fc = false; + host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy); + host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy); + if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { + dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); + goto out1; + } + + return 0; +out1: + dma_release_channel(host->dma_chan); + return -ENXIO; +} + +static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev) +{ + struct lpc32xx_nand_cfg_mlc *ncfg; + struct device_node *np = dev->of_node; + + ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL); + if (!ncfg) + return NULL; + + of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay); + of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay); + of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta); + of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high); + of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low); + of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high); + of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low); + + if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta || + !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high || + !ncfg->wr_low) { + dev_err(dev, "chip parameters not specified correctly\n"); + return NULL; + } + + ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0); + + return ncfg; +} + +/* + * Probe for NAND controller + */ +static int lpc32xx_nand_probe(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host; + struct mtd_info *mtd; + struct nand_chip *nand_chip; + struct resource *rc; + int res; + struct mtd_part_parser_data ppdata = {}; + + /* Allocate memory for the device structure (and zero it) */ + host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); + if (!host) + return -ENOMEM; + + rc = platform_get_resource(pdev, IORESOURCE_MEM, 0); + host->io_base = devm_ioremap_resource(&pdev->dev, rc); + if (IS_ERR(host->io_base)) + return PTR_ERR(host->io_base); + + host->io_base_phy = rc->start; + + mtd = &host->mtd; + nand_chip = &host->nand_chip; + if (pdev->dev.of_node) + host->ncfg = lpc32xx_parse_dt(&pdev->dev); + if (!host->ncfg) { + dev_err(&pdev->dev, + "Missing or bad NAND config from device tree\n"); + return -ENOENT; + } + if (host->ncfg->wp_gpio == -EPROBE_DEFER) + return -EPROBE_DEFER; + if (gpio_is_valid(host->ncfg->wp_gpio) && + gpio_request(host->ncfg->wp_gpio, "NAND WP")) { + dev_err(&pdev->dev, "GPIO not available\n"); + return -EBUSY; + } + lpc32xx_wp_disable(host); + + host->pdata = dev_get_platdata(&pdev->dev); + + nand_chip->priv = host; /* link the private data structures */ + mtd->priv = nand_chip; + mtd->owner = THIS_MODULE; + mtd->dev.parent = &pdev->dev; + + /* Get NAND clock */ + host->clk = clk_get(&pdev->dev, NULL); + if (IS_ERR(host->clk)) { + dev_err(&pdev->dev, "Clock initialization failure\n"); + res = -ENOENT; + goto err_exit1; + } + clk_enable(host->clk); + + nand_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl; + nand_chip->dev_ready = lpc32xx_nand_device_ready; + nand_chip->chip_delay = 25; /* us */ + nand_chip->IO_ADDR_R = MLC_DATA(host->io_base); + nand_chip->IO_ADDR_W = MLC_DATA(host->io_base); + + /* Init NAND controller */ + lpc32xx_nand_setup(host); + + platform_set_drvdata(pdev, host); + + /* Initialize function pointers */ + nand_chip->ecc.hwctl = lpc32xx_ecc_enable; + nand_chip->ecc.read_page_raw = lpc32xx_read_page; + nand_chip->ecc.read_page = lpc32xx_read_page; + nand_chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel; + nand_chip->ecc.write_page = lpc32xx_write_page_lowlevel; + nand_chip->ecc.write_oob = lpc32xx_write_oob; + nand_chip->ecc.read_oob = lpc32xx_read_oob; + nand_chip->ecc.strength = 4; + nand_chip->waitfunc = lpc32xx_waitfunc; + + nand_chip->options = NAND_NO_SUBPAGE_WRITE; + nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; + nand_chip->bbt_td = &lpc32xx_nand_bbt; + nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror; + + /* bitflip_threshold's default is defined as ecc_strength anyway. + * Unfortunately, it is set only later at add_mtd_device(). Meanwhile + * being 0, it causes bad block table scanning errors in + * nand_scan_tail(), so preparing it here. */ + mtd->bitflip_threshold = nand_chip->ecc.strength; + + if (use_dma) { + res = lpc32xx_dma_setup(host); + if (res) { + res = -EIO; + goto err_exit2; + } + } + + /* + * Scan to find existance of the device and + * Get the type of NAND device SMALL block or LARGE block + */ + if (nand_scan_ident(mtd, 1, NULL)) { + res = -ENXIO; + goto err_exit3; + } + + host->dma_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL); + if (!host->dma_buf) { + res = -ENOMEM; + goto err_exit3; + } + + host->dummy_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL); + if (!host->dummy_buf) { + res = -ENOMEM; + goto err_exit3; + } + + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = mtd->writesize; + nand_chip->ecc.layout = &lpc32xx_nand_oob; + host->mlcsubpages = mtd->writesize / 512; + + /* initially clear interrupt status */ + readb(MLC_IRQ_SR(host->io_base)); + + init_completion(&host->comp_nand); + init_completion(&host->comp_controller); + + host->irq = platform_get_irq(pdev, 0); + if ((host->irq < 0) || (host->irq >= NR_IRQS)) { + dev_err(&pdev->dev, "failed to get platform irq\n"); + res = -EINVAL; + goto err_exit3; + } + + if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq, + IRQF_TRIGGER_HIGH, DRV_NAME, host)) { + dev_err(&pdev->dev, "Error requesting NAND IRQ\n"); + res = -ENXIO; + goto err_exit3; + } + + /* + * Fills out all the uninitialized function pointers with the defaults + * And scans for a bad block table if appropriate. + */ + if (nand_scan_tail(mtd)) { + res = -ENXIO; + goto err_exit4; + } + + mtd->name = DRV_NAME; + + ppdata.of_node = pdev->dev.of_node; + res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts, + host->ncfg->num_parts); + if (!res) + return res; + + nand_release(mtd); + +err_exit4: + free_irq(host->irq, host); +err_exit3: + if (use_dma) + dma_release_channel(host->dma_chan); +err_exit2: + clk_disable(host->clk); + clk_put(host->clk); +err_exit1: + lpc32xx_wp_enable(host); + gpio_free(host->ncfg->wp_gpio); + + return res; +} + +/* + * Remove NAND device + */ +static int lpc32xx_nand_remove(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + struct mtd_info *mtd = &host->mtd; + + nand_release(mtd); + free_irq(host->irq, host); + if (use_dma) + dma_release_channel(host->dma_chan); + + clk_disable(host->clk); + clk_put(host->clk); + + lpc32xx_wp_enable(host); + gpio_free(host->ncfg->wp_gpio); + + return 0; +} + +#ifdef CONFIG_PM +static int lpc32xx_nand_resume(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + + /* Re-enable NAND clock */ + clk_enable(host->clk); + + /* Fresh init of NAND controller */ + lpc32xx_nand_setup(host); + + /* Disable write protect */ + lpc32xx_wp_disable(host); + + return 0; +} + +static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) +{ + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + + /* Enable write protect for safety */ + lpc32xx_wp_enable(host); + + /* Disable clock */ + clk_disable(host->clk); + return 0; +} + +#else +#define lpc32xx_nand_resume NULL +#define lpc32xx_nand_suspend NULL +#endif + +static const struct of_device_id lpc32xx_nand_match[] = { + { .compatible = "nxp,lpc3220-mlc" }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); + +static struct platform_driver lpc32xx_nand_driver = { + .probe = lpc32xx_nand_probe, + .remove = lpc32xx_nand_remove, + .resume = lpc32xx_nand_resume, + .suspend = lpc32xx_nand_suspend, + .driver = { + .name = DRV_NAME, + .owner = THIS_MODULE, + .of_match_table = lpc32xx_nand_match, + }, +}; + +module_platform_driver(lpc32xx_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>"); +MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller"); diff --git a/drivers/mtd/nand/lpc32xx_slc.c b/drivers/mtd/nand/lpc32xx_slc.c new file mode 100644 index 00000000000..53a6742e3da --- /dev/null +++ b/drivers/mtd/nand/lpc32xx_slc.c @@ -0,0 +1,1018 @@ +/* + * NXP LPC32XX NAND SLC driver + * + * Authors: + * Kevin Wells <kevin.wells@nxp.com> + * Roland Stigge <stigge@antcom.de> + * + * Copyright © 2011 NXP Semiconductors + * Copyright © 2012 Roland Stigge + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/platform_device.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/delay.h> +#include <linux/io.h> +#include <linux/mm.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/mtd/nand_ecc.h> +#include <linux/gpio.h> +#include <linux/of.h> +#include <linux/of_mtd.h> +#include <linux/of_gpio.h> +#include <linux/mtd/lpc32xx_slc.h> + +#define LPC32XX_MODNAME "lpc32xx-nand" + +/********************************************************************** +* SLC NAND controller register offsets +**********************************************************************/ + +#define SLC_DATA(x) (x + 0x000) +#define SLC_ADDR(x) (x + 0x004) +#define SLC_CMD(x) (x + 0x008) +#define SLC_STOP(x) (x + 0x00C) +#define SLC_CTRL(x) (x + 0x010) +#define SLC_CFG(x) (x + 0x014) +#define SLC_STAT(x) (x + 0x018) +#define SLC_INT_STAT(x) (x + 0x01C) +#define SLC_IEN(x) (x + 0x020) +#define SLC_ISR(x) (x + 0x024) +#define SLC_ICR(x) (x + 0x028) +#define SLC_TAC(x) (x + 0x02C) +#define SLC_TC(x) (x + 0x030) +#define SLC_ECC(x) (x + 0x034) +#define SLC_DMA_DATA(x) (x + 0x038) + +/********************************************************************** +* slc_ctrl register definitions +**********************************************************************/ +#define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */ +#define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */ +#define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */ + +/********************************************************************** +* slc_cfg register definitions +**********************************************************************/ +#define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */ +#define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */ +#define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */ +#define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */ +#define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */ +#define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */ + +/********************************************************************** +* slc_stat register definitions +**********************************************************************/ +#define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */ +#define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */ +#define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */ + +/********************************************************************** +* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions +**********************************************************************/ +#define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */ +#define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */ + +/********************************************************************** +* slc_tac register definitions +**********************************************************************/ +/* Clock setting for RDY write sample wait time in 2*n clocks */ +#define SLCTAC_WDR(n) (((n) & 0xF) << 28) +/* Write pulse width in clock cycles, 1 to 16 clocks */ +#define SLCTAC_WWIDTH(n) (((n) & 0xF) << 24) +/* Write hold time of control and data signals, 1 to 16 clocks */ +#define SLCTAC_WHOLD(n) (((n) & 0xF) << 20) +/* Write setup time of control and data signals, 1 to 16 clocks */ +#define SLCTAC_WSETUP(n) (((n) & 0xF) << 16) +/* Clock setting for RDY read sample wait time in 2*n clocks */ +#define SLCTAC_RDR(n) (((n) & 0xF) << 12) +/* Read pulse width in clock cycles, 1 to 16 clocks */ +#define SLCTAC_RWIDTH(n) (((n) & 0xF) << 8) +/* Read hold time of control and data signals, 1 to 16 clocks */ +#define SLCTAC_RHOLD(n) (((n) & 0xF) << 4) +/* Read setup time of control and data signals, 1 to 16 clocks */ +#define SLCTAC_RSETUP(n) (((n) & 0xF) << 0) + +/********************************************************************** +* slc_ecc register definitions +**********************************************************************/ +/* ECC line party fetch macro */ +#define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF) +#define SLCECC_TO_COLPAR(n) ((n) & 0x3F) + +/* + * DMA requires storage space for the DMA local buffer and the hardware ECC + * storage area. The DMA local buffer is only used if DMA mapping fails + * during runtime. + */ +#define LPC32XX_DMA_DATA_SIZE 4096 +#define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4) + +/* Number of bytes used for ECC stored in NAND per 256 bytes */ +#define LPC32XX_SLC_DEV_ECC_BYTES 3 + +/* + * If the NAND base clock frequency can't be fetched, this frequency will be + * used instead as the base. This rate is used to setup the timing registers + * used for NAND accesses. + */ +#define LPC32XX_DEF_BUS_RATE 133250000 + +/* Milliseconds for DMA FIFO timeout (unlikely anyway) */ +#define LPC32XX_DMA_TIMEOUT 100 + +/* + * NAND ECC Layout for small page NAND devices + * Note: For large and huge page devices, the default layouts are used + */ +static struct nand_ecclayout lpc32xx_nand_oob_16 = { + .eccbytes = 6, + .eccpos = {10, 11, 12, 13, 14, 15}, + .oobfree = { + { .offset = 0, .length = 4 }, + { .offset = 6, .length = 4 }, + }, +}; + +static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; +static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; + +/* + * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6 + * Note: Large page devices used the default layout + */ +static struct nand_bbt_descr bbt_smallpage_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 0, + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_smallpage_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 0, + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = mirror_pattern +}; + +/* + * NAND platform configuration structure + */ +struct lpc32xx_nand_cfg_slc { + uint32_t wdr_clks; + uint32_t wwidth; + uint32_t whold; + uint32_t wsetup; + uint32_t rdr_clks; + uint32_t rwidth; + uint32_t rhold; + uint32_t rsetup; + bool use_bbt; + int wp_gpio; + struct mtd_partition *parts; + unsigned num_parts; +}; + +struct lpc32xx_nand_host { + struct nand_chip nand_chip; + struct lpc32xx_slc_platform_data *pdata; + struct clk *clk; + struct mtd_info mtd; + void __iomem *io_base; + struct lpc32xx_nand_cfg_slc *ncfg; + + struct completion comp; + struct dma_chan *dma_chan; + uint32_t dma_buf_len; + struct dma_slave_config dma_slave_config; + struct scatterlist sgl; + + /* + * DMA and CPU addresses of ECC work area and data buffer + */ + uint32_t *ecc_buf; + uint8_t *data_buf; + dma_addr_t io_base_dma; +}; + +static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) +{ + uint32_t clkrate, tmp; + + /* Reset SLC controller */ + writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base)); + udelay(1000); + + /* Basic setup */ + writel(0, SLC_CFG(host->io_base)); + writel(0, SLC_IEN(host->io_base)); + writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN), + SLC_ICR(host->io_base)); + + /* Get base clock for SLC block */ + clkrate = clk_get_rate(host->clk); + if (clkrate == 0) + clkrate = LPC32XX_DEF_BUS_RATE; + + /* Compute clock setup values */ + tmp = SLCTAC_WDR(host->ncfg->wdr_clks) | + SLCTAC_WWIDTH(1 + (clkrate / host->ncfg->wwidth)) | + SLCTAC_WHOLD(1 + (clkrate / host->ncfg->whold)) | + SLCTAC_WSETUP(1 + (clkrate / host->ncfg->wsetup)) | + SLCTAC_RDR(host->ncfg->rdr_clks) | + SLCTAC_RWIDTH(1 + (clkrate / host->ncfg->rwidth)) | + SLCTAC_RHOLD(1 + (clkrate / host->ncfg->rhold)) | + SLCTAC_RSETUP(1 + (clkrate / host->ncfg->rsetup)); + writel(tmp, SLC_TAC(host->io_base)); +} + +/* + * Hardware specific access to control lines + */ +static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + uint32_t tmp; + struct nand_chip *chip = mtd->priv; + struct lpc32xx_nand_host *host = chip->priv; + + /* Does CE state need to be changed? */ + tmp = readl(SLC_CFG(host->io_base)); + if (ctrl & NAND_NCE) + tmp |= SLCCFG_CE_LOW; + else + tmp &= ~SLCCFG_CE_LOW; + writel(tmp, SLC_CFG(host->io_base)); + + if (cmd != NAND_CMD_NONE) { + if (ctrl & NAND_CLE) + writel(cmd, SLC_CMD(host->io_base)); + else + writel(cmd, SLC_ADDR(host->io_base)); + } +} + +/* + * Read the Device Ready pin + */ +static int lpc32xx_nand_device_ready(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct lpc32xx_nand_host *host = chip->priv; + int rdy = 0; + + if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0) + rdy = 1; + + return rdy; +} + +/* + * Enable NAND write protect + */ +static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) +{ + if (gpio_is_valid(host->ncfg->wp_gpio)) + gpio_set_value(host->ncfg->wp_gpio, 0); +} + +/* + * Disable NAND write protect + */ +static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) +{ + if (gpio_is_valid(host->ncfg->wp_gpio)) + gpio_set_value(host->ncfg->wp_gpio, 1); +} + +/* + * Prepares SLC for transfers with H/W ECC enabled + */ +static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode) +{ + /* Hardware ECC is enabled automatically in hardware as needed */ +} + +/* + * Calculates the ECC for the data + */ +static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd, + const unsigned char *buf, + unsigned char *code) +{ + /* + * ECC is calculated automatically in hardware during syndrome read + * and write operations, so it doesn't need to be calculated here. + */ + return 0; +} + +/* + * Read a single byte from NAND device + */ +static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct lpc32xx_nand_host *host = chip->priv; + + return (uint8_t)readl(SLC_DATA(host->io_base)); +} + +/* + * Simple device read without ECC + */ +static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct lpc32xx_nand_host *host = chip->priv; + + /* Direct device read with no ECC */ + while (len-- > 0) + *buf++ = (uint8_t)readl(SLC_DATA(host->io_base)); +} + +/* + * Simple device write without ECC + */ +static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct lpc32xx_nand_host *host = chip->priv; + + /* Direct device write with no ECC */ + while (len-- > 0) + writel((uint32_t)*buf++, SLC_DATA(host->io_base)); +} + +/* + * Read the OOB data from the device without ECC using FIFO method + */ +static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, int page) +{ + chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + +/* + * Write the OOB data to the device without ECC using FIFO method + */ +static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, int page) +{ + int status; + + chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + + /* Send command to program the OOB data */ + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + + status = chip->waitfunc(mtd, chip); + + return status & NAND_STATUS_FAIL ? -EIO : 0; +} + +/* + * Fills in the ECC fields in the OOB buffer with the hardware generated ECC + */ +static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count) +{ + int i; + + for (i = 0; i < (count * 3); i += 3) { + uint32_t ce = ecc[i / 3]; + ce = ~(ce << 2) & 0xFFFFFF; + spare[i + 2] = (uint8_t)(ce & 0xFF); + ce >>= 8; + spare[i + 1] = (uint8_t)(ce & 0xFF); + ce >>= 8; + spare[i] = (uint8_t)(ce & 0xFF); + } +} + +static void lpc32xx_dma_complete_func(void *completion) +{ + complete(completion); +} + +static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma, + void *mem, int len, enum dma_transfer_direction dir) +{ + struct nand_chip *chip = mtd->priv; + struct lpc32xx_nand_host *host = chip->priv; + struct dma_async_tx_descriptor *desc; + int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; + int res; + + host->dma_slave_config.direction = dir; + host->dma_slave_config.src_addr = dma; + host->dma_slave_config.dst_addr = dma; + host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + host->dma_slave_config.src_maxburst = 4; + host->dma_slave_config.dst_maxburst = 4; + /* DMA controller does flow control: */ + host->dma_slave_config.device_fc = false; + if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { + dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); + return -ENXIO; + } + + sg_init_one(&host->sgl, mem, len); + + res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + if (res != 1) { + dev_err(mtd->dev.parent, "Failed to map sg list\n"); + return -ENXIO; + } + desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, + flags); + if (!desc) { + dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); + goto out1; + } + + init_completion(&host->comp); + desc->callback = lpc32xx_dma_complete_func; + desc->callback_param = &host->comp; + + dmaengine_submit(desc); + dma_async_issue_pending(host->dma_chan); + + wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000)); + + dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + + return 0; +out1: + dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + return -ENXIO; +} + +/* + * DMA read/write transfers with ECC support + */ +static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages, + int read) +{ + struct nand_chip *chip = mtd->priv; + struct lpc32xx_nand_host *host = chip->priv; + int i, status = 0; + unsigned long timeout; + int res; + enum dma_transfer_direction dir = + read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV; + uint8_t *dma_buf; + bool dma_mapped; + + if ((void *)buf <= high_memory) { + dma_buf = buf; + dma_mapped = true; + } else { + dma_buf = host->data_buf; + dma_mapped = false; + if (!read) + memcpy(host->data_buf, buf, mtd->writesize); + } + + if (read) { + writel(readl(SLC_CFG(host->io_base)) | + SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | + SLCCFG_DMA_BURST, SLC_CFG(host->io_base)); + } else { + writel((readl(SLC_CFG(host->io_base)) | + SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) & + ~SLCCFG_DMA_DIR, + SLC_CFG(host->io_base)); + } + + /* Clear initial ECC */ + writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base)); + + /* Transfer size is data area only */ + writel(mtd->writesize, SLC_TC(host->io_base)); + + /* Start transfer in the NAND controller */ + writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START, + SLC_CTRL(host->io_base)); + + for (i = 0; i < chip->ecc.steps; i++) { + /* Data */ + res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma), + dma_buf + i * chip->ecc.size, + mtd->writesize / chip->ecc.steps, dir); + if (res) + return res; + + /* Always _read_ ECC */ + if (i == chip->ecc.steps - 1) + break; + if (!read) /* ECC availability delayed on write */ + udelay(10); + res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma), + &host->ecc_buf[i], 4, DMA_DEV_TO_MEM); + if (res) + return res; + } + + /* + * According to NXP, the DMA can be finished here, but the NAND + * controller may still have buffered data. After porting to using the + * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty) + * appears to be always true, according to tests. Keeping the check for + * safety reasons for now. + */ + if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) { + dev_warn(mtd->dev.parent, "FIFO not empty!\n"); + timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT); + while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) && + time_before(jiffies, timeout)) + cpu_relax(); + if (!time_before(jiffies, timeout)) { + dev_err(mtd->dev.parent, "FIFO held data too long\n"); + status = -EIO; + } + } + + /* Read last calculated ECC value */ + if (!read) + udelay(10); + host->ecc_buf[chip->ecc.steps - 1] = + readl(SLC_ECC(host->io_base)); + + /* Flush DMA */ + dmaengine_terminate_all(host->dma_chan); + + if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO || + readl(SLC_TC(host->io_base))) { + /* Something is left in the FIFO, something is wrong */ + dev_err(mtd->dev.parent, "DMA FIFO failure\n"); + status = -EIO; + } + + /* Stop DMA & HW ECC */ + writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START, + SLC_CTRL(host->io_base)); + writel(readl(SLC_CFG(host->io_base)) & + ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | + SLCCFG_DMA_BURST), SLC_CFG(host->io_base)); + + if (!dma_mapped && read) + memcpy(buf, host->data_buf, mtd->writesize); + + return status; +} + +/* + * Read the data and OOB data from the device, use ECC correction with the + * data, disable ECC for the OOB data + */ +static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct lpc32xx_nand_host *host = chip->priv; + int stat, i, status; + uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE]; + + /* Issue read command */ + chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); + + /* Read data and oob, calculate ECC */ + status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1); + + /* Get OOB data */ + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + + /* Convert to stored ECC format */ + lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps); + + /* Pointer to ECC data retrieved from NAND spare area */ + oobecc = chip->oob_poi + chip->ecc.layout->eccpos[0]; + + for (i = 0; i < chip->ecc.steps; i++) { + stat = chip->ecc.correct(mtd, buf, oobecc, + &tmpecc[i * chip->ecc.bytes]); + if (stat < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += stat; + + buf += chip->ecc.size; + oobecc += chip->ecc.bytes; + } + + return status; +} + +/* + * Read the data and OOB data from the device, no ECC correction with the + * data or OOB data + */ +static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, + uint8_t *buf, int oob_required, + int page) +{ + /* Issue read command */ + chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); + + /* Raw reads can just use the FIFO interface */ + chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps); + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + +/* + * Write the data and OOB data to the device, use ECC with the data, + * disable ECC for the OOB data + */ +static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, int oob_required) +{ + struct lpc32xx_nand_host *host = chip->priv; + uint8_t *pb = chip->oob_poi + chip->ecc.layout->eccpos[0]; + int error; + + /* Write data, calculate ECC on outbound data */ + error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0); + if (error) + return error; + + /* + * The calculated ECC needs some manual work done to it before + * committing it to NAND. Process the calculated ECC and place + * the resultant values directly into the OOB buffer. */ + lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps); + + /* Write ECC data to device */ + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + return 0; +} + +/* + * Write the data and OOB data to the device, no ECC correction with the + * data or OOB data + */ +static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, + int oob_required) +{ + /* Raw writes can just use the FIFO interface */ + chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps); + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + return 0; +} + +static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host) +{ + struct mtd_info *mtd = &host->mtd; + dma_cap_mask_t mask; + + if (!host->pdata || !host->pdata->dma_filter) { + dev_err(mtd->dev.parent, "no DMA platform data\n"); + return -ENOENT; + } + + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, + "nand-slc"); + if (!host->dma_chan) { + dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); + return -EBUSY; + } + + return 0; +} + +static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev) +{ + struct lpc32xx_nand_cfg_slc *ncfg; + struct device_node *np = dev->of_node; + + ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL); + if (!ncfg) + return NULL; + + of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks); + of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth); + of_property_read_u32(np, "nxp,whold", &ncfg->whold); + of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup); + of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks); + of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth); + of_property_read_u32(np, "nxp,rhold", &ncfg->rhold); + of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup); + + if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold || + !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth || + !ncfg->rhold || !ncfg->rsetup) { + dev_err(dev, "chip parameters not specified correctly\n"); + return NULL; + } + + ncfg->use_bbt = of_get_nand_on_flash_bbt(np); + ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0); + + return ncfg; +} + +/* + * Probe for NAND controller + */ +static int lpc32xx_nand_probe(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host; + struct mtd_info *mtd; + struct nand_chip *chip; + struct resource *rc; + struct mtd_part_parser_data ppdata = {}; + int res; + + rc = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (rc == NULL) { + dev_err(&pdev->dev, "No memory resource found for device\n"); + return -EBUSY; + } + + /* Allocate memory for the device structure (and zero it) */ + host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); + if (!host) + return -ENOMEM; + host->io_base_dma = rc->start; + + host->io_base = devm_ioremap_resource(&pdev->dev, rc); + if (IS_ERR(host->io_base)) + return PTR_ERR(host->io_base); + + if (pdev->dev.of_node) + host->ncfg = lpc32xx_parse_dt(&pdev->dev); + if (!host->ncfg) { + dev_err(&pdev->dev, + "Missing or bad NAND config from device tree\n"); + return -ENOENT; + } + if (host->ncfg->wp_gpio == -EPROBE_DEFER) + return -EPROBE_DEFER; + if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev, + host->ncfg->wp_gpio, "NAND WP")) { + dev_err(&pdev->dev, "GPIO not available\n"); + return -EBUSY; + } + lpc32xx_wp_disable(host); + + host->pdata = dev_get_platdata(&pdev->dev); + + mtd = &host->mtd; + chip = &host->nand_chip; + chip->priv = host; + mtd->priv = chip; + mtd->owner = THIS_MODULE; + mtd->dev.parent = &pdev->dev; + + /* Get NAND clock */ + host->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(host->clk)) { + dev_err(&pdev->dev, "Clock failure\n"); + res = -ENOENT; + goto err_exit1; + } + clk_enable(host->clk); + + /* Set NAND IO addresses and command/ready functions */ + chip->IO_ADDR_R = SLC_DATA(host->io_base); + chip->IO_ADDR_W = SLC_DATA(host->io_base); + chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl; + chip->dev_ready = lpc32xx_nand_device_ready; + chip->chip_delay = 20; /* 20us command delay time */ + + /* Init NAND controller */ + lpc32xx_nand_setup(host); + + platform_set_drvdata(pdev, host); + + /* NAND callbacks for LPC32xx SLC hardware */ + chip->ecc.mode = NAND_ECC_HW_SYNDROME; + chip->read_byte = lpc32xx_nand_read_byte; + chip->read_buf = lpc32xx_nand_read_buf; + chip->write_buf = lpc32xx_nand_write_buf; + chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome; + chip->ecc.read_page = lpc32xx_nand_read_page_syndrome; + chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome; + chip->ecc.write_page = lpc32xx_nand_write_page_syndrome; + chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome; + chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome; + chip->ecc.calculate = lpc32xx_nand_ecc_calculate; + chip->ecc.correct = nand_correct_data; + chip->ecc.strength = 1; + chip->ecc.hwctl = lpc32xx_nand_ecc_enable; + + /* bitflip_threshold's default is defined as ecc_strength anyway. + * Unfortunately, it is set only later at add_mtd_device(). Meanwhile + * being 0, it causes bad block table scanning errors in + * nand_scan_tail(), so preparing it here already. */ + mtd->bitflip_threshold = chip->ecc.strength; + + /* + * Allocate a large enough buffer for a single huge page plus + * extra space for the spare area and ECC storage area + */ + host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE; + host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len, + GFP_KERNEL); + if (host->data_buf == NULL) { + res = -ENOMEM; + goto err_exit2; + } + + res = lpc32xx_nand_dma_setup(host); + if (res) { + res = -EIO; + goto err_exit2; + } + + /* Find NAND device */ + if (nand_scan_ident(mtd, 1, NULL)) { + res = -ENXIO; + goto err_exit3; + } + + /* OOB and ECC CPU and DMA work areas */ + host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE); + + /* + * Small page FLASH has a unique OOB layout, but large and huge + * page FLASH use the standard layout. Small page FLASH uses a + * custom BBT marker layout. + */ + if (mtd->writesize <= 512) + chip->ecc.layout = &lpc32xx_nand_oob_16; + + /* These sizes remain the same regardless of page size */ + chip->ecc.size = 256; + chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES; + chip->ecc.prepad = chip->ecc.postpad = 0; + + /* Avoid extra scan if using BBT, setup BBT support */ + if (host->ncfg->use_bbt) { + chip->bbt_options |= NAND_BBT_USE_FLASH; + + /* + * Use a custom BBT marker setup for small page FLASH that + * won't interfere with the ECC layout. Large and huge page + * FLASH use the standard layout. + */ + if (mtd->writesize <= 512) { + chip->bbt_td = &bbt_smallpage_main_descr; + chip->bbt_md = &bbt_smallpage_mirror_descr; + } + } + + /* + * Fills out all the uninitialized function pointers with the defaults + */ + if (nand_scan_tail(mtd)) { + res = -ENXIO; + goto err_exit3; + } + + mtd->name = "nxp_lpc3220_slc"; + ppdata.of_node = pdev->dev.of_node; + res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts, + host->ncfg->num_parts); + if (!res) + return res; + + nand_release(mtd); + +err_exit3: + dma_release_channel(host->dma_chan); +err_exit2: + clk_disable(host->clk); +err_exit1: + lpc32xx_wp_enable(host); + + return res; +} + +/* + * Remove NAND device. + */ +static int lpc32xx_nand_remove(struct platform_device *pdev) +{ + uint32_t tmp; + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + struct mtd_info *mtd = &host->mtd; + + nand_release(mtd); + dma_release_channel(host->dma_chan); + + /* Force CE high */ + tmp = readl(SLC_CTRL(host->io_base)); + tmp &= ~SLCCFG_CE_LOW; + writel(tmp, SLC_CTRL(host->io_base)); + + clk_disable(host->clk); + lpc32xx_wp_enable(host); + + return 0; +} + +#ifdef CONFIG_PM +static int lpc32xx_nand_resume(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + + /* Re-enable NAND clock */ + clk_enable(host->clk); + + /* Fresh init of NAND controller */ + lpc32xx_nand_setup(host); + + /* Disable write protect */ + lpc32xx_wp_disable(host); + + return 0; +} + +static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) +{ + uint32_t tmp; + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + + /* Force CE high */ + tmp = readl(SLC_CTRL(host->io_base)); + tmp &= ~SLCCFG_CE_LOW; + writel(tmp, SLC_CTRL(host->io_base)); + + /* Enable write protect for safety */ + lpc32xx_wp_enable(host); + + /* Disable clock */ + clk_disable(host->clk); + + return 0; +} + +#else +#define lpc32xx_nand_resume NULL +#define lpc32xx_nand_suspend NULL +#endif + +static const struct of_device_id lpc32xx_nand_match[] = { + { .compatible = "nxp,lpc3220-slc" }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); + +static struct platform_driver lpc32xx_nand_driver = { + .probe = lpc32xx_nand_probe, + .remove = lpc32xx_nand_remove, + .resume = lpc32xx_nand_resume, + .suspend = lpc32xx_nand_suspend, + .driver = { + .name = LPC32XX_MODNAME, + .owner = THIS_MODULE, + .of_match_table = lpc32xx_nand_match, + }, +}; + +module_platform_driver(lpc32xx_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>"); +MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>"); +MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller"); diff --git a/drivers/mtd/nand/mpc5121_nfc.c b/drivers/mtd/nand/mpc5121_nfc.c index 0a130dcaa12..e78841a2dcc 100644 --- a/drivers/mtd/nand/mpc5121_nfc.c +++ b/drivers/mtd/nand/mpc5121_nfc.c @@ -29,13 +29,15 @@ #include <linux/clk.h> #include <linux/gfp.h> #include <linux/delay.h> -#include <linux/init.h> +#include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> +#include <linux/of_address.h> #include <linux/of_device.h> +#include <linux/of_irq.h> #include <linux/of_platform.h> #include <asm/mpc5121.h> @@ -130,10 +132,6 @@ struct mpc5121_nfc_prv { static void mpc5121_nfc_done(struct mtd_info *mtd); -#ifdef CONFIG_MTD_PARTITIONS -static const char *mpc5121_nfc_pprobes[] = { "cmdlinepart", NULL }; -#endif - /* Read NFC register */ static inline u16 nfc_read(struct mtd_info *mtd, uint reg) { @@ -509,27 +507,6 @@ static void mpc5121_nfc_write_buf(struct mtd_info *mtd, mpc5121_nfc_buf_copy(mtd, (u_char *)buf, len, 1); } -/* Compare buffer with NAND flash */ -static int mpc5121_nfc_verify_buf(struct mtd_info *mtd, - const u_char *buf, int len) -{ - u_char tmp[256]; - uint bsize; - - while (len) { - bsize = min(len, 256); - mpc5121_nfc_read_buf(mtd, tmp, bsize); - - if (memcmp(buf, tmp, bsize)) - return 1; - - buf += bsize; - len -= bsize; - } - - return 0; -} - /* Read byte from NFC buffers */ static u8 mpc5121_nfc_read_byte(struct mtd_info *mtd) { @@ -568,6 +545,7 @@ static int mpc5121_nfc_read_hw_config(struct mtd_info *mtd) uint rcw_width; uint rcwh; uint romloc, ps; + int ret = 0; rmnode = of_find_compatible_node(NULL, NULL, "fsl,mpc5121-reset"); if (!rmnode) { @@ -579,7 +557,8 @@ static int mpc5121_nfc_read_hw_config(struct mtd_info *mtd) rm = of_iomap(rmnode, 0); if (!rm) { dev_err(prv->dev, "Error mapping reset module node!\n"); - return -EBUSY; + ret = -EBUSY; + goto out; } rcwh = in_be32(&rm->rcwhr); @@ -628,8 +607,9 @@ static int mpc5121_nfc_read_hw_config(struct mtd_info *mtd) rcw_width * 8, rcw_pagesize, rcw_sparesize); iounmap(rm); +out: of_node_put(rmnode); - return 0; + return ret; } /* Free driver resources */ @@ -638,32 +618,28 @@ static void mpc5121_nfc_free(struct device *dev, struct mtd_info *mtd) struct nand_chip *chip = mtd->priv; struct mpc5121_nfc_prv *prv = chip->priv; - if (prv->clk) { - clk_disable(prv->clk); - clk_put(prv->clk); - } + if (prv->clk) + clk_disable_unprepare(prv->clk); if (prv->csreg) iounmap(prv->csreg); } -static int __devinit mpc5121_nfc_probe(struct of_device *op, - const struct of_device_id *match) +static int mpc5121_nfc_probe(struct platform_device *op) { struct device_node *rootnode, *dn = op->dev.of_node; + struct clk *clk; struct device *dev = &op->dev; struct mpc5121_nfc_prv *prv; struct resource res; struct mtd_info *mtd; -#ifdef CONFIG_MTD_PARTITIONS - struct mtd_partition *parts; -#endif struct nand_chip *chip; unsigned long regs_paddr, regs_size; - const uint *chips_no; + const __be32 *chips_no; int resettime = 0; int retval = 0; int rev, len; + struct mtd_part_parser_data ppdata; /* * Check SoC revision. This driver supports only NFC @@ -676,10 +652,8 @@ static int __devinit mpc5121_nfc_probe(struct of_device *op, } prv = devm_kzalloc(dev, sizeof(*prv), GFP_KERNEL); - if (!prv) { - dev_err(dev, "Memory exhausted!\n"); + if (!prv) return -ENOMEM; - } mtd = &prv->mtd; chip = &prv->chip; @@ -714,7 +688,7 @@ static int __devinit mpc5121_nfc_probe(struct of_device *op, } regs_paddr = res.start; - regs_size = res.end - res.start + 1; + regs_size = resource_size(&res); if (!devm_request_mem_region(dev, regs_paddr, regs_size, DRV_NAME)) { dev_err(dev, "Error requesting memory region!\n"); @@ -728,15 +702,15 @@ static int __devinit mpc5121_nfc_probe(struct of_device *op, } mtd->name = "MPC5121 NAND"; + ppdata.of_node = dn; chip->dev_ready = mpc5121_nfc_dev_ready; chip->cmdfunc = mpc5121_nfc_command; chip->read_byte = mpc5121_nfc_read_byte; chip->read_word = mpc5121_nfc_read_word; chip->read_buf = mpc5121_nfc_read_buf; chip->write_buf = mpc5121_nfc_write_buf; - chip->verify_buf = mpc5121_nfc_verify_buf; chip->select_chip = mpc5121_nfc_select_chip; - chip->options = NAND_NO_AUTOINCR | NAND_USE_FLASH_BBT; + chip->bbt_options = NAND_BBT_USE_FLASH; chip->ecc.mode = NAND_ECC_SOFT; /* Support external chip-select logic on ADS5121 board */ @@ -754,14 +728,18 @@ static int __devinit mpc5121_nfc_probe(struct of_device *op, of_node_put(rootnode); /* Enable NFC clock */ - prv->clk = clk_get(dev, "nfc_clk"); - if (!prv->clk) { + clk = devm_clk_get(dev, "ipg"); + if (IS_ERR(clk)) { dev_err(dev, "Unable to acquire NFC clock!\n"); - retval = -ENODEV; + retval = PTR_ERR(clk); goto error; } - - clk_enable(prv->clk); + retval = clk_prepare_enable(clk); + if (retval) { + dev_err(dev, "Unable to enable NFC clock!\n"); + goto error; + } + prv->clk = clk; /* Reset NAND Flash controller */ nfc_set(mtd, NFC_CONFIG1, NFC_RESET); @@ -803,9 +781,8 @@ static int __devinit mpc5121_nfc_probe(struct of_device *op, } /* Detect NAND chips */ - if (nand_scan(mtd, *chips_no)) { + if (nand_scan(mtd, be32_to_cpup(chips_no))) { dev_err(dev, "NAND Flash not found !\n"); - devm_free_irq(dev, prv->irq, mtd); retval = -ENXIO; goto error; } @@ -830,7 +807,6 @@ static int __devinit mpc5121_nfc_probe(struct of_device *op, default: dev_err(dev, "Unsupported NAND flash!\n"); - devm_free_irq(dev, prv->irq, mtd); retval = -ENXIO; goto error; } @@ -838,28 +814,9 @@ static int __devinit mpc5121_nfc_probe(struct of_device *op, dev_set_drvdata(dev, mtd); /* Register device in MTD */ -#ifdef CONFIG_MTD_PARTITIONS - retval = parse_mtd_partitions(mtd, mpc5121_nfc_pprobes, &parts, 0); -#ifdef CONFIG_MTD_OF_PARTS - if (retval == 0) - retval = of_mtd_parse_partitions(dev, dn, &parts); -#endif - if (retval < 0) { - dev_err(dev, "Error parsing MTD partitions!\n"); - devm_free_irq(dev, prv->irq, mtd); - retval = -EINVAL; - goto error; - } - - if (retval > 0) - retval = add_mtd_partitions(mtd, parts, retval); - else -#endif - retval = add_mtd_device(mtd); - + retval = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0); if (retval) { dev_err(dev, "Error adding MTD device!\n"); - devm_free_irq(dev, prv->irq, mtd); goto error; } @@ -869,28 +826,25 @@ error: return retval; } -static int __devexit mpc5121_nfc_remove(struct of_device *op) +static int mpc5121_nfc_remove(struct platform_device *op) { struct device *dev = &op->dev; struct mtd_info *mtd = dev_get_drvdata(dev); - struct nand_chip *chip = mtd->priv; - struct mpc5121_nfc_prv *prv = chip->priv; nand_release(mtd); - devm_free_irq(dev, prv->irq, mtd); mpc5121_nfc_free(dev, mtd); return 0; } -static struct of_device_id mpc5121_nfc_match[] __devinitdata = { +static struct of_device_id mpc5121_nfc_match[] = { { .compatible = "fsl,mpc5121-nfc", }, {}, }; -static struct of_platform_driver mpc5121_nfc_driver = { +static struct platform_driver mpc5121_nfc_driver = { .probe = mpc5121_nfc_probe, - .remove = __devexit_p(mpc5121_nfc_remove), + .remove = mpc5121_nfc_remove, .driver = { .name = DRV_NAME, .owner = THIS_MODULE, @@ -898,19 +852,7 @@ static struct of_platform_driver mpc5121_nfc_driver = { }, }; -static int __init mpc5121_nfc_init(void) -{ - return of_register_platform_driver(&mpc5121_nfc_driver); -} - -module_init(mpc5121_nfc_init); - -static void __exit mpc5121_nfc_cleanup(void) -{ - of_unregister_platform_driver(&mpc5121_nfc_driver); -} - -module_exit(mpc5121_nfc_cleanup); +module_platform_driver(mpc5121_nfc_driver); MODULE_AUTHOR("Freescale Semiconductor, Inc."); MODULE_DESCRIPTION("MPC5121 NAND MTD driver"); diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c index 82e94389824..dba262bf766 100644 --- a/drivers/mtd/nand/mxc_nand.c +++ b/drivers/mtd/nand/mxc_nand.c @@ -30,92 +30,174 @@ #include <linux/clk.h> #include <linux/err.h> #include <linux/io.h> +#include <linux/irq.h> +#include <linux/completion.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/of_mtd.h> #include <asm/mach/flash.h> -#include <mach/mxc_nand.h> -#include <mach/hardware.h> +#include <linux/platform_data/mtd-mxc_nand.h> #define DRIVER_NAME "mxc_nand" -#define nfc_is_v21() (cpu_is_mx25() || cpu_is_mx35()) -#define nfc_is_v1() (cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21()) - /* Addresses for NFC registers */ -#define NFC_BUF_SIZE 0xE00 -#define NFC_BUF_ADDR 0xE04 -#define NFC_FLASH_ADDR 0xE06 -#define NFC_FLASH_CMD 0xE08 -#define NFC_CONFIG 0xE0A -#define NFC_ECC_STATUS_RESULT 0xE0C -#define NFC_RSLTMAIN_AREA 0xE0E -#define NFC_RSLTSPARE_AREA 0xE10 -#define NFC_WRPROT 0xE12 -#define NFC_V1_UNLOCKSTART_BLKADDR 0xe14 -#define NFC_V1_UNLOCKEND_BLKADDR 0xe16 -#define NFC_V21_UNLOCKSTART_BLKADDR 0xe20 -#define NFC_V21_UNLOCKEND_BLKADDR 0xe22 -#define NFC_NF_WRPRST 0xE18 -#define NFC_CONFIG1 0xE1A -#define NFC_CONFIG2 0xE1C - -/* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register - * for Command operation */ -#define NFC_CMD 0x1 - -/* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register - * for Address operation */ -#define NFC_ADDR 0x2 - -/* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register - * for Input operation */ -#define NFC_INPUT 0x4 - -/* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register - * for Data Output operation */ -#define NFC_OUTPUT 0x8 - -/* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register - * for Read ID operation */ -#define NFC_ID 0x10 - -/* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register - * for Read Status operation */ -#define NFC_STATUS 0x20 - -/* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read - * Status operation */ -#define NFC_INT 0x8000 - -#define NFC_SP_EN (1 << 2) -#define NFC_ECC_EN (1 << 3) -#define NFC_INT_MSK (1 << 4) -#define NFC_BIG (1 << 5) -#define NFC_RST (1 << 6) -#define NFC_CE (1 << 7) -#define NFC_ONE_CYCLE (1 << 8) +#define NFC_V1_V2_BUF_SIZE (host->regs + 0x00) +#define NFC_V1_V2_BUF_ADDR (host->regs + 0x04) +#define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06) +#define NFC_V1_V2_FLASH_CMD (host->regs + 0x08) +#define NFC_V1_V2_CONFIG (host->regs + 0x0a) +#define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c) +#define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e) +#define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10) +#define NFC_V1_V2_WRPROT (host->regs + 0x12) +#define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14) +#define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16) +#define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20) +#define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24) +#define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28) +#define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c) +#define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22) +#define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26) +#define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a) +#define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e) +#define NFC_V1_V2_NF_WRPRST (host->regs + 0x18) +#define NFC_V1_V2_CONFIG1 (host->regs + 0x1a) +#define NFC_V1_V2_CONFIG2 (host->regs + 0x1c) + +#define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0) +#define NFC_V1_V2_CONFIG1_SP_EN (1 << 2) +#define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3) +#define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4) +#define NFC_V1_V2_CONFIG1_BIG (1 << 5) +#define NFC_V1_V2_CONFIG1_RST (1 << 6) +#define NFC_V1_V2_CONFIG1_CE (1 << 7) +#define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8) +#define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9) +#define NFC_V2_CONFIG1_FP_INT (1 << 11) + +#define NFC_V1_V2_CONFIG2_INT (1 << 15) + +/* + * Operation modes for the NFC. Valid for v1, v2 and v3 + * type controllers. + */ +#define NFC_CMD (1 << 0) +#define NFC_ADDR (1 << 1) +#define NFC_INPUT (1 << 2) +#define NFC_OUTPUT (1 << 3) +#define NFC_ID (1 << 4) +#define NFC_STATUS (1 << 5) + +#define NFC_V3_FLASH_CMD (host->regs_axi + 0x00) +#define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04) + +#define NFC_V3_CONFIG1 (host->regs_axi + 0x34) +#define NFC_V3_CONFIG1_SP_EN (1 << 0) +#define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4) + +#define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38) + +#define NFC_V3_LAUNCH (host->regs_axi + 0x40) + +#define NFC_V3_WRPROT (host->regs_ip + 0x0) +#define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0) +#define NFC_V3_WRPROT_LOCK (1 << 1) +#define NFC_V3_WRPROT_UNLOCK (1 << 2) +#define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6) + +#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04) + +#define NFC_V3_CONFIG2 (host->regs_ip + 0x24) +#define NFC_V3_CONFIG2_PS_512 (0 << 0) +#define NFC_V3_CONFIG2_PS_2048 (1 << 0) +#define NFC_V3_CONFIG2_PS_4096 (2 << 0) +#define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2) +#define NFC_V3_CONFIG2_ECC_EN (1 << 3) +#define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4) +#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5) +#define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6) +#define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift) +#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12) +#define NFC_V3_CONFIG2_INT_MSK (1 << 15) +#define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24) +#define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16) + +#define NFC_V3_CONFIG3 (host->regs_ip + 0x28) +#define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0) +#define NFC_V3_CONFIG3_FW8 (1 << 3) +#define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8) +#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12) +#define NFC_V3_CONFIG3_RBB_MODE (1 << 15) +#define NFC_V3_CONFIG3_NO_SDMA (1 << 20) + +#define NFC_V3_IPC (host->regs_ip + 0x2C) +#define NFC_V3_IPC_CREQ (1 << 0) +#define NFC_V3_IPC_INT (1 << 31) + +#define NFC_V3_DELAY_LINE (host->regs_ip + 0x34) + +struct mxc_nand_host; + +struct mxc_nand_devtype_data { + void (*preset)(struct mtd_info *); + void (*send_cmd)(struct mxc_nand_host *, uint16_t, int); + void (*send_addr)(struct mxc_nand_host *, uint16_t, int); + void (*send_page)(struct mtd_info *, unsigned int); + void (*send_read_id)(struct mxc_nand_host *); + uint16_t (*get_dev_status)(struct mxc_nand_host *); + int (*check_int)(struct mxc_nand_host *); + void (*irq_control)(struct mxc_nand_host *, int); + u32 (*get_ecc_status)(struct mxc_nand_host *); + struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k; + void (*select_chip)(struct mtd_info *mtd, int chip); + int (*correct_data)(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *calc_ecc); + + /* + * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked + * (CONFIG1:INT_MSK is set). To handle this the driver uses + * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK + */ + int irqpending_quirk; + int needs_ip; + + size_t regs_offset; + size_t spare0_offset; + size_t axi_offset; + + int spare_len; + int eccbytes; + int eccsize; + int ppb_shift; +}; struct mxc_nand_host { struct mtd_info mtd; struct nand_chip nand; - struct mtd_partition *parts; struct device *dev; - void *spare0; - void *main_area0; - void *main_area1; + void __iomem *spare0; + void __iomem *main_area0; void __iomem *base; void __iomem *regs; + void __iomem *regs_axi; + void __iomem *regs_ip; int status_request; struct clk *clk; int clk_act; int irq; + int eccsize; + int active_cs; - wait_queue_head_t irq_waitq; + struct completion op_completion; uint8_t *data_buf; unsigned int buf_start; - int spare_len; + + const struct mxc_nand_devtype_data *devtype_data; + struct mxc_nand_platform_data pdata; }; /* OOB placement block for use with hardware ecc generation */ @@ -160,17 +242,147 @@ static struct nand_ecclayout nandv2_hw_eccoob_largepage = { } }; -#ifdef CONFIG_MTD_PARTITIONS -static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL }; -#endif +/* OOB description for 4096 byte pages with 128 byte OOB */ +static struct nand_ecclayout nandv2_hw_eccoob_4k = { + .eccbytes = 8 * 9, + .eccpos = { + 7, 8, 9, 10, 11, 12, 13, 14, 15, + 23, 24, 25, 26, 27, 28, 29, 30, 31, + 39, 40, 41, 42, 43, 44, 45, 46, 47, + 55, 56, 57, 58, 59, 60, 61, 62, 63, + 71, 72, 73, 74, 75, 76, 77, 78, 79, + 87, 88, 89, 90, 91, 92, 93, 94, 95, + 103, 104, 105, 106, 107, 108, 109, 110, 111, + 119, 120, 121, 122, 123, 124, 125, 126, 127, + }, + .oobfree = { + {.offset = 2, .length = 4}, + {.offset = 16, .length = 7}, + {.offset = 32, .length = 7}, + {.offset = 48, .length = 7}, + {.offset = 64, .length = 7}, + {.offset = 80, .length = 7}, + {.offset = 96, .length = 7}, + {.offset = 112, .length = 7}, + } +}; + +static const char * const part_probes[] = { + "cmdlinepart", "RedBoot", "ofpart", NULL }; + +static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size) +{ + int i; + u32 *t = trg; + const __iomem u32 *s = src; + + for (i = 0; i < (size >> 2); i++) + *t++ = __raw_readl(s++); +} + +static void memcpy32_toio(void __iomem *trg, const void *src, int size) +{ + int i; + u32 __iomem *t = trg; + const u32 *s = src; + + for (i = 0; i < (size >> 2); i++) + __raw_writel(*s++, t++); +} + +static int check_int_v3(struct mxc_nand_host *host) +{ + uint32_t tmp; + + tmp = readl(NFC_V3_IPC); + if (!(tmp & NFC_V3_IPC_INT)) + return 0; + + tmp &= ~NFC_V3_IPC_INT; + writel(tmp, NFC_V3_IPC); + + return 1; +} + +static int check_int_v1_v2(struct mxc_nand_host *host) +{ + uint32_t tmp; + + tmp = readw(NFC_V1_V2_CONFIG2); + if (!(tmp & NFC_V1_V2_CONFIG2_INT)) + return 0; + + if (!host->devtype_data->irqpending_quirk) + writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2); + + return 1; +} + +static void irq_control_v1_v2(struct mxc_nand_host *host, int activate) +{ + uint16_t tmp; + + tmp = readw(NFC_V1_V2_CONFIG1); + + if (activate) + tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK; + else + tmp |= NFC_V1_V2_CONFIG1_INT_MSK; + + writew(tmp, NFC_V1_V2_CONFIG1); +} + +static void irq_control_v3(struct mxc_nand_host *host, int activate) +{ + uint32_t tmp; + + tmp = readl(NFC_V3_CONFIG2); + + if (activate) + tmp &= ~NFC_V3_CONFIG2_INT_MSK; + else + tmp |= NFC_V3_CONFIG2_INT_MSK; + + writel(tmp, NFC_V3_CONFIG2); +} + +static void irq_control(struct mxc_nand_host *host, int activate) +{ + if (host->devtype_data->irqpending_quirk) { + if (activate) + enable_irq(host->irq); + else + disable_irq_nosync(host->irq); + } else { + host->devtype_data->irq_control(host, activate); + } +} + +static u32 get_ecc_status_v1(struct mxc_nand_host *host) +{ + return readw(NFC_V1_V2_ECC_STATUS_RESULT); +} + +static u32 get_ecc_status_v2(struct mxc_nand_host *host) +{ + return readl(NFC_V1_V2_ECC_STATUS_RESULT); +} + +static u32 get_ecc_status_v3(struct mxc_nand_host *host) +{ + return readl(NFC_V3_ECC_STATUS_RESULT); +} static irqreturn_t mxc_nfc_irq(int irq, void *dev_id) { struct mxc_nand_host *host = dev_id; - disable_irq_nosync(irq); + if (!host->devtype_data->check_int(host)) + return IRQ_NONE; + + irq_control(host, 0); - wake_up(&host->irq_waitq); + complete(&host->op_completion); return IRQ_HANDLED; } @@ -180,86 +392,127 @@ static irqreturn_t mxc_nfc_irq(int irq, void *dev_id) */ static void wait_op_done(struct mxc_nand_host *host, int useirq) { - uint16_t tmp; int max_retries = 8000; if (useirq) { - if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) { - - enable_irq(host->irq); - - wait_event(host->irq_waitq, - readw(host->regs + NFC_CONFIG2) & NFC_INT); - - tmp = readw(host->regs + NFC_CONFIG2); - tmp &= ~NFC_INT; - writew(tmp, host->regs + NFC_CONFIG2); + if (!host->devtype_data->check_int(host)) { + reinit_completion(&host->op_completion); + irq_control(host, 1); + wait_for_completion(&host->op_completion); } } else { while (max_retries-- > 0) { - if (readw(host->regs + NFC_CONFIG2) & NFC_INT) { - tmp = readw(host->regs + NFC_CONFIG2); - tmp &= ~NFC_INT; - writew(tmp, host->regs + NFC_CONFIG2); + if (host->devtype_data->check_int(host)) break; - } + udelay(1); } if (max_retries < 0) - DEBUG(MTD_DEBUG_LEVEL0, "%s: INT not set\n", - __func__); + pr_debug("%s: INT not set\n", __func__); } } +static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq) +{ + /* fill command */ + writel(cmd, NFC_V3_FLASH_CMD); + + /* send out command */ + writel(NFC_CMD, NFC_V3_LAUNCH); + + /* Wait for operation to complete */ + wait_op_done(host, useirq); +} + /* This function issues the specified command to the NAND device and * waits for completion. */ -static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq) +static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq) { - DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq); + pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq); - writew(cmd, host->regs + NFC_FLASH_CMD); - writew(NFC_CMD, host->regs + NFC_CONFIG2); + writew(cmd, NFC_V1_V2_FLASH_CMD); + writew(NFC_CMD, NFC_V1_V2_CONFIG2); - if (cpu_is_mx21() && (cmd == NAND_CMD_RESET)) { + if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) { int max_retries = 100; /* Reset completion is indicated by NFC_CONFIG2 */ /* being set to 0 */ while (max_retries-- > 0) { - if (readw(host->regs + NFC_CONFIG2) == 0) { + if (readw(NFC_V1_V2_CONFIG2) == 0) { break; } udelay(1); } if (max_retries < 0) - DEBUG(MTD_DEBUG_LEVEL0, "%s: RESET failed\n", - __func__); + pr_debug("%s: RESET failed\n", __func__); } else { /* Wait for operation to complete */ wait_op_done(host, useirq); } } +static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast) +{ + /* fill address */ + writel(addr, NFC_V3_FLASH_ADDR0); + + /* send out address */ + writel(NFC_ADDR, NFC_V3_LAUNCH); + + wait_op_done(host, 0); +} + /* This function sends an address (or partial address) to the * NAND device. The address is used to select the source/destination for * a NAND command. */ -static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast) +static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast) { - DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast); + pr_debug("send_addr(host, 0x%x %d)\n", addr, islast); - writew(addr, host->regs + NFC_FLASH_ADDR); - writew(NFC_ADDR, host->regs + NFC_CONFIG2); + writew(addr, NFC_V1_V2_FLASH_ADDR); + writew(NFC_ADDR, NFC_V1_V2_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, islast); } -static void send_page(struct mtd_info *mtd, unsigned int ops) +static void send_page_v3(struct mtd_info *mtd, unsigned int ops) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + uint32_t tmp; + + tmp = readl(NFC_V3_CONFIG1); + tmp &= ~(7 << 4); + writel(tmp, NFC_V3_CONFIG1); + + /* transfer data from NFC ram to nand */ + writel(ops, NFC_V3_LAUNCH); + + wait_op_done(host, false); +} + +static void send_page_v2(struct mtd_info *mtd, unsigned int ops) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + + /* NANDFC buffer 0 is used for page read/write */ + writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); + + writew(ops, NFC_V1_V2_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, true); +} + +static void send_page_v1(struct mtd_info *mtd, unsigned int ops) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; int bufs, i; - if (nfc_is_v1() && mtd->writesize > 512) + if (mtd->writesize > 512) bufs = 4; else bufs = 1; @@ -267,63 +520,91 @@ static void send_page(struct mtd_info *mtd, unsigned int ops) for (i = 0; i < bufs; i++) { /* NANDFC buffer 0 is used for page read/write */ - writew(i, host->regs + NFC_BUF_ADDR); + writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR); - writew(ops, host->regs + NFC_CONFIG2); + writew(ops, NFC_V1_V2_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, true); } } +static void send_read_id_v3(struct mxc_nand_host *host) +{ + struct nand_chip *this = &host->nand; + + /* Read ID into main buffer */ + writel(NFC_ID, NFC_V3_LAUNCH); + + wait_op_done(host, true); + + memcpy32_fromio(host->data_buf, host->main_area0, 16); + + if (this->options & NAND_BUSWIDTH_16) { + /* compress the ID info */ + host->data_buf[1] = host->data_buf[2]; + host->data_buf[2] = host->data_buf[4]; + host->data_buf[3] = host->data_buf[6]; + host->data_buf[4] = host->data_buf[8]; + host->data_buf[5] = host->data_buf[10]; + } +} + /* Request the NANDFC to perform a read of the NAND device ID. */ -static void send_read_id(struct mxc_nand_host *host) +static void send_read_id_v1_v2(struct mxc_nand_host *host) { struct nand_chip *this = &host->nand; /* NANDFC buffer 0 is used for device ID output */ - writew(0x0, host->regs + NFC_BUF_ADDR); + writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); - writew(NFC_ID, host->regs + NFC_CONFIG2); + writew(NFC_ID, NFC_V1_V2_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, true); + memcpy32_fromio(host->data_buf, host->main_area0, 16); + if (this->options & NAND_BUSWIDTH_16) { - void __iomem *main_buf = host->main_area0; /* compress the ID info */ - writeb(readb(main_buf + 2), main_buf + 1); - writeb(readb(main_buf + 4), main_buf + 2); - writeb(readb(main_buf + 6), main_buf + 3); - writeb(readb(main_buf + 8), main_buf + 4); - writeb(readb(main_buf + 10), main_buf + 5); + host->data_buf[1] = host->data_buf[2]; + host->data_buf[2] = host->data_buf[4]; + host->data_buf[3] = host->data_buf[6]; + host->data_buf[4] = host->data_buf[8]; + host->data_buf[5] = host->data_buf[10]; } - memcpy(host->data_buf, host->main_area0, 16); +} + +static uint16_t get_dev_status_v3(struct mxc_nand_host *host) +{ + writew(NFC_STATUS, NFC_V3_LAUNCH); + wait_op_done(host, true); + + return readl(NFC_V3_CONFIG1) >> 16; } /* This function requests the NANDFC to perform a read of the * NAND device status and returns the current status. */ -static uint16_t get_dev_status(struct mxc_nand_host *host) +static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host) { - void __iomem *main_buf = host->main_area1; + void __iomem *main_buf = host->main_area0; uint32_t store; uint16_t ret; - /* Issue status request to NAND device */ - /* store the main area1 first word, later do recovery */ - store = readl(main_buf); - /* NANDFC buffer 1 is used for device status to prevent - * corruption of read/write buffer on status requests. */ - writew(1, host->regs + NFC_BUF_ADDR); + writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); - writew(NFC_STATUS, host->regs + NFC_CONFIG2); + /* + * The device status is stored in main_area0. To + * prevent corruption of the buffer save the value + * and restore it afterwards. + */ + store = readl(main_buf); - /* Wait for operation to complete */ + writew(NFC_STATUS, NFC_V1_V2_CONFIG2); wait_op_done(host, true); - /* Status is placed in first word of main buffer */ - /* get status, then recovery area 1 data */ ret = readw(main_buf); + writel(store, main_buf); return ret; @@ -347,7 +628,7 @@ static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode) */ } -static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat, +static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { struct nand_chip *nand_chip = mtd->priv; @@ -358,17 +639,49 @@ static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat, * additional correction. 2-Bit errors cannot be corrected by * HW ECC, so we need to return failure */ - uint16_t ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT); + uint16_t ecc_status = get_ecc_status_v1(host); if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) { - DEBUG(MTD_DEBUG_LEVEL0, - "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n"); + pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n"); return -1; } return 0; } +static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + u32 ecc_stat, err; + int no_subpages = 1; + int ret = 0; + u8 ecc_bit_mask, err_limit; + + ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf; + err_limit = (host->eccsize == 4) ? 0x4 : 0x8; + + no_subpages = mtd->writesize >> 9; + + ecc_stat = host->devtype_data->get_ecc_status(host); + + do { + err = ecc_stat & ecc_bit_mask; + if (err > err_limit) { + printk(KERN_WARNING "UnCorrectable RS-ECC Error\n"); + return -1; + } else { + ret += err; + } + ecc_stat >>= 4; + } while (--no_subpages); + + pr_debug("%d Symbol Correctable RS-ECC Error\n", ret); + + return ret; +} + static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { @@ -383,7 +696,7 @@ static u_char mxc_nand_read_byte(struct mtd_info *mtd) /* Check for status request */ if (host->status_request) - return get_dev_status(host) & 0xFF; + return host->devtype_data->get_dev_status(host) & 0xFF; ret = *(uint8_t *)(host->data_buf + host->buf_start); host->buf_start++; @@ -434,45 +747,56 @@ static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) n = min(n, len); - memcpy(buf, host->data_buf + col, len); + memcpy(buf, host->data_buf + col, n); - host->buf_start += len; -} - -/* Used by the upper layer to verify the data in NAND Flash - * with the data in the buf. */ -static int mxc_nand_verify_buf(struct mtd_info *mtd, - const u_char *buf, int len) -{ - return -EFAULT; + host->buf_start += n; } /* This function is used by upper layer for select and * deselect of the NAND chip */ -static void mxc_nand_select_chip(struct mtd_info *mtd, int chip) +static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; - switch (chip) { - case -1: + if (chip == -1) { /* Disable the NFC clock */ if (host->clk_act) { - clk_disable(host->clk); + clk_disable_unprepare(host->clk); host->clk_act = 0; } - break; - case 0: + return; + } + + if (!host->clk_act) { /* Enable the NFC clock */ - if (!host->clk_act) { - clk_enable(host->clk); - host->clk_act = 1; + clk_prepare_enable(host->clk); + host->clk_act = 1; + } +} + +static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + + if (chip == -1) { + /* Disable the NFC clock */ + if (host->clk_act) { + clk_disable_unprepare(host->clk); + host->clk_act = 0; } - break; + return; + } - default: - break; + if (!host->clk_act) { + /* Enable the NFC clock */ + clk_prepare_enable(host->clk); + host->clk_act = 1; } + + host->active_cs = chip; + writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); } /* @@ -485,23 +809,23 @@ static void copy_spare(struct mtd_info *mtd, bool bfrom) u16 i, j; u16 n = mtd->writesize >> 9; u8 *d = host->data_buf + mtd->writesize; - u8 *s = host->spare0; - u16 t = host->spare_len; + u8 __iomem *s = host->spare0; + u16 t = host->devtype_data->spare_len; j = (mtd->oobsize / n >> 1) << 1; if (bfrom) { for (i = 0; i < n - 1; i++) - memcpy(d + i * j, s + i * t, j); + memcpy32_fromio(d + i * j, s + i * t, j); /* the last section */ - memcpy(d + i * j, s + i * t, mtd->oobsize - i * j); + memcpy32_fromio(d + i * j, s + i * t, mtd->oobsize - i * j); } else { for (i = 0; i < n - 1; i++) - memcpy(&s[i * t], &d[i * j], j); + memcpy32_toio(&s[i * t], &d[i * j], j); /* the last section */ - memcpy(&s[i * t], &d[i * j], mtd->oobsize - i * j); + memcpy32_toio(&s[i * t], &d[i * j], mtd->oobsize - i * j); } } @@ -515,75 +839,209 @@ static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr) /* * MXC NANDFC can only perform full page+spare or * spare-only read/write. When the upper layers - * layers perform a read/write buf operation, - * we will used the saved column address to index into - * the full page. + * perform a read/write buf operation, the saved column + * address is used to index into the full page. */ - send_addr(host, 0, page_addr == -1); + host->devtype_data->send_addr(host, 0, page_addr == -1); if (mtd->writesize > 512) /* another col addr cycle for 2k page */ - send_addr(host, 0, false); + host->devtype_data->send_addr(host, 0, false); } /* Write out page address, if necessary */ if (page_addr != -1) { /* paddr_0 - p_addr_7 */ - send_addr(host, (page_addr & 0xff), false); + host->devtype_data->send_addr(host, (page_addr & 0xff), false); if (mtd->writesize > 512) { if (mtd->size >= 0x10000000) { /* paddr_8 - paddr_15 */ - send_addr(host, (page_addr >> 8) & 0xff, false); - send_addr(host, (page_addr >> 16) & 0xff, true); + host->devtype_data->send_addr(host, + (page_addr >> 8) & 0xff, + false); + host->devtype_data->send_addr(host, + (page_addr >> 16) & 0xff, + true); } else /* paddr_8 - paddr_15 */ - send_addr(host, (page_addr >> 8) & 0xff, true); + host->devtype_data->send_addr(host, + (page_addr >> 8) & 0xff, true); } else { /* One more address cycle for higher density devices */ if (mtd->size >= 0x4000000) { /* paddr_8 - paddr_15 */ - send_addr(host, (page_addr >> 8) & 0xff, false); - send_addr(host, (page_addr >> 16) & 0xff, true); + host->devtype_data->send_addr(host, + (page_addr >> 8) & 0xff, + false); + host->devtype_data->send_addr(host, + (page_addr >> 16) & 0xff, + true); } else /* paddr_8 - paddr_15 */ - send_addr(host, (page_addr >> 8) & 0xff, true); + host->devtype_data->send_addr(host, + (page_addr >> 8) & 0xff, true); } } } -static void preset(struct mtd_info *mtd) +/* + * v2 and v3 type controllers can do 4bit or 8bit ecc depending + * on how much oob the nand chip has. For 8bit ecc we need at least + * 26 bytes of oob data per 512 byte block. + */ +static int get_eccsize(struct mtd_info *mtd) +{ + int oobbytes_per_512 = 0; + + oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize; + + if (oobbytes_per_512 < 26) + return 4; + else + return 8; +} + +static void preset_v1(struct mtd_info *mtd) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; - uint16_t tmp; + uint16_t config1 = 0; + + if (nand_chip->ecc.mode == NAND_ECC_HW) + config1 |= NFC_V1_V2_CONFIG1_ECC_EN; + + if (!host->devtype_data->irqpending_quirk) + config1 |= NFC_V1_V2_CONFIG1_INT_MSK; + + host->eccsize = 1; + + writew(config1, NFC_V1_V2_CONFIG1); + /* preset operation */ + + /* Unlock the internal RAM Buffer */ + writew(0x2, NFC_V1_V2_CONFIG); + + /* Blocks to be unlocked */ + writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR); + writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR); + + /* Unlock Block Command for given address range */ + writew(0x4, NFC_V1_V2_WRPROT); +} + +static void preset_v2(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + uint16_t config1 = 0; + + if (nand_chip->ecc.mode == NAND_ECC_HW) + config1 |= NFC_V1_V2_CONFIG1_ECC_EN; - /* enable interrupt, disable spare enable */ - tmp = readw(host->regs + NFC_CONFIG1); - tmp &= ~NFC_INT_MSK; - tmp &= ~NFC_SP_EN; - if (nand_chip->ecc.mode == NAND_ECC_HW) { - tmp |= NFC_ECC_EN; + config1 |= NFC_V2_CONFIG1_FP_INT; + + if (!host->devtype_data->irqpending_quirk) + config1 |= NFC_V1_V2_CONFIG1_INT_MSK; + + if (mtd->writesize) { + uint16_t pages_per_block = mtd->erasesize / mtd->writesize; + + host->eccsize = get_eccsize(mtd); + if (host->eccsize == 4) + config1 |= NFC_V2_CONFIG1_ECC_MODE_4; + + config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6); } else { - tmp &= ~NFC_ECC_EN; + host->eccsize = 1; } - writew(tmp, host->regs + NFC_CONFIG1); + + writew(config1, NFC_V1_V2_CONFIG1); /* preset operation */ /* Unlock the internal RAM Buffer */ - writew(0x2, host->regs + NFC_CONFIG); + writew(0x2, NFC_V1_V2_CONFIG); /* Blocks to be unlocked */ - if (nfc_is_v21()) { - writew(0x0, host->regs + NFC_V21_UNLOCKSTART_BLKADDR); - writew(0xffff, host->regs + NFC_V21_UNLOCKEND_BLKADDR); - } else if (nfc_is_v1()) { - writew(0x0, host->regs + NFC_V1_UNLOCKSTART_BLKADDR); - writew(0x4000, host->regs + NFC_V1_UNLOCKEND_BLKADDR); - } else - BUG(); + writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0); + writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1); + writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2); + writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3); + writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0); + writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1); + writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2); + writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3); /* Unlock Block Command for given address range */ - writew(0x4, host->regs + NFC_WRPROT); + writew(0x4, NFC_V1_V2_WRPROT); +} + +static void preset_v3(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct mxc_nand_host *host = chip->priv; + uint32_t config2, config3; + int i, addr_phases; + + writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1); + writel(NFC_V3_IPC_CREQ, NFC_V3_IPC); + + /* Unlock the internal RAM Buffer */ + writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK, + NFC_V3_WRPROT); + + /* Blocks to be unlocked */ + for (i = 0; i < NAND_MAX_CHIPS; i++) + writel(0x0 | (0xffff << 16), + NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2)); + + writel(0, NFC_V3_IPC); + + config2 = NFC_V3_CONFIG2_ONE_CYCLE | + NFC_V3_CONFIG2_2CMD_PHASES | + NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) | + NFC_V3_CONFIG2_ST_CMD(0x70) | + NFC_V3_CONFIG2_INT_MSK | + NFC_V3_CONFIG2_NUM_ADDR_PHASE0; + + if (chip->ecc.mode == NAND_ECC_HW) + config2 |= NFC_V3_CONFIG2_ECC_EN; + + addr_phases = fls(chip->pagemask) >> 3; + + if (mtd->writesize == 2048) { + config2 |= NFC_V3_CONFIG2_PS_2048; + config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases); + } else if (mtd->writesize == 4096) { + config2 |= NFC_V3_CONFIG2_PS_4096; + config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases); + } else { + config2 |= NFC_V3_CONFIG2_PS_512; + config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1); + } + + if (mtd->writesize) { + config2 |= NFC_V3_CONFIG2_PPB( + ffs(mtd->erasesize / mtd->writesize) - 6, + host->devtype_data->ppb_shift); + host->eccsize = get_eccsize(mtd); + if (host->eccsize == 8) + config2 |= NFC_V3_CONFIG2_ECC_MODE_8; + } + + writel(config2, NFC_V3_CONFIG2); + + config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) | + NFC_V3_CONFIG3_NO_SDMA | + NFC_V3_CONFIG3_RBB_MODE | + NFC_V3_CONFIG3_SBB(6) | /* Reset default */ + NFC_V3_CONFIG3_ADD_OP(0); + + if (!(chip->options & NAND_BUSWIDTH_16)) + config3 |= NFC_V3_CONFIG3_FW8; + + writel(config3, NFC_V3_CONFIG3); + + writel(0, NFC_V3_DELAY_LINE); } /* Used by the upper layer to write command to NAND Flash for @@ -594,8 +1052,7 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command, struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; - DEBUG(MTD_DEBUG_LEVEL3, - "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", + pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", command, column, page_addr); /* Reset command state information */ @@ -604,15 +1061,15 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command, /* Command pre-processing step */ switch (command) { case NAND_CMD_RESET: - send_cmd(host, command, false); - preset(mtd); + host->devtype_data->preset(mtd); + host->devtype_data->send_cmd(host, command, false); break; case NAND_CMD_STATUS: host->buf_start = 0; host->status_request = true; - send_cmd(host, command, true); + host->devtype_data->send_cmd(host, command, true); mxc_do_addr_cycle(mtd, column, page_addr); break; @@ -623,70 +1080,51 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command, else host->buf_start = column + mtd->writesize; - if (mtd->writesize > 512) - command = NAND_CMD_READ0; /* only READ0 is valid */ + command = NAND_CMD_READ0; /* only READ0 is valid */ - send_cmd(host, command, false); + host->devtype_data->send_cmd(host, command, false); mxc_do_addr_cycle(mtd, column, page_addr); if (mtd->writesize > 512) - send_cmd(host, NAND_CMD_READSTART, true); + host->devtype_data->send_cmd(host, + NAND_CMD_READSTART, true); - send_page(mtd, NFC_OUTPUT); + host->devtype_data->send_page(mtd, NFC_OUTPUT); - memcpy(host->data_buf, host->main_area0, mtd->writesize); + memcpy32_fromio(host->data_buf, host->main_area0, + mtd->writesize); copy_spare(mtd, true); break; case NAND_CMD_SEQIN: - if (column >= mtd->writesize) { - /* - * FIXME: before send SEQIN command for write OOB, - * We must read one page out. - * For K9F1GXX has no READ1 command to set current HW - * pointer to spare area, we must write the whole page - * including OOB together. - */ - if (mtd->writesize > 512) - /* call ourself to read a page */ - mxc_nand_command(mtd, NAND_CMD_READ0, 0, - page_addr); - - host->buf_start = column; - - /* Set program pointer to spare region */ - if (mtd->writesize == 512) - send_cmd(host, NAND_CMD_READOOB, false); - } else { - host->buf_start = column; + if (column >= mtd->writesize) + /* call ourself to read a page */ + mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr); - /* Set program pointer to page start */ - if (mtd->writesize == 512) - send_cmd(host, NAND_CMD_READ0, false); - } + host->buf_start = column; - send_cmd(host, command, false); + host->devtype_data->send_cmd(host, command, false); mxc_do_addr_cycle(mtd, column, page_addr); break; case NAND_CMD_PAGEPROG: - memcpy(host->main_area0, host->data_buf, mtd->writesize); + memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize); copy_spare(mtd, false); - send_page(mtd, NFC_INPUT); - send_cmd(host, command, true); + host->devtype_data->send_page(mtd, NFC_INPUT); + host->devtype_data->send_cmd(host, command, true); mxc_do_addr_cycle(mtd, column, page_addr); break; case NAND_CMD_READID: - send_cmd(host, command, true); + host->devtype_data->send_cmd(host, command, true); mxc_do_addr_cycle(mtd, column, page_addr); - send_read_id(host); + host->devtype_data->send_read_id(host); host->buf_start = column; break; case NAND_CMD_ERASE1: case NAND_CMD_ERASE2: - send_cmd(host, command, false); + host->devtype_data->send_cmd(host, command, false); mxc_do_addr_cycle(mtd, column, page_addr); break; @@ -720,23 +1158,256 @@ static struct nand_bbt_descr bbt_mirror_descr = { .pattern = mirror_pattern, }; -static int __init mxcnd_probe(struct platform_device *pdev) +/* v1 + irqpending_quirk: i.MX21 */ +static const struct mxc_nand_devtype_data imx21_nand_devtype_data = { + .preset = preset_v1, + .send_cmd = send_cmd_v1_v2, + .send_addr = send_addr_v1_v2, + .send_page = send_page_v1, + .send_read_id = send_read_id_v1_v2, + .get_dev_status = get_dev_status_v1_v2, + .check_int = check_int_v1_v2, + .irq_control = irq_control_v1_v2, + .get_ecc_status = get_ecc_status_v1, + .ecclayout_512 = &nandv1_hw_eccoob_smallpage, + .ecclayout_2k = &nandv1_hw_eccoob_largepage, + .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */ + .select_chip = mxc_nand_select_chip_v1_v3, + .correct_data = mxc_nand_correct_data_v1, + .irqpending_quirk = 1, + .needs_ip = 0, + .regs_offset = 0xe00, + .spare0_offset = 0x800, + .spare_len = 16, + .eccbytes = 3, + .eccsize = 1, +}; + +/* v1 + !irqpending_quirk: i.MX27, i.MX31 */ +static const struct mxc_nand_devtype_data imx27_nand_devtype_data = { + .preset = preset_v1, + .send_cmd = send_cmd_v1_v2, + .send_addr = send_addr_v1_v2, + .send_page = send_page_v1, + .send_read_id = send_read_id_v1_v2, + .get_dev_status = get_dev_status_v1_v2, + .check_int = check_int_v1_v2, + .irq_control = irq_control_v1_v2, + .get_ecc_status = get_ecc_status_v1, + .ecclayout_512 = &nandv1_hw_eccoob_smallpage, + .ecclayout_2k = &nandv1_hw_eccoob_largepage, + .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */ + .select_chip = mxc_nand_select_chip_v1_v3, + .correct_data = mxc_nand_correct_data_v1, + .irqpending_quirk = 0, + .needs_ip = 0, + .regs_offset = 0xe00, + .spare0_offset = 0x800, + .axi_offset = 0, + .spare_len = 16, + .eccbytes = 3, + .eccsize = 1, +}; + +/* v21: i.MX25, i.MX35 */ +static const struct mxc_nand_devtype_data imx25_nand_devtype_data = { + .preset = preset_v2, + .send_cmd = send_cmd_v1_v2, + .send_addr = send_addr_v1_v2, + .send_page = send_page_v2, + .send_read_id = send_read_id_v1_v2, + .get_dev_status = get_dev_status_v1_v2, + .check_int = check_int_v1_v2, + .irq_control = irq_control_v1_v2, + .get_ecc_status = get_ecc_status_v2, + .ecclayout_512 = &nandv2_hw_eccoob_smallpage, + .ecclayout_2k = &nandv2_hw_eccoob_largepage, + .ecclayout_4k = &nandv2_hw_eccoob_4k, + .select_chip = mxc_nand_select_chip_v2, + .correct_data = mxc_nand_correct_data_v2_v3, + .irqpending_quirk = 0, + .needs_ip = 0, + .regs_offset = 0x1e00, + .spare0_offset = 0x1000, + .axi_offset = 0, + .spare_len = 64, + .eccbytes = 9, + .eccsize = 0, +}; + +/* v3.2a: i.MX51 */ +static const struct mxc_nand_devtype_data imx51_nand_devtype_data = { + .preset = preset_v3, + .send_cmd = send_cmd_v3, + .send_addr = send_addr_v3, + .send_page = send_page_v3, + .send_read_id = send_read_id_v3, + .get_dev_status = get_dev_status_v3, + .check_int = check_int_v3, + .irq_control = irq_control_v3, + .get_ecc_status = get_ecc_status_v3, + .ecclayout_512 = &nandv2_hw_eccoob_smallpage, + .ecclayout_2k = &nandv2_hw_eccoob_largepage, + .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */ + .select_chip = mxc_nand_select_chip_v1_v3, + .correct_data = mxc_nand_correct_data_v2_v3, + .irqpending_quirk = 0, + .needs_ip = 1, + .regs_offset = 0, + .spare0_offset = 0x1000, + .axi_offset = 0x1e00, + .spare_len = 64, + .eccbytes = 0, + .eccsize = 0, + .ppb_shift = 7, +}; + +/* v3.2b: i.MX53 */ +static const struct mxc_nand_devtype_data imx53_nand_devtype_data = { + .preset = preset_v3, + .send_cmd = send_cmd_v3, + .send_addr = send_addr_v3, + .send_page = send_page_v3, + .send_read_id = send_read_id_v3, + .get_dev_status = get_dev_status_v3, + .check_int = check_int_v3, + .irq_control = irq_control_v3, + .get_ecc_status = get_ecc_status_v3, + .ecclayout_512 = &nandv2_hw_eccoob_smallpage, + .ecclayout_2k = &nandv2_hw_eccoob_largepage, + .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */ + .select_chip = mxc_nand_select_chip_v1_v3, + .correct_data = mxc_nand_correct_data_v2_v3, + .irqpending_quirk = 0, + .needs_ip = 1, + .regs_offset = 0, + .spare0_offset = 0x1000, + .axi_offset = 0x1e00, + .spare_len = 64, + .eccbytes = 0, + .eccsize = 0, + .ppb_shift = 8, +}; + +static inline int is_imx21_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx21_nand_devtype_data; +} + +static inline int is_imx27_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx27_nand_devtype_data; +} + +static inline int is_imx25_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx25_nand_devtype_data; +} + +static inline int is_imx51_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx51_nand_devtype_data; +} + +static inline int is_imx53_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx53_nand_devtype_data; +} + +static struct platform_device_id mxcnd_devtype[] = { + { + .name = "imx21-nand", + .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data, + }, { + .name = "imx27-nand", + .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data, + }, { + .name = "imx25-nand", + .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data, + }, { + .name = "imx51-nand", + .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data, + }, { + .name = "imx53-nand", + .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data, + }, { + /* sentinel */ + } +}; +MODULE_DEVICE_TABLE(platform, mxcnd_devtype); + +#ifdef CONFIG_OF_MTD +static const struct of_device_id mxcnd_dt_ids[] = { + { + .compatible = "fsl,imx21-nand", + .data = &imx21_nand_devtype_data, + }, { + .compatible = "fsl,imx27-nand", + .data = &imx27_nand_devtype_data, + }, { + .compatible = "fsl,imx25-nand", + .data = &imx25_nand_devtype_data, + }, { + .compatible = "fsl,imx51-nand", + .data = &imx51_nand_devtype_data, + }, { + .compatible = "fsl,imx53-nand", + .data = &imx53_nand_devtype_data, + }, + { /* sentinel */ } +}; + +static int __init mxcnd_probe_dt(struct mxc_nand_host *host) +{ + struct device_node *np = host->dev->of_node; + struct mxc_nand_platform_data *pdata = &host->pdata; + const struct of_device_id *of_id = + of_match_device(mxcnd_dt_ids, host->dev); + int buswidth; + + if (!np) + return 1; + + if (of_get_nand_ecc_mode(np) >= 0) + pdata->hw_ecc = 1; + + pdata->flash_bbt = of_get_nand_on_flash_bbt(np); + + buswidth = of_get_nand_bus_width(np); + if (buswidth < 0) + return buswidth; + + pdata->width = buswidth / 8; + + host->devtype_data = of_id->data; + + return 0; +} +#else +static int __init mxcnd_probe_dt(struct mxc_nand_host *host) +{ + return 1; +} +#endif + +static int mxcnd_probe(struct platform_device *pdev) { struct nand_chip *this; struct mtd_info *mtd; - struct mxc_nand_platform_data *pdata = pdev->dev.platform_data; struct mxc_nand_host *host; struct resource *res; - int err = 0, nr_parts = 0; - struct nand_ecclayout *oob_smallpage, *oob_largepage; + int err = 0; /* Allocate memory for MTD device structure and private data */ - host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE + - NAND_MAX_OOBSIZE, GFP_KERNEL); + host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host), + GFP_KERNEL); if (!host) return -ENOMEM; - host->data_buf = (uint8_t *)(host + 1); + /* allocate a temporary buffer for the nand_scan_ident() */ + host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL); + if (!host->data_buf) + return -ENOMEM; host->dev = &pdev->dev; /* structures must be linked */ @@ -753,93 +1424,142 @@ static int __init mxcnd_probe(struct platform_device *pdev) this->priv = host; this->dev_ready = mxc_nand_dev_ready; this->cmdfunc = mxc_nand_command; - this->select_chip = mxc_nand_select_chip; this->read_byte = mxc_nand_read_byte; this->read_word = mxc_nand_read_word; this->write_buf = mxc_nand_write_buf; this->read_buf = mxc_nand_read_buf; - this->verify_buf = mxc_nand_verify_buf; - host->clk = clk_get(&pdev->dev, "nfc"); - if (IS_ERR(host->clk)) { - err = PTR_ERR(host->clk); - goto eclk; + host->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(host->clk)) + return PTR_ERR(host->clk); + + err = mxcnd_probe_dt(host); + if (err > 0) { + struct mxc_nand_platform_data *pdata = + dev_get_platdata(&pdev->dev); + if (pdata) { + host->pdata = *pdata; + host->devtype_data = (struct mxc_nand_devtype_data *) + pdev->id_entry->driver_data; + } else { + err = -ENODEV; + } } + if (err < 0) + return err; - clk_enable(host->clk); - host->clk_act = 1; + if (host->devtype_data->needs_ip) { + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + host->regs_ip = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->regs_ip)) + return PTR_ERR(host->regs_ip); - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - if (!res) { - err = -ENODEV; - goto eres; + res = platform_get_resource(pdev, IORESOURCE_MEM, 1); + } else { + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); } - host->base = ioremap(res->start, resource_size(res)); - if (!host->base) { - err = -ENOMEM; - goto eres; - } + host->base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->base)) + return PTR_ERR(host->base); host->main_area0 = host->base; - host->main_area1 = host->base + 0x200; - - if (nfc_is_v21()) { - host->regs = host->base + 0x1000; - host->spare0 = host->base + 0x1000; - host->spare_len = 64; - oob_smallpage = &nandv2_hw_eccoob_smallpage; - oob_largepage = &nandv2_hw_eccoob_largepage; - this->ecc.bytes = 9; - } else if (nfc_is_v1()) { - host->regs = host->base; - host->spare0 = host->base + 0x800; - host->spare_len = 16; - oob_smallpage = &nandv1_hw_eccoob_smallpage; - oob_largepage = &nandv1_hw_eccoob_largepage; - this->ecc.bytes = 3; - } else - BUG(); + if (host->devtype_data->regs_offset) + host->regs = host->base + host->devtype_data->regs_offset; + host->spare0 = host->base + host->devtype_data->spare0_offset; + if (host->devtype_data->axi_offset) + host->regs_axi = host->base + host->devtype_data->axi_offset; + + this->ecc.bytes = host->devtype_data->eccbytes; + host->eccsize = host->devtype_data->eccsize; + + this->select_chip = host->devtype_data->select_chip; this->ecc.size = 512; - this->ecc.layout = oob_smallpage; + this->ecc.layout = host->devtype_data->ecclayout_512; - if (pdata->hw_ecc) { + if (host->pdata.hw_ecc) { this->ecc.calculate = mxc_nand_calculate_ecc; this->ecc.hwctl = mxc_nand_enable_hwecc; - this->ecc.correct = mxc_nand_correct_data; + this->ecc.correct = host->devtype_data->correct_data; this->ecc.mode = NAND_ECC_HW; } else { this->ecc.mode = NAND_ECC_SOFT; } - /* NAND bus width determines access funtions used by upper layer */ - if (pdata->width == 2) + /* NAND bus width determines access functions used by upper layer */ + if (host->pdata.width == 2) this->options |= NAND_BUSWIDTH_16; - if (pdata->flash_bbt) { + if (host->pdata.flash_bbt) { this->bbt_td = &bbt_main_descr; this->bbt_md = &bbt_mirror_descr; /* update flash based bbt */ - this->options |= NAND_USE_FLASH_BBT; + this->bbt_options |= NAND_BBT_USE_FLASH; } - init_waitqueue_head(&host->irq_waitq); + init_completion(&host->op_completion); host->irq = platform_get_irq(pdev, 0); + if (host->irq < 0) + return host->irq; - err = request_irq(host->irq, mxc_nfc_irq, IRQF_DISABLED, DRIVER_NAME, host); + /* + * Use host->devtype_data->irq_control() here instead of irq_control() + * because we must not disable_irq_nosync without having requested the + * irq. + */ + host->devtype_data->irq_control(host, 0); + + err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq, + 0, DRIVER_NAME, host); if (err) - goto eirq; + return err; + + err = clk_prepare_enable(host->clk); + if (err) + return err; + host->clk_act = 1; + + /* + * Now that we "own" the interrupt make sure the interrupt mask bit is + * cleared on i.MX21. Otherwise we can't read the interrupt status bit + * on this machine. + */ + if (host->devtype_data->irqpending_quirk) { + disable_irq_nosync(host->irq); + host->devtype_data->irq_control(host, 1); + } /* first scan to find the device and get the page size */ - if (nand_scan_ident(mtd, 1, NULL)) { + if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) { err = -ENXIO; goto escan; } + /* allocate the right size buffer now */ + devm_kfree(&pdev->dev, (void *)host->data_buf); + host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize, + GFP_KERNEL); + if (!host->data_buf) { + err = -ENOMEM; + goto escan; + } + + /* Call preset again, with correct writesize this time */ + host->devtype_data->preset(mtd); + if (mtd->writesize == 2048) - this->ecc.layout = oob_largepage; + this->ecc.layout = host->devtype_data->ecclayout_2k; + else if (mtd->writesize == 4096) + this->ecc.layout = host->devtype_data->ecclayout_4k; + + if (this->ecc.mode == NAND_ECC_HW) { + if (is_imx21_nfc(host) || is_imx27_nfc(host)) + this->ecc.strength = 1; + else + this->ecc.strength = (host->eccsize == 4) ? 4 : 8; + } /* second phase scan */ if (nand_scan_tail(mtd)) { @@ -848,112 +1568,46 @@ static int __init mxcnd_probe(struct platform_device *pdev) } /* Register the partitions */ -#ifdef CONFIG_MTD_PARTITIONS - nr_parts = - parse_mtd_partitions(mtd, part_probes, &host->parts, 0); - if (nr_parts > 0) - add_mtd_partitions(mtd, host->parts, nr_parts); - else -#endif - { - pr_info("Registering %s as whole device\n", mtd->name); - add_mtd_device(mtd); - } + mtd_device_parse_register(mtd, part_probes, + &(struct mtd_part_parser_data){ + .of_node = pdev->dev.of_node, + }, + host->pdata.parts, + host->pdata.nr_parts); platform_set_drvdata(pdev, host); return 0; escan: - free_irq(host->irq, host); -eirq: - iounmap(host->base); -eres: - clk_put(host->clk); -eclk: - kfree(host); + if (host->clk_act) + clk_disable_unprepare(host->clk); return err; } -static int __devexit mxcnd_remove(struct platform_device *pdev) +static int mxcnd_remove(struct platform_device *pdev) { struct mxc_nand_host *host = platform_get_drvdata(pdev); - clk_put(host->clk); - - platform_set_drvdata(pdev, NULL); - nand_release(&host->mtd); - free_irq(host->irq, host); - iounmap(host->base); - kfree(host); + if (host->clk_act) + clk_disable_unprepare(host->clk); return 0; } -#ifdef CONFIG_PM -static int mxcnd_suspend(struct platform_device *pdev, pm_message_t state) -{ - struct mtd_info *mtd = platform_get_drvdata(pdev); - struct nand_chip *nand_chip = mtd->priv; - struct mxc_nand_host *host = nand_chip->priv; - int ret = 0; - - DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND suspend\n"); - - ret = mtd->suspend(mtd); - - /* - * nand_suspend locks the device for exclusive access, so - * the clock must already be off. - */ - BUG_ON(!ret && host->clk_act); - - return ret; -} - -static int mxcnd_resume(struct platform_device *pdev) -{ - struct mtd_info *mtd = platform_get_drvdata(pdev); - struct nand_chip *nand_chip = mtd->priv; - struct mxc_nand_host *host = nand_chip->priv; - int ret = 0; - - DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND resume\n"); - - mtd->resume(mtd); - - return ret; -} - -#else -# define mxcnd_suspend NULL -# define mxcnd_resume NULL -#endif /* CONFIG_PM */ - static struct platform_driver mxcnd_driver = { .driver = { .name = DRIVER_NAME, - }, - .remove = __devexit_p(mxcnd_remove), - .suspend = mxcnd_suspend, - .resume = mxcnd_resume, + .owner = THIS_MODULE, + .of_match_table = of_match_ptr(mxcnd_dt_ids), + }, + .id_table = mxcnd_devtype, + .probe = mxcnd_probe, + .remove = mxcnd_remove, }; - -static int __init mxc_nd_init(void) -{ - return platform_driver_probe(&mxcnd_driver, mxcnd_probe); -} - -static void __exit mxc_nd_cleanup(void) -{ - /* Unregister the device structure */ - platform_driver_unregister(&mxcnd_driver); -} - -module_init(mxc_nd_init); -module_exit(mxc_nd_cleanup); +module_platform_driver(mxcnd_driver); MODULE_AUTHOR("Freescale Semiconductor, Inc."); MODULE_DESCRIPTION("MXC NAND MTD driver"); diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c index 4a7b86423ee..4f3e80c68a2 100644 --- a/drivers/mtd/nand/nand_base.c +++ b/drivers/mtd/nand/nand_base.c @@ -4,7 +4,6 @@ * Overview: * This is the generic MTD driver for NAND flash devices. It should be * capable of working with almost all NAND chips currently available. - * Basic support for AG-AND chips is provided. * * Additional technical information is available on * http://www.linux-mtd.infradead.org/doc/nand.html @@ -21,9 +20,7 @@ * TODO: * Enable cached programming for 2k page size chips * Check, if mtd->ecctype should be set to MTD_ECC_HW - * if we have HW ecc support. - * The AG-AND chips have nice features for speed improvement, - * which are not supported yet. Read / program 4 pages in one go. + * if we have HW ECC support. * BBT table is not serialized, has to be fixed * * This program is free software; you can redistribute it and/or modify @@ -32,25 +29,25 @@ * */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + #include <linux/module.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/sched.h> #include <linux/slab.h> +#include <linux/mm.h> #include <linux/types.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/nand_ecc.h> -#include <linux/mtd/compatmac.h> +#include <linux/mtd/nand_bch.h> #include <linux/interrupt.h> #include <linux/bitops.h> #include <linux/leds.h> -#include <asm/io.h> - -#ifdef CONFIG_MTD_PARTITIONS +#include <linux/io.h> #include <linux/mtd/partitions.h> -#endif /* Define default oob placement schemes for large and small page devices */ static struct nand_ecclayout nand_oob_8 = { @@ -60,7 +57,7 @@ static struct nand_ecclayout nand_oob_8 = { {.offset = 3, .length = 2}, {.offset = 6, - .length = 2}} + .length = 2} } }; static struct nand_ecclayout nand_oob_16 = { @@ -68,7 +65,7 @@ static struct nand_ecclayout nand_oob_16 = { .eccpos = {0, 1, 2, 3, 6, 7}, .oobfree = { {.offset = 8, - . length = 8}} + . length = 8} } }; static struct nand_ecclayout nand_oob_64 = { @@ -79,7 +76,7 @@ static struct nand_ecclayout nand_oob_64 = { 56, 57, 58, 59, 60, 61, 62, 63}, .oobfree = { {.offset = 2, - .length = 38}} + .length = 38} } }; static struct nand_ecclayout nand_oob_128 = { @@ -93,11 +90,10 @@ static struct nand_ecclayout nand_oob_128 = { 120, 121, 122, 123, 124, 125, 126, 127}, .oobfree = { {.offset = 2, - .length = 78}} + .length = 78} } }; -static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, - int new_state); +static int nand_get_device(struct mtd_info *mtd, int new_state); static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops); @@ -115,22 +111,14 @@ static int check_offs_len(struct mtd_info *mtd, int ret = 0; /* Start address must align on block boundary */ - if (ofs & ((1 << chip->phys_erase_shift) - 1)) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__); + if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { + pr_debug("%s: unaligned address\n", __func__); ret = -EINVAL; } /* Length must align on block boundary */ - if (len & ((1 << chip->phys_erase_shift) - 1)) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n", - __func__); - ret = -EINVAL; - } - - /* Do not allow past end of device */ - if (ofs + len > mtd->size) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Past end of device\n", - __func__); + if (len & ((1ULL << chip->phys_erase_shift) - 1)) { + pr_debug("%s: length not block aligned\n", __func__); ret = -EINVAL; } @@ -139,17 +127,14 @@ static int check_offs_len(struct mtd_info *mtd, /** * nand_release_device - [GENERIC] release chip - * @mtd: MTD device structure + * @mtd: MTD device structure * - * Deselect, release chip lock and wake up anyone waiting on the device + * Release chip lock and wake up anyone waiting on the device. */ static void nand_release_device(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; - /* De-select the NAND device */ - chip->select_chip(mtd, -1); - /* Release the controller and the chip */ spin_lock(&chip->controller->lock); chip->controller->active = NULL; @@ -160,9 +145,9 @@ static void nand_release_device(struct mtd_info *mtd) /** * nand_read_byte - [DEFAULT] read one byte from the chip - * @mtd: MTD device structure + * @mtd: MTD device structure * - * Default read function for 8bit buswith + * Default read function for 8bit buswidth */ static uint8_t nand_read_byte(struct mtd_info *mtd) { @@ -171,11 +156,12 @@ static uint8_t nand_read_byte(struct mtd_info *mtd) } /** - * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip - * @mtd: MTD device structure + * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip + * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip + * @mtd: MTD device structure + * + * Default read function for 16bit buswidth with endianness conversion. * - * Default read function for 16bit buswith with - * endianess conversion */ static uint8_t nand_read_byte16(struct mtd_info *mtd) { @@ -185,10 +171,9 @@ static uint8_t nand_read_byte16(struct mtd_info *mtd) /** * nand_read_word - [DEFAULT] read one word from the chip - * @mtd: MTD device structure + * @mtd: MTD device structure * - * Default read function for 16bit buswith without - * endianess conversion + * Default read function for 16bit buswidth without endianness conversion. */ static u16 nand_read_word(struct mtd_info *mtd) { @@ -198,8 +183,8 @@ static u16 nand_read_word(struct mtd_info *mtd) /** * nand_select_chip - [DEFAULT] control CE line - * @mtd: MTD device structure - * @chipnr: chipnumber to select, -1 for deselect + * @mtd: MTD device structure + * @chipnr: chipnumber to select, -1 for deselect * * Default select function for 1 chip devices. */ @@ -220,134 +205,127 @@ static void nand_select_chip(struct mtd_info *mtd, int chipnr) } /** - * nand_write_buf - [DEFAULT] write buffer to chip - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write + * nand_write_byte - [DEFAULT] write single byte to chip + * @mtd: MTD device structure + * @byte: value to write * - * Default write function for 8bit buswith + * Default function to write a byte to I/O[7:0] */ -static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +static void nand_write_byte(struct mtd_info *mtd, uint8_t byte) { - int i; struct nand_chip *chip = mtd->priv; - for (i = 0; i < len; i++) - writeb(buf[i], chip->IO_ADDR_W); + chip->write_buf(mtd, &byte, 1); } /** - * nand_read_buf - [DEFAULT] read chip data into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read + * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16 + * @mtd: MTD device structure + * @byte: value to write * - * Default read function for 8bit buswith + * Default function to write a byte to I/O[7:0] on a 16-bit wide chip. */ -static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte) { - int i; struct nand_chip *chip = mtd->priv; + uint16_t word = byte; - for (i = 0; i < len; i++) - buf[i] = readb(chip->IO_ADDR_R); + /* + * It's not entirely clear what should happen to I/O[15:8] when writing + * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads: + * + * When the host supports a 16-bit bus width, only data is + * transferred at the 16-bit width. All address and command line + * transfers shall use only the lower 8-bits of the data bus. During + * command transfers, the host may place any value on the upper + * 8-bits of the data bus. During address transfers, the host shall + * set the upper 8-bits of the data bus to 00h. + * + * One user of the write_byte callback is nand_onfi_set_features. The + * four parameters are specified to be written to I/O[7:0], but this is + * neither an address nor a command transfer. Let's assume a 0 on the + * upper I/O lines is OK. + */ + chip->write_buf(mtd, (uint8_t *)&word, 2); } /** - * nand_verify_buf - [DEFAULT] Verify chip data against buffer - * @mtd: MTD device structure - * @buf: buffer containing the data to compare - * @len: number of bytes to compare + * nand_write_buf - [DEFAULT] write buffer to chip + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write * - * Default verify function for 8bit buswith + * Default write function for 8bit buswidth. */ -static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { - int i; struct nand_chip *chip = mtd->priv; - for (i = 0; i < len; i++) - if (buf[i] != readb(chip->IO_ADDR_R)) - return -EFAULT; - return 0; + iowrite8_rep(chip->IO_ADDR_W, buf, len); } /** - * nand_write_buf16 - [DEFAULT] write buffer to chip - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write + * nand_read_buf - [DEFAULT] read chip data into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read * - * Default write function for 16bit buswith + * Default read function for 8bit buswidth. */ -static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) +static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { - int i; struct nand_chip *chip = mtd->priv; - u16 *p = (u16 *) buf; - len >>= 1; - - for (i = 0; i < len; i++) - writew(p[i], chip->IO_ADDR_W); + ioread8_rep(chip->IO_ADDR_R, buf, len); } /** - * nand_read_buf16 - [DEFAULT] read chip data into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read + * nand_write_buf16 - [DEFAULT] write buffer to chip + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write * - * Default read function for 16bit buswith + * Default write function for 16bit buswidth. */ -static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) +static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) { - int i; struct nand_chip *chip = mtd->priv; u16 *p = (u16 *) buf; - len >>= 1; - for (i = 0; i < len; i++) - p[i] = readw(chip->IO_ADDR_R); + iowrite16_rep(chip->IO_ADDR_W, p, len >> 1); } /** - * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer - * @mtd: MTD device structure - * @buf: buffer containing the data to compare - * @len: number of bytes to compare + * nand_read_buf16 - [DEFAULT] read chip data into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read * - * Default verify function for 16bit buswith + * Default read function for 16bit buswidth. */ -static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) +static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) { - int i; struct nand_chip *chip = mtd->priv; u16 *p = (u16 *) buf; - len >>= 1; - - for (i = 0; i < len; i++) - if (p[i] != readw(chip->IO_ADDR_R)) - return -EFAULT; - return 0; + ioread16_rep(chip->IO_ADDR_R, p, len >> 1); } /** * nand_block_bad - [DEFAULT] Read bad block marker from the chip - * @mtd: MTD device structure - * @ofs: offset from device start - * @getchip: 0, if the chip is already selected + * @mtd: MTD device structure + * @ofs: offset from device start + * @getchip: 0, if the chip is already selected * * Check, if the block is bad. */ static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) { - int page, chipnr, res = 0; + int page, chipnr, res = 0, i = 0; struct nand_chip *chip = mtd->priv; u16 bad; - if (chip->options & NAND_BB_LAST_PAGE) + if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) ofs += mtd->erasesize - mtd->writesize; page = (int)(ofs >> chip->page_shift) & chip->pagemask; @@ -355,75 +333,131 @@ static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) if (getchip) { chipnr = (int)(ofs >> chip->chip_shift); - nand_get_device(chip, mtd, FL_READING); + nand_get_device(mtd, FL_READING); /* Select the NAND device */ chip->select_chip(mtd, chipnr); } - if (chip->options & NAND_BUSWIDTH_16) { - chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE, - page); - bad = cpu_to_le16(chip->read_word(mtd)); - if (chip->badblockpos & 0x1) - bad >>= 8; - else - bad &= 0xFF; - } else { - chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page); - bad = chip->read_byte(mtd); - } + do { + if (chip->options & NAND_BUSWIDTH_16) { + chip->cmdfunc(mtd, NAND_CMD_READOOB, + chip->badblockpos & 0xFE, page); + bad = cpu_to_le16(chip->read_word(mtd)); + if (chip->badblockpos & 0x1) + bad >>= 8; + else + bad &= 0xFF; + } else { + chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, + page); + bad = chip->read_byte(mtd); + } - if (likely(chip->badblockbits == 8)) - res = bad != 0xFF; - else - res = hweight8(bad) < chip->badblockbits; + if (likely(chip->badblockbits == 8)) + res = bad != 0xFF; + else + res = hweight8(bad) < chip->badblockbits; + ofs += mtd->writesize; + page = (int)(ofs >> chip->page_shift) & chip->pagemask; + i++; + } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE)); - if (getchip) + if (getchip) { + chip->select_chip(mtd, -1); nand_release_device(mtd); + } return res; } /** - * nand_default_block_markbad - [DEFAULT] mark a block bad - * @mtd: MTD device structure - * @ofs: offset from device start + * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker + * @mtd: MTD device structure + * @ofs: offset from device start * - * This is the default implementation, which can be overridden by - * a hardware specific driver. -*/ + * This is the default implementation, which can be overridden by a hardware + * specific driver. It provides the details for writing a bad block marker to a + * block. + */ static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct nand_chip *chip = mtd->priv; + struct mtd_oob_ops ops; uint8_t buf[2] = { 0, 0 }; - int block, ret; + int ret = 0, res, i = 0; - if (chip->options & NAND_BB_LAST_PAGE) + ops.datbuf = NULL; + ops.oobbuf = buf; + ops.ooboffs = chip->badblockpos; + if (chip->options & NAND_BUSWIDTH_16) { + ops.ooboffs &= ~0x01; + ops.len = ops.ooblen = 2; + } else { + ops.len = ops.ooblen = 1; + } + ops.mode = MTD_OPS_PLACE_OOB; + + /* Write to first/last page(s) if necessary */ + if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) ofs += mtd->erasesize - mtd->writesize; + do { + res = nand_do_write_oob(mtd, ofs, &ops); + if (!ret) + ret = res; - /* Get block number */ - block = (int)(ofs >> chip->bbt_erase_shift); - if (chip->bbt) - chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); + i++; + ofs += mtd->writesize; + } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2); - /* Do we have a flash based bad block table ? */ - if (chip->options & NAND_USE_FLASH_BBT) - ret = nand_update_bbt(mtd, ofs); - else { - /* We write two bytes, so we dont have to mess with 16 bit - * access - */ - nand_get_device(chip, mtd, FL_WRITING); - ofs += mtd->oobsize; - chip->ops.len = chip->ops.ooblen = 2; - chip->ops.datbuf = NULL; - chip->ops.oobbuf = buf; - chip->ops.ooboffs = chip->badblockpos & ~0x01; - - ret = nand_do_write_oob(mtd, ofs, &chip->ops); + return ret; +} + +/** + * nand_block_markbad_lowlevel - mark a block bad + * @mtd: MTD device structure + * @ofs: offset from device start + * + * This function performs the generic NAND bad block marking steps (i.e., bad + * block table(s) and/or marker(s)). We only allow the hardware driver to + * specify how to write bad block markers to OOB (chip->block_markbad). + * + * We try operations in the following order: + * (1) erase the affected block, to allow OOB marker to be written cleanly + * (2) write bad block marker to OOB area of affected block (unless flag + * NAND_BBT_NO_OOB_BBM is present) + * (3) update the BBT + * Note that we retain the first error encountered in (2) or (3), finish the + * procedures, and dump the error in the end. +*/ +static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs) +{ + struct nand_chip *chip = mtd->priv; + int res, ret = 0; + + if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { + struct erase_info einfo; + + /* Attempt erase before marking OOB */ + memset(&einfo, 0, sizeof(einfo)); + einfo.mtd = mtd; + einfo.addr = ofs; + einfo.len = 1ULL << chip->phys_erase_shift; + nand_erase_nand(mtd, &einfo, 0); + + /* Write bad block marker to OOB */ + nand_get_device(mtd, FL_WRITING); + ret = chip->block_markbad(mtd, ofs); nand_release_device(mtd); } + + /* Mark block bad in BBT */ + if (chip->bbt) { + res = nand_markbad_bbt(mtd, ofs); + if (!ret) + ret = res; + } + if (!ret) mtd->ecc_stats.badblocks++; @@ -432,16 +466,16 @@ static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) /** * nand_check_wp - [GENERIC] check if the chip is write protected - * @mtd: MTD device structure - * Check, if the device is write protected + * @mtd: MTD device structure * - * The function expects, that the device is already selected + * Check, if the device is write protected. The function expects, that the + * device is already selected. */ static int nand_check_wp(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; - /* broken xD cards report WP despite being writable */ + /* Broken xD cards report WP despite being writable */ if (chip->options & NAND_BROKEN_XD) return 0; @@ -452,10 +486,10 @@ static int nand_check_wp(struct mtd_info *mtd) /** * nand_block_checkbad - [GENERIC] Check if a block is marked bad - * @mtd: MTD device structure - * @ofs: offset from device start - * @getchip: 0, if the chip is already selected - * @allowbbt: 1, if its allowed to access the bbt area + * @mtd: MTD device structure + * @ofs: offset from device start + * @getchip: 0, if the chip is already selected + * @allowbbt: 1, if its allowed to access the bbt area * * Check, if the block is bad. Either by reading the bad block table or * calling of the scan function. @@ -474,8 +508,8 @@ static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, /** * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands. - * @mtd: MTD device structure - * @timeo: Timeout + * @mtd: MTD device structure + * @timeo: Timeout * * Helper function for nand_wait_ready used when needing to wait in interrupt * context. @@ -494,21 +528,18 @@ static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo) } } -/* - * Wait for the ready pin, after a command - * The timeout is catched later. - */ +/* Wait for the ready pin, after a command. The timeout is caught later. */ void nand_wait_ready(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; - unsigned long timeo = jiffies + 2; + unsigned long timeo = jiffies + msecs_to_jiffies(20); /* 400ms timeout */ if (in_interrupt() || oops_in_progress) return panic_nand_wait_ready(mtd, 400); led_trigger_event(nand_led_trigger, LED_FULL); - /* wait until command is processed or timeout occures */ + /* Wait until command is processed or timeout occurs */ do { if (chip->dev_ready(mtd)) break; @@ -520,13 +551,13 @@ EXPORT_SYMBOL_GPL(nand_wait_ready); /** * nand_command - [DEFAULT] Send command to NAND device - * @mtd: MTD device structure - * @command: the command to be sent - * @column: the column address for this command, -1 if none - * @page_addr: the page address for this command, -1 if none + * @mtd: MTD device structure + * @command: the command to be sent + * @column: the column address for this command, -1 if none + * @page_addr: the page address for this command, -1 if none * - * Send command to NAND device. This function is used for small page - * devices (256/512 Bytes per page) + * Send command to NAND device. This function is used for small page devices + * (512 Bytes per page). */ static void nand_command(struct mtd_info *mtd, unsigned int command, int column, int page_addr) @@ -534,9 +565,7 @@ static void nand_command(struct mtd_info *mtd, unsigned int command, register struct nand_chip *chip = mtd->priv; int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE; - /* - * Write out the command to the device. - */ + /* Write out the command to the device */ if (command == NAND_CMD_SEQIN) { int readcmd; @@ -556,14 +585,13 @@ static void nand_command(struct mtd_info *mtd, unsigned int command, } chip->cmd_ctrl(mtd, command, ctrl); - /* - * Address cycle, when necessary - */ + /* Address cycle, when necessary */ ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE; /* Serially input address */ if (column != -1) { /* Adjust columns for 16 bit buswidth */ - if (chip->options & NAND_BUSWIDTH_16) + if (chip->options & NAND_BUSWIDTH_16 && + !nand_opcode_8bits(command)) column >>= 1; chip->cmd_ctrl(mtd, column, ctrl); ctrl &= ~NAND_CTRL_CHANGE; @@ -579,8 +607,8 @@ static void nand_command(struct mtd_info *mtd, unsigned int command, chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); /* - * program and erase have their own busy handlers - * status and sequential in needs no delay + * Program and erase have their own busy handlers status and sequential + * in needs no delay */ switch (command) { @@ -599,7 +627,8 @@ static void nand_command(struct mtd_info *mtd, unsigned int command, NAND_CTRL_CLE | NAND_CTRL_CHANGE); chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); - while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ; + while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) + ; return; /* This applies to read commands */ @@ -613,8 +642,10 @@ static void nand_command(struct mtd_info *mtd, unsigned int command, return; } } - /* Apply this short delay always to ensure that we do wait tWB in - * any case on any machine. */ + /* + * Apply this short delay always to ensure that we do wait tWB in + * any case on any machine. + */ ndelay(100); nand_wait_ready(mtd); @@ -622,14 +653,14 @@ static void nand_command(struct mtd_info *mtd, unsigned int command, /** * nand_command_lp - [DEFAULT] Send command to NAND large page device - * @mtd: MTD device structure - * @command: the command to be sent - * @column: the column address for this command, -1 if none - * @page_addr: the page address for this command, -1 if none + * @mtd: MTD device structure + * @command: the command to be sent + * @column: the column address for this command, -1 if none + * @page_addr: the page address for this command, -1 if none * * Send command to NAND device. This is the version for the new large page - * devices We dont have the separate regions as we have in the small page - * devices. We must emulate NAND_CMD_READOOB to keep the code compatible. + * devices. We don't have the separate regions as we have in the small page + * devices. We must emulate NAND_CMD_READOOB to keep the code compatible. */ static void nand_command_lp(struct mtd_info *mtd, unsigned int command, int column, int page_addr) @@ -643,8 +674,7 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned int command, } /* Command latch cycle */ - chip->cmd_ctrl(mtd, command & 0xff, - NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); + chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); if (column != -1 || page_addr != -1) { int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE; @@ -652,7 +682,8 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned int command, /* Serially input address */ if (column != -1) { /* Adjust columns for 16 bit buswidth */ - if (chip->options & NAND_BUSWIDTH_16) + if (chip->options & NAND_BUSWIDTH_16 && + !nand_opcode_8bits(command)) column >>= 1; chip->cmd_ctrl(mtd, column, ctrl); ctrl &= ~NAND_CTRL_CHANGE; @@ -671,8 +702,8 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned int command, chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); /* - * program and erase have their own busy handlers - * status, sequential in, and deplete1 need no delay + * Program and erase have their own busy handlers status, sequential + * in, and deplete1 need no delay. */ switch (command) { @@ -683,18 +714,6 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned int command, case NAND_CMD_SEQIN: case NAND_CMD_RNDIN: case NAND_CMD_STATUS: - case NAND_CMD_DEPLETE1: - return; - - /* - * read error status commands require only a short delay - */ - case NAND_CMD_STATUS_ERROR: - case NAND_CMD_STATUS_ERROR0: - case NAND_CMD_STATUS_ERROR1: - case NAND_CMD_STATUS_ERROR2: - case NAND_CMD_STATUS_ERROR3: - udelay(chip->chip_delay); return; case NAND_CMD_RESET: @@ -705,7 +724,8 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned int command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); - while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ; + while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) + ; return; case NAND_CMD_RNDOUT: @@ -726,7 +746,7 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned int command, default: /* * If we don't have access to the busy pin, we apply the given - * command delay + * command delay. */ if (!chip->dev_ready) { udelay(chip->chip_delay); @@ -734,8 +754,10 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned int command, } } - /* Apply this short delay always to ensure that we do wait tWB in - * any case on any machine. */ + /* + * Apply this short delay always to ensure that we do wait tWB in + * any case on any machine. + */ ndelay(100); nand_wait_ready(mtd); @@ -743,35 +765,35 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned int command, /** * panic_nand_get_device - [GENERIC] Get chip for selected access - * @chip: the nand chip descriptor - * @mtd: MTD device structure - * @new_state: the state which is requested + * @chip: the nand chip descriptor + * @mtd: MTD device structure + * @new_state: the state which is requested * * Used when in panic, no locks are taken. */ static void panic_nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state) { - /* Hardware controller shared among independend devices */ + /* Hardware controller shared among independent devices */ chip->controller->active = chip; chip->state = new_state; } /** * nand_get_device - [GENERIC] Get chip for selected access - * @chip: the nand chip descriptor - * @mtd: MTD device structure - * @new_state: the state which is requested + * @mtd: MTD device structure + * @new_state: the state which is requested * * Get the device and lock it for exclusive access */ static int -nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state) +nand_get_device(struct mtd_info *mtd, int new_state) { + struct nand_chip *chip = mtd->priv; spinlock_t *lock = &chip->controller->lock; wait_queue_head_t *wq = &chip->controller->wq; DECLARE_WAITQUEUE(wait, current); - retry: +retry: spin_lock(lock); /* Hardware controller shared among independent devices */ @@ -799,14 +821,14 @@ nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state) } /** - * panic_nand_wait - [GENERIC] wait until the command is done - * @mtd: MTD device structure - * @chip: NAND chip structure - * @timeo: Timeout + * panic_nand_wait - [GENERIC] wait until the command is done + * @mtd: MTD device structure + * @chip: NAND chip structure + * @timeo: timeout * * Wait for command done. This is a helper function for nand_wait used when * we are in interrupt context. May happen when in panic and trying to write - * an oops trough mtdoops. + * an oops through mtdoops. */ static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip, unsigned long timeo) @@ -821,43 +843,38 @@ static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip, break; } mdelay(1); - } + } } /** - * nand_wait - [DEFAULT] wait until the command is done - * @mtd: MTD device structure - * @chip: NAND chip structure + * nand_wait - [DEFAULT] wait until the command is done + * @mtd: MTD device structure + * @chip: NAND chip structure * - * Wait for command done. This applies to erase and program only - * Erase can take up to 400ms and program up to 20ms according to - * general NAND and SmartMedia specs + * Wait for command done. This applies to erase and program only. Erase can + * take up to 400ms and program up to 20ms according to general NAND and + * SmartMedia specs. */ static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip) { - unsigned long timeo = jiffies; int status, state = chip->state; - - if (state == FL_ERASING) - timeo += (HZ * 400) / 1000; - else - timeo += (HZ * 20) / 1000; + unsigned long timeo = (state == FL_ERASING ? 400 : 20); led_trigger_event(nand_led_trigger, LED_FULL); - /* Apply this short delay always to ensure that we do wait tWB in - * any case on any machine. */ + /* + * Apply this short delay always to ensure that we do wait tWB in any + * case on any machine. + */ ndelay(100); - if ((state == FL_ERASING) && (chip->options & NAND_IS_AND)) - chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1); - else - chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); + chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); if (in_interrupt() || oops_in_progress) panic_nand_wait(mtd, chip, timeo); else { + timeo = jiffies + msecs_to_jiffies(timeo); while (time_before(jiffies, timeo)) { if (chip->dev_ready) { if (chip->dev_ready(mtd)) @@ -872,21 +889,22 @@ static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip) led_trigger_event(nand_led_trigger, LED_OFF); status = (int)chip->read_byte(mtd); + /* This can happen if in case of timeout or buggy dev_ready */ + WARN_ON(!(status & NAND_STATUS_READY)); return status; } /** - * __nand_unlock - [REPLACABLE] unlocks specified locked blockes - * - * @param mtd - mtd info - * @param ofs - offset to start unlock from - * @param len - length to unlock - * @invert - when = 0, unlock the range of blocks within the lower and - * upper boundary address - * whne = 1, unlock the range of blocks outside the boundaries - * of the lower and upper boundary address + * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks + * @mtd: mtd info + * @ofs: offset to start unlock from + * @len: length to unlock + * @invert: when = 0, unlock the range of blocks within the lower and + * upper boundary address + * when = 1, unlock the range of blocks outside the boundaries + * of the lower and upper boundary address * - * @return - unlock status + * Returs unlock status. */ static int __nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len, int invert) @@ -906,10 +924,9 @@ static int __nand_unlock(struct mtd_info *mtd, loff_t ofs, /* Call wait ready function */ status = chip->waitfunc(mtd, chip); - udelay(1000); /* See if device thinks it succeeded */ - if (status & 0x01) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n", + if (status & NAND_STATUS_FAIL) { + pr_debug("%s: error status = 0x%08x\n", __func__, status); ret = -EIO; } @@ -918,13 +935,12 @@ static int __nand_unlock(struct mtd_info *mtd, loff_t ofs, } /** - * nand_unlock - [REPLACABLE] unlocks specified locked blockes + * nand_unlock - [REPLACEABLE] unlocks specified locked blocks + * @mtd: mtd info + * @ofs: offset to start unlock from + * @len: length to unlock * - * @param mtd - mtd info - * @param ofs - offset to start unlock from - * @param len - length to unlock - * - * @return - unlock status + * Returns unlock status. */ int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { @@ -932,7 +948,7 @@ int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) int chipnr; struct nand_chip *chip = mtd->priv; - DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n", + pr_debug("%s: start = 0x%012llx, len = %llu\n", __func__, (unsigned long long)ofs, len); if (check_offs_len(mtd, ofs, len)) @@ -942,7 +958,7 @@ int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) if (ofs + len == mtd->size) len -= mtd->erasesize; - nand_get_device(chip, mtd, FL_UNLOCKING); + nand_get_device(mtd, FL_UNLOCKING); /* Shift to get chip number */ chipnr = ofs >> chip->chip_shift; @@ -951,7 +967,7 @@ int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) /* Check, if it is write protected */ if (nand_check_wp(mtd)) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n", + pr_debug("%s: device is write protected!\n", __func__); ret = -EIO; goto out; @@ -960,28 +976,25 @@ int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) ret = __nand_unlock(mtd, ofs, len, 0); out: - /* de-select the NAND device */ chip->select_chip(mtd, -1); - nand_release_device(mtd); return ret; } +EXPORT_SYMBOL(nand_unlock); /** - * nand_lock - [REPLACABLE] locks all blockes present in the device - * - * @param mtd - mtd info - * @param ofs - offset to start unlock from - * @param len - length to unlock + * nand_lock - [REPLACEABLE] locks all blocks present in the device + * @mtd: mtd info + * @ofs: offset to start unlock from + * @len: length to unlock * - * @return - lock status + * This feature is not supported in many NAND parts. 'Micron' NAND parts do + * have this feature, but it allows only to lock all blocks, not for specified + * range for block. Implementing 'lock' feature by making use of 'unlock', for + * now. * - * This feature is not support in many NAND parts. 'Micron' NAND parts - * do have this feature, but it allows only to lock all blocks not for - * specified range for block. - * - * Implementing 'lock' feature by making use of 'unlock', for now. + * Returns lock status. */ int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { @@ -989,13 +1002,13 @@ int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) int chipnr, status, page; struct nand_chip *chip = mtd->priv; - DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n", + pr_debug("%s: start = 0x%012llx, len = %llu\n", __func__, (unsigned long long)ofs, len); if (check_offs_len(mtd, ofs, len)) ret = -EINVAL; - nand_get_device(chip, mtd, FL_LOCKING); + nand_get_device(mtd, FL_LOCKING); /* Shift to get chip number */ chipnr = ofs >> chip->chip_shift; @@ -1004,7 +1017,7 @@ int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) /* Check, if it is write protected */ if (nand_check_wp(mtd)) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n", + pr_debug("%s: device is write protected!\n", __func__); status = MTD_ERASE_FAILED; ret = -EIO; @@ -1017,10 +1030,9 @@ int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) /* Call wait ready function */ status = chip->waitfunc(mtd, chip); - udelay(1000); /* See if device thinks it succeeded */ - if (status & 0x01) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n", + if (status & NAND_STATUS_FAIL) { + pr_debug("%s: error status = 0x%08x\n", __func__, status); ret = -EIO; goto out; @@ -1029,42 +1041,45 @@ int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) ret = __nand_unlock(mtd, ofs, len, 0x1); out: - /* de-select the NAND device */ chip->select_chip(mtd, -1); - nand_release_device(mtd); return ret; } +EXPORT_SYMBOL(nand_lock); /** - * nand_read_page_raw - [Intern] read raw page data without ecc - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @page: page number to read + * nand_read_page_raw - [INTERN] read raw page data without ecc + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read * - * Not for syndrome calculating ecc controllers, which use a special oob layout + * Not for syndrome calculating ECC controllers, which use a special oob layout. */ static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int page) + uint8_t *buf, int oob_required, int page) { chip->read_buf(mtd, buf, mtd->writesize); - chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + if (oob_required) + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); return 0; } /** - * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @page: page number to read + * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read * * We need a special oob layout and handling even when OOB isn't used. */ -static int nand_read_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int page) +static int nand_read_page_raw_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) { int eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; @@ -1097,14 +1112,15 @@ static int nand_read_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *c } /** - * nand_read_page_swecc - [REPLACABLE] software ecc based page read function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @page: page number to read + * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read */ static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int page) + uint8_t *buf, int oob_required, int page) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; @@ -1113,8 +1129,9 @@ static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *ecc_calc = chip->buffers->ecccalc; uint8_t *ecc_code = chip->buffers->ecccode; uint32_t *eccpos = chip->ecc.layout->eccpos; + unsigned int max_bitflips = 0; - chip->ecc.read_page_raw(mtd, chip, buf, page); + chip->ecc.read_page_raw(mtd, chip, buf, 1, page); for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) chip->ecc.calculate(mtd, p, &ecc_calc[i]); @@ -1129,23 +1146,28 @@ static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, int stat; stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); - if (stat < 0) + if (stat < 0) { mtd->ecc_stats.failed++; - else + } else { mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } } - return 0; + return max_bitflips; } /** - * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @data_offs: offset of requested data within the page - * @readlen: data length - * @bufpoi: buffer to store read data + * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @data_offs: offset of requested data within the page + * @readlen: data length + * @bufpoi: buffer to store read data + * @page: page number to read */ -static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi) +static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, + uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi, + int page) { int start_step, end_step, num_steps; uint32_t *eccpos = chip->ecc.layout->eccpos; @@ -1153,13 +1175,16 @@ static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint3 int data_col_addr, i, gaps = 0; int datafrag_len, eccfrag_len, aligned_len, aligned_pos; int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; + int index; + unsigned int max_bitflips = 0; - /* Column address wihin the page aligned to ECC size (256bytes). */ + /* Column address within the page aligned to ECC size (256bytes) */ start_step = data_offs / chip->ecc.size; end_step = (data_offs + readlen - 1) / chip->ecc.size; num_steps = end_step - start_step + 1; + index = start_step * chip->ecc.bytes; - /* Data size aligned to ECC ecc.size*/ + /* Data size aligned to ECC ecc.size */ datafrag_len = num_steps * chip->ecc.size; eccfrag_len = num_steps * chip->ecc.bytes; @@ -1171,16 +1196,16 @@ static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint3 p = bufpoi + data_col_addr; chip->read_buf(mtd, p, datafrag_len); - /* Calculate ECC */ + /* Calculate ECC */ for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]); - /* The performance is faster if to position offsets - according to ecc.pos. Let make sure here that - there are no gaps in ecc positions */ + /* + * The performance is faster if we position offsets according to + * ecc.pos. Let's make sure that there are no gaps in ECC positions. + */ for (i = 0; i < eccfrag_len - 1; i++) { - if (eccpos[i + start_step * chip->ecc.bytes] + 1 != - eccpos[i + start_step * chip->ecc.bytes + 1]) { + if (eccpos[i + index] + 1 != eccpos[i + index + 1]) { gaps = 1; break; } @@ -1189,46 +1214,53 @@ static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint3 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1); chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); } else { - /* send the command to read the particular ecc bytes */ - /* take care about buswidth alignment in read_buf */ - aligned_pos = eccpos[start_step * chip->ecc.bytes] & ~(busw - 1); + /* + * Send the command to read the particular ECC bytes take care + * about buswidth alignment in read_buf. + */ + aligned_pos = eccpos[index] & ~(busw - 1); aligned_len = eccfrag_len; - if (eccpos[start_step * chip->ecc.bytes] & (busw - 1)) + if (eccpos[index] & (busw - 1)) aligned_len++; - if (eccpos[(start_step + num_steps) * chip->ecc.bytes] & (busw - 1)) + if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1)) aligned_len++; - chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + aligned_pos, -1); + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, + mtd->writesize + aligned_pos, -1); chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len); } for (i = 0; i < eccfrag_len; i++) - chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + start_step * chip->ecc.bytes]]; + chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]]; p = bufpoi + data_col_addr; for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { int stat; - stat = chip->ecc.correct(mtd, p, &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]); - if (stat == -1) + stat = chip->ecc.correct(mtd, p, + &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]); + if (stat < 0) { mtd->ecc_stats.failed++; - else + } else { mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } } - return 0; + return max_bitflips; } /** - * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @page: page number to read + * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read * - * Not for syndrome calculating ecc controllers which need a special oob layout + * Not for syndrome calculating ECC controllers which need a special oob layout. */ static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int page) + uint8_t *buf, int oob_required, int page) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; @@ -1237,6 +1269,7 @@ static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *ecc_calc = chip->buffers->ecccalc; uint8_t *ecc_code = chip->buffers->ecccode; uint32_t *eccpos = chip->ecc.layout->eccpos; + unsigned int max_bitflips = 0; for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { chip->ecc.hwctl(mtd, NAND_ECC_READ); @@ -1255,30 +1288,32 @@ static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, int stat; stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); - if (stat < 0) + if (stat < 0) { mtd->ecc_stats.failed++; - else + } else { mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } } - return 0; + return max_bitflips; } /** - * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @page: page number to read + * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read * - * Hardware ECC for large page chips, require OOB to be read first. - * For this ECC mode, the write_page method is re-used from ECC_HW. - * These methods read/write ECC from the OOB area, unlike the - * ECC_HW_SYNDROME support with multiple ECC steps, follows the - * "infix ECC" scheme and reads/writes ECC from the data area, by - * overwriting the NAND manufacturer bad block markings. + * Hardware ECC for large page chips, require OOB to be read first. For this + * ECC mode, the write_page method is re-used from ECC_HW. These methods + * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with + * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from + * the data area, by overwriting the NAND manufacturer bad block markings. */ static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd, - struct nand_chip *chip, uint8_t *buf, int page) + struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; @@ -1287,6 +1322,7 @@ static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd, uint8_t *ecc_code = chip->buffers->ecccode; uint32_t *eccpos = chip->ecc.layout->eccpos; uint8_t *ecc_calc = chip->buffers->ecccalc; + unsigned int max_bitflips = 0; /* Read the OOB area first */ chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); @@ -1304,32 +1340,36 @@ static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd, chip->ecc.calculate(mtd, p, &ecc_calc[i]); stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL); - if (stat < 0) + if (stat < 0) { mtd->ecc_stats.failed++; - else + } else { mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } } - return 0; + return max_bitflips; } /** - * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @page: page number to read + * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read * - * The hw generator calculates the error syndrome automatically. Therefor - * we need a special oob layout and handling. + * The hw generator calculates the error syndrome automatically. Therefore we + * need a special oob layout and handling. */ static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int page) + uint8_t *buf, int oob_required, int page) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *p = buf; uint8_t *oob = chip->oob_poi; + unsigned int max_bitflips = 0; for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { int stat; @@ -1346,10 +1386,12 @@ static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, chip->read_buf(mtd, oob, eccbytes); stat = chip->ecc.correct(mtd, p, oob, NULL); - if (stat < 0) + if (stat < 0) { mtd->ecc_stats.failed++; - else + } else { mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } oob += eccbytes; @@ -1364,33 +1406,33 @@ static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, if (i) chip->read_buf(mtd, oob, i); - return 0; + return max_bitflips; } /** - * nand_transfer_oob - [Internal] Transfer oob to client buffer - * @chip: nand chip structure - * @oob: oob destination address - * @ops: oob ops structure - * @len: size of oob to transfer + * nand_transfer_oob - [INTERN] Transfer oob to client buffer + * @chip: nand chip structure + * @oob: oob destination address + * @ops: oob ops structure + * @len: size of oob to transfer */ static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, struct mtd_oob_ops *ops, size_t len) { - switch(ops->mode) { + switch (ops->mode) { - case MTD_OOB_PLACE: - case MTD_OOB_RAW: + case MTD_OPS_PLACE_OOB: + case MTD_OPS_RAW: memcpy(oob, chip->oob_poi + ops->ooboffs, len); return oob + len; - case MTD_OOB_AUTO: { + case MTD_OPS_AUTO_OOB: { struct nand_oobfree *free = chip->ecc.layout->oobfree; uint32_t boffs = 0, roffs = ops->ooboffs; size_t bytes = 0; - for(; free->length && len; free++, len -= bytes) { - /* Read request not from offset 0 ? */ + for (; free->length && len; free++, len -= bytes) { + /* Read request not from offset 0? */ if (unlikely(roffs)) { if (roffs >= free->length) { roffs -= free->length; @@ -1416,31 +1458,53 @@ static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, } /** - * nand_do_read_ops - [Internal] Read data with ECC + * nand_setup_read_retry - [INTERN] Set the READ RETRY mode + * @mtd: MTD device structure + * @retry_mode: the retry mode to use * - * @mtd: MTD device structure - * @from: offset to read from - * @ops: oob ops structure + * Some vendors supply a special command to shift the Vt threshold, to be used + * when there are too many bitflips in a page (i.e., ECC error). After setting + * a new threshold, the host should retry reading the page. + */ +static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) +{ + struct nand_chip *chip = mtd->priv; + + pr_debug("setting READ RETRY mode %d\n", retry_mode); + + if (retry_mode >= chip->read_retries) + return -EINVAL; + + if (!chip->setup_read_retry) + return -EOPNOTSUPP; + + return chip->setup_read_retry(mtd, retry_mode); +} + +/** + * nand_do_read_ops - [INTERN] Read data with ECC + * @mtd: MTD device structure + * @from: offset to read from + * @ops: oob ops structure * * Internal function. Called with chip held. */ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { - int chipnr, page, realpage, col, bytes, aligned; + int chipnr, page, realpage, col, bytes, aligned, oob_required; struct nand_chip *chip = mtd->priv; - struct mtd_ecc_stats stats; - int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1; - int sndcmd = 1; int ret = 0; uint32_t readlen = ops->len; uint32_t oobreadlen = ops->ooblen; - uint32_t max_oobsize = ops->mode == MTD_OOB_AUTO ? + uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize; uint8_t *bufpoi, *oob, *buf; - - stats = mtd->ecc_stats; + int use_bufpoi; + unsigned int max_bitflips = 0; + int retry_mode = 0; + bool ecc_fail = false; chipnr = (int)(from >> chip->chip_shift); chip->select_chip(mtd, chipnr); @@ -1452,43 +1516,72 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, buf = ops->datbuf; oob = ops->oobbuf; + oob_required = oob ? 1 : 0; + + while (1) { + unsigned int ecc_failures = mtd->ecc_stats.failed; - while(1) { bytes = min(mtd->writesize - col, readlen); aligned = (bytes == mtd->writesize); - /* Is the current page in the buffer ? */ + if (!aligned) + use_bufpoi = 1; + else if (chip->options & NAND_USE_BOUNCE_BUFFER) + use_bufpoi = !virt_addr_valid(buf); + else + use_bufpoi = 0; + + /* Is the current page in the buffer? */ if (realpage != chip->pagebuf || oob) { - bufpoi = aligned ? buf : chip->buffers->databuf; + bufpoi = use_bufpoi ? chip->buffers->databuf : buf; - if (likely(sndcmd)) { - chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); - sndcmd = 0; - } + if (use_bufpoi && aligned) + pr_debug("%s: using read bounce buffer for buf@%p\n", + __func__, buf); + +read_retry: + chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); - /* Now read the page into the buffer */ - if (unlikely(ops->mode == MTD_OOB_RAW)) - ret = chip->ecc.read_page_raw(mtd, chip, - bufpoi, page); - else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob) - ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi); + /* + * Now read the page into the buffer. Absent an error, + * the read methods return max bitflips per ecc step. + */ + if (unlikely(ops->mode == MTD_OPS_RAW)) + ret = chip->ecc.read_page_raw(mtd, chip, bufpoi, + oob_required, + page); + else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && + !oob) + ret = chip->ecc.read_subpage(mtd, chip, + col, bytes, bufpoi, + page); else ret = chip->ecc.read_page(mtd, chip, bufpoi, - page); - if (ret < 0) + oob_required, page); + if (ret < 0) { + if (use_bufpoi) + /* Invalidate page cache */ + chip->pagebuf = -1; break; + } + + max_bitflips = max_t(unsigned int, max_bitflips, ret); /* Transfer not aligned data */ - if (!aligned) { - if (!NAND_SUBPAGE_READ(chip) && !oob) + if (use_bufpoi) { + if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && + !(mtd->ecc_stats.failed - ecc_failures) && + (ops->mode != MTD_OPS_RAW)) { chip->pagebuf = realpage; + chip->pagebuf_bitflips = ret; + } else { + /* Invalidate page cache */ + chip->pagebuf = -1; + } memcpy(buf, chip->buffers->databuf + col, bytes); } - buf += bytes; - if (unlikely(oob)) { - int toread = min(oobreadlen, max_oobsize); if (toread) { @@ -1498,30 +1591,53 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, } } - if (!(chip->options & NAND_NO_READRDY)) { - /* - * Apply delay or wait for ready/busy pin. Do - * this before the AUTOINCR check, so no - * problems arise if a chip which does auto - * increment is marked as NOAUTOINCR by the - * board driver. - */ + if (chip->options & NAND_NEED_READRDY) { + /* Apply delay or wait for ready/busy pin */ if (!chip->dev_ready) udelay(chip->chip_delay); else nand_wait_ready(mtd); } + + if (mtd->ecc_stats.failed - ecc_failures) { + if (retry_mode + 1 < chip->read_retries) { + retry_mode++; + ret = nand_setup_read_retry(mtd, + retry_mode); + if (ret < 0) + break; + + /* Reset failures; retry */ + mtd->ecc_stats.failed = ecc_failures; + goto read_retry; + } else { + /* No more retry modes; real failure */ + ecc_fail = true; + } + } + + buf += bytes; } else { memcpy(buf, chip->buffers->databuf + col, bytes); buf += bytes; + max_bitflips = max_t(unsigned int, max_bitflips, + chip->pagebuf_bitflips); } readlen -= bytes; + /* Reset to retry mode 0 */ + if (retry_mode) { + ret = nand_setup_read_retry(mtd, 0); + if (ret < 0) + break; + retry_mode = 0; + } + if (!readlen) break; - /* For subsequent reads align to page boundary. */ + /* For subsequent reads align to page boundary */ col = 0; /* Increment page address */ realpage++; @@ -1533,92 +1649,72 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, chip->select_chip(mtd, -1); chip->select_chip(mtd, chipnr); } - - /* Check, if the chip supports auto page increment - * or if we have hit a block boundary. - */ - if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck)) - sndcmd = 1; } + chip->select_chip(mtd, -1); ops->retlen = ops->len - (size_t) readlen; if (oob) ops->oobretlen = ops->ooblen - oobreadlen; - if (ret) + if (ret < 0) return ret; - if (mtd->ecc_stats.failed - stats.failed) + if (ecc_fail) return -EBADMSG; - return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0; + return max_bitflips; } /** - * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc - * @mtd: MTD device structure - * @from: offset to read from - * @len: number of bytes to read - * @retlen: pointer to variable to store the number of read bytes - * @buf: the databuffer to put data + * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc + * @mtd: MTD device structure + * @from: offset to read from + * @len: number of bytes to read + * @retlen: pointer to variable to store the number of read bytes + * @buf: the databuffer to put data * - * Get hold of the chip and call nand_do_read + * Get hold of the chip and call nand_do_read. */ static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, uint8_t *buf) { - struct nand_chip *chip = mtd->priv; + struct mtd_oob_ops ops; int ret; - /* Do not allow reads past end of device */ - if ((from + len) > mtd->size) - return -EINVAL; - if (!len) - return 0; - - nand_get_device(chip, mtd, FL_READING); - - chip->ops.len = len; - chip->ops.datbuf = buf; - chip->ops.oobbuf = NULL; - - ret = nand_do_read_ops(mtd, from, &chip->ops); - - *retlen = chip->ops.retlen; - + nand_get_device(mtd, FL_READING); + ops.len = len; + ops.datbuf = buf; + ops.oobbuf = NULL; + ops.mode = MTD_OPS_PLACE_OOB; + ret = nand_do_read_ops(mtd, from, &ops); + *retlen = ops.retlen; nand_release_device(mtd); - return ret; } /** - * nand_read_oob_std - [REPLACABLE] the most common OOB data read function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @page: page number to read - * @sndcmd: flag whether to issue read command or not + * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @page: page number to read */ static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, - int page, int sndcmd) + int page) { - if (sndcmd) { - chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); - sndcmd = 0; - } + chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); - return sndcmd; + return 0; } /** - * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC + * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC * with syndromes - * @mtd: mtd info structure - * @chip: nand chip info structure - * @page: page number to read - * @sndcmd: flag whether to issue read command or not + * @mtd: mtd info structure + * @chip: nand chip info structure + * @page: page number to read */ static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, - int page, int sndcmd) + int page) { uint8_t *buf = chip->oob_poi; int length = mtd->oobsize; @@ -1645,14 +1741,14 @@ static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, if (length > 0) chip->read_buf(mtd, bufpoi, length); - return 1; + return 0; } /** - * nand_write_oob_std - [REPLACABLE] the most common OOB data write function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @page: page number to write + * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @page: page number to write */ static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page) @@ -1672,11 +1768,11 @@ static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, } /** - * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC - * with syndrome - only for large page flash ! - * @mtd: mtd info structure - * @chip: nand chip info structure - * @page: page number to write + * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC + * with syndrome - only for large page flash + * @mtd: mtd info structure + * @chip: nand chip info structure + * @page: page number to write */ static int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, int page) @@ -1731,34 +1827,37 @@ static int nand_write_oob_syndrome(struct mtd_info *mtd, } /** - * nand_do_read_oob - [Intern] NAND read out-of-band - * @mtd: MTD device structure - * @from: offset to read from - * @ops: oob operations description structure + * nand_do_read_oob - [INTERN] NAND read out-of-band + * @mtd: MTD device structure + * @from: offset to read from + * @ops: oob operations description structure * - * NAND read out-of-band data from the spare area + * NAND read out-of-band data from the spare area. */ static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { - int page, realpage, chipnr, sndcmd = 1; + int page, realpage, chipnr; struct nand_chip *chip = mtd->priv; - int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1; + struct mtd_ecc_stats stats; int readlen = ops->ooblen; int len; uint8_t *buf = ops->oobbuf; + int ret = 0; - DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n", + pr_debug("%s: from = 0x%08Lx, len = %i\n", __func__, (unsigned long long)from, readlen); - if (ops->mode == MTD_OOB_AUTO) + stats = mtd->ecc_stats; + + if (ops->mode == MTD_OPS_AUTO_OOB) len = chip->ecc.layout->oobavail; else len = mtd->oobsize; if (unlikely(ops->ooboffs >= len)) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read " - "outside oob\n", __func__); + pr_debug("%s: attempt to start read outside oob\n", + __func__); return -EINVAL; } @@ -1766,8 +1865,8 @@ static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, if (unlikely(from >= mtd->size || ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) - (from >> chip->page_shift)) * len)) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end " - "of device\n", __func__); + pr_debug("%s: attempt to read beyond end of device\n", + __func__); return -EINVAL; } @@ -1778,19 +1877,20 @@ static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, realpage = (int)(from >> chip->page_shift); page = realpage & chip->pagemask; - while(1) { - sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd); + while (1) { + if (ops->mode == MTD_OPS_RAW) + ret = chip->ecc.read_oob_raw(mtd, chip, page); + else + ret = chip->ecc.read_oob(mtd, chip, page); + + if (ret < 0) + break; len = min(len, readlen); buf = nand_transfer_oob(chip, buf, ops, len); - if (!(chip->options & NAND_NO_READRDY)) { - /* - * Apply delay or wait for ready/busy pin. Do this - * before the AUTOINCR check, so no problems arise if a - * chip which does auto increment is marked as - * NOAUTOINCR by the board driver. - */ + if (chip->options & NAND_NEED_READRDY) { + /* Apply delay or wait for ready/busy pin */ if (!chip->dev_ready) udelay(chip->chip_delay); else @@ -1811,47 +1911,48 @@ static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, chip->select_chip(mtd, -1); chip->select_chip(mtd, chipnr); } - - /* Check, if the chip supports auto page increment - * or if we have hit a block boundary. - */ - if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck)) - sndcmd = 1; } + chip->select_chip(mtd, -1); - ops->oobretlen = ops->ooblen; - return 0; + ops->oobretlen = ops->ooblen - readlen; + + if (ret < 0) + return ret; + + if (mtd->ecc_stats.failed - stats.failed) + return -EBADMSG; + + return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0; } /** * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band - * @mtd: MTD device structure - * @from: offset to read from - * @ops: oob operation description structure + * @mtd: MTD device structure + * @from: offset to read from + * @ops: oob operation description structure * - * NAND read data and/or out-of-band data + * NAND read data and/or out-of-band data. */ static int nand_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { - struct nand_chip *chip = mtd->priv; int ret = -ENOTSUPP; ops->retlen = 0; /* Do not allow reads past end of device */ if (ops->datbuf && (from + ops->len) > mtd->size) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read " - "beyond end of device\n", __func__); + pr_debug("%s: attempt to read beyond end of device\n", + __func__); return -EINVAL; } - nand_get_device(chip, mtd, FL_READING); + nand_get_device(mtd, FL_READING); - switch(ops->mode) { - case MTD_OOB_PLACE: - case MTD_OOB_AUTO: - case MTD_OOB_RAW: + switch (ops->mode) { + case MTD_OPS_PLACE_OOB: + case MTD_OPS_AUTO_OOB: + case MTD_OPS_RAW: break; default: @@ -1863,37 +1964,43 @@ static int nand_read_oob(struct mtd_info *mtd, loff_t from, else ret = nand_do_read_ops(mtd, from, ops); - out: +out: nand_release_device(mtd); return ret; } /** - * nand_write_page_raw - [Intern] raw page write function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: data buffer + * nand_write_page_raw - [INTERN] raw page write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB * - * Not for syndrome calculating ecc controllers, which use a special oob layout + * Not for syndrome calculating ECC controllers, which use a special oob layout. */ -static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf) +static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required) { chip->write_buf(mtd, buf, mtd->writesize); - chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + if (oob_required) + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; } /** - * nand_write_page_raw_syndrome - [Intern] raw page write function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: data buffer + * nand_write_page_raw_syndrome - [INTERN] raw page write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB * * We need a special oob layout and handling even when ECC isn't checked. */ -static void nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf) +static int nand_write_page_raw_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, int oob_required) { int eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; @@ -1909,7 +2016,7 @@ static void nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip oob += chip->ecc.prepad; } - chip->read_buf(mtd, oob, eccbytes); + chip->write_buf(mtd, oob, eccbytes); oob += eccbytes; if (chip->ecc.postpad) { @@ -1921,15 +2028,18 @@ static void nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip size = mtd->oobsize - (oob - chip->oob_poi); if (size) chip->write_buf(mtd, oob, size); + + return 0; } /** - * nand_write_page_swecc - [REPLACABLE] software ecc based page write function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: data buffer + * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB */ -static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf) +static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; @@ -1938,24 +2048,25 @@ static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *p = buf; uint32_t *eccpos = chip->ecc.layout->eccpos; - /* Software ecc calculation */ + /* Software ECC calculation */ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) chip->ecc.calculate(mtd, p, &ecc_calc[i]); for (i = 0; i < chip->ecc.total; i++) chip->oob_poi[eccpos[i]] = ecc_calc[i]; - chip->ecc.write_page_raw(mtd, chip, buf); + return chip->ecc.write_page_raw(mtd, chip, buf, 1); } /** - * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: data buffer + * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB */ -static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf) +static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; @@ -1974,19 +2085,85 @@ static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, chip->oob_poi[eccpos[i]] = ecc_calc[i]; chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; } + /** - * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write + * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write * @mtd: mtd info structure * @chip: nand chip info structure + * @offset: column address of subpage within the page + * @data_len: data length * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + */ +static int nand_write_subpage_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, uint32_t offset, + uint32_t data_len, const uint8_t *buf, + int oob_required) +{ + uint8_t *oob_buf = chip->oob_poi; + uint8_t *ecc_calc = chip->buffers->ecccalc; + int ecc_size = chip->ecc.size; + int ecc_bytes = chip->ecc.bytes; + int ecc_steps = chip->ecc.steps; + uint32_t *eccpos = chip->ecc.layout->eccpos; + uint32_t start_step = offset / ecc_size; + uint32_t end_step = (offset + data_len - 1) / ecc_size; + int oob_bytes = mtd->oobsize / ecc_steps; + int step, i; + + for (step = 0; step < ecc_steps; step++) { + /* configure controller for WRITE access */ + chip->ecc.hwctl(mtd, NAND_ECC_WRITE); + + /* write data (untouched subpages already masked by 0xFF) */ + chip->write_buf(mtd, buf, ecc_size); + + /* mask ECC of un-touched subpages by padding 0xFF */ + if ((step < start_step) || (step > end_step)) + memset(ecc_calc, 0xff, ecc_bytes); + else + chip->ecc.calculate(mtd, buf, ecc_calc); + + /* mask OOB of un-touched subpages by padding 0xFF */ + /* if oob_required, preserve OOB metadata of written subpage */ + if (!oob_required || (step < start_step) || (step > end_step)) + memset(oob_buf, 0xff, oob_bytes); + + buf += ecc_size; + ecc_calc += ecc_bytes; + oob_buf += oob_bytes; + } + + /* copy calculated ECC for whole page to chip->buffer->oob */ + /* this include masked-value(0xFF) for unwritten subpages */ + ecc_calc = chip->buffers->ecccalc; + for (i = 0; i < chip->ecc.total; i++) + chip->oob_poi[eccpos[i]] = ecc_calc[i]; + + /* write OOB buffer to NAND device */ + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + + +/** + * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB * - * The hw generator calculates the error syndrome automatically. Therefor - * we need a special oob layout and handling. + * The hw generator calculates the error syndrome automatically. Therefore we + * need a special oob layout and handling. */ -static void nand_write_page_syndrome(struct mtd_info *mtd, - struct nand_chip *chip, const uint8_t *buf) +static int nand_write_page_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, int oob_required) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; @@ -2018,42 +2195,61 @@ static void nand_write_page_syndrome(struct mtd_info *mtd, i = mtd->oobsize - (oob - chip->oob_poi); if (i) chip->write_buf(mtd, oob, i); + + return 0; } /** * nand_write_page - [REPLACEABLE] write one page - * @mtd: MTD device structure - * @chip: NAND chip descriptor - * @buf: the data to write - * @page: page number to write - * @cached: cached programming - * @raw: use _raw version of write_page + * @mtd: MTD device structure + * @chip: NAND chip descriptor + * @offset: address offset within the page + * @data_len: length of actual data to be written + * @buf: the data to write + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to write + * @cached: cached programming + * @raw: use _raw version of write_page */ static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int page, int cached, int raw) + uint32_t offset, int data_len, const uint8_t *buf, + int oob_required, int page, int cached, int raw) { - int status; + int status, subpage; + + if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && + chip->ecc.write_subpage) + subpage = offset || (data_len < mtd->writesize); + else + subpage = 0; chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); if (unlikely(raw)) - chip->ecc.write_page_raw(mtd, chip, buf); + status = chip->ecc.write_page_raw(mtd, chip, buf, + oob_required); + else if (subpage) + status = chip->ecc.write_subpage(mtd, chip, offset, data_len, + buf, oob_required); else - chip->ecc.write_page(mtd, chip, buf); + status = chip->ecc.write_page(mtd, chip, buf, oob_required); + + if (status < 0) + return status; /* - * Cached progamming disabled for now, Not sure if its worth the - * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s) + * Cached progamming disabled for now. Not sure if it's worth the + * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s). */ cached = 0; - if (!cached || !(chip->options & NAND_CACHEPRG)) { + if (!cached || !NAND_HAS_CACHEPROG(chip)) { chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); status = chip->waitfunc(mtd, chip); /* * See if operation failed and additional status checks are - * available + * available. */ if ((status & NAND_STATUS_FAIL) && (chip->errstat)) status = chip->errstat(mtd, chip, FL_WRITING, status, @@ -2066,39 +2262,41 @@ static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, status = chip->waitfunc(mtd, chip); } -#ifdef CONFIG_MTD_NAND_VERIFY_WRITE - /* Send command to read back the data */ - chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); - - if (chip->verify_buf(mtd, buf, mtd->writesize)) - return -EIO; -#endif return 0; } /** - * nand_fill_oob - [Internal] Transfer client buffer to oob - * @chip: nand chip structure - * @oob: oob data buffer - * @ops: oob ops structure + * nand_fill_oob - [INTERN] Transfer client buffer to oob + * @mtd: MTD device structure + * @oob: oob data buffer + * @len: oob data write length + * @ops: oob ops structure */ -static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len, - struct mtd_oob_ops *ops) +static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len, + struct mtd_oob_ops *ops) { - switch(ops->mode) { + struct nand_chip *chip = mtd->priv; - case MTD_OOB_PLACE: - case MTD_OOB_RAW: + /* + * Initialise to all 0xFF, to avoid the possibility of left over OOB + * data from a previous OOB read. + */ + memset(chip->oob_poi, 0xff, mtd->oobsize); + + switch (ops->mode) { + + case MTD_OPS_PLACE_OOB: + case MTD_OPS_RAW: memcpy(chip->oob_poi + ops->ooboffs, oob, len); return oob + len; - case MTD_OOB_AUTO: { + case MTD_OPS_AUTO_OOB: { struct nand_oobfree *free = chip->ecc.layout->oobfree; uint32_t boffs = 0, woffs = ops->ooboffs; size_t bytes = 0; - for(; free->length && len; free++, len -= bytes) { - /* Write request not from offset 0 ? */ + for (; free->length && len; free++, len -= bytes) { + /* Write request not from offset 0? */ if (unlikely(woffs)) { if (woffs >= free->length) { woffs -= free->length; @@ -2123,15 +2321,15 @@ static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len, return NULL; } -#define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0 +#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) /** - * nand_do_write_ops - [Internal] NAND write with ECC - * @mtd: MTD device structure - * @to: offset to write to - * @ops: oob operations description structure + * nand_do_write_ops - [INTERN] NAND write with ECC + * @mtd: MTD device structure + * @to: offset to write to + * @ops: oob operations description structure * - * NAND write with ECC + * NAND write with ECC. */ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) @@ -2141,36 +2339,35 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, uint32_t writelen = ops->len; uint32_t oobwritelen = ops->ooblen; - uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ? + uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize; uint8_t *oob = ops->oobbuf; uint8_t *buf = ops->datbuf; - int ret, subpage; + int ret; + int oob_required = oob ? 1 : 0; ops->retlen = 0; if (!writelen) return 0; - /* reject writes, which are not page aligned */ + /* Reject writes, which are not page aligned */ if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { - printk(KERN_NOTICE "%s: Attempt to write not " - "page aligned data\n", __func__); + pr_notice("%s: attempt to write non page aligned data\n", + __func__); return -EINVAL; } column = to & (mtd->writesize - 1); - subpage = column || (writelen & (mtd->writesize - 1)); - - if (subpage && oob) - return -EINVAL; chipnr = (int)(to >> chip->chip_shift); chip->select_chip(mtd, chipnr); /* Check, if it is write protected */ - if (nand_check_wp(mtd)) - return -EIO; + if (nand_check_wp(mtd)) { + ret = -EIO; + goto err_out; + } realpage = (int)(to >> chip->page_shift); page = realpage & chip->pagemask; @@ -2181,23 +2378,33 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, (chip->pagebuf << chip->page_shift) < (to + ops->len)) chip->pagebuf = -1; - /* If we're not given explicit OOB data, let it be 0xFF */ - if (likely(!oob)) - memset(chip->oob_poi, 0xff, mtd->oobsize); - /* Don't allow multipage oob writes with offset */ - if (ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) - return -EINVAL; + if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { + ret = -EINVAL; + goto err_out; + } - while(1) { + while (1) { int bytes = mtd->writesize; int cached = writelen > bytes && page != blockmask; uint8_t *wbuf = buf; + int use_bufpoi; + int part_pagewr = (column || writelen < (mtd->writesize - 1)); + + if (part_pagewr) + use_bufpoi = 1; + else if (chip->options & NAND_USE_BOUNCE_BUFFER) + use_bufpoi = !virt_addr_valid(buf); + else + use_bufpoi = 0; - /* Partial page write ? */ - if (unlikely(column || writelen < (mtd->writesize - 1))) { + /* Partial page write?, or need to use bounce buffer */ + if (use_bufpoi) { + pr_debug("%s: using write bounce buffer for buf@%p\n", + __func__, buf); cached = 0; - bytes = min_t(int, bytes - column, (int) writelen); + if (part_pagewr) + bytes = min_t(int, bytes - column, writelen); chip->pagebuf = -1; memset(chip->buffers->databuf, 0xff, mtd->writesize); memcpy(&chip->buffers->databuf[column], buf, bytes); @@ -2206,12 +2413,15 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, if (unlikely(oob)) { size_t len = min(oobwritelen, oobmaxlen); - oob = nand_fill_oob(chip, oob, len, ops); + oob = nand_fill_oob(mtd, oob, len, ops); oobwritelen -= len; + } else { + /* We still need to erase leftover OOB data */ + memset(chip->oob_poi, 0xff, mtd->oobsize); } - - ret = chip->write_page(mtd, chip, wbuf, page, cached, - (ops->mode == MTD_OOB_RAW)); + ret = chip->write_page(mtd, chip, column, bytes, wbuf, + oob_required, page, cached, + (ops->mode == MTD_OPS_RAW)); if (ret) break; @@ -2235,16 +2445,19 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, ops->retlen = ops->len - writelen; if (unlikely(oob)) ops->oobretlen = ops->ooblen; + +err_out: + chip->select_chip(mtd, -1); return ret; } /** * panic_nand_write - [MTD Interface] NAND write with ECC - * @mtd: MTD device structure - * @to: offset to write to - * @len: number of bytes to write - * @retlen: pointer to variable to store the number of written bytes - * @buf: the data to write + * @mtd: MTD device structure + * @to: offset to write to + * @len: number of bytes to write + * @retlen: pointer to variable to store the number of written bytes + * @buf: the data to write * * NAND write with ECC. Used when performing writes in interrupt context, this * may for example be called by mtdoops when writing an oops while in panic. @@ -2253,74 +2466,60 @@ static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const uint8_t *buf) { struct nand_chip *chip = mtd->priv; + struct mtd_oob_ops ops; int ret; - /* Do not allow reads past end of device */ - if ((to + len) > mtd->size) - return -EINVAL; - if (!len) - return 0; - - /* Wait for the device to get ready. */ + /* Wait for the device to get ready */ panic_nand_wait(mtd, chip, 400); - /* Grab the device. */ + /* Grab the device */ panic_nand_get_device(chip, mtd, FL_WRITING); - chip->ops.len = len; - chip->ops.datbuf = (uint8_t *)buf; - chip->ops.oobbuf = NULL; + ops.len = len; + ops.datbuf = (uint8_t *)buf; + ops.oobbuf = NULL; + ops.mode = MTD_OPS_PLACE_OOB; - ret = nand_do_write_ops(mtd, to, &chip->ops); + ret = nand_do_write_ops(mtd, to, &ops); - *retlen = chip->ops.retlen; + *retlen = ops.retlen; return ret; } /** * nand_write - [MTD Interface] NAND write with ECC - * @mtd: MTD device structure - * @to: offset to write to - * @len: number of bytes to write - * @retlen: pointer to variable to store the number of written bytes - * @buf: the data to write + * @mtd: MTD device structure + * @to: offset to write to + * @len: number of bytes to write + * @retlen: pointer to variable to store the number of written bytes + * @buf: the data to write * - * NAND write with ECC + * NAND write with ECC. */ static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const uint8_t *buf) { - struct nand_chip *chip = mtd->priv; + struct mtd_oob_ops ops; int ret; - /* Do not allow reads past end of device */ - if ((to + len) > mtd->size) - return -EINVAL; - if (!len) - return 0; - - nand_get_device(chip, mtd, FL_WRITING); - - chip->ops.len = len; - chip->ops.datbuf = (uint8_t *)buf; - chip->ops.oobbuf = NULL; - - ret = nand_do_write_ops(mtd, to, &chip->ops); - - *retlen = chip->ops.retlen; - + nand_get_device(mtd, FL_WRITING); + ops.len = len; + ops.datbuf = (uint8_t *)buf; + ops.oobbuf = NULL; + ops.mode = MTD_OPS_PLACE_OOB; + ret = nand_do_write_ops(mtd, to, &ops); + *retlen = ops.retlen; nand_release_device(mtd); - return ret; } /** * nand_do_write_oob - [MTD Interface] NAND write out-of-band - * @mtd: MTD device structure - * @to: offset to write to - * @ops: oob operation description structure + * @mtd: MTD device structure + * @to: offset to write to + * @ops: oob operation description structure * - * NAND write out-of-band + * NAND write out-of-band. */ static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) @@ -2328,34 +2527,34 @@ static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, int chipnr, page, status, len; struct nand_chip *chip = mtd->priv; - DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n", + pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, (int)ops->ooblen); - if (ops->mode == MTD_OOB_AUTO) + if (ops->mode == MTD_OPS_AUTO_OOB) len = chip->ecc.layout->oobavail; else len = mtd->oobsize; /* Do not allow write past end of page */ if ((ops->ooboffs + ops->ooblen) > len) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write " - "past end of page\n", __func__); + pr_debug("%s: attempt to write past end of page\n", + __func__); return -EINVAL; } if (unlikely(ops->ooboffs >= len)) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start " - "write outside oob\n", __func__); + pr_debug("%s: attempt to start write outside oob\n", + __func__); return -EINVAL; } - /* Do not allow reads past end of device */ + /* Do not allow write past end of device */ if (unlikely(to >= mtd->size || ops->ooboffs + ops->ooblen > ((mtd->size >> chip->page_shift) - (to >> chip->page_shift)) * len)) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond " - "end of device\n", __func__); + pr_debug("%s: attempt to write beyond end of device\n", + __func__); return -EINVAL; } @@ -2374,17 +2573,23 @@ static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); /* Check, if it is write protected */ - if (nand_check_wp(mtd)) + if (nand_check_wp(mtd)) { + chip->select_chip(mtd, -1); return -EROFS; + } /* Invalidate the page cache, if we write to the cached page */ if (page == chip->pagebuf) chip->pagebuf = -1; - memset(chip->oob_poi, 0xff, mtd->oobsize); - nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops); - status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask); - memset(chip->oob_poi, 0xff, mtd->oobsize); + nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops); + + if (ops->mode == MTD_OPS_RAW) + status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask); + else + status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask); + + chip->select_chip(mtd, -1); if (status) return status; @@ -2396,31 +2601,30 @@ static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, /** * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band - * @mtd: MTD device structure - * @to: offset to write to - * @ops: oob operation description structure + * @mtd: MTD device structure + * @to: offset to write to + * @ops: oob operation description structure */ static int nand_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { - struct nand_chip *chip = mtd->priv; int ret = -ENOTSUPP; ops->retlen = 0; /* Do not allow writes past end of device */ if (ops->datbuf && (to + ops->len) > mtd->size) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond " - "end of device\n", __func__); + pr_debug("%s: attempt to write beyond end of device\n", + __func__); return -EINVAL; } - nand_get_device(chip, mtd, FL_WRITING); + nand_get_device(mtd, FL_WRITING); - switch(ops->mode) { - case MTD_OOB_PLACE: - case MTD_OOB_AUTO: - case MTD_OOB_RAW: + switch (ops->mode) { + case MTD_OPS_PLACE_OOB: + case MTD_OPS_AUTO_OOB: + case MTD_OPS_RAW: break; default: @@ -2432,86 +2636,64 @@ static int nand_write_oob(struct mtd_info *mtd, loff_t to, else ret = nand_do_write_ops(mtd, to, ops); - out: +out: nand_release_device(mtd); return ret; } /** - * single_erease_cmd - [GENERIC] NAND standard block erase command function - * @mtd: MTD device structure - * @page: the page address of the block which will be erased + * single_erase - [GENERIC] NAND standard block erase command function + * @mtd: MTD device structure + * @page: the page address of the block which will be erased * - * Standard erase command for NAND chips + * Standard erase command for NAND chips. Returns NAND status. */ -static void single_erase_cmd(struct mtd_info *mtd, int page) +static int single_erase(struct mtd_info *mtd, int page) { struct nand_chip *chip = mtd->priv; /* Send commands to erase a block */ chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); -} -/** - * multi_erease_cmd - [GENERIC] AND specific block erase command function - * @mtd: MTD device structure - * @page: the page address of the block which will be erased - * - * AND multi block erase command function - * Erase 4 consecutive blocks - */ -static void multi_erase_cmd(struct mtd_info *mtd, int page) -{ - struct nand_chip *chip = mtd->priv; - /* Send commands to erase a block */ - chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++); - chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++); - chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++); - chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); - chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); + return chip->waitfunc(mtd, chip); } /** * nand_erase - [MTD Interface] erase block(s) - * @mtd: MTD device structure - * @instr: erase instruction + * @mtd: MTD device structure + * @instr: erase instruction * - * Erase one ore more blocks + * Erase one ore more blocks. */ static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) { return nand_erase_nand(mtd, instr, 0); } -#define BBT_PAGE_MASK 0xffffff3f /** - * nand_erase_nand - [Internal] erase block(s) - * @mtd: MTD device structure - * @instr: erase instruction - * @allowbbt: allow erasing the bbt area + * nand_erase_nand - [INTERN] erase block(s) + * @mtd: MTD device structure + * @instr: erase instruction + * @allowbbt: allow erasing the bbt area * - * Erase one ore more blocks + * Erase one ore more blocks. */ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, int allowbbt) { int page, status, pages_per_block, ret, chipnr; struct nand_chip *chip = mtd->priv; - loff_t rewrite_bbt[NAND_MAX_CHIPS]={0}; - unsigned int bbt_masked_page = 0xffffffff; loff_t len; - DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n", - __func__, (unsigned long long)instr->addr, - (unsigned long long)instr->len); + pr_debug("%s: start = 0x%012llx, len = %llu\n", + __func__, (unsigned long long)instr->addr, + (unsigned long long)instr->len); if (check_offs_len(mtd, instr->addr, instr->len)) return -EINVAL; - instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; - /* Grab the lock and see if the device is available */ - nand_get_device(chip, mtd, FL_ERASING); + nand_get_device(mtd, FL_ERASING); /* Shift to get first page */ page = (int)(instr->addr >> chip->page_shift); @@ -2525,49 +2707,36 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, /* Check, if it is write protected */ if (nand_check_wp(mtd)) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n", - __func__); + pr_debug("%s: device is write protected!\n", + __func__); instr->state = MTD_ERASE_FAILED; goto erase_exit; } - /* - * If BBT requires refresh, set the BBT page mask to see if the BBT - * should be rewritten. Otherwise the mask is set to 0xffffffff which - * can not be matched. This is also done when the bbt is actually - * erased to avoid recusrsive updates - */ - if (chip->options & BBT_AUTO_REFRESH && !allowbbt) - bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK; - /* Loop through the pages */ len = instr->len; instr->state = MTD_ERASING; while (len) { - /* - * heck if we have a bad block, we do not erase bad blocks ! - */ + /* Check if we have a bad block, we do not erase bad blocks! */ if (nand_block_checkbad(mtd, ((loff_t) page) << chip->page_shift, 0, allowbbt)) { - printk(KERN_WARNING "%s: attempt to erase a bad block " - "at page 0x%08x\n", __func__, page); + pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", + __func__, page); instr->state = MTD_ERASE_FAILED; goto erase_exit; } /* * Invalidate the page cache, if we erase the block which - * contains the current cached page + * contains the current cached page. */ if (page <= chip->pagebuf && chip->pagebuf < (page + pages_per_block)) chip->pagebuf = -1; - chip->erase_cmd(mtd, page & chip->pagemask); - - status = chip->waitfunc(mtd, chip); + status = chip->erase(mtd, page & chip->pagemask); /* * See if operation failed and additional status checks are @@ -2579,25 +2748,16 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, /* See if block erase succeeded */ if (status & NAND_STATUS_FAIL) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, " - "page 0x%08x\n", __func__, page); + pr_debug("%s: failed erase, page 0x%08x\n", + __func__, page); instr->state = MTD_ERASE_FAILED; instr->fail_addr = ((loff_t)page << chip->page_shift); goto erase_exit; } - /* - * If BBT requires refresh, set the BBT rewrite flag to the - * page being erased - */ - if (bbt_masked_page != 0xffffffff && - (page & BBT_PAGE_MASK) == bbt_masked_page) - rewrite_bbt[chipnr] = - ((loff_t)page << chip->page_shift); - /* Increment page address and decrement length */ - len -= (1 << chip->phys_erase_shift); + len -= (1ULL << chip->phys_erase_shift); page += pages_per_block; /* Check, if we cross a chip boundary */ @@ -2605,117 +2765,138 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, chipnr++; chip->select_chip(mtd, -1); chip->select_chip(mtd, chipnr); - - /* - * If BBT requires refresh and BBT-PERCHIP, set the BBT - * page mask to see if this BBT should be rewritten - */ - if (bbt_masked_page != 0xffffffff && - (chip->bbt_td->options & NAND_BBT_PERCHIP)) - bbt_masked_page = chip->bbt_td->pages[chipnr] & - BBT_PAGE_MASK; } } instr->state = MTD_ERASE_DONE; - erase_exit: +erase_exit: ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; /* Deselect and wake up anyone waiting on the device */ + chip->select_chip(mtd, -1); nand_release_device(mtd); /* Do call back function */ if (!ret) mtd_erase_callback(instr); - /* - * If BBT requires refresh and erase was successful, rewrite any - * selected bad block tables - */ - if (bbt_masked_page == 0xffffffff || ret) - return ret; - - for (chipnr = 0; chipnr < chip->numchips; chipnr++) { - if (!rewrite_bbt[chipnr]) - continue; - /* update the BBT for chip */ - DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt " - "(%d:0x%0llx 0x%0x)\n", __func__, chipnr, - rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]); - nand_update_bbt(mtd, rewrite_bbt[chipnr]); - } - /* Return more or less happy */ return ret; } /** * nand_sync - [MTD Interface] sync - * @mtd: MTD device structure + * @mtd: MTD device structure * - * Sync is actually a wait for chip ready function + * Sync is actually a wait for chip ready function. */ static void nand_sync(struct mtd_info *mtd) { - struct nand_chip *chip = mtd->priv; - - DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__); + pr_debug("%s: called\n", __func__); /* Grab the lock and see if the device is available */ - nand_get_device(chip, mtd, FL_SYNCING); + nand_get_device(mtd, FL_SYNCING); /* Release it and go back */ nand_release_device(mtd); } /** * nand_block_isbad - [MTD Interface] Check if block at offset is bad - * @mtd: MTD device structure - * @offs: offset relative to mtd start + * @mtd: MTD device structure + * @offs: offset relative to mtd start */ static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) { - /* Check for invalid offset */ - if (offs > mtd->size) - return -EINVAL; - return nand_block_checkbad(mtd, offs, 1, 0); } /** * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad - * @mtd: MTD device structure - * @ofs: offset relative to mtd start + * @mtd: MTD device structure + * @ofs: offset relative to mtd start */ static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) { - struct nand_chip *chip = mtd->priv; int ret; - if ((ret = nand_block_isbad(mtd, ofs))) { - /* If it was bad already, return success and do nothing. */ + ret = nand_block_isbad(mtd, ofs); + if (ret) { + /* If it was bad already, return success and do nothing */ if (ret > 0) return 0; return ret; } - return chip->block_markbad(mtd, ofs); + return nand_block_markbad_lowlevel(mtd, ofs); +} + +/** + * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand + * @mtd: MTD device structure + * @chip: nand chip info structure + * @addr: feature address. + * @subfeature_param: the subfeature parameters, a four bytes array. + */ +static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip, + int addr, uint8_t *subfeature_param) +{ + int status; + int i; + + if (!chip->onfi_version || + !(le16_to_cpu(chip->onfi_params.opt_cmd) + & ONFI_OPT_CMD_SET_GET_FEATURES)) + return -EINVAL; + + chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1); + for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) + chip->write_byte(mtd, subfeature_param[i]); + + status = chip->waitfunc(mtd, chip); + if (status & NAND_STATUS_FAIL) + return -EIO; + return 0; +} + +/** + * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand + * @mtd: MTD device structure + * @chip: nand chip info structure + * @addr: feature address. + * @subfeature_param: the subfeature parameters, a four bytes array. + */ +static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip, + int addr, uint8_t *subfeature_param) +{ + int i; + + if (!chip->onfi_version || + !(le16_to_cpu(chip->onfi_params.opt_cmd) + & ONFI_OPT_CMD_SET_GET_FEATURES)) + return -EINVAL; + + /* clear the sub feature parameters */ + memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN); + + chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1); + for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) + *subfeature_param++ = chip->read_byte(mtd); + return 0; } /** * nand_suspend - [MTD Interface] Suspend the NAND flash - * @mtd: MTD device structure + * @mtd: MTD device structure */ static int nand_suspend(struct mtd_info *mtd) { - struct nand_chip *chip = mtd->priv; - - return nand_get_device(chip, mtd, FL_PM_SUSPENDED); + return nand_get_device(mtd, FL_PM_SUSPENDED); } /** * nand_resume - [MTD Interface] Resume the NAND flash - * @mtd: MTD device structure + * @mtd: MTD device structure */ static void nand_resume(struct mtd_info *mtd) { @@ -2724,13 +2905,11 @@ static void nand_resume(struct mtd_info *mtd) if (chip->state == FL_PM_SUSPENDED) nand_release_device(mtd); else - printk(KERN_ERR "%s called for a chip which is not " - "in suspended state\n", __func__); + pr_err("%s called for a chip which is not in suspended state\n", + __func__); } -/* - * Set default functions - */ +/* Set default functions */ static void nand_set_defaults(struct nand_chip *chip, int busw) { /* check for proper chip_delay setup, set 20us if not */ @@ -2747,7 +2926,15 @@ static void nand_set_defaults(struct nand_chip *chip, int busw) if (!chip->select_chip) chip->select_chip = nand_select_chip; - if (!chip->read_byte) + + /* set for ONFI nand */ + if (!chip->onfi_set_features) + chip->onfi_set_features = nand_onfi_set_features; + if (!chip->onfi_get_features) + chip->onfi_get_features = nand_onfi_get_features; + + /* If called twice, pointers that depend on busw may need to be reset */ + if (!chip->read_byte || chip->read_byte == nand_read_byte) chip->read_byte = busw ? nand_read_byte16 : nand_read_byte; if (!chip->read_word) chip->read_word = nand_read_word; @@ -2755,12 +2942,12 @@ static void nand_set_defaults(struct nand_chip *chip, int busw) chip->block_bad = nand_block_bad; if (!chip->block_markbad) chip->block_markbad = nand_default_block_markbad; - if (!chip->write_buf) + if (!chip->write_buf || chip->write_buf == nand_write_buf) chip->write_buf = busw ? nand_write_buf16 : nand_write_buf; - if (!chip->read_buf) + if (!chip->write_byte || chip->write_byte == nand_write_byte) + chip->write_byte = busw ? nand_write_byte16 : nand_write_byte; + if (!chip->read_buf || chip->read_buf == nand_read_buf) chip->read_buf = busw ? nand_read_buf16 : nand_read_buf; - if (!chip->verify_buf) - chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf; if (!chip->scan_bbt) chip->scan_bbt = nand_default_bbt; @@ -2772,15 +2959,627 @@ static void nand_set_defaults(struct nand_chip *chip, int busw) } +/* Sanitize ONFI strings so we can safely print them */ +static void sanitize_string(uint8_t *s, size_t len) +{ + ssize_t i; + + /* Null terminate */ + s[len - 1] = 0; + + /* Remove non printable chars */ + for (i = 0; i < len - 1; i++) { + if (s[i] < ' ' || s[i] > 127) + s[i] = '?'; + } + + /* Remove trailing spaces */ + strim(s); +} + +static u16 onfi_crc16(u16 crc, u8 const *p, size_t len) +{ + int i; + while (len--) { + crc ^= *p++ << 8; + for (i = 0; i < 8; i++) + crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0); + } + + return crc; +} + +/* Parse the Extended Parameter Page. */ +static int nand_flash_detect_ext_param_page(struct mtd_info *mtd, + struct nand_chip *chip, struct nand_onfi_params *p) +{ + struct onfi_ext_param_page *ep; + struct onfi_ext_section *s; + struct onfi_ext_ecc_info *ecc; + uint8_t *cursor; + int ret = -EINVAL; + int len; + int i; + + len = le16_to_cpu(p->ext_param_page_length) * 16; + ep = kmalloc(len, GFP_KERNEL); + if (!ep) + return -ENOMEM; + + /* Send our own NAND_CMD_PARAM. */ + chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1); + + /* Use the Change Read Column command to skip the ONFI param pages. */ + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, + sizeof(*p) * p->num_of_param_pages , -1); + + /* Read out the Extended Parameter Page. */ + chip->read_buf(mtd, (uint8_t *)ep, len); + if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2) + != le16_to_cpu(ep->crc))) { + pr_debug("fail in the CRC.\n"); + goto ext_out; + } + + /* + * Check the signature. + * Do not strictly follow the ONFI spec, maybe changed in future. + */ + if (strncmp(ep->sig, "EPPS", 4)) { + pr_debug("The signature is invalid.\n"); + goto ext_out; + } + + /* find the ECC section. */ + cursor = (uint8_t *)(ep + 1); + for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) { + s = ep->sections + i; + if (s->type == ONFI_SECTION_TYPE_2) + break; + cursor += s->length * 16; + } + if (i == ONFI_EXT_SECTION_MAX) { + pr_debug("We can not find the ECC section.\n"); + goto ext_out; + } + + /* get the info we want. */ + ecc = (struct onfi_ext_ecc_info *)cursor; + + if (!ecc->codeword_size) { + pr_debug("Invalid codeword size\n"); + goto ext_out; + } + + chip->ecc_strength_ds = ecc->ecc_bits; + chip->ecc_step_ds = 1 << ecc->codeword_size; + ret = 0; + +ext_out: + kfree(ep); + return ret; +} + +static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode) +{ + struct nand_chip *chip = mtd->priv; + uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode}; + + return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY, + feature); +} + +/* + * Configure chip properties from Micron vendor-specific ONFI table + */ +static void nand_onfi_detect_micron(struct nand_chip *chip, + struct nand_onfi_params *p) +{ + struct nand_onfi_vendor_micron *micron = (void *)p->vendor; + + if (le16_to_cpu(p->vendor_revision) < 1) + return; + + chip->read_retries = micron->read_retry_options; + chip->setup_read_retry = nand_setup_read_retry_micron; +} + +/* + * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise. + */ +static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip, + int *busw) +{ + struct nand_onfi_params *p = &chip->onfi_params; + int i, j; + int val; + + /* Try ONFI for unknown chip or LP */ + chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1); + if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' || + chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I') + return 0; + + chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1); + for (i = 0; i < 3; i++) { + for (j = 0; j < sizeof(*p); j++) + ((uint8_t *)p)[j] = chip->read_byte(mtd); + if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) == + le16_to_cpu(p->crc)) { + break; + } + } + + if (i == 3) { + pr_err("Could not find valid ONFI parameter page; aborting\n"); + return 0; + } + + /* Check version */ + val = le16_to_cpu(p->revision); + if (val & (1 << 5)) + chip->onfi_version = 23; + else if (val & (1 << 4)) + chip->onfi_version = 22; + else if (val & (1 << 3)) + chip->onfi_version = 21; + else if (val & (1 << 2)) + chip->onfi_version = 20; + else if (val & (1 << 1)) + chip->onfi_version = 10; + + if (!chip->onfi_version) { + pr_info("unsupported ONFI version: %d\n", val); + return 0; + } + + sanitize_string(p->manufacturer, sizeof(p->manufacturer)); + sanitize_string(p->model, sizeof(p->model)); + if (!mtd->name) + mtd->name = p->model; + + mtd->writesize = le32_to_cpu(p->byte_per_page); + + /* + * pages_per_block and blocks_per_lun may not be a power-of-2 size + * (don't ask me who thought of this...). MTD assumes that these + * dimensions will be power-of-2, so just truncate the remaining area. + */ + mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1); + mtd->erasesize *= mtd->writesize; + + mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); + + /* See erasesize comment */ + chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1); + chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count; + chip->bits_per_cell = p->bits_per_cell; + + if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS) + *busw = NAND_BUSWIDTH_16; + else + *busw = 0; + + if (p->ecc_bits != 0xff) { + chip->ecc_strength_ds = p->ecc_bits; + chip->ecc_step_ds = 512; + } else if (chip->onfi_version >= 21 && + (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) { + + /* + * The nand_flash_detect_ext_param_page() uses the + * Change Read Column command which maybe not supported + * by the chip->cmdfunc. So try to update the chip->cmdfunc + * now. We do not replace user supplied command function. + */ + if (mtd->writesize > 512 && chip->cmdfunc == nand_command) + chip->cmdfunc = nand_command_lp; + + /* The Extended Parameter Page is supported since ONFI 2.1. */ + if (nand_flash_detect_ext_param_page(mtd, chip, p)) + pr_warn("Failed to detect ONFI extended param page\n"); + } else { + pr_warn("Could not retrieve ONFI ECC requirements\n"); + } + + if (p->jedec_id == NAND_MFR_MICRON) + nand_onfi_detect_micron(chip, p); + + return 1; +} + /* - * Get the flash and manufacturer id and lookup if the type is supported + * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise. + */ +static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip, + int *busw) +{ + struct nand_jedec_params *p = &chip->jedec_params; + struct jedec_ecc_info *ecc; + int val; + int i, j; + + /* Try JEDEC for unknown chip or LP */ + chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1); + if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' || + chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' || + chip->read_byte(mtd) != 'C') + return 0; + + chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1); + for (i = 0; i < 3; i++) { + for (j = 0; j < sizeof(*p); j++) + ((uint8_t *)p)[j] = chip->read_byte(mtd); + + if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) == + le16_to_cpu(p->crc)) + break; + } + + if (i == 3) { + pr_err("Could not find valid JEDEC parameter page; aborting\n"); + return 0; + } + + /* Check version */ + val = le16_to_cpu(p->revision); + if (val & (1 << 2)) + chip->jedec_version = 10; + else if (val & (1 << 1)) + chip->jedec_version = 1; /* vendor specific version */ + + if (!chip->jedec_version) { + pr_info("unsupported JEDEC version: %d\n", val); + return 0; + } + + sanitize_string(p->manufacturer, sizeof(p->manufacturer)); + sanitize_string(p->model, sizeof(p->model)); + if (!mtd->name) + mtd->name = p->model; + + mtd->writesize = le32_to_cpu(p->byte_per_page); + + /* Please reference to the comment for nand_flash_detect_onfi. */ + mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1); + mtd->erasesize *= mtd->writesize; + + mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); + + /* Please reference to the comment for nand_flash_detect_onfi. */ + chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1); + chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count; + chip->bits_per_cell = p->bits_per_cell; + + if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS) + *busw = NAND_BUSWIDTH_16; + else + *busw = 0; + + /* ECC info */ + ecc = &p->ecc_info[0]; + + if (ecc->codeword_size >= 9) { + chip->ecc_strength_ds = ecc->ecc_bits; + chip->ecc_step_ds = 1 << ecc->codeword_size; + } else { + pr_warn("Invalid codeword size\n"); + } + + return 1; +} + +/* + * nand_id_has_period - Check if an ID string has a given wraparound period + * @id_data: the ID string + * @arrlen: the length of the @id_data array + * @period: the period of repitition + * + * Check if an ID string is repeated within a given sequence of bytes at + * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a + * period of 3). This is a helper function for nand_id_len(). Returns non-zero + * if the repetition has a period of @period; otherwise, returns zero. + */ +static int nand_id_has_period(u8 *id_data, int arrlen, int period) +{ + int i, j; + for (i = 0; i < period; i++) + for (j = i + period; j < arrlen; j += period) + if (id_data[i] != id_data[j]) + return 0; + return 1; +} + +/* + * nand_id_len - Get the length of an ID string returned by CMD_READID + * @id_data: the ID string + * @arrlen: the length of the @id_data array + + * Returns the length of the ID string, according to known wraparound/trailing + * zero patterns. If no pattern exists, returns the length of the array. + */ +static int nand_id_len(u8 *id_data, int arrlen) +{ + int last_nonzero, period; + + /* Find last non-zero byte */ + for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) + if (id_data[last_nonzero]) + break; + + /* All zeros */ + if (last_nonzero < 0) + return 0; + + /* Calculate wraparound period */ + for (period = 1; period < arrlen; period++) + if (nand_id_has_period(id_data, arrlen, period)) + break; + + /* There's a repeated pattern */ + if (period < arrlen) + return period; + + /* There are trailing zeros */ + if (last_nonzero < arrlen - 1) + return last_nonzero + 1; + + /* No pattern detected */ + return arrlen; +} + +/* Extract the bits of per cell from the 3rd byte of the extended ID */ +static int nand_get_bits_per_cell(u8 cellinfo) +{ + int bits; + + bits = cellinfo & NAND_CI_CELLTYPE_MSK; + bits >>= NAND_CI_CELLTYPE_SHIFT; + return bits + 1; +} + +/* + * Many new NAND share similar device ID codes, which represent the size of the + * chip. The rest of the parameters must be decoded according to generic or + * manufacturer-specific "extended ID" decoding patterns. + */ +static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip, + u8 id_data[8], int *busw) +{ + int extid, id_len; + /* The 3rd id byte holds MLC / multichip data */ + chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); + /* The 4th id byte is the important one */ + extid = id_data[3]; + + id_len = nand_id_len(id_data, 8); + + /* + * Field definitions are in the following datasheets: + * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32) + * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44) + * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22) + * + * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung + * ID to decide what to do. + */ + if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG && + !nand_is_slc(chip) && id_data[5] != 0x00) { + /* Calc pagesize */ + mtd->writesize = 2048 << (extid & 0x03); + extid >>= 2; + /* Calc oobsize */ + switch (((extid >> 2) & 0x04) | (extid & 0x03)) { + case 1: + mtd->oobsize = 128; + break; + case 2: + mtd->oobsize = 218; + break; + case 3: + mtd->oobsize = 400; + break; + case 4: + mtd->oobsize = 436; + break; + case 5: + mtd->oobsize = 512; + break; + case 6: + mtd->oobsize = 640; + break; + case 7: + default: /* Other cases are "reserved" (unknown) */ + mtd->oobsize = 1024; + break; + } + extid >>= 2; + /* Calc blocksize */ + mtd->erasesize = (128 * 1024) << + (((extid >> 1) & 0x04) | (extid & 0x03)); + *busw = 0; + } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX && + !nand_is_slc(chip)) { + unsigned int tmp; + + /* Calc pagesize */ + mtd->writesize = 2048 << (extid & 0x03); + extid >>= 2; + /* Calc oobsize */ + switch (((extid >> 2) & 0x04) | (extid & 0x03)) { + case 0: + mtd->oobsize = 128; + break; + case 1: + mtd->oobsize = 224; + break; + case 2: + mtd->oobsize = 448; + break; + case 3: + mtd->oobsize = 64; + break; + case 4: + mtd->oobsize = 32; + break; + case 5: + mtd->oobsize = 16; + break; + default: + mtd->oobsize = 640; + break; + } + extid >>= 2; + /* Calc blocksize */ + tmp = ((extid >> 1) & 0x04) | (extid & 0x03); + if (tmp < 0x03) + mtd->erasesize = (128 * 1024) << tmp; + else if (tmp == 0x03) + mtd->erasesize = 768 * 1024; + else + mtd->erasesize = (64 * 1024) << tmp; + *busw = 0; + } else { + /* Calc pagesize */ + mtd->writesize = 1024 << (extid & 0x03); + extid >>= 2; + /* Calc oobsize */ + mtd->oobsize = (8 << (extid & 0x01)) * + (mtd->writesize >> 9); + extid >>= 2; + /* Calc blocksize. Blocksize is multiples of 64KiB */ + mtd->erasesize = (64 * 1024) << (extid & 0x03); + extid >>= 2; + /* Get buswidth information */ + *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0; + + /* + * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per + * 512B page. For Toshiba SLC, we decode the 5th/6th byte as + * follows: + * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm, + * 110b -> 24nm + * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC + */ + if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA && + nand_is_slc(chip) && + (id_data[5] & 0x7) == 0x6 /* 24nm */ && + !(id_data[4] & 0x80) /* !BENAND */) { + mtd->oobsize = 32 * mtd->writesize >> 9; + } + + } +} + +/* + * Old devices have chip data hardcoded in the device ID table. nand_decode_id + * decodes a matching ID table entry and assigns the MTD size parameters for + * the chip. + */ +static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip, + struct nand_flash_dev *type, u8 id_data[8], + int *busw) +{ + int maf_id = id_data[0]; + + mtd->erasesize = type->erasesize; + mtd->writesize = type->pagesize; + mtd->oobsize = mtd->writesize / 32; + *busw = type->options & NAND_BUSWIDTH_16; + + /* All legacy ID NAND are small-page, SLC */ + chip->bits_per_cell = 1; + + /* + * Check for Spansion/AMD ID + repeating 5th, 6th byte since + * some Spansion chips have erasesize that conflicts with size + * listed in nand_ids table. + * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39) + */ + if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00 + && id_data[6] == 0x00 && id_data[7] == 0x00 + && mtd->writesize == 512) { + mtd->erasesize = 128 * 1024; + mtd->erasesize <<= ((id_data[3] & 0x03) << 1); + } +} + +/* + * Set the bad block marker/indicator (BBM/BBI) patterns according to some + * heuristic patterns using various detected parameters (e.g., manufacturer, + * page size, cell-type information). + */ +static void nand_decode_bbm_options(struct mtd_info *mtd, + struct nand_chip *chip, u8 id_data[8]) +{ + int maf_id = id_data[0]; + + /* Set the bad block position */ + if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) + chip->badblockpos = NAND_LARGE_BADBLOCK_POS; + else + chip->badblockpos = NAND_SMALL_BADBLOCK_POS; + + /* + * Bad block marker is stored in the last page of each block on Samsung + * and Hynix MLC devices; stored in first two pages of each block on + * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba, + * AMD/Spansion, and Macronix. All others scan only the first page. + */ + if (!nand_is_slc(chip) && + (maf_id == NAND_MFR_SAMSUNG || + maf_id == NAND_MFR_HYNIX)) + chip->bbt_options |= NAND_BBT_SCANLASTPAGE; + else if ((nand_is_slc(chip) && + (maf_id == NAND_MFR_SAMSUNG || + maf_id == NAND_MFR_HYNIX || + maf_id == NAND_MFR_TOSHIBA || + maf_id == NAND_MFR_AMD || + maf_id == NAND_MFR_MACRONIX)) || + (mtd->writesize == 2048 && + maf_id == NAND_MFR_MICRON)) + chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; +} + +static inline bool is_full_id_nand(struct nand_flash_dev *type) +{ + return type->id_len; +} + +static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip, + struct nand_flash_dev *type, u8 *id_data, int *busw) +{ + if (!strncmp(type->id, id_data, type->id_len)) { + mtd->writesize = type->pagesize; + mtd->erasesize = type->erasesize; + mtd->oobsize = type->oobsize; + + chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); + chip->chipsize = (uint64_t)type->chipsize << 20; + chip->options |= type->options; + chip->ecc_strength_ds = NAND_ECC_STRENGTH(type); + chip->ecc_step_ds = NAND_ECC_STEP(type); + + *busw = type->options & NAND_BUSWIDTH_16; + + if (!mtd->name) + mtd->name = type->name; + + return true; + } + return false; +} + +/* + * Get the flash and manufacturer id and lookup if the type is supported. */ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, struct nand_chip *chip, - int busw, int *maf_id, + int *maf_id, int *dev_id, struct nand_flash_dev *type) { - int i, dev_id, maf_idx; + int busw; + int i, maf_idx; u8 id_data[8]; /* Select the device */ @@ -2788,7 +3587,7 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, /* * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) - * after power-up + * after power-up. */ chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); @@ -2797,9 +3596,10 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, /* Read manufacturer and device IDs */ *maf_id = chip->read_byte(mtd); - dev_id = chip->read_byte(mtd); + *dev_id = chip->read_byte(mtd); - /* Try again to make sure, as some systems the bus-hold or other + /* + * Try again to make sure, as some systems the bus-hold or other * interface concerns can cause random data which looks like a * possibly credible NAND flash to appear. If the two results do * not match, ignore the device completely. @@ -2808,23 +3608,37 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); /* Read entire ID string */ - for (i = 0; i < 8; i++) id_data[i] = chip->read_byte(mtd); - if (id_data[0] != *maf_id || id_data[1] != dev_id) { - printk(KERN_INFO "%s: second ID read did not match " - "%02x,%02x against %02x,%02x\n", __func__, - *maf_id, dev_id, id_data[0], id_data[1]); + if (id_data[0] != *maf_id || id_data[1] != *dev_id) { + pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", + *maf_id, *dev_id, id_data[0], id_data[1]); return ERR_PTR(-ENODEV); } if (!type) type = nand_flash_ids; - for (; type->name != NULL; type++) - if (dev_id == type->id) - break; + for (; type->name != NULL; type++) { + if (is_full_id_nand(type)) { + if (find_full_id_nand(mtd, chip, type, id_data, &busw)) + goto ident_done; + } else if (*dev_id == type->dev_id) { + break; + } + } + + chip->onfi_version = 0; + if (!type->name || !type->pagesize) { + /* Check if the chip is ONFI compliant */ + if (nand_flash_detect_onfi(mtd, chip, &busw)) + goto ident_done; + + /* Check if the chip is JEDEC compliant */ + if (nand_flash_detect_jedec(mtd, chip, &busw)) + goto ident_done; + } if (!type->name) return ERR_PTR(-ENODEV); @@ -2834,58 +3648,25 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, chip->chipsize = (uint64_t)type->chipsize << 20; - /* Newer devices have all the information in additional id bytes */ - if (!type->pagesize) { - int extid; - /* The 3rd id byte holds MLC / multichip data */ - chip->cellinfo = id_data[2]; - /* The 4th id byte is the important one */ - extid = id_data[3]; - - /* - * Field definitions are in the following datasheets: - * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32) - * New style (6 byte ID): Samsung K9GAG08U0D (p.40) - * - * Check for wraparound + Samsung ID + nonzero 6th byte - * to decide what to do. - */ - if (id_data[0] == id_data[6] && id_data[1] == id_data[7] && - id_data[0] == NAND_MFR_SAMSUNG && - id_data[5] != 0x00) { - /* Calc pagesize */ - mtd->writesize = 2048 << (extid & 0x03); - extid >>= 2; - /* Calc oobsize */ - mtd->oobsize = (extid & 0x03) == 0x01 ? 128 : 218; - extid >>= 2; - /* Calc blocksize */ - mtd->erasesize = (128 * 1024) << - (((extid >> 1) & 0x04) | (extid & 0x03)); - busw = 0; - } else { - /* Calc pagesize */ - mtd->writesize = 1024 << (extid & 0x03); - extid >>= 2; - /* Calc oobsize */ - mtd->oobsize = (8 << (extid & 0x01)) * - (mtd->writesize >> 9); - extid >>= 2; - /* Calc blocksize. Blocksize is multiples of 64KiB */ - mtd->erasesize = (64 * 1024) << (extid & 0x03); - extid >>= 2; - /* Get buswidth information */ - busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0; - } + if (!type->pagesize && chip->init_size) { + /* Set the pagesize, oobsize, erasesize by the driver */ + busw = chip->init_size(mtd, chip, id_data); + } else if (!type->pagesize) { + /* Decode parameters from extended ID */ + nand_decode_ext_id(mtd, chip, id_data, &busw); } else { - /* - * Old devices have chip data hardcoded in the device id table - */ - mtd->erasesize = type->erasesize; - mtd->writesize = type->pagesize; - mtd->oobsize = mtd->writesize / 32; - busw = type->options & NAND_BUSWIDTH_16; + nand_decode_id(mtd, chip, type, id_data, &busw); } + /* Get chip options */ + chip->options |= type->options; + + /* + * Check if chip is not a Samsung device. Do not clear the + * options for chips which do not have an extended id. + */ + if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize) + chip->options &= ~NAND_SAMSUNG_LP_OPTIONS; +ident_done: /* Try to identify manufacturer */ for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) { @@ -2893,111 +3674,100 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, break; } - /* - * Check, if buswidth is correct. Hardware drivers should set - * chip correct ! - */ - if (busw != (chip->options & NAND_BUSWIDTH_16)) { - printk(KERN_INFO "NAND device: Manufacturer ID:" - " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, - dev_id, nand_manuf_ids[maf_idx].name, mtd->name); - printk(KERN_WARNING "NAND bus width %d instead %d bit\n", - (chip->options & NAND_BUSWIDTH_16) ? 16 : 8, - busw ? 16 : 8); + if (chip->options & NAND_BUSWIDTH_AUTO) { + WARN_ON(chip->options & NAND_BUSWIDTH_16); + chip->options |= busw; + nand_set_defaults(chip, busw); + } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { + /* + * Check, if buswidth is correct. Hardware drivers should set + * chip correct! + */ + pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", + *maf_id, *dev_id); + pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name); + pr_warn("bus width %d instead %d bit\n", + (chip->options & NAND_BUSWIDTH_16) ? 16 : 8, + busw ? 16 : 8); return ERR_PTR(-EINVAL); } + nand_decode_bbm_options(mtd, chip, id_data); + /* Calculate the address shift from the page size */ chip->page_shift = ffs(mtd->writesize) - 1; - /* Convert chipsize to number of pages per chip -1. */ + /* Convert chipsize to number of pages per chip -1 */ chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; chip->bbt_erase_shift = chip->phys_erase_shift = ffs(mtd->erasesize) - 1; if (chip->chipsize & 0xffffffff) chip->chip_shift = ffs((unsigned)chip->chipsize) - 1; - else - chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)) + 32 - 1; + else { + chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)); + chip->chip_shift += 32 - 1; + } - /* Set the bad block position */ - chip->badblockpos = mtd->writesize > 512 ? - NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS; chip->badblockbits = 8; + chip->erase = single_erase; - /* Get chip options, preserve non chip based options */ - chip->options &= ~NAND_CHIPOPTIONS_MSK; - chip->options |= type->options & NAND_CHIPOPTIONS_MSK; - - /* - * Set chip as a default. Board drivers can override it, if necessary - */ - chip->options |= NAND_NO_AUTOINCR; - - /* Check if chip is a not a samsung device. Do not clear the - * options for chips which are not having an extended id. - */ - if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize) - chip->options &= ~NAND_SAMSUNG_LP_OPTIONS; - - /* - * Bad block marker is stored in the last page of each block - * on Samsung and Hynix MLC devices - */ - if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) && - (*maf_id == NAND_MFR_SAMSUNG || - *maf_id == NAND_MFR_HYNIX)) - chip->options |= NAND_BB_LAST_PAGE; - - /* Check for AND chips with 4 page planes */ - if (chip->options & NAND_4PAGE_ARRAY) - chip->erase_cmd = multi_erase_cmd; - else - chip->erase_cmd = single_erase_cmd; - - /* Do not replace user supplied command function ! */ + /* Do not replace user supplied command function! */ if (mtd->writesize > 512 && chip->cmdfunc == nand_command) chip->cmdfunc = nand_command_lp; - printk(KERN_INFO "NAND device: Manufacturer ID:" - " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id, - nand_manuf_ids[maf_idx].name, type->name); + pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", + *maf_id, *dev_id); + + if (chip->onfi_version) + pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, + chip->onfi_params.model); + else if (chip->jedec_version) + pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, + chip->jedec_params.model); + else + pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, + type->name); + pr_info("%dMiB, %s, page size: %d, OOB size: %d\n", + (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", + mtd->writesize, mtd->oobsize); return type; } /** * nand_scan_ident - [NAND Interface] Scan for the NAND device - * @mtd: MTD device structure - * @maxchips: Number of chips to scan for - * @table: Alternative NAND ID table + * @mtd: MTD device structure + * @maxchips: number of chips to scan for + * @table: alternative NAND ID table * - * This is the first phase of the normal nand_scan() function. It - * reads the flash ID and sets up MTD fields accordingly. + * This is the first phase of the normal nand_scan() function. It reads the + * flash ID and sets up MTD fields accordingly. * * The mtd->owner field must be set to the module of the caller. */ int nand_scan_ident(struct mtd_info *mtd, int maxchips, struct nand_flash_dev *table) { - int i, busw, nand_maf_id; + int i, nand_maf_id, nand_dev_id; struct nand_chip *chip = mtd->priv; struct nand_flash_dev *type; - /* Get buswidth to select the correct functions */ - busw = chip->options & NAND_BUSWIDTH_16; /* Set the default functions */ - nand_set_defaults(chip, busw); + nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16); /* Read the flash type */ - type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id, table); + type = nand_get_flash_type(mtd, chip, &nand_maf_id, + &nand_dev_id, table); if (IS_ERR(type)) { if (!(chip->options & NAND_SCAN_SILENT_NODEV)) - printk(KERN_WARNING "No NAND device found.\n"); + pr_warn("No NAND device found\n"); chip->select_chip(mtd, -1); return PTR_ERR(type); } + chip->select_chip(mtd, -1); + /* Check for a chip array */ for (i = 1; i < maxchips; i++) { chip->select_chip(mtd, i); @@ -3007,11 +3777,14 @@ int nand_scan_ident(struct mtd_info *mtd, int maxchips, chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); /* Read manufacturer and device IDs */ if (nand_maf_id != chip->read_byte(mtd) || - type->id != chip->read_byte(mtd)) + nand_dev_id != chip->read_byte(mtd)) { + chip->select_chip(mtd, -1); break; + } + chip->select_chip(mtd, -1); } if (i > 1) - printk(KERN_INFO "%d NAND chips detected\n", i); + pr_info("%d chips detected\n", i); /* Store the number of chips and calc total size for mtd */ chip->numchips = i; @@ -3019,49 +3792,99 @@ int nand_scan_ident(struct mtd_info *mtd, int maxchips, return 0; } +EXPORT_SYMBOL(nand_scan_ident); + +/* + * Check if the chip configuration meet the datasheet requirements. + + * If our configuration corrects A bits per B bytes and the minimum + * required correction level is X bits per Y bytes, then we must ensure + * both of the following are true: + * + * (1) A / B >= X / Y + * (2) A >= X + * + * Requirement (1) ensures we can correct for the required bitflip density. + * Requirement (2) ensures we can correct even when all bitflips are clumped + * in the same sector. + */ +static bool nand_ecc_strength_good(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct nand_ecc_ctrl *ecc = &chip->ecc; + int corr, ds_corr; + + if (ecc->size == 0 || chip->ecc_step_ds == 0) + /* Not enough information */ + return true; + /* + * We get the number of corrected bits per page to compare + * the correction density. + */ + corr = (mtd->writesize * ecc->strength) / ecc->size; + ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds; + + return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds; +} /** * nand_scan_tail - [NAND Interface] Scan for the NAND device - * @mtd: MTD device structure + * @mtd: MTD device structure * - * This is the second phase of the normal nand_scan() function. It - * fills out all the uninitialized function pointers with the defaults - * and scans for a bad block table if appropriate. + * This is the second phase of the normal nand_scan() function. It fills out + * all the uninitialized function pointers with the defaults and scans for a + * bad block table if appropriate. */ int nand_scan_tail(struct mtd_info *mtd) { int i; struct nand_chip *chip = mtd->priv; - - if (!(chip->options & NAND_OWN_BUFFERS)) - chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL); - if (!chip->buffers) - return -ENOMEM; + struct nand_ecc_ctrl *ecc = &chip->ecc; + struct nand_buffers *nbuf; + + /* New bad blocks should be marked in OOB, flash-based BBT, or both */ + BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && + !(chip->bbt_options & NAND_BBT_USE_FLASH)); + + if (!(chip->options & NAND_OWN_BUFFERS)) { + nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize + + mtd->oobsize * 3, GFP_KERNEL); + if (!nbuf) + return -ENOMEM; + nbuf->ecccalc = (uint8_t *)(nbuf + 1); + nbuf->ecccode = nbuf->ecccalc + mtd->oobsize; + nbuf->databuf = nbuf->ecccode + mtd->oobsize; + + chip->buffers = nbuf; + } else { + if (!chip->buffers) + return -ENOMEM; + } /* Set the internal oob buffer location, just after the page data */ chip->oob_poi = chip->buffers->databuf + mtd->writesize; /* - * If no default placement scheme is given, select an appropriate one + * If no default placement scheme is given, select an appropriate one. */ - if (!chip->ecc.layout) { + if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) { switch (mtd->oobsize) { case 8: - chip->ecc.layout = &nand_oob_8; + ecc->layout = &nand_oob_8; break; case 16: - chip->ecc.layout = &nand_oob_16; + ecc->layout = &nand_oob_16; break; case 64: - chip->ecc.layout = &nand_oob_64; + ecc->layout = &nand_oob_64; break; case 128: - chip->ecc.layout = &nand_oob_128; + ecc->layout = &nand_oob_128; break; default: - printk(KERN_WARNING "No oob scheme defined for " - "oobsize %d\n", mtd->oobsize); + pr_warn("No oob scheme defined for oobsize %d\n", + mtd->oobsize); BUG(); } } @@ -3070,132 +3893,179 @@ int nand_scan_tail(struct mtd_info *mtd) chip->write_page = nand_write_page; /* - * check ECC mode, default to software if 3byte/512byte hardware ECC is + * Check ECC mode, default to software if 3byte/512byte hardware ECC is * selected and we have 256 byte pagesize fallback to software ECC */ - switch (chip->ecc.mode) { + switch (ecc->mode) { case NAND_ECC_HW_OOB_FIRST: /* Similar to NAND_ECC_HW, but a separate read_page handle */ - if (!chip->ecc.calculate || !chip->ecc.correct || - !chip->ecc.hwctl) { - printk(KERN_WARNING "No ECC functions supplied; " - "Hardware ECC not possible\n"); + if (!ecc->calculate || !ecc->correct || !ecc->hwctl) { + pr_warn("No ECC functions supplied; " + "hardware ECC not possible\n"); BUG(); } - if (!chip->ecc.read_page) - chip->ecc.read_page = nand_read_page_hwecc_oob_first; + if (!ecc->read_page) + ecc->read_page = nand_read_page_hwecc_oob_first; case NAND_ECC_HW: - /* Use standard hwecc read page function ? */ - if (!chip->ecc.read_page) - chip->ecc.read_page = nand_read_page_hwecc; - if (!chip->ecc.write_page) - chip->ecc.write_page = nand_write_page_hwecc; - if (!chip->ecc.read_page_raw) - chip->ecc.read_page_raw = nand_read_page_raw; - if (!chip->ecc.write_page_raw) - chip->ecc.write_page_raw = nand_write_page_raw; - if (!chip->ecc.read_oob) - chip->ecc.read_oob = nand_read_oob_std; - if (!chip->ecc.write_oob) - chip->ecc.write_oob = nand_write_oob_std; + /* Use standard hwecc read page function? */ + if (!ecc->read_page) + ecc->read_page = nand_read_page_hwecc; + if (!ecc->write_page) + ecc->write_page = nand_write_page_hwecc; + if (!ecc->read_page_raw) + ecc->read_page_raw = nand_read_page_raw; + if (!ecc->write_page_raw) + ecc->write_page_raw = nand_write_page_raw; + if (!ecc->read_oob) + ecc->read_oob = nand_read_oob_std; + if (!ecc->write_oob) + ecc->write_oob = nand_write_oob_std; + if (!ecc->read_subpage) + ecc->read_subpage = nand_read_subpage; + if (!ecc->write_subpage) + ecc->write_subpage = nand_write_subpage_hwecc; case NAND_ECC_HW_SYNDROME: - if ((!chip->ecc.calculate || !chip->ecc.correct || - !chip->ecc.hwctl) && - (!chip->ecc.read_page || - chip->ecc.read_page == nand_read_page_hwecc || - !chip->ecc.write_page || - chip->ecc.write_page == nand_write_page_hwecc)) { - printk(KERN_WARNING "No ECC functions supplied; " - "Hardware ECC not possible\n"); + if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && + (!ecc->read_page || + ecc->read_page == nand_read_page_hwecc || + !ecc->write_page || + ecc->write_page == nand_write_page_hwecc)) { + pr_warn("No ECC functions supplied; " + "hardware ECC not possible\n"); BUG(); } - /* Use standard syndrome read/write page function ? */ - if (!chip->ecc.read_page) - chip->ecc.read_page = nand_read_page_syndrome; - if (!chip->ecc.write_page) - chip->ecc.write_page = nand_write_page_syndrome; - if (!chip->ecc.read_page_raw) - chip->ecc.read_page_raw = nand_read_page_raw_syndrome; - if (!chip->ecc.write_page_raw) - chip->ecc.write_page_raw = nand_write_page_raw_syndrome; - if (!chip->ecc.read_oob) - chip->ecc.read_oob = nand_read_oob_syndrome; - if (!chip->ecc.write_oob) - chip->ecc.write_oob = nand_write_oob_syndrome; - - if (mtd->writesize >= chip->ecc.size) + /* Use standard syndrome read/write page function? */ + if (!ecc->read_page) + ecc->read_page = nand_read_page_syndrome; + if (!ecc->write_page) + ecc->write_page = nand_write_page_syndrome; + if (!ecc->read_page_raw) + ecc->read_page_raw = nand_read_page_raw_syndrome; + if (!ecc->write_page_raw) + ecc->write_page_raw = nand_write_page_raw_syndrome; + if (!ecc->read_oob) + ecc->read_oob = nand_read_oob_syndrome; + if (!ecc->write_oob) + ecc->write_oob = nand_write_oob_syndrome; + + if (mtd->writesize >= ecc->size) { + if (!ecc->strength) { + pr_warn("Driver must set ecc.strength when using hardware ECC\n"); + BUG(); + } break; - printk(KERN_WARNING "%d byte HW ECC not possible on " - "%d byte page size, fallback to SW ECC\n", - chip->ecc.size, mtd->writesize); - chip->ecc.mode = NAND_ECC_SOFT; + } + pr_warn("%d byte HW ECC not possible on " + "%d byte page size, fallback to SW ECC\n", + ecc->size, mtd->writesize); + ecc->mode = NAND_ECC_SOFT; case NAND_ECC_SOFT: - chip->ecc.calculate = nand_calculate_ecc; - chip->ecc.correct = nand_correct_data; - chip->ecc.read_page = nand_read_page_swecc; - chip->ecc.read_subpage = nand_read_subpage; - chip->ecc.write_page = nand_write_page_swecc; - chip->ecc.read_page_raw = nand_read_page_raw; - chip->ecc.write_page_raw = nand_write_page_raw; - chip->ecc.read_oob = nand_read_oob_std; - chip->ecc.write_oob = nand_write_oob_std; - if (!chip->ecc.size) - chip->ecc.size = 256; - chip->ecc.bytes = 3; + ecc->calculate = nand_calculate_ecc; + ecc->correct = nand_correct_data; + ecc->read_page = nand_read_page_swecc; + ecc->read_subpage = nand_read_subpage; + ecc->write_page = nand_write_page_swecc; + ecc->read_page_raw = nand_read_page_raw; + ecc->write_page_raw = nand_write_page_raw; + ecc->read_oob = nand_read_oob_std; + ecc->write_oob = nand_write_oob_std; + if (!ecc->size) + ecc->size = 256; + ecc->bytes = 3; + ecc->strength = 1; + break; + + case NAND_ECC_SOFT_BCH: + if (!mtd_nand_has_bch()) { + pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n"); + BUG(); + } + ecc->calculate = nand_bch_calculate_ecc; + ecc->correct = nand_bch_correct_data; + ecc->read_page = nand_read_page_swecc; + ecc->read_subpage = nand_read_subpage; + ecc->write_page = nand_write_page_swecc; + ecc->read_page_raw = nand_read_page_raw; + ecc->write_page_raw = nand_write_page_raw; + ecc->read_oob = nand_read_oob_std; + ecc->write_oob = nand_write_oob_std; + /* + * Board driver should supply ecc.size and ecc.bytes values to + * select how many bits are correctable; see nand_bch_init() + * for details. Otherwise, default to 4 bits for large page + * devices. + */ + if (!ecc->size && (mtd->oobsize >= 64)) { + ecc->size = 512; + ecc->bytes = 7; + } + ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes, + &ecc->layout); + if (!ecc->priv) { + pr_warn("BCH ECC initialization failed!\n"); + BUG(); + } + ecc->strength = ecc->bytes * 8 / fls(8 * ecc->size); break; case NAND_ECC_NONE: - printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. " - "This is not recommended !!\n"); - chip->ecc.read_page = nand_read_page_raw; - chip->ecc.write_page = nand_write_page_raw; - chip->ecc.read_oob = nand_read_oob_std; - chip->ecc.read_page_raw = nand_read_page_raw; - chip->ecc.write_page_raw = nand_write_page_raw; - chip->ecc.write_oob = nand_write_oob_std; - chip->ecc.size = mtd->writesize; - chip->ecc.bytes = 0; + pr_warn("NAND_ECC_NONE selected by board driver. " + "This is not recommended!\n"); + ecc->read_page = nand_read_page_raw; + ecc->write_page = nand_write_page_raw; + ecc->read_oob = nand_read_oob_std; + ecc->read_page_raw = nand_read_page_raw; + ecc->write_page_raw = nand_write_page_raw; + ecc->write_oob = nand_write_oob_std; + ecc->size = mtd->writesize; + ecc->bytes = 0; + ecc->strength = 0; break; default: - printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n", - chip->ecc.mode); + pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode); BUG(); } + /* For many systems, the standard OOB write also works for raw */ + if (!ecc->read_oob_raw) + ecc->read_oob_raw = ecc->read_oob; + if (!ecc->write_oob_raw) + ecc->write_oob_raw = ecc->write_oob; + /* * The number of bytes available for a client to place data into - * the out of band area + * the out of band area. */ - chip->ecc.layout->oobavail = 0; - for (i = 0; chip->ecc.layout->oobfree[i].length - && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++) - chip->ecc.layout->oobavail += - chip->ecc.layout->oobfree[i].length; - mtd->oobavail = chip->ecc.layout->oobavail; + ecc->layout->oobavail = 0; + for (i = 0; ecc->layout->oobfree[i].length + && i < ARRAY_SIZE(ecc->layout->oobfree); i++) + ecc->layout->oobavail += ecc->layout->oobfree[i].length; + mtd->oobavail = ecc->layout->oobavail; + + /* ECC sanity check: warn if it's too weak */ + if (!nand_ecc_strength_good(mtd)) + pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n", + mtd->name); /* * Set the number of read / write steps for one page depending on ECC - * mode + * mode. */ - chip->ecc.steps = mtd->writesize / chip->ecc.size; - if(chip->ecc.steps * chip->ecc.size != mtd->writesize) { - printk(KERN_WARNING "Invalid ecc parameters\n"); + ecc->steps = mtd->writesize / ecc->size; + if (ecc->steps * ecc->size != mtd->writesize) { + pr_warn("Invalid ECC parameters\n"); BUG(); } - chip->ecc.total = chip->ecc.steps * chip->ecc.bytes; + ecc->total = ecc->steps * ecc->bytes; - /* - * Allow subpage writes up to ecc.steps. Not possible for MLC - * FLASH. - */ - if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && - !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) { - switch(chip->ecc.steps) { + /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ + if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { + switch (ecc->steps) { case 2: mtd->subpage_sft = 1; break; @@ -3211,34 +4081,53 @@ int nand_scan_tail(struct mtd_info *mtd) /* Initialize state */ chip->state = FL_READY; - /* De-select the device */ - chip->select_chip(mtd, -1); - /* Invalidate the pagebuffer reference */ chip->pagebuf = -1; + /* Large page NAND with SOFT_ECC should support subpage reads */ + switch (ecc->mode) { + case NAND_ECC_SOFT: + case NAND_ECC_SOFT_BCH: + if (chip->page_shift > 9) + chip->options |= NAND_SUBPAGE_READ; + break; + + default: + break; + } + /* Fill in remaining MTD driver data */ - mtd->type = MTD_NANDFLASH; + mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH; mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM : MTD_CAP_NANDFLASH; - mtd->erase = nand_erase; - mtd->point = NULL; - mtd->unpoint = NULL; - mtd->read = nand_read; - mtd->write = nand_write; - mtd->panic_write = panic_nand_write; - mtd->read_oob = nand_read_oob; - mtd->write_oob = nand_write_oob; - mtd->sync = nand_sync; - mtd->lock = NULL; - mtd->unlock = NULL; - mtd->suspend = nand_suspend; - mtd->resume = nand_resume; - mtd->block_isbad = nand_block_isbad; - mtd->block_markbad = nand_block_markbad; - - /* propagate ecc.layout to mtd_info */ - mtd->ecclayout = chip->ecc.layout; + mtd->_erase = nand_erase; + mtd->_point = NULL; + mtd->_unpoint = NULL; + mtd->_read = nand_read; + mtd->_write = nand_write; + mtd->_panic_write = panic_nand_write; + mtd->_read_oob = nand_read_oob; + mtd->_write_oob = nand_write_oob; + mtd->_sync = nand_sync; + mtd->_lock = NULL; + mtd->_unlock = NULL; + mtd->_suspend = nand_suspend; + mtd->_resume = nand_resume; + mtd->_block_isbad = nand_block_isbad; + mtd->_block_markbad = nand_block_markbad; + mtd->writebufsize = mtd->writesize; + + /* propagate ecc info to mtd_info */ + mtd->ecclayout = ecc->layout; + mtd->ecc_strength = ecc->strength; + mtd->ecc_step_size = ecc->size; + /* + * Initialize bitflip_threshold to its default prior scan_bbt() call. + * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be + * properly set. + */ + if (!mtd->bitflip_threshold) + mtd->bitflip_threshold = mtd->ecc_strength; /* Check, if we should skip the bad block table scan */ if (chip->options & NAND_SKIP_BBTSCAN) @@ -3247,10 +4136,13 @@ int nand_scan_tail(struct mtd_info *mtd) /* Build bad block table */ return chip->scan_bbt(mtd); } +EXPORT_SYMBOL(nand_scan_tail); -/* is_module_text_address() isn't exported, and it's mostly a pointless - test if this is a module _anyway_ -- they'd have to try _really_ hard - to call us from in-kernel code if the core NAND support is modular. */ +/* + * is_module_text_address() isn't exported, and it's mostly a pointless + * test if this is a module _anyway_ -- they'd have to try _really_ hard + * to call us from in-kernel code if the core NAND support is modular. + */ #ifdef MODULE #define caller_is_module() (1) #else @@ -3260,15 +4152,13 @@ int nand_scan_tail(struct mtd_info *mtd) /** * nand_scan - [NAND Interface] Scan for the NAND device - * @mtd: MTD device structure - * @maxchips: Number of chips to scan for - * - * This fills out all the uninitialized function pointers - * with the defaults. - * The flash ID is read and the mtd/chip structures are - * filled with the appropriate values. - * The mtd->owner field must be set to the module of the caller + * @mtd: MTD device structure + * @maxchips: number of chips to scan for * + * This fills out all the uninitialized function pointers with the defaults. + * The flash ID is read and the mtd/chip structures are filled with the + * appropriate values. The mtd->owner field must be set to the module of the + * caller. */ int nand_scan(struct mtd_info *mtd, int maxchips) { @@ -3276,8 +4166,7 @@ int nand_scan(struct mtd_info *mtd, int maxchips) /* Many callers got this wrong, so check for it for a while... */ if (!mtd->owner && caller_is_module()) { - printk(KERN_CRIT "%s called with NULL mtd->owner!\n", - __func__); + pr_crit("%s called with NULL mtd->owner!\n", __func__); BUG(); } @@ -3286,33 +4175,31 @@ int nand_scan(struct mtd_info *mtd, int maxchips) ret = nand_scan_tail(mtd); return ret; } +EXPORT_SYMBOL(nand_scan); /** * nand_release - [NAND Interface] Free resources held by the NAND device - * @mtd: MTD device structure -*/ + * @mtd: MTD device structure + */ void nand_release(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; -#ifdef CONFIG_MTD_PARTITIONS - /* Deregister partitions */ - del_mtd_partitions(mtd); -#endif - /* Deregister the device */ - del_mtd_device(mtd); + if (chip->ecc.mode == NAND_ECC_SOFT_BCH) + nand_bch_free((struct nand_bch_control *)chip->ecc.priv); + + mtd_device_unregister(mtd); /* Free bad block table memory */ kfree(chip->bbt); if (!(chip->options & NAND_OWN_BUFFERS)) kfree(chip->buffers); -} -EXPORT_SYMBOL_GPL(nand_lock); -EXPORT_SYMBOL_GPL(nand_unlock); -EXPORT_SYMBOL_GPL(nand_scan); -EXPORT_SYMBOL_GPL(nand_scan_ident); -EXPORT_SYMBOL_GPL(nand_scan_tail); + /* Free bad block descriptor memory */ + if (chip->badblock_pattern && chip->badblock_pattern->options + & NAND_BBT_DYNAMICSTRUCT) + kfree(chip->badblock_pattern); +} EXPORT_SYMBOL_GPL(nand_release); static int __init nand_base_init(void) @@ -3330,5 +4217,6 @@ module_init(nand_base_init); module_exit(nand_base_exit); MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>"); +MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); +MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); MODULE_DESCRIPTION("Generic NAND flash driver code"); diff --git a/drivers/mtd/nand/nand_bbt.c b/drivers/mtd/nand/nand_bbt.c index ad97c0ce73b..7f0c3b4c2a4 100644 --- a/drivers/mtd/nand/nand_bbt.c +++ b/drivers/mtd/nand/nand_bbt.c @@ -4,7 +4,7 @@ * Overview: * Bad block table support for the NAND driver * - * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) + * Copyright © 2004 Thomas Gleixner (tglx@linutronix.de) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as @@ -13,28 +13,37 @@ * Description: * * When nand_scan_bbt is called, then it tries to find the bad block table - * depending on the options in the bbt descriptor(s). If a bbt is found - * then the contents are read and the memory based bbt is created. If a - * mirrored bbt is selected then the mirror is searched too and the - * versions are compared. If the mirror has a greater version number - * than the mirror bbt is used to build the memory based bbt. + * depending on the options in the BBT descriptor(s). If no flash based BBT + * (NAND_BBT_USE_FLASH) is specified then the device is scanned for factory + * marked good / bad blocks. This information is used to create a memory BBT. + * Once a new bad block is discovered then the "factory" information is updated + * on the device. + * If a flash based BBT is specified then the function first tries to find the + * BBT on flash. If a BBT is found then the contents are read and the memory + * based BBT is created. If a mirrored BBT is selected then the mirror is + * searched too and the versions are compared. If the mirror has a greater + * version number, then the mirror BBT is used to build the memory based BBT. * If the tables are not versioned, then we "or" the bad block information. - * If one of the bbt's is out of date or does not exist it is (re)created. - * If no bbt exists at all then the device is scanned for factory marked + * If one of the BBTs is out of date or does not exist it is (re)created. + * If no BBT exists at all then the device is scanned for factory marked * good / bad blocks and the bad block tables are created. * - * For manufacturer created bbts like the one found on M-SYS DOC devices - * the bbt is searched and read but never created + * For manufacturer created BBTs like the one found on M-SYS DOC devices + * the BBT is searched and read but never created * - * The autogenerated bad block table is located in the last good blocks + * The auto generated bad block table is located in the last good blocks * of the device. The table is mirrored, so it can be updated eventually. - * The table is marked in the oob area with an ident pattern and a version - * number which indicates which of both tables is more up to date. + * The table is marked in the OOB area with an ident pattern and a version + * number which indicates which of both tables is more up to date. If the NAND + * controller needs the complete OOB area for the ECC information then the + * option NAND_BBT_NO_OOB should be used (along with NAND_BBT_USE_FLASH, of + * course): it moves the ident pattern and the version byte into the data area + * and the OOB area will remain untouched. * * The table uses 2 bits per block - * 11b: block is good - * 00b: block is factory marked bad - * 01b, 10b: block is marked bad due to wear + * 11b: block is good + * 00b: block is factory marked bad + * 01b, 10b: block is marked bad due to wear * * The memory bad block table uses the following scheme: * 00b: block is good @@ -53,298 +62,359 @@ #include <linux/slab.h> #include <linux/types.h> #include <linux/mtd/mtd.h> +#include <linux/mtd/bbm.h> #include <linux/mtd/nand.h> #include <linux/mtd/nand_ecc.h> -#include <linux/mtd/compatmac.h> #include <linux/bitops.h> #include <linux/delay.h> #include <linux/vmalloc.h> +#include <linux/export.h> +#include <linux/string.h> + +#define BBT_BLOCK_GOOD 0x00 +#define BBT_BLOCK_WORN 0x01 +#define BBT_BLOCK_RESERVED 0x02 +#define BBT_BLOCK_FACTORY_BAD 0x03 + +#define BBT_ENTRY_MASK 0x03 +#define BBT_ENTRY_SHIFT 2 + +static int nand_update_bbt(struct mtd_info *mtd, loff_t offs); + +static inline uint8_t bbt_get_entry(struct nand_chip *chip, int block) +{ + uint8_t entry = chip->bbt[block >> BBT_ENTRY_SHIFT]; + entry >>= (block & BBT_ENTRY_MASK) * 2; + return entry & BBT_ENTRY_MASK; +} + +static inline void bbt_mark_entry(struct nand_chip *chip, int block, + uint8_t mark) +{ + uint8_t msk = (mark & BBT_ENTRY_MASK) << ((block & BBT_ENTRY_MASK) * 2); + chip->bbt[block >> BBT_ENTRY_SHIFT] |= msk; +} + +static int check_pattern_no_oob(uint8_t *buf, struct nand_bbt_descr *td) +{ + if (memcmp(buf, td->pattern, td->len)) + return -1; + return 0; +} /** * check_pattern - [GENERIC] check if a pattern is in the buffer - * @buf: the buffer to search - * @len: the length of buffer to search - * @paglen: the pagelength - * @td: search pattern descriptor - * - * Check for a pattern at the given place. Used to search bad block - * tables and good / bad block identifiers. - * If the SCAN_EMPTY option is set then check, if all bytes except the - * pattern area contain 0xff + * @buf: the buffer to search + * @len: the length of buffer to search + * @paglen: the pagelength + * @td: search pattern descriptor * -*/ + * Check for a pattern at the given place. Used to search bad block tables and + * good / bad block identifiers. + */ static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td) { - int i, end = 0; - uint8_t *p = buf; - - end = paglen + td->offs; - if (td->options & NAND_BBT_SCANEMPTY) { - for (i = 0; i < end; i++) { - if (p[i] != 0xff) - return -1; - } - } - p += end; + if (td->options & NAND_BBT_NO_OOB) + return check_pattern_no_oob(buf, td); /* Compare the pattern */ - for (i = 0; i < td->len; i++) { - if (p[i] != td->pattern[i]) - return -1; - } + if (memcmp(buf + paglen + td->offs, td->pattern, td->len)) + return -1; - if (td->options & NAND_BBT_SCANEMPTY) { - p += td->len; - end += td->len; - for (i = end; i < len; i++) { - if (*p++ != 0xff) - return -1; - } - } return 0; } /** * check_short_pattern - [GENERIC] check if a pattern is in the buffer - * @buf: the buffer to search - * @td: search pattern descriptor - * - * Check for a pattern at the given place. Used to search bad block - * tables and good / bad block identifiers. Same as check_pattern, but - * no optional empty check + * @buf: the buffer to search + * @td: search pattern descriptor * -*/ + * Check for a pattern at the given place. Used to search bad block tables and + * good / bad block identifiers. Same as check_pattern, but no optional empty + * check. + */ static int check_short_pattern(uint8_t *buf, struct nand_bbt_descr *td) { - int i; - uint8_t *p = buf; - /* Compare the pattern */ - for (i = 0; i < td->len; i++) { - if (p[td->offs + i] != td->pattern[i]) - return -1; - } + if (memcmp(buf + td->offs, td->pattern, td->len)) + return -1; return 0; } /** + * add_marker_len - compute the length of the marker in data area + * @td: BBT descriptor used for computation + * + * The length will be 0 if the marker is located in OOB area. + */ +static u32 add_marker_len(struct nand_bbt_descr *td) +{ + u32 len; + + if (!(td->options & NAND_BBT_NO_OOB)) + return 0; + + len = td->len; + if (td->options & NAND_BBT_VERSION) + len++; + return len; +} + +/** * read_bbt - [GENERIC] Read the bad block table starting from page - * @mtd: MTD device structure - * @buf: temporary buffer - * @page: the starting page - * @num: the number of bbt descriptors to read - * @bits: number of bits per block - * @offs: offset in the memory table - * @reserved_block_code: Pattern to identify reserved blocks + * @mtd: MTD device structure + * @buf: temporary buffer + * @page: the starting page + * @num: the number of bbt descriptors to read + * @td: the bbt describtion table + * @offs: block number offset in the table * * Read the bad block table starting from page. - * */ static int read_bbt(struct mtd_info *mtd, uint8_t *buf, int page, int num, - int bits, int offs, int reserved_block_code) + struct nand_bbt_descr *td, int offs) { - int res, i, j, act = 0; + int res, ret = 0, i, j, act = 0; struct nand_chip *this = mtd->priv; size_t retlen, len, totlen; loff_t from; - uint8_t msk = (uint8_t) ((1 << bits) - 1); + int bits = td->options & NAND_BBT_NRBITS_MSK; + uint8_t msk = (uint8_t)((1 << bits) - 1); + u32 marker_len; + int reserved_block_code = td->reserved_block_code; totlen = (num * bits) >> 3; - from = ((loff_t) page) << this->page_shift; + marker_len = add_marker_len(td); + from = ((loff_t)page) << this->page_shift; while (totlen) { - len = min(totlen, (size_t) (1 << this->bbt_erase_shift)); - res = mtd->read(mtd, from, len, &retlen, buf); + len = min(totlen, (size_t)(1 << this->bbt_erase_shift)); + if (marker_len) { + /* + * In case the BBT marker is not in the OOB area it + * will be just in the first page. + */ + len -= marker_len; + from += marker_len; + marker_len = 0; + } + res = mtd_read(mtd, from, len, &retlen, buf); if (res < 0) { - if (retlen != len) { - printk(KERN_INFO "nand_bbt: Error reading bad block table\n"); + if (mtd_is_eccerr(res)) { + pr_info("nand_bbt: ECC error in BBT at " + "0x%012llx\n", from & ~mtd->writesize); + return res; + } else if (mtd_is_bitflip(res)) { + pr_info("nand_bbt: corrected error in BBT at " + "0x%012llx\n", from & ~mtd->writesize); + ret = res; + } else { + pr_info("nand_bbt: error reading BBT\n"); return res; } - printk(KERN_WARNING "nand_bbt: ECC error while reading bad block table\n"); } /* Analyse data */ for (i = 0; i < len; i++) { uint8_t dat = buf[i]; - for (j = 0; j < 8; j += bits, act += 2) { + for (j = 0; j < 8; j += bits, act++) { uint8_t tmp = (dat >> j) & msk; if (tmp == msk) continue; if (reserved_block_code && (tmp == reserved_block_code)) { - printk(KERN_DEBUG "nand_read_bbt: Reserved block at 0x%012llx\n", - (loff_t)((offs << 2) + (act >> 1)) << this->bbt_erase_shift); - this->bbt[offs + (act >> 3)] |= 0x2 << (act & 0x06); + pr_info("nand_read_bbt: reserved block at 0x%012llx\n", + (loff_t)(offs + act) << + this->bbt_erase_shift); + bbt_mark_entry(this, offs + act, + BBT_BLOCK_RESERVED); mtd->ecc_stats.bbtblocks++; continue; } - /* Leave it for now, if its matured we can move this - * message to MTD_DEBUG_LEVEL0 */ - printk(KERN_DEBUG "nand_read_bbt: Bad block at 0x%012llx\n", - (loff_t)((offs << 2) + (act >> 1)) << this->bbt_erase_shift); - /* Factory marked bad or worn out ? */ + /* + * Leave it for now, if it's matured we can + * move this message to pr_debug. + */ + pr_info("nand_read_bbt: bad block at 0x%012llx\n", + (loff_t)(offs + act) << + this->bbt_erase_shift); + /* Factory marked bad or worn out? */ if (tmp == 0) - this->bbt[offs + (act >> 3)] |= 0x3 << (act & 0x06); + bbt_mark_entry(this, offs + act, + BBT_BLOCK_FACTORY_BAD); else - this->bbt[offs + (act >> 3)] |= 0x1 << (act & 0x06); + bbt_mark_entry(this, offs + act, + BBT_BLOCK_WORN); mtd->ecc_stats.badblocks++; } } totlen -= len; from += len; } - return 0; + return ret; } /** * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page - * @mtd: MTD device structure - * @buf: temporary buffer - * @td: descriptor for the bad block table - * @chip: read the table for a specific chip, -1 read all chips. - * Applies only if NAND_BBT_PERCHIP option is set + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @chip: read the table for a specific chip, -1 read all chips; applies only if + * NAND_BBT_PERCHIP option is set * - * Read the bad block table for all chips starting at a given page - * We assume that the bbt bits are in consecutive order. -*/ + * Read the bad block table for all chips starting at a given page. We assume + * that the bbt bits are in consecutive order. + */ static int read_abs_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip) { struct nand_chip *this = mtd->priv; int res = 0, i; - int bits; - bits = td->options & NAND_BBT_NRBITS_MSK; if (td->options & NAND_BBT_PERCHIP) { int offs = 0; for (i = 0; i < this->numchips; i++) { if (chip == -1 || chip == i) - res = read_bbt (mtd, buf, td->pages[i], this->chipsize >> this->bbt_erase_shift, bits, offs, td->reserved_block_code); + res = read_bbt(mtd, buf, td->pages[i], + this->chipsize >> this->bbt_erase_shift, + td, offs); if (res) return res; - offs += this->chipsize >> (this->bbt_erase_shift + 2); + offs += this->chipsize >> this->bbt_erase_shift; } } else { - res = read_bbt (mtd, buf, td->pages[0], mtd->size >> this->bbt_erase_shift, bits, 0, td->reserved_block_code); + res = read_bbt(mtd, buf, td->pages[0], + mtd->size >> this->bbt_erase_shift, td, 0); if (res) return res; } return 0; } -/* - * Scan read raw data from flash +/* BBT marker is in the first page, no OOB */ +static int scan_read_data(struct mtd_info *mtd, uint8_t *buf, loff_t offs, + struct nand_bbt_descr *td) +{ + size_t retlen; + size_t len; + + len = td->len; + if (td->options & NAND_BBT_VERSION) + len++; + + return mtd_read(mtd, offs, len, &retlen, buf); +} + +/** + * scan_read_oob - [GENERIC] Scan data+OOB region to buffer + * @mtd: MTD device structure + * @buf: temporary buffer + * @offs: offset at which to scan + * @len: length of data region to read + * + * Scan read data from data+OOB. May traverse multiple pages, interleaving + * page,OOB,page,OOB,... in buf. Completes transfer and returns the "strongest" + * ECC condition (error or bitflip). May quit on the first (non-ECC) error. */ -static int scan_read_raw(struct mtd_info *mtd, uint8_t *buf, loff_t offs, +static int scan_read_oob(struct mtd_info *mtd, uint8_t *buf, loff_t offs, size_t len) { struct mtd_oob_ops ops; - int res; + int res, ret = 0; - ops.mode = MTD_OOB_RAW; + ops.mode = MTD_OPS_PLACE_OOB; ops.ooboffs = 0; ops.ooblen = mtd->oobsize; - while (len > 0) { - if (len <= mtd->writesize) { - ops.oobbuf = buf + len; - ops.datbuf = buf; - ops.len = len; - return mtd->read_oob(mtd, offs, &ops); - } else { - ops.oobbuf = buf + mtd->writesize; - ops.datbuf = buf; - ops.len = mtd->writesize; - res = mtd->read_oob(mtd, offs, &ops); + ops.datbuf = buf; + ops.len = min(len, (size_t)mtd->writesize); + ops.oobbuf = buf + ops.len; - if (res) + res = mtd_read_oob(mtd, offs, &ops); + if (res) { + if (!mtd_is_bitflip_or_eccerr(res)) return res; + else if (mtd_is_eccerr(res) || !ret) + ret = res; } buf += mtd->oobsize + mtd->writesize; len -= mtd->writesize; + offs += mtd->writesize; } - return 0; + return ret; } -/* - * Scan write data with oob to flash - */ +static int scan_read(struct mtd_info *mtd, uint8_t *buf, loff_t offs, + size_t len, struct nand_bbt_descr *td) +{ + if (td->options & NAND_BBT_NO_OOB) + return scan_read_data(mtd, buf, offs, td); + else + return scan_read_oob(mtd, buf, offs, len); +} + +/* Scan write data with oob to flash */ static int scan_write_bbt(struct mtd_info *mtd, loff_t offs, size_t len, uint8_t *buf, uint8_t *oob) { struct mtd_oob_ops ops; - ops.mode = MTD_OOB_PLACE; + ops.mode = MTD_OPS_PLACE_OOB; ops.ooboffs = 0; ops.ooblen = mtd->oobsize; ops.datbuf = buf; ops.oobbuf = oob; ops.len = len; - return mtd->write_oob(mtd, offs, &ops); + return mtd_write_oob(mtd, offs, &ops); +} + +static u32 bbt_get_ver_offs(struct mtd_info *mtd, struct nand_bbt_descr *td) +{ + u32 ver_offs = td->veroffs; + + if (!(td->options & NAND_BBT_NO_OOB)) + ver_offs += mtd->writesize; + return ver_offs; } /** * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page - * @mtd: MTD device structure - * @buf: temporary buffer - * @td: descriptor for the bad block table - * @md: descriptor for the bad block table mirror + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @md: descriptor for the bad block table mirror * - * Read the bad block table(s) for all chips starting at a given page - * We assume that the bbt bits are in consecutive order. - * -*/ -static int read_abs_bbts(struct mtd_info *mtd, uint8_t *buf, - struct nand_bbt_descr *td, struct nand_bbt_descr *md) + * Read the bad block table(s) for all chips starting at a given page. We + * assume that the bbt bits are in consecutive order. + */ +static void read_abs_bbts(struct mtd_info *mtd, uint8_t *buf, + struct nand_bbt_descr *td, struct nand_bbt_descr *md) { struct nand_chip *this = mtd->priv; /* Read the primary version, if available */ if (td->options & NAND_BBT_VERSION) { - scan_read_raw(mtd, buf, (loff_t)td->pages[0] << this->page_shift, - mtd->writesize); - td->version[0] = buf[mtd->writesize + td->veroffs]; - printk(KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", - td->pages[0], td->version[0]); + scan_read(mtd, buf, (loff_t)td->pages[0] << this->page_shift, + mtd->writesize, td); + td->version[0] = buf[bbt_get_ver_offs(mtd, td)]; + pr_info("Bad block table at page %d, version 0x%02X\n", + td->pages[0], td->version[0]); } /* Read the mirror version, if available */ if (md && (md->options & NAND_BBT_VERSION)) { - scan_read_raw(mtd, buf, (loff_t)md->pages[0] << this->page_shift, - mtd->writesize); - md->version[0] = buf[mtd->writesize + md->veroffs]; - printk(KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", - md->pages[0], md->version[0]); + scan_read(mtd, buf, (loff_t)md->pages[0] << this->page_shift, + mtd->writesize, md); + md->version[0] = buf[bbt_get_ver_offs(mtd, md)]; + pr_info("Bad block table at page %d, version 0x%02X\n", + md->pages[0], md->version[0]); } - return 1; } -/* - * Scan a given block full - */ -static int scan_block_full(struct mtd_info *mtd, struct nand_bbt_descr *bd, - loff_t offs, uint8_t *buf, size_t readlen, - int scanlen, int len) -{ - int ret, j; - - ret = scan_read_raw(mtd, buf, offs, readlen); - if (ret) - return ret; - - for (j = 0; j < len; j++, buf += scanlen) { - if (check_pattern(buf, scanlen, mtd->writesize, bd)) - return 1; - } - return 0; -} - -/* - * Scan a given block partially - */ +/* Scan a given block partially */ static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd, - loff_t offs, uint8_t *buf, int len) + loff_t offs, uint8_t *buf, int numpages) { struct mtd_oob_ops ops; int j, ret; @@ -353,16 +423,16 @@ static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd, ops.oobbuf = buf; ops.ooboffs = 0; ops.datbuf = NULL; - ops.mode = MTD_OOB_PLACE; + ops.mode = MTD_OPS_PLACE_OOB; - for (j = 0; j < len; j++) { + for (j = 0; j < numpages; j++) { /* - * Read the full oob until read_oob is fixed to - * handle single byte reads for 16 bit - * buswidth + * Read the full oob until read_oob is fixed to handle single + * byte reads for 16 bit buswidth. */ - ret = mtd->read_oob(mtd, offs, &ops); - if (ret) + ret = mtd_read_oob(mtd, offs, &ops); + /* Ignore ECC errors when checking for BBM */ + if (ret && !mtd_is_bitflip_or_eccerr(ret)) return ret; if (check_short_pattern(buf, bd)) @@ -375,86 +445,65 @@ static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd, /** * create_bbt - [GENERIC] Create a bad block table by scanning the device - * @mtd: MTD device structure - * @buf: temporary buffer - * @bd: descriptor for the good/bad block search pattern - * @chip: create the table for a specific chip, -1 read all chips. - * Applies only if NAND_BBT_PERCHIP option is set + * @mtd: MTD device structure + * @buf: temporary buffer + * @bd: descriptor for the good/bad block search pattern + * @chip: create the table for a specific chip, -1 read all chips; applies only + * if NAND_BBT_PERCHIP option is set * - * Create a bad block table by scanning the device - * for the given good/bad block identify pattern + * Create a bad block table by scanning the device for the given good/bad block + * identify pattern. */ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip) { struct nand_chip *this = mtd->priv; - int i, numblocks, len, scanlen; + int i, numblocks, numpages; int startblock; loff_t from; - size_t readlen; - - printk(KERN_INFO "Scanning device for bad blocks\n"); - if (bd->options & NAND_BBT_SCANALLPAGES) - len = 1 << (this->bbt_erase_shift - this->page_shift); - else { - if (bd->options & NAND_BBT_SCAN2NDPAGE) - len = 2; - else - len = 1; - } + pr_info("Scanning device for bad blocks\n"); - if (!(bd->options & NAND_BBT_SCANEMPTY)) { - /* We need only read few bytes from the OOB area */ - scanlen = 0; - readlen = bd->len; - } else { - /* Full page content should be read */ - scanlen = mtd->writesize + mtd->oobsize; - readlen = len * mtd->writesize; - } + if (bd->options & NAND_BBT_SCAN2NDPAGE) + numpages = 2; + else + numpages = 1; if (chip == -1) { - /* Note that numblocks is 2 * (real numblocks) here, see i+=2 - * below as it makes shifting and masking less painful */ - numblocks = mtd->size >> (this->bbt_erase_shift - 1); + numblocks = mtd->size >> this->bbt_erase_shift; startblock = 0; from = 0; } else { if (chip >= this->numchips) { - printk(KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)\n", + pr_warn("create_bbt(): chipnr (%d) > available chips (%d)\n", chip + 1, this->numchips); return -EINVAL; } - numblocks = this->chipsize >> (this->bbt_erase_shift - 1); + numblocks = this->chipsize >> this->bbt_erase_shift; startblock = chip * numblocks; numblocks += startblock; - from = (loff_t)startblock << (this->bbt_erase_shift - 1); + from = (loff_t)startblock << this->bbt_erase_shift; } - if (this->options & NAND_BB_LAST_PAGE) - from += mtd->erasesize - (mtd->writesize * len); + if (this->bbt_options & NAND_BBT_SCANLASTPAGE) + from += mtd->erasesize - (mtd->writesize * numpages); - for (i = startblock; i < numblocks;) { + for (i = startblock; i < numblocks; i++) { int ret; - if (bd->options & NAND_BBT_SCANALLPAGES) - ret = scan_block_full(mtd, bd, from, buf, readlen, - scanlen, len); - else - ret = scan_block_fast(mtd, bd, from, buf, len); + BUG_ON(bd->options & NAND_BBT_NO_OOB); + ret = scan_block_fast(mtd, bd, from, buf, numpages); if (ret < 0) return ret; if (ret) { - this->bbt[i >> 3] |= 0x03 << (i & 0x6); - printk(KERN_WARNING "Bad eraseblock %d at 0x%012llx\n", - i >> 1, (unsigned long long)from); + bbt_mark_entry(this, i, BBT_BLOCK_FACTORY_BAD); + pr_warn("Bad eraseblock %d at 0x%012llx\n", + i, (unsigned long long)from); mtd->ecc_stats.badblocks++; } - i += 2; from += (1 << this->bbt_erase_shift); } return 0; @@ -462,31 +511,29 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, /** * search_bbt - [GENERIC] scan the device for a specific bad block table - * @mtd: MTD device structure - * @buf: temporary buffer - * @td: descriptor for the bad block table + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table * - * Read the bad block table by searching for a given ident pattern. - * Search is preformed either from the beginning up or from the end of - * the device downwards. The search starts always at the start of a - * block. - * If the option NAND_BBT_PERCHIP is given, each chip is searched - * for a bbt, which contains the bad block information of this chip. - * This is necessary to provide support for certain DOC devices. + * Read the bad block table by searching for a given ident pattern. Search is + * preformed either from the beginning up or from the end of the device + * downwards. The search starts always at the start of a block. If the option + * NAND_BBT_PERCHIP is given, each chip is searched for a bbt, which contains + * the bad block information of this chip. This is necessary to provide support + * for certain DOC devices. * - * The bbt ident pattern resides in the oob area of the first page - * in a block. + * The bbt ident pattern resides in the oob area of the first page in a block. */ static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td) { struct nand_chip *this = mtd->priv; int i, chips; - int bits, startblock, block, dir; + int startblock, block, dir; int scanlen = mtd->writesize + mtd->oobsize; int bbtblocks; int blocktopage = this->bbt_erase_shift - this->page_shift; - /* Search direction top -> down ? */ + /* Search direction top -> down? */ if (td->options & NAND_BBT_LASTBLOCK) { startblock = (mtd->size >> this->bbt_erase_shift) - 1; dir = -1; @@ -495,7 +542,7 @@ static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr dir = 1; } - /* Do we have a bbt per chip ? */ + /* Do we have a bbt per chip? */ if (td->options & NAND_BBT_PERCHIP) { chips = this->numchips; bbtblocks = this->chipsize >> this->bbt_erase_shift; @@ -505,9 +552,6 @@ static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr bbtblocks = mtd->size >> this->bbt_erase_shift; } - /* Number of bits for each erase block in the bbt */ - bits = td->options & NAND_BBT_NRBITS_MSK; - for (i = 0; i < chips; i++) { /* Reset version information */ td->version[i] = 0; @@ -519,11 +563,12 @@ static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr loff_t offs = (loff_t)actblock << this->bbt_erase_shift; /* Read first page */ - scan_read_raw(mtd, buf, offs, mtd->writesize); + scan_read(mtd, buf, offs, mtd->writesize, td); if (!check_pattern(buf, scanlen, mtd->writesize, td)) { td->pages[i] = actblock << blocktopage; if (td->options & NAND_BBT_VERSION) { - td->version[i] = buf[mtd->writesize + td->veroffs]; + offs = bbt_get_ver_offs(mtd, td); + td->version[i] = buf[offs]; } break; } @@ -533,24 +578,26 @@ static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr /* Check, if we found a bbt for each requested chip */ for (i = 0; i < chips; i++) { if (td->pages[i] == -1) - printk(KERN_WARNING "Bad block table not found for chip %d\n", i); + pr_warn("Bad block table not found for chip %d\n", i); else - printk(KERN_DEBUG "Bad block table found at page %d, version 0x%02X\n", td->pages[i], - td->version[i]); + pr_info("Bad block table found at page %d, version " + "0x%02X\n", td->pages[i], td->version[i]); } return 0; } /** * search_read_bbts - [GENERIC] scan the device for bad block table(s) - * @mtd: MTD device structure - * @buf: temporary buffer - * @td: descriptor for the bad block table - * @md: descriptor for the bad block table mirror + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @md: descriptor for the bad block table mirror * - * Search and read the bad block table(s) -*/ -static int search_read_bbts(struct mtd_info *mtd, uint8_t * buf, struct nand_bbt_descr *td, struct nand_bbt_descr *md) + * Search and read the bad block table(s). + */ +static void search_read_bbts(struct mtd_info *mtd, uint8_t *buf, + struct nand_bbt_descr *td, + struct nand_bbt_descr *md) { /* Search the primary table */ search_bbt(mtd, buf, td); @@ -558,32 +605,27 @@ static int search_read_bbts(struct mtd_info *mtd, uint8_t * buf, struct nand_bbt /* Search the mirror table */ if (md) search_bbt(mtd, buf, md); - - /* Force result check */ - return 1; } /** * write_bbt - [GENERIC] (Re)write the bad block table + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @md: descriptor for the bad block table mirror + * @chipsel: selector for a specific chip, -1 for all * - * @mtd: MTD device structure - * @buf: temporary buffer - * @td: descriptor for the bad block table - * @md: descriptor for the bad block table mirror - * @chipsel: selector for a specific chip, -1 for all - * - * (Re)write the bad block table - * -*/ + * (Re)write the bad block table. + */ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, struct nand_bbt_descr *md, int chipsel) { struct nand_chip *this = mtd->priv; struct erase_info einfo; - int i, j, res, chip = 0; + int i, res, chip = 0; int bits, startblock, dir, page, offs, numblocks, sft, sftmsk; - int nrchips, bbtoffs, pageoffs, ooboffs; + int nrchips, pageoffs, ooboffs; uint8_t msk[4]; uint8_t rcode = td->reserved_block_code; size_t retlen, len = 0; @@ -593,14 +635,14 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, ops.ooblen = mtd->oobsize; ops.ooboffs = 0; ops.datbuf = NULL; - ops.mode = MTD_OOB_PLACE; + ops.mode = MTD_OPS_PLACE_OOB; if (!rcode) rcode = 0xff; - /* Write bad block table per chip rather than per device ? */ + /* Write bad block table per chip rather than per device? */ if (td->options & NAND_BBT_PERCHIP) { numblocks = (int)(this->chipsize >> this->bbt_erase_shift); - /* Full device write or specific chip ? */ + /* Full device write or specific chip? */ if (chipsel == -1) { nrchips = this->numchips; } else { @@ -614,8 +656,8 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, /* Loop through the chips */ for (; chip < nrchips; chip++) { - - /* There was already a version of the table, reuse the page + /* + * There was already a version of the table, reuse the page * This applies for absolute placement too, as we have the * page nr. in td->pages. */ @@ -624,8 +666,10 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, goto write; } - /* Automatic placement of the bad block table */ - /* Search direction top -> down ? */ + /* + * Automatic placement of the bad block table. Search direction + * top -> down? + */ if (td->options & NAND_BBT_LASTBLOCK) { startblock = numblocks * (chip + 1) - 1; dir = -1; @@ -637,10 +681,9 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, for (i = 0; i < td->maxblocks; i++) { int block = startblock + dir * i; /* Check, if the block is bad */ - switch ((this->bbt[block >> 2] >> - (2 * (block & 0x03))) & 0x03) { - case 0x01: - case 0x03: + switch (bbt_get_entry(this, block)) { + case BBT_BLOCK_WORN: + case BBT_BLOCK_FACTORY_BAD: continue; } page = block << @@ -649,7 +692,7 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, if (!md || md->pages[chip] != page) goto write; } - printk(KERN_ERR "No space left to write bad block table\n"); + pr_err("No space left to write bad block table\n"); return -ENOSPC; write: @@ -672,31 +715,27 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, default: return -EINVAL; } - bbtoffs = chip * (numblocks >> 2); + to = ((loff_t)page) << this->page_shift; - to = ((loff_t) page) << this->page_shift; - - /* Must we save the block contents ? */ + /* Must we save the block contents? */ if (td->options & NAND_BBT_SAVECONTENT) { /* Make it block aligned */ - to &= ~((loff_t) ((1 << this->bbt_erase_shift) - 1)); + to &= ~((loff_t)((1 << this->bbt_erase_shift) - 1)); len = 1 << this->bbt_erase_shift; - res = mtd->read(mtd, to, len, &retlen, buf); + res = mtd_read(mtd, to, len, &retlen, buf); if (res < 0) { if (retlen != len) { - printk(KERN_INFO "nand_bbt: Error " - "reading block for writing " - "the bad block table\n"); + pr_info("nand_bbt: error reading block " + "for writing the bad block table\n"); return res; } - printk(KERN_WARNING "nand_bbt: ECC error " - "while reading block for writing " - "bad block table\n"); + pr_warn("nand_bbt: ECC error while reading " + "block for writing bad block table\n"); } /* Read oob data */ ops.ooblen = (len >> this->page_shift) * mtd->oobsize; ops.oobbuf = &buf[len]; - res = mtd->read_oob(mtd, to + mtd->writesize, &ops); + res = mtd_read_oob(mtd, to + mtd->writesize, &ops); if (res < 0 || ops.oobretlen != ops.ooblen) goto outerr; @@ -704,15 +743,29 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, pageoffs = page - (int)(to >> this->page_shift); offs = pageoffs << this->page_shift; /* Preset the bbt area with 0xff */ - memset(&buf[offs], 0xff, (size_t) (numblocks >> sft)); + memset(&buf[offs], 0xff, (size_t)(numblocks >> sft)); ooboffs = len + (pageoffs * mtd->oobsize); + } else if (td->options & NAND_BBT_NO_OOB) { + ooboffs = 0; + offs = td->len; + /* The version byte */ + if (td->options & NAND_BBT_VERSION) + offs++; + /* Calc length */ + len = (size_t)(numblocks >> sft); + len += offs; + /* Make it page aligned! */ + len = ALIGN(len, mtd->writesize); + /* Preset the buffer with 0xff */ + memset(buf, 0xff, len); + /* Pattern is located at the begin of first page */ + memcpy(buf, td->pattern, td->len); } else { /* Calc length */ - len = (size_t) (numblocks >> sft); - /* Make it page aligned ! */ - len = (len + (mtd->writesize - 1)) & - ~(mtd->writesize - 1); + len = (size_t)(numblocks >> sft); + /* Make it page aligned! */ + len = ALIGN(len, mtd->writesize); /* Preset the buffer with 0xff */ memset(buf, 0xff, len + (len >> this->page_shift)* mtd->oobsize); @@ -725,17 +778,13 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, if (td->options & NAND_BBT_VERSION) buf[ooboffs + td->veroffs] = td->version[chip]; - /* walk through the memory table */ - for (i = 0; i < numblocks;) { + /* Walk through the memory table */ + for (i = 0; i < numblocks; i++) { uint8_t dat; - dat = this->bbt[bbtoffs + (i >> 2)]; - for (j = 0; j < 4; j++, i++) { - int sftcnt = (i << (3 - sft)) & sftmsk; - /* Do not store the reserved bbt blocks ! */ - buf[offs + (i >> sft)] &= - ~(msk[dat & 0x03] << sftcnt); - dat >>= 2; - } + int sftcnt = (i << (3 - sft)) & sftmsk; + dat = bbt_get_entry(this, chip * numblocks + i); + /* Do not store the reserved bbt blocks! */ + buf[offs + (i >> sft)] &= ~(msk[dat] << sftcnt); } memset(&einfo, 0, sizeof(einfo)); @@ -746,12 +795,14 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, if (res < 0) goto outerr; - res = scan_write_bbt(mtd, to, len, buf, &buf[len]); + res = scan_write_bbt(mtd, to, len, buf, + td->options & NAND_BBT_NO_OOB ? NULL : + &buf[len]); if (res < 0) goto outerr; - printk(KERN_DEBUG "Bad block table written to 0x%012llx, version " - "0x%02X\n", (unsigned long long)to, td->version[chip]); + pr_info("Bad block table written to 0x%012llx, version 0x%02X\n", + (unsigned long long)to, td->version[chip]); /* Mark it as used */ td->pages[chip] = page; @@ -759,48 +810,45 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, return 0; outerr: - printk(KERN_WARNING - "nand_bbt: Error while writing bad block table %d\n", res); + pr_warn("nand_bbt: error while writing bad block table %d\n", res); return res; } /** * nand_memory_bbt - [GENERIC] create a memory based bad block table - * @mtd: MTD device structure - * @bd: descriptor for the good/bad block search pattern + * @mtd: MTD device structure + * @bd: descriptor for the good/bad block search pattern * - * The function creates a memory based bbt by scanning the device - * for manufacturer / software marked good / bad blocks -*/ + * The function creates a memory based bbt by scanning the device for + * manufacturer / software marked good / bad blocks. + */ static inline int nand_memory_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) { struct nand_chip *this = mtd->priv; - bd->options &= ~NAND_BBT_SCANEMPTY; return create_bbt(mtd, this->buffers->databuf, bd, -1); } /** * check_create - [GENERIC] create and write bbt(s) if necessary - * @mtd: MTD device structure - * @buf: temporary buffer - * @bd: descriptor for the good/bad block search pattern + * @mtd: MTD device structure + * @buf: temporary buffer + * @bd: descriptor for the good/bad block search pattern * - * The function checks the results of the previous call to read_bbt - * and creates / updates the bbt(s) if necessary - * Creation is necessary if no bbt was found for the chip/device - * Update is necessary if one of the tables is missing or the - * version nr. of one table is less than the other -*/ + * The function checks the results of the previous call to read_bbt and creates + * / updates the bbt(s) if necessary. Creation is necessary if no bbt was found + * for the chip/device. Update is necessary if one of the tables is missing or + * the version nr. of one table is less than the other. + */ static int check_create(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd) { - int i, chips, writeops, chipsel, res; + int i, chips, writeops, create, chipsel, res, res2; struct nand_chip *this = mtd->priv; struct nand_bbt_descr *td = this->bbt_td; struct nand_bbt_descr *md = this->bbt_md; struct nand_bbt_descr *rd, *rd2; - /* Do we have a bbt per chip ? */ + /* Do we have a bbt per chip? */ if (td->options & NAND_BBT_PERCHIP) chips = this->numchips; else @@ -808,85 +856,98 @@ static int check_create(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_desc for (i = 0; i < chips; i++) { writeops = 0; + create = 0; rd = NULL; rd2 = NULL; - /* Per chip or per device ? */ + res = res2 = 0; + /* Per chip or per device? */ chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1; - /* Mirrored table avilable ? */ + /* Mirrored table available? */ if (md) { if (td->pages[i] == -1 && md->pages[i] == -1) { + create = 1; writeops = 0x03; - goto create; - } - - if (td->pages[i] == -1) { + } else if (td->pages[i] == -1) { rd = md; - td->version[i] = md->version[i]; - writeops = 1; - goto writecheck; - } - - if (md->pages[i] == -1) { + writeops = 0x01; + } else if (md->pages[i] == -1) { rd = td; - md->version[i] = td->version[i]; - writeops = 2; - goto writecheck; - } - - if (td->version[i] == md->version[i]) { + writeops = 0x02; + } else if (td->version[i] == md->version[i]) { rd = td; if (!(td->options & NAND_BBT_VERSION)) rd2 = md; - goto writecheck; - } - - if (((int8_t) (td->version[i] - md->version[i])) > 0) { + } else if (((int8_t)(td->version[i] - md->version[i])) > 0) { rd = td; - md->version[i] = td->version[i]; - writeops = 2; + writeops = 0x02; } else { rd = md; - td->version[i] = md->version[i]; - writeops = 1; + writeops = 0x01; } - - goto writecheck; - } else { if (td->pages[i] == -1) { + create = 1; writeops = 0x01; - goto create; + } else { + rd = td; } - rd = td; - goto writecheck; } - create: - /* Create the bad block table by scanning the device ? */ - if (!(td->options & NAND_BBT_CREATE)) - continue; - /* Create the table in memory by scanning the chip(s) */ - create_bbt(mtd, buf, bd, chipsel); - - td->version[i] = 1; - if (md) - md->version[i] = 1; - writecheck: - /* read back first ? */ - if (rd) - read_abs_bbt(mtd, buf, rd, chipsel); - /* If they weren't versioned, read both. */ - if (rd2) - read_abs_bbt(mtd, buf, rd2, chipsel); - - /* Write the bad block table to the device ? */ + if (create) { + /* Create the bad block table by scanning the device? */ + if (!(td->options & NAND_BBT_CREATE)) + continue; + + /* Create the table in memory by scanning the chip(s) */ + if (!(this->bbt_options & NAND_BBT_CREATE_EMPTY)) + create_bbt(mtd, buf, bd, chipsel); + + td->version[i] = 1; + if (md) + md->version[i] = 1; + } + + /* Read back first? */ + if (rd) { + res = read_abs_bbt(mtd, buf, rd, chipsel); + if (mtd_is_eccerr(res)) { + /* Mark table as invalid */ + rd->pages[i] = -1; + rd->version[i] = 0; + i--; + continue; + } + } + /* If they weren't versioned, read both */ + if (rd2) { + res2 = read_abs_bbt(mtd, buf, rd2, chipsel); + if (mtd_is_eccerr(res2)) { + /* Mark table as invalid */ + rd2->pages[i] = -1; + rd2->version[i] = 0; + i--; + continue; + } + } + + /* Scrub the flash table(s)? */ + if (mtd_is_bitflip(res) || mtd_is_bitflip(res2)) + writeops = 0x03; + + /* Update version numbers before writing */ + if (md) { + td->version[i] = max(td->version[i], md->version[i]); + md->version[i] = td->version[i]; + } + + /* Write the bad block table to the device? */ if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) { res = write_bbt(mtd, buf, td, md, chipsel); if (res < 0) return res; } - /* Write the mirror bad block table to the device ? */ + /* Write the mirror bad block table to the device? */ if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) { res = write_bbt(mtd, buf, md, td, chipsel); if (res < 0) @@ -898,20 +959,19 @@ static int check_create(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_desc /** * mark_bbt_regions - [GENERIC] mark the bad block table regions - * @mtd: MTD device structure - * @td: bad block table descriptor + * @mtd: MTD device structure + * @td: bad block table descriptor * - * The bad block table regions are marked as "bad" to prevent - * accidental erasures / writes. The regions are identified by - * the mark 0x02. -*/ + * The bad block table regions are marked as "bad" to prevent accidental + * erasures / writes. The regions are identified by the mark 0x02. + */ static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td) { struct nand_chip *this = mtd->priv; int i, j, chips, block, nrblocks, update; - uint8_t oldval, newval; + uint8_t oldval; - /* Do we have a bbt per chip ? */ + /* Do we have a bbt per chip? */ if (td->options & NAND_BBT_PERCHIP) { chips = this->numchips; nrblocks = (int)(this->chipsize >> this->bbt_erase_shift); @@ -926,12 +986,12 @@ static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td) if (td->pages[i] == -1) continue; block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift); - block <<= 1; - oldval = this->bbt[(block >> 3)]; - newval = oldval | (0x2 << (block & 0x06)); - this->bbt[(block >> 3)] = newval; - if ((oldval != newval) && td->reserved_block_code) - nand_update_bbt(mtd, (loff_t)block << (this->bbt_erase_shift - 1)); + oldval = bbt_get_entry(this, block); + bbt_mark_entry(this, block, BBT_BLOCK_RESERVED); + if ((oldval != BBT_BLOCK_RESERVED) && + td->reserved_block_code) + nand_update_bbt(mtd, (loff_t)block << + this->bbt_erase_shift); continue; } update = 0; @@ -939,37 +999,84 @@ static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td) block = ((i + 1) * nrblocks) - td->maxblocks; else block = i * nrblocks; - block <<= 1; for (j = 0; j < td->maxblocks; j++) { - oldval = this->bbt[(block >> 3)]; - newval = oldval | (0x2 << (block & 0x06)); - this->bbt[(block >> 3)] = newval; - if (oldval != newval) + oldval = bbt_get_entry(this, block); + bbt_mark_entry(this, block, BBT_BLOCK_RESERVED); + if (oldval != BBT_BLOCK_RESERVED) update = 1; - block += 2; + block++; } - /* If we want reserved blocks to be recorded to flash, and some - new ones have been marked, then we need to update the stored - bbts. This should only happen once. */ + /* + * If we want reserved blocks to be recorded to flash, and some + * new ones have been marked, then we need to update the stored + * bbts. This should only happen once. + */ if (update && td->reserved_block_code) - nand_update_bbt(mtd, (loff_t)(block - 2) << (this->bbt_erase_shift - 1)); + nand_update_bbt(mtd, (loff_t)(block - 1) << + this->bbt_erase_shift); } } /** - * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s) - * @mtd: MTD device structure - * @bd: descriptor for the good/bad block search pattern + * verify_bbt_descr - verify the bad block description + * @mtd: MTD device structure + * @bd: the table to verify * - * The function checks, if a bad block table(s) is/are already - * available. If not it scans the device for manufacturer - * marked good / bad blocks and writes the bad block table(s) to - * the selected place. + * This functions performs a few sanity checks on the bad block description + * table. + */ +static void verify_bbt_descr(struct mtd_info *mtd, struct nand_bbt_descr *bd) +{ + struct nand_chip *this = mtd->priv; + u32 pattern_len; + u32 bits; + u32 table_size; + + if (!bd) + return; + + pattern_len = bd->len; + bits = bd->options & NAND_BBT_NRBITS_MSK; + + BUG_ON((this->bbt_options & NAND_BBT_NO_OOB) && + !(this->bbt_options & NAND_BBT_USE_FLASH)); + BUG_ON(!bits); + + if (bd->options & NAND_BBT_VERSION) + pattern_len++; + + if (bd->options & NAND_BBT_NO_OOB) { + BUG_ON(!(this->bbt_options & NAND_BBT_USE_FLASH)); + BUG_ON(!(this->bbt_options & NAND_BBT_NO_OOB)); + BUG_ON(bd->offs); + if (bd->options & NAND_BBT_VERSION) + BUG_ON(bd->veroffs != bd->len); + BUG_ON(bd->options & NAND_BBT_SAVECONTENT); + } + + if (bd->options & NAND_BBT_PERCHIP) + table_size = this->chipsize >> this->bbt_erase_shift; + else + table_size = mtd->size >> this->bbt_erase_shift; + table_size >>= 3; + table_size *= bits; + if (bd->options & NAND_BBT_NO_OOB) + table_size += pattern_len; + BUG_ON(table_size > (1 << this->bbt_erase_shift)); +} + +/** + * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s) + * @mtd: MTD device structure + * @bd: descriptor for the good/bad block search pattern * - * The bad block table memory is allocated here. It must be freed - * by calling the nand_free_bbt function. + * The function checks, if a bad block table(s) is/are already available. If + * not it scans the device for manufacturer marked good / bad blocks and writes + * the bad block table(s) to the selected place. * -*/ + * The bad block table memory is allocated here. It must be freed by calling + * the nand_free_bbt function. + */ int nand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) { struct nand_chip *this = mtd->priv; @@ -979,46 +1086,48 @@ int nand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) struct nand_bbt_descr *md = this->bbt_md; len = mtd->size >> (this->bbt_erase_shift + 2); - /* Allocate memory (2bit per block) and clear the memory bad block table */ + /* + * Allocate memory (2bit per block) and clear the memory bad block + * table. + */ this->bbt = kzalloc(len, GFP_KERNEL); - if (!this->bbt) { - printk(KERN_ERR "nand_scan_bbt: Out of memory\n"); + if (!this->bbt) return -ENOMEM; - } - /* If no primary table decriptor is given, scan the device - * to build a memory based bad block table + /* + * If no primary table decriptor is given, scan the device to build a + * memory based bad block table. */ if (!td) { if ((res = nand_memory_bbt(mtd, bd))) { - printk(KERN_ERR "nand_bbt: Can't scan flash and build the RAM-based BBT\n"); + pr_err("nand_bbt: can't scan flash and build the RAM-based BBT\n"); kfree(this->bbt); this->bbt = NULL; } return res; } + verify_bbt_descr(mtd, td); + verify_bbt_descr(mtd, md); /* Allocate a temporary buffer for one eraseblock incl. oob */ len = (1 << this->bbt_erase_shift); len += (len >> this->page_shift) * mtd->oobsize; buf = vmalloc(len); if (!buf) { - printk(KERN_ERR "nand_bbt: Out of memory\n"); kfree(this->bbt); this->bbt = NULL; return -ENOMEM; } - /* Is the bbt at a given page ? */ + /* Is the bbt at a given page? */ if (td->options & NAND_BBT_ABSPAGE) { - res = read_abs_bbts(mtd, buf, td, md); + read_abs_bbts(mtd, buf, td, md); } else { /* Search the bad block table using a pattern in oob */ - res = search_read_bbts(mtd, buf, td, md); + search_read_bbts(mtd, buf, td, md); } - if (res) - res = check_create(mtd, buf, bd); + res = check_create(mtd, buf, bd); /* Prevent the bbt regions from erasing / writing */ mark_bbt_region(mtd, td); @@ -1030,16 +1139,16 @@ int nand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) } /** - * nand_update_bbt - [NAND Interface] update bad block table(s) - * @mtd: MTD device structure - * @offs: the offset of the newly marked block + * nand_update_bbt - update bad block table(s) + * @mtd: MTD device structure + * @offs: the offset of the newly marked block * - * The function updates the bad block table(s) -*/ -int nand_update_bbt(struct mtd_info *mtd, loff_t offs) + * The function updates the bad block table(s). + */ +static int nand_update_bbt(struct mtd_info *mtd, loff_t offs) { struct nand_chip *this = mtd->priv; - int len, res = 0, writeops = 0; + int len, res = 0; int chip, chipsel; uint8_t *buf; struct nand_bbt_descr *td = this->bbt_td; @@ -1052,14 +1161,10 @@ int nand_update_bbt(struct mtd_info *mtd, loff_t offs) len = (1 << this->bbt_erase_shift); len += (len >> this->page_shift) * mtd->oobsize; buf = kmalloc(len, GFP_KERNEL); - if (!buf) { - printk(KERN_ERR "nand_update_bbt: Out of memory\n"); + if (!buf) return -ENOMEM; - } - writeops = md != NULL ? 0x03 : 0x01; - - /* Do we have a bbt per chip ? */ + /* Do we have a bbt per chip? */ if (td->options & NAND_BBT_PERCHIP) { chip = (int)(offs >> this->chip_shift); chipsel = chip; @@ -1072,14 +1177,14 @@ int nand_update_bbt(struct mtd_info *mtd, loff_t offs) if (md) md->version[chip]++; - /* Write the bad block table to the device ? */ - if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) { + /* Write the bad block table to the device? */ + if (td->options & NAND_BBT_WRITE) { res = write_bbt(mtd, buf, td, md, chipsel); if (res < 0) goto out; } - /* Write the mirror bad block table to the device ? */ - if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) { + /* Write the mirror bad block table to the device? */ + if (md && (md->options & NAND_BBT_WRITE)) { res = write_bbt(mtd, buf, md, td, chipsel); } @@ -1088,49 +1193,13 @@ int nand_update_bbt(struct mtd_info *mtd, loff_t offs) return res; } -/* Define some generic bad / good block scan pattern which are used - * while scanning a device for factory marked good / bad blocks. */ +/* + * Define some generic bad / good block scan pattern which are used + * while scanning a device for factory marked good / bad blocks. + */ static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; -static struct nand_bbt_descr smallpage_memorybased = { - .options = NAND_BBT_SCAN2NDPAGE, - .offs = 5, - .len = 1, - .pattern = scan_ff_pattern -}; - -static struct nand_bbt_descr largepage_memorybased = { - .options = 0, - .offs = 0, - .len = 2, - .pattern = scan_ff_pattern -}; - -static struct nand_bbt_descr smallpage_flashbased = { - .options = NAND_BBT_SCAN2NDPAGE, - .offs = 5, - .len = 1, - .pattern = scan_ff_pattern -}; - -static struct nand_bbt_descr largepage_flashbased = { - .options = NAND_BBT_SCAN2NDPAGE, - .offs = 0, - .len = 2, - .pattern = scan_ff_pattern -}; - -static uint8_t scan_agand_pattern[] = { 0x1C, 0x71, 0xC7, 0x1C, 0x71, 0xC7 }; - -static struct nand_bbt_descr agand_flashbased = { - .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, - .offs = 0x20, - .len = 6, - .pattern = scan_agand_pattern -}; - -/* Generic flash bbt decriptors -*/ +/* Generic flash bbt descriptors */ static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; @@ -1140,7 +1209,7 @@ static struct nand_bbt_descr bbt_main_descr = { .offs = 8, .len = 4, .veroffs = 12, - .maxblocks = 4, + .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, .pattern = bbt_pattern }; @@ -1150,90 +1219,146 @@ static struct nand_bbt_descr bbt_mirror_descr = { .offs = 8, .len = 4, .veroffs = 12, - .maxblocks = 4, + .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, .pattern = mirror_pattern }; +static struct nand_bbt_descr bbt_main_no_oob_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP + | NAND_BBT_NO_OOB, + .len = 4, + .veroffs = 4, + .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_no_oob_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP + | NAND_BBT_NO_OOB, + .len = 4, + .veroffs = 4, + .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, + .pattern = mirror_pattern +}; + +#define BADBLOCK_SCAN_MASK (~NAND_BBT_NO_OOB) /** - * nand_default_bbt - [NAND Interface] Select a default bad block table for the device - * @mtd: MTD device structure + * nand_create_badblock_pattern - [INTERN] Creates a BBT descriptor structure + * @this: NAND chip to create descriptor for * - * This function selects the default bad block table - * support for the device and calls the nand_scan_bbt function + * This function allocates and initializes a nand_bbt_descr for BBM detection + * based on the properties of @this. The new descriptor is stored in + * this->badblock_pattern. Thus, this->badblock_pattern should be NULL when + * passed to this function. + */ +static int nand_create_badblock_pattern(struct nand_chip *this) +{ + struct nand_bbt_descr *bd; + if (this->badblock_pattern) { + pr_warn("Bad block pattern already allocated; not replacing\n"); + return -EINVAL; + } + bd = kzalloc(sizeof(*bd), GFP_KERNEL); + if (!bd) + return -ENOMEM; + bd->options = this->bbt_options & BADBLOCK_SCAN_MASK; + bd->offs = this->badblockpos; + bd->len = (this->options & NAND_BUSWIDTH_16) ? 2 : 1; + bd->pattern = scan_ff_pattern; + bd->options |= NAND_BBT_DYNAMICSTRUCT; + this->badblock_pattern = bd; + return 0; +} + +/** + * nand_default_bbt - [NAND Interface] Select a default bad block table for the device + * @mtd: MTD device structure * -*/ + * This function selects the default bad block table support for the device and + * calls the nand_scan_bbt function. + */ int nand_default_bbt(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; + int ret; - /* Default for AG-AND. We must use a flash based - * bad block table as the devices have factory marked - * _good_ blocks. Erasing those blocks leads to loss - * of the good / bad information, so we _must_ store - * this information in a good / bad table during - * startup - */ - if (this->options & NAND_IS_AND) { + /* Is a flash based bad block table requested? */ + if (this->bbt_options & NAND_BBT_USE_FLASH) { /* Use the default pattern descriptors */ if (!this->bbt_td) { - this->bbt_td = &bbt_main_descr; - this->bbt_md = &bbt_mirror_descr; - } - this->options |= NAND_USE_FLASH_BBT; - return nand_scan_bbt(mtd, &agand_flashbased); - } - - /* Is a flash based bad block table requested ? */ - if (this->options & NAND_USE_FLASH_BBT) { - /* Use the default pattern descriptors */ - if (!this->bbt_td) { - this->bbt_td = &bbt_main_descr; - this->bbt_md = &bbt_mirror_descr; - } - if (!this->badblock_pattern) { - this->badblock_pattern = (mtd->writesize > 512) ? &largepage_flashbased : &smallpage_flashbased; + if (this->bbt_options & NAND_BBT_NO_OOB) { + this->bbt_td = &bbt_main_no_oob_descr; + this->bbt_md = &bbt_mirror_no_oob_descr; + } else { + this->bbt_td = &bbt_main_descr; + this->bbt_md = &bbt_mirror_descr; + } } } else { this->bbt_td = NULL; this->bbt_md = NULL; - if (!this->badblock_pattern) { - this->badblock_pattern = (mtd->writesize > 512) ? - &largepage_memorybased : &smallpage_memorybased; - } } + + if (!this->badblock_pattern) { + ret = nand_create_badblock_pattern(this); + if (ret) + return ret; + } + return nand_scan_bbt(mtd, this->badblock_pattern); } /** * nand_isbad_bbt - [NAND Interface] Check if a block is bad - * @mtd: MTD device structure - * @offs: offset in the device - * @allowbbt: allow access to bad block table region - * -*/ + * @mtd: MTD device structure + * @offs: offset in the device + * @allowbbt: allow access to bad block table region + */ int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt) { struct nand_chip *this = mtd->priv; - int block; - uint8_t res; + int block, res; - /* Get block number * 2 */ - block = (int)(offs >> (this->bbt_erase_shift - 1)); - res = (this->bbt[block >> 3] >> (block & 0x06)) & 0x03; + block = (int)(offs >> this->bbt_erase_shift); + res = bbt_get_entry(this, block); - DEBUG(MTD_DEBUG_LEVEL2, "nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n", - (unsigned int)offs, block >> 1, res); + pr_debug("nand_isbad_bbt(): bbt info for offs 0x%08x: " + "(block %d) 0x%02x\n", + (unsigned int)offs, block, res); - switch ((int)res) { - case 0x00: + switch (res) { + case BBT_BLOCK_GOOD: return 0; - case 0x01: + case BBT_BLOCK_WORN: return 1; - case 0x02: + case BBT_BLOCK_RESERVED: return allowbbt ? 0 : 1; } return 1; } +/** + * nand_markbad_bbt - [NAND Interface] Mark a block bad in the BBT + * @mtd: MTD device structure + * @offs: offset of the bad block + */ +int nand_markbad_bbt(struct mtd_info *mtd, loff_t offs) +{ + struct nand_chip *this = mtd->priv; + int block, ret = 0; + + block = (int)(offs >> this->bbt_erase_shift); + + /* Mark bad block in memory */ + bbt_mark_entry(this, block, BBT_BLOCK_WORN); + + /* Update flash-based bad block table */ + if (this->bbt_options & NAND_BBT_USE_FLASH) + ret = nand_update_bbt(mtd, offs); + + return ret; +} + EXPORT_SYMBOL(nand_scan_bbt); -EXPORT_SYMBOL(nand_default_bbt); diff --git a/drivers/mtd/nand/nand_bch.c b/drivers/mtd/nand/nand_bch.c new file mode 100644 index 00000000000..3803e0bba23 --- /dev/null +++ b/drivers/mtd/nand/nand_bch.c @@ -0,0 +1,243 @@ +/* + * This file provides ECC correction for more than 1 bit per block of data, + * using binary BCH codes. It relies on the generic BCH library lib/bch.c. + * + * Copyright © 2011 Ivan Djelic <ivan.djelic@parrot.com> + * + * This file is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 or (at your option) any + * later version. + * + * This file is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * for more details. + * + * You should have received a copy of the GNU General Public License along + * with this file; if not, write to the Free Software Foundation, Inc., + * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. + */ + +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/bitops.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand_bch.h> +#include <linux/bch.h> + +/** + * struct nand_bch_control - private NAND BCH control structure + * @bch: BCH control structure + * @ecclayout: private ecc layout for this BCH configuration + * @errloc: error location array + * @eccmask: XOR ecc mask, allows erased pages to be decoded as valid + */ +struct nand_bch_control { + struct bch_control *bch; + struct nand_ecclayout ecclayout; + unsigned int *errloc; + unsigned char *eccmask; +}; + +/** + * nand_bch_calculate_ecc - [NAND Interface] Calculate ECC for data block + * @mtd: MTD block structure + * @buf: input buffer with raw data + * @code: output buffer with ECC + */ +int nand_bch_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf, + unsigned char *code) +{ + const struct nand_chip *chip = mtd->priv; + struct nand_bch_control *nbc = chip->ecc.priv; + unsigned int i; + + memset(code, 0, chip->ecc.bytes); + encode_bch(nbc->bch, buf, chip->ecc.size, code); + + /* apply mask so that an erased page is a valid codeword */ + for (i = 0; i < chip->ecc.bytes; i++) + code[i] ^= nbc->eccmask[i]; + + return 0; +} +EXPORT_SYMBOL(nand_bch_calculate_ecc); + +/** + * nand_bch_correct_data - [NAND Interface] Detect and correct bit error(s) + * @mtd: MTD block structure + * @buf: raw data read from the chip + * @read_ecc: ECC from the chip + * @calc_ecc: the ECC calculated from raw data + * + * Detect and correct bit errors for a data byte block + */ +int nand_bch_correct_data(struct mtd_info *mtd, unsigned char *buf, + unsigned char *read_ecc, unsigned char *calc_ecc) +{ + const struct nand_chip *chip = mtd->priv; + struct nand_bch_control *nbc = chip->ecc.priv; + unsigned int *errloc = nbc->errloc; + int i, count; + + count = decode_bch(nbc->bch, NULL, chip->ecc.size, read_ecc, calc_ecc, + NULL, errloc); + if (count > 0) { + for (i = 0; i < count; i++) { + if (errloc[i] < (chip->ecc.size*8)) + /* error is located in data, correct it */ + buf[errloc[i] >> 3] ^= (1 << (errloc[i] & 7)); + /* else error in ecc, no action needed */ + + pr_debug("%s: corrected bitflip %u\n", __func__, + errloc[i]); + } + } else if (count < 0) { + printk(KERN_ERR "ecc unrecoverable error\n"); + count = -1; + } + return count; +} +EXPORT_SYMBOL(nand_bch_correct_data); + +/** + * nand_bch_init - [NAND Interface] Initialize NAND BCH error correction + * @mtd: MTD block structure + * @eccsize: ecc block size in bytes + * @eccbytes: ecc length in bytes + * @ecclayout: output default layout + * + * Returns: + * a pointer to a new NAND BCH control structure, or NULL upon failure + * + * Initialize NAND BCH error correction. Parameters @eccsize and @eccbytes + * are used to compute BCH parameters m (Galois field order) and t (error + * correction capability). @eccbytes should be equal to the number of bytes + * required to store m*t bits, where m is such that 2^m-1 > @eccsize*8. + * + * Example: to configure 4 bit correction per 512 bytes, you should pass + * @eccsize = 512 (thus, m=13 is the smallest integer such that 2^m-1 > 512*8) + * @eccbytes = 7 (7 bytes are required to store m*t = 13*4 = 52 bits) + */ +struct nand_bch_control * +nand_bch_init(struct mtd_info *mtd, unsigned int eccsize, unsigned int eccbytes, + struct nand_ecclayout **ecclayout) +{ + unsigned int m, t, eccsteps, i; + struct nand_ecclayout *layout; + struct nand_bch_control *nbc = NULL; + unsigned char *erased_page; + + if (!eccsize || !eccbytes) { + printk(KERN_WARNING "ecc parameters not supplied\n"); + goto fail; + } + + m = fls(1+8*eccsize); + t = (eccbytes*8)/m; + + nbc = kzalloc(sizeof(*nbc), GFP_KERNEL); + if (!nbc) + goto fail; + + nbc->bch = init_bch(m, t, 0); + if (!nbc->bch) + goto fail; + + /* verify that eccbytes has the expected value */ + if (nbc->bch->ecc_bytes != eccbytes) { + printk(KERN_WARNING "invalid eccbytes %u, should be %u\n", + eccbytes, nbc->bch->ecc_bytes); + goto fail; + } + + eccsteps = mtd->writesize/eccsize; + + /* if no ecc placement scheme was provided, build one */ + if (!*ecclayout) { + + /* handle large page devices only */ + if (mtd->oobsize < 64) { + printk(KERN_WARNING "must provide an oob scheme for " + "oobsize %d\n", mtd->oobsize); + goto fail; + } + + layout = &nbc->ecclayout; + layout->eccbytes = eccsteps*eccbytes; + + /* reserve 2 bytes for bad block marker */ + if (layout->eccbytes+2 > mtd->oobsize) { + printk(KERN_WARNING "no suitable oob scheme available " + "for oobsize %d eccbytes %u\n", mtd->oobsize, + eccbytes); + goto fail; + } + /* put ecc bytes at oob tail */ + for (i = 0; i < layout->eccbytes; i++) + layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i; + + layout->oobfree[0].offset = 2; + layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes; + + *ecclayout = layout; + } + + /* sanity checks */ + if (8*(eccsize+eccbytes) >= (1 << m)) { + printk(KERN_WARNING "eccsize %u is too large\n", eccsize); + goto fail; + } + if ((*ecclayout)->eccbytes != (eccsteps*eccbytes)) { + printk(KERN_WARNING "invalid ecc layout\n"); + goto fail; + } + + nbc->eccmask = kmalloc(eccbytes, GFP_KERNEL); + nbc->errloc = kmalloc(t*sizeof(*nbc->errloc), GFP_KERNEL); + if (!nbc->eccmask || !nbc->errloc) + goto fail; + /* + * compute and store the inverted ecc of an erased ecc block + */ + erased_page = kmalloc(eccsize, GFP_KERNEL); + if (!erased_page) + goto fail; + + memset(erased_page, 0xff, eccsize); + memset(nbc->eccmask, 0, eccbytes); + encode_bch(nbc->bch, erased_page, eccsize, nbc->eccmask); + kfree(erased_page); + + for (i = 0; i < eccbytes; i++) + nbc->eccmask[i] ^= 0xff; + + return nbc; +fail: + nand_bch_free(nbc); + return NULL; +} +EXPORT_SYMBOL(nand_bch_init); + +/** + * nand_bch_free - [NAND Interface] Release NAND BCH ECC resources + * @nbc: NAND BCH control structure + */ +void nand_bch_free(struct nand_bch_control *nbc) +{ + if (nbc) { + free_bch(nbc->bch); + kfree(nbc->errloc); + kfree(nbc->eccmask); + kfree(nbc); + } +} +EXPORT_SYMBOL(nand_bch_free); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>"); +MODULE_DESCRIPTION("NAND software BCH ECC support"); diff --git a/drivers/mtd/nand/nand_bcm_umi.c b/drivers/mtd/nand/nand_bcm_umi.c deleted file mode 100644 index 46a6bc9c4b7..00000000000 --- a/drivers/mtd/nand/nand_bcm_umi.c +++ /dev/null @@ -1,149 +0,0 @@ -/***************************************************************************** -* Copyright 2004 - 2009 Broadcom Corporation. All rights reserved. -* -* Unless you and Broadcom execute a separate written software license -* agreement governing use of this software, this software is licensed to you -* under the terms of the GNU General Public License version 2, available at -* http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). -* -* Notwithstanding the above, under no circumstances may you combine this -* software in any way with any other Broadcom software provided under a -* license other than the GPL, without Broadcom's express prior written -* consent. -*****************************************************************************/ - -/* ---- Include Files ---------------------------------------------------- */ -#include <mach/reg_umi.h> -#include "nand_bcm_umi.h" -#ifdef BOOT0_BUILD -#include <uart.h> -#endif - -/* ---- External Variable Declarations ----------------------------------- */ -/* ---- External Function Prototypes ------------------------------------- */ -/* ---- Public Variables ------------------------------------------------- */ -/* ---- Private Constants and Types -------------------------------------- */ -/* ---- Private Function Prototypes -------------------------------------- */ -/* ---- Private Variables ------------------------------------------------ */ -/* ---- Private Functions ------------------------------------------------ */ - -#if NAND_ECC_BCH -/**************************************************************************** -* nand_bch_ecc_flip_bit - Routine to flip an errored bit -* -* PURPOSE: -* This is a helper routine that flips the bit (0 -> 1 or 1 -> 0) of the -* errored bit specified -* -* PARAMETERS: -* datap - Container that holds the 512 byte data -* errorLocation - Location of the bit that needs to be flipped -* -* RETURNS: -* None -****************************************************************************/ -static void nand_bcm_umi_bch_ecc_flip_bit(uint8_t *datap, int errorLocation) -{ - int locWithinAByte = (errorLocation & REG_UMI_BCH_ERR_LOC_BYTE) >> 0; - int locWithinAWord = (errorLocation & REG_UMI_BCH_ERR_LOC_WORD) >> 3; - int locWithinAPage = (errorLocation & REG_UMI_BCH_ERR_LOC_PAGE) >> 5; - - uint8_t errorByte = 0; - uint8_t byteMask = 1 << locWithinAByte; - - /* BCH uses big endian, need to change the location - * bits to little endian */ - locWithinAWord = 3 - locWithinAWord; - - errorByte = datap[locWithinAPage * sizeof(uint32_t) + locWithinAWord]; - -#ifdef BOOT0_BUILD - puthexs("\nECC Correct Offset: ", - locWithinAPage * sizeof(uint32_t) + locWithinAWord); - puthexs(" errorByte:", errorByte); - puthex8(" Bit: ", locWithinAByte); -#endif - - if (errorByte & byteMask) { - /* bit needs to be cleared */ - errorByte &= ~byteMask; - } else { - /* bit needs to be set */ - errorByte |= byteMask; - } - - /* write back the value with the fixed bit */ - datap[locWithinAPage * sizeof(uint32_t) + locWithinAWord] = errorByte; -} - -/**************************************************************************** -* nand_correct_page_bch - Routine to correct bit errors when reading NAND -* -* PURPOSE: -* This routine reads the BCH registers to determine if there are any bit -* errors during the read of the last 512 bytes of data + ECC bytes. If -* errors exists, the routine fixes it. -* -* PARAMETERS: -* datap - Container that holds the 512 byte data -* -* RETURNS: -* 0 or greater = Number of errors corrected -* (No errors are found or errors have been fixed) -* -1 = Error(s) cannot be fixed -****************************************************************************/ -int nand_bcm_umi_bch_correct_page(uint8_t *datap, uint8_t *readEccData, - int numEccBytes) -{ - int numErrors; - int errorLocation; - int idx; - uint32_t regValue; - - /* wait for read ECC to be valid */ - regValue = nand_bcm_umi_bch_poll_read_ecc_calc(); - - /* - * read the control status register to determine if there - * are error'ed bits - * see if errors are correctible - */ - if ((regValue & REG_UMI_BCH_CTRL_STATUS_UNCORR_ERR) > 0) { - int i; - - for (i = 0; i < numEccBytes; i++) { - if (readEccData[i] != 0xff) { - /* errors cannot be fixed, return -1 */ - return -1; - } - } - /* If ECC is unprogrammed then we can't correct, - * assume everything OK */ - return 0; - } - - if ((regValue & REG_UMI_BCH_CTRL_STATUS_CORR_ERR) == 0) { - /* no errors */ - return 0; - } - - /* - * Fix errored bits by doing the following: - * 1. Read the number of errors in the control and status register - * 2. Read the error location registers that corresponds to the number - * of errors reported - * 3. Invert the bit in the data - */ - numErrors = (regValue & REG_UMI_BCH_CTRL_STATUS_NB_CORR_ERROR) >> 20; - - for (idx = 0; idx < numErrors; idx++) { - errorLocation = - REG_UMI_BCH_ERR_LOC_ADDR(idx) & REG_UMI_BCH_ERR_LOC_MASK; - - /* Flip bit */ - nand_bcm_umi_bch_ecc_flip_bit(datap, errorLocation); - } - /* Errors corrected */ - return numErrors; -} -#endif diff --git a/drivers/mtd/nand/nand_bcm_umi.h b/drivers/mtd/nand/nand_bcm_umi.h deleted file mode 100644 index 198b304d6f7..00000000000 --- a/drivers/mtd/nand/nand_bcm_umi.h +++ /dev/null @@ -1,337 +0,0 @@ -/***************************************************************************** -* Copyright 2003 - 2009 Broadcom Corporation. All rights reserved. -* -* Unless you and Broadcom execute a separate written software license -* agreement governing use of this software, this software is licensed to you -* under the terms of the GNU General Public License version 2, available at -* http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). -* -* Notwithstanding the above, under no circumstances may you combine this -* software in any way with any other Broadcom software provided under a -* license other than the GPL, without Broadcom's express prior written -* consent. -*****************************************************************************/ -#ifndef NAND_BCM_UMI_H -#define NAND_BCM_UMI_H - -/* ---- Include Files ---------------------------------------------------- */ -#include <mach/reg_umi.h> -#include <mach/reg_nand.h> -#include <cfg_global.h> - -/* ---- Constants and Types ---------------------------------------------- */ -#if (CFG_GLOBAL_CHIP_FAMILY == CFG_GLOBAL_CHIP_FAMILY_BCMRING) -#define NAND_ECC_BCH (CFG_GLOBAL_CHIP_REV > 0xA0) -#else -#define NAND_ECC_BCH 0 -#endif - -#define CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES 13 - -#if NAND_ECC_BCH -#ifdef BOOT0_BUILD -#define NAND_ECC_NUM_BYTES 13 -#else -#define NAND_ECC_NUM_BYTES CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES -#endif -#else -#define NAND_ECC_NUM_BYTES 3 -#endif - -#define NAND_DATA_ACCESS_SIZE 512 - -/* ---- Variable Externs ------------------------------------------ */ -/* ---- Function Prototypes --------------------------------------- */ -int nand_bcm_umi_bch_correct_page(uint8_t *datap, uint8_t *readEccData, - int numEccBytes); - -/* Check in device is ready */ -static inline int nand_bcm_umi_dev_ready(void) -{ - return REG_UMI_NAND_RCSR & REG_UMI_NAND_RCSR_RDY; -} - -/* Wait until device is ready */ -static inline void nand_bcm_umi_wait_till_ready(void) -{ - while (nand_bcm_umi_dev_ready() == 0) - ; -} - -/* Enable Hamming ECC */ -static inline void nand_bcm_umi_hamming_enable_hwecc(void) -{ - /* disable and reset ECC, 512 byte page */ - REG_UMI_NAND_ECC_CSR &= ~(REG_UMI_NAND_ECC_CSR_ECC_ENABLE | - REG_UMI_NAND_ECC_CSR_256BYTE); - /* enable ECC */ - REG_UMI_NAND_ECC_CSR |= REG_UMI_NAND_ECC_CSR_ECC_ENABLE; -} - -#if NAND_ECC_BCH -/* BCH ECC specifics */ -#define ECC_BITS_PER_CORRECTABLE_BIT 13 - -/* Enable BCH Read ECC */ -static inline void nand_bcm_umi_bch_enable_read_hwecc(void) -{ - /* disable and reset ECC */ - REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID; - /* Turn on ECC */ - REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN; -} - -/* Enable BCH Write ECC */ -static inline void nand_bcm_umi_bch_enable_write_hwecc(void) -{ - /* disable and reset ECC */ - REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID; - /* Turn on ECC */ - REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_WR_EN; -} - -/* Config number of BCH ECC bytes */ -static inline void nand_bcm_umi_bch_config_ecc(uint8_t numEccBytes) -{ - uint32_t nValue; - uint32_t tValue; - uint32_t kValue; - uint32_t numBits = numEccBytes * 8; - - /* disable and reset ECC */ - REG_UMI_BCH_CTRL_STATUS = - REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID | - REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID; - - /* Every correctible bit requires 13 ECC bits */ - tValue = (uint32_t) (numBits / ECC_BITS_PER_CORRECTABLE_BIT); - - /* Total data in number of bits for generating and computing BCH ECC */ - nValue = (NAND_DATA_ACCESS_SIZE + numEccBytes) * 8; - - /* K parameter is used internally. K = N - (T * 13) */ - kValue = nValue - (tValue * ECC_BITS_PER_CORRECTABLE_BIT); - - /* Write the settings */ - REG_UMI_BCH_N = nValue; - REG_UMI_BCH_T = tValue; - REG_UMI_BCH_K = kValue; -} - -/* Pause during ECC read calculation to skip bytes in OOB */ -static inline void nand_bcm_umi_bch_pause_read_ecc_calc(void) -{ - REG_UMI_BCH_CTRL_STATUS = - REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN | - REG_UMI_BCH_CTRL_STATUS_PAUSE_ECC_DEC; -} - -/* Resume during ECC read calculation after skipping bytes in OOB */ -static inline void nand_bcm_umi_bch_resume_read_ecc_calc(void) -{ - REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN; -} - -/* Poll read ECC calc to check when hardware completes */ -static inline uint32_t nand_bcm_umi_bch_poll_read_ecc_calc(void) -{ - uint32_t regVal; - - do { - /* wait for ECC to be valid */ - regVal = REG_UMI_BCH_CTRL_STATUS; - } while ((regVal & REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID) == 0); - - return regVal; -} - -/* Poll write ECC calc to check when hardware completes */ -static inline void nand_bcm_umi_bch_poll_write_ecc_calc(void) -{ - /* wait for ECC to be valid */ - while ((REG_UMI_BCH_CTRL_STATUS & REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID) - == 0) - ; -} - -/* Read the OOB and ECC, for kernel write OOB to a buffer */ -#if defined(__KERNEL__) && !defined(STANDALONE) -static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize, - uint8_t *eccCalc, int numEccBytes, uint8_t *oobp) -#else -static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize, - uint8_t *eccCalc, int numEccBytes) -#endif -{ - int eccPos = 0; - int numToRead = 16; /* There are 16 bytes per sector in the OOB */ - - /* ECC is already paused when this function is called */ - if (pageSize != NAND_DATA_ACCESS_SIZE) { - /* skip BI */ -#if defined(__KERNEL__) && !defined(STANDALONE) - *oobp++ = REG_NAND_DATA8; -#else - REG_NAND_DATA8; -#endif - numToRead--; - } - - while (numToRead > numEccBytes) { - /* skip free oob region */ -#if defined(__KERNEL__) && !defined(STANDALONE) - *oobp++ = REG_NAND_DATA8; -#else - REG_NAND_DATA8; -#endif - numToRead--; - } - - if (pageSize == NAND_DATA_ACCESS_SIZE) { - /* read ECC bytes before BI */ - nand_bcm_umi_bch_resume_read_ecc_calc(); - - while (numToRead > 11) { -#if defined(__KERNEL__) && !defined(STANDALONE) - *oobp = REG_NAND_DATA8; - eccCalc[eccPos++] = *oobp; - oobp++; -#else - eccCalc[eccPos++] = REG_NAND_DATA8; -#endif - numToRead--; - } - - nand_bcm_umi_bch_pause_read_ecc_calc(); - - if (numToRead == 11) { - /* read BI */ -#if defined(__KERNEL__) && !defined(STANDALONE) - *oobp++ = REG_NAND_DATA8; -#else - REG_NAND_DATA8; -#endif - numToRead--; - } - - } - /* read ECC bytes */ - nand_bcm_umi_bch_resume_read_ecc_calc(); - while (numToRead) { -#if defined(__KERNEL__) && !defined(STANDALONE) - *oobp = REG_NAND_DATA8; - eccCalc[eccPos++] = *oobp; - oobp++; -#else - eccCalc[eccPos++] = REG_NAND_DATA8; -#endif - numToRead--; - } -} - -/* Helper function to write ECC */ -static inline void NAND_BCM_UMI_ECC_WRITE(int numEccBytes, int eccBytePos, - uint8_t *oobp, uint8_t eccVal) -{ - if (eccBytePos <= numEccBytes) - *oobp = eccVal; -} - -/* Write OOB with ECC */ -static inline void nand_bcm_umi_bch_write_oobEcc(uint32_t pageSize, - uint8_t *oobp, int numEccBytes) -{ - uint32_t eccVal = 0xffffffff; - - /* wait for write ECC to be valid */ - nand_bcm_umi_bch_poll_write_ecc_calc(); - - /* - ** Get the hardware ecc from the 32-bit result registers. - ** Read after 512 byte accesses. Format B3B2B1B0 - ** where B3 = ecc3, etc. - */ - - if (pageSize == NAND_DATA_ACCESS_SIZE) { - /* Now fill in the ECC bytes */ - if (numEccBytes >= 13) - eccVal = REG_UMI_BCH_WR_ECC_3; - - /* Usually we skip CM in oob[0,1] */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[0], - (eccVal >> 16) & 0xff); - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[1], - (eccVal >> 8) & 0xff); - - /* Write ECC in oob[2,3,4] */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[2], - eccVal & 0xff); /* ECC 12 */ - - if (numEccBytes >= 9) - eccVal = REG_UMI_BCH_WR_ECC_2; - - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[3], - (eccVal >> 24) & 0xff); /* ECC11 */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[4], - (eccVal >> 16) & 0xff); /* ECC10 */ - - /* Always Skip BI in oob[5] */ - } else { - /* Always Skip BI in oob[0] */ - - /* Now fill in the ECC bytes */ - if (numEccBytes >= 13) - eccVal = REG_UMI_BCH_WR_ECC_3; - - /* Usually skip CM in oob[1,2] */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[1], - (eccVal >> 16) & 0xff); - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[2], - (eccVal >> 8) & 0xff); - - /* Write ECC in oob[3-15] */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[3], - eccVal & 0xff); /* ECC12 */ - - if (numEccBytes >= 9) - eccVal = REG_UMI_BCH_WR_ECC_2; - - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[4], - (eccVal >> 24) & 0xff); /* ECC11 */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[5], - (eccVal >> 16) & 0xff); /* ECC10 */ - } - - /* Fill in the remainder of ECC locations */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 10, &oobp[6], - (eccVal >> 8) & 0xff); /* ECC9 */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 9, &oobp[7], - eccVal & 0xff); /* ECC8 */ - - if (numEccBytes >= 5) - eccVal = REG_UMI_BCH_WR_ECC_1; - - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 8, &oobp[8], - (eccVal >> 24) & 0xff); /* ECC7 */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 7, &oobp[9], - (eccVal >> 16) & 0xff); /* ECC6 */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 6, &oobp[10], - (eccVal >> 8) & 0xff); /* ECC5 */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 5, &oobp[11], - eccVal & 0xff); /* ECC4 */ - - if (numEccBytes >= 1) - eccVal = REG_UMI_BCH_WR_ECC_0; - - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 4, &oobp[12], - (eccVal >> 24) & 0xff); /* ECC3 */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 3, &oobp[13], - (eccVal >> 16) & 0xff); /* ECC2 */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 2, &oobp[14], - (eccVal >> 8) & 0xff); /* ECC1 */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 1, &oobp[15], - eccVal & 0xff); /* ECC0 */ -} -#endif - -#endif /* NAND_BCM_UMI_H */ diff --git a/drivers/mtd/nand/nand_ecc.c b/drivers/mtd/nand/nand_ecc.c index 271b8e735e8..97c4c0216c9 100644 --- a/drivers/mtd/nand/nand_ecc.c +++ b/drivers/mtd/nand/nand_ecc.c @@ -55,8 +55,7 @@ struct mtd_info; #define MODULE_AUTHOR(x) /* x */ #define MODULE_DESCRIPTION(x) /* x */ -#define printk printf -#define KERN_ERR "" +#define pr_err printf #endif /* @@ -110,7 +109,7 @@ static const char bitsperbyte[256] = { /* * addressbits is a lookup table to filter out the bits from the xor-ed - * ecc data that identify the faulty location. + * ECC data that identify the faulty location. * this is only used for repairing parity * see the comments in nand_correct_data for more details */ @@ -153,7 +152,7 @@ static const char addressbits[256] = { * __nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte * block * @buf: input buffer with raw data - * @eccsize: data bytes per ecc step (256 or 512) + * @eccsize: data bytes per ECC step (256 or 512) * @code: output buffer with ECC */ void __nand_calculate_ecc(const unsigned char *buf, unsigned int eccsize, @@ -348,7 +347,7 @@ void __nand_calculate_ecc(const unsigned char *buf, unsigned int eccsize, rp17 = (par ^ rp16) & 0xff; /* - * Finally calculate the ecc bits. + * Finally calculate the ECC bits. * Again here it might seem that there are performance optimisations * possible, but benchmarks showed that on the system this is developed * the code below is the fastest @@ -436,7 +435,7 @@ EXPORT_SYMBOL(nand_calculate_ecc); * @buf: raw data read from the chip * @read_ecc: ECC from the chip * @calc_ecc: the ECC calculated from raw data - * @eccsize: data bytes per ecc step (256 or 512) + * @eccsize: data bytes per ECC step (256 or 512) * * Detect and correct a 1 bit error for eccsize byte block */ @@ -505,9 +504,9 @@ int __nand_correct_data(unsigned char *buf, } /* count nr of bits; use table lookup, faster than calculating it */ if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1) - return 1; /* error in ecc data; no action needed */ + return 1; /* error in ECC data; no action needed */ - printk(KERN_ERR "uncorrectable error : "); + pr_err("%s: uncorrectable ECC error\n", __func__); return -1; } EXPORT_SYMBOL(__nand_correct_data); diff --git a/drivers/mtd/nand/nand_ids.c b/drivers/mtd/nand/nand_ids.c index 89907ed9900..3d7c89fc103 100644 --- a/drivers/mtd/nand/nand_ids.c +++ b/drivers/mtd/nand/nand_ids.c @@ -10,127 +10,156 @@ */ #include <linux/module.h> #include <linux/mtd/nand.h> +#include <linux/sizes.h> + +#define LP_OPTIONS NAND_SAMSUNG_LP_OPTIONS +#define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16) + +#define SP_OPTIONS NAND_NEED_READRDY +#define SP_OPTIONS16 (SP_OPTIONS | NAND_BUSWIDTH_16) + /* -* Chip ID list -* -* Name. ID code, pagesize, chipsize in MegaByte, eraseblock size, -* options -* -* Pagesize; 0, 256, 512 -* 0 get this information from the extended chip ID -+ 256 256 Byte page size -* 512 512 Byte page size -*/ + * The chip ID list: + * name, device ID, page size, chip size in MiB, eraseblock size, options + * + * If page size and eraseblock size are 0, the sizes are taken from the + * extended chip ID. + */ struct nand_flash_dev nand_flash_ids[] = { - -#ifdef CONFIG_MTD_NAND_MUSEUM_IDS - {"NAND 1MiB 5V 8-bit", 0x6e, 256, 1, 0x1000, 0}, - {"NAND 2MiB 5V 8-bit", 0x64, 256, 2, 0x1000, 0}, - {"NAND 4MiB 5V 8-bit", 0x6b, 512, 4, 0x2000, 0}, - {"NAND 1MiB 3,3V 8-bit", 0xe8, 256, 1, 0x1000, 0}, - {"NAND 1MiB 3,3V 8-bit", 0xec, 256, 1, 0x1000, 0}, - {"NAND 2MiB 3,3V 8-bit", 0xea, 256, 2, 0x1000, 0}, - {"NAND 4MiB 3,3V 8-bit", 0xd5, 512, 4, 0x2000, 0}, - {"NAND 4MiB 3,3V 8-bit", 0xe3, 512, 4, 0x2000, 0}, - {"NAND 4MiB 3,3V 8-bit", 0xe5, 512, 4, 0x2000, 0}, - {"NAND 8MiB 3,3V 8-bit", 0xd6, 512, 8, 0x2000, 0}, - - {"NAND 8MiB 1,8V 8-bit", 0x39, 512, 8, 0x2000, 0}, - {"NAND 8MiB 3,3V 8-bit", 0xe6, 512, 8, 0x2000, 0}, - {"NAND 8MiB 1,8V 16-bit", 0x49, 512, 8, 0x2000, NAND_BUSWIDTH_16}, - {"NAND 8MiB 3,3V 16-bit", 0x59, 512, 8, 0x2000, NAND_BUSWIDTH_16}, -#endif - - {"NAND 16MiB 1,8V 8-bit", 0x33, 512, 16, 0x4000, 0}, - {"NAND 16MiB 3,3V 8-bit", 0x73, 512, 16, 0x4000, 0}, - {"NAND 16MiB 1,8V 16-bit", 0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16}, - {"NAND 16MiB 3,3V 16-bit", 0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16}, - - {"NAND 32MiB 1,8V 8-bit", 0x35, 512, 32, 0x4000, 0}, - {"NAND 32MiB 3,3V 8-bit", 0x75, 512, 32, 0x4000, 0}, - {"NAND 32MiB 1,8V 16-bit", 0x45, 512, 32, 0x4000, NAND_BUSWIDTH_16}, - {"NAND 32MiB 3,3V 16-bit", 0x55, 512, 32, 0x4000, NAND_BUSWIDTH_16}, - - {"NAND 64MiB 1,8V 8-bit", 0x36, 512, 64, 0x4000, 0}, - {"NAND 64MiB 3,3V 8-bit", 0x76, 512, 64, 0x4000, 0}, - {"NAND 64MiB 1,8V 16-bit", 0x46, 512, 64, 0x4000, NAND_BUSWIDTH_16}, - {"NAND 64MiB 3,3V 16-bit", 0x56, 512, 64, 0x4000, NAND_BUSWIDTH_16}, - - {"NAND 128MiB 1,8V 8-bit", 0x78, 512, 128, 0x4000, 0}, - {"NAND 128MiB 1,8V 8-bit", 0x39, 512, 128, 0x4000, 0}, - {"NAND 128MiB 3,3V 8-bit", 0x79, 512, 128, 0x4000, 0}, - {"NAND 128MiB 1,8V 16-bit", 0x72, 512, 128, 0x4000, NAND_BUSWIDTH_16}, - {"NAND 128MiB 1,8V 16-bit", 0x49, 512, 128, 0x4000, NAND_BUSWIDTH_16}, - {"NAND 128MiB 3,3V 16-bit", 0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16}, - {"NAND 128MiB 3,3V 16-bit", 0x59, 512, 128, 0x4000, NAND_BUSWIDTH_16}, - - {"NAND 256MiB 3,3V 8-bit", 0x71, 512, 256, 0x4000, 0}, + /* + * Some incompatible NAND chips share device ID's and so must be + * listed by full ID. We list them first so that we can easily identify + * the most specific match. + */ + {"TC58NVG2S0F 4G 3.3V 8-bit", + { .id = {0x98, 0xdc, 0x90, 0x26, 0x76, 0x15, 0x01, 0x08} }, + SZ_4K, SZ_512, SZ_256K, 0, 8, 224, NAND_ECC_INFO(4, SZ_512) }, + {"TC58NVG3S0F 8G 3.3V 8-bit", + { .id = {0x98, 0xd3, 0x90, 0x26, 0x76, 0x15, 0x02, 0x08} }, + SZ_4K, SZ_1K, SZ_256K, 0, 8, 232, NAND_ECC_INFO(4, SZ_512) }, + {"TC58NVG5D2 32G 3.3V 8-bit", + { .id = {0x98, 0xd7, 0x94, 0x32, 0x76, 0x56, 0x09, 0x00} }, + SZ_8K, SZ_4K, SZ_1M, 0, 8, 640, NAND_ECC_INFO(40, SZ_1K) }, + {"TC58NVG6D2 64G 3.3V 8-bit", + { .id = {0x98, 0xde, 0x94, 0x82, 0x76, 0x56, 0x04, 0x20} }, + SZ_8K, SZ_8K, SZ_2M, 0, 8, 640, NAND_ECC_INFO(40, SZ_1K) }, + {"SDTNRGAMA 64G 3.3V 8-bit", + { .id = {0x45, 0xde, 0x94, 0x93, 0x76, 0x50} }, + SZ_16K, SZ_8K, SZ_4M, 0, 6, 1280, NAND_ECC_INFO(40, SZ_1K) }, + + LEGACY_ID_NAND("NAND 4MiB 5V 8-bit", 0x6B, 4, SZ_8K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 4MiB 3,3V 8-bit", 0xE3, 4, SZ_8K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 4MiB 3,3V 8-bit", 0xE5, 4, SZ_8K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 8MiB 3,3V 8-bit", 0xD6, 8, SZ_8K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 8MiB 3,3V 8-bit", 0xE6, 8, SZ_8K, SP_OPTIONS), + + LEGACY_ID_NAND("NAND 16MiB 1,8V 8-bit", 0x33, 16, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 16MiB 3,3V 8-bit", 0x73, 16, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 16MiB 1,8V 16-bit", 0x43, 16, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 16MiB 3,3V 16-bit", 0x53, 16, SZ_16K, SP_OPTIONS16), + + LEGACY_ID_NAND("NAND 32MiB 1,8V 8-bit", 0x35, 32, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 32MiB 3,3V 8-bit", 0x75, 32, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 32MiB 1,8V 16-bit", 0x45, 32, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 32MiB 3,3V 16-bit", 0x55, 32, SZ_16K, SP_OPTIONS16), + + LEGACY_ID_NAND("NAND 64MiB 1,8V 8-bit", 0x36, 64, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 64MiB 3,3V 8-bit", 0x76, 64, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 64MiB 1,8V 16-bit", 0x46, 64, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 64MiB 3,3V 16-bit", 0x56, 64, SZ_16K, SP_OPTIONS16), + + LEGACY_ID_NAND("NAND 128MiB 1,8V 8-bit", 0x78, 128, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 128MiB 1,8V 8-bit", 0x39, 128, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 128MiB 3,3V 8-bit", 0x79, 128, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 128MiB 1,8V 16-bit", 0x72, 128, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 128MiB 1,8V 16-bit", 0x49, 128, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 128MiB 3,3V 16-bit", 0x74, 128, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 128MiB 3,3V 16-bit", 0x59, 128, SZ_16K, SP_OPTIONS16), + + LEGACY_ID_NAND("NAND 256MiB 3,3V 8-bit", 0x71, 256, SZ_16K, SP_OPTIONS), /* - * These are the new chips with large page size. The pagesize and the - * erasesize is determined from the extended id bytes + * These are the new chips with large page size. Their page size and + * eraseblock size are determined from the extended ID bytes. */ -#define LP_OPTIONS (NAND_SAMSUNG_LP_OPTIONS | NAND_NO_READRDY | NAND_NO_AUTOINCR) -#define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16) - /*512 Megabit */ - {"NAND 64MiB 1,8V 8-bit", 0xA2, 0, 64, 0, LP_OPTIONS}, - {"NAND 64MiB 3,3V 8-bit", 0xF2, 0, 64, 0, LP_OPTIONS}, - {"NAND 64MiB 1,8V 16-bit", 0xB2, 0, 64, 0, LP_OPTIONS16}, - {"NAND 64MiB 3,3V 16-bit", 0xC2, 0, 64, 0, LP_OPTIONS16}, + /* 512 Megabit */ + EXTENDED_ID_NAND("NAND 64MiB 1,8V 8-bit", 0xA2, 64, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64MiB 1,8V 8-bit", 0xA0, 64, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64MiB 3,3V 8-bit", 0xF2, 64, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64MiB 3,3V 8-bit", 0xD0, 64, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64MiB 3,3V 8-bit", 0xF0, 64, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64MiB 1,8V 16-bit", 0xB2, 64, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 64MiB 1,8V 16-bit", 0xB0, 64, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 64MiB 3,3V 16-bit", 0xC2, 64, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 64MiB 3,3V 16-bit", 0xC0, 64, LP_OPTIONS16), /* 1 Gigabit */ - {"NAND 128MiB 1,8V 8-bit", 0xA1, 0, 128, 0, LP_OPTIONS}, - {"NAND 128MiB 3,3V 8-bit", 0xF1, 0, 128, 0, LP_OPTIONS}, - {"NAND 128MiB 3,3V 8-bit", 0xD1, 0, 128, 0, LP_OPTIONS}, - {"NAND 128MiB 1,8V 16-bit", 0xB1, 0, 128, 0, LP_OPTIONS16}, - {"NAND 128MiB 3,3V 16-bit", 0xC1, 0, 128, 0, LP_OPTIONS16}, + EXTENDED_ID_NAND("NAND 128MiB 1,8V 8-bit", 0xA1, 128, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 128MiB 3,3V 8-bit", 0xF1, 128, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 128MiB 3,3V 8-bit", 0xD1, 128, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 128MiB 1,8V 16-bit", 0xB1, 128, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 128MiB 3,3V 16-bit", 0xC1, 128, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 128MiB 1,8V 16-bit", 0xAD, 128, LP_OPTIONS16), /* 2 Gigabit */ - {"NAND 256MiB 1,8V 8-bit", 0xAA, 0, 256, 0, LP_OPTIONS}, - {"NAND 256MiB 3,3V 8-bit", 0xDA, 0, 256, 0, LP_OPTIONS}, - {"NAND 256MiB 1,8V 16-bit", 0xBA, 0, 256, 0, LP_OPTIONS16}, - {"NAND 256MiB 3,3V 16-bit", 0xCA, 0, 256, 0, LP_OPTIONS16}, + EXTENDED_ID_NAND("NAND 256MiB 1,8V 8-bit", 0xAA, 256, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 256MiB 3,3V 8-bit", 0xDA, 256, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 256MiB 1,8V 16-bit", 0xBA, 256, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 256MiB 3,3V 16-bit", 0xCA, 256, LP_OPTIONS16), /* 4 Gigabit */ - {"NAND 512MiB 1,8V 8-bit", 0xAC, 0, 512, 0, LP_OPTIONS}, - {"NAND 512MiB 3,3V 8-bit", 0xDC, 0, 512, 0, LP_OPTIONS}, - {"NAND 512MiB 1,8V 16-bit", 0xBC, 0, 512, 0, LP_OPTIONS16}, - {"NAND 512MiB 3,3V 16-bit", 0xCC, 0, 512, 0, LP_OPTIONS16}, + EXTENDED_ID_NAND("NAND 512MiB 1,8V 8-bit", 0xAC, 512, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 512MiB 3,3V 8-bit", 0xDC, 512, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 512MiB 1,8V 16-bit", 0xBC, 512, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 512MiB 3,3V 16-bit", 0xCC, 512, LP_OPTIONS16), /* 8 Gigabit */ - {"NAND 1GiB 1,8V 8-bit", 0xA3, 0, 1024, 0, LP_OPTIONS}, - {"NAND 1GiB 3,3V 8-bit", 0xD3, 0, 1024, 0, LP_OPTIONS}, - {"NAND 1GiB 1,8V 16-bit", 0xB3, 0, 1024, 0, LP_OPTIONS16}, - {"NAND 1GiB 3,3V 16-bit", 0xC3, 0, 1024, 0, LP_OPTIONS16}, + EXTENDED_ID_NAND("NAND 1GiB 1,8V 8-bit", 0xA3, 1024, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 1GiB 3,3V 8-bit", 0xD3, 1024, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 1GiB 1,8V 16-bit", 0xB3, 1024, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 1GiB 3,3V 16-bit", 0xC3, 1024, LP_OPTIONS16), /* 16 Gigabit */ - {"NAND 2GiB 1,8V 8-bit", 0xA5, 0, 2048, 0, LP_OPTIONS}, - {"NAND 2GiB 3,3V 8-bit", 0xD5, 0, 2048, 0, LP_OPTIONS}, - {"NAND 2GiB 1,8V 16-bit", 0xB5, 0, 2048, 0, LP_OPTIONS16}, - {"NAND 2GiB 3,3V 16-bit", 0xC5, 0, 2048, 0, LP_OPTIONS16}, - - /* - * Renesas AND 1 Gigabit. Those chips do not support extended id and - * have a strange page/block layout ! The chosen minimum erasesize is - * 4 * 2 * 2048 = 16384 Byte, as those chips have an array of 4 page - * planes 1 block = 2 pages, but due to plane arrangement the blocks - * 0-3 consists of page 0 + 4,1 + 5, 2 + 6, 3 + 7 Anyway JFFS2 would - * increase the eraseblock size so we chose a combined one which can be - * erased in one go There are more speed improvements for reads and - * writes possible, but not implemented now - */ - {"AND 128MiB 3,3V 8-bit", 0x01, 2048, 128, 0x4000, - NAND_IS_AND | NAND_NO_AUTOINCR |NAND_NO_READRDY | NAND_4PAGE_ARRAY | - BBT_AUTO_REFRESH - }, - - {NULL,} + EXTENDED_ID_NAND("NAND 2GiB 1,8V 8-bit", 0xA5, 2048, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 2GiB 3,3V 8-bit", 0xD5, 2048, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 2GiB 1,8V 16-bit", 0xB5, 2048, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 2GiB 3,3V 16-bit", 0xC5, 2048, LP_OPTIONS16), + + /* 32 Gigabit */ + EXTENDED_ID_NAND("NAND 4GiB 1,8V 8-bit", 0xA7, 4096, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 4GiB 3,3V 8-bit", 0xD7, 4096, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 4GiB 1,8V 16-bit", 0xB7, 4096, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 4GiB 3,3V 16-bit", 0xC7, 4096, LP_OPTIONS16), + + /* 64 Gigabit */ + EXTENDED_ID_NAND("NAND 8GiB 1,8V 8-bit", 0xAE, 8192, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 8GiB 3,3V 8-bit", 0xDE, 8192, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 8GiB 1,8V 16-bit", 0xBE, 8192, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 8GiB 3,3V 16-bit", 0xCE, 8192, LP_OPTIONS16), + + /* 128 Gigabit */ + EXTENDED_ID_NAND("NAND 16GiB 1,8V 8-bit", 0x1A, 16384, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 16GiB 3,3V 8-bit", 0x3A, 16384, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 16GiB 1,8V 16-bit", 0x2A, 16384, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 16GiB 3,3V 16-bit", 0x4A, 16384, LP_OPTIONS16), + + /* 256 Gigabit */ + EXTENDED_ID_NAND("NAND 32GiB 1,8V 8-bit", 0x1C, 32768, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 32GiB 3,3V 8-bit", 0x3C, 32768, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 32GiB 1,8V 16-bit", 0x2C, 32768, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 32GiB 3,3V 16-bit", 0x4C, 32768, LP_OPTIONS16), + + /* 512 Gigabit */ + EXTENDED_ID_NAND("NAND 64GiB 1,8V 8-bit", 0x1E, 65536, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64GiB 3,3V 8-bit", 0x3E, 65536, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64GiB 1,8V 16-bit", 0x2E, 65536, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 64GiB 3,3V 16-bit", 0x4E, 65536, LP_OPTIONS16), + + {NULL} }; -/* -* Manufacturer ID list -*/ +/* Manufacturer IDs */ struct nand_manufacturers nand_manuf_ids[] = { {NAND_MFR_TOSHIBA, "Toshiba"}, {NAND_MFR_SAMSUNG, "Samsung"}, @@ -140,7 +169,11 @@ struct nand_manufacturers nand_manuf_ids[] = { {NAND_MFR_STMICRO, "ST Micro"}, {NAND_MFR_HYNIX, "Hynix"}, {NAND_MFR_MICRON, "Micron"}, - {NAND_MFR_AMD, "AMD"}, + {NAND_MFR_AMD, "AMD/Spansion"}, + {NAND_MFR_MACRONIX, "Macronix"}, + {NAND_MFR_EON, "Eon"}, + {NAND_MFR_SANDISK, "SanDisk"}, + {NAND_MFR_INTEL, "Intel"}, {0x0, "Unknown"} }; diff --git a/drivers/mtd/nand/nandsim.c b/drivers/mtd/nand/nandsim.c index 261337efe0e..4f0d83648e5 100644 --- a/drivers/mtd/nand/nandsim.c +++ b/drivers/mtd/nand/nandsim.c @@ -28,12 +28,13 @@ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/vmalloc.h> -#include <asm/div64.h> +#include <linux/math64.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> +#include <linux/mtd/nand_bch.h> #include <linux/mtd/partitions.h> #include <linux/delay.h> #include <linux/list.h> @@ -41,6 +42,8 @@ #include <linux/sched.h> #include <linux/fs.h> #include <linux/pagemap.h> +#include <linux/seq_file.h> +#include <linux/debugfs.h> /* Default simulator parameters values */ #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \ @@ -104,9 +107,10 @@ static char *weakblocks = NULL; static char *weakpages = NULL; static unsigned int bitflips = 0; static char *gravepages = NULL; -static unsigned int rptwear = 0; static unsigned int overridesize = 0; static char *cache_file = NULL; +static unsigned int bbt; +static unsigned int bch; module_param(first_id_byte, uint, 0400); module_param(second_id_byte, uint, 0400); @@ -127,9 +131,10 @@ module_param(weakblocks, charp, 0400); module_param(weakpages, charp, 0400); module_param(bitflips, uint, 0400); module_param(gravepages, charp, 0400); -module_param(rptwear, uint, 0400); module_param(overridesize, uint, 0400); module_param(cache_file, charp, 0400); +module_param(bbt, uint, 0400); +module_param(bch, uint, 0400); MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)"); MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)"); @@ -157,11 +162,13 @@ MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (z MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]" " separated by commas e.g. 1401:2 means page 1401" " can be read only twice before failing"); -MODULE_PARM_DESC(rptwear, "Number of erases inbetween reporting wear, if not zero"); MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. " "The size is specified in erase blocks and as the exponent of a power of two" " e.g. 5 means a size of 32 erase blocks"); MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory"); +MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area"); +MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should " + "be correctable in 512-byte blocks"); /* The largest possible page size */ #define NS_LARGEST_PAGE_SIZE 4096 @@ -198,7 +205,7 @@ MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of mem /* Calculate the page offset in flash RAM image by (row, column) address */ #define NS_RAW_OFFSET(ns) \ - (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column) + (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column) /* Calculate the OOB offset in flash RAM image by (row, column) address */ #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz) @@ -207,12 +214,11 @@ MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of mem #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */ #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */ #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */ -#define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */ +#define STATE_CMD_PAGEPROG 0x00000004 /* start page program */ #define STATE_CMD_READOOB 0x00000005 /* read OOB area */ #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */ #define STATE_CMD_STATUS 0x00000007 /* read status */ -#define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */ -#define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */ +#define STATE_CMD_SEQIN 0x00000009 /* sequential data input */ #define STATE_CMD_READID 0x0000000A /* read ID */ #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */ #define STATE_CMD_RESET 0x0000000C /* reset */ @@ -227,7 +233,7 @@ MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of mem #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */ #define STATE_ADDR_MASK 0x00000070 /* address states mask */ -/* Durind data input/output the simulator is in these states */ +/* During data input/output the simulator is in these states */ #define STATE_DATAIN 0x00000100 /* waiting for data input */ #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */ @@ -245,7 +251,7 @@ MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of mem /* Simulator's actions bit masks */ #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */ -#define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */ +#define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */ #define ACTION_SECERASE 0x00300000 /* erase sector */ #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */ #define ACTION_HALFOFF 0x00500000 /* add to address half of page */ @@ -256,22 +262,20 @@ MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of mem #define NS_OPER_STATES 6 /* Maximum number of states in operation */ #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */ -#define OPT_PAGE256 0x00000001 /* 256-byte page chips */ #define OPT_PAGE512 0x00000002 /* 512-byte page chips */ #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */ #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */ -#define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */ #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */ #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */ #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */ -#define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */ +#define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */ -/* Remove action bits ftom state */ +/* Remove action bits from state */ #define NS_STATE(x) ((x) & ~ACTION_MASK) /* * Maximum previous states which need to be saved. Currently saving is - * only needed for page programm operation with preceeded read command + * only needed for page program operation with preceded read command * (which is only valid for 512-byte pages). */ #define NS_MAX_PREVSTATES 1 @@ -279,6 +283,11 @@ MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of mem /* Maximum page cache pages needed to read or write a NAND page to the cache_file */ #define NS_MAX_HELD_PAGES 16 +struct nandsim_debug_info { + struct dentry *dfs_root; + struct dentry *dfs_wear_report; +}; + /* * A union to represent flash memory contents and flash buffer. */ @@ -327,7 +336,6 @@ struct nandsim { uint pgsec; /* number of pages per sector */ uint secshift; /* bits number in sector size */ uint pgshift; /* bits number in page size */ - uint oobshift; /* bits number in OOB size */ uint pgaddrbytes; /* bytes per page address */ uint secaddrbytes; /* bytes per sector address */ uint idbytes; /* the number ID bytes that this chip outputs */ @@ -354,10 +362,12 @@ struct nandsim { /* Fields needed when using a cache file */ struct file *cfile; /* Open file */ - unsigned char *pages_written; /* Which pages have been written */ + unsigned long *pages_written; /* Which pages have been written */ void *file_buf; struct page *held_pages[NS_MAX_HELD_PAGES]; int held_cnt; + + struct nandsim_debug_info dbg; }; /* @@ -377,24 +387,22 @@ static struct nandsim_operations { /* Read OOB */ {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY, STATE_DATAOUT, STATE_READY}}, - /* Programm page starting from the beginning */ + /* Program page starting from the beginning */ {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, - /* Programm page starting from the beginning */ + /* Program page starting from the beginning */ {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE, STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, - /* Programm page starting from the second half */ + /* Program page starting from the second half */ {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE, STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, - /* Programm OOB */ + /* Program OOB */ {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE, STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, /* Erase sector */ {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}}, /* Read status */ {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}}, - /* Read multi-plane status */ - {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}}, /* Read ID */ {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}}, /* Large page devices read page */ @@ -435,12 +443,122 @@ static LIST_HEAD(grave_pages); static unsigned long *erase_block_wear = NULL; static unsigned int wear_eb_count = 0; static unsigned long total_wear = 0; -static unsigned int rptwear_cnt = 0; /* MTD structure for NAND controller */ static struct mtd_info *nsmtd; -static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE]; +static int nandsim_debugfs_show(struct seq_file *m, void *private) +{ + unsigned long wmin = -1, wmax = 0, avg; + unsigned long deciles[10], decile_max[10], tot = 0; + unsigned int i; + + /* Calc wear stats */ + for (i = 0; i < wear_eb_count; ++i) { + unsigned long wear = erase_block_wear[i]; + if (wear < wmin) + wmin = wear; + if (wear > wmax) + wmax = wear; + tot += wear; + } + + for (i = 0; i < 9; ++i) { + deciles[i] = 0; + decile_max[i] = (wmax * (i + 1) + 5) / 10; + } + deciles[9] = 0; + decile_max[9] = wmax; + for (i = 0; i < wear_eb_count; ++i) { + int d; + unsigned long wear = erase_block_wear[i]; + for (d = 0; d < 10; ++d) + if (wear <= decile_max[d]) { + deciles[d] += 1; + break; + } + } + avg = tot / wear_eb_count; + + /* Output wear report */ + seq_printf(m, "Total numbers of erases: %lu\n", tot); + seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count); + seq_printf(m, "Average number of erases: %lu\n", avg); + seq_printf(m, "Maximum number of erases: %lu\n", wmax); + seq_printf(m, "Minimum number of erases: %lu\n", wmin); + for (i = 0; i < 10; ++i) { + unsigned long from = (i ? decile_max[i - 1] + 1 : 0); + if (from > decile_max[i]) + continue; + seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n", + from, + decile_max[i], + deciles[i]); + } + + return 0; +} + +static int nandsim_debugfs_open(struct inode *inode, struct file *file) +{ + return single_open(file, nandsim_debugfs_show, inode->i_private); +} + +static const struct file_operations dfs_fops = { + .open = nandsim_debugfs_open, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, +}; + +/** + * nandsim_debugfs_create - initialize debugfs + * @dev: nandsim device description object + * + * This function creates all debugfs files for UBI device @ubi. Returns zero in + * case of success and a negative error code in case of failure. + */ +static int nandsim_debugfs_create(struct nandsim *dev) +{ + struct nandsim_debug_info *dbg = &dev->dbg; + struct dentry *dent; + int err; + + if (!IS_ENABLED(CONFIG_DEBUG_FS)) + return 0; + + dent = debugfs_create_dir("nandsim", NULL); + if (IS_ERR_OR_NULL(dent)) { + int err = dent ? -ENODEV : PTR_ERR(dent); + + NS_ERR("cannot create \"nandsim\" debugfs directory, err %d\n", + err); + return err; + } + dbg->dfs_root = dent; + + dent = debugfs_create_file("wear_report", S_IRUSR, + dbg->dfs_root, dev, &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + dbg->dfs_wear_report = dent; + + return 0; + +out_remove: + debugfs_remove_recursive(dbg->dfs_root); + err = dent ? PTR_ERR(dent) : -ENODEV; + return err; +} + +/** + * nandsim_debugfs_remove - destroy all debugfs files + */ +static void nandsim_debugfs_remove(struct nandsim *ns) +{ + if (IS_ENABLED(CONFIG_DEBUG_FS)) + debugfs_remove_recursive(ns->dbg.dfs_root); +} /* * Allocate array of page pointers, create slab allocation for an array @@ -457,17 +575,18 @@ static int alloc_device(struct nandsim *ns) cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600); if (IS_ERR(cfile)) return PTR_ERR(cfile); - if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) { + if (!(cfile->f_mode & FMODE_CAN_READ)) { NS_ERR("alloc_device: cache file not readable\n"); err = -EINVAL; goto err_close; } - if (!cfile->f_op->write && !cfile->f_op->aio_write) { + if (!(cfile->f_mode & FMODE_CAN_WRITE)) { NS_ERR("alloc_device: cache file not writeable\n"); err = -EINVAL; goto err_close; } - ns->pages_written = vmalloc(ns->geom.pgnum); + ns->pages_written = vzalloc(BITS_TO_LONGS(ns->geom.pgnum) * + sizeof(unsigned long)); if (!ns->pages_written) { NS_ERR("alloc_device: unable to allocate pages written array\n"); err = -ENOMEM; @@ -480,7 +599,6 @@ static int alloc_device(struct nandsim *ns) goto err_free; } ns->cfile = cfile; - memset(ns->pages_written, 0, ns->geom.pgnum); return 0; } @@ -535,15 +653,7 @@ static void free_device(struct nandsim *ns) static char *get_partition_name(int i) { - char buf[64]; - sprintf(buf, "NAND simulator partition %d", i); - return kstrdup(buf, GFP_KERNEL); -} - -static uint64_t divide(uint64_t n, uint32_t d) -{ - do_div(n, d); - return n; + return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i); } /* @@ -553,8 +663,8 @@ static uint64_t divide(uint64_t n, uint32_t d) */ static int init_nandsim(struct mtd_info *mtd) { - struct nand_chip *chip = (struct nand_chip *)mtd->priv; - struct nandsim *ns = (struct nandsim *)(chip->priv); + struct nand_chip *chip = mtd->priv; + struct nandsim *ns = chip->priv; int i, ret = 0; uint64_t remains; uint64_t next_offset; @@ -574,20 +684,16 @@ static int init_nandsim(struct mtd_info *mtd) ns->geom.oobsz = mtd->oobsize; ns->geom.secsz = mtd->erasesize; ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz; - ns->geom.pgnum = divide(ns->geom.totsz, ns->geom.pgsz); + ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz); ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz; ns->geom.secshift = ffs(ns->geom.secsz) - 1; ns->geom.pgshift = chip->page_shift; - ns->geom.oobshift = ffs(ns->geom.oobsz) - 1; ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz; ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec; ns->options = 0; - if (ns->geom.pgsz == 256) { - ns->options |= OPT_PAGE256; - } - else if (ns->geom.pgsz == 512) { - ns->options |= (OPT_PAGE512 | OPT_AUTOINCR); + if (ns->geom.pgsz == 512) { + ns->options |= OPT_PAGE512; if (ns->busw == 8) ns->options |= OPT_PAGE512_8BIT; } else if (ns->geom.pgsz == 2048) { @@ -652,14 +758,6 @@ static int init_nandsim(struct mtd_info *mtd) ns->nbparts += 1; } - /* Detect how many ID bytes the NAND chip outputs */ - for (i = 0; nand_flash_ids[i].name != NULL; i++) { - if (second_id_byte != nand_flash_ids[i].id) - continue; - if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR)) - ns->options |= OPT_AUTOINCR; - } - if (ns->busw == 16) NS_WARN("16-bit flashes support wasn't tested\n"); @@ -673,7 +771,7 @@ static int init_nandsim(struct mtd_info *mtd) printk("bus width: %u\n", ns->busw); printk("bits in sector size: %u\n", ns->geom.secshift); printk("bits in page size: %u\n", ns->geom.pgshift); - printk("bits in OOB size: %u\n", ns->geom.oobshift); + printk("bits in OOB size: %u\n", ffs(ns->geom.oobsz) - 1); printk("flash size with OOB: %llu KiB\n", (unsigned long long)ns->geom.totszoob >> 10); printk("page address bytes: %u\n", ns->geom.pgaddrbytes); @@ -730,7 +828,7 @@ static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd) return -EINVAL; } offset = erase_block_no * ns->geom.secsz; - if (mtd->block_markbad(mtd, offset)) { + if (mtd_block_markbad(mtd, offset)) { NS_ERR("invalid badblocks.\n"); return -EINVAL; } @@ -915,9 +1013,7 @@ static int setup_wear_reporting(struct mtd_info *mtd) { size_t mem; - if (!rptwear) - return 0; - wear_eb_count = divide(mtd->size, mtd->erasesize); + wear_eb_count = div_u64(mtd->size, mtd->erasesize); mem = wear_eb_count * sizeof(unsigned long); if (mem / sizeof(unsigned long) != wear_eb_count) { NS_ERR("Too many erase blocks for wear reporting\n"); @@ -933,64 +1029,18 @@ static int setup_wear_reporting(struct mtd_info *mtd) static void update_wear(unsigned int erase_block_no) { - unsigned long wmin = -1, wmax = 0, avg; - unsigned long deciles[10], decile_max[10], tot = 0; - unsigned int i; - if (!erase_block_wear) return; total_wear += 1; + /* + * TODO: Notify this through a debugfs entry, + * instead of showing an error message. + */ if (total_wear == 0) NS_ERR("Erase counter total overflow\n"); erase_block_wear[erase_block_no] += 1; if (erase_block_wear[erase_block_no] == 0) NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no); - rptwear_cnt += 1; - if (rptwear_cnt < rptwear) - return; - rptwear_cnt = 0; - /* Calc wear stats */ - for (i = 0; i < wear_eb_count; ++i) { - unsigned long wear = erase_block_wear[i]; - if (wear < wmin) - wmin = wear; - if (wear > wmax) - wmax = wear; - tot += wear; - } - for (i = 0; i < 9; ++i) { - deciles[i] = 0; - decile_max[i] = (wmax * (i + 1) + 5) / 10; - } - deciles[9] = 0; - decile_max[9] = wmax; - for (i = 0; i < wear_eb_count; ++i) { - int d; - unsigned long wear = erase_block_wear[i]; - for (d = 0; d < 10; ++d) - if (wear <= decile_max[d]) { - deciles[d] += 1; - break; - } - } - avg = tot / wear_eb_count; - /* Output wear report */ - NS_INFO("*** Wear Report ***\n"); - NS_INFO("Total numbers of erases: %lu\n", tot); - NS_INFO("Number of erase blocks: %u\n", wear_eb_count); - NS_INFO("Average number of erases: %lu\n", avg); - NS_INFO("Maximum number of erases: %lu\n", wmax); - NS_INFO("Minimum number of erases: %lu\n", wmin); - for (i = 0; i < 10; ++i) { - unsigned long from = (i ? decile_max[i - 1] + 1 : 0); - if (from > decile_max[i]) - continue; - NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n", - from, - decile_max[i], - deciles[i]); - } - NS_INFO("*** End of Wear Report ***\n"); } /* @@ -1013,8 +1063,6 @@ static char *get_state_name(uint32_t state) return "STATE_CMD_ERASE1"; case STATE_CMD_STATUS: return "STATE_CMD_STATUS"; - case STATE_CMD_STATUS_M: - return "STATE_CMD_STATUS_M"; case STATE_CMD_SEQIN: return "STATE_CMD_SEQIN"; case STATE_CMD_READID: @@ -1079,7 +1127,6 @@ static int check_command(int cmd) case NAND_CMD_RNDOUTSTART: return 0; - case NAND_CMD_STATUS_MULTI: default: return 1; } @@ -1105,8 +1152,6 @@ static uint32_t get_state_by_command(unsigned command) return STATE_CMD_ERASE1; case NAND_CMD_STATUS: return STATE_CMD_STATUS; - case NAND_CMD_STATUS_MULTI: - return STATE_CMD_STATUS_M; case NAND_CMD_SEQIN: return STATE_CMD_SEQIN; case NAND_CMD_READID: @@ -1168,9 +1213,9 @@ static inline void switch_to_ready_state(struct nandsim *ns, u_char status) * of supported operations. * * Operation can be unknown because of the following. - * 1. New command was accepted and this is the firs call to find the + * 1. New command was accepted and this is the first call to find the * correspondent states chain. In this case ns->npstates = 0; - * 2. There is several operations which begin with the same command(s) + * 2. There are several operations which begin with the same command(s) * (for example program from the second half and read from the * second half operations both begin with the READ1 command). In this * case the ns->pstates[] array contains previous states. @@ -1183,7 +1228,7 @@ static inline void switch_to_ready_state(struct nandsim *ns, u_char status) * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is * zeroed). * - * If there are several maches, the current state is pushed to the + * If there are several matches, the current state is pushed to the * ns->pstates. * * The operation can be unknown only while commands are input to the chip. @@ -1192,10 +1237,10 @@ static inline void switch_to_ready_state(struct nandsim *ns, u_char status) * operation is searched using the following pattern: * ns->pstates[0], ... ns->pstates[ns->npstates], <address input> * - * It is supposed that this pattern must either match one operation on + * It is supposed that this pattern must either match one operation or * none. There can't be ambiguity in that case. * - * If no matches found, the functions does the following: + * If no matches found, the function does the following: * 1. if there are saved states present, try to ignore them and search * again only using the last command. If nothing was found, switch * to the STATE_READY state. @@ -1342,40 +1387,32 @@ static void clear_memalloc(int memalloc) current->flags &= ~PF_MEMALLOC; } -static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos) +static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos) { - mm_segment_t old_fs; ssize_t tx; int err, memalloc; - err = get_pages(ns, file, count, *pos); + err = get_pages(ns, file, count, pos); if (err) return err; - old_fs = get_fs(); - set_fs(get_ds()); memalloc = set_memalloc(); - tx = vfs_read(file, (char __user *)buf, count, pos); + tx = kernel_read(file, pos, buf, count); clear_memalloc(memalloc); - set_fs(old_fs); put_pages(ns); return tx; } -static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos) +static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos) { - mm_segment_t old_fs; ssize_t tx; int err, memalloc; - err = get_pages(ns, file, count, *pos); + err = get_pages(ns, file, count, pos); if (err) return err; - old_fs = get_fs(); - set_fs(get_ds()); memalloc = set_memalloc(); - tx = vfs_write(file, (char __user *)buf, count, pos); + tx = kernel_write(file, buf, count, pos); clear_memalloc(memalloc); - set_fs(old_fs); put_pages(ns); return tx; } @@ -1396,29 +1433,26 @@ static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns) return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off; } -int do_read_error(struct nandsim *ns, int num) +static int do_read_error(struct nandsim *ns, int num) { unsigned int page_no = ns->regs.row; if (read_error(page_no)) { - int i; - memset(ns->buf.byte, 0xFF, num); - for (i = 0; i < num; ++i) - ns->buf.byte[i] = random32(); + prandom_bytes(ns->buf.byte, num); NS_WARN("simulating read error in page %u\n", page_no); return 1; } return 0; } -void do_bit_flips(struct nandsim *ns, int num) +static void do_bit_flips(struct nandsim *ns, int num) { - if (bitflips && random32() < (1 << 22)) { + if (bitflips && prandom_u32() < (1 << 22)) { int flips = 1; if (bitflips > 1) - flips = (random32() % (int) bitflips) + 1; + flips = (prandom_u32() % (int) bitflips) + 1; while (flips--) { - int pos = random32() % (num * 8); + int pos = prandom_u32() % (num * 8); ns->buf.byte[pos / 8] ^= (1 << (pos % 8)); NS_WARN("read_page: flipping bit %d in page %d " "reading from %d ecc: corrected=%u failed=%u\n", @@ -1436,7 +1470,7 @@ static void read_page(struct nandsim *ns, int num) union ns_mem *mypage; if (ns->cfile) { - if (!ns->pages_written[ns->regs.row]) { + if (!test_bit(ns->regs.row, ns->pages_written)) { NS_DBG("read_page: page %d not written\n", ns->regs.row); memset(ns->buf.byte, 0xFF, num); } else { @@ -1447,8 +1481,8 @@ static void read_page(struct nandsim *ns, int num) ns->regs.row, ns->regs.column + ns->regs.off); if (do_read_error(ns, num)) return; - pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off; - tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos); + pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; + tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos); if (tx != num) { NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); return; @@ -1482,9 +1516,9 @@ static void erase_sector(struct nandsim *ns) if (ns->cfile) { for (i = 0; i < ns->geom.pgsec; i++) - if (ns->pages_written[ns->regs.row + i]) { + if (__test_and_clear_bit(ns->regs.row + i, + ns->pages_written)) { NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i); - ns->pages_written[ns->regs.row + i] = 0; } return; } @@ -1510,20 +1544,19 @@ static int prog_page(struct nandsim *ns, int num) u_char *pg_off; if (ns->cfile) { - loff_t off, pos; + loff_t off; ssize_t tx; int all; NS_DBG("prog_page: writing page %d\n", ns->regs.row); pg_off = ns->file_buf + ns->regs.column + ns->regs.off; - off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off; - if (!ns->pages_written[ns->regs.row]) { + off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; + if (!test_bit(ns->regs.row, ns->pages_written)) { all = 1; memset(ns->file_buf, 0xff, ns->geom.pgszoob); } else { all = 0; - pos = off; - tx = read_file(ns, ns->cfile, pg_off, num, &pos); + tx = read_file(ns, ns->cfile, pg_off, num, off); if (tx != num) { NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); return -1; @@ -1532,16 +1565,15 @@ static int prog_page(struct nandsim *ns, int num) for (i = 0; i < num; i++) pg_off[i] &= ns->buf.byte[i]; if (all) { - pos = (loff_t)ns->regs.row * ns->geom.pgszoob; - tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos); + loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob; + tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos); if (tx != ns->geom.pgszoob) { NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); return -1; } - ns->pages_written[ns->regs.row] = 1; + __set_bit(ns->regs.row, ns->pages_written); } else { - pos = off; - tx = write_file(ns, ns->cfile, pg_off, num, &pos); + tx = write_file(ns, ns->cfile, pg_off, num, off); if (tx != num) { NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); return -1; @@ -1665,7 +1697,7 @@ static int do_state_action(struct nandsim *ns, uint32_t action) case ACTION_PRGPAGE: /* - * Programm page - move internal buffer data to the page. + * Program page - move internal buffer data to the page. */ if (ns->lines.wp) { @@ -1877,7 +1909,7 @@ static void switch_state(struct nandsim *ns) static u_char ns_nand_read_byte(struct mtd_info *mtd) { - struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv; + struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv; u_char outb = 0x00; /* Sanity and correctness checks */ @@ -1929,20 +1961,8 @@ static u_char ns_nand_read_byte(struct mtd_info *mtd) if (ns->regs.count == ns->regs.num) { NS_DBG("read_byte: all bytes were read\n"); - /* - * The OPT_AUTOINCR allows to read next conseqitive pages without - * new read operation cycle. - */ - if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) { - ns->regs.count = 0; - if (ns->regs.row + 1 < ns->geom.pgnum) - ns->regs.row += 1; - NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row); - do_state_action(ns, ACTION_CPY); - } - else if (NS_STATE(ns->nxstate) == STATE_READY) + if (NS_STATE(ns->nxstate) == STATE_READY) switch_state(ns); - } return outb; @@ -1950,7 +1970,7 @@ static u_char ns_nand_read_byte(struct mtd_info *mtd) static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte) { - struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv; + struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv; /* Sanity and correctness checks */ if (!ns->lines.ce) { @@ -2132,7 +2152,7 @@ static uint16_t ns_nand_read_word(struct mtd_info *mtd) static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) { - struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv; + struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv; /* Check that chip is expecting data input */ if (!(ns->state & STATE_DATAIN_MASK)) { @@ -2159,7 +2179,7 @@ static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) { - struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv; + struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv; /* Sanity and correctness checks */ if (!ns->lines.ce) { @@ -2196,33 +2216,13 @@ static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) ns->regs.count += len; if (ns->regs.count == ns->regs.num) { - if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) { - ns->regs.count = 0; - if (ns->regs.row + 1 < ns->geom.pgnum) - ns->regs.row += 1; - NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row); - do_state_action(ns, ACTION_CPY); - } - else if (NS_STATE(ns->nxstate) == STATE_READY) + if (NS_STATE(ns->nxstate) == STATE_READY) switch_state(ns); } return; } -static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) -{ - ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len); - - if (!memcmp(buf, &ns_verify_buf[0], len)) { - NS_DBG("verify_buf: the buffer is OK\n"); - return 0; - } else { - NS_DBG("verify_buf: the buffer is wrong\n"); - return -EFAULT; - } -} - /* * Module initialization function */ @@ -2257,13 +2257,24 @@ static int __init ns_init_module(void) chip->dev_ready = ns_device_ready; chip->write_buf = ns_nand_write_buf; chip->read_buf = ns_nand_read_buf; - chip->verify_buf = ns_nand_verify_buf; chip->read_word = ns_nand_read_word; chip->ecc.mode = NAND_ECC_SOFT; /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */ /* and 'badblocks' parameters to work */ chip->options |= NAND_SKIP_BBTSCAN; + switch (bbt) { + case 2: + chip->bbt_options |= NAND_BBT_NO_OOB; + case 1: + chip->bbt_options |= NAND_BBT_USE_FLASH; + case 0: + break; + default: + NS_ERR("bbt has to be 0..2\n"); + retval = -EINVAL; + goto error; + } /* * Perform minimum nandsim structure initialization to handle * the initial ID read command correctly @@ -2274,7 +2285,7 @@ static int __init ns_init_module(void) nand->geom.idbytes = 2; nand->regs.status = NS_STATUS_OK(nand); nand->nxstate = STATE_UNKNOWN; - nand->options |= OPT_PAGE256; /* temporary value */ + nand->options |= OPT_PAGE512; /* temporary value */ nand->ids[0] = first_id_byte; nand->ids[1] = second_id_byte; nand->ids[2] = third_id_byte; @@ -2295,7 +2306,43 @@ static int __init ns_init_module(void) if ((retval = parse_gravepages()) != 0) goto error; - if ((retval = nand_scan(nsmtd, 1)) != 0) { + retval = nand_scan_ident(nsmtd, 1, NULL); + if (retval) { + NS_ERR("cannot scan NAND Simulator device\n"); + if (retval > 0) + retval = -ENXIO; + goto error; + } + + if (bch) { + unsigned int eccsteps, eccbytes; + if (!mtd_nand_has_bch()) { + NS_ERR("BCH ECC support is disabled\n"); + retval = -EINVAL; + goto error; + } + /* use 512-byte ecc blocks */ + eccsteps = nsmtd->writesize/512; + eccbytes = (bch*13+7)/8; + /* do not bother supporting small page devices */ + if ((nsmtd->oobsize < 64) || !eccsteps) { + NS_ERR("bch not available on small page devices\n"); + retval = -EINVAL; + goto error; + } + if ((eccbytes*eccsteps+2) > nsmtd->oobsize) { + NS_ERR("invalid bch value %u\n", bch); + retval = -EINVAL; + goto error; + } + chip->ecc.mode = NAND_ECC_SOFT_BCH; + chip->ecc.size = 512; + chip->ecc.bytes = eccbytes; + NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size); + } + + retval = nand_scan_tail(nsmtd); + if (retval) { NS_ERR("can't register NAND Simulator\n"); if (retval > 0) retval = -ENXIO; @@ -2306,6 +2353,7 @@ static int __init ns_init_module(void) uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize; if (new_size >> overridesize != nsmtd->erasesize) { NS_ERR("overridesize is too big\n"); + retval = -EINVAL; goto err_exit; } /* N.B. This relies on nand_scan not doing anything with the size before we change it */ @@ -2318,17 +2366,22 @@ static int __init ns_init_module(void) if ((retval = setup_wear_reporting(nsmtd)) != 0) goto err_exit; + if ((retval = nandsim_debugfs_create(nand)) != 0) + goto err_exit; + if ((retval = init_nandsim(nsmtd)) != 0) goto err_exit; - if ((retval = parse_badblocks(nand, nsmtd)) != 0) + if ((retval = chip->scan_bbt(nsmtd)) != 0) goto err_exit; - if ((retval = nand_default_bbt(nsmtd)) != 0) + if ((retval = parse_badblocks(nand, nsmtd)) != 0) goto err_exit; /* Register NAND partitions */ - if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0) + retval = mtd_device_register(nsmtd, &nand->partitions[0], + nand->nbparts); + if (retval != 0) goto err_exit; return 0; @@ -2352,9 +2405,10 @@ module_init(ns_init_module); */ static void __exit ns_cleanup_module(void) { - struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv); + struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv; int i; + nandsim_debugfs_remove(ns); free_nandsim(ns); /* Free nandsim private resources */ nand_release(nsmtd); /* Unregister driver */ for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i) diff --git a/drivers/mtd/nand/ndfc.c b/drivers/mtd/nand/ndfc.c index 98fd2bdf8be..69eaba690a9 100644 --- a/drivers/mtd/nand/ndfc.c +++ b/drivers/mtd/nand/ndfc.c @@ -30,28 +30,28 @@ #include <linux/mtd/ndfc.h> #include <linux/slab.h> #include <linux/mtd/mtd.h> +#include <linux/of_address.h> #include <linux/of_platform.h> #include <asm/io.h> +#define NDFC_MAX_CS 4 struct ndfc_controller { - struct of_device *ofdev; + struct platform_device *ofdev; void __iomem *ndfcbase; struct mtd_info mtd; struct nand_chip chip; int chip_select; struct nand_hw_control ndfc_control; -#ifdef CONFIG_MTD_PARTITIONS - struct mtd_partition *parts; -#endif }; -static struct ndfc_controller ndfc_ctrl; +static struct ndfc_controller ndfc_ctrl[NDFC_MAX_CS]; static void ndfc_select_chip(struct mtd_info *mtd, int chip) { uint32_t ccr; - struct ndfc_controller *ndfc = &ndfc_ctrl; + struct nand_chip *nchip = mtd->priv; + struct ndfc_controller *ndfc = nchip->priv; ccr = in_be32(ndfc->ndfcbase + NDFC_CCR); if (chip >= 0) { @@ -64,7 +64,8 @@ static void ndfc_select_chip(struct mtd_info *mtd, int chip) static void ndfc_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) { - struct ndfc_controller *ndfc = &ndfc_ctrl; + struct nand_chip *chip = mtd->priv; + struct ndfc_controller *ndfc = chip->priv; if (cmd == NAND_CMD_NONE) return; @@ -77,7 +78,8 @@ static void ndfc_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) static int ndfc_ready(struct mtd_info *mtd) { - struct ndfc_controller *ndfc = &ndfc_ctrl; + struct nand_chip *chip = mtd->priv; + struct ndfc_controller *ndfc = chip->priv; return in_be32(ndfc->ndfcbase + NDFC_STAT) & NDFC_STAT_IS_READY; } @@ -85,7 +87,8 @@ static int ndfc_ready(struct mtd_info *mtd) static void ndfc_enable_hwecc(struct mtd_info *mtd, int mode) { uint32_t ccr; - struct ndfc_controller *ndfc = &ndfc_ctrl; + struct nand_chip *chip = mtd->priv; + struct ndfc_controller *ndfc = chip->priv; ccr = in_be32(ndfc->ndfcbase + NDFC_CCR); ccr |= NDFC_CCR_RESET_ECC; @@ -96,7 +99,8 @@ static void ndfc_enable_hwecc(struct mtd_info *mtd, int mode) static int ndfc_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { - struct ndfc_controller *ndfc = &ndfc_ctrl; + struct nand_chip *chip = mtd->priv; + struct ndfc_controller *ndfc = chip->priv; uint32_t ecc; uint8_t *p = (uint8_t *)&ecc; @@ -119,7 +123,8 @@ static int ndfc_calculate_ecc(struct mtd_info *mtd, */ static void ndfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { - struct ndfc_controller *ndfc = &ndfc_ctrl; + struct nand_chip *chip = mtd->priv; + struct ndfc_controller *ndfc = chip->priv; uint32_t *p = (uint32_t *) buf; for(;len > 0; len -= 4) @@ -128,39 +133,23 @@ static void ndfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) static void ndfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { - struct ndfc_controller *ndfc = &ndfc_ctrl; + struct nand_chip *chip = mtd->priv; + struct ndfc_controller *ndfc = chip->priv; uint32_t *p = (uint32_t *) buf; for(;len > 0; len -= 4) out_be32(ndfc->ndfcbase + NDFC_DATA, *p++); } -static int ndfc_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - struct ndfc_controller *ndfc = &ndfc_ctrl; - uint32_t *p = (uint32_t *) buf; - - for(;len > 0; len -= 4) - if (*p++ != in_be32(ndfc->ndfcbase + NDFC_DATA)) - return -EFAULT; - return 0; -} - /* * Initialize chip structure */ static int ndfc_chip_init(struct ndfc_controller *ndfc, struct device_node *node) { -#ifdef CONFIG_MTD_PARTITIONS -#ifdef CONFIG_MTD_CMDLINE_PARTS - static const char *part_types[] = { "cmdlinepart", NULL }; -#else - static const char *part_types[] = { NULL }; -#endif -#endif struct device_node *flash_np; struct nand_chip *chip = &ndfc->chip; + struct mtd_part_parser_data ppdata; int ret; chip->IO_ADDR_R = ndfc->ndfcbase + NDFC_DATA; @@ -172,13 +161,14 @@ static int ndfc_chip_init(struct ndfc_controller *ndfc, chip->controller = &ndfc->ndfc_control; chip->read_buf = ndfc_read_buf; chip->write_buf = ndfc_write_buf; - chip->verify_buf = ndfc_verify_buf; chip->ecc.correct = nand_correct_data; chip->ecc.hwctl = ndfc_enable_hwecc; chip->ecc.calculate = ndfc_calculate_ecc; chip->ecc.mode = NAND_ECC_HW; chip->ecc.size = 256; chip->ecc.bytes = 3; + chip->ecc.strength = 1; + chip->priv = ndfc; ndfc->mtd.priv = chip; ndfc->mtd.owner = THIS_MODULE; @@ -187,6 +177,7 @@ static int ndfc_chip_init(struct ndfc_controller *ndfc, if (!flash_np) return -ENODEV; + ppdata.of_node = flash_np; ndfc->mtd.name = kasprintf(GFP_KERNEL, "%s.%s", dev_name(&ndfc->ofdev->dev), flash_np->name); if (!ndfc->mtd.name) { @@ -198,25 +189,7 @@ static int ndfc_chip_init(struct ndfc_controller *ndfc, if (ret) goto err; -#ifdef CONFIG_MTD_PARTITIONS - ret = parse_mtd_partitions(&ndfc->mtd, part_types, &ndfc->parts, 0); - if (ret < 0) - goto err; - -#ifdef CONFIG_MTD_OF_PARTS - if (ret == 0) { - ret = of_mtd_parse_partitions(&ndfc->ofdev->dev, flash_np, - &ndfc->parts); - if (ret < 0) - goto err; - } -#endif - - if (ret > 0) - ret = add_mtd_partitions(&ndfc->mtd, ndfc->parts, ret); - else -#endif - ret = add_mtd_device(&ndfc->mtd); + ret = mtd_device_parse_register(&ndfc->mtd, NULL, &ppdata, NULL, 0); err: of_node_put(flash_np); @@ -225,18 +198,12 @@ err: return ret; } -static int __devinit ndfc_probe(struct of_device *ofdev, - const struct of_device_id *match) +static int ndfc_probe(struct platform_device *ofdev) { - struct ndfc_controller *ndfc = &ndfc_ctrl; - const u32 *reg; + struct ndfc_controller *ndfc; + const __be32 *reg; u32 ccr; - int err, len; - - spin_lock_init(&ndfc->ndfc_control.lock); - init_waitqueue_head(&ndfc->ndfc_control.wq); - ndfc->ofdev = ofdev; - dev_set_drvdata(&ofdev->dev, ndfc); + int err, len, cs; /* Read the reg property to get the chip select */ reg = of_get_property(ofdev->dev.of_node, "reg", &len); @@ -244,7 +211,20 @@ static int __devinit ndfc_probe(struct of_device *ofdev, dev_err(&ofdev->dev, "unable read reg property (%d)\n", len); return -ENOENT; } - ndfc->chip_select = reg[0]; + + cs = be32_to_cpu(reg[0]); + if (cs >= NDFC_MAX_CS) { + dev_err(&ofdev->dev, "invalid CS number (%d)\n", cs); + return -EINVAL; + } + + ndfc = &ndfc_ctrl[cs]; + ndfc->chip_select = cs; + + spin_lock_init(&ndfc->ndfc_control.lock); + init_waitqueue_head(&ndfc->ndfc_control.wq); + ndfc->ofdev = ofdev; + dev_set_drvdata(&ofdev->dev, ndfc); ndfc->ndfcbase = of_iomap(ofdev->dev.of_node, 0); if (!ndfc->ndfcbase) { @@ -257,7 +237,7 @@ static int __devinit ndfc_probe(struct of_device *ofdev, /* It is ok if ccr does not exist - just default to 0 */ reg = of_get_property(ofdev->dev.of_node, "ccr", NULL); if (reg) - ccr |= *reg; + ccr |= be32_to_cpup(reg); out_be32(ndfc->ndfcbase + NDFC_CCR, ccr); @@ -265,7 +245,7 @@ static int __devinit ndfc_probe(struct of_device *ofdev, reg = of_get_property(ofdev->dev.of_node, "bank-settings", NULL); if (reg) { int offset = NDFC_BCFG0 + (ndfc->chip_select << 2); - out_be32(ndfc->ndfcbase + offset, *reg); + out_be32(ndfc->ndfcbase + offset, be32_to_cpup(reg)); } err = ndfc_chip_init(ndfc, ofdev->dev.of_node); @@ -277,11 +257,12 @@ static int __devinit ndfc_probe(struct of_device *ofdev, return 0; } -static int __devexit ndfc_remove(struct of_device *ofdev) +static int ndfc_remove(struct platform_device *ofdev) { struct ndfc_controller *ndfc = dev_get_drvdata(&ofdev->dev); nand_release(&ndfc->mtd); + kfree(ndfc->mtd.name); return 0; } @@ -292,28 +273,17 @@ static const struct of_device_id ndfc_match[] = { }; MODULE_DEVICE_TABLE(of, ndfc_match); -static struct of_platform_driver ndfc_driver = { +static struct platform_driver ndfc_driver = { .driver = { .name = "ndfc", .owner = THIS_MODULE, .of_match_table = ndfc_match, }, .probe = ndfc_probe, - .remove = __devexit_p(ndfc_remove), + .remove = ndfc_remove, }; -static int __init ndfc_nand_init(void) -{ - return of_register_platform_driver(&ndfc_driver); -} - -static void __exit ndfc_nand_exit(void) -{ - of_unregister_platform_driver(&ndfc_driver); -} - -module_init(ndfc_nand_init); -module_exit(ndfc_nand_exit); +module_platform_driver(ndfc_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); diff --git a/drivers/mtd/nand/nomadik_nand.c b/drivers/mtd/nand/nomadik_nand.c deleted file mode 100644 index 8c0b6937522..00000000000 --- a/drivers/mtd/nand/nomadik_nand.c +++ /dev/null @@ -1,251 +0,0 @@ -/* - * drivers/mtd/nand/nomadik_nand.c - * - * Overview: - * Driver for on-board NAND flash on Nomadik Platforms - * - * Copyright © 2007 STMicroelectronics Pvt. Ltd. - * Author: Sachin Verma <sachin.verma@st.com> - * - * Copyright © 2009 Alessandro Rubini - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - */ - -#include <linux/init.h> -#include <linux/module.h> -#include <linux/types.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/nand_ecc.h> -#include <linux/platform_device.h> -#include <linux/mtd/partitions.h> -#include <linux/io.h> -#include <linux/slab.h> -#include <mach/nand.h> -#include <mach/fsmc.h> - -#include <mtd/mtd-abi.h> - -struct nomadik_nand_host { - struct mtd_info mtd; - struct nand_chip nand; - void __iomem *data_va; - void __iomem *cmd_va; - void __iomem *addr_va; - struct nand_bbt_descr *bbt_desc; -}; - -static struct nand_ecclayout nomadik_ecc_layout = { - .eccbytes = 3 * 4, - .eccpos = { /* each subpage has 16 bytes: pos 2,3,4 hosts ECC */ - 0x02, 0x03, 0x04, - 0x12, 0x13, 0x14, - 0x22, 0x23, 0x24, - 0x32, 0x33, 0x34}, - /* let's keep bytes 5,6,7 for us, just in case we change ECC algo */ - .oobfree = { {0x08, 0x08}, {0x18, 0x08}, {0x28, 0x08}, {0x38, 0x08} }, -}; - -static void nomadik_ecc_control(struct mtd_info *mtd, int mode) -{ - /* No need to enable hw ecc, it's on by default */ -} - -static void nomadik_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) -{ - struct nand_chip *nand = mtd->priv; - struct nomadik_nand_host *host = nand->priv; - - if (cmd == NAND_CMD_NONE) - return; - - if (ctrl & NAND_CLE) - writeb(cmd, host->cmd_va); - else - writeb(cmd, host->addr_va); -} - -static int nomadik_nand_probe(struct platform_device *pdev) -{ - struct nomadik_nand_platform_data *pdata = pdev->dev.platform_data; - struct nomadik_nand_host *host; - struct mtd_info *mtd; - struct nand_chip *nand; - struct resource *res; - int ret = 0; - - /* Allocate memory for the device structure (and zero it) */ - host = kzalloc(sizeof(struct nomadik_nand_host), GFP_KERNEL); - if (!host) { - dev_err(&pdev->dev, "Failed to allocate device structure.\n"); - return -ENOMEM; - } - - /* Call the client's init function, if any */ - if (pdata->init) - ret = pdata->init(); - if (ret < 0) { - dev_err(&pdev->dev, "Init function failed\n"); - goto err; - } - - /* ioremap three regions */ - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr"); - if (!res) { - ret = -EIO; - goto err_unmap; - } - host->addr_va = ioremap(res->start, resource_size(res)); - - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); - if (!res) { - ret = -EIO; - goto err_unmap; - } - host->data_va = ioremap(res->start, resource_size(res)); - - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd"); - if (!res) { - ret = -EIO; - goto err_unmap; - } - host->cmd_va = ioremap(res->start, resource_size(res)); - - if (!host->addr_va || !host->data_va || !host->cmd_va) { - ret = -ENOMEM; - goto err_unmap; - } - - /* Link all private pointers */ - mtd = &host->mtd; - nand = &host->nand; - mtd->priv = nand; - nand->priv = host; - - host->mtd.owner = THIS_MODULE; - nand->IO_ADDR_R = host->data_va; - nand->IO_ADDR_W = host->data_va; - nand->cmd_ctrl = nomadik_cmd_ctrl; - - /* - * This stanza declares ECC_HW but uses soft routines. It's because - * HW claims to make the calculation but not the correction. However, - * I haven't managed to get the desired data out of it until now. - */ - nand->ecc.mode = NAND_ECC_SOFT; - nand->ecc.layout = &nomadik_ecc_layout; - nand->ecc.hwctl = nomadik_ecc_control; - nand->ecc.size = 512; - nand->ecc.bytes = 3; - - nand->options = pdata->options; - - /* - * Scan to find existance of the device - */ - if (nand_scan(&host->mtd, 1)) { - ret = -ENXIO; - goto err_unmap; - } - -#ifdef CONFIG_MTD_PARTITIONS - add_mtd_partitions(&host->mtd, pdata->parts, pdata->nparts); -#else - pr_info("Registering %s as whole device\n", mtd->name); - add_mtd_device(mtd); -#endif - - platform_set_drvdata(pdev, host); - return 0; - - err_unmap: - if (host->cmd_va) - iounmap(host->cmd_va); - if (host->data_va) - iounmap(host->data_va); - if (host->addr_va) - iounmap(host->addr_va); - err: - kfree(host); - return ret; -} - -/* - * Clean up routine - */ -static int nomadik_nand_remove(struct platform_device *pdev) -{ - struct nomadik_nand_host *host = platform_get_drvdata(pdev); - struct nomadik_nand_platform_data *pdata = pdev->dev.platform_data; - - if (pdata->exit) - pdata->exit(); - - if (host) { - iounmap(host->cmd_va); - iounmap(host->data_va); - iounmap(host->addr_va); - kfree(host); - } - return 0; -} - -static int nomadik_nand_suspend(struct device *dev) -{ - struct nomadik_nand_host *host = dev_get_drvdata(dev); - int ret = 0; - if (host) - ret = host->mtd.suspend(&host->mtd); - return ret; -} - -static int nomadik_nand_resume(struct device *dev) -{ - struct nomadik_nand_host *host = dev_get_drvdata(dev); - if (host) - host->mtd.resume(&host->mtd); - return 0; -} - -static const struct dev_pm_ops nomadik_nand_pm_ops = { - .suspend = nomadik_nand_suspend, - .resume = nomadik_nand_resume, -}; - -static struct platform_driver nomadik_nand_driver = { - .probe = nomadik_nand_probe, - .remove = nomadik_nand_remove, - .driver = { - .owner = THIS_MODULE, - .name = "nomadik_nand", - .pm = &nomadik_nand_pm_ops, - }, -}; - -static int __init nand_nomadik_init(void) -{ - pr_info("Nomadik NAND driver\n"); - return platform_driver_register(&nomadik_nand_driver); -} - -static void __exit nand_nomadik_exit(void) -{ - platform_driver_unregister(&nomadik_nand_driver); -} - -module_init(nand_nomadik_init); -module_exit(nand_nomadik_exit); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("ST Microelectronics (sachin.verma@st.com)"); -MODULE_DESCRIPTION("NAND driver for Nomadik Platform"); diff --git a/drivers/mtd/nand/nuc900_nand.c b/drivers/mtd/nand/nuc900_nand.c index 6eddf7361ed..e8a5fffd6ab 100644 --- a/drivers/mtd/nand/nuc900_nand.c +++ b/drivers/mtd/nand/nuc900_nand.c @@ -10,7 +10,6 @@ */ #include <linux/slab.h> -#include <linux/init.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/io.h> @@ -112,22 +111,6 @@ static void nuc900_nand_write_buf(struct mtd_info *mtd, write_data_reg(nand, buf[i]); } -static int nuc900_verify_buf(struct mtd_info *mtd, - const unsigned char *buf, int len) -{ - int i; - struct nuc900_nand *nand; - - nand = container_of(mtd, struct nuc900_nand, mtd); - - for (i = 0; i < len; i++) { - if (buf[i] != (unsigned char)read_data_reg(nand)) - return -EFAULT; - } - - return 0; -} - static int nuc900_check_rb(struct nuc900_nand *nand) { unsigned int val; @@ -168,7 +151,8 @@ static void nuc900_nand_command_lp(struct mtd_info *mtd, unsigned int command, if (column != -1 || page_addr != -1) { if (column != -1) { - if (chip->options & NAND_BUSWIDTH_16) + if (chip->options & NAND_BUSWIDTH_16 && + !nand_opcode_8bits(command)) column >>= 1; write_addr_reg(nand, column); write_addr_reg(nand, column >> 8 | ENDADDR); @@ -193,15 +177,6 @@ static void nuc900_nand_command_lp(struct mtd_info *mtd, unsigned int command, case NAND_CMD_SEQIN: case NAND_CMD_RNDIN: case NAND_CMD_STATUS: - case NAND_CMD_DEPLETE1: - return; - - case NAND_CMD_STATUS_ERROR: - case NAND_CMD_STATUS_ERROR0: - case NAND_CMD_STATUS_ERROR1: - case NAND_CMD_STATUS_ERROR2: - case NAND_CMD_STATUS_ERROR3: - udelay(chip->chip_delay); return; case NAND_CMD_RESET: @@ -250,7 +225,7 @@ static void nuc900_nand_enable(struct nuc900_nand *nand) val = __raw_readl(nand->reg + REG_FMICSR); if (!(val & NAND_EN)) - __raw_writel(val | NAND_EN, REG_FMICSR); + __raw_writel(val | NAND_EN, nand->reg + REG_FMICSR); val = __raw_readl(nand->reg + REG_SMCSR); @@ -262,16 +237,14 @@ static void nuc900_nand_enable(struct nuc900_nand *nand) spin_unlock(&nand->lock); } -static int __devinit nuc900_nand_probe(struct platform_device *pdev) +static int nuc900_nand_probe(struct platform_device *pdev) { struct nuc900_nand *nuc900_nand; struct nand_chip *chip; - int retval; struct resource *res; - retval = 0; - - nuc900_nand = kzalloc(sizeof(struct nuc900_nand), GFP_KERNEL); + nuc900_nand = devm_kzalloc(&pdev->dev, sizeof(struct nuc900_nand), + GFP_KERNEL); if (!nuc900_nand) return -ENOMEM; chip = &(nuc900_nand->chip); @@ -280,11 +253,9 @@ static int __devinit nuc900_nand_probe(struct platform_device *pdev) nuc900_nand->mtd.owner = THIS_MODULE; spin_lock_init(&nuc900_nand->lock); - nuc900_nand->clk = clk_get(&pdev->dev, NULL); - if (IS_ERR(nuc900_nand->clk)) { - retval = -ENOENT; - goto fail1; - } + nuc900_nand->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(nuc900_nand->clk)) + return -ENOENT; clk_enable(nuc900_nand->clk); chip->cmdfunc = nuc900_nand_command_lp; @@ -292,89 +263,48 @@ static int __devinit nuc900_nand_probe(struct platform_device *pdev) chip->read_byte = nuc900_nand_read_byte; chip->write_buf = nuc900_nand_write_buf; chip->read_buf = nuc900_nand_read_buf; - chip->verify_buf = nuc900_verify_buf; chip->chip_delay = 50; chip->options = 0; chip->ecc.mode = NAND_ECC_SOFT; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - if (!res) { - retval = -ENXIO; - goto fail1; - } - - if (!request_mem_region(res->start, resource_size(res), pdev->name)) { - retval = -EBUSY; - goto fail1; - } - - nuc900_nand->reg = ioremap(res->start, resource_size(res)); - if (!nuc900_nand->reg) { - retval = -ENOMEM; - goto fail2; - } + nuc900_nand->reg = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(nuc900_nand->reg)) + return PTR_ERR(nuc900_nand->reg); nuc900_nand_enable(nuc900_nand); - if (nand_scan(&(nuc900_nand->mtd), 1)) { - retval = -ENXIO; - goto fail3; - } + if (nand_scan(&(nuc900_nand->mtd), 1)) + return -ENXIO; - add_mtd_partitions(&(nuc900_nand->mtd), partitions, - ARRAY_SIZE(partitions)); + mtd_device_register(&(nuc900_nand->mtd), partitions, + ARRAY_SIZE(partitions)); platform_set_drvdata(pdev, nuc900_nand); - return retval; - -fail3: iounmap(nuc900_nand->reg); -fail2: release_mem_region(res->start, resource_size(res)); -fail1: kfree(nuc900_nand); - return retval; + return 0; } -static int __devexit nuc900_nand_remove(struct platform_device *pdev) +static int nuc900_nand_remove(struct platform_device *pdev) { struct nuc900_nand *nuc900_nand = platform_get_drvdata(pdev); - struct resource *res; - - iounmap(nuc900_nand->reg); - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - release_mem_region(res->start, resource_size(res)); + nand_release(&nuc900_nand->mtd); clk_disable(nuc900_nand->clk); - clk_put(nuc900_nand->clk); - - kfree(nuc900_nand); - - platform_set_drvdata(pdev, NULL); return 0; } static struct platform_driver nuc900_nand_driver = { .probe = nuc900_nand_probe, - .remove = __devexit_p(nuc900_nand_remove), + .remove = nuc900_nand_remove, .driver = { .name = "nuc900-fmi", .owner = THIS_MODULE, }, }; -static int __init nuc900_nand_init(void) -{ - return platform_driver_register(&nuc900_nand_driver); -} - -static void __exit nuc900_nand_exit(void) -{ - platform_driver_unregister(&nuc900_nand_driver); -} - -module_init(nuc900_nand_init); -module_exit(nuc900_nand_exit); +module_platform_driver(nuc900_nand_driver); MODULE_AUTHOR("Wan ZongShun <mcuos.com@gmail.com>"); MODULE_DESCRIPTION("w90p910/NUC9xx nand driver!"); diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c index ee87325c771..f0ed92e210a 100644 --- a/drivers/mtd/nand/omap2.c +++ b/drivers/mtd/nand/omap2.c @@ -9,33 +9,29 @@ */ #include <linux/platform_device.h> +#include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/delay.h> +#include <linux/module.h> +#include <linux/interrupt.h> #include <linux/jiffies.h> #include <linux/sched.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> +#include <linux/omap-dma.h> #include <linux/io.h> #include <linux/slab.h> +#include <linux/of.h> +#include <linux/of_device.h> -#include <plat/dma.h> -#include <plat/gpmc.h> -#include <plat/nand.h> +#include <linux/mtd/nand_bch.h> +#include <linux/platform_data/elm.h> -#define GPMC_IRQ_STATUS 0x18 -#define GPMC_ECC_CONFIG 0x1F4 -#define GPMC_ECC_CONTROL 0x1F8 -#define GPMC_ECC_SIZE_CONFIG 0x1FC -#define GPMC_ECC1_RESULT 0x200 +#include <linux/platform_data/mtd-nand-omap2.h> #define DRIVER_NAME "omap2-nand" - -#define NAND_WP_OFF 0 -#define NAND_WP_BIT 0x00000010 - -#define GPMC_BUF_FULL 0x00000001 -#define GPMC_BUF_EMPTY 0x00000000 +#define OMAP_NAND_TIMEOUT_MS 5000 #define NAND_Ecc_P1e (1 << 0) #define NAND_Ecc_P2e (1 << 1) @@ -104,66 +100,136 @@ #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0) #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1) -#ifdef CONFIG_MTD_PARTITIONS -static const char *part_probes[] = { "cmdlinepart", NULL }; +#define PREFETCH_CONFIG1_CS_SHIFT 24 +#define ECC_CONFIG_CS_SHIFT 1 +#define CS_MASK 0x7 +#define ENABLE_PREFETCH (0x1 << 7) +#define DMA_MPU_MODE_SHIFT 2 +#define ECCSIZE0_SHIFT 12 +#define ECCSIZE1_SHIFT 22 +#define ECC1RESULTSIZE 0x1 +#define ECCCLEAR 0x100 +#define ECC1 0x1 +#define PREFETCH_FIFOTHRESHOLD_MAX 0x40 +#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8) +#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff) +#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F) +#define STATUS_BUFF_EMPTY 0x00000001 + +#define OMAP24XX_DMA_GPMC 4 + +#define SECTOR_BYTES 512 +/* 4 bit padding to make byte aligned, 56 = 52 + 4 */ +#define BCH4_BIT_PAD 4 + +/* GPMC ecc engine settings for read */ +#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */ +#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */ +#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */ +#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */ +#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */ + +/* GPMC ecc engine settings for write */ +#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */ +#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */ +#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */ + +#define BADBLOCK_MARKER_LENGTH 2 + +#ifdef CONFIG_MTD_NAND_OMAP_BCH +static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55, + 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78, + 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93, + 0x07, 0x0e}; +static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc, + 0xac, 0x6b, 0xff, 0x99, 0x7b}; +static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10}; #endif -#ifdef CONFIG_MTD_NAND_OMAP_PREFETCH -static int use_prefetch = 1; - -/* "modprobe ... use_prefetch=0" etc */ -module_param(use_prefetch, bool, 0); -MODULE_PARM_DESC(use_prefetch, "enable/disable use of PREFETCH"); - -#ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA -static int use_dma = 1; - -/* "modprobe ... use_dma=0" etc */ -module_param(use_dma, bool, 0); -MODULE_PARM_DESC(use_dma, "enable/disable use of DMA"); -#else -const int use_dma; -#endif -#else -const int use_prefetch; -const int use_dma; -#endif +/* oob info generated runtime depending on ecc algorithm and layout selected */ +static struct nand_ecclayout omap_oobinfo; struct omap_nand_info { struct nand_hw_control controller; struct omap_nand_platform_data *pdata; struct mtd_info mtd; - struct mtd_partition *parts; struct nand_chip nand; struct platform_device *pdev; int gpmc_cs; unsigned long phys_base; - void __iomem *gpmc_cs_baseaddr; - void __iomem *gpmc_baseaddr; - void __iomem *nand_pref_fifo_add; + enum omap_ecc ecc_opt; struct completion comp; - int dma_ch; + struct dma_chan *dma; + int gpmc_irq_fifo; + int gpmc_irq_count; + enum { + OMAP_NAND_IO_READ = 0, /* read */ + OMAP_NAND_IO_WRITE, /* write */ + } iomode; + u_char *buf; + int buf_len; + struct gpmc_nand_regs reg; + /* fields specific for BCHx_HW ECC scheme */ + struct device *elm_dev; + struct device_node *of_node; }; /** - * omap_nand_wp - This function enable or disable the Write Protect feature - * @mtd: MTD device structure - * @mode: WP ON/OFF + * omap_prefetch_enable - configures and starts prefetch transfer + * @cs: cs (chip select) number + * @fifo_th: fifo threshold to be used for read/ write + * @dma_mode: dma mode enable (1) or disable (0) + * @u32_count: number of bytes to be transferred + * @is_write: prefetch read(0) or write post(1) mode */ -static void omap_nand_wp(struct mtd_info *mtd, int mode) +static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode, + unsigned int u32_count, int is_write, struct omap_nand_info *info) { - struct omap_nand_info *info = container_of(mtd, - struct omap_nand_info, mtd); + u32 val; - unsigned long config = __raw_readl(info->gpmc_baseaddr + GPMC_CONFIG); + if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX) + return -1; - if (mode) - config &= ~(NAND_WP_BIT); /* WP is ON */ - else - config |= (NAND_WP_BIT); /* WP is OFF */ + if (readl(info->reg.gpmc_prefetch_control)) + return -EBUSY; + + /* Set the amount of bytes to be prefetched */ + writel(u32_count, info->reg.gpmc_prefetch_config2); + + /* Set dma/mpu mode, the prefetch read / post write and + * enable the engine. Set which cs is has requested for. + */ + val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) | + PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH | + (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write)); + writel(val, info->reg.gpmc_prefetch_config1); + + /* Start the prefetch engine */ + writel(0x1, info->reg.gpmc_prefetch_control); + + return 0; +} + +/** + * omap_prefetch_reset - disables and stops the prefetch engine + */ +static int omap_prefetch_reset(int cs, struct omap_nand_info *info) +{ + u32 config1; + + /* check if the same module/cs is trying to reset */ + config1 = readl(info->reg.gpmc_prefetch_config1); + if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs) + return -EINVAL; - __raw_writel(config, (info->gpmc_baseaddr + GPMC_CONFIG)); + /* Stop the PFPW engine */ + writel(0x0, info->reg.gpmc_prefetch_control); + + /* Reset/disable the PFPW engine */ + writel(0x0, info->reg.gpmc_prefetch_config1); + + return 0; } /** @@ -181,31 +247,17 @@ static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); - switch (ctrl) { - case NAND_CTRL_CHANGE | NAND_CTRL_CLE: - info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr + - GPMC_CS_NAND_COMMAND; - info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr + - GPMC_CS_NAND_DATA; - break; - case NAND_CTRL_CHANGE | NAND_CTRL_ALE: - info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr + - GPMC_CS_NAND_ADDRESS; - info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr + - GPMC_CS_NAND_DATA; - break; + if (cmd != NAND_CMD_NONE) { + if (ctrl & NAND_CLE) + writeb(cmd, info->reg.gpmc_nand_command); - case NAND_CTRL_CHANGE | NAND_NCE: - info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr + - GPMC_CS_NAND_DATA; - info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr + - GPMC_CS_NAND_DATA; - break; - } + else if (ctrl & NAND_ALE) + writeb(cmd, info->reg.gpmc_nand_address); - if (cmd != NAND_CMD_NONE) - __raw_writeb(cmd, info->nand.IO_ADDR_W); + else /* NAND_NCE */ + writeb(cmd, info->reg.gpmc_nand_data); + } } /** @@ -232,11 +284,15 @@ static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len) struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); u_char *p = (u_char *)buf; + u32 status = 0; while (len--) { iowrite8(*p++, info->nand.IO_ADDR_W); - while (GPMC_BUF_EMPTY == (readl(info->gpmc_baseaddr + - GPMC_STATUS) & GPMC_BUF_FULL)); + /* wait until buffer is available for write */ + do { + status = readl(info->reg.gpmc_status) & + STATUS_BUFF_EMPTY; + } while (!status); } } @@ -264,16 +320,17 @@ static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len) struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); u16 *p = (u16 *) buf; - + u32 status = 0; /* FIXME try bursts of writesw() or DMA ... */ len >>= 1; while (len--) { iowrite16(*p++, info->nand.IO_ADDR_W); - - while (GPMC_BUF_EMPTY == (readl(info->gpmc_baseaddr + - GPMC_STATUS) & GPMC_BUF_FULL)) - ; + /* wait until buffer is available for write */ + do { + status = readl(info->reg.gpmc_status) & + STATUS_BUFF_EMPTY; + } while (!status); } } @@ -287,7 +344,7 @@ static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); - uint32_t pfpw_status = 0, r_count = 0; + uint32_t r_count = 0; int ret = 0; u32 *p = (u32 *)buf; @@ -302,24 +359,25 @@ static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len) } /* configure and start prefetch transfer */ - ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x0); + ret = omap_prefetch_enable(info->gpmc_cs, + PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info); if (ret) { /* PFPW engine is busy, use cpu copy method */ if (info->nand.options & NAND_BUSWIDTH_16) - omap_read_buf16(mtd, buf, len); + omap_read_buf16(mtd, (u_char *)p, len); else - omap_read_buf8(mtd, buf, len); + omap_read_buf8(mtd, (u_char *)p, len); } else { do { - pfpw_status = gpmc_prefetch_status(); - r_count = ((pfpw_status >> 24) & 0x7F) >> 2; - ioread32_rep(info->nand_pref_fifo_add, p, r_count); + r_count = readl(info->reg.gpmc_prefetch_status); + r_count = PREFETCH_STATUS_FIFO_CNT(r_count); + r_count = r_count >> 2; + ioread32_rep(info->nand.IO_ADDR_R, p, r_count); p += r_count; len -= r_count << 2; } while (len); - /* disable and stop the PFPW engine */ - gpmc_prefetch_reset(); + omap_prefetch_reset(info->gpmc_cs, info); } } @@ -334,53 +392,62 @@ static void omap_write_buf_pref(struct mtd_info *mtd, { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); - uint32_t pfpw_status = 0, w_count = 0; + uint32_t w_count = 0; int i = 0, ret = 0; - u16 *p = (u16 *) buf; + u16 *p = (u16 *)buf; + unsigned long tim, limit; + u32 val; /* take care of subpage writes */ if (len % 2 != 0) { - writeb(*buf, info->nand.IO_ADDR_R); + writeb(*buf, info->nand.IO_ADDR_W); p = (u16 *)(buf + 1); len--; } /* configure and start prefetch transfer */ - ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x1); + ret = omap_prefetch_enable(info->gpmc_cs, + PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info); if (ret) { /* PFPW engine is busy, use cpu copy method */ if (info->nand.options & NAND_BUSWIDTH_16) - omap_write_buf16(mtd, buf, len); + omap_write_buf16(mtd, (u_char *)p, len); else - omap_write_buf8(mtd, buf, len); + omap_write_buf8(mtd, (u_char *)p, len); } else { - pfpw_status = gpmc_prefetch_status(); - while (pfpw_status & 0x3FFF) { - w_count = ((pfpw_status >> 24) & 0x7F) >> 1; + while (len) { + w_count = readl(info->reg.gpmc_prefetch_status); + w_count = PREFETCH_STATUS_FIFO_CNT(w_count); + w_count = w_count >> 1; for (i = 0; (i < w_count) && len; i++, len -= 2) - iowrite16(*p++, info->nand_pref_fifo_add); - pfpw_status = gpmc_prefetch_status(); + iowrite16(*p++, info->nand.IO_ADDR_W); } + /* wait for data to flushed-out before reset the prefetch */ + tim = 0; + limit = (loops_per_jiffy * + msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); + do { + cpu_relax(); + val = readl(info->reg.gpmc_prefetch_status); + val = PREFETCH_STATUS_COUNT(val); + } while (val && (tim++ < limit)); /* disable and stop the PFPW engine */ - gpmc_prefetch_reset(); + omap_prefetch_reset(info->gpmc_cs, info); } } -#ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA /* - * omap_nand_dma_cb: callback on the completion of dma transfer - * @lch: logical channel - * @ch_satuts: channel status + * omap_nand_dma_callback: callback on the completion of dma transfer * @data: pointer to completion data structure */ -static void omap_nand_dma_cb(int lch, u16 ch_status, void *data) +static void omap_nand_dma_callback(void *data) { complete((struct completion *) data); } /* - * omap_nand_dma_transfer: configer and start dma transfer + * omap_nand_dma_transfer: configure and start dma transfer * @mtd: MTD device structure * @addr: virtual address in RAM of source/destination * @len: number of data bytes to be transferred @@ -391,16 +458,14 @@ static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); - uint32_t prefetch_status = 0; + struct dma_async_tx_descriptor *tx; enum dma_data_direction dir = is_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE; - dma_addr_t dma_addr; + struct scatterlist sg; + unsigned long tim, limit; + unsigned n; int ret; - - /* The fifo depth is 64 bytes. We have a sync at each frame and frame - * length is 64 bytes. - */ - int buf_len = len >> 6; + u32 val; if (addr >= high_memory) { struct page *p1; @@ -414,51 +479,53 @@ static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK); } - dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir); - if (dma_mapping_error(&info->pdev->dev, dma_addr)) { + sg_init_one(&sg, addr, len); + n = dma_map_sg(info->dma->device->dev, &sg, 1, dir); + if (n == 0) { dev_err(&info->pdev->dev, "Couldn't DMA map a %d byte buffer\n", len); goto out_copy; } - if (is_write) { - omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT, - info->phys_base, 0, 0); - omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC, - dma_addr, 0, 0); - omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32, - 0x10, buf_len, OMAP_DMA_SYNC_FRAME, - OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC); - } else { - omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT, - info->phys_base, 0, 0); - omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC, - dma_addr, 0, 0); - omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32, - 0x10, buf_len, OMAP_DMA_SYNC_FRAME, - OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC); - } + tx = dmaengine_prep_slave_sg(info->dma, &sg, n, + is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, + DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + if (!tx) + goto out_copy_unmap; + + tx->callback = omap_nand_dma_callback; + tx->callback_param = &info->comp; + dmaengine_submit(tx); + /* configure and start prefetch transfer */ - ret = gpmc_prefetch_enable(info->gpmc_cs, 0x1, len, is_write); + ret = omap_prefetch_enable(info->gpmc_cs, + PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info); if (ret) - /* PFPW engine is busy, use cpu copy methode */ - goto out_copy; + /* PFPW engine is busy, use cpu copy method */ + goto out_copy_unmap; init_completion(&info->comp); - - omap_start_dma(info->dma_ch); + dma_async_issue_pending(info->dma); /* setup and start DMA using dma_addr */ wait_for_completion(&info->comp); + tim = 0; + limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); + + do { + cpu_relax(); + val = readl(info->reg.gpmc_prefetch_status); + val = PREFETCH_STATUS_COUNT(val); + } while (val && (tim++ < limit)); - while (0x3fff & (prefetch_status = gpmc_prefetch_status())) - ; /* disable and stop the PFPW engine */ - gpmc_prefetch_reset(); + omap_prefetch_reset(info->gpmc_cs, info); - dma_unmap_single(&info->pdev->dev, dma_addr, len, dir); + dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); return 0; +out_copy_unmap: + dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); out_copy: if (info->nand.options & NAND_BUSWIDTH_16) is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len) @@ -468,14 +535,6 @@ out_copy: : omap_write_buf8(mtd, (u_char *) addr, len); return 0; } -#else -static void omap_nand_dma_cb(int lch, u16 ch_status, void *data) {} -static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, - unsigned int len, int is_write) -{ - return 0; -} -#endif /** * omap_read_buf_dma_pref - read data from NAND controller into buffer @@ -508,50 +567,156 @@ static void omap_write_buf_dma_pref(struct mtd_info *mtd, omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1); } -/** - * omap_verify_buf - Verify chip data against buffer +/* + * omap_nand_irq - GPMC irq handler + * @this_irq: gpmc irq number + * @dev: omap_nand_info structure pointer is passed here + */ +static irqreturn_t omap_nand_irq(int this_irq, void *dev) +{ + struct omap_nand_info *info = (struct omap_nand_info *) dev; + u32 bytes; + + bytes = readl(info->reg.gpmc_prefetch_status); + bytes = PREFETCH_STATUS_FIFO_CNT(bytes); + bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */ + if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */ + if (this_irq == info->gpmc_irq_count) + goto done; + + if (info->buf_len && (info->buf_len < bytes)) + bytes = info->buf_len; + else if (!info->buf_len) + bytes = 0; + iowrite32_rep(info->nand.IO_ADDR_W, + (u32 *)info->buf, bytes >> 2); + info->buf = info->buf + bytes; + info->buf_len -= bytes; + + } else { + ioread32_rep(info->nand.IO_ADDR_R, + (u32 *)info->buf, bytes >> 2); + info->buf = info->buf + bytes; + + if (this_irq == info->gpmc_irq_count) + goto done; + } + + return IRQ_HANDLED; + +done: + complete(&info->comp); + + disable_irq_nosync(info->gpmc_irq_fifo); + disable_irq_nosync(info->gpmc_irq_count); + + return IRQ_HANDLED; +} + +/* + * omap_read_buf_irq_pref - read data from NAND controller into buffer * @mtd: MTD device structure - * @buf: buffer containing the data to compare - * @len: number of bytes to compare + * @buf: buffer to store date + * @len: number of bytes to read */ -static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len) +static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len) { - struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, - mtd); - u16 *p = (u16 *) buf; + struct omap_nand_info *info = container_of(mtd, + struct omap_nand_info, mtd); + int ret = 0; - len >>= 1; - while (len--) { - if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R))) - return -EFAULT; + if (len <= mtd->oobsize) { + omap_read_buf_pref(mtd, buf, len); + return; } - return 0; + info->iomode = OMAP_NAND_IO_READ; + info->buf = buf; + init_completion(&info->comp); + + /* configure and start prefetch transfer */ + ret = omap_prefetch_enable(info->gpmc_cs, + PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info); + if (ret) + /* PFPW engine is busy, use cpu copy method */ + goto out_copy; + + info->buf_len = len; + + enable_irq(info->gpmc_irq_count); + enable_irq(info->gpmc_irq_fifo); + + /* waiting for read to complete */ + wait_for_completion(&info->comp); + + /* disable and stop the PFPW engine */ + omap_prefetch_reset(info->gpmc_cs, info); + return; + +out_copy: + if (info->nand.options & NAND_BUSWIDTH_16) + omap_read_buf16(mtd, buf, len); + else + omap_read_buf8(mtd, buf, len); } -#ifdef CONFIG_MTD_NAND_OMAP_HWECC -/** - * omap_hwecc_init - Initialize the HW ECC for NAND flash in GPMC controller +/* + * omap_write_buf_irq_pref - write buffer to NAND controller * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write */ -static void omap_hwecc_init(struct mtd_info *mtd) +static void omap_write_buf_irq_pref(struct mtd_info *mtd, + const u_char *buf, int len) { - struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, - mtd); - struct nand_chip *chip = mtd->priv; - unsigned long val = 0x0; - - /* Read from ECC Control Register */ - val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONTROL); - /* Clear all ECC | Enable Reg1 */ - val = ((0x00000001<<8) | 0x00000001); - __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONTROL); - - /* Read from ECC Size Config Register */ - val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG); - /* ECCSIZE1=512 | Select eccResultsize[0-3] */ - val = ((((chip->ecc.size >> 1) - 1) << 22) | (0x0000000F)); - __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG); + struct omap_nand_info *info = container_of(mtd, + struct omap_nand_info, mtd); + int ret = 0; + unsigned long tim, limit; + u32 val; + + if (len <= mtd->oobsize) { + omap_write_buf_pref(mtd, buf, len); + return; + } + + info->iomode = OMAP_NAND_IO_WRITE; + info->buf = (u_char *) buf; + init_completion(&info->comp); + + /* configure and start prefetch transfer : size=24 */ + ret = omap_prefetch_enable(info->gpmc_cs, + (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info); + if (ret) + /* PFPW engine is busy, use cpu copy method */ + goto out_copy; + + info->buf_len = len; + + enable_irq(info->gpmc_irq_count); + enable_irq(info->gpmc_irq_fifo); + + /* waiting for write to complete */ + wait_for_completion(&info->comp); + + /* wait for data to flushed-out before reset the prefetch */ + tim = 0; + limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); + do { + val = readl(info->reg.gpmc_prefetch_status); + val = PREFETCH_STATUS_COUNT(val); + cpu_relax(); + } while (val && (tim++ < limit)); + + /* disable and stop the PFPW engine */ + omap_prefetch_reset(info->gpmc_cs, info); + return; + +out_copy: + if (info->nand.options & NAND_BUSWIDTH_16) + omap_write_buf16(mtd, buf, len); + else + omap_write_buf8(mtd, buf, len); } /** @@ -582,6 +747,8 @@ static void gen_true_ecc(u8 *ecc_buf) * * This function compares two ECC's and indicates if there is an error. * If the error can be corrected it will be corrected to the buffer. + * If there is no error, %0 is returned. If there is an error but it + * was corrected, %1 is returned. Otherwise, %-1 is returned. */ static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ u8 *ecc_data2, /* read from register */ @@ -660,12 +827,12 @@ static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ case 1: /* Uncorrectable error */ - DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n"); + pr_debug("ECC UNCORRECTED_ERROR 1\n"); return -1; case 11: /* UN-Correctable error */ - DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n"); + pr_debug("ECC UNCORRECTED_ERROR B\n"); return -1; case 12: @@ -682,12 +849,12 @@ static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1]; - DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at " - "offset: %d, bit: %d\n", find_byte, find_bit); + pr_debug("Correcting single bit ECC error at offset: " + "%d, bit: %d\n", find_byte, find_bit); page_data[find_byte] ^= (1 << find_bit); - return 0; + return 1; default: if (isEccFF) { if (ecc_data2[0] == 0 && @@ -695,7 +862,7 @@ static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ ecc_data2[2] == 0) return 0; } - DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n"); + pr_debug("UNCORRECTED_ERROR default\n"); return -1; } } @@ -708,8 +875,11 @@ static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ * @calc_ecc: ecc read from HW ECC registers * * Compares the ecc read from nand spare area with ECC registers values - * and if ECC's mismached, it will call 'omap_compare_ecc' for error detection - * and correction. + * and if ECC's mismatched, it will call 'omap_compare_ecc' for error + * detection and correction. If there are no errors, %0 is returned. If + * there were errors and all of the errors were corrected, the number of + * corrected errors is returned. If uncorrectable errors exist, %-1 is + * returned. */ static int omap_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) @@ -717,6 +887,7 @@ static int omap_correct_data(struct mtd_info *mtd, u_char *dat, struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); int blockCnt = 0, i = 0, ret = 0; + int stat = 0; /* Ex NAND_ECC_HW12_2048 */ if ((info->nand.ecc.mode == NAND_ECC_HW) && @@ -730,12 +901,14 @@ static int omap_correct_data(struct mtd_info *mtd, u_char *dat, ret = omap_compare_ecc(read_ecc, calc_ecc, dat); if (ret < 0) return ret; + /* keep track of the number of corrected errors */ + stat += ret; } read_ecc += 3; calc_ecc += 3; dat += 512; } - return 0; + return stat; } /** @@ -755,17 +928,18 @@ static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat, { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); - unsigned long val = 0x0; - unsigned long reg; + u32 val; + + val = readl(info->reg.gpmc_ecc_config); + if (((val >> ECC_CONFIG_CS_SHIFT) & ~CS_MASK) != info->gpmc_cs) + return -EINVAL; - /* Start Reading from HW ECC1_Result = 0x200 */ - reg = (unsigned long)(info->gpmc_baseaddr + GPMC_ECC1_RESULT); - val = __raw_readl(reg); + /* read ecc result */ + val = readl(info->reg.gpmc_ecc1_result); *ecc_code++ = val; /* P128e, ..., P1e */ *ecc_code++ = val >> 16; /* P128o, ..., P1o */ /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */ *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0); - reg += 4; return 0; } @@ -781,33 +955,35 @@ static void omap_enable_hwecc(struct mtd_info *mtd, int mode) mtd); struct nand_chip *chip = mtd->priv; unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; - unsigned long val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONFIG); + u32 val; + + /* clear ecc and enable bits */ + val = ECCCLEAR | ECC1; + writel(val, info->reg.gpmc_ecc_control); + + /* program ecc and result sizes */ + val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) | + ECC1RESULTSIZE); + writel(val, info->reg.gpmc_ecc_size_config); switch (mode) { case NAND_ECC_READ: - __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL); - /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ - val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); + case NAND_ECC_WRITE: + writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); break; case NAND_ECC_READSYN: - __raw_writel(0x100, info->gpmc_baseaddr + GPMC_ECC_CONTROL); - /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ - val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); - break; - case NAND_ECC_WRITE: - __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL); - /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ - val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); + writel(ECCCLEAR, info->reg.gpmc_ecc_control); break; default: - DEBUG(MTD_DEBUG_LEVEL0, "Error: Unrecognized Mode[%d]!\n", - mode); + dev_info(&info->pdev->dev, + "error: unrecognized Mode[%d]!\n", mode); break; } - __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONFIG); + /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ + val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); + writel(val, info->reg.gpmc_ecc_config); } -#endif /** * omap_wait - wait until the command is done @@ -827,25 +1003,22 @@ static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip) struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); unsigned long timeo = jiffies; - int status = NAND_STATUS_FAIL, state = this->state; + int status, state = this->state; if (state == FL_ERASING) - timeo += (HZ * 400) / 1000; + timeo += msecs_to_jiffies(400); else - timeo += (HZ * 20) / 1000; - - this->IO_ADDR_W = (void *) info->gpmc_cs_baseaddr + - GPMC_CS_NAND_COMMAND; - this->IO_ADDR_R = (void *) info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA; - - __raw_writeb(NAND_CMD_STATUS & 0xFF, this->IO_ADDR_W); + timeo += msecs_to_jiffies(20); + writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command); while (time_before(jiffies, timeo)) { - status = __raw_readb(this->IO_ADDR_R); + status = readb(info->reg.gpmc_nand_data); if (status & NAND_STATUS_READY) break; cond_resched(); } + + status = readb(info->reg.gpmc_nand_data); return status; } @@ -855,41 +1028,622 @@ static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip) */ static int omap_dev_ready(struct mtd_info *mtd) { + unsigned int val = 0; struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); - unsigned int val = __raw_readl(info->gpmc_baseaddr + GPMC_IRQ_STATUS); + + val = readl(info->reg.gpmc_status); if ((val & 0x100) == 0x100) { - /* Clear IRQ Interrupt */ - val |= 0x100; - val &= ~(0x0); - __raw_writel(val, info->gpmc_baseaddr + GPMC_IRQ_STATUS); + return 1; } else { - unsigned int cnt = 0; - while (cnt++ < 0x1FF) { - if ((val & 0x100) == 0x100) - return 0; - val = __raw_readl(info->gpmc_baseaddr + - GPMC_IRQ_STATUS); + return 0; + } +} + +/** + * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation + * @mtd: MTD device structure + * @mode: Read/Write mode + * + * When using BCH, sector size is hardcoded to 512 bytes. + * Using wrapping mode 6 both for reading and writing if ELM module not uses + * for error correction. + * On writing, + * eccsize0 = 0 (no additional protected byte in spare area) + * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area) + */ +static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode) +{ + unsigned int bch_type; + unsigned int dev_width, nsectors; + struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, + mtd); + enum omap_ecc ecc_opt = info->ecc_opt; + struct nand_chip *chip = mtd->priv; + u32 val, wr_mode; + unsigned int ecc_size1, ecc_size0; + + /* GPMC configurations for calculating ECC */ + switch (ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: + bch_type = 0; + nsectors = 1; + if (mode == NAND_ECC_READ) { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + } else { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + } + break; + case OMAP_ECC_BCH4_CODE_HW: + bch_type = 0; + nsectors = chip->ecc.steps; + if (mode == NAND_ECC_READ) { + wr_mode = BCH_WRAPMODE_1; + ecc_size0 = BCH4R_ECC_SIZE0; + ecc_size1 = BCH4R_ECC_SIZE1; + } else { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + } + break; + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: + bch_type = 1; + nsectors = 1; + if (mode == NAND_ECC_READ) { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + } else { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + } + break; + case OMAP_ECC_BCH8_CODE_HW: + bch_type = 1; + nsectors = chip->ecc.steps; + if (mode == NAND_ECC_READ) { + wr_mode = BCH_WRAPMODE_1; + ecc_size0 = BCH8R_ECC_SIZE0; + ecc_size1 = BCH8R_ECC_SIZE1; + } else { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + } + break; + case OMAP_ECC_BCH16_CODE_HW: + bch_type = 0x2; + nsectors = chip->ecc.steps; + if (mode == NAND_ECC_READ) { + wr_mode = 0x01; + ecc_size0 = 52; /* ECC bits in nibbles per sector */ + ecc_size1 = 0; /* non-ECC bits in nibbles per sector */ + } else { + wr_mode = 0x01; + ecc_size0 = 0; /* extra bits in nibbles per sector */ + ecc_size1 = 52; /* OOB bits in nibbles per sector */ + } + break; + default: + return; + } + + writel(ECC1, info->reg.gpmc_ecc_control); + + /* Configure ecc size for BCH */ + val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT); + writel(val, info->reg.gpmc_ecc_size_config); + + dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; + + /* BCH configuration */ + val = ((1 << 16) | /* enable BCH */ + (bch_type << 12) | /* BCH4/BCH8/BCH16 */ + (wr_mode << 8) | /* wrap mode */ + (dev_width << 7) | /* bus width */ + (((nsectors-1) & 0x7) << 4) | /* number of sectors */ + (info->gpmc_cs << 1) | /* ECC CS */ + (0x1)); /* enable ECC */ + + writel(val, info->reg.gpmc_ecc_config); + + /* Clear ecc and enable bits */ + writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); +} + +static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f}; +static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2, + 0x97, 0x79, 0xe5, 0x24, 0xb5}; + +/** + * omap_calculate_ecc_bch - Generate bytes of ECC bytes + * @mtd: MTD device structure + * @dat: The pointer to data on which ecc is computed + * @ecc_code: The ecc_code buffer + * + * Support calculating of BCH4/8 ecc vectors for the page + */ +static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd, + const u_char *dat, u_char *ecc_calc) +{ + struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, + mtd); + int eccbytes = info->nand.ecc.bytes; + struct gpmc_nand_regs *gpmc_regs = &info->reg; + u8 *ecc_code; + unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4; + u32 val; + int i, j; + + nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1; + for (i = 0; i < nsectors; i++) { + ecc_code = ecc_calc; + switch (info->ecc_opt) { + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: + case OMAP_ECC_BCH8_CODE_HW: + bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); + bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); + bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]); + bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]); + *ecc_code++ = (bch_val4 & 0xFF); + *ecc_code++ = ((bch_val3 >> 24) & 0xFF); + *ecc_code++ = ((bch_val3 >> 16) & 0xFF); + *ecc_code++ = ((bch_val3 >> 8) & 0xFF); + *ecc_code++ = (bch_val3 & 0xFF); + *ecc_code++ = ((bch_val2 >> 24) & 0xFF); + *ecc_code++ = ((bch_val2 >> 16) & 0xFF); + *ecc_code++ = ((bch_val2 >> 8) & 0xFF); + *ecc_code++ = (bch_val2 & 0xFF); + *ecc_code++ = ((bch_val1 >> 24) & 0xFF); + *ecc_code++ = ((bch_val1 >> 16) & 0xFF); + *ecc_code++ = ((bch_val1 >> 8) & 0xFF); + *ecc_code++ = (bch_val1 & 0xFF); + break; + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: + case OMAP_ECC_BCH4_CODE_HW: + bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); + bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); + *ecc_code++ = ((bch_val2 >> 12) & 0xFF); + *ecc_code++ = ((bch_val2 >> 4) & 0xFF); + *ecc_code++ = ((bch_val2 & 0xF) << 4) | + ((bch_val1 >> 28) & 0xF); + *ecc_code++ = ((bch_val1 >> 20) & 0xFF); + *ecc_code++ = ((bch_val1 >> 12) & 0xFF); + *ecc_code++ = ((bch_val1 >> 4) & 0xFF); + *ecc_code++ = ((bch_val1 & 0xF) << 4); + break; + case OMAP_ECC_BCH16_CODE_HW: + val = readl(gpmc_regs->gpmc_bch_result6[i]); + ecc_code[0] = ((val >> 8) & 0xFF); + ecc_code[1] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result5[i]); + ecc_code[2] = ((val >> 24) & 0xFF); + ecc_code[3] = ((val >> 16) & 0xFF); + ecc_code[4] = ((val >> 8) & 0xFF); + ecc_code[5] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result4[i]); + ecc_code[6] = ((val >> 24) & 0xFF); + ecc_code[7] = ((val >> 16) & 0xFF); + ecc_code[8] = ((val >> 8) & 0xFF); + ecc_code[9] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result3[i]); + ecc_code[10] = ((val >> 24) & 0xFF); + ecc_code[11] = ((val >> 16) & 0xFF); + ecc_code[12] = ((val >> 8) & 0xFF); + ecc_code[13] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result2[i]); + ecc_code[14] = ((val >> 24) & 0xFF); + ecc_code[15] = ((val >> 16) & 0xFF); + ecc_code[16] = ((val >> 8) & 0xFF); + ecc_code[17] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result1[i]); + ecc_code[18] = ((val >> 24) & 0xFF); + ecc_code[19] = ((val >> 16) & 0xFF); + ecc_code[20] = ((val >> 8) & 0xFF); + ecc_code[21] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result0[i]); + ecc_code[22] = ((val >> 24) & 0xFF); + ecc_code[23] = ((val >> 16) & 0xFF); + ecc_code[24] = ((val >> 8) & 0xFF); + ecc_code[25] = ((val >> 0) & 0xFF); + break; + default: + return -EINVAL; + } + + /* ECC scheme specific syndrome customizations */ + switch (info->ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: + /* Add constant polynomial to remainder, so that + * ECC of blank pages results in 0x0 on reading back */ + for (j = 0; j < eccbytes; j++) + ecc_calc[j] ^= bch4_polynomial[j]; + break; + case OMAP_ECC_BCH4_CODE_HW: + /* Set 8th ECC byte as 0x0 for ROM compatibility */ + ecc_calc[eccbytes - 1] = 0x0; + break; + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: + /* Add constant polynomial to remainder, so that + * ECC of blank pages results in 0x0 on reading back */ + for (j = 0; j < eccbytes; j++) + ecc_calc[j] ^= bch8_polynomial[j]; + break; + case OMAP_ECC_BCH8_CODE_HW: + /* Set 14th ECC byte as 0x0 for ROM compatibility */ + ecc_calc[eccbytes - 1] = 0x0; + break; + case OMAP_ECC_BCH16_CODE_HW: + break; + default: + return -EINVAL; + } + + ecc_calc += eccbytes; + } + + return 0; +} + +#ifdef CONFIG_MTD_NAND_OMAP_BCH +/** + * erased_sector_bitflips - count bit flips + * @data: data sector buffer + * @oob: oob buffer + * @info: omap_nand_info + * + * Check the bit flips in erased page falls below correctable level. + * If falls below, report the page as erased with correctable bit + * flip, else report as uncorrectable page. + */ +static int erased_sector_bitflips(u_char *data, u_char *oob, + struct omap_nand_info *info) +{ + int flip_bits = 0, i; + + for (i = 0; i < info->nand.ecc.size; i++) { + flip_bits += hweight8(~data[i]); + if (flip_bits > info->nand.ecc.strength) + return 0; + } + + for (i = 0; i < info->nand.ecc.bytes - 1; i++) { + flip_bits += hweight8(~oob[i]); + if (flip_bits > info->nand.ecc.strength) + return 0; + } + + /* + * Bit flips falls in correctable level. + * Fill data area with 0xFF + */ + if (flip_bits) { + memset(data, 0xFF, info->nand.ecc.size); + memset(oob, 0xFF, info->nand.ecc.bytes); + } + + return flip_bits; +} + +/** + * omap_elm_correct_data - corrects page data area in case error reported + * @mtd: MTD device structure + * @data: page data + * @read_ecc: ecc read from nand flash + * @calc_ecc: ecc read from HW ECC registers + * + * Calculated ecc vector reported as zero in case of non-error pages. + * In case of non-zero ecc vector, first filter out erased-pages, and + * then process data via ELM to detect bit-flips. + */ +static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data, + u_char *read_ecc, u_char *calc_ecc) +{ + struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, + mtd); + struct nand_ecc_ctrl *ecc = &info->nand.ecc; + int eccsteps = info->nand.ecc.steps; + int i , j, stat = 0; + int eccflag, actual_eccbytes; + struct elm_errorvec err_vec[ERROR_VECTOR_MAX]; + u_char *ecc_vec = calc_ecc; + u_char *spare_ecc = read_ecc; + u_char *erased_ecc_vec; + u_char *buf; + int bitflip_count; + bool is_error_reported = false; + u32 bit_pos, byte_pos, error_max, pos; + int err; + + switch (info->ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW: + /* omit 7th ECC byte reserved for ROM code compatibility */ + actual_eccbytes = ecc->bytes - 1; + erased_ecc_vec = bch4_vector; + break; + case OMAP_ECC_BCH8_CODE_HW: + /* omit 14th ECC byte reserved for ROM code compatibility */ + actual_eccbytes = ecc->bytes - 1; + erased_ecc_vec = bch8_vector; + break; + case OMAP_ECC_BCH16_CODE_HW: + actual_eccbytes = ecc->bytes; + erased_ecc_vec = bch16_vector; + break; + default: + pr_err("invalid driver configuration\n"); + return -EINVAL; + } + + /* Initialize elm error vector to zero */ + memset(err_vec, 0, sizeof(err_vec)); + + for (i = 0; i < eccsteps ; i++) { + eccflag = 0; /* initialize eccflag */ + + /* + * Check any error reported, + * In case of error, non zero ecc reported. + */ + for (j = 0; j < actual_eccbytes; j++) { + if (calc_ecc[j] != 0) { + eccflag = 1; /* non zero ecc, error present */ + break; + } + } + + if (eccflag == 1) { + if (memcmp(calc_ecc, erased_ecc_vec, + actual_eccbytes) == 0) { + /* + * calc_ecc[] matches pattern for ECC(all 0xff) + * so this is definitely an erased-page + */ + } else { + buf = &data[info->nand.ecc.size * i]; + /* + * count number of 0-bits in read_buf. + * This check can be removed once a similar + * check is introduced in generic NAND driver + */ + bitflip_count = erased_sector_bitflips( + buf, read_ecc, info); + if (bitflip_count) { + /* + * number of 0-bits within ECC limits + * So this may be an erased-page + */ + stat += bitflip_count; + } else { + /* + * Too many 0-bits. It may be a + * - programmed-page, OR + * - erased-page with many bit-flips + * So this page requires check by ELM + */ + err_vec[i].error_reported = true; + is_error_reported = true; + } + } } + + /* Update the ecc vector */ + calc_ecc += ecc->bytes; + read_ecc += ecc->bytes; } - return 1; + /* Check if any error reported */ + if (!is_error_reported) + return stat; + + /* Decode BCH error using ELM module */ + elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec); + + err = 0; + for (i = 0; i < eccsteps; i++) { + if (err_vec[i].error_uncorrectable) { + pr_err("nand: uncorrectable bit-flips found\n"); + err = -EBADMSG; + } else if (err_vec[i].error_reported) { + for (j = 0; j < err_vec[i].error_count; j++) { + switch (info->ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW: + /* Add 4 bits to take care of padding */ + pos = err_vec[i].error_loc[j] + + BCH4_BIT_PAD; + break; + case OMAP_ECC_BCH8_CODE_HW: + case OMAP_ECC_BCH16_CODE_HW: + pos = err_vec[i].error_loc[j]; + break; + default: + return -EINVAL; + } + error_max = (ecc->size + actual_eccbytes) * 8; + /* Calculate bit position of error */ + bit_pos = pos % 8; + + /* Calculate byte position of error */ + byte_pos = (error_max - pos - 1) / 8; + + if (pos < error_max) { + if (byte_pos < 512) { + pr_debug("bitflip@dat[%d]=%x\n", + byte_pos, data[byte_pos]); + data[byte_pos] ^= 1 << bit_pos; + } else { + pr_debug("bitflip@oob[%d]=%x\n", + (byte_pos - 512), + spare_ecc[byte_pos - 512]); + spare_ecc[byte_pos - 512] ^= + 1 << bit_pos; + } + } else { + pr_err("invalid bit-flip @ %d:%d\n", + byte_pos, bit_pos); + err = -EBADMSG; + } + } + } + + /* Update number of correctable errors */ + stat += err_vec[i].error_count; + + /* Update page data with sector size */ + data += ecc->size; + spare_ecc += ecc->bytes; + } + + return (err) ? err : stat; +} + +/** + * omap_write_page_bch - BCH ecc based write page function for entire page + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * + * Custom write page method evolved to support multi sector writing in one shot + */ +static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required) +{ + int i; + uint8_t *ecc_calc = chip->buffers->ecccalc; + uint32_t *eccpos = chip->ecc.layout->eccpos; + + /* Enable GPMC ecc engine */ + chip->ecc.hwctl(mtd, NAND_ECC_WRITE); + + /* Write data */ + chip->write_buf(mtd, buf, mtd->writesize); + + /* Update ecc vector from GPMC result registers */ + chip->ecc.calculate(mtd, buf, &ecc_calc[0]); + + for (i = 0; i < chip->ecc.total; i++) + chip->oob_poi[eccpos[i]] = ecc_calc[i]; + + /* Write ecc vector to OOB area */ + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + return 0; } -static int __devinit omap_nand_probe(struct platform_device *pdev) +/** + * omap_read_page_bch - BCH ecc based page read function for entire page + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module + * used for error correction. + * Custom method evolved to support ELM error correction & multi sector + * reading. On reading page data area is read along with OOB data with + * ecc engine enabled. ecc vector updated after read of OOB data. + * For non error pages ecc vector reported as zero. + */ +static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + uint8_t *ecc_calc = chip->buffers->ecccalc; + uint8_t *ecc_code = chip->buffers->ecccode; + uint32_t *eccpos = chip->ecc.layout->eccpos; + uint8_t *oob = &chip->oob_poi[eccpos[0]]; + uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0]; + int stat; + unsigned int max_bitflips = 0; + + /* Enable GPMC ecc engine */ + chip->ecc.hwctl(mtd, NAND_ECC_READ); + + /* Read data */ + chip->read_buf(mtd, buf, mtd->writesize); + + /* Read oob bytes */ + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1); + chip->read_buf(mtd, oob, chip->ecc.total); + + /* Calculate ecc bytes */ + chip->ecc.calculate(mtd, buf, ecc_calc); + + memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total); + + stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc); + + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + + return max_bitflips; +} + +/** + * is_elm_present - checks for presence of ELM module by scanning DT nodes + * @omap_nand_info: NAND device structure containing platform data + * @bch_type: 0x0=BCH4, 0x1=BCH8, 0x2=BCH16 + */ +static int is_elm_present(struct omap_nand_info *info, + struct device_node *elm_node, enum bch_ecc bch_type) +{ + struct platform_device *pdev; + struct nand_ecc_ctrl *ecc = &info->nand.ecc; + int err; + /* check whether elm-id is passed via DT */ + if (!elm_node) { + pr_err("nand: error: ELM DT node not found\n"); + return -ENODEV; + } + pdev = of_find_device_by_node(elm_node); + /* check whether ELM device is registered */ + if (!pdev) { + pr_err("nand: error: ELM device not found\n"); + return -ENODEV; + } + /* ELM module available, now configure it */ + info->elm_dev = &pdev->dev; + err = elm_config(info->elm_dev, bch_type, + (info->mtd.writesize / ecc->size), ecc->size, ecc->bytes); + + return err; +} +#endif /* CONFIG_MTD_NAND_ECC_BCH */ + +static int omap_nand_probe(struct platform_device *pdev) { struct omap_nand_info *info; struct omap_nand_platform_data *pdata; + struct mtd_info *mtd; + struct nand_chip *nand_chip; + struct nand_ecclayout *ecclayout; int err; - - pdata = pdev->dev.platform_data; + int i; + dma_cap_mask_t mask; + unsigned sig; + unsigned oob_index; + struct resource *res; + struct mtd_part_parser_data ppdata = {}; + + pdata = dev_get_platdata(&pdev->dev); if (pdata == NULL) { dev_err(&pdev->dev, "platform data missing\n"); return -ENODEV; } - info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL); + info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info), + GFP_KERNEL); if (!info) return -ENOMEM; @@ -898,150 +1652,413 @@ static int __devinit omap_nand_probe(struct platform_device *pdev) spin_lock_init(&info->controller.lock); init_waitqueue_head(&info->controller.wq); - info->pdev = pdev; - + info->pdev = pdev; info->gpmc_cs = pdata->cs; - info->gpmc_baseaddr = pdata->gpmc_baseaddr; - info->gpmc_cs_baseaddr = pdata->gpmc_cs_baseaddr; - info->phys_base = pdata->phys_base; - - info->mtd.priv = &info->nand; - info->mtd.name = dev_name(&pdev->dev); - info->mtd.owner = THIS_MODULE; + info->reg = pdata->reg; + info->of_node = pdata->of_node; + info->ecc_opt = pdata->ecc_opt; + mtd = &info->mtd; + mtd->priv = &info->nand; + mtd->name = dev_name(&pdev->dev); + mtd->owner = THIS_MODULE; + nand_chip = &info->nand; + nand_chip->ecc.priv = NULL; + nand_chip->options |= NAND_SKIP_BBTSCAN; - info->nand.options |= pdata->devsize ? NAND_BUSWIDTH_16 : 0; - info->nand.options |= NAND_SKIP_BBTSCAN; + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(nand_chip->IO_ADDR_R)) + return PTR_ERR(nand_chip->IO_ADDR_R); - /* NAND write protect off */ - omap_nand_wp(&info->mtd, NAND_WP_OFF); + info->phys_base = res->start; - if (!request_mem_region(info->phys_base, NAND_IO_SIZE, - pdev->dev.driver->name)) { - err = -EBUSY; - goto out_free_info; - } - - info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE); - if (!info->nand.IO_ADDR_R) { - err = -ENOMEM; - goto out_release_mem_region; - } + nand_chip->controller = &info->controller; - info->nand.controller = &info->controller; - - info->nand.IO_ADDR_W = info->nand.IO_ADDR_R; - info->nand.cmd_ctrl = omap_hwcontrol; + nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R; + nand_chip->cmd_ctrl = omap_hwcontrol; /* * If RDY/BSY line is connected to OMAP then use the omap ready - * funcrtion and the generic nand_wait function which reads the status - * register after monitoring the RDY/BSY line.Otherwise use a standard + * function and the generic nand_wait function which reads the status + * register after monitoring the RDY/BSY line. Otherwise use a standard * chip delay which is slightly more than tR (AC Timing) of the NAND * device and read status register until you get a failure or success */ if (pdata->dev_ready) { - info->nand.dev_ready = omap_dev_ready; - info->nand.chip_delay = 0; + nand_chip->dev_ready = omap_dev_ready; + nand_chip->chip_delay = 0; } else { - info->nand.waitfunc = omap_wait; - info->nand.chip_delay = 50; + nand_chip->waitfunc = omap_wait; + nand_chip->chip_delay = 50; } - if (use_prefetch) { - /* copy the virtual address of nand base for fifo access */ - info->nand_pref_fifo_add = info->nand.IO_ADDR_R; - - info->nand.read_buf = omap_read_buf_pref; - info->nand.write_buf = omap_write_buf_pref; - if (use_dma) { - err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND", - omap_nand_dma_cb, &info->comp, &info->dma_ch); - if (err < 0) { - info->dma_ch = -1; - printk(KERN_WARNING "DMA request failed." - " Non-dma data transfer mode\n"); - } else { - omap_set_dma_dest_burst_mode(info->dma_ch, - OMAP_DMA_DATA_BURST_16); - omap_set_dma_src_burst_mode(info->dma_ch, - OMAP_DMA_DATA_BURST_16); + /* scan NAND device connected to chip controller */ + nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16; + if (nand_scan_ident(mtd, 1, NULL)) { + pr_err("nand device scan failed, may be bus-width mismatch\n"); + err = -ENXIO; + goto return_error; + } + + /* check for small page devices */ + if ((mtd->oobsize < 64) && (pdata->ecc_opt != OMAP_ECC_HAM1_CODE_HW)) { + pr_err("small page devices are not supported\n"); + err = -EINVAL; + goto return_error; + } - info->nand.read_buf = omap_read_buf_dma_pref; - info->nand.write_buf = omap_write_buf_dma_pref; + /* re-populate low-level callbacks based on xfer modes */ + switch (pdata->xfer_type) { + case NAND_OMAP_PREFETCH_POLLED: + nand_chip->read_buf = omap_read_buf_pref; + nand_chip->write_buf = omap_write_buf_pref; + break; + + case NAND_OMAP_POLLED: + /* Use nand_base defaults for {read,write}_buf */ + break; + + case NAND_OMAP_PREFETCH_DMA: + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + sig = OMAP24XX_DMA_GPMC; + info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig); + if (!info->dma) { + dev_err(&pdev->dev, "DMA engine request failed\n"); + err = -ENXIO; + goto return_error; + } else { + struct dma_slave_config cfg; + + memset(&cfg, 0, sizeof(cfg)); + cfg.src_addr = info->phys_base; + cfg.dst_addr = info->phys_base; + cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + cfg.src_maxburst = 16; + cfg.dst_maxburst = 16; + err = dmaengine_slave_config(info->dma, &cfg); + if (err) { + dev_err(&pdev->dev, "DMA engine slave config failed: %d\n", + err); + goto return_error; } + nand_chip->read_buf = omap_read_buf_dma_pref; + nand_chip->write_buf = omap_write_buf_dma_pref; } - } else { - if (info->nand.options & NAND_BUSWIDTH_16) { - info->nand.read_buf = omap_read_buf16; - info->nand.write_buf = omap_write_buf16; - } else { - info->nand.read_buf = omap_read_buf8; - info->nand.write_buf = omap_write_buf8; + break; + + case NAND_OMAP_PREFETCH_IRQ: + info->gpmc_irq_fifo = platform_get_irq(pdev, 0); + if (info->gpmc_irq_fifo <= 0) { + dev_err(&pdev->dev, "error getting fifo irq\n"); + err = -ENODEV; + goto return_error; + } + err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo, + omap_nand_irq, IRQF_SHARED, + "gpmc-nand-fifo", info); + if (err) { + dev_err(&pdev->dev, "requesting irq(%d) error:%d", + info->gpmc_irq_fifo, err); + info->gpmc_irq_fifo = 0; + goto return_error; } + + info->gpmc_irq_count = platform_get_irq(pdev, 1); + if (info->gpmc_irq_count <= 0) { + dev_err(&pdev->dev, "error getting count irq\n"); + err = -ENODEV; + goto return_error; + } + err = devm_request_irq(&pdev->dev, info->gpmc_irq_count, + omap_nand_irq, IRQF_SHARED, + "gpmc-nand-count", info); + if (err) { + dev_err(&pdev->dev, "requesting irq(%d) error:%d", + info->gpmc_irq_count, err); + info->gpmc_irq_count = 0; + goto return_error; + } + + nand_chip->read_buf = omap_read_buf_irq_pref; + nand_chip->write_buf = omap_write_buf_irq_pref; + + break; + + default: + dev_err(&pdev->dev, + "xfer_type(%d) not supported!\n", pdata->xfer_type); + err = -EINVAL; + goto return_error; } - info->nand.verify_buf = omap_verify_buf; - -#ifdef CONFIG_MTD_NAND_OMAP_HWECC - info->nand.ecc.bytes = 3; - info->nand.ecc.size = 512; - info->nand.ecc.calculate = omap_calculate_ecc; - info->nand.ecc.hwctl = omap_enable_hwecc; - info->nand.ecc.correct = omap_correct_data; - info->nand.ecc.mode = NAND_ECC_HW; - - /* init HW ECC */ - omap_hwecc_init(&info->mtd); + + /* populate MTD interface based on ECC scheme */ + nand_chip->ecc.layout = &omap_oobinfo; + ecclayout = &omap_oobinfo; + switch (info->ecc_opt) { + case OMAP_ECC_HAM1_CODE_HW: + pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.bytes = 3; + nand_chip->ecc.size = 512; + nand_chip->ecc.strength = 1; + nand_chip->ecc.calculate = omap_calculate_ecc; + nand_chip->ecc.hwctl = omap_enable_hwecc; + nand_chip->ecc.correct = omap_correct_data; + /* define ECC layout */ + ecclayout->eccbytes = nand_chip->ecc.bytes * + (mtd->writesize / + nand_chip->ecc.size); + if (nand_chip->options & NAND_BUSWIDTH_16) + oob_index = BADBLOCK_MARKER_LENGTH; + else + oob_index = 1; + for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) + ecclayout->eccpos[i] = oob_index; + /* no reserved-marker in ecclayout for this ecc-scheme */ + ecclayout->oobfree->offset = + ecclayout->eccpos[ecclayout->eccbytes - 1] + 1; + break; + + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: +#ifdef CONFIG_MTD_NAND_ECC_BCH + pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + nand_chip->ecc.bytes = 7; + nand_chip->ecc.strength = 4; + nand_chip->ecc.hwctl = omap_enable_hwecc_bch; + nand_chip->ecc.correct = nand_bch_correct_data; + nand_chip->ecc.calculate = omap_calculate_ecc_bch; + /* define ECC layout */ + ecclayout->eccbytes = nand_chip->ecc.bytes * + (mtd->writesize / + nand_chip->ecc.size); + oob_index = BADBLOCK_MARKER_LENGTH; + for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) { + ecclayout->eccpos[i] = oob_index; + if (((i + 1) % nand_chip->ecc.bytes) == 0) + oob_index++; + } + /* include reserved-marker in ecclayout->oobfree calculation */ + ecclayout->oobfree->offset = 1 + + ecclayout->eccpos[ecclayout->eccbytes - 1] + 1; + /* software bch library is used for locating errors */ + nand_chip->ecc.priv = nand_bch_init(mtd, + nand_chip->ecc.size, + nand_chip->ecc.bytes, + &nand_chip->ecc.layout); + if (!nand_chip->ecc.priv) { + pr_err("nand: error: unable to use s/w BCH library\n"); + err = -EINVAL; + } + break; #else - info->nand.ecc.mode = NAND_ECC_SOFT; + pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n"); + err = -EINVAL; + goto return_error; #endif - /* DIP switches on some boards change between 8 and 16 bit - * bus widths for flash. Try the other width if the first try fails. - */ - if (nand_scan(&info->mtd, 1)) { - info->nand.options ^= NAND_BUSWIDTH_16; - if (nand_scan(&info->mtd, 1)) { - err = -ENXIO; - goto out_release_mem_region; + case OMAP_ECC_BCH4_CODE_HW: +#ifdef CONFIG_MTD_NAND_OMAP_BCH + pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + /* 14th bit is kept reserved for ROM-code compatibility */ + nand_chip->ecc.bytes = 7 + 1; + nand_chip->ecc.strength = 4; + nand_chip->ecc.hwctl = omap_enable_hwecc_bch; + nand_chip->ecc.correct = omap_elm_correct_data; + nand_chip->ecc.calculate = omap_calculate_ecc_bch; + nand_chip->ecc.read_page = omap_read_page_bch; + nand_chip->ecc.write_page = omap_write_page_bch; + /* define ECC layout */ + ecclayout->eccbytes = nand_chip->ecc.bytes * + (mtd->writesize / + nand_chip->ecc.size); + oob_index = BADBLOCK_MARKER_LENGTH; + for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) + ecclayout->eccpos[i] = oob_index; + /* reserved marker already included in ecclayout->eccbytes */ + ecclayout->oobfree->offset = + ecclayout->eccpos[ecclayout->eccbytes - 1] + 1; + /* This ECC scheme requires ELM H/W block */ + if (is_elm_present(info, pdata->elm_of_node, BCH4_ECC) < 0) { + pr_err("nand: error: could not initialize ELM\n"); + err = -ENODEV; + goto return_error; } - } + break; +#else + pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n"); + err = -EINVAL; + goto return_error; +#endif -#ifdef CONFIG_MTD_PARTITIONS - err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0); - if (err > 0) - add_mtd_partitions(&info->mtd, info->parts, err); - else if (pdata->parts) - add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts); - else + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: +#ifdef CONFIG_MTD_NAND_ECC_BCH + pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + nand_chip->ecc.bytes = 13; + nand_chip->ecc.strength = 8; + nand_chip->ecc.hwctl = omap_enable_hwecc_bch; + nand_chip->ecc.correct = nand_bch_correct_data; + nand_chip->ecc.calculate = omap_calculate_ecc_bch; + /* define ECC layout */ + ecclayout->eccbytes = nand_chip->ecc.bytes * + (mtd->writesize / + nand_chip->ecc.size); + oob_index = BADBLOCK_MARKER_LENGTH; + for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) { + ecclayout->eccpos[i] = oob_index; + if (((i + 1) % nand_chip->ecc.bytes) == 0) + oob_index++; + } + /* include reserved-marker in ecclayout->oobfree calculation */ + ecclayout->oobfree->offset = 1 + + ecclayout->eccpos[ecclayout->eccbytes - 1] + 1; + /* software bch library is used for locating errors */ + nand_chip->ecc.priv = nand_bch_init(mtd, + nand_chip->ecc.size, + nand_chip->ecc.bytes, + &nand_chip->ecc.layout); + if (!nand_chip->ecc.priv) { + pr_err("nand: error: unable to use s/w BCH library\n"); + err = -EINVAL; + goto return_error; + } + break; +#else + pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n"); + err = -EINVAL; + goto return_error; #endif - add_mtd_device(&info->mtd); - platform_set_drvdata(pdev, &info->mtd); + case OMAP_ECC_BCH8_CODE_HW: +#ifdef CONFIG_MTD_NAND_OMAP_BCH + pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + /* 14th bit is kept reserved for ROM-code compatibility */ + nand_chip->ecc.bytes = 13 + 1; + nand_chip->ecc.strength = 8; + nand_chip->ecc.hwctl = omap_enable_hwecc_bch; + nand_chip->ecc.correct = omap_elm_correct_data; + nand_chip->ecc.calculate = omap_calculate_ecc_bch; + nand_chip->ecc.read_page = omap_read_page_bch; + nand_chip->ecc.write_page = omap_write_page_bch; + /* This ECC scheme requires ELM H/W block */ + err = is_elm_present(info, pdata->elm_of_node, BCH8_ECC); + if (err < 0) { + pr_err("nand: error: could not initialize ELM\n"); + goto return_error; + } + /* define ECC layout */ + ecclayout->eccbytes = nand_chip->ecc.bytes * + (mtd->writesize / + nand_chip->ecc.size); + oob_index = BADBLOCK_MARKER_LENGTH; + for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) + ecclayout->eccpos[i] = oob_index; + /* reserved marker already included in ecclayout->eccbytes */ + ecclayout->oobfree->offset = + ecclayout->eccpos[ecclayout->eccbytes - 1] + 1; + break; +#else + pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n"); + err = -EINVAL; + goto return_error; +#endif - return 0; + case OMAP_ECC_BCH16_CODE_HW: +#ifdef CONFIG_MTD_NAND_OMAP_BCH + pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + nand_chip->ecc.bytes = 26; + nand_chip->ecc.strength = 16; + nand_chip->ecc.hwctl = omap_enable_hwecc_bch; + nand_chip->ecc.correct = omap_elm_correct_data; + nand_chip->ecc.calculate = omap_calculate_ecc_bch; + nand_chip->ecc.read_page = omap_read_page_bch; + nand_chip->ecc.write_page = omap_write_page_bch; + /* This ECC scheme requires ELM H/W block */ + err = is_elm_present(info, pdata->elm_of_node, BCH16_ECC); + if (err < 0) { + pr_err("ELM is required for this ECC scheme\n"); + goto return_error; + } + /* define ECC layout */ + ecclayout->eccbytes = nand_chip->ecc.bytes * + (mtd->writesize / + nand_chip->ecc.size); + oob_index = BADBLOCK_MARKER_LENGTH; + for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) + ecclayout->eccpos[i] = oob_index; + /* reserved marker already included in ecclayout->eccbytes */ + ecclayout->oobfree->offset = + ecclayout->eccpos[ecclayout->eccbytes - 1] + 1; + break; +#else + pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n"); + err = -EINVAL; + goto return_error; +#endif + default: + pr_err("nand: error: invalid or unsupported ECC scheme\n"); + err = -EINVAL; + goto return_error; + } + + /* all OOB bytes from oobfree->offset till end off OOB are free */ + ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset; + /* check if NAND device's OOB is enough to store ECC signatures */ + if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) { + pr_err("not enough OOB bytes required = %d, available=%d\n", + ecclayout->eccbytes, mtd->oobsize); + err = -EINVAL; + goto return_error; + } + + /* second phase scan */ + if (nand_scan_tail(mtd)) { + err = -ENXIO; + goto return_error; + } -out_release_mem_region: - release_mem_region(info->phys_base, NAND_IO_SIZE); -out_free_info: - kfree(info); + ppdata.of_node = pdata->of_node; + mtd_device_parse_register(mtd, NULL, &ppdata, pdata->parts, + pdata->nr_parts); + platform_set_drvdata(pdev, mtd); + + return 0; + +return_error: + if (info->dma) + dma_release_channel(info->dma); + if (nand_chip->ecc.priv) { + nand_bch_free(nand_chip->ecc.priv); + nand_chip->ecc.priv = NULL; + } return err; } static int omap_nand_remove(struct platform_device *pdev) { struct mtd_info *mtd = platform_get_drvdata(pdev); + struct nand_chip *nand_chip = mtd->priv; struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); - - platform_set_drvdata(pdev, NULL); - if (use_dma) - omap_free_dma(info->dma_ch); - - /* Release NAND device, its internal structures and partitions */ - nand_release(&info->mtd); - iounmap(info->nand_pref_fifo_add); - kfree(&info->mtd); + if (nand_chip->ecc.priv) { + nand_bch_free(nand_chip->ecc.priv); + nand_chip->ecc.priv = NULL; + } + if (info->dma) + dma_release_channel(info->dma); + nand_release(mtd); return 0; } @@ -1054,29 +2071,8 @@ static struct platform_driver omap_nand_driver = { }, }; -static int __init omap_nand_init(void) -{ - printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME); - - /* This check is required if driver is being - * loaded run time as a module - */ - if ((1 == use_dma) && (0 == use_prefetch)) { - printk(KERN_INFO"Wrong parameters: 'use_dma' can not be 1 " - "without use_prefetch'. Prefetch will not be" - " used in either mode (mpu or dma)\n"); - } - return platform_driver_register(&omap_nand_driver); -} - -static void __exit omap_nand_exit(void) -{ - platform_driver_unregister(&omap_nand_driver); -} - -module_init(omap_nand_init); -module_exit(omap_nand_exit); +module_platform_driver(omap_nand_driver); -MODULE_ALIAS(DRIVER_NAME); +MODULE_ALIAS("platform:" DRIVER_NAME); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards"); diff --git a/drivers/mtd/nand/orion_nand.c b/drivers/mtd/nand/orion_nand.c index da6e7534305..471b4df3a5a 100644 --- a/drivers/mtd/nand/orion_nand.c +++ b/drivers/mtd/nand/orion_nand.c @@ -13,17 +13,15 @@ #include <linux/slab.h> #include <linux/module.h> #include <linux/platform_device.h> +#include <linux/of.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> +#include <linux/clk.h> +#include <linux/err.h> #include <asm/io.h> #include <asm/sizes.h> -#include <mach/hardware.h> -#include <plat/orion_nand.h> - -#ifdef CONFIG_MTD_CMDLINE_PARTS -static const char *part_probes[] = { "cmdlinepart", NULL }; -#endif +#include <linux/platform_data/mtd-orion_nand.h> static void orion_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) { @@ -78,19 +76,17 @@ static void orion_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) static int __init orion_nand_probe(struct platform_device *pdev) { struct mtd_info *mtd; + struct mtd_part_parser_data ppdata = {}; struct nand_chip *nc; struct orion_nand_data *board; struct resource *res; + struct clk *clk; void __iomem *io_base; int ret = 0; -#ifdef CONFIG_MTD_PARTITIONS - struct mtd_partition *partitions = NULL; - int num_part = 0; -#endif + u32 val = 0; nc = kzalloc(sizeof(struct nand_chip) + sizeof(struct mtd_info), GFP_KERNEL); if (!nc) { - printk(KERN_ERR "orion_nand: failed to allocate device structure.\n"); ret = -ENOMEM; goto no_res; } @@ -104,12 +100,37 @@ static int __init orion_nand_probe(struct platform_device *pdev) io_base = ioremap(res->start, resource_size(res)); if (!io_base) { - printk(KERN_ERR "orion_nand: ioremap failed\n"); + dev_err(&pdev->dev, "ioremap failed\n"); ret = -EIO; goto no_res; } - board = pdev->dev.platform_data; + if (pdev->dev.of_node) { + board = devm_kzalloc(&pdev->dev, sizeof(struct orion_nand_data), + GFP_KERNEL); + if (!board) { + ret = -ENOMEM; + goto no_res; + } + if (!of_property_read_u32(pdev->dev.of_node, "cle", &val)) + board->cle = (u8)val; + else + board->cle = 0; + if (!of_property_read_u32(pdev->dev.of_node, "ale", &val)) + board->ale = (u8)val; + else + board->ale = 1; + if (!of_property_read_u32(pdev->dev.of_node, + "bank-width", &val)) + board->width = (u8)val * 8; + else + board->width = 8; + if (!of_property_read_u32(pdev->dev.of_node, + "chip-delay", &val)) + board->chip_delay = (u8)val; + } else { + board = dev_get_platdata(&pdev->dev); + } mtd->priv = nc; mtd->owner = THIS_MODULE; @@ -123,6 +144,10 @@ static int __init orion_nand_probe(struct platform_device *pdev) if (board->chip_delay) nc->chip_delay = board->chip_delay; + WARN(board->width > 16, + "%d bit bus width out of range", + board->width); + if (board->width == 16) nc->options |= NAND_BUSWIDTH_16; @@ -131,30 +156,23 @@ static int __init orion_nand_probe(struct platform_device *pdev) platform_set_drvdata(pdev, mtd); + /* Not all platforms can gate the clock, so it is not + an error if the clock does not exists. */ + clk = clk_get(&pdev->dev, NULL); + if (!IS_ERR(clk)) { + clk_prepare_enable(clk); + clk_put(clk); + } + if (nand_scan(mtd, 1)) { ret = -ENXIO; goto no_dev; } -#ifdef CONFIG_MTD_PARTITIONS -#ifdef CONFIG_MTD_CMDLINE_PARTS mtd->name = "orion_nand"; - num_part = parse_mtd_partitions(mtd, part_probes, &partitions, 0); -#endif - /* If cmdline partitions have been passed, let them be used */ - if (num_part <= 0) { - num_part = board->nr_parts; - partitions = board->parts; - } - - if (partitions && num_part > 0) - ret = add_mtd_partitions(mtd, partitions, num_part); - else - ret = add_mtd_device(mtd); -#else - ret = add_mtd_device(mtd); -#endif - + ppdata.of_node = pdev->dev.of_node; + ret = mtd_device_parse_register(mtd, NULL, &ppdata, + board->parts, board->nr_parts); if (ret) { nand_release(mtd); goto no_dev; @@ -163,7 +181,10 @@ static int __init orion_nand_probe(struct platform_device *pdev) return 0; no_dev: - platform_set_drvdata(pdev, NULL); + if (!IS_ERR(clk)) { + clk_disable_unprepare(clk); + clk_put(clk); + } iounmap(io_base); no_res: kfree(nc); @@ -171,10 +192,11 @@ no_res: return ret; } -static int __devexit orion_nand_remove(struct platform_device *pdev) +static int orion_nand_remove(struct platform_device *pdev) { struct mtd_info *mtd = platform_get_drvdata(pdev); struct nand_chip *nc = mtd->priv; + struct clk *clk; nand_release(mtd); @@ -182,29 +204,32 @@ static int __devexit orion_nand_remove(struct platform_device *pdev) kfree(nc); + clk = clk_get(&pdev->dev, NULL); + if (!IS_ERR(clk)) { + clk_disable_unprepare(clk); + clk_put(clk); + } + return 0; } +#ifdef CONFIG_OF +static const struct of_device_id orion_nand_of_match_table[] = { + { .compatible = "marvell,orion-nand", }, + {}, +}; +#endif + static struct platform_driver orion_nand_driver = { - .remove = __devexit_p(orion_nand_remove), + .remove = orion_nand_remove, .driver = { .name = "orion_nand", .owner = THIS_MODULE, + .of_match_table = of_match_ptr(orion_nand_of_match_table), }, }; -static int __init orion_nand_init(void) -{ - return platform_driver_probe(&orion_nand_driver, orion_nand_probe); -} - -static void __exit orion_nand_exit(void) -{ - platform_driver_unregister(&orion_nand_driver); -} - -module_init(orion_nand_init); -module_exit(orion_nand_exit); +module_platform_driver_probe(orion_nand_driver, orion_nand_probe); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Tzachi Perelstein"); diff --git a/drivers/mtd/nand/pasemi_nand.c b/drivers/mtd/nand/pasemi_nand.c index f02af24d033..2c98f9da747 100644 --- a/drivers/mtd/nand/pasemi_nand.c +++ b/drivers/mtd/nand/pasemi_nand.c @@ -23,11 +23,12 @@ #undef DEBUG #include <linux/slab.h> -#include <linux/init.h> #include <linux/module.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/nand_ecc.h> +#include <linux/of_address.h> +#include <linux/of_irq.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/pci.h> @@ -89,8 +90,7 @@ int pasemi_device_ready(struct mtd_info *mtd) return !!(inl(lpcctl) & LBICTRL_LPCCTL_NR); } -static int __devinit pasemi_nand_probe(struct of_device *ofdev, - const struct of_device_id *match) +static int pasemi_nand_probe(struct platform_device *ofdev) { struct pci_dev *pdev; struct device_node *np = ofdev->dev.of_node; @@ -107,7 +107,7 @@ static int __devinit pasemi_nand_probe(struct of_device *ofdev, if (pasemi_nand_mtd) return -ENODEV; - pr_debug("pasemi_nand at %llx-%llx\n", res.start, res.end); + pr_debug("pasemi_nand at %pR\n", &res); /* Allocate memory for MTD device structure and private data */ pasemi_nand_mtd = kzalloc(sizeof(struct mtd_info) + @@ -156,15 +156,15 @@ static int __devinit pasemi_nand_probe(struct of_device *ofdev, chip->ecc.mode = NAND_ECC_SOFT; /* Enable the following for a flash based bad block table */ - chip->options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR; + chip->bbt_options = NAND_BBT_USE_FLASH; - /* Scan to find existance of the device */ + /* Scan to find existence of the device */ if (nand_scan(pasemi_nand_mtd, 1)) { err = -ENXIO; goto out_lpc; } - if (add_mtd_device(pasemi_nand_mtd)) { + if (mtd_device_register(pasemi_nand_mtd, NULL, 0)) { printk(KERN_ERR "pasemi_nand: Unable to register MTD device\n"); err = -ENODEV; goto out_lpc; @@ -185,7 +185,7 @@ static int __devinit pasemi_nand_probe(struct of_device *ofdev, return err; } -static int __devexit pasemi_nand_remove(struct of_device *ofdev) +static int pasemi_nand_remove(struct platform_device *ofdev) { struct nand_chip *chip; @@ -219,10 +219,10 @@ static const struct of_device_id pasemi_nand_match[] = MODULE_DEVICE_TABLE(of, pasemi_nand_match); -static struct of_platform_driver pasemi_nand_driver = +static struct platform_driver pasemi_nand_driver = { .driver = { - .name = (char*)driver_name, + .name = driver_name, .owner = THIS_MODULE, .of_match_table = pasemi_nand_match, }, @@ -230,17 +230,7 @@ static struct of_platform_driver pasemi_nand_driver = .remove = pasemi_nand_remove, }; -static int __init pasemi_nand_init(void) -{ - return of_register_platform_driver(&pasemi_nand_driver); -} -module_init(pasemi_nand_init); - -static void __exit pasemi_nand_exit(void) -{ - of_unregister_platform_driver(&pasemi_nand_driver); -} -module_exit(pasemi_nand_exit); +module_platform_driver(pasemi_nand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Egor Martovetsky <egor@pasemi.com>"); diff --git a/drivers/mtd/nand/plat_nand.c b/drivers/mtd/nand/plat_nand.c index 8d467315f02..0b068a5c0bf 100644 --- a/drivers/mtd/nand/plat_nand.c +++ b/drivers/mtd/nand/plat_nand.c @@ -9,6 +9,7 @@ * */ +#include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/platform_device.h> @@ -21,46 +22,42 @@ struct plat_nand_data { struct nand_chip chip; struct mtd_info mtd; void __iomem *io_base; -#ifdef CONFIG_MTD_PARTITIONS - int nr_parts; - struct mtd_partition *parts; -#endif }; +static const char *part_probe_types[] = { "cmdlinepart", NULL }; + /* * Probe for the NAND device. */ -static int __devinit plat_nand_probe(struct platform_device *pdev) +static int plat_nand_probe(struct platform_device *pdev) { - struct platform_nand_data *pdata = pdev->dev.platform_data; + struct platform_nand_data *pdata = dev_get_platdata(&pdev->dev); + struct mtd_part_parser_data ppdata; struct plat_nand_data *data; struct resource *res; + const char **part_types; int err = 0; - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - if (!res) - return -ENXIO; - - /* Allocate memory for the device structure (and zero it) */ - data = kzalloc(sizeof(struct plat_nand_data), GFP_KERNEL); - if (!data) { - dev_err(&pdev->dev, "failed to allocate device structure.\n"); - return -ENOMEM; + if (!pdata) { + dev_err(&pdev->dev, "platform_nand_data is missing\n"); + return -EINVAL; } - if (!request_mem_region(res->start, resource_size(res), - dev_name(&pdev->dev))) { - dev_err(&pdev->dev, "request_mem_region failed\n"); - err = -EBUSY; - goto out_free; + if (pdata->chip.nr_chips < 1) { + dev_err(&pdev->dev, "invalid number of chips specified\n"); + return -EINVAL; } - data->io_base = ioremap(res->start, resource_size(res)); - if (data->io_base == NULL) { - dev_err(&pdev->dev, "ioremap failed\n"); - err = -EIO; - goto out_release_io; - } + /* Allocate memory for the device structure (and zero it) */ + data = devm_kzalloc(&pdev->dev, sizeof(struct plat_nand_data), + GFP_KERNEL); + if (!data) + return -ENOMEM; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + data->io_base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(data->io_base)) + return PTR_ERR(data->io_base); data->chip.priv = &data; data->mtd.priv = &data->chip; @@ -74,8 +71,10 @@ static int __devinit plat_nand_probe(struct platform_device *pdev) data->chip.select_chip = pdata->ctrl.select_chip; data->chip.write_buf = pdata->ctrl.write_buf; data->chip.read_buf = pdata->ctrl.read_buf; + data->chip.read_byte = pdata->ctrl.read_byte; data->chip.chip_delay = pdata->chip.chip_delay; data->chip.options |= pdata->chip.options; + data->chip.bbt_options |= pdata->chip.bbt_options; data->chip.ecc.hwctl = pdata->ctrl.hwcontrol; data->chip.ecc.layout = pdata->chip.ecclayout; @@ -90,31 +89,18 @@ static int __devinit plat_nand_probe(struct platform_device *pdev) goto out; } - /* Scan to find existance of the device */ - if (nand_scan(&data->mtd, 1)) { + /* Scan to find existence of the device */ + if (nand_scan(&data->mtd, pdata->chip.nr_chips)) { err = -ENXIO; goto out; } -#ifdef CONFIG_MTD_PARTITIONS - if (pdata->chip.part_probe_types) { - err = parse_mtd_partitions(&data->mtd, - pdata->chip.part_probe_types, - &data->parts, 0); - if (err > 0) { - add_mtd_partitions(&data->mtd, data->parts, err); - return 0; - } - } - if (pdata->chip.set_parts) - pdata->chip.set_parts(data->mtd.size, &pdata->chip); - if (pdata->chip.partitions) { - data->parts = pdata->chip.partitions; - err = add_mtd_partitions(&data->mtd, data->parts, - pdata->chip.nr_partitions); - } else -#endif - err = add_mtd_device(&data->mtd); + part_types = pdata->chip.part_probe_types ? : part_probe_types; + + ppdata.of_node = pdev->dev.of_node; + err = mtd_device_parse_register(&data->mtd, part_types, &ppdata, + pdata->chip.partitions, + pdata->chip.nr_partitions); if (!err) return err; @@ -123,61 +109,41 @@ static int __devinit plat_nand_probe(struct platform_device *pdev) out: if (pdata->ctrl.remove) pdata->ctrl.remove(pdev); - platform_set_drvdata(pdev, NULL); - iounmap(data->io_base); -out_release_io: - release_mem_region(res->start, resource_size(res)); -out_free: - kfree(data); return err; } /* * Remove a NAND device. */ -static int __devexit plat_nand_remove(struct platform_device *pdev) +static int plat_nand_remove(struct platform_device *pdev) { struct plat_nand_data *data = platform_get_drvdata(pdev); - struct platform_nand_data *pdata = pdev->dev.platform_data; - struct resource *res; - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + struct platform_nand_data *pdata = dev_get_platdata(&pdev->dev); nand_release(&data->mtd); -#ifdef CONFIG_MTD_PARTITIONS - if (data->parts && data->parts != pdata->chip.partitions) - kfree(data->parts); -#endif if (pdata->ctrl.remove) pdata->ctrl.remove(pdev); - iounmap(data->io_base); - release_mem_region(res->start, resource_size(res)); - kfree(data); return 0; } +static const struct of_device_id plat_nand_match[] = { + { .compatible = "gen_nand" }, + {}, +}; +MODULE_DEVICE_TABLE(of, plat_nand_match); + static struct platform_driver plat_nand_driver = { - .probe = plat_nand_probe, - .remove = __devexit_p(plat_nand_remove), - .driver = { - .name = "gen_nand", - .owner = THIS_MODULE, + .probe = plat_nand_probe, + .remove = plat_nand_remove, + .driver = { + .name = "gen_nand", + .owner = THIS_MODULE, + .of_match_table = plat_nand_match, }, }; -static int __init plat_nand_init(void) -{ - return platform_driver_register(&plat_nand_driver); -} - -static void __exit plat_nand_exit(void) -{ - platform_driver_unregister(&plat_nand_driver); -} - -module_init(plat_nand_init); -module_exit(plat_nand_exit); +module_platform_driver(plat_nand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Vitaly Wool"); diff --git a/drivers/mtd/nand/ppchameleonevb.c b/drivers/mtd/nand/ppchameleonevb.c deleted file mode 100644 index cc865843185..00000000000 --- a/drivers/mtd/nand/ppchameleonevb.c +++ /dev/null @@ -1,437 +0,0 @@ -/* - * drivers/mtd/nand/ppchameleonevb.c - * - * Copyright (C) 2003 DAVE Srl (info@wawnet.biz) - * - * Derived from drivers/mtd/nand/edb7312.c - * - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Overview: - * This is a device driver for the NAND flash devices found on the - * PPChameleon/PPChameleonEVB system. - * PPChameleon options (autodetected): - * - BA model: no NAND - * - ME model: 32MB (Samsung K9F5608U0B) - * - HI model: 128MB (Samsung K9F1G08UOM) - * PPChameleonEVB options: - * - 32MB (Samsung K9F5608U0B) - */ - -#include <linux/init.h> -#include <linux/slab.h> -#include <linux/module.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/partitions.h> -#include <asm/io.h> -#include <platforms/PPChameleonEVB.h> - -#undef USE_READY_BUSY_PIN -#define USE_READY_BUSY_PIN -/* see datasheets (tR) */ -#define NAND_BIG_DELAY_US 25 -#define NAND_SMALL_DELAY_US 10 - -/* handy sizes */ -#define SZ_4M 0x00400000 -#define NAND_SMALL_SIZE 0x02000000 -#define NAND_MTD_NAME "ppchameleon-nand" -#define NAND_EVB_MTD_NAME "ppchameleonevb-nand" - -/* GPIO pins used to drive NAND chip mounted on processor module */ -#define NAND_nCE_GPIO_PIN (0x80000000 >> 1) -#define NAND_CLE_GPIO_PIN (0x80000000 >> 2) -#define NAND_ALE_GPIO_PIN (0x80000000 >> 3) -#define NAND_RB_GPIO_PIN (0x80000000 >> 4) -/* GPIO pins used to drive NAND chip mounted on EVB */ -#define NAND_EVB_nCE_GPIO_PIN (0x80000000 >> 14) -#define NAND_EVB_CLE_GPIO_PIN (0x80000000 >> 15) -#define NAND_EVB_ALE_GPIO_PIN (0x80000000 >> 16) -#define NAND_EVB_RB_GPIO_PIN (0x80000000 >> 31) - -/* - * MTD structure for PPChameleonEVB board - */ -static struct mtd_info *ppchameleon_mtd = NULL; -static struct mtd_info *ppchameleonevb_mtd = NULL; - -/* - * Module stuff - */ -static unsigned long ppchameleon_fio_pbase = CFG_NAND0_PADDR; -static unsigned long ppchameleonevb_fio_pbase = CFG_NAND1_PADDR; - -#ifdef MODULE -module_param(ppchameleon_fio_pbase, ulong, 0); -module_param(ppchameleonevb_fio_pbase, ulong, 0); -#else -__setup("ppchameleon_fio_pbase=", ppchameleon_fio_pbase); -__setup("ppchameleonevb_fio_pbase=", ppchameleonevb_fio_pbase); -#endif - -#ifdef CONFIG_MTD_PARTITIONS -/* - * Define static partitions for flash devices - */ -static struct mtd_partition partition_info_hi[] = { - { .name = "PPChameleon HI Nand Flash", - .offset = 0, - .size = 128 * 1024 * 1024 - } -}; - -static struct mtd_partition partition_info_me[] = { - { .name = "PPChameleon ME Nand Flash", - .offset = 0, - .size = 32 * 1024 * 1024 - } -}; - -static struct mtd_partition partition_info_evb[] = { - { .name = "PPChameleonEVB Nand Flash", - .offset = 0, - .size = 32 * 1024 * 1024 - } -}; - -#define NUM_PARTITIONS 1 - -extern int parse_cmdline_partitions(struct mtd_info *master, struct mtd_partition **pparts, const char *mtd_id); -#endif - -/* - * hardware specific access to control-lines - */ -static void ppchameleon_hwcontrol(struct mtd_info *mtdinfo, int cmd, - unsigned int ctrl) -{ - struct nand_chip *chip = mtd->priv; - - if (ctrl & NAND_CTRL_CHANGE) { -#error Missing headerfiles. No way to fix this. -tglx - switch (cmd) { - case NAND_CTL_SETCLE: - MACRO_NAND_CTL_SETCLE((unsigned long)CFG_NAND0_PADDR); - break; - case NAND_CTL_CLRCLE: - MACRO_NAND_CTL_CLRCLE((unsigned long)CFG_NAND0_PADDR); - break; - case NAND_CTL_SETALE: - MACRO_NAND_CTL_SETALE((unsigned long)CFG_NAND0_PADDR); - break; - case NAND_CTL_CLRALE: - MACRO_NAND_CTL_CLRALE((unsigned long)CFG_NAND0_PADDR); - break; - case NAND_CTL_SETNCE: - MACRO_NAND_ENABLE_CE((unsigned long)CFG_NAND0_PADDR); - break; - case NAND_CTL_CLRNCE: - MACRO_NAND_DISABLE_CE((unsigned long)CFG_NAND0_PADDR); - break; - } - } - if (cmd != NAND_CMD_NONE) - writeb(cmd, chip->IO_ADDR_W); -} - -static void ppchameleonevb_hwcontrol(struct mtd_info *mtdinfo, int cmd, - unsigned int ctrl) -{ - struct nand_chip *chip = mtd->priv; - - if (ctrl & NAND_CTRL_CHANGE) { -#error Missing headerfiles. No way to fix this. -tglx - switch (cmd) { - case NAND_CTL_SETCLE: - MACRO_NAND_CTL_SETCLE((unsigned long)CFG_NAND1_PADDR); - break; - case NAND_CTL_CLRCLE: - MACRO_NAND_CTL_CLRCLE((unsigned long)CFG_NAND1_PADDR); - break; - case NAND_CTL_SETALE: - MACRO_NAND_CTL_SETALE((unsigned long)CFG_NAND1_PADDR); - break; - case NAND_CTL_CLRALE: - MACRO_NAND_CTL_CLRALE((unsigned long)CFG_NAND1_PADDR); - break; - case NAND_CTL_SETNCE: - MACRO_NAND_ENABLE_CE((unsigned long)CFG_NAND1_PADDR); - break; - case NAND_CTL_CLRNCE: - MACRO_NAND_DISABLE_CE((unsigned long)CFG_NAND1_PADDR); - break; - } - } - if (cmd != NAND_CMD_NONE) - writeb(cmd, chip->IO_ADDR_W); -} - -#ifdef USE_READY_BUSY_PIN -/* - * read device ready pin - */ -static int ppchameleon_device_ready(struct mtd_info *minfo) -{ - if (in_be32((volatile unsigned *)GPIO0_IR) & NAND_RB_GPIO_PIN) - return 1; - return 0; -} - -static int ppchameleonevb_device_ready(struct mtd_info *minfo) -{ - if (in_be32((volatile unsigned *)GPIO0_IR) & NAND_EVB_RB_GPIO_PIN) - return 1; - return 0; -} -#endif - -#ifdef CONFIG_MTD_PARTITIONS -const char *part_probes[] = { "cmdlinepart", NULL }; -const char *part_probes_evb[] = { "cmdlinepart", NULL }; -#endif - -/* - * Main initialization routine - */ -static int __init ppchameleonevb_init(void) -{ - struct nand_chip *this; - const char *part_type = 0; - int mtd_parts_nb = 0; - struct mtd_partition *mtd_parts = 0; - void __iomem *ppchameleon_fio_base; - void __iomem *ppchameleonevb_fio_base; - - /********************************* - * Processor module NAND (if any) * - *********************************/ - /* Allocate memory for MTD device structure and private data */ - ppchameleon_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); - if (!ppchameleon_mtd) { - printk("Unable to allocate PPChameleon NAND MTD device structure.\n"); - return -ENOMEM; - } - - /* map physical address */ - ppchameleon_fio_base = ioremap(ppchameleon_fio_pbase, SZ_4M); - if (!ppchameleon_fio_base) { - printk("ioremap PPChameleon NAND flash failed\n"); - kfree(ppchameleon_mtd); - return -EIO; - } - - /* Get pointer to private data */ - this = (struct nand_chip *)(&ppchameleon_mtd[1]); - - /* Initialize structures */ - memset(ppchameleon_mtd, 0, sizeof(struct mtd_info)); - memset(this, 0, sizeof(struct nand_chip)); - - /* Link the private data with the MTD structure */ - ppchameleon_mtd->priv = this; - ppchameleon_mtd->owner = THIS_MODULE; - - /* Initialize GPIOs */ - /* Pin mapping for NAND chip */ - /* - CE GPIO_01 - CLE GPIO_02 - ALE GPIO_03 - R/B GPIO_04 - */ - /* output select */ - out_be32((volatile unsigned *)GPIO0_OSRH, in_be32((volatile unsigned *)GPIO0_OSRH) & 0xC0FFFFFF); - /* three-state select */ - out_be32((volatile unsigned *)GPIO0_TSRH, in_be32((volatile unsigned *)GPIO0_TSRH) & 0xC0FFFFFF); - /* enable output driver */ - out_be32((volatile unsigned *)GPIO0_TCR, - in_be32((volatile unsigned *)GPIO0_TCR) | NAND_nCE_GPIO_PIN | NAND_CLE_GPIO_PIN | NAND_ALE_GPIO_PIN); -#ifdef USE_READY_BUSY_PIN - /* three-state select */ - out_be32((volatile unsigned *)GPIO0_TSRH, in_be32((volatile unsigned *)GPIO0_TSRH) & 0xFF3FFFFF); - /* high-impedecence */ - out_be32((volatile unsigned *)GPIO0_TCR, in_be32((volatile unsigned *)GPIO0_TCR) & (~NAND_RB_GPIO_PIN)); - /* input select */ - out_be32((volatile unsigned *)GPIO0_ISR1H, - (in_be32((volatile unsigned *)GPIO0_ISR1H) & 0xFF3FFFFF) | 0x00400000); -#endif - - /* insert callbacks */ - this->IO_ADDR_R = ppchameleon_fio_base; - this->IO_ADDR_W = ppchameleon_fio_base; - this->cmd_ctrl = ppchameleon_hwcontrol; -#ifdef USE_READY_BUSY_PIN - this->dev_ready = ppchameleon_device_ready; -#endif - this->chip_delay = NAND_BIG_DELAY_US; - /* ECC mode */ - this->ecc.mode = NAND_ECC_SOFT; - - /* Scan to find existence of the device (it could not be mounted) */ - if (nand_scan(ppchameleon_mtd, 1)) { - iounmap((void *)ppchameleon_fio_base); - ppchameleon_fio_base = NULL; - kfree(ppchameleon_mtd); - goto nand_evb_init; - } -#ifndef USE_READY_BUSY_PIN - /* Adjust delay if necessary */ - if (ppchameleon_mtd->size == NAND_SMALL_SIZE) - this->chip_delay = NAND_SMALL_DELAY_US; -#endif - -#ifdef CONFIG_MTD_PARTITIONS - ppchameleon_mtd->name = "ppchameleon-nand"; - mtd_parts_nb = parse_mtd_partitions(ppchameleon_mtd, part_probes, &mtd_parts, 0); - if (mtd_parts_nb > 0) - part_type = "command line"; - else - mtd_parts_nb = 0; -#endif - if (mtd_parts_nb == 0) { - if (ppchameleon_mtd->size == NAND_SMALL_SIZE) - mtd_parts = partition_info_me; - else - mtd_parts = partition_info_hi; - mtd_parts_nb = NUM_PARTITIONS; - part_type = "static"; - } - - /* Register the partitions */ - printk(KERN_NOTICE "Using %s partition definition\n", part_type); - add_mtd_partitions(ppchameleon_mtd, mtd_parts, mtd_parts_nb); - - nand_evb_init: - /**************************** - * EVB NAND (always present) * - ****************************/ - /* Allocate memory for MTD device structure and private data */ - ppchameleonevb_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); - if (!ppchameleonevb_mtd) { - printk("Unable to allocate PPChameleonEVB NAND MTD device structure.\n"); - if (ppchameleon_fio_base) - iounmap(ppchameleon_fio_base); - return -ENOMEM; - } - - /* map physical address */ - ppchameleonevb_fio_base = ioremap(ppchameleonevb_fio_pbase, SZ_4M); - if (!ppchameleonevb_fio_base) { - printk("ioremap PPChameleonEVB NAND flash failed\n"); - kfree(ppchameleonevb_mtd); - if (ppchameleon_fio_base) - iounmap(ppchameleon_fio_base); - return -EIO; - } - - /* Get pointer to private data */ - this = (struct nand_chip *)(&ppchameleonevb_mtd[1]); - - /* Initialize structures */ - memset(ppchameleonevb_mtd, 0, sizeof(struct mtd_info)); - memset(this, 0, sizeof(struct nand_chip)); - - /* Link the private data with the MTD structure */ - ppchameleonevb_mtd->priv = this; - - /* Initialize GPIOs */ - /* Pin mapping for NAND chip */ - /* - CE GPIO_14 - CLE GPIO_15 - ALE GPIO_16 - R/B GPIO_31 - */ - /* output select */ - out_be32((volatile unsigned *)GPIO0_OSRH, in_be32((volatile unsigned *)GPIO0_OSRH) & 0xFFFFFFF0); - out_be32((volatile unsigned *)GPIO0_OSRL, in_be32((volatile unsigned *)GPIO0_OSRL) & 0x3FFFFFFF); - /* three-state select */ - out_be32((volatile unsigned *)GPIO0_TSRH, in_be32((volatile unsigned *)GPIO0_TSRH) & 0xFFFFFFF0); - out_be32((volatile unsigned *)GPIO0_TSRL, in_be32((volatile unsigned *)GPIO0_TSRL) & 0x3FFFFFFF); - /* enable output driver */ - out_be32((volatile unsigned *)GPIO0_TCR, in_be32((volatile unsigned *)GPIO0_TCR) | NAND_EVB_nCE_GPIO_PIN | - NAND_EVB_CLE_GPIO_PIN | NAND_EVB_ALE_GPIO_PIN); -#ifdef USE_READY_BUSY_PIN - /* three-state select */ - out_be32((volatile unsigned *)GPIO0_TSRL, in_be32((volatile unsigned *)GPIO0_TSRL) & 0xFFFFFFFC); - /* high-impedecence */ - out_be32((volatile unsigned *)GPIO0_TCR, in_be32((volatile unsigned *)GPIO0_TCR) & (~NAND_EVB_RB_GPIO_PIN)); - /* input select */ - out_be32((volatile unsigned *)GPIO0_ISR1L, - (in_be32((volatile unsigned *)GPIO0_ISR1L) & 0xFFFFFFFC) | 0x00000001); -#endif - - /* insert callbacks */ - this->IO_ADDR_R = ppchameleonevb_fio_base; - this->IO_ADDR_W = ppchameleonevb_fio_base; - this->cmd_ctrl = ppchameleonevb_hwcontrol; -#ifdef USE_READY_BUSY_PIN - this->dev_ready = ppchameleonevb_device_ready; -#endif - this->chip_delay = NAND_SMALL_DELAY_US; - - /* ECC mode */ - this->ecc.mode = NAND_ECC_SOFT; - - /* Scan to find existence of the device */ - if (nand_scan(ppchameleonevb_mtd, 1)) { - iounmap((void *)ppchameleonevb_fio_base); - kfree(ppchameleonevb_mtd); - if (ppchameleon_fio_base) - iounmap(ppchameleon_fio_base); - return -ENXIO; - } -#ifdef CONFIG_MTD_PARTITIONS - ppchameleonevb_mtd->name = NAND_EVB_MTD_NAME; - mtd_parts_nb = parse_mtd_partitions(ppchameleonevb_mtd, part_probes_evb, &mtd_parts, 0); - if (mtd_parts_nb > 0) - part_type = "command line"; - else - mtd_parts_nb = 0; -#endif - if (mtd_parts_nb == 0) { - mtd_parts = partition_info_evb; - mtd_parts_nb = NUM_PARTITIONS; - part_type = "static"; - } - - /* Register the partitions */ - printk(KERN_NOTICE "Using %s partition definition\n", part_type); - add_mtd_partitions(ppchameleonevb_mtd, mtd_parts, mtd_parts_nb); - - /* Return happy */ - return 0; -} - -module_init(ppchameleonevb_init); - -/* - * Clean up routine - */ -static void __exit ppchameleonevb_cleanup(void) -{ - struct nand_chip *this; - - /* Release resources, unregister device(s) */ - nand_release(ppchameleon_mtd); - nand_release(ppchameleonevb_mtd); - - /* Release iomaps */ - this = (struct nand_chip *) &ppchameleon_mtd[1]; - iounmap((void *) this->IO_ADDR_R); - this = (struct nand_chip *) &ppchameleonevb_mtd[1]; - iounmap((void *) this->IO_ADDR_R); - - /* Free the MTD device structure */ - kfree (ppchameleon_mtd); - kfree (ppchameleonevb_mtd); -} -module_exit(ppchameleonevb_cleanup); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("DAVE Srl <support-ppchameleon@dave-tech.it>"); -MODULE_DESCRIPTION("MTD map driver for DAVE Srl PPChameleonEVB board"); diff --git a/drivers/mtd/nand/pxa3xx_nand.c b/drivers/mtd/nand/pxa3xx_nand.c index e02fa4f0e3c..96b0b1d27df 100644 --- a/drivers/mtd/nand/pxa3xx_nand.c +++ b/drivers/mtd/nand/pxa3xx_nand.c @@ -7,6 +7,8 @@ * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. + * + * See Documentation/mtd/nand/pxa3xx-nand.txt for more details. */ #include <linux/kernel.h> @@ -22,11 +24,30 @@ #include <linux/io.h> #include <linux/irq.h> #include <linux/slab.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/of_mtd.h> + +#if defined(CONFIG_ARCH_PXA) || defined(CONFIG_ARCH_MMP) +#define ARCH_HAS_DMA +#endif +#ifdef ARCH_HAS_DMA #include <mach/dma.h> -#include <plat/pxa3xx_nand.h> +#endif + +#include <linux/platform_data/mtd-nand-pxa3xx.h> #define CHIP_DELAY_TIMEOUT (2 * HZ/10) +#define NAND_STOP_DELAY (2 * HZ/50) +#define PAGE_CHUNK_SIZE (2048) + +/* + * Define a buffer size for the initial command that detects the flash device: + * STATUS, READID and PARAM. The largest of these is the PARAM command, + * needing 256 bytes. + */ +#define INIT_BUFFER_SIZE 256 /* registers and bit definitions */ #define NDCR (0x00) /* Control register */ @@ -36,6 +57,7 @@ #define NDPCR (0x18) /* Page Count Register */ #define NDBDR0 (0x1C) /* Bad Block Register 0 */ #define NDBDR1 (0x20) /* Bad Block Register 1 */ +#define NDECCCTRL (0x28) /* ECC control */ #define NDDB (0x40) /* Data Buffer */ #define NDCB0 (0x48) /* Command Buffer0 */ #define NDCB1 (0x4C) /* Command Buffer1 */ @@ -52,30 +74,39 @@ #define NDCR_ND_MODE (0x3 << 21) #define NDCR_NAND_MODE (0x0) #define NDCR_CLR_PG_CNT (0x1 << 20) -#define NDCR_CLR_ECC (0x1 << 19) +#define NDCR_STOP_ON_UNCOR (0x1 << 19) #define NDCR_RD_ID_CNT_MASK (0x7 << 16) #define NDCR_RD_ID_CNT(x) (((x) << 16) & NDCR_RD_ID_CNT_MASK) #define NDCR_RA_START (0x1 << 15) #define NDCR_PG_PER_BLK (0x1 << 14) #define NDCR_ND_ARB_EN (0x1 << 12) +#define NDCR_INT_MASK (0xFFF) #define NDSR_MASK (0xfff) -#define NDSR_RDY (0x1 << 11) +#define NDSR_ERR_CNT_OFF (16) +#define NDSR_ERR_CNT_MASK (0x1f) +#define NDSR_ERR_CNT(sr) ((sr >> NDSR_ERR_CNT_OFF) & NDSR_ERR_CNT_MASK) +#define NDSR_RDY (0x1 << 12) +#define NDSR_FLASH_RDY (0x1 << 11) #define NDSR_CS0_PAGED (0x1 << 10) #define NDSR_CS1_PAGED (0x1 << 9) #define NDSR_CS0_CMDD (0x1 << 8) #define NDSR_CS1_CMDD (0x1 << 7) #define NDSR_CS0_BBD (0x1 << 6) #define NDSR_CS1_BBD (0x1 << 5) -#define NDSR_DBERR (0x1 << 4) -#define NDSR_SBERR (0x1 << 3) +#define NDSR_UNCORERR (0x1 << 4) +#define NDSR_CORERR (0x1 << 3) #define NDSR_WRDREQ (0x1 << 2) #define NDSR_RDDREQ (0x1 << 1) #define NDSR_WRCMDREQ (0x1) +#define NDCB0_LEN_OVRD (0x1 << 28) +#define NDCB0_ST_ROW_EN (0x1 << 26) #define NDCB0_AUTO_RS (0x1 << 25) #define NDCB0_CSEL (0x1 << 24) +#define NDCB0_EXT_CMD_TYPE_MASK (0x7 << 29) +#define NDCB0_EXT_CMD_TYPE(x) (((x) << 29) & NDCB0_EXT_CMD_TYPE_MASK) #define NDCB0_CMD_TYPE_MASK (0x7 << 21) #define NDCB0_CMD_TYPE(x) (((x) << 21) & NDCB0_CMD_TYPE_MASK) #define NDCB0_NC (0x1 << 20) @@ -86,259 +117,211 @@ #define NDCB0_CMD1_MASK (0xff) #define NDCB0_ADDR_CYC_SHIFT (16) +#define EXT_CMD_TYPE_DISPATCH 6 /* Command dispatch */ +#define EXT_CMD_TYPE_NAKED_RW 5 /* Naked read or Naked write */ +#define EXT_CMD_TYPE_READ 4 /* Read */ +#define EXT_CMD_TYPE_DISP_WR 4 /* Command dispatch with write */ +#define EXT_CMD_TYPE_FINAL 3 /* Final command */ +#define EXT_CMD_TYPE_LAST_RW 1 /* Last naked read/write */ +#define EXT_CMD_TYPE_MONO 0 /* Monolithic read/write */ + /* macros for registers read/write */ #define nand_writel(info, off, val) \ - __raw_writel((val), (info)->mmio_base + (off)) + writel_relaxed((val), (info)->mmio_base + (off)) #define nand_readl(info, off) \ - __raw_readl((info)->mmio_base + (off)) + readl_relaxed((info)->mmio_base + (off)) /* error code and state */ enum { ERR_NONE = 0, ERR_DMABUSERR = -1, ERR_SENDCMD = -2, - ERR_DBERR = -3, + ERR_UNCORERR = -3, ERR_BBERR = -4, - ERR_SBERR = -5, + ERR_CORERR = -5, }; enum { - STATE_READY = 0, + STATE_IDLE = 0, + STATE_PREPARED, STATE_CMD_HANDLE, STATE_DMA_READING, STATE_DMA_WRITING, STATE_DMA_DONE, STATE_PIO_READING, STATE_PIO_WRITING, + STATE_CMD_DONE, + STATE_READY, }; -struct pxa3xx_nand_info { - struct nand_chip nand_chip; +enum pxa3xx_nand_variant { + PXA3XX_NAND_VARIANT_PXA, + PXA3XX_NAND_VARIANT_ARMADA370, +}; + +struct pxa3xx_nand_host { + struct nand_chip chip; + struct mtd_info *mtd; + void *info_data; + + /* page size of attached chip */ + int use_ecc; + int cs; + + /* calculated from pxa3xx_nand_flash data */ + unsigned int col_addr_cycles; + unsigned int row_addr_cycles; + size_t read_id_bytes; +}; + +struct pxa3xx_nand_info { + struct nand_hw_control controller; struct platform_device *pdev; - const struct pxa3xx_nand_flash *flash_info; struct clk *clk; void __iomem *mmio_base; unsigned long mmio_phys; + struct completion cmd_complete, dev_ready; unsigned int buf_start; unsigned int buf_count; + unsigned int buf_size; + unsigned int data_buff_pos; + unsigned int oob_buff_pos; /* DMA information */ int drcmr_dat; int drcmr_cmd; unsigned char *data_buff; + unsigned char *oob_buff; dma_addr_t data_buff_phys; - size_t data_buff_size; int data_dma_ch; struct pxa_dma_desc *data_desc; dma_addr_t data_desc_addr; - uint32_t reg_ndcr; - - /* saved column/page_addr during CMD_SEQIN */ - int seqin_column; - int seqin_page_addr; - - /* relate to the command */ + struct pxa3xx_nand_host *host[NUM_CHIP_SELECT]; unsigned int state; + /* + * This driver supports NFCv1 (as found in PXA SoC) + * and NFCv2 (as found in Armada 370/XP SoC). + */ + enum pxa3xx_nand_variant variant; + + int cs; int use_ecc; /* use HW ECC ? */ + int ecc_bch; /* using BCH ECC? */ int use_dma; /* use DMA ? */ - - size_t data_size; /* data size in FIFO */ + int use_spare; /* use spare ? */ + int need_wait; + + unsigned int data_size; /* data to be read from FIFO */ + unsigned int chunk_size; /* split commands chunk size */ + unsigned int oob_size; + unsigned int spare_size; + unsigned int ecc_size; + unsigned int ecc_err_cnt; + unsigned int max_bitflips; int retcode; - struct completion cmd_complete; + + /* cached register value */ + uint32_t reg_ndcr; + uint32_t ndtr0cs0; + uint32_t ndtr1cs0; /* generated NDCBx register values */ uint32_t ndcb0; uint32_t ndcb1; uint32_t ndcb2; - - /* calculated from pxa3xx_nand_flash data */ - size_t oob_size; - size_t read_id_bytes; - - unsigned int col_addr_cycles; - unsigned int row_addr_cycles; + uint32_t ndcb3; }; -static int use_dma = 1; +static bool use_dma = 1; module_param(use_dma, bool, 0444); -MODULE_PARM_DESC(use_dma, "enable DMA for data transfering to/from NAND HW"); - -/* - * Default NAND flash controller configuration setup by the - * bootloader. This configuration is used only when pdata->keep_config is set - */ -static struct pxa3xx_nand_timing default_timing; -static struct pxa3xx_nand_flash default_flash; - -static struct pxa3xx_nand_cmdset smallpage_cmdset = { - .read1 = 0x0000, - .read2 = 0x0050, - .program = 0x1080, - .read_status = 0x0070, - .read_id = 0x0090, - .erase = 0xD060, - .reset = 0x00FF, - .lock = 0x002A, - .unlock = 0x2423, - .lock_status = 0x007A, -}; - -static struct pxa3xx_nand_cmdset largepage_cmdset = { - .read1 = 0x3000, - .read2 = 0x0050, - .program = 0x1080, - .read_status = 0x0070, - .read_id = 0x0090, - .erase = 0xD060, - .reset = 0x00FF, - .lock = 0x002A, - .unlock = 0x2423, - .lock_status = 0x007A, -}; - -#ifdef CONFIG_MTD_NAND_PXA3xx_BUILTIN -static struct pxa3xx_nand_timing samsung512MbX16_timing = { - .tCH = 10, - .tCS = 0, - .tWH = 20, - .tWP = 40, - .tRH = 30, - .tRP = 40, - .tR = 11123, - .tWHR = 110, - .tAR = 10, -}; - -static struct pxa3xx_nand_flash samsung512MbX16 = { - .timing = &samsung512MbX16_timing, - .cmdset = &smallpage_cmdset, - .page_per_block = 32, - .page_size = 512, - .flash_width = 16, - .dfc_width = 16, - .num_blocks = 4096, - .chip_id = 0x46ec, -}; - -static struct pxa3xx_nand_flash samsung2GbX8 = { - .timing = &samsung512MbX16_timing, - .cmdset = &smallpage_cmdset, - .page_per_block = 64, - .page_size = 2048, - .flash_width = 8, - .dfc_width = 8, - .num_blocks = 2048, - .chip_id = 0xdaec, -}; - -static struct pxa3xx_nand_flash samsung32GbX8 = { - .timing = &samsung512MbX16_timing, - .cmdset = &smallpage_cmdset, - .page_per_block = 128, - .page_size = 4096, - .flash_width = 8, - .dfc_width = 8, - .num_blocks = 8192, - .chip_id = 0xd7ec, -}; +MODULE_PARM_DESC(use_dma, "enable DMA for data transferring to/from NAND HW"); -static struct pxa3xx_nand_timing micron_timing = { - .tCH = 10, - .tCS = 25, - .tWH = 15, - .tWP = 25, - .tRH = 15, - .tRP = 30, - .tR = 25000, - .tWHR = 60, - .tAR = 10, +static struct pxa3xx_nand_timing timing[] = { + { 40, 80, 60, 100, 80, 100, 90000, 400, 40, }, + { 10, 0, 20, 40, 30, 40, 11123, 110, 10, }, + { 10, 25, 15, 25, 15, 30, 25000, 60, 10, }, + { 10, 35, 15, 25, 15, 25, 25000, 60, 10, }, }; -static struct pxa3xx_nand_flash micron1GbX8 = { - .timing = µn_timing, - .cmdset = &largepage_cmdset, - .page_per_block = 64, - .page_size = 2048, - .flash_width = 8, - .dfc_width = 8, - .num_blocks = 1024, - .chip_id = 0xa12c, +static struct pxa3xx_nand_flash builtin_flash_types[] = { +{ "DEFAULT FLASH", 0, 0, 2048, 8, 8, 0, &timing[0] }, +{ "64MiB 16-bit", 0x46ec, 32, 512, 16, 16, 4096, &timing[1] }, +{ "256MiB 8-bit", 0xdaec, 64, 2048, 8, 8, 2048, &timing[1] }, +{ "4GiB 8-bit", 0xd7ec, 128, 4096, 8, 8, 8192, &timing[1] }, +{ "128MiB 8-bit", 0xa12c, 64, 2048, 8, 8, 1024, &timing[2] }, +{ "128MiB 16-bit", 0xb12c, 64, 2048, 16, 16, 1024, &timing[2] }, +{ "512MiB 8-bit", 0xdc2c, 64, 2048, 8, 8, 4096, &timing[2] }, +{ "512MiB 16-bit", 0xcc2c, 64, 2048, 16, 16, 4096, &timing[2] }, +{ "256MiB 16-bit", 0xba20, 64, 2048, 16, 16, 2048, &timing[3] }, }; -static struct pxa3xx_nand_flash micron1GbX16 = { - .timing = µn_timing, - .cmdset = &largepage_cmdset, - .page_per_block = 64, - .page_size = 2048, - .flash_width = 16, - .dfc_width = 16, - .num_blocks = 1024, - .chip_id = 0xb12c, +static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; +static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 8, + .len = 6, + .veroffs = 14, + .maxblocks = 8, /* Last 8 blocks in each chip */ + .pattern = bbt_pattern }; -static struct pxa3xx_nand_flash micron4GbX8 = { - .timing = µn_timing, - .cmdset = &largepage_cmdset, - .page_per_block = 64, - .page_size = 2048, - .flash_width = 8, - .dfc_width = 8, - .num_blocks = 4096, - .chip_id = 0xdc2c, +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 8, + .len = 6, + .veroffs = 14, + .maxblocks = 8, /* Last 8 blocks in each chip */ + .pattern = bbt_mirror_pattern }; -static struct pxa3xx_nand_flash micron4GbX16 = { - .timing = µn_timing, - .cmdset = &largepage_cmdset, - .page_per_block = 64, - .page_size = 2048, - .flash_width = 16, - .dfc_width = 16, - .num_blocks = 4096, - .chip_id = 0xcc2c, +static struct nand_ecclayout ecc_layout_2KB_bch4bit = { + .eccbytes = 32, + .eccpos = { + 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63}, + .oobfree = { {2, 30} } }; -static struct pxa3xx_nand_timing stm2GbX16_timing = { - .tCH = 10, - .tCS = 35, - .tWH = 15, - .tWP = 25, - .tRH = 15, - .tRP = 25, - .tR = 25000, - .tWHR = 60, - .tAR = 10, +static struct nand_ecclayout ecc_layout_4KB_bch4bit = { + .eccbytes = 64, + .eccpos = { + 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, + 96, 97, 98, 99, 100, 101, 102, 103, + 104, 105, 106, 107, 108, 109, 110, 111, + 112, 113, 114, 115, 116, 117, 118, 119, + 120, 121, 122, 123, 124, 125, 126, 127}, + /* Bootrom looks in bytes 0 & 5 for bad blocks */ + .oobfree = { {6, 26}, { 64, 32} } }; -static struct pxa3xx_nand_flash stm2GbX16 = { - .timing = &stm2GbX16_timing, - .cmdset = &largepage_cmdset, - .page_per_block = 64, - .page_size = 2048, - .flash_width = 16, - .dfc_width = 16, - .num_blocks = 2048, - .chip_id = 0xba20, +static struct nand_ecclayout ecc_layout_4KB_bch8bit = { + .eccbytes = 128, + .eccpos = { + 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63}, + .oobfree = { } }; -static struct pxa3xx_nand_flash *builtin_flash_types[] = { - &samsung512MbX16, - &samsung2GbX8, - &samsung32GbX8, - µn1GbX8, - µn1GbX16, - µn4GbX8, - µn4GbX16, - &stm2GbX16, -}; -#endif /* CONFIG_MTD_NAND_PXA3xx_BUILTIN */ +/* Define a default flash type setting serve as flash detecting only */ +#define DEFAULT_FLASH_TYPE (&builtin_flash_types[0]) #define NDTR0_tCH(c) (min((c), 7) << 19) #define NDTR0_tCS(c) (min((c), 7) << 16) @@ -351,26 +334,36 @@ static struct pxa3xx_nand_flash *builtin_flash_types[] = { #define NDTR1_tWHR(c) (min((c), 15) << 4) #define NDTR1_tAR(c) (min((c), 15) << 0) -#define tCH_NDTR0(r) (((r) >> 19) & 0x7) -#define tCS_NDTR0(r) (((r) >> 16) & 0x7) -#define tWH_NDTR0(r) (((r) >> 11) & 0x7) -#define tWP_NDTR0(r) (((r) >> 8) & 0x7) -#define tRH_NDTR0(r) (((r) >> 3) & 0x7) -#define tRP_NDTR0(r) (((r) >> 0) & 0x7) - -#define tR_NDTR1(r) (((r) >> 16) & 0xffff) -#define tWHR_NDTR1(r) (((r) >> 4) & 0xf) -#define tAR_NDTR1(r) (((r) >> 0) & 0xf) - /* convert nano-seconds to nand flash controller clock cycles */ -#define ns2cycle(ns, clk) (int)(((ns) * (clk / 1000000) / 1000) - 1) +#define ns2cycle(ns, clk) (int)((ns) * (clk / 1000000) / 1000) + +static const struct of_device_id pxa3xx_nand_dt_ids[] = { + { + .compatible = "marvell,pxa3xx-nand", + .data = (void *)PXA3XX_NAND_VARIANT_PXA, + }, + { + .compatible = "marvell,armada370-nand", + .data = (void *)PXA3XX_NAND_VARIANT_ARMADA370, + }, + {} +}; +MODULE_DEVICE_TABLE(of, pxa3xx_nand_dt_ids); -/* convert nand flash controller clock cycles to nano-seconds */ -#define cycle2ns(c, clk) ((((c) + 1) * 1000000 + clk / 500) / (clk / 1000)) +static enum pxa3xx_nand_variant +pxa3xx_nand_get_variant(struct platform_device *pdev) +{ + const struct of_device_id *of_id = + of_match_device(pxa3xx_nand_dt_ids, &pdev->dev); + if (!of_id) + return PXA3XX_NAND_VARIANT_PXA; + return (enum pxa3xx_nand_variant)of_id->data; +} -static void pxa3xx_nand_set_timing(struct pxa3xx_nand_info *info, +static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host, const struct pxa3xx_nand_timing *t) { + struct pxa3xx_nand_info *info = host->info_data; unsigned long nand_clk = clk_get_rate(info->clk); uint32_t ndtr0, ndtr1; @@ -385,106 +378,93 @@ static void pxa3xx_nand_set_timing(struct pxa3xx_nand_info *info, NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) | NDTR1_tAR(ns2cycle(t->tAR, nand_clk)); + info->ndtr0cs0 = ndtr0; + info->ndtr1cs0 = ndtr1; nand_writel(info, NDTR0CS0, ndtr0); nand_writel(info, NDTR1CS0, ndtr1); } -#define WAIT_EVENT_TIMEOUT 10 - -static int wait_for_event(struct pxa3xx_nand_info *info, uint32_t event) +/* + * Set the data and OOB size, depending on the selected + * spare and ECC configuration. + * Only applicable to READ0, READOOB and PAGEPROG commands. + */ +static void pxa3xx_set_datasize(struct pxa3xx_nand_info *info, + struct mtd_info *mtd) { - int timeout = WAIT_EVENT_TIMEOUT; - uint32_t ndsr; + int oob_enable = info->reg_ndcr & NDCR_SPARE_EN; - while (timeout--) { - ndsr = nand_readl(info, NDSR) & NDSR_MASK; - if (ndsr & event) { - nand_writel(info, NDSR, ndsr); - return 0; - } - udelay(10); - } + info->data_size = mtd->writesize; + if (!oob_enable) + return; - return -ETIMEDOUT; + info->oob_size = info->spare_size; + if (!info->use_ecc) + info->oob_size += info->ecc_size; } -static int prepare_read_prog_cmd(struct pxa3xx_nand_info *info, - uint16_t cmd, int column, int page_addr) +/** + * NOTE: it is a must to set ND_RUN firstly, then write + * command buffer, otherwise, it does not work. + * We enable all the interrupt at the same time, and + * let pxa3xx_nand_irq to handle all logic. + */ +static void pxa3xx_nand_start(struct pxa3xx_nand_info *info) { - const struct pxa3xx_nand_flash *f = info->flash_info; - const struct pxa3xx_nand_cmdset *cmdset = f->cmdset; + uint32_t ndcr; - /* calculate data size */ - switch (f->page_size) { - case 2048: - info->data_size = (info->use_ecc) ? 2088 : 2112; - break; - case 512: - info->data_size = (info->use_ecc) ? 520 : 528; - break; - default: - return -EINVAL; - } + ndcr = info->reg_ndcr; - /* generate values for NDCBx registers */ - info->ndcb0 = cmd | ((cmd & 0xff00) ? NDCB0_DBC : 0); - info->ndcb1 = 0; - info->ndcb2 = 0; - info->ndcb0 |= NDCB0_ADDR_CYC(info->row_addr_cycles + info->col_addr_cycles); + if (info->use_ecc) { + ndcr |= NDCR_ECC_EN; + if (info->ecc_bch) + nand_writel(info, NDECCCTRL, 0x1); + } else { + ndcr &= ~NDCR_ECC_EN; + if (info->ecc_bch) + nand_writel(info, NDECCCTRL, 0x0); + } - if (info->col_addr_cycles == 2) { - /* large block, 2 cycles for column address - * row address starts from 3rd cycle - */ - info->ndcb1 |= page_addr << 16; - if (info->row_addr_cycles == 3) - info->ndcb2 = (page_addr >> 16) & 0xff; - } else - /* small block, 1 cycles for column address - * row address starts from 2nd cycle - */ - info->ndcb1 = page_addr << 8; + if (info->use_dma) + ndcr |= NDCR_DMA_EN; + else + ndcr &= ~NDCR_DMA_EN; - if (cmd == cmdset->program) - info->ndcb0 |= NDCB0_CMD_TYPE(1) | NDCB0_AUTO_RS; + if (info->use_spare) + ndcr |= NDCR_SPARE_EN; + else + ndcr &= ~NDCR_SPARE_EN; - return 0; -} + ndcr |= NDCR_ND_RUN; -static int prepare_erase_cmd(struct pxa3xx_nand_info *info, - uint16_t cmd, int page_addr) -{ - info->ndcb0 = cmd | ((cmd & 0xff00) ? NDCB0_DBC : 0); - info->ndcb0 |= NDCB0_CMD_TYPE(2) | NDCB0_AUTO_RS | NDCB0_ADDR_CYC(3); - info->ndcb1 = page_addr; - info->ndcb2 = 0; - return 0; + /* clear status bits and run */ + nand_writel(info, NDCR, 0); + nand_writel(info, NDSR, NDSR_MASK); + nand_writel(info, NDCR, ndcr); } -static int prepare_other_cmd(struct pxa3xx_nand_info *info, uint16_t cmd) +static void pxa3xx_nand_stop(struct pxa3xx_nand_info *info) { - const struct pxa3xx_nand_cmdset *cmdset = info->flash_info->cmdset; - - info->ndcb0 = cmd | ((cmd & 0xff00) ? NDCB0_DBC : 0); - info->ndcb1 = 0; - info->ndcb2 = 0; + uint32_t ndcr; + int timeout = NAND_STOP_DELAY; - if (cmd == cmdset->read_id) { - info->ndcb0 |= NDCB0_CMD_TYPE(3); - info->data_size = 8; - } else if (cmd == cmdset->read_status) { - info->ndcb0 |= NDCB0_CMD_TYPE(4); - info->data_size = 8; - } else if (cmd == cmdset->reset || cmd == cmdset->lock || - cmd == cmdset->unlock) { - info->ndcb0 |= NDCB0_CMD_TYPE(5); - } else - return -EINVAL; + /* wait RUN bit in NDCR become 0 */ + ndcr = nand_readl(info, NDCR); + while ((ndcr & NDCR_ND_RUN) && (timeout-- > 0)) { + ndcr = nand_readl(info, NDCR); + udelay(1); + } - return 0; + if (timeout <= 0) { + ndcr &= ~NDCR_ND_RUN; + nand_writel(info, NDCR, ndcr); + } + /* clear status bits */ + nand_writel(info, NDSR, NDSR_MASK); } -static void enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask) +static void __maybe_unused +enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask) { uint32_t ndcr; @@ -500,82 +480,67 @@ static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask) nand_writel(info, NDCR, ndcr | int_mask); } -/* NOTE: it is a must to set ND_RUN firstly, then write command buffer - * otherwise, it does not work - */ -static int write_cmd(struct pxa3xx_nand_info *info) +static void handle_data_pio(struct pxa3xx_nand_info *info) { - uint32_t ndcr; - - /* clear status bits and run */ - nand_writel(info, NDSR, NDSR_MASK); - - ndcr = info->reg_ndcr; - - ndcr |= info->use_ecc ? NDCR_ECC_EN : 0; - ndcr |= info->use_dma ? NDCR_DMA_EN : 0; - ndcr |= NDCR_ND_RUN; - - nand_writel(info, NDCR, ndcr); - - if (wait_for_event(info, NDSR_WRCMDREQ)) { - printk(KERN_ERR "timed out writing command\n"); - return -ETIMEDOUT; - } - - nand_writel(info, NDCB0, info->ndcb0); - nand_writel(info, NDCB0, info->ndcb1); - nand_writel(info, NDCB0, info->ndcb2); - return 0; -} - -static int handle_data_pio(struct pxa3xx_nand_info *info) -{ - int ret, timeout = CHIP_DELAY_TIMEOUT; + unsigned int do_bytes = min(info->data_size, info->chunk_size); switch (info->state) { case STATE_PIO_WRITING: - __raw_writesl(info->mmio_base + NDDB, info->data_buff, - DIV_ROUND_UP(info->data_size, 4)); - - enable_int(info, NDSR_CS0_BBD | NDSR_CS0_CMDD); - - ret = wait_for_completion_timeout(&info->cmd_complete, timeout); - if (!ret) { - printk(KERN_ERR "program command time out\n"); - return -1; - } + __raw_writesl(info->mmio_base + NDDB, + info->data_buff + info->data_buff_pos, + DIV_ROUND_UP(do_bytes, 4)); + + if (info->oob_size > 0) + __raw_writesl(info->mmio_base + NDDB, + info->oob_buff + info->oob_buff_pos, + DIV_ROUND_UP(info->oob_size, 4)); break; case STATE_PIO_READING: - __raw_readsl(info->mmio_base + NDDB, info->data_buff, - DIV_ROUND_UP(info->data_size, 4)); + __raw_readsl(info->mmio_base + NDDB, + info->data_buff + info->data_buff_pos, + DIV_ROUND_UP(do_bytes, 4)); + + if (info->oob_size > 0) + __raw_readsl(info->mmio_base + NDDB, + info->oob_buff + info->oob_buff_pos, + DIV_ROUND_UP(info->oob_size, 4)); break; default: - printk(KERN_ERR "%s: invalid state %d\n", __func__, + dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__, info->state); - return -EINVAL; + BUG(); } - info->state = STATE_READY; - return 0; + /* Update buffer pointers for multi-page read/write */ + info->data_buff_pos += do_bytes; + info->oob_buff_pos += info->oob_size; + info->data_size -= do_bytes; } -static void start_data_dma(struct pxa3xx_nand_info *info, int dir_out) +#ifdef ARCH_HAS_DMA +static void start_data_dma(struct pxa3xx_nand_info *info) { struct pxa_dma_desc *desc = info->data_desc; - int dma_len = ALIGN(info->data_size, 32); + int dma_len = ALIGN(info->data_size + info->oob_size, 32); desc->ddadr = DDADR_STOP; desc->dcmd = DCMD_ENDIRQEN | DCMD_WIDTH4 | DCMD_BURST32 | dma_len; - if (dir_out) { + switch (info->state) { + case STATE_DMA_WRITING: desc->dsadr = info->data_buff_phys; desc->dtadr = info->mmio_phys + NDDB; desc->dcmd |= DCMD_INCSRCADDR | DCMD_FLOWTRG; - } else { + break; + case STATE_DMA_READING: desc->dtadr = info->data_buff_phys; desc->dsadr = info->mmio_phys + NDDB; desc->dcmd |= DCMD_INCTRGADDR | DCMD_FLOWSRC; + break; + default: + dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__, + info->state); + BUG(); } DRCMR(info->drcmr_dat) = DRCMR_MAPVLD | info->data_dma_ch; @@ -593,99 +558,105 @@ static void pxa3xx_nand_data_dma_irq(int channel, void *data) if (dcsr & DCSR_BUSERR) { info->retcode = ERR_DMABUSERR; - complete(&info->cmd_complete); } - if (info->state == STATE_DMA_WRITING) { - info->state = STATE_DMA_DONE; - enable_int(info, NDSR_CS0_BBD | NDSR_CS0_CMDD); - } else { - info->state = STATE_READY; - complete(&info->cmd_complete); - } + info->state = STATE_DMA_DONE; + enable_int(info, NDCR_INT_MASK); + nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ); } +#else +static void start_data_dma(struct pxa3xx_nand_info *info) +{} +#endif static irqreturn_t pxa3xx_nand_irq(int irq, void *devid) { struct pxa3xx_nand_info *info = devid; - unsigned int status; - - status = nand_readl(info, NDSR); + unsigned int status, is_completed = 0, is_ready = 0; + unsigned int ready, cmd_done; - if (status & (NDSR_RDDREQ | NDSR_DBERR | NDSR_SBERR)) { - if (status & NDSR_DBERR) - info->retcode = ERR_DBERR; - else if (status & NDSR_SBERR) - info->retcode = ERR_SBERR; + if (info->cs == 0) { + ready = NDSR_FLASH_RDY; + cmd_done = NDSR_CS0_CMDD; + } else { + ready = NDSR_RDY; + cmd_done = NDSR_CS1_CMDD; + } - disable_int(info, NDSR_RDDREQ | NDSR_DBERR | NDSR_SBERR); + status = nand_readl(info, NDSR); + if (status & NDSR_UNCORERR) + info->retcode = ERR_UNCORERR; + if (status & NDSR_CORERR) { + info->retcode = ERR_CORERR; + if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 && + info->ecc_bch) + info->ecc_err_cnt = NDSR_ERR_CNT(status); + else + info->ecc_err_cnt = 1; + + /* + * Each chunk composing a page is corrected independently, + * and we need to store maximum number of corrected bitflips + * to return it to the MTD layer in ecc.read_page(). + */ + info->max_bitflips = max_t(unsigned int, + info->max_bitflips, + info->ecc_err_cnt); + } + if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) { + /* whether use dma to transfer data */ if (info->use_dma) { - info->state = STATE_DMA_READING; - start_data_dma(info, 0); - } else { - info->state = STATE_PIO_READING; - complete(&info->cmd_complete); - } - } else if (status & NDSR_WRDREQ) { - disable_int(info, NDSR_WRDREQ); - if (info->use_dma) { - info->state = STATE_DMA_WRITING; - start_data_dma(info, 1); + disable_int(info, NDCR_INT_MASK); + info->state = (status & NDSR_RDDREQ) ? + STATE_DMA_READING : STATE_DMA_WRITING; + start_data_dma(info); + goto NORMAL_IRQ_EXIT; } else { - info->state = STATE_PIO_WRITING; - complete(&info->cmd_complete); + info->state = (status & NDSR_RDDREQ) ? + STATE_PIO_READING : STATE_PIO_WRITING; + handle_data_pio(info); } - } else if (status & (NDSR_CS0_BBD | NDSR_CS0_CMDD)) { - if (status & NDSR_CS0_BBD) - info->retcode = ERR_BBERR; - - disable_int(info, NDSR_CS0_BBD | NDSR_CS0_CMDD); - info->state = STATE_READY; - complete(&info->cmd_complete); } - nand_writel(info, NDSR, status); - return IRQ_HANDLED; -} - -static int pxa3xx_nand_do_cmd(struct pxa3xx_nand_info *info, uint32_t event) -{ - uint32_t ndcr; - int ret, timeout = CHIP_DELAY_TIMEOUT; - - if (write_cmd(info)) { - info->retcode = ERR_SENDCMD; - goto fail_stop; + if (status & cmd_done) { + info->state = STATE_CMD_DONE; + is_completed = 1; } - - info->state = STATE_CMD_HANDLE; - - enable_int(info, event); - - ret = wait_for_completion_timeout(&info->cmd_complete, timeout); - if (!ret) { - printk(KERN_ERR "command execution timed out\n"); - info->retcode = ERR_SENDCMD; - goto fail_stop; + if (status & ready) { + info->state = STATE_READY; + is_ready = 1; } - if (info->use_dma == 0 && info->data_size > 0) - if (handle_data_pio(info)) - goto fail_stop; - - return 0; + if (status & NDSR_WRCMDREQ) { + nand_writel(info, NDSR, NDSR_WRCMDREQ); + status &= ~NDSR_WRCMDREQ; + info->state = STATE_CMD_HANDLE; + + /* + * Command buffer registers NDCB{0-2} (and optionally NDCB3) + * must be loaded by writing directly either 12 or 16 + * bytes directly to NDCB0, four bytes at a time. + * + * Direct write access to NDCB1, NDCB2 and NDCB3 is ignored + * but each NDCBx register can be read. + */ + nand_writel(info, NDCB0, info->ndcb0); + nand_writel(info, NDCB0, info->ndcb1); + nand_writel(info, NDCB0, info->ndcb2); -fail_stop: - ndcr = nand_readl(info, NDCR); - nand_writel(info, NDCR, ndcr & ~NDCR_ND_RUN); - udelay(10); - return -ETIMEDOUT; -} + /* NDCB3 register is available in NFCv2 (Armada 370/XP SoC) */ + if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370) + nand_writel(info, NDCB0, info->ndcb3); + } -static int pxa3xx_nand_dev_ready(struct mtd_info *mtd) -{ - struct pxa3xx_nand_info *info = mtd->priv; - return (nand_readl(info, NDSR) & NDSR_RDY) ? 1 : 0; + /* clear NDSR to let the controller exit the IRQ */ + nand_writel(info, NDSR, status); + if (is_completed) + complete(&info->cmd_complete); + if (is_ready) + complete(&info->dev_ready); +NORMAL_IRQ_EXIT: + return IRQ_HANDLED; } static inline int is_buf_blank(uint8_t *buf, size_t len) @@ -696,131 +667,449 @@ static inline int is_buf_blank(uint8_t *buf, size_t len) return 1; } -static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command, - int column, int page_addr) +static void set_command_address(struct pxa3xx_nand_info *info, + unsigned int page_size, uint16_t column, int page_addr) { - struct pxa3xx_nand_info *info = mtd->priv; - const struct pxa3xx_nand_flash *flash_info = info->flash_info; - const struct pxa3xx_nand_cmdset *cmdset = flash_info->cmdset; - int ret; + /* small page addr setting */ + if (page_size < PAGE_CHUNK_SIZE) { + info->ndcb1 = ((page_addr & 0xFFFFFF) << 8) + | (column & 0xFF); + + info->ndcb2 = 0; + } else { + info->ndcb1 = ((page_addr & 0xFFFF) << 16) + | (column & 0xFFFF); - info->use_dma = (use_dma) ? 1 : 0; - info->use_ecc = 0; - info->data_size = 0; - info->state = STATE_READY; + if (page_addr & 0xFF0000) + info->ndcb2 = (page_addr & 0xFF0000) >> 16; + else + info->ndcb2 = 0; + } +} - init_completion(&info->cmd_complete); +static void prepare_start_command(struct pxa3xx_nand_info *info, int command) +{ + struct pxa3xx_nand_host *host = info->host[info->cs]; + struct mtd_info *mtd = host->mtd; + + /* reset data and oob column point to handle data */ + info->buf_start = 0; + info->buf_count = 0; + info->oob_size = 0; + info->data_buff_pos = 0; + info->oob_buff_pos = 0; + info->use_ecc = 0; + info->use_spare = 1; + info->retcode = ERR_NONE; + info->ecc_err_cnt = 0; + info->ndcb3 = 0; + info->need_wait = 0; switch (command) { + case NAND_CMD_READ0: + case NAND_CMD_PAGEPROG: + info->use_ecc = 1; case NAND_CMD_READOOB: - /* disable HW ECC to get all the OOB data */ + pxa3xx_set_datasize(info, mtd); + break; + case NAND_CMD_PARAM: + info->use_spare = 0; + break; + default: + info->ndcb1 = 0; + info->ndcb2 = 0; + break; + } + + /* + * If we are about to issue a read command, or about to set + * the write address, then clean the data buffer. + */ + if (command == NAND_CMD_READ0 || + command == NAND_CMD_READOOB || + command == NAND_CMD_SEQIN) { + info->buf_count = mtd->writesize + mtd->oobsize; - info->buf_start = mtd->writesize + column; memset(info->data_buff, 0xFF, info->buf_count); + } - if (prepare_read_prog_cmd(info, cmdset->read1, column, page_addr)) - break; +} - pxa3xx_nand_do_cmd(info, NDSR_RDDREQ | NDSR_DBERR | NDSR_SBERR); +static int prepare_set_command(struct pxa3xx_nand_info *info, int command, + int ext_cmd_type, uint16_t column, int page_addr) +{ + int addr_cycle, exec_cmd; + struct pxa3xx_nand_host *host; + struct mtd_info *mtd; - /* We only are OOB, so if the data has error, does not matter */ - if (info->retcode == ERR_DBERR) - info->retcode = ERR_NONE; - break; + host = info->host[info->cs]; + mtd = host->mtd; + addr_cycle = 0; + exec_cmd = 1; + + if (info->cs != 0) + info->ndcb0 = NDCB0_CSEL; + else + info->ndcb0 = 0; + + if (command == NAND_CMD_SEQIN) + exec_cmd = 0; + + addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles + + host->col_addr_cycles); + switch (command) { + case NAND_CMD_READOOB: case NAND_CMD_READ0: - info->use_ecc = 1; - info->retcode = ERR_NONE; info->buf_start = column; - info->buf_count = mtd->writesize + mtd->oobsize; - memset(info->data_buff, 0xFF, info->buf_count); - - if (prepare_read_prog_cmd(info, cmdset->read1, column, page_addr)) - break; + info->ndcb0 |= NDCB0_CMD_TYPE(0) + | addr_cycle + | NAND_CMD_READ0; - pxa3xx_nand_do_cmd(info, NDSR_RDDREQ | NDSR_DBERR | NDSR_SBERR); + if (command == NAND_CMD_READOOB) + info->buf_start += mtd->writesize; - if (info->retcode == ERR_DBERR) { - /* for blank page (all 0xff), HW will calculate its ECC as - * 0, which is different from the ECC information within - * OOB, ignore such double bit errors - */ - if (is_buf_blank(info->data_buff, mtd->writesize)) - info->retcode = ERR_NONE; + /* + * Multiple page read needs an 'extended command type' field, + * which is either naked-read or last-read according to the + * state. + */ + if (mtd->writesize == PAGE_CHUNK_SIZE) { + info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8); + } else if (mtd->writesize > PAGE_CHUNK_SIZE) { + info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8) + | NDCB0_LEN_OVRD + | NDCB0_EXT_CMD_TYPE(ext_cmd_type); + info->ndcb3 = info->chunk_size + + info->oob_size; } + + set_command_address(info, mtd->writesize, column, page_addr); break; + case NAND_CMD_SEQIN: + info->buf_start = column; - info->buf_count = mtd->writesize + mtd->oobsize; - memset(info->data_buff, 0xff, info->buf_count); + set_command_address(info, mtd->writesize, 0, page_addr); - /* save column/page_addr for next CMD_PAGEPROG */ - info->seqin_column = column; - info->seqin_page_addr = page_addr; + /* + * Multiple page programming needs to execute the initial + * SEQIN command that sets the page address. + */ + if (mtd->writesize > PAGE_CHUNK_SIZE) { + info->ndcb0 |= NDCB0_CMD_TYPE(0x1) + | NDCB0_EXT_CMD_TYPE(ext_cmd_type) + | addr_cycle + | command; + /* No data transfer in this case */ + info->data_size = 0; + exec_cmd = 1; + } break; - case NAND_CMD_PAGEPROG: - info->use_ecc = (info->seqin_column >= mtd->writesize) ? 0 : 1; - if (prepare_read_prog_cmd(info, cmdset->program, - info->seqin_column, info->seqin_page_addr)) + case NAND_CMD_PAGEPROG: + if (is_buf_blank(info->data_buff, + (mtd->writesize + mtd->oobsize))) { + exec_cmd = 0; break; + } - pxa3xx_nand_do_cmd(info, NDSR_WRDREQ); - break; - case NAND_CMD_ERASE1: - if (prepare_erase_cmd(info, cmdset->erase, page_addr)) - break; + /* Second command setting for large pages */ + if (mtd->writesize > PAGE_CHUNK_SIZE) { + /* + * Multiple page write uses the 'extended command' + * field. This can be used to issue a command dispatch + * or a naked-write depending on the current stage. + */ + info->ndcb0 |= NDCB0_CMD_TYPE(0x1) + | NDCB0_LEN_OVRD + | NDCB0_EXT_CMD_TYPE(ext_cmd_type); + info->ndcb3 = info->chunk_size + + info->oob_size; - pxa3xx_nand_do_cmd(info, NDSR_CS0_BBD | NDSR_CS0_CMDD); + /* + * This is the command dispatch that completes a chunked + * page program operation. + */ + if (info->data_size == 0) { + info->ndcb0 = NDCB0_CMD_TYPE(0x1) + | NDCB0_EXT_CMD_TYPE(ext_cmd_type) + | command; + info->ndcb1 = 0; + info->ndcb2 = 0; + info->ndcb3 = 0; + } + } else { + info->ndcb0 |= NDCB0_CMD_TYPE(0x1) + | NDCB0_AUTO_RS + | NDCB0_ST_ROW_EN + | NDCB0_DBC + | (NAND_CMD_PAGEPROG << 8) + | NAND_CMD_SEQIN + | addr_cycle; + } break; - case NAND_CMD_ERASE2: + + case NAND_CMD_PARAM: + info->buf_count = 256; + info->ndcb0 |= NDCB0_CMD_TYPE(0) + | NDCB0_ADDR_CYC(1) + | NDCB0_LEN_OVRD + | command; + info->ndcb1 = (column & 0xFF); + info->ndcb3 = 256; + info->data_size = 256; break; + case NAND_CMD_READID: + info->buf_count = host->read_id_bytes; + info->ndcb0 |= NDCB0_CMD_TYPE(3) + | NDCB0_ADDR_CYC(1) + | command; + info->ndcb1 = (column & 0xFF); + + info->data_size = 8; + break; case NAND_CMD_STATUS: - info->use_dma = 0; /* force PIO read */ - info->buf_start = 0; - info->buf_count = (command == NAND_CMD_READID) ? - info->read_id_bytes : 1; + info->buf_count = 1; + info->ndcb0 |= NDCB0_CMD_TYPE(4) + | NDCB0_ADDR_CYC(1) + | command; - if (prepare_other_cmd(info, (command == NAND_CMD_READID) ? - cmdset->read_id : cmdset->read_status)) - break; + info->data_size = 8; + break; + + case NAND_CMD_ERASE1: + info->ndcb0 |= NDCB0_CMD_TYPE(2) + | NDCB0_AUTO_RS + | NDCB0_ADDR_CYC(3) + | NDCB0_DBC + | (NAND_CMD_ERASE2 << 8) + | NAND_CMD_ERASE1; + info->ndcb1 = page_addr; + info->ndcb2 = 0; - pxa3xx_nand_do_cmd(info, NDSR_RDDREQ); break; case NAND_CMD_RESET: - if (prepare_other_cmd(info, cmdset->reset)) - break; + info->ndcb0 |= NDCB0_CMD_TYPE(5) + | command; + + break; - ret = pxa3xx_nand_do_cmd(info, NDSR_CS0_CMDD); - if (ret == 0) { - int timeout = 2; - uint32_t ndcr; + case NAND_CMD_ERASE2: + exec_cmd = 0; + break; - while (timeout--) { - if (nand_readl(info, NDSR) & NDSR_RDY) - break; - msleep(10); - } + default: + exec_cmd = 0; + dev_err(&info->pdev->dev, "non-supported command %x\n", + command); + break; + } + + return exec_cmd; +} + +static void nand_cmdfunc(struct mtd_info *mtd, unsigned command, + int column, int page_addr) +{ + struct pxa3xx_nand_host *host = mtd->priv; + struct pxa3xx_nand_info *info = host->info_data; + int ret, exec_cmd; - ndcr = nand_readl(info, NDCR); - nand_writel(info, NDCR, ndcr & ~NDCR_ND_RUN); + /* + * if this is a x16 device ,then convert the input + * "byte" address into a "word" address appropriate + * for indexing a word-oriented device + */ + if (info->reg_ndcr & NDCR_DWIDTH_M) + column /= 2; + + /* + * There may be different NAND chip hooked to + * different chip select, so check whether + * chip select has been changed, if yes, reset the timing + */ + if (info->cs != host->cs) { + info->cs = host->cs; + nand_writel(info, NDTR0CS0, info->ndtr0cs0); + nand_writel(info, NDTR1CS0, info->ndtr1cs0); + } + + prepare_start_command(info, command); + + info->state = STATE_PREPARED; + exec_cmd = prepare_set_command(info, command, 0, column, page_addr); + + if (exec_cmd) { + init_completion(&info->cmd_complete); + init_completion(&info->dev_ready); + info->need_wait = 1; + pxa3xx_nand_start(info); + + ret = wait_for_completion_timeout(&info->cmd_complete, + CHIP_DELAY_TIMEOUT); + if (!ret) { + dev_err(&info->pdev->dev, "Wait time out!!!\n"); + /* Stop State Machine for next command cycle */ + pxa3xx_nand_stop(info); } + } + info->state = STATE_IDLE; +} + +static void nand_cmdfunc_extended(struct mtd_info *mtd, + const unsigned command, + int column, int page_addr) +{ + struct pxa3xx_nand_host *host = mtd->priv; + struct pxa3xx_nand_info *info = host->info_data; + int ret, exec_cmd, ext_cmd_type; + + /* + * if this is a x16 device then convert the input + * "byte" address into a "word" address appropriate + * for indexing a word-oriented device + */ + if (info->reg_ndcr & NDCR_DWIDTH_M) + column /= 2; + + /* + * There may be different NAND chip hooked to + * different chip select, so check whether + * chip select has been changed, if yes, reset the timing + */ + if (info->cs != host->cs) { + info->cs = host->cs; + nand_writel(info, NDTR0CS0, info->ndtr0cs0); + nand_writel(info, NDTR1CS0, info->ndtr1cs0); + } + + /* Select the extended command for the first command */ + switch (command) { + case NAND_CMD_READ0: + case NAND_CMD_READOOB: + ext_cmd_type = EXT_CMD_TYPE_MONO; + break; + case NAND_CMD_SEQIN: + ext_cmd_type = EXT_CMD_TYPE_DISPATCH; + break; + case NAND_CMD_PAGEPROG: + ext_cmd_type = EXT_CMD_TYPE_NAKED_RW; break; default: - printk(KERN_ERR "non-supported command.\n"); + ext_cmd_type = 0; break; } - if (info->retcode == ERR_DBERR) { - printk(KERN_ERR "double bit error @ page %08x\n", page_addr); - info->retcode = ERR_NONE; + prepare_start_command(info, command); + + /* + * Prepare the "is ready" completion before starting a command + * transaction sequence. If the command is not executed the + * completion will be completed, see below. + * + * We can do that inside the loop because the command variable + * is invariant and thus so is the exec_cmd. + */ + info->need_wait = 1; + init_completion(&info->dev_ready); + do { + info->state = STATE_PREPARED; + exec_cmd = prepare_set_command(info, command, ext_cmd_type, + column, page_addr); + if (!exec_cmd) { + info->need_wait = 0; + complete(&info->dev_ready); + break; + } + + init_completion(&info->cmd_complete); + pxa3xx_nand_start(info); + + ret = wait_for_completion_timeout(&info->cmd_complete, + CHIP_DELAY_TIMEOUT); + if (!ret) { + dev_err(&info->pdev->dev, "Wait time out!!!\n"); + /* Stop State Machine for next command cycle */ + pxa3xx_nand_stop(info); + break; + } + + /* Check if the sequence is complete */ + if (info->data_size == 0 && command != NAND_CMD_PAGEPROG) + break; + + /* + * After a splitted program command sequence has issued + * the command dispatch, the command sequence is complete. + */ + if (info->data_size == 0 && + command == NAND_CMD_PAGEPROG && + ext_cmd_type == EXT_CMD_TYPE_DISPATCH) + break; + + if (command == NAND_CMD_READ0 || command == NAND_CMD_READOOB) { + /* Last read: issue a 'last naked read' */ + if (info->data_size == info->chunk_size) + ext_cmd_type = EXT_CMD_TYPE_LAST_RW; + else + ext_cmd_type = EXT_CMD_TYPE_NAKED_RW; + + /* + * If a splitted program command has no more data to transfer, + * the command dispatch must be issued to complete. + */ + } else if (command == NAND_CMD_PAGEPROG && + info->data_size == 0) { + ext_cmd_type = EXT_CMD_TYPE_DISPATCH; + } + } while (1); + + info->state = STATE_IDLE; +} + +static int pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf, int oob_required) +{ + chip->write_buf(mtd, buf, mtd->writesize); + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + +static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, int oob_required, + int page) +{ + struct pxa3xx_nand_host *host = mtd->priv; + struct pxa3xx_nand_info *info = host->info_data; + + chip->read_buf(mtd, buf, mtd->writesize); + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + + if (info->retcode == ERR_CORERR && info->use_ecc) { + mtd->ecc_stats.corrected += info->ecc_err_cnt; + + } else if (info->retcode == ERR_UNCORERR) { + /* + * for blank page (all 0xff), HW will calculate its ECC as + * 0, which is different from the ECC information within + * OOB, ignore such uncorrectable errors + */ + if (is_buf_blank(buf, mtd->writesize)) + info->retcode = ERR_NONE; + else + mtd->ecc_stats.failed++; } + + return info->max_bitflips; } static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd) { - struct pxa3xx_nand_info *info = mtd->priv; + struct pxa3xx_nand_host *host = mtd->priv; + struct pxa3xx_nand_info *info = host->info_data; char retval = 0xFF; if (info->buf_start < info->buf_count) @@ -832,7 +1121,8 @@ static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd) static u16 pxa3xx_nand_read_word(struct mtd_info *mtd) { - struct pxa3xx_nand_info *info = mtd->priv; + struct pxa3xx_nand_host *host = mtd->priv; + struct pxa3xx_nand_info *info = host->info_data; u16 retval = 0xFFFF; if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) { @@ -844,7 +1134,8 @@ static u16 pxa3xx_nand_read_word(struct mtd_info *mtd) static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { - struct pxa3xx_nand_info *info = mtd->priv; + struct pxa3xx_nand_host *host = mtd->priv; + struct pxa3xx_nand_info *info = host->info_data; int real_len = min_t(size_t, len, info->buf_count - info->buf_start); memcpy(buf, info->data_buff + info->buf_start, real_len); @@ -854,19 +1145,14 @@ static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) static void pxa3xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { - struct pxa3xx_nand_info *info = mtd->priv; + struct pxa3xx_nand_host *host = mtd->priv; + struct pxa3xx_nand_info *info = host->info_data; int real_len = min_t(size_t, len, info->buf_count - info->buf_start); memcpy(info->data_buff + info->buf_start, buf, real_len); info->buf_start += real_len; } -static int pxa3xx_nand_verify_buf(struct mtd_info *mtd, - const uint8_t *buf, int len) -{ - return 0; -} - static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip) { return; @@ -874,276 +1160,121 @@ static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip) static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this) { - struct pxa3xx_nand_info *info = mtd->priv; + struct pxa3xx_nand_host *host = mtd->priv; + struct pxa3xx_nand_info *info = host->info_data; + int ret; + + if (info->need_wait) { + ret = wait_for_completion_timeout(&info->dev_ready, + CHIP_DELAY_TIMEOUT); + info->need_wait = 0; + if (!ret) { + dev_err(&info->pdev->dev, "Ready time out!!!\n"); + return NAND_STATUS_FAIL; + } + } /* pxa3xx_nand_send_command has waited for command complete */ if (this->state == FL_WRITING || this->state == FL_ERASING) { if (info->retcode == ERR_NONE) return 0; - else { - /* - * any error make it return 0x01 which will tell - * the caller the erase and write fail - */ - return 0x01; - } - } - - return 0; -} - -static void pxa3xx_nand_ecc_hwctl(struct mtd_info *mtd, int mode) -{ - return; -} - -static int pxa3xx_nand_ecc_calculate(struct mtd_info *mtd, - const uint8_t *dat, uint8_t *ecc_code) -{ - return 0; -} - -static int pxa3xx_nand_ecc_correct(struct mtd_info *mtd, - uint8_t *dat, uint8_t *read_ecc, uint8_t *calc_ecc) -{ - struct pxa3xx_nand_info *info = mtd->priv; - /* - * Any error include ERR_SEND_CMD, ERR_DBERR, ERR_BUSERR, we - * consider it as a ecc error which will tell the caller the - * read fail We have distinguish all the errors, but the - * nand_read_ecc only check this function return value - * - * Corrected (single-bit) errors must also be noted. - */ - if (info->retcode == ERR_SBERR) - return 1; - else if (info->retcode != ERR_NONE) - return -1; - - return 0; -} - -static int __readid(struct pxa3xx_nand_info *info, uint32_t *id) -{ - const struct pxa3xx_nand_flash *f = info->flash_info; - const struct pxa3xx_nand_cmdset *cmdset = f->cmdset; - uint32_t ndcr; - uint8_t id_buff[8]; - - if (prepare_other_cmd(info, cmdset->read_id)) { - printk(KERN_ERR "failed to prepare command\n"); - return -EINVAL; + else + return NAND_STATUS_FAIL; } - /* Send command */ - if (write_cmd(info)) - goto fail_timeout; - - /* Wait for CMDDM(command done successfully) */ - if (wait_for_event(info, NDSR_RDDREQ)) - goto fail_timeout; - - __raw_readsl(info->mmio_base + NDDB, id_buff, 2); - *id = id_buff[0] | (id_buff[1] << 8); - return 0; - -fail_timeout: - ndcr = nand_readl(info, NDCR); - nand_writel(info, NDCR, ndcr & ~NDCR_ND_RUN); - udelay(10); - return -ETIMEDOUT; + return NAND_STATUS_READY; } static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info, const struct pxa3xx_nand_flash *f) { struct platform_device *pdev = info->pdev; - struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data; - uint32_t ndcr = 0x00000FFF; /* disable all interrupts */ + struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); + struct pxa3xx_nand_host *host = info->host[info->cs]; + uint32_t ndcr = 0x0; /* enable all interrupts */ - if (f->page_size != 2048 && f->page_size != 512) + if (f->page_size != 2048 && f->page_size != 512) { + dev_err(&pdev->dev, "Current only support 2048 and 512 size\n"); return -EINVAL; + } - if (f->flash_width != 16 && f->flash_width != 8) + if (f->flash_width != 16 && f->flash_width != 8) { + dev_err(&pdev->dev, "Only support 8bit and 16 bit!\n"); return -EINVAL; + } /* calculate flash information */ - info->oob_size = (f->page_size == 2048) ? 64 : 16; - info->read_id_bytes = (f->page_size == 2048) ? 4 : 2; + host->read_id_bytes = (f->page_size == 2048) ? 4 : 2; /* calculate addressing information */ - info->col_addr_cycles = (f->page_size == 2048) ? 2 : 1; + host->col_addr_cycles = (f->page_size == 2048) ? 2 : 1; if (f->num_blocks * f->page_per_block > 65536) - info->row_addr_cycles = 3; + host->row_addr_cycles = 3; else - info->row_addr_cycles = 2; + host->row_addr_cycles = 2; ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0; - ndcr |= (info->col_addr_cycles == 2) ? NDCR_RA_START : 0; + ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0; ndcr |= (f->page_per_block == 64) ? NDCR_PG_PER_BLK : 0; ndcr |= (f->page_size == 2048) ? NDCR_PAGE_SZ : 0; ndcr |= (f->flash_width == 16) ? NDCR_DWIDTH_M : 0; ndcr |= (f->dfc_width == 16) ? NDCR_DWIDTH_C : 0; - ndcr |= NDCR_RD_ID_CNT(info->read_id_bytes); + ndcr |= NDCR_RD_ID_CNT(host->read_id_bytes); ndcr |= NDCR_SPARE_EN; /* enable spare by default */ info->reg_ndcr = ndcr; - pxa3xx_nand_set_timing(info, f->timing); - info->flash_info = f; + pxa3xx_nand_set_timing(host, f->timing); return 0; } -static void pxa3xx_nand_detect_timing(struct pxa3xx_nand_info *info, - struct pxa3xx_nand_timing *t) -{ - unsigned long nand_clk = clk_get_rate(info->clk); - uint32_t ndtr0 = nand_readl(info, NDTR0CS0); - uint32_t ndtr1 = nand_readl(info, NDTR1CS0); - - t->tCH = cycle2ns(tCH_NDTR0(ndtr0), nand_clk); - t->tCS = cycle2ns(tCS_NDTR0(ndtr0), nand_clk); - t->tWH = cycle2ns(tWH_NDTR0(ndtr0), nand_clk); - t->tWP = cycle2ns(tWP_NDTR0(ndtr0), nand_clk); - t->tRH = cycle2ns(tRH_NDTR0(ndtr0), nand_clk); - t->tRP = cycle2ns(tRP_NDTR0(ndtr0), nand_clk); - - t->tR = cycle2ns(tR_NDTR1(ndtr1), nand_clk); - t->tWHR = cycle2ns(tWHR_NDTR1(ndtr1), nand_clk); - t->tAR = cycle2ns(tAR_NDTR1(ndtr1), nand_clk); -} - static int pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info) { + /* + * We set 0 by hard coding here, for we don't support keep_config + * when there is more than one chip attached to the controller + */ + struct pxa3xx_nand_host *host = info->host[0]; uint32_t ndcr = nand_readl(info, NDCR); - struct nand_flash_dev *type = NULL; - uint32_t id = -1; - int i; - - default_flash.page_per_block = ndcr & NDCR_PG_PER_BLK ? 64 : 32; - default_flash.page_size = ndcr & NDCR_PAGE_SZ ? 2048 : 512; - default_flash.flash_width = ndcr & NDCR_DWIDTH_M ? 16 : 8; - default_flash.dfc_width = ndcr & NDCR_DWIDTH_C ? 16 : 8; - - if (default_flash.page_size == 2048) - default_flash.cmdset = &largepage_cmdset; - else - default_flash.cmdset = &smallpage_cmdset; - /* set info fields needed to __readid */ - info->flash_info = &default_flash; - info->read_id_bytes = (default_flash.page_size == 2048) ? 4 : 2; - info->reg_ndcr = ndcr; - - if (__readid(info, &id)) - return -ENODEV; - - /* Lookup the flash id */ - id = (id >> 8) & 0xff; /* device id is byte 2 */ - for (i = 0; nand_flash_ids[i].name != NULL; i++) { - if (id == nand_flash_ids[i].id) { - type = &nand_flash_ids[i]; - break; - } + if (ndcr & NDCR_PAGE_SZ) { + /* Controller's FIFO size */ + info->chunk_size = 2048; + host->read_id_bytes = 4; + } else { + info->chunk_size = 512; + host->read_id_bytes = 2; } - if (!type) - return -ENODEV; - - /* fill the missing flash information */ - i = __ffs(default_flash.page_per_block * default_flash.page_size); - default_flash.num_blocks = type->chipsize << (20 - i); - - info->oob_size = (default_flash.page_size == 2048) ? 64 : 16; - - /* calculate addressing information */ - info->col_addr_cycles = (default_flash.page_size == 2048) ? 2 : 1; - - if (default_flash.num_blocks * default_flash.page_per_block > 65536) - info->row_addr_cycles = 3; - else - info->row_addr_cycles = 2; - - pxa3xx_nand_detect_timing(info, &default_timing); - default_flash.timing = &default_timing; - + /* Set an initial chunk size */ + info->reg_ndcr = ndcr & ~NDCR_INT_MASK; + info->ndtr0cs0 = nand_readl(info, NDTR0CS0); + info->ndtr1cs0 = nand_readl(info, NDTR1CS0); return 0; } -static int pxa3xx_nand_detect_flash(struct pxa3xx_nand_info *info, - const struct pxa3xx_nand_platform_data *pdata) -{ - const struct pxa3xx_nand_flash *f; - uint32_t id = -1; - int i; - - if (pdata->keep_config) - if (pxa3xx_nand_detect_config(info) == 0) - return 0; - - for (i = 0; i<pdata->num_flash; ++i) { - f = pdata->flash + i; - - if (pxa3xx_nand_config_flash(info, f)) - continue; - - if (__readid(info, &id)) - continue; - - if (id == f->chip_id) - return 0; - } - -#ifdef CONFIG_MTD_NAND_PXA3xx_BUILTIN - for (i = 0; i < ARRAY_SIZE(builtin_flash_types); i++) { - - f = builtin_flash_types[i]; - - if (pxa3xx_nand_config_flash(info, f)) - continue; - - if (__readid(info, &id)) - continue; - - if (id == f->chip_id) - return 0; - } -#endif - - dev_warn(&info->pdev->dev, - "failed to detect configured nand flash; found %04x instead of\n", - id); - return -ENODEV; -} - -/* the maximum possible buffer size for large page with OOB data - * is: 2048 + 64 = 2112 bytes, allocate a page here for both the - * data buffer and the DMA descriptor - */ -#define MAX_BUFF_SIZE PAGE_SIZE - +#ifdef ARCH_HAS_DMA static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info) { struct platform_device *pdev = info->pdev; - int data_desc_offset = MAX_BUFF_SIZE - sizeof(struct pxa_dma_desc); + int data_desc_offset = info->buf_size - sizeof(struct pxa_dma_desc); if (use_dma == 0) { - info->data_buff = kmalloc(MAX_BUFF_SIZE, GFP_KERNEL); + info->data_buff = kmalloc(info->buf_size, GFP_KERNEL); if (info->data_buff == NULL) return -ENOMEM; return 0; } - info->data_buff = dma_alloc_coherent(&pdev->dev, MAX_BUFF_SIZE, + info->data_buff = dma_alloc_coherent(&pdev->dev, info->buf_size, &info->data_buff_phys, GFP_KERNEL); if (info->data_buff == NULL) { dev_err(&pdev->dev, "failed to allocate dma buffer\n"); return -ENOMEM; } - info->data_buff_size = MAX_BUFF_SIZE; info->data_desc = (void *)info->data_buff + data_desc_offset; info->data_desc_addr = info->data_buff_phys + data_desc_offset; @@ -1151,263 +1282,589 @@ static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info) pxa3xx_nand_data_dma_irq, info); if (info->data_dma_ch < 0) { dev_err(&pdev->dev, "failed to request data dma\n"); - dma_free_coherent(&pdev->dev, info->data_buff_size, + dma_free_coherent(&pdev->dev, info->buf_size, info->data_buff, info->data_buff_phys); return info->data_dma_ch; } + /* + * Now that DMA buffers are allocated we turn on + * DMA proper for I/O operations. + */ + info->use_dma = 1; return 0; } -static struct nand_ecclayout hw_smallpage_ecclayout = { - .eccbytes = 6, - .eccpos = {8, 9, 10, 11, 12, 13 }, - .oobfree = { {2, 6} } -}; +static void pxa3xx_nand_free_buff(struct pxa3xx_nand_info *info) +{ + struct platform_device *pdev = info->pdev; + if (info->use_dma) { + pxa_free_dma(info->data_dma_ch); + dma_free_coherent(&pdev->dev, info->buf_size, + info->data_buff, info->data_buff_phys); + } else { + kfree(info->data_buff); + } +} +#else +static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info) +{ + info->data_buff = kmalloc(info->buf_size, GFP_KERNEL); + if (info->data_buff == NULL) + return -ENOMEM; + return 0; +} -static struct nand_ecclayout hw_largepage_ecclayout = { - .eccbytes = 24, - .eccpos = { - 40, 41, 42, 43, 44, 45, 46, 47, - 48, 49, 50, 51, 52, 53, 54, 55, - 56, 57, 58, 59, 60, 61, 62, 63}, - .oobfree = { {2, 38} } -}; +static void pxa3xx_nand_free_buff(struct pxa3xx_nand_info *info) +{ + kfree(info->data_buff); +} +#endif -static void pxa3xx_nand_init_mtd(struct mtd_info *mtd, - struct pxa3xx_nand_info *info) +static int pxa3xx_nand_sensing(struct pxa3xx_nand_info *info) { - const struct pxa3xx_nand_flash *f = info->flash_info; - struct nand_chip *this = &info->nand_chip; - - this->options = (f->flash_width == 16) ? NAND_BUSWIDTH_16: 0; - - this->waitfunc = pxa3xx_nand_waitfunc; - this->select_chip = pxa3xx_nand_select_chip; - this->dev_ready = pxa3xx_nand_dev_ready; - this->cmdfunc = pxa3xx_nand_cmdfunc; - this->read_word = pxa3xx_nand_read_word; - this->read_byte = pxa3xx_nand_read_byte; - this->read_buf = pxa3xx_nand_read_buf; - this->write_buf = pxa3xx_nand_write_buf; - this->verify_buf = pxa3xx_nand_verify_buf; - - this->ecc.mode = NAND_ECC_HW; - this->ecc.hwctl = pxa3xx_nand_ecc_hwctl; - this->ecc.calculate = pxa3xx_nand_ecc_calculate; - this->ecc.correct = pxa3xx_nand_ecc_correct; - this->ecc.size = f->page_size; - - if (f->page_size == 2048) - this->ecc.layout = &hw_largepage_ecclayout; - else - this->ecc.layout = &hw_smallpage_ecclayout; + struct mtd_info *mtd; + struct nand_chip *chip; + int ret; + + mtd = info->host[info->cs]->mtd; + chip = mtd->priv; + + /* use the common timing to make a try */ + ret = pxa3xx_nand_config_flash(info, &builtin_flash_types[0]); + if (ret) + return ret; - this->chip_delay = 25; + chip->cmdfunc(mtd, NAND_CMD_RESET, 0, 0); + ret = chip->waitfunc(mtd, chip); + if (ret & NAND_STATUS_FAIL) + return -ENODEV; + + return 0; } -static int pxa3xx_nand_probe(struct platform_device *pdev) +static int pxa_ecc_init(struct pxa3xx_nand_info *info, + struct nand_ecc_ctrl *ecc, + int strength, int ecc_stepsize, int page_size) { - struct pxa3xx_nand_platform_data *pdata; - struct pxa3xx_nand_info *info; - struct nand_chip *this; - struct mtd_info *mtd; - struct resource *r; - int ret = 0, irq; + if (strength == 1 && ecc_stepsize == 512 && page_size == 2048) { + info->chunk_size = 2048; + info->spare_size = 40; + info->ecc_size = 24; + ecc->mode = NAND_ECC_HW; + ecc->size = 512; + ecc->strength = 1; + + } else if (strength == 1 && ecc_stepsize == 512 && page_size == 512) { + info->chunk_size = 512; + info->spare_size = 8; + info->ecc_size = 8; + ecc->mode = NAND_ECC_HW; + ecc->size = 512; + ecc->strength = 1; - pdata = pdev->dev.platform_data; + /* + * Required ECC: 4-bit correction per 512 bytes + * Select: 16-bit correction per 2048 bytes + */ + } else if (strength == 4 && ecc_stepsize == 512 && page_size == 2048) { + info->ecc_bch = 1; + info->chunk_size = 2048; + info->spare_size = 32; + info->ecc_size = 32; + ecc->mode = NAND_ECC_HW; + ecc->size = info->chunk_size; + ecc->layout = &ecc_layout_2KB_bch4bit; + ecc->strength = 16; + + } else if (strength == 4 && ecc_stepsize == 512 && page_size == 4096) { + info->ecc_bch = 1; + info->chunk_size = 2048; + info->spare_size = 32; + info->ecc_size = 32; + ecc->mode = NAND_ECC_HW; + ecc->size = info->chunk_size; + ecc->layout = &ecc_layout_4KB_bch4bit; + ecc->strength = 16; - if (!pdata) { - dev_err(&pdev->dev, "no platform data defined\n"); + /* + * Required ECC: 8-bit correction per 512 bytes + * Select: 16-bit correction per 1024 bytes + */ + } else if (strength == 8 && ecc_stepsize == 512 && page_size == 4096) { + info->ecc_bch = 1; + info->chunk_size = 1024; + info->spare_size = 0; + info->ecc_size = 32; + ecc->mode = NAND_ECC_HW; + ecc->size = info->chunk_size; + ecc->layout = &ecc_layout_4KB_bch8bit; + ecc->strength = 16; + } else { + dev_err(&info->pdev->dev, + "ECC strength %d at page size %d is not supported\n", + strength, page_size); return -ENODEV; } - mtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct pxa3xx_nand_info), - GFP_KERNEL); - if (!mtd) { - dev_err(&pdev->dev, "failed to allocate memory\n"); - return -ENOMEM; + dev_info(&info->pdev->dev, "ECC strength %d, ECC step size %d\n", + ecc->strength, ecc->size); + return 0; +} + +static int pxa3xx_nand_scan(struct mtd_info *mtd) +{ + struct pxa3xx_nand_host *host = mtd->priv; + struct pxa3xx_nand_info *info = host->info_data; + struct platform_device *pdev = info->pdev; + struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); + struct nand_flash_dev pxa3xx_flash_ids[2], *def = NULL; + const struct pxa3xx_nand_flash *f = NULL; + struct nand_chip *chip = mtd->priv; + uint32_t id = -1; + uint64_t chipsize; + int i, ret, num; + uint16_t ecc_strength, ecc_step; + + if (pdata->keep_config && !pxa3xx_nand_detect_config(info)) + goto KEEP_CONFIG; + + ret = pxa3xx_nand_sensing(info); + if (ret) { + dev_info(&info->pdev->dev, "There is no chip on cs %d!\n", + info->cs); + + return ret; } - info = (struct pxa3xx_nand_info *)(&mtd[1]); - info->pdev = pdev; + chip->cmdfunc(mtd, NAND_CMD_READID, 0, 0); + id = *((uint16_t *)(info->data_buff)); + if (id != 0) + dev_info(&info->pdev->dev, "Detect a flash id %x\n", id); + else { + dev_warn(&info->pdev->dev, + "Read out ID 0, potential timing set wrong!!\n"); + + return -EINVAL; + } - this = &info->nand_chip; - mtd->priv = info; - mtd->owner = THIS_MODULE; + num = ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1; + for (i = 0; i < num; i++) { + if (i < pdata->num_flash) + f = pdata->flash + i; + else + f = &builtin_flash_types[i - pdata->num_flash + 1]; - info->clk = clk_get(&pdev->dev, NULL); - if (IS_ERR(info->clk)) { - dev_err(&pdev->dev, "failed to get nand clock\n"); - ret = PTR_ERR(info->clk); - goto fail_free_mtd; + /* find the chip in default list */ + if (f->chip_id == id) + break; } - clk_enable(info->clk); - r = platform_get_resource(pdev, IORESOURCE_DMA, 0); - if (r == NULL) { - dev_err(&pdev->dev, "no resource defined for data DMA\n"); - ret = -ENXIO; - goto fail_put_clk; + if (i >= (ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1)) { + dev_err(&info->pdev->dev, "ERROR!! flash not defined!!!\n"); + + return -EINVAL; } - info->drcmr_dat = r->start; - r = platform_get_resource(pdev, IORESOURCE_DMA, 1); - if (r == NULL) { - dev_err(&pdev->dev, "no resource defined for command DMA\n"); - ret = -ENXIO; - goto fail_put_clk; + ret = pxa3xx_nand_config_flash(info, f); + if (ret) { + dev_err(&info->pdev->dev, "ERROR! Configure failed\n"); + return ret; } - info->drcmr_cmd = r->start; - irq = platform_get_irq(pdev, 0); - if (irq < 0) { - dev_err(&pdev->dev, "no IRQ resource defined\n"); - ret = -ENXIO; - goto fail_put_clk; + pxa3xx_flash_ids[0].name = f->name; + pxa3xx_flash_ids[0].dev_id = (f->chip_id >> 8) & 0xffff; + pxa3xx_flash_ids[0].pagesize = f->page_size; + chipsize = (uint64_t)f->num_blocks * f->page_per_block * f->page_size; + pxa3xx_flash_ids[0].chipsize = chipsize >> 20; + pxa3xx_flash_ids[0].erasesize = f->page_size * f->page_per_block; + if (f->flash_width == 16) + pxa3xx_flash_ids[0].options = NAND_BUSWIDTH_16; + pxa3xx_flash_ids[1].name = NULL; + def = pxa3xx_flash_ids; +KEEP_CONFIG: + if (info->reg_ndcr & NDCR_DWIDTH_M) + chip->options |= NAND_BUSWIDTH_16; + + /* Device detection must be done with ECC disabled */ + if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370) + nand_writel(info, NDECCCTRL, 0x0); + + if (nand_scan_ident(mtd, 1, def)) + return -ENODEV; + + if (pdata->flash_bbt) { + /* + * We'll use a bad block table stored in-flash and don't + * allow writing the bad block marker to the flash. + */ + chip->bbt_options |= NAND_BBT_USE_FLASH | + NAND_BBT_NO_OOB_BBM; + chip->bbt_td = &bbt_main_descr; + chip->bbt_md = &bbt_mirror_descr; } - r = platform_get_resource(pdev, IORESOURCE_MEM, 0); - if (r == NULL) { - dev_err(&pdev->dev, "no IO memory resource defined\n"); - ret = -ENODEV; - goto fail_put_clk; + /* + * If the page size is bigger than the FIFO size, let's check + * we are given the right variant and then switch to the extended + * (aka splitted) command handling, + */ + if (mtd->writesize > PAGE_CHUNK_SIZE) { + if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370) { + chip->cmdfunc = nand_cmdfunc_extended; + } else { + dev_err(&info->pdev->dev, + "unsupported page size on this variant\n"); + return -ENODEV; + } } - r = request_mem_region(r->start, resource_size(r), pdev->name); - if (r == NULL) { - dev_err(&pdev->dev, "failed to request memory resource\n"); - ret = -EBUSY; - goto fail_put_clk; + if (pdata->ecc_strength && pdata->ecc_step_size) { + ecc_strength = pdata->ecc_strength; + ecc_step = pdata->ecc_step_size; + } else { + ecc_strength = chip->ecc_strength_ds; + ecc_step = chip->ecc_step_ds; } - info->mmio_base = ioremap(r->start, resource_size(r)); - if (info->mmio_base == NULL) { - dev_err(&pdev->dev, "ioremap() failed\n"); - ret = -ENODEV; - goto fail_free_res; + /* Set default ECC strength requirements on non-ONFI devices */ + if (ecc_strength < 1 && ecc_step < 1) { + ecc_strength = 1; + ecc_step = 512; } - info->mmio_phys = r->start; + ret = pxa_ecc_init(info, &chip->ecc, ecc_strength, + ecc_step, mtd->writesize); + if (ret) + return ret; + + /* calculate addressing information */ + if (mtd->writesize >= 2048) + host->col_addr_cycles = 2; + else + host->col_addr_cycles = 1; + + /* release the initial buffer */ + kfree(info->data_buff); + + /* allocate the real data + oob buffer */ + info->buf_size = mtd->writesize + mtd->oobsize; ret = pxa3xx_nand_init_buff(info); if (ret) - goto fail_free_io; + return ret; + info->oob_buff = info->data_buff + mtd->writesize; - /* initialize all interrupts to be disabled */ - disable_int(info, NDSR_MASK); + if ((mtd->size >> chip->page_shift) > 65536) + host->row_addr_cycles = 3; + else + host->row_addr_cycles = 2; + return nand_scan_tail(mtd); +} - ret = request_irq(irq, pxa3xx_nand_irq, IRQF_DISABLED, - pdev->name, info); - if (ret < 0) { - dev_err(&pdev->dev, "failed to request IRQ\n"); - goto fail_free_buf; - } +static int alloc_nand_resource(struct platform_device *pdev) +{ + struct pxa3xx_nand_platform_data *pdata; + struct pxa3xx_nand_info *info; + struct pxa3xx_nand_host *host; + struct nand_chip *chip = NULL; + struct mtd_info *mtd; + struct resource *r; + int ret, irq, cs; - ret = pxa3xx_nand_detect_flash(info, pdata); - if (ret) { - dev_err(&pdev->dev, "failed to detect flash\n"); - ret = -ENODEV; - goto fail_free_irq; + pdata = dev_get_platdata(&pdev->dev); + info = devm_kzalloc(&pdev->dev, sizeof(*info) + (sizeof(*mtd) + + sizeof(*host)) * pdata->num_cs, GFP_KERNEL); + if (!info) + return -ENOMEM; + + info->pdev = pdev; + info->variant = pxa3xx_nand_get_variant(pdev); + for (cs = 0; cs < pdata->num_cs; cs++) { + mtd = (struct mtd_info *)((unsigned int)&info[1] + + (sizeof(*mtd) + sizeof(*host)) * cs); + chip = (struct nand_chip *)(&mtd[1]); + host = (struct pxa3xx_nand_host *)chip; + info->host[cs] = host; + host->mtd = mtd; + host->cs = cs; + host->info_data = info; + mtd->priv = host; + mtd->owner = THIS_MODULE; + + chip->ecc.read_page = pxa3xx_nand_read_page_hwecc; + chip->ecc.write_page = pxa3xx_nand_write_page_hwecc; + chip->controller = &info->controller; + chip->waitfunc = pxa3xx_nand_waitfunc; + chip->select_chip = pxa3xx_nand_select_chip; + chip->read_word = pxa3xx_nand_read_word; + chip->read_byte = pxa3xx_nand_read_byte; + chip->read_buf = pxa3xx_nand_read_buf; + chip->write_buf = pxa3xx_nand_write_buf; + chip->options |= NAND_NO_SUBPAGE_WRITE; + chip->cmdfunc = nand_cmdfunc; } - pxa3xx_nand_init_mtd(mtd, info); + spin_lock_init(&chip->controller->lock); + init_waitqueue_head(&chip->controller->wq); + info->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(info->clk)) { + dev_err(&pdev->dev, "failed to get nand clock\n"); + return PTR_ERR(info->clk); + } + ret = clk_prepare_enable(info->clk); + if (ret < 0) + return ret; - platform_set_drvdata(pdev, mtd); + if (use_dma) { + /* + * This is a dirty hack to make this driver work from + * devicetree bindings. It can be removed once we have + * a prober DMA controller framework for DT. + */ + if (pdev->dev.of_node && + of_machine_is_compatible("marvell,pxa3xx")) { + info->drcmr_dat = 97; + info->drcmr_cmd = 99; + } else { + r = platform_get_resource(pdev, IORESOURCE_DMA, 0); + if (r == NULL) { + dev_err(&pdev->dev, + "no resource defined for data DMA\n"); + ret = -ENXIO; + goto fail_disable_clk; + } + info->drcmr_dat = r->start; + + r = platform_get_resource(pdev, IORESOURCE_DMA, 1); + if (r == NULL) { + dev_err(&pdev->dev, + "no resource defined for cmd DMA\n"); + ret = -ENXIO; + goto fail_disable_clk; + } + info->drcmr_cmd = r->start; + } + } - if (nand_scan(mtd, 1)) { - dev_err(&pdev->dev, "failed to scan nand\n"); + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_err(&pdev->dev, "no IRQ resource defined\n"); ret = -ENXIO; - goto fail_free_irq; + goto fail_disable_clk; } - if (mtd_has_cmdlinepart()) { - static const char *probes[] = { "cmdlinepart", NULL }; - struct mtd_partition *parts; - int nr_parts; + r = platform_get_resource(pdev, IORESOURCE_MEM, 0); + info->mmio_base = devm_ioremap_resource(&pdev->dev, r); + if (IS_ERR(info->mmio_base)) { + ret = PTR_ERR(info->mmio_base); + goto fail_disable_clk; + } + info->mmio_phys = r->start; - nr_parts = parse_mtd_partitions(mtd, probes, &parts, 0); + /* Allocate a buffer to allow flash detection */ + info->buf_size = INIT_BUFFER_SIZE; + info->data_buff = kmalloc(info->buf_size, GFP_KERNEL); + if (info->data_buff == NULL) { + ret = -ENOMEM; + goto fail_disable_clk; + } + + /* initialize all interrupts to be disabled */ + disable_int(info, NDSR_MASK); - if (nr_parts) - return add_mtd_partitions(mtd, parts, nr_parts); + ret = request_irq(irq, pxa3xx_nand_irq, 0, pdev->name, info); + if (ret < 0) { + dev_err(&pdev->dev, "failed to request IRQ\n"); + goto fail_free_buf; } - return add_mtd_partitions(mtd, pdata->parts, pdata->nr_parts); + platform_set_drvdata(pdev, info); + + return 0; -fail_free_irq: - free_irq(irq, info); fail_free_buf: - if (use_dma) { - pxa_free_dma(info->data_dma_ch); - dma_free_coherent(&pdev->dev, info->data_buff_size, - info->data_buff, info->data_buff_phys); - } else - kfree(info->data_buff); -fail_free_io: - iounmap(info->mmio_base); -fail_free_res: - release_mem_region(r->start, resource_size(r)); -fail_put_clk: - clk_disable(info->clk); - clk_put(info->clk); -fail_free_mtd: - kfree(mtd); + free_irq(irq, info); + kfree(info->data_buff); +fail_disable_clk: + clk_disable_unprepare(info->clk); return ret; } static int pxa3xx_nand_remove(struct platform_device *pdev) { - struct mtd_info *mtd = platform_get_drvdata(pdev); - struct pxa3xx_nand_info *info = mtd->priv; - struct resource *r; - int irq; + struct pxa3xx_nand_info *info = platform_get_drvdata(pdev); + struct pxa3xx_nand_platform_data *pdata; + int irq, cs; + + if (!info) + return 0; - platform_set_drvdata(pdev, NULL); + pdata = dev_get_platdata(&pdev->dev); - del_mtd_device(mtd); - del_mtd_partitions(mtd); irq = platform_get_irq(pdev, 0); if (irq >= 0) free_irq(irq, info); + pxa3xx_nand_free_buff(info); + + clk_disable_unprepare(info->clk); + + for (cs = 0; cs < pdata->num_cs; cs++) + nand_release(info->host[cs]->mtd); + return 0; +} + +static int pxa3xx_nand_probe_dt(struct platform_device *pdev) +{ + struct pxa3xx_nand_platform_data *pdata; + struct device_node *np = pdev->dev.of_node; + const struct of_device_id *of_id = + of_match_device(pxa3xx_nand_dt_ids, &pdev->dev); + + if (!of_id) + return 0; + + pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); + if (!pdata) + return -ENOMEM; + + if (of_get_property(np, "marvell,nand-enable-arbiter", NULL)) + pdata->enable_arbiter = 1; + if (of_get_property(np, "marvell,nand-keep-config", NULL)) + pdata->keep_config = 1; + of_property_read_u32(np, "num-cs", &pdata->num_cs); + pdata->flash_bbt = of_get_nand_on_flash_bbt(np); + + pdata->ecc_strength = of_get_nand_ecc_strength(np); + if (pdata->ecc_strength < 0) + pdata->ecc_strength = 0; + + pdata->ecc_step_size = of_get_nand_ecc_step_size(np); + if (pdata->ecc_step_size < 0) + pdata->ecc_step_size = 0; + + pdev->dev.platform_data = pdata; + + return 0; +} + +static int pxa3xx_nand_probe(struct platform_device *pdev) +{ + struct pxa3xx_nand_platform_data *pdata; + struct mtd_part_parser_data ppdata = {}; + struct pxa3xx_nand_info *info; + int ret, cs, probe_success; + +#ifndef ARCH_HAS_DMA if (use_dma) { - pxa_free_dma(info->data_dma_ch); - dma_free_writecombine(&pdev->dev, info->data_buff_size, - info->data_buff, info->data_buff_phys); - } else - kfree(info->data_buff); + use_dma = 0; + dev_warn(&pdev->dev, + "This platform can't do DMA on this device\n"); + } +#endif + ret = pxa3xx_nand_probe_dt(pdev); + if (ret) + return ret; - iounmap(info->mmio_base); - r = platform_get_resource(pdev, IORESOURCE_MEM, 0); - release_mem_region(r->start, resource_size(r)); + pdata = dev_get_platdata(&pdev->dev); + if (!pdata) { + dev_err(&pdev->dev, "no platform data defined\n"); + return -ENODEV; + } - clk_disable(info->clk); - clk_put(info->clk); + ret = alloc_nand_resource(pdev); + if (ret) { + dev_err(&pdev->dev, "alloc nand resource failed\n"); + return ret; + } + + info = platform_get_drvdata(pdev); + probe_success = 0; + for (cs = 0; cs < pdata->num_cs; cs++) { + struct mtd_info *mtd = info->host[cs]->mtd; + + /* + * The mtd name matches the one used in 'mtdparts' kernel + * parameter. This name cannot be changed or otherwise + * user's mtd partitions configuration would get broken. + */ + mtd->name = "pxa3xx_nand-0"; + info->cs = cs; + ret = pxa3xx_nand_scan(mtd); + if (ret) { + dev_warn(&pdev->dev, "failed to scan nand at cs %d\n", + cs); + continue; + } + + ppdata.of_node = pdev->dev.of_node; + ret = mtd_device_parse_register(mtd, NULL, + &ppdata, pdata->parts[cs], + pdata->nr_parts[cs]); + if (!ret) + probe_success = 1; + } + + if (!probe_success) { + pxa3xx_nand_remove(pdev); + return -ENODEV; + } - kfree(mtd); return 0; } #ifdef CONFIG_PM static int pxa3xx_nand_suspend(struct platform_device *pdev, pm_message_t state) { - struct mtd_info *mtd = (struct mtd_info *)platform_get_drvdata(pdev); - struct pxa3xx_nand_info *info = mtd->priv; + struct pxa3xx_nand_info *info = platform_get_drvdata(pdev); + struct pxa3xx_nand_platform_data *pdata; + struct mtd_info *mtd; + int cs; - if (info->state != STATE_READY) { + pdata = dev_get_platdata(&pdev->dev); + if (info->state) { dev_err(&pdev->dev, "driver busy, state = %d\n", info->state); return -EAGAIN; } + for (cs = 0; cs < pdata->num_cs; cs++) { + mtd = info->host[cs]->mtd; + mtd_suspend(mtd); + } + return 0; } static int pxa3xx_nand_resume(struct platform_device *pdev) { - struct mtd_info *mtd = (struct mtd_info *)platform_get_drvdata(pdev); - struct pxa3xx_nand_info *info = mtd->priv; + struct pxa3xx_nand_info *info = platform_get_drvdata(pdev); + struct pxa3xx_nand_platform_data *pdata; + struct mtd_info *mtd; + int cs; - clk_enable(info->clk); + pdata = dev_get_platdata(&pdev->dev); + /* We don't want to handle interrupt without calling mtd routine */ + disable_int(info, NDCR_INT_MASK); - return pxa3xx_nand_config_flash(info, info->flash_info); + /* + * Directly set the chip select to a invalid value, + * then the driver would reset the timing according + * to current chip select at the beginning of cmdfunc + */ + info->cs = 0xff; + + /* + * As the spec says, the NDSR would be updated to 0x1800 when + * doing the nand_clk disable/enable. + * To prevent it damaging state machine of the driver, clear + * all status before resume + */ + nand_writel(info, NDSR, NDSR_MASK); + for (cs = 0; cs < pdata->num_cs; cs++) { + mtd = info->host[cs]->mtd; + mtd_resume(mtd); + } + + return 0; } #else #define pxa3xx_nand_suspend NULL @@ -1417,6 +1874,7 @@ static int pxa3xx_nand_resume(struct platform_device *pdev) static struct platform_driver pxa3xx_nand_driver = { .driver = { .name = "pxa3xx-nand", + .of_match_table = pxa3xx_nand_dt_ids, }, .probe = pxa3xx_nand_probe, .remove = pxa3xx_nand_remove, @@ -1424,17 +1882,7 @@ static struct platform_driver pxa3xx_nand_driver = { .resume = pxa3xx_nand_resume, }; -static int __init pxa3xx_nand_init(void) -{ - return platform_driver_register(&pxa3xx_nand_driver); -} -module_init(pxa3xx_nand_init); - -static void __exit pxa3xx_nand_exit(void) -{ - platform_driver_unregister(&pxa3xx_nand_driver); -} -module_exit(pxa3xx_nand_exit); +module_platform_driver(pxa3xx_nand_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("PXA3xx NAND controller driver"); diff --git a/drivers/mtd/nand/r852.c b/drivers/mtd/nand/r852.c index bcfc851fe55..baea83f4dea 100644 --- a/drivers/mtd/nand/r852.c +++ b/drivers/mtd/nand/r852.c @@ -22,7 +22,7 @@ #include "r852.h" -static int r852_enable_dma = 1; +static bool r852_enable_dma = 1; module_param(r852_enable_dma, bool, S_IRUGO); MODULE_PARM_DESC(r852_enable_dma, "Enable usage of the DMA (default)"); @@ -64,8 +64,8 @@ static inline void r852_write_reg_dword(struct r852_device *dev, /* returns pointer to our private structure */ static inline struct r852_device *r852_get_dev(struct mtd_info *mtd) { - struct nand_chip *chip = (struct nand_chip *)mtd->priv; - return (struct r852_device *)chip->priv; + struct nand_chip *chip = mtd->priv; + return chip->priv; } @@ -181,11 +181,11 @@ static void r852_do_dma(struct r852_device *dev, uint8_t *buf, int do_read) /* Set dma direction */ dev->dma_dir = do_read; dev->dma_stage = 1; - INIT_COMPLETION(dev->dma_done); + reinit_completion(&dev->dma_done); dbg_verbose("doing dma %s ", do_read ? "read" : "write"); - /* Set intial dma state: for reading first fill on board buffer, + /* Set initial dma state: for reading first fill on board buffer, from device, for writes first fill the buffer from memory*/ dev->dma_state = do_read ? DMA_INTERNAL : DMA_MEMORY; @@ -229,7 +229,7 @@ static void r852_do_dma(struct r852_device *dev, uint8_t *buf, int do_read) /* * Program data lines of the nand chip to send data to it */ -void r852_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +static void r852_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct r852_device *dev = r852_get_dev(mtd); uint32_t reg; @@ -245,7 +245,7 @@ void r852_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) } /* write DWORD chinks - faster */ - while (len) { + while (len >= 4) { reg = buf[0] | buf[1] << 8 | buf[2] << 16 | buf[3] << 24; r852_write_reg_dword(dev, R852_DATALINE, reg); buf += 4; @@ -254,14 +254,16 @@ void r852_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) } /* write rest */ - while (len) + while (len > 0) { r852_write_reg(dev, R852_DATALINE, *buf++); + len--; + } } /* * Read data lines of the nand chip to retrieve data */ -void r852_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +static void r852_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { struct r852_device *dev = r852_get_dev(mtd); uint32_t reg; @@ -309,31 +311,10 @@ static uint8_t r852_read_byte(struct mtd_info *mtd) return r852_read_reg(dev, R852_DATALINE); } - -/* - * Readback the buffer to verify it - */ -int r852_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - struct r852_device *dev = r852_get_dev(mtd); - - /* We can't be sure about anything here... */ - if (dev->card_unstable) - return -1; - - /* This will never happen, unless you wired up a nand chip - with > 512 bytes page size to the reader */ - if (len > SM_SECTOR_SIZE) - return 0; - - r852_read_buf(mtd, dev->tmp_buffer, len); - return memcmp(buf, dev->tmp_buffer, len); -} - /* * Control several chip lines & send commands */ -void r852_cmdctl(struct mtd_info *mtd, int dat, unsigned int ctrl) +static void r852_cmdctl(struct mtd_info *mtd, int dat, unsigned int ctrl) { struct r852_device *dev = r852_get_dev(mtd); @@ -378,9 +359,9 @@ void r852_cmdctl(struct mtd_info *mtd, int dat, unsigned int ctrl) * Wait till card is ready. * based on nand_wait, but returns errors on DMA error */ -int r852_wait(struct mtd_info *mtd, struct nand_chip *chip) +static int r852_wait(struct mtd_info *mtd, struct nand_chip *chip) { - struct r852_device *dev = (struct r852_device *)chip->priv; + struct r852_device *dev = chip->priv; unsigned long timeout; int status; @@ -407,7 +388,7 @@ int r852_wait(struct mtd_info *mtd, struct nand_chip *chip) * Check if card is ready */ -int r852_ready(struct mtd_info *mtd) +static int r852_ready(struct mtd_info *mtd) { struct r852_device *dev = r852_get_dev(mtd); return !(r852_read_reg(dev, R852_CARD_STA) & R852_CARD_STA_BUSY); @@ -418,7 +399,7 @@ int r852_ready(struct mtd_info *mtd) * Set ECC engine mode */ -void r852_ecc_hwctl(struct mtd_info *mtd, int mode) +static void r852_ecc_hwctl(struct mtd_info *mtd, int mode) { struct r852_device *dev = r852_get_dev(mtd); @@ -450,7 +431,7 @@ void r852_ecc_hwctl(struct mtd_info *mtd, int mode) * Calculate ECC, only used for writes */ -int r852_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat, +static int r852_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat, uint8_t *ecc_code) { struct r852_device *dev = r852_get_dev(mtd); @@ -482,7 +463,7 @@ int r852_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat, * Correct the data using ECC, hw did almost everything for us */ -int r852_ecc_correct(struct mtd_info *mtd, uint8_t *dat, +static int r852_ecc_correct(struct mtd_info *mtd, uint8_t *dat, uint8_t *read_ecc, uint8_t *calc_ecc) { uint16_t ecc_reg; @@ -539,21 +520,18 @@ exit: * nand_read_oob_syndrome assumes we can send column address - we can't */ static int r852_read_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page, int sndcmd) + int page) { - if (sndcmd) { - chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); - sndcmd = 0; - } + chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); - return sndcmd; + return 0; } /* * Start the nand engine */ -void r852_engine_enable(struct r852_device *dev) +static void r852_engine_enable(struct r852_device *dev) { if (r852_read_reg_dword(dev, R852_HW) & R852_HW_UNKNOWN) { r852_write_reg(dev, R852_CTL, R852_CTL_RESET | R852_CTL_ON); @@ -571,7 +549,7 @@ void r852_engine_enable(struct r852_device *dev) * Stop the nand engine */ -void r852_engine_disable(struct r852_device *dev) +static void r852_engine_disable(struct r852_device *dev) { r852_write_reg_dword(dev, R852_HW, 0); r852_write_reg(dev, R852_CTL, R852_CTL_RESET); @@ -581,7 +559,7 @@ void r852_engine_disable(struct r852_device *dev) * Test if card is present */ -void r852_card_update_present(struct r852_device *dev) +static void r852_card_update_present(struct r852_device *dev) { unsigned long flags; uint8_t reg; @@ -596,7 +574,7 @@ void r852_card_update_present(struct r852_device *dev) * Update card detection IRQ state according to current card state * which is read in r852_card_update_present */ -void r852_update_card_detect(struct r852_device *dev) +static void r852_update_card_detect(struct r852_device *dev) { int card_detect_reg = r852_read_reg(dev, R852_CARD_IRQ_ENABLE); dev->card_unstable = 0; @@ -610,8 +588,8 @@ void r852_update_card_detect(struct r852_device *dev) r852_write_reg(dev, R852_CARD_IRQ_ENABLE, card_detect_reg); } -ssize_t r852_media_type_show(struct device *sys_dev, - struct device_attribute *attr, char *buf) +static ssize_t r852_media_type_show(struct device *sys_dev, + struct device_attribute *attr, char *buf) { struct mtd_info *mtd = container_of(sys_dev, struct mtd_info, dev); struct r852_device *dev = r852_get_dev(mtd); @@ -621,11 +599,11 @@ ssize_t r852_media_type_show(struct device *sys_dev, return strlen(data); } -DEVICE_ATTR(media_type, S_IRUGO, r852_media_type_show, NULL); +static DEVICE_ATTR(media_type, S_IRUGO, r852_media_type_show, NULL); /* Detect properties of card in slot */ -void r852_update_media_status(struct r852_device *dev) +static void r852_update_media_status(struct r852_device *dev) { uint8_t reg; unsigned long flags; @@ -654,7 +632,7 @@ void r852_update_media_status(struct r852_device *dev) * Register the nand device * Called when the card is detected */ -int r852_register_nand_device(struct r852_device *dev) +static int r852_register_nand_device(struct r852_device *dev) { dev->mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL); @@ -692,7 +670,7 @@ error1: * Unregister the card */ -void r852_unregister_nand_device(struct r852_device *dev) +static void r852_unregister_nand_device(struct r852_device *dev) { if (!dev->card_registred) return; @@ -706,7 +684,7 @@ void r852_unregister_nand_device(struct r852_device *dev) } /* Card state updater */ -void r852_card_detect_work(struct work_struct *work) +static void r852_card_detect_work(struct work_struct *work) { struct r852_device *dev = container_of(work, struct r852_device, card_detect_work.work); @@ -757,11 +735,6 @@ static irqreturn_t r852_irq(int irq, void *data) spin_lock_irqsave(&dev->irqlock, flags); - /* We can recieve shared interrupt while pci is suspended - in that case reads will return 0xFFFFFFFF.... */ - if (dev->insuspend) - goto out; - /* handle card detection interrupts first */ card_status = r852_read_reg(dev, R852_CARD_IRQ_STA); r852_write_reg(dev, R852_CARD_IRQ_STA, card_status); @@ -771,7 +744,7 @@ static irqreturn_t r852_irq(int irq, void *data) ret = IRQ_HANDLED; dev->card_detected = !!(card_status & R852_CARD_IRQ_INSERT); - /* we shouldn't recieve any interrupts if we wait for card + /* we shouldn't receive any interrupts if we wait for card to settle */ WARN_ON(dev->card_unstable); @@ -799,13 +772,13 @@ static irqreturn_t r852_irq(int irq, void *data) ret = IRQ_HANDLED; if (dma_status & R852_DMA_IRQ_ERROR) { - dbg("recieved dma error IRQ"); + dbg("received dma error IRQ"); r852_dma_done(dev, -EIO); complete(&dev->dma_done); goto out; } - /* recieved DMA interrupt out of nowhere? */ + /* received DMA interrupt out of nowhere? */ WARN_ON_ONCE(dev->dma_stage == 0); if (dev->dma_stage == 0) @@ -850,7 +823,7 @@ out: return ret; } -int r852_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) +static int r852_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) { int error; struct nand_chip *chip; @@ -890,12 +863,12 @@ int r852_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) chip->read_byte = r852_read_byte; chip->read_buf = r852_read_buf; chip->write_buf = r852_write_buf; - chip->verify_buf = r852_verify_buf; /* ecc */ chip->ecc.mode = NAND_ECC_HW_SYNDROME; chip->ecc.size = R852_DMA_LEN; chip->ecc.bytes = SM_OOB_SIZE; + chip->ecc.strength = 2; chip->ecc.hwctl = r852_ecc_hwctl; chip->ecc.calculate = r852_ecc_calculate; chip->ecc.correct = r852_ecc_correct; @@ -935,7 +908,7 @@ int r852_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) init_completion(&dev->dma_done); - dev->card_workqueue = create_freezeable_workqueue(DRV_NAME); + dev->card_workqueue = create_freezable_workqueue(DRV_NAME); if (!dev->card_workqueue) goto error9; @@ -965,7 +938,7 @@ int r852_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) &dev->card_detect_work, 0); - printk(KERN_NOTICE DRV_NAME ": driver loaded succesfully\n"); + printk(KERN_NOTICE DRV_NAME ": driver loaded successfully\n"); return 0; error10: @@ -990,7 +963,7 @@ error1: return error; } -void r852_remove(struct pci_dev *pci_dev) +static void r852_remove(struct pci_dev *pci_dev) { struct r852_device *dev = pci_get_drvdata(pci_dev); @@ -1021,7 +994,7 @@ void r852_remove(struct pci_dev *pci_dev) pci_disable_device(pci_dev); } -void r852_shutdown(struct pci_dev *pci_dev) +static void r852_shutdown(struct pci_dev *pci_dev) { struct r852_device *dev = pci_get_drvdata(pci_dev); @@ -1031,11 +1004,10 @@ void r852_shutdown(struct pci_dev *pci_dev) pci_disable_device(pci_dev); } -#ifdef CONFIG_PM -int r852_suspend(struct device *device) +#ifdef CONFIG_PM_SLEEP +static int r852_suspend(struct device *device) { struct r852_device *dev = pci_get_drvdata(to_pci_dev(device)); - unsigned long flags; if (dev->ctlreg & R852_CTL_CARDENABLE) return -EBUSY; @@ -1047,43 +1019,22 @@ int r852_suspend(struct device *device) r852_disable_irqs(dev); r852_engine_disable(dev); - spin_lock_irqsave(&dev->irqlock, flags); - dev->insuspend = 1; - spin_unlock_irqrestore(&dev->irqlock, flags); - - /* At that point, even if interrupt handler is running, it will quit */ - /* So wait for this to happen explictly */ - synchronize_irq(dev->irq); - /* If card was pulled off just during the suspend, which is very unlikely, we will remove it on resume, it too late now anyway... */ dev->card_unstable = 0; - - pci_save_state(to_pci_dev(device)); - return pci_prepare_to_sleep(to_pci_dev(device)); + return 0; } -int r852_resume(struct device *device) +static int r852_resume(struct device *device) { struct r852_device *dev = pci_get_drvdata(to_pci_dev(device)); - unsigned long flags; - - /* Turn on the hardware */ - pci_back_from_sleep(to_pci_dev(device)); - pci_restore_state(to_pci_dev(device)); r852_disable_irqs(dev); r852_card_update_present(dev); r852_engine_disable(dev); - /* Now its safe for IRQ to run */ - spin_lock_irqsave(&dev->irqlock, flags); - dev->insuspend = 0; - spin_unlock_irqrestore(&dev->irqlock, flags); - - /* If card status changed, just do the work */ if (dev->card_detected != dev->card_registred) { dbg("card was %s during low power state", @@ -1106,9 +1057,6 @@ int r852_resume(struct device *device) r852_update_card_detect(dev); return 0; } -#else -#define r852_suspend NULL -#define r852_resume NULL #endif static const struct pci_device_id r852_pci_id_tbl[] = { @@ -1119,8 +1067,7 @@ static const struct pci_device_id r852_pci_id_tbl[] = { MODULE_DEVICE_TABLE(pci, r852_pci_id_tbl); -SIMPLE_DEV_PM_OPS(r852_pm_ops, r852_suspend, r852_resume); - +static SIMPLE_DEV_PM_OPS(r852_pm_ops, r852_suspend, r852_resume); static struct pci_driver r852_pci_driver = { .name = DRV_NAME, @@ -1131,18 +1078,7 @@ static struct pci_driver r852_pci_driver = { .driver.pm = &r852_pm_ops, }; -static __init int r852_module_init(void) -{ - return pci_register_driver(&r852_pci_driver); -} - -static void __exit r852_module_exit(void) -{ - pci_unregister_driver(&r852_pci_driver); -} - -module_init(r852_module_init); -module_exit(r852_module_exit); +module_pci_driver(r852_pci_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Maxim Levitsky <maximlevitsky@gmail.com>"); diff --git a/drivers/mtd/nand/r852.h b/drivers/mtd/nand/r852.h index 8096cc280c7..e6a21d9d22c 100644 --- a/drivers/mtd/nand/r852.h +++ b/drivers/mtd/nand/r852.h @@ -140,8 +140,6 @@ struct r852_device { /* interrupt handling */ spinlock_t irqlock; /* IRQ protecting lock */ int irq; /* irq num */ - int insuspend; /* device is suspended */ - /* misc */ void *tmp_buffer; /* temporary buffer */ uint8_t ctlreg; /* cached contents of control reg */ diff --git a/drivers/mtd/nand/rtc_from4.c b/drivers/mtd/nand/rtc_from4.c deleted file mode 100644 index a033c4cd8e1..00000000000 --- a/drivers/mtd/nand/rtc_from4.c +++ /dev/null @@ -1,624 +0,0 @@ -/* - * drivers/mtd/nand/rtc_from4.c - * - * Copyright (C) 2004 Red Hat, Inc. - * - * Derived from drivers/mtd/nand/spia.c - * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Overview: - * This is a device driver for the AG-AND flash device found on the - * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4), - * which utilizes the Renesas HN29V1G91T-30 part. - * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device. - */ - -#include <linux/delay.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <linux/slab.h> -#include <linux/rslib.h> -#include <linux/bitrev.h> -#include <linux/module.h> -#include <linux/mtd/compatmac.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/partitions.h> -#include <asm/io.h> - -/* - * MTD structure for Renesas board - */ -static struct mtd_info *rtc_from4_mtd = NULL; - -#define RTC_FROM4_MAX_CHIPS 2 - -/* HS77x9 processor register defines */ -#define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60)) -#define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62)) -#define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64)) -#define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66)) -#define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68)) -#define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C)) -#define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80)) - -/* - * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor) - */ -/* Address where flash is mapped */ -#define RTC_FROM4_FIO_BASE 0x14000000 - -/* CLE and ALE are tied to address lines 5 & 4, respectively */ -#define RTC_FROM4_CLE (1 << 5) -#define RTC_FROM4_ALE (1 << 4) - -/* address lines A24-A22 used for chip selection */ -#define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000) -#define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000) -#define RTC_FROM4_NAND_ADDR_FPGA (0x01000000) -/* mask address lines A24-A22 used for chip selection */ -#define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA) - -/* FPGA status register for checking device ready (bit zero) */ -#define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002) -#define RTC_FROM4_DEVICE_READY 0x0001 - -/* FPGA Reed-Solomon ECC Control register */ - -#define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050) -#define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7) -#define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6) -#define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5) - -/* FPGA Reed-Solomon ECC code base */ -#define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060) -#define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080) - -/* FPGA Reed-Solomon ECC check register */ -#define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070) -#define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7) - -#define ERR_STAT_ECC_AVAILABLE 0x20 - -/* Undefine for software ECC */ -#define RTC_FROM4_HWECC 1 - -/* Define as 1 for no virtual erase blocks (in JFFS2) */ -#define RTC_FROM4_NO_VIRTBLOCKS 0 - -/* - * Module stuff - */ -static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE); - -static const struct mtd_partition partition_info[] = { - { - .name = "Renesas flash partition 1", - .offset = 0, - .size = MTDPART_SIZ_FULL}, -}; - -#define NUM_PARTITIONS 1 - -/* - * hardware specific flash bbt decriptors - * Note: this is to allow debugging by disabling - * NAND_BBT_CREATE and/or NAND_BBT_WRITE - * - */ -static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' }; -static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' }; - -static struct nand_bbt_descr rtc_from4_bbt_main_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, - .offs = 40, - .len = 4, - .veroffs = 44, - .maxblocks = 4, - .pattern = bbt_pattern -}; - -static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, - .offs = 40, - .len = 4, - .veroffs = 44, - .maxblocks = 4, - .pattern = mirror_pattern -}; - -#ifdef RTC_FROM4_HWECC - -/* the Reed Solomon control structure */ -static struct rs_control *rs_decoder; - -/* - * hardware specific Out Of Band information - */ -static struct nand_ecclayout rtc_from4_nand_oobinfo = { - .eccbytes = 32, - .eccpos = { - 0, 1, 2, 3, 4, 5, 6, 7, - 8, 9, 10, 11, 12, 13, 14, 15, - 16, 17, 18, 19, 20, 21, 22, 23, - 24, 25, 26, 27, 28, 29, 30, 31}, - .oobfree = {{32, 32}} -}; - -#endif - -/* - * rtc_from4_hwcontrol - hardware specific access to control-lines - * @mtd: MTD device structure - * @cmd: hardware control command - * - * Address lines (A5 and A4) are used to control Command and Address Latch - * Enable on this board, so set the read/write address appropriately. - * - * Chip Enable is also controlled by the Chip Select (CS5) and - * Address lines (A24-A22), so no action is required here. - * - */ -static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct nand_chip *chip = (mtd->priv); - - if (cmd == NAND_CMD_NONE) - return; - - if (ctrl & NAND_CLE) - writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE); - else - writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE); -} - -/* - * rtc_from4_nand_select_chip - hardware specific chip select - * @mtd: MTD device structure - * @chip: Chip to select (0 == slot 3, 1 == slot 4) - * - * The chip select is based on address lines A24-A22. - * This driver uses flash slots 3 and 4 (A23-A22). - * - */ -static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip) -{ - struct nand_chip *this = mtd->priv; - - this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK); - this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK); - - switch (chip) { - - case 0: /* select slot 3 chip */ - this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3); - this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3); - break; - case 1: /* select slot 4 chip */ - this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4); - this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4); - break; - - } -} - -/* - * rtc_from4_nand_device_ready - hardware specific ready/busy check - * @mtd: MTD device structure - * - * This board provides the Ready/Busy state in the status register - * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal. - * - */ -static int rtc_from4_nand_device_ready(struct mtd_info *mtd) -{ - unsigned short status; - - status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR)); - - return (status & RTC_FROM4_DEVICE_READY); - -} - -/* - * deplete - code to perform device recovery in case there was a power loss - * @mtd: MTD device structure - * @chip: Chip to select (0 == slot 3, 1 == slot 4) - * - * If there was a sudden loss of power during an erase operation, a - * "device recovery" operation must be performed when power is restored - * to ensure correct operation. This routine performs the required steps - * for the requested chip. - * - * See page 86 of the data sheet for details. - * - */ -static void deplete(struct mtd_info *mtd, int chip) -{ - struct nand_chip *this = mtd->priv; - - /* wait until device is ready */ - while (!this->dev_ready(mtd)) ; - - this->select_chip(mtd, chip); - - /* Send the commands for device recovery, phase 1 */ - this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000); - this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1); - - /* Send the commands for device recovery, phase 2 */ - this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004); - this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1); - -} - -#ifdef RTC_FROM4_HWECC -/* - * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function - * @mtd: MTD device structure - * @mode: I/O mode; read or write - * - * enable hardware ECC for data read or write - * - */ -static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode) -{ - volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL); - unsigned short status; - - switch (mode) { - case NAND_ECC_READ: - status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E; - - *rs_ecc_ctl = status; - break; - - case NAND_ECC_READSYN: - status = 0x00; - - *rs_ecc_ctl = status; - break; - - case NAND_ECC_WRITE: - status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E; - - *rs_ecc_ctl = status; - break; - - default: - BUG(); - break; - } - -} - -/* - * rtc_from4_calculate_ecc - hardware specific code to read ECC code - * @mtd: MTD device structure - * @dat: buffer containing the data to generate ECC codes - * @ecc_code ECC codes calculated - * - * The ECC code is calculated by the FPGA. All we have to do is read the values - * from the FPGA registers. - * - * Note: We read from the inverted registers, since data is inverted before - * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code - * - */ -static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) -{ - volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN); - unsigned short value; - int i; - - for (i = 0; i < 8; i++) { - value = *rs_eccn; - ecc_code[i] = (unsigned char)value; - rs_eccn++; - } - ecc_code[7] |= 0x0f; /* set the last four bits (not used) */ -} - -/* - * rtc_from4_correct_data - hardware specific code to correct data using ECC code - * @mtd: MTD device structure - * @buf: buffer containing the data to generate ECC codes - * @ecc1 ECC codes read - * @ecc2 ECC codes calculated - * - * The FPGA tells us fast, if there's an error or not. If no, we go back happy - * else we read the ecc results from the fpga and call the rs library to decode - * and hopefully correct the error. - * - */ -static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2) -{ - int i, j, res; - unsigned short status; - uint16_t par[6], syn[6]; - uint8_t ecc[8]; - volatile unsigned short *rs_ecc; - - status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK)); - - if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) { - return 0; - } - - /* Read the syndrom pattern from the FPGA and correct the bitorder */ - rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC); - for (i = 0; i < 8; i++) { - ecc[i] = bitrev8(*rs_ecc); - rs_ecc++; - } - - /* convert into 6 10bit syndrome fields */ - par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)]; - par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)]; - par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)]; - par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)]; - par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)]; - par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0); - - /* Convert to computable syndrome */ - for (i = 0; i < 6; i++) { - syn[i] = par[0]; - for (j = 1; j < 6; j++) - if (par[j] != rs_decoder->nn) - syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)]; - - /* Convert to index form */ - syn[i] = rs_decoder->index_of[syn[i]]; - } - - /* Let the library code do its magic. */ - res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL); - if (res > 0) { - DEBUG(MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res); - } - return res; -} - -/** - * rtc_from4_errstat - perform additional error status checks - * @mtd: MTD device structure - * @this: NAND chip structure - * @state: state or the operation - * @status: status code returned from read status - * @page: startpage inside the chip, must be called with (page & this->pagemask) - * - * Perform additional error status checks on erase and write failures - * to determine if errors are correctable. For this device, correctable - * 1-bit errors on erase and write are considered acceptable. - * - * note: see pages 34..37 of data sheet for details. - * - */ -static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this, - int state, int status, int page) -{ - int er_stat = 0; - int rtn, retlen; - size_t len; - uint8_t *buf; - int i; - - this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1); - - if (state == FL_ERASING) { - - for (i = 0; i < 4; i++) { - if (!(status & 1 << (i + 1))) - continue; - this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1), - -1, -1); - rtn = this->read_byte(mtd); - this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1); - - /* err_ecc_not_avail */ - if (!(rtn & ERR_STAT_ECC_AVAILABLE)) - er_stat |= 1 << (i + 1); - } - - } else if (state == FL_WRITING) { - - unsigned long corrected = mtd->ecc_stats.corrected; - - /* single bank write logic */ - this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1); - rtn = this->read_byte(mtd); - this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1); - - if (!(rtn & ERR_STAT_ECC_AVAILABLE)) { - /* err_ecc_not_avail */ - er_stat |= 1 << 1; - goto out; - } - - len = mtd->writesize; - buf = kmalloc(len, GFP_KERNEL); - if (!buf) { - printk(KERN_ERR "rtc_from4_errstat: Out of memory!\n"); - er_stat = 1; - goto out; - } - - /* recovery read */ - rtn = nand_do_read(mtd, page, len, &retlen, buf); - - /* if read failed or > 1-bit error corrected */ - if (rtn || (mtd->ecc_stats.corrected - corrected) > 1) - er_stat |= 1 << 1; - kfree(buf); - } -out: - rtn = status; - if (er_stat == 0) { /* if ECC is available */ - rtn = (status & ~NAND_STATUS_FAIL); /* clear the error bit */ - } - - return rtn; -} -#endif - -/* - * Main initialization routine - */ -static int __init rtc_from4_init(void) -{ - struct nand_chip *this; - unsigned short bcr1, bcr2, wcr2; - int i; - int ret; - - /* Allocate memory for MTD device structure and private data */ - rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); - if (!rtc_from4_mtd) { - printk("Unable to allocate Renesas NAND MTD device structure.\n"); - return -ENOMEM; - } - - /* Get pointer to private data */ - this = (struct nand_chip *)(&rtc_from4_mtd[1]); - - /* Initialize structures */ - memset(rtc_from4_mtd, 0, sizeof(struct mtd_info)); - memset(this, 0, sizeof(struct nand_chip)); - - /* Link the private data with the MTD structure */ - rtc_from4_mtd->priv = this; - rtc_from4_mtd->owner = THIS_MODULE; - - /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */ - bcr1 = *SH77X9_BCR1 & ~0x0002; - bcr1 |= 0x0002; - *SH77X9_BCR1 = bcr1; - - /* set */ - bcr2 = *SH77X9_BCR2 & ~0x0c00; - bcr2 |= 0x0800; - *SH77X9_BCR2 = bcr2; - - /* set area 5 wait states */ - wcr2 = *SH77X9_WCR2 & ~0x1c00; - wcr2 |= 0x1c00; - *SH77X9_WCR2 = wcr2; - - /* Set address of NAND IO lines */ - this->IO_ADDR_R = rtc_from4_fio_base; - this->IO_ADDR_W = rtc_from4_fio_base; - /* Set address of hardware control function */ - this->cmd_ctrl = rtc_from4_hwcontrol; - /* Set address of chip select function */ - this->select_chip = rtc_from4_nand_select_chip; - /* command delay time (in us) */ - this->chip_delay = 100; - /* return the status of the Ready/Busy line */ - this->dev_ready = rtc_from4_nand_device_ready; - -#ifdef RTC_FROM4_HWECC - printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n"); - - this->ecc.mode = NAND_ECC_HW_SYNDROME; - this->ecc.size = 512; - this->ecc.bytes = 8; - /* return the status of extra status and ECC checks */ - this->errstat = rtc_from4_errstat; - /* set the nand_oobinfo to support FPGA H/W error detection */ - this->ecc.layout = &rtc_from4_nand_oobinfo; - this->ecc.hwctl = rtc_from4_enable_hwecc; - this->ecc.calculate = rtc_from4_calculate_ecc; - this->ecc.correct = rtc_from4_correct_data; - - /* We could create the decoder on demand, if memory is a concern. - * This way we have it handy, if an error happens - * - * Symbolsize is 10 (bits) - * Primitve polynomial is x^10+x^3+1 - * first consecutive root is 0 - * primitve element to generate roots = 1 - * generator polinomial degree = 6 - */ - rs_decoder = init_rs(10, 0x409, 0, 1, 6); - if (!rs_decoder) { - printk(KERN_ERR "Could not create a RS decoder\n"); - ret = -ENOMEM; - goto err_1; - } -#else - printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n"); - - this->ecc.mode = NAND_ECC_SOFT; -#endif - - /* set the bad block tables to support debugging */ - this->bbt_td = &rtc_from4_bbt_main_descr; - this->bbt_md = &rtc_from4_bbt_mirror_descr; - - /* Scan to find existence of the device */ - if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) { - ret = -ENXIO; - goto err_2; - } - - /* Perform 'device recovery' for each chip in case there was a power loss. */ - for (i = 0; i < this->numchips; i++) { - deplete(rtc_from4_mtd, i); - } - -#if RTC_FROM4_NO_VIRTBLOCKS - /* use a smaller erase block to minimize wasted space when a block is bad */ - /* note: this uses eight times as much RAM as using the default and makes */ - /* mounts take four times as long. */ - rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS; -#endif - - /* Register the partitions */ - ret = add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS); - if (ret) - goto err_3; - - /* Return happy */ - return 0; -err_3: - nand_release(rtc_from4_mtd); -err_2: - free_rs(rs_decoder); -err_1: - kfree(rtc_from4_mtd); - return ret; -} - -module_init(rtc_from4_init); - -/* - * Clean up routine - */ -static void __exit rtc_from4_cleanup(void) -{ - /* Release resource, unregister partitions */ - nand_release(rtc_from4_mtd); - - /* Free the MTD device structure */ - kfree(rtc_from4_mtd); - -#ifdef RTC_FROM4_HWECC - /* Free the reed solomon resources */ - if (rs_decoder) { - free_rs(rs_decoder); - } -#endif -} - -module_exit(rtc_from4_cleanup); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("d.marlin <dmarlin@redhat.com"); -MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4"); diff --git a/drivers/mtd/nand/s3c2410.c b/drivers/mtd/nand/s3c2410.c index 239aadfd01b..79acbb8691b 100644 --- a/drivers/mtd/nand/s3c2410.c +++ b/drivers/mtd/nand/s3c2410.c @@ -21,15 +21,17 @@ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ +#define pr_fmt(fmt) "nand-s3c2410: " fmt + #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG #define DEBUG #endif #include <linux/module.h> #include <linux/types.h> -#include <linux/init.h> #include <linux/kernel.h> #include <linux/string.h> +#include <linux/io.h> #include <linux/ioport.h> #include <linux/platform_device.h> #include <linux/delay.h> @@ -43,23 +45,42 @@ #include <linux/mtd/nand_ecc.h> #include <linux/mtd/partitions.h> -#include <asm/io.h> - -#include <plat/regs-nand.h> -#include <plat/nand.h> - -#ifdef CONFIG_MTD_NAND_S3C2410_HWECC -static int hardware_ecc = 1; -#else -static int hardware_ecc = 0; -#endif - -#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP -static int clock_stop = 1; -#else -static const int clock_stop = 0; -#endif - +#include <linux/platform_data/mtd-nand-s3c2410.h> + +#define S3C2410_NFREG(x) (x) + +#define S3C2410_NFCONF S3C2410_NFREG(0x00) +#define S3C2410_NFCMD S3C2410_NFREG(0x04) +#define S3C2410_NFADDR S3C2410_NFREG(0x08) +#define S3C2410_NFDATA S3C2410_NFREG(0x0C) +#define S3C2410_NFSTAT S3C2410_NFREG(0x10) +#define S3C2410_NFECC S3C2410_NFREG(0x14) +#define S3C2440_NFCONT S3C2410_NFREG(0x04) +#define S3C2440_NFCMD S3C2410_NFREG(0x08) +#define S3C2440_NFADDR S3C2410_NFREG(0x0C) +#define S3C2440_NFDATA S3C2410_NFREG(0x10) +#define S3C2440_NFSTAT S3C2410_NFREG(0x20) +#define S3C2440_NFMECC0 S3C2410_NFREG(0x2C) +#define S3C2412_NFSTAT S3C2410_NFREG(0x28) +#define S3C2412_NFMECC0 S3C2410_NFREG(0x34) +#define S3C2410_NFCONF_EN (1<<15) +#define S3C2410_NFCONF_INITECC (1<<12) +#define S3C2410_NFCONF_nFCE (1<<11) +#define S3C2410_NFCONF_TACLS(x) ((x)<<8) +#define S3C2410_NFCONF_TWRPH0(x) ((x)<<4) +#define S3C2410_NFCONF_TWRPH1(x) ((x)<<0) +#define S3C2410_NFSTAT_BUSY (1<<0) +#define S3C2440_NFCONF_TACLS(x) ((x)<<12) +#define S3C2440_NFCONF_TWRPH0(x) ((x)<<8) +#define S3C2440_NFCONF_TWRPH1(x) ((x)<<4) +#define S3C2440_NFCONT_INITECC (1<<4) +#define S3C2440_NFCONT_nFCE (1<<1) +#define S3C2440_NFCONT_ENABLE (1<<0) +#define S3C2440_NFSTAT_READY (1<<0) +#define S3C2412_NFCONF_NANDBOOT (1<<31) +#define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5) +#define S3C2412_NFCONT_nFCE0 (1<<1) +#define S3C2412_NFSTAT_READY (1<<0) /* new oob placement block for use with hardware ecc generation */ @@ -96,6 +117,12 @@ enum s3c_cpu_type { TYPE_S3C2440, }; +enum s3c_nand_clk_state { + CLOCK_DISABLE = 0, + CLOCK_ENABLE, + CLOCK_SUSPEND, +}; + /* overview of the s3c2410 nand state */ /** @@ -103,14 +130,14 @@ enum s3c_cpu_type { * @mtds: An array of MTD instances on this controoler. * @platform: The platform data for this board. * @device: The platform device we bound to. - * @area: The IO area resource that came from request_mem_region(). * @clk: The clock resource for this controller. - * @regs: The area mapped for the hardware registers described by @area. + * @regs: The area mapped for the hardware registers. * @sel_reg: Pointer to the register controlling the NAND selection. * @sel_bit: The bit in @sel_reg to select the NAND chip. * @mtd_count: The number of MTDs created from this controller. * @save_sel: The contents of @sel_reg to be saved over suspend. * @clk_rate: The clock rate from @clk. + * @clk_state: The current clock state. * @cpu_type: The exact type of this controller. */ struct s3c2410_nand_info { @@ -121,7 +148,6 @@ struct s3c2410_nand_info { /* device info */ struct device *device; - struct resource *area; struct clk *clk; void __iomem *regs; void __iomem *sel_reg; @@ -129,6 +155,7 @@ struct s3c2410_nand_info { int mtd_count; unsigned long save_sel; unsigned long clk_rate; + enum s3c_nand_clk_state clk_state; enum s3c_cpu_type cpu_type; @@ -156,12 +183,38 @@ static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev) static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev) { - return dev->dev.platform_data; + return dev_get_platdata(&dev->dev); } -static inline int allow_clk_stop(struct s3c2410_nand_info *info) +static inline int allow_clk_suspend(struct s3c2410_nand_info *info) +{ +#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP + return 1; +#else + return 0; +#endif +} + +/** + * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock. + * @info: The controller instance. + * @new_state: State to which clock should be set. + */ +static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info, + enum s3c_nand_clk_state new_state) { - return clock_stop; + if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND) + return; + + if (info->clk_state == CLOCK_ENABLE) { + if (new_state != CLOCK_ENABLE) + clk_disable(info->clk); + } else { + if (new_state == CLOCK_ENABLE) + clk_enable(info->clk); + } + + info->clk_state = new_state; } /* timing calculations */ @@ -185,7 +238,8 @@ static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max) pr_debug("result %d from %ld, %d\n", result, clk, wanted); if (result > max) { - printk("%d ns is too big for current clock rate %ld\n", wanted, clk); + pr_err("%d ns is too big for current clock rate %ld\n", + wanted, clk); return -1; } @@ -195,7 +249,7 @@ static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max) return result; } -#define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk)) +#define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk)) /* controller setup */ @@ -238,7 +292,8 @@ static int s3c2410_nand_setrate(struct s3c2410_nand_info *info) } dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n", - tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate)); + tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), + twrph1, to_ns(twrph1, clkrate)); switch (info->cpu_type) { case TYPE_S3C2410: @@ -295,13 +350,13 @@ static int s3c2410_nand_inithw(struct s3c2410_nand_info *info) if (ret < 0) return ret; - switch (info->cpu_type) { - case TYPE_S3C2410: + switch (info->cpu_type) { + case TYPE_S3C2410: default: break; - case TYPE_S3C2440: - case TYPE_S3C2412: + case TYPE_S3C2440: + case TYPE_S3C2412: /* enable the controller and de-assert nFCE */ writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT); @@ -333,8 +388,8 @@ static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip) nmtd = this->priv; info = nmtd->info; - if (chip != -1 && allow_clk_stop(info)) - clk_enable(info->clk); + if (chip != -1) + s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); cur = readl(info->sel_reg); @@ -356,8 +411,8 @@ static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip) writel(cur, info->sel_reg); - if (chip == -1 && allow_clk_stop(info)) - clk_disable(info->clk); + if (chip == -1) + s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); } /* s3c2410_nand_hwcontrol @@ -420,6 +475,7 @@ static int s3c2412_nand_devready(struct mtd_info *mtd) /* ECC handling functions */ +#ifdef CONFIG_MTD_NAND_S3C2410_HWECC static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { @@ -433,10 +489,8 @@ static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat, diff1 = read_ecc[1] ^ calc_ecc[1]; diff2 = read_ecc[2] ^ calc_ecc[2]; - pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n", - __func__, - read_ecc[0], read_ecc[1], read_ecc[2], - calc_ecc[0], calc_ecc[1], calc_ecc[2], + pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n", + __func__, 3, read_ecc, 3, calc_ecc, diff0, diff1, diff2); if (diff0 == 0 && diff1 == 0 && diff2 == 0) @@ -516,7 +570,8 @@ static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode) unsigned long ctrl; ctrl = readl(info->regs + S3C2440_NFCONT); - writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, info->regs + S3C2440_NFCONT); + writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, + info->regs + S3C2440_NFCONT); } static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode) @@ -528,7 +583,8 @@ static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode) writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT); } -static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) +static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); @@ -536,13 +592,13 @@ static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1); ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2); - pr_debug("%s: returning ecc %02x%02x%02x\n", __func__, - ecc_code[0], ecc_code[1], ecc_code[2]); + pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code); return 0; } -static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) +static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); unsigned long ecc = readl(info->regs + S3C2412_NFMECC0); @@ -551,12 +607,13 @@ static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u ecc_code[1] = ecc >> 8; ecc_code[2] = ecc >> 16; - pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]); + pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code); return 0; } -static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) +static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); unsigned long ecc = readl(info->regs + S3C2440_NFMECC0); @@ -569,6 +626,7 @@ static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u return 0; } +#endif /* over-ride the standard functions for a little more speed. We can * use read/write block to move the data buffers to/from the controller @@ -595,13 +653,15 @@ static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) } } -static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) +static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, + int len) { struct nand_chip *this = mtd->priv; writesb(this->IO_ADDR_W, buf, len); } -static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) +static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, + int len) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); @@ -645,7 +705,8 @@ static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) CPUFREQ_TRANSITION_NOTIFIER); } -static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) +static inline void +s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) { cpufreq_unregister_notifier(&info->freq_transition, CPUFREQ_TRANSITION_NOTIFIER); @@ -657,7 +718,8 @@ static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) return 0; } -static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) +static inline void +s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) { } #endif @@ -668,8 +730,6 @@ static int s3c24xx_nand_remove(struct platform_device *pdev) { struct s3c2410_nand_info *info = to_nand_info(pdev); - platform_set_drvdata(pdev, NULL); - if (info == NULL) return 0; @@ -687,70 +747,29 @@ static int s3c24xx_nand_remove(struct platform_device *pdev) pr_debug("releasing mtd %d (%p)\n", mtdno, ptr); nand_release(&ptr->mtd); } - - kfree(info->mtds); } /* free the common resources */ - if (info->clk != NULL && !IS_ERR(info->clk)) { - if (!allow_clk_stop(info)) - clk_disable(info->clk); - clk_put(info->clk); - } - - if (info->regs != NULL) { - iounmap(info->regs); - info->regs = NULL; - } - - if (info->area != NULL) { - release_resource(info->area); - kfree(info->area); - info->area = NULL; - } - - kfree(info); + if (!IS_ERR(info->clk)) + s3c2410_nand_clk_set_state(info, CLOCK_DISABLE); return 0; } -#ifdef CONFIG_MTD_PARTITIONS -const char *part_probes[] = { "cmdlinepart", NULL }; static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info, struct s3c2410_nand_mtd *mtd, struct s3c2410_nand_set *set) { - struct mtd_partition *part_info; - int nr_part = 0; - - if (set == NULL) - return add_mtd_device(&mtd->mtd); - - if (set->nr_partitions == 0) { + if (set) { mtd->mtd.name = set->name; - nr_part = parse_mtd_partitions(&mtd->mtd, part_probes, - &part_info, 0); - } else { - if (set->nr_partitions > 0 && set->partitions != NULL) { - nr_part = set->nr_partitions; - part_info = set->partitions; - } - } - if (nr_part > 0 && part_info) - return add_mtd_partitions(&mtd->mtd, part_info, nr_part); + return mtd_device_parse_register(&mtd->mtd, NULL, NULL, + set->partitions, set->nr_partitions); + } - return add_mtd_device(&mtd->mtd); -} -#else -static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info, - struct s3c2410_nand_mtd *mtd, - struct s3c2410_nand_set *set) -{ - return add_mtd_device(&mtd->mtd); + return -ENODEV; } -#endif /** * s3c2410_nand_init_chip - initialise a single instance of an chip @@ -807,7 +826,7 @@ static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info, dev_info(info->device, "System booted from NAND\n"); break; - } + } chip->IO_ADDR_R = chip->IO_ADDR_W; @@ -816,31 +835,31 @@ static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info, nmtd->mtd.owner = THIS_MODULE; nmtd->set = set; - if (hardware_ecc) { - chip->ecc.calculate = s3c2410_nand_calculate_ecc; - chip->ecc.correct = s3c2410_nand_correct_data; - chip->ecc.mode = NAND_ECC_HW; - - switch (info->cpu_type) { - case TYPE_S3C2410: - chip->ecc.hwctl = s3c2410_nand_enable_hwecc; - chip->ecc.calculate = s3c2410_nand_calculate_ecc; - break; +#ifdef CONFIG_MTD_NAND_S3C2410_HWECC + chip->ecc.calculate = s3c2410_nand_calculate_ecc; + chip->ecc.correct = s3c2410_nand_correct_data; + chip->ecc.mode = NAND_ECC_HW; + chip->ecc.strength = 1; - case TYPE_S3C2412: - chip->ecc.hwctl = s3c2412_nand_enable_hwecc; - chip->ecc.calculate = s3c2412_nand_calculate_ecc; - break; + switch (info->cpu_type) { + case TYPE_S3C2410: + chip->ecc.hwctl = s3c2410_nand_enable_hwecc; + chip->ecc.calculate = s3c2410_nand_calculate_ecc; + break; - case TYPE_S3C2440: - chip->ecc.hwctl = s3c2440_nand_enable_hwecc; - chip->ecc.calculate = s3c2440_nand_calculate_ecc; - break; + case TYPE_S3C2412: + chip->ecc.hwctl = s3c2412_nand_enable_hwecc; + chip->ecc.calculate = s3c2412_nand_calculate_ecc; + break; - } - } else { - chip->ecc.mode = NAND_ECC_SOFT; + case TYPE_S3C2440: + chip->ecc.hwctl = s3c2440_nand_enable_hwecc; + chip->ecc.calculate = s3c2440_nand_calculate_ecc; + break; } +#else + chip->ecc.mode = NAND_ECC_SOFT; +#endif if (set->ecc_layout != NULL) chip->ecc.layout = set->ecc_layout; @@ -866,8 +885,10 @@ static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info, /* If you use u-boot BBT creation code, specifying this flag will * let the kernel fish out the BBT from the NAND, and also skip the * full NAND scan that can take 1/2s or so. Little things... */ - if (set->flash_bbt) - chip->options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN; + if (set->flash_bbt) { + chip->bbt_options |= NAND_BBT_USE_FLASH; + chip->options |= NAND_SKIP_BBTSCAN; + } } /** @@ -892,7 +913,7 @@ static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info, if (chip->ecc.mode != NAND_ECC_HW) return; - /* change the behaviour depending on wether we are using + /* change the behaviour depending on whether we are using * the large or small page nand device */ if (chip->page_shift > 10) { @@ -915,7 +936,7 @@ static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info, static int s3c24xx_nand_probe(struct platform_device *pdev) { struct s3c2410_platform_nand *plat = to_nand_plat(pdev); - enum s3c_cpu_type cpu_type; + enum s3c_cpu_type cpu_type; struct s3c2410_nand_info *info; struct s3c2410_nand_mtd *nmtd; struct s3c2410_nand_set *sets; @@ -929,9 +950,8 @@ static int s3c24xx_nand_probe(struct platform_device *pdev) pr_debug("s3c2410_nand_probe(%p)\n", pdev); - info = kzalloc(sizeof(*info), GFP_KERNEL); + info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); if (info == NULL) { - dev_err(&pdev->dev, "no memory for flash info\n"); err = -ENOMEM; goto exit_error; } @@ -943,37 +963,28 @@ static int s3c24xx_nand_probe(struct platform_device *pdev) /* get the clock source and enable it */ - info->clk = clk_get(&pdev->dev, "nand"); + info->clk = devm_clk_get(&pdev->dev, "nand"); if (IS_ERR(info->clk)) { dev_err(&pdev->dev, "failed to get clock\n"); err = -ENOENT; goto exit_error; } - clk_enable(info->clk); + s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); /* allocate and map the resource */ /* currently we assume we have the one resource */ - res = pdev->resource; + res = pdev->resource; size = resource_size(res); - info->area = request_mem_region(res->start, size, pdev->name); - - if (info->area == NULL) { - dev_err(&pdev->dev, "cannot reserve register region\n"); - err = -ENOENT; - goto exit_error; - } - - info->device = &pdev->dev; - info->platform = plat; - info->regs = ioremap(res->start, size); - info->cpu_type = cpu_type; + info->device = &pdev->dev; + info->platform = plat; + info->cpu_type = cpu_type; - if (info->regs == NULL) { - dev_err(&pdev->dev, "cannot reserve register region\n"); - err = -EIO; + info->regs = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(info->regs)) { + err = PTR_ERR(info->regs); goto exit_error; } @@ -993,9 +1004,8 @@ static int s3c24xx_nand_probe(struct platform_device *pdev) /* allocate our information */ size = nr_sets * sizeof(*info->mtds); - info->mtds = kzalloc(size, GFP_KERNEL); + info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); if (info->mtds == NULL) { - dev_err(&pdev->dev, "failed to allocate mtd storage\n"); err = -ENOMEM; goto exit_error; } @@ -1005,7 +1015,8 @@ static int s3c24xx_nand_probe(struct platform_device *pdev) nmtd = info->mtds; for (setno = 0; setno < nr_sets; setno++, nmtd++) { - pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info); + pr_debug("initialising set %d (%p, info %p)\n", + setno, nmtd, info); s3c2410_nand_init_chip(info, nmtd, sets); @@ -1029,9 +1040,9 @@ static int s3c24xx_nand_probe(struct platform_device *pdev) goto exit_error; } - if (allow_clk_stop(info)) { + if (allow_clk_suspend(info)) { dev_info(&pdev->dev, "clock idle support enabled\n"); - clk_disable(info->clk); + s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); } pr_debug("initialised ok\n"); @@ -1062,8 +1073,7 @@ static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm) writel(info->save_sel | info->sel_bit, info->sel_reg); - if (!allow_clk_stop(info)) - clk_disable(info->clk); + s3c2410_nand_clk_set_state(info, CLOCK_DISABLE); } return 0; @@ -1075,7 +1085,7 @@ static int s3c24xx_nand_resume(struct platform_device *dev) unsigned long sel; if (info) { - clk_enable(info->clk); + s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); s3c2410_nand_inithw(info); /* Restore the state of the nFCE line. */ @@ -1085,8 +1095,7 @@ static int s3c24xx_nand_resume(struct platform_device *dev) sel |= info->save_sel & info->sel_bit; writel(sel, info->sel_reg); - if (allow_clk_stop(info)) - clk_disable(info->clk); + s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); } return 0; @@ -1130,20 +1139,7 @@ static struct platform_driver s3c24xx_nand_driver = { }, }; -static int __init s3c2410_nand_init(void) -{ - printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n"); - - return platform_driver_register(&s3c24xx_nand_driver); -} - -static void __exit s3c2410_nand_exit(void) -{ - platform_driver_unregister(&s3c24xx_nand_driver); -} - -module_init(s3c2410_nand_init); -module_exit(s3c2410_nand_exit); +module_platform_driver(s3c24xx_nand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); diff --git a/drivers/mtd/nand/sh_flctl.c b/drivers/mtd/nand/sh_flctl.c index 546c2f0eb2e..c0670237e7a 100644 --- a/drivers/mtd/nand/sh_flctl.c +++ b/drivers/mtd/nand/sh_flctl.c @@ -23,10 +23,20 @@ #include <linux/module.h> #include <linux/kernel.h> +#include <linux/completion.h> #include <linux/delay.h> +#include <linux/dmaengine.h> +#include <linux/dma-mapping.h> +#include <linux/interrupt.h> #include <linux/io.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/of_mtd.h> #include <linux/platform_device.h> +#include <linux/pm_runtime.h> +#include <linux/sh_dma.h> #include <linux/slab.h> +#include <linux/string.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> @@ -42,11 +52,17 @@ static struct nand_ecclayout flctl_4secc_oob_16 = { }; static struct nand_ecclayout flctl_4secc_oob_64 = { - .eccbytes = 10, - .eccpos = {48, 49, 50, 51, 52, 53, 54, 55, 56, 57}, + .eccbytes = 4 * 10, + .eccpos = { + 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, + 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 }, .oobfree = { - {.offset = 60, - . length = 4} }, + {.offset = 2, .length = 4}, + {.offset = 16, .length = 6}, + {.offset = 32, .length = 6}, + {.offset = 48, .length = 6} }, }; static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; @@ -60,15 +76,15 @@ static struct nand_bbt_descr flctl_4secc_smallpage = { static struct nand_bbt_descr flctl_4secc_largepage = { .options = NAND_BBT_SCAN2NDPAGE, - .offs = 58, + .offs = 0, .len = 2, .pattern = scan_ff_pattern, }; static void empty_fifo(struct sh_flctl *flctl) { - writel(0x000c0000, FLINTDMACR(flctl)); /* FIFO Clear */ - writel(0x00000000, FLINTDMACR(flctl)); /* Clear Error flags */ + writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl)); + writel(flctl->flintdmacr_base, FLINTDMACR(flctl)); } static void start_translation(struct sh_flctl *flctl) @@ -78,7 +94,7 @@ static void start_translation(struct sh_flctl *flctl) static void timeout_error(struct sh_flctl *flctl, const char *str) { - dev_err(&flctl->pdev->dev, "Timeout occured in %s\n", str); + dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str); } static void wait_completion(struct sh_flctl *flctl) @@ -97,6 +113,84 @@ static void wait_completion(struct sh_flctl *flctl) writeb(0x0, FLTRCR(flctl)); } +static void flctl_dma_complete(void *param) +{ + struct sh_flctl *flctl = param; + + complete(&flctl->dma_complete); +} + +static void flctl_release_dma(struct sh_flctl *flctl) +{ + if (flctl->chan_fifo0_rx) { + dma_release_channel(flctl->chan_fifo0_rx); + flctl->chan_fifo0_rx = NULL; + } + if (flctl->chan_fifo0_tx) { + dma_release_channel(flctl->chan_fifo0_tx); + flctl->chan_fifo0_tx = NULL; + } +} + +static void flctl_setup_dma(struct sh_flctl *flctl) +{ + dma_cap_mask_t mask; + struct dma_slave_config cfg; + struct platform_device *pdev = flctl->pdev; + struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev); + int ret; + + if (!pdata) + return; + + if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0) + return; + + /* We can only either use DMA for both Tx and Rx or not use it at all */ + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + + flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter, + (void *)(uintptr_t)pdata->slave_id_fifo0_tx); + dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__, + flctl->chan_fifo0_tx); + + if (!flctl->chan_fifo0_tx) + return; + + memset(&cfg, 0, sizeof(cfg)); + cfg.slave_id = pdata->slave_id_fifo0_tx; + cfg.direction = DMA_MEM_TO_DEV; + cfg.dst_addr = (dma_addr_t)FLDTFIFO(flctl); + cfg.src_addr = 0; + ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg); + if (ret < 0) + goto err; + + flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter, + (void *)(uintptr_t)pdata->slave_id_fifo0_rx); + dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__, + flctl->chan_fifo0_rx); + + if (!flctl->chan_fifo0_rx) + goto err; + + cfg.slave_id = pdata->slave_id_fifo0_rx; + cfg.direction = DMA_DEV_TO_MEM; + cfg.dst_addr = 0; + cfg.src_addr = (dma_addr_t)FLDTFIFO(flctl); + ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg); + if (ret < 0) + goto err; + + init_completion(&flctl->dma_complete); + + return; + +err: + flctl_release_dma(flctl); +} + static void set_addr(struct mtd_info *mtd, int column, int page_addr) { struct sh_flctl *flctl = mtd_to_flctl(mtd); @@ -157,27 +251,56 @@ static void wait_wfifo_ready(struct sh_flctl *flctl) timeout_error(flctl, __func__); } -static int wait_recfifo_ready(struct sh_flctl *flctl, int sector_number) +static enum flctl_ecc_res_t wait_recfifo_ready + (struct sh_flctl *flctl, int sector_number) { uint32_t timeout = LOOP_TIMEOUT_MAX; - int checked[4]; void __iomem *ecc_reg[4]; int i; + int state = FL_SUCCESS; uint32_t data, size; - memset(checked, 0, sizeof(checked)); - + /* + * First this loops checks in FLDTCNTR if we are ready to read out the + * oob data. This is the case if either all went fine without errors or + * if the bottom part of the loop corrected the errors or marked them as + * uncorrectable and the controller is given time to push the data into + * the FIFO. + */ while (timeout--) { + /* check if all is ok and we can read out the OOB */ size = readl(FLDTCNTR(flctl)) >> 24; - if (size & 0xFF) - return 0; /* success */ + if ((size & 0xFF) == 4) + return state; + + /* check if a correction code has been calculated */ + if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) { + /* + * either we wait for the fifo to be filled or a + * correction pattern is being generated + */ + udelay(1); + continue; + } - if (readl(FL4ECCCR(flctl)) & _4ECCFA) - return 1; /* can't correct */ + /* check for an uncorrectable error */ + if (readl(FL4ECCCR(flctl)) & _4ECCFA) { + /* check if we face a non-empty page */ + for (i = 0; i < 512; i++) { + if (flctl->done_buff[i] != 0xff) { + state = FL_ERROR; /* can't correct */ + break; + } + } - udelay(1); - if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) + if (state == FL_SUCCESS) + dev_dbg(&flctl->pdev->dev, + "reading empty sector %d, ecc error ignored\n", + sector_number); + + writel(0, FL4ECCCR(flctl)); continue; + } /* start error correction */ ecc_reg[0] = FL4ECCRESULT0(flctl); @@ -186,28 +309,26 @@ static int wait_recfifo_ready(struct sh_flctl *flctl, int sector_number) ecc_reg[3] = FL4ECCRESULT3(flctl); for (i = 0; i < 3; i++) { + uint8_t org; + unsigned int index; + data = readl(ecc_reg[i]); - if (data != INIT_FL4ECCRESULT_VAL && !checked[i]) { - uint8_t org; - int index; - - if (flctl->page_size) - index = (512 * sector_number) + - (data >> 16); - else - index = data >> 16; - - org = flctl->done_buff[index]; - flctl->done_buff[index] = org ^ (data & 0xFF); - checked[i] = 1; - } - } + if (flctl->page_size) + index = (512 * sector_number) + + (data >> 16); + else + index = data >> 16; + + org = flctl->done_buff[index]; + flctl->done_buff[index] = org ^ (data & 0xFF); + } + state = FL_REPAIRABLE; writel(0, FL4ECCCR(flctl)); } timeout_error(flctl, __func__); - return 1; /* timeout */ + return FL_TIMEOUT; /* timeout */ } static void wait_wecfifo_ready(struct sh_flctl *flctl) @@ -225,6 +346,70 @@ static void wait_wecfifo_ready(struct sh_flctl *flctl) timeout_error(flctl, __func__); } +static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf, + int len, enum dma_data_direction dir) +{ + struct dma_async_tx_descriptor *desc = NULL; + struct dma_chan *chan; + enum dma_transfer_direction tr_dir; + dma_addr_t dma_addr; + dma_cookie_t cookie = -EINVAL; + uint32_t reg; + int ret; + + if (dir == DMA_FROM_DEVICE) { + chan = flctl->chan_fifo0_rx; + tr_dir = DMA_DEV_TO_MEM; + } else { + chan = flctl->chan_fifo0_tx; + tr_dir = DMA_MEM_TO_DEV; + } + + dma_addr = dma_map_single(chan->device->dev, buf, len, dir); + + if (dma_addr) + desc = dmaengine_prep_slave_single(chan, dma_addr, len, + tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + + if (desc) { + reg = readl(FLINTDMACR(flctl)); + reg |= DREQ0EN; + writel(reg, FLINTDMACR(flctl)); + + desc->callback = flctl_dma_complete; + desc->callback_param = flctl; + cookie = dmaengine_submit(desc); + + dma_async_issue_pending(chan); + } else { + /* DMA failed, fall back to PIO */ + flctl_release_dma(flctl); + dev_warn(&flctl->pdev->dev, + "DMA failed, falling back to PIO\n"); + ret = -EIO; + goto out; + } + + ret = + wait_for_completion_timeout(&flctl->dma_complete, + msecs_to_jiffies(3000)); + + if (ret <= 0) { + chan->device->device_control(chan, DMA_TERMINATE_ALL, 0); + dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n"); + } + +out: + reg = readl(FLINTDMACR(flctl)); + reg &= ~DREQ0EN; + writel(reg, FLINTDMACR(flctl)); + + dma_unmap_single(chan->device->dev, dma_addr, len, dir); + + /* ret > 0 is success */ + return ret; +} + static void read_datareg(struct sh_flctl *flctl, int offset) { unsigned long data; @@ -240,50 +425,84 @@ static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset) { int i, len_4align; unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; - void *fifo_addr = (void *)FLDTFIFO(flctl); len_4align = (rlen + 3) / 4; + /* initiate DMA transfer */ + if (flctl->chan_fifo0_rx && rlen >= 32 && + flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_DEV_TO_MEM) > 0) + goto convert; /* DMA success */ + + /* do polling transfer */ for (i = 0; i < len_4align; i++) { wait_rfifo_ready(flctl); - buf[i] = readl(fifo_addr); - buf[i] = be32_to_cpu(buf[i]); + buf[i] = readl(FLDTFIFO(flctl)); } + +convert: + for (i = 0; i < len_4align; i++) + buf[i] = be32_to_cpu(buf[i]); } -static int read_ecfiforeg(struct sh_flctl *flctl, uint8_t *buff, int sector) +static enum flctl_ecc_res_t read_ecfiforeg + (struct sh_flctl *flctl, uint8_t *buff, int sector) { int i; + enum flctl_ecc_res_t res; unsigned long *ecc_buf = (unsigned long *)buff; - void *fifo_addr = (void *)FLECFIFO(flctl); - for (i = 0; i < 4; i++) { - if (wait_recfifo_ready(flctl , sector)) - return 1; - ecc_buf[i] = readl(fifo_addr); - ecc_buf[i] = be32_to_cpu(ecc_buf[i]); + res = wait_recfifo_ready(flctl , sector); + + if (res != FL_ERROR) { + for (i = 0; i < 4; i++) { + ecc_buf[i] = readl(FLECFIFO(flctl)); + ecc_buf[i] = be32_to_cpu(ecc_buf[i]); + } } - return 0; + return res; } -static void write_fiforeg(struct sh_flctl *flctl, int rlen, int offset) +static void write_fiforeg(struct sh_flctl *flctl, int rlen, + unsigned int offset) { int i, len_4align; - unsigned long *data = (unsigned long *)&flctl->done_buff[offset]; - void *fifo_addr = (void *)FLDTFIFO(flctl); + unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; len_4align = (rlen + 3) / 4; for (i = 0; i < len_4align; i++) { wait_wfifo_ready(flctl); - writel(cpu_to_be32(data[i]), fifo_addr); + writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl)); + } +} + +static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen, + unsigned int offset) +{ + int i, len_4align; + unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; + + len_4align = (rlen + 3) / 4; + + for (i = 0; i < len_4align; i++) + buf[i] = cpu_to_be32(buf[i]); + + /* initiate DMA transfer */ + if (flctl->chan_fifo0_tx && rlen >= 32 && + flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_MEM_TO_DEV) > 0) + return; /* DMA success */ + + /* do polling transfer */ + for (i = 0; i < len_4align; i++) { + wait_wecfifo_ready(flctl); + writel(buf[i], FLECFIFO(flctl)); } } static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val) { struct sh_flctl *flctl = mtd_to_flctl(mtd); - uint32_t flcmncr_val = readl(FLCMNCR(flctl)) & ~SEL_16BIT; + uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT; uint32_t flcmdcr_val, addr_len_bytes = 0; /* Set SNAND bit if page size is 2048byte */ @@ -303,6 +522,7 @@ static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_va break; case NAND_CMD_READ0: case NAND_CMD_READOOB: + case NAND_CMD_RNDOUT: addr_len_bytes = flctl->rw_ADRCNT; flcmdcr_val |= CDSRC_E; if (flctl->chip.options & NAND_BUSWIDTH_16) @@ -320,6 +540,7 @@ static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_va break; case NAND_CMD_READID: flcmncr_val &= ~SNAND_E; + flcmdcr_val |= CDSRC_E; addr_len_bytes = ADRCNT_1; break; case NAND_CMD_STATUS: @@ -341,75 +562,67 @@ static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_va } static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int page) + uint8_t *buf, int oob_required, int page) { - int i, eccsize = chip->ecc.size; - int eccbytes = chip->ecc.bytes; - int eccsteps = chip->ecc.steps; - uint8_t *p = buf; - struct sh_flctl *flctl = mtd_to_flctl(mtd); - - for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) - chip->read_buf(mtd, p, eccsize); - - for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { - if (flctl->hwecc_cant_correct[i]) - mtd->ecc_stats.failed++; - else - mtd->ecc_stats.corrected += 0; - } - + chip->read_buf(mtd, buf, mtd->writesize); + if (oob_required) + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); return 0; } -static void flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf) +static int flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required) { - int i, eccsize = chip->ecc.size; - int eccbytes = chip->ecc.bytes; - int eccsteps = chip->ecc.steps; - const uint8_t *p = buf; - - for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) - chip->write_buf(mtd, p, eccsize); + chip->write_buf(mtd, buf, mtd->writesize); + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + return 0; } static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr) { struct sh_flctl *flctl = mtd_to_flctl(mtd); int sector, page_sectors; + enum flctl_ecc_res_t ecc_result; - if (flctl->page_size) - page_sectors = 4; - else - page_sectors = 1; - - writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT, - FLCMNCR(flctl)); + page_sectors = flctl->page_size ? 4 : 1; set_cmd_regs(mtd, NAND_CMD_READ0, (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); - for (sector = 0; sector < page_sectors; sector++) { - int ret; + writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT, + FLCMNCR(flctl)); + writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl)); + writel(page_addr << 2, FLADR(flctl)); - empty_fifo(flctl); - writel(readl(FLCMDCR(flctl)) | 1, FLCMDCR(flctl)); - writel(page_addr << 2 | sector, FLADR(flctl)); + empty_fifo(flctl); + start_translation(flctl); - start_translation(flctl); + for (sector = 0; sector < page_sectors; sector++) { read_fiforeg(flctl, 512, 512 * sector); - ret = read_ecfiforeg(flctl, + ecc_result = read_ecfiforeg(flctl, &flctl->done_buff[mtd->writesize + 16 * sector], sector); - if (ret) - flctl->hwecc_cant_correct[sector] = 1; - - writel(0x0, FL4ECCCR(flctl)); - wait_completion(flctl); + switch (ecc_result) { + case FL_REPAIRABLE: + dev_info(&flctl->pdev->dev, + "applied ecc on page 0x%x", page_addr); + flctl->mtd.ecc_stats.corrected++; + break; + case FL_ERROR: + dev_warn(&flctl->pdev->dev, + "page 0x%x contains corrupted data\n", + page_addr); + flctl->mtd.ecc_stats.failed++; + break; + default: + ; + } } + + wait_completion(flctl); + writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT), FLCMNCR(flctl)); } @@ -417,30 +630,20 @@ static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr) static void execmd_read_oob(struct mtd_info *mtd, int page_addr) { struct sh_flctl *flctl = mtd_to_flctl(mtd); + int page_sectors = flctl->page_size ? 4 : 1; + int i; set_cmd_regs(mtd, NAND_CMD_READ0, (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); empty_fifo(flctl); - if (flctl->page_size) { - int i; - /* In case that the page size is 2k */ - for (i = 0; i < 16 * 3; i++) - flctl->done_buff[i] = 0xFF; - set_addr(mtd, 3 * 528 + 512, page_addr); + for (i = 0; i < page_sectors; i++) { + set_addr(mtd, (512 + 16) * i + 512 , page_addr); writel(16, FLDTCNTR(flctl)); start_translation(flctl); - read_fiforeg(flctl, 16, 16 * 3); - wait_completion(flctl); - } else { - /* In case that the page size is 512b */ - set_addr(mtd, 512, page_addr); - writel(16, FLDTCNTR(flctl)); - - start_translation(flctl); - read_fiforeg(flctl, 16, 0); + read_fiforeg(flctl, 16, 16 * i); wait_completion(flctl); } } @@ -448,34 +651,26 @@ static void execmd_read_oob(struct mtd_info *mtd, int page_addr) static void execmd_write_page_sector(struct mtd_info *mtd) { struct sh_flctl *flctl = mtd_to_flctl(mtd); - int i, page_addr = flctl->seqin_page_addr; + int page_addr = flctl->seqin_page_addr; int sector, page_sectors; - if (flctl->page_size) - page_sectors = 4; - else - page_sectors = 1; - - writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl)); + page_sectors = flctl->page_size ? 4 : 1; set_cmd_regs(mtd, NAND_CMD_PAGEPROG, (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); - for (sector = 0; sector < page_sectors; sector++) { - empty_fifo(flctl); - writel(readl(FLCMDCR(flctl)) | 1, FLCMDCR(flctl)); - writel(page_addr << 2 | sector, FLADR(flctl)); + empty_fifo(flctl); + writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl)); + writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl)); + writel(page_addr << 2, FLADR(flctl)); + start_translation(flctl); - start_translation(flctl); + for (sector = 0; sector < page_sectors; sector++) { write_fiforeg(flctl, 512, 512 * sector); - - for (i = 0; i < 4; i++) { - wait_wecfifo_ready(flctl); /* wait for write ready */ - writel(0xFFFFFFFF, FLECFIFO(flctl)); - } - wait_completion(flctl); + write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector); } + wait_completion(flctl); writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl)); } @@ -485,18 +680,12 @@ static void execmd_write_oob(struct mtd_info *mtd) int page_addr = flctl->seqin_page_addr; int sector, page_sectors; - if (flctl->page_size) { - sector = 3; - page_sectors = 4; - } else { - sector = 0; - page_sectors = 1; - } + page_sectors = flctl->page_size ? 4 : 1; set_cmd_regs(mtd, NAND_CMD_PAGEPROG, (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); - for (; sector < page_sectors; sector++) { + for (sector = 0; sector < page_sectors; sector++) { empty_fifo(flctl); set_addr(mtd, sector * 528 + 512, page_addr); writel(16, FLDTCNTR(flctl)); /* set read size */ @@ -513,6 +702,8 @@ static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command, struct sh_flctl *flctl = mtd_to_flctl(mtd); uint32_t read_cmd = 0; + pm_runtime_get_sync(&flctl->pdev->dev); + flctl->read_bytes = 0; if (command != NAND_CMD_PAGEPROG) flctl->index = 0; @@ -525,7 +716,6 @@ static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command, execmd_read_page_sector(mtd, page_addr); break; } - empty_fifo(flctl); if (flctl->page_size) set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8) | command); @@ -547,7 +737,6 @@ static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command, break; } - empty_fifo(flctl); if (flctl->page_size) { set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); @@ -559,15 +748,35 @@ static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command, flctl->read_bytes = mtd->oobsize; goto read_normal_exit; + case NAND_CMD_RNDOUT: + if (flctl->hwecc) + break; + + if (flctl->page_size) + set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8) + | command); + else + set_cmd_regs(mtd, command, command); + + set_addr(mtd, column, 0); + + flctl->read_bytes = mtd->writesize + mtd->oobsize - column; + goto read_normal_exit; + case NAND_CMD_READID: - empty_fifo(flctl); set_cmd_regs(mtd, command, command); - set_addr(mtd, 0, 0); - flctl->read_bytes = 4; + /* READID is always performed using an 8-bit bus */ + if (flctl->chip.options & NAND_BUSWIDTH_16) + column <<= 1; + set_addr(mtd, column, 0); + + flctl->read_bytes = 8; writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ + empty_fifo(flctl); start_translation(flctl); - read_datareg(flctl, 0); /* read and end */ + read_fiforeg(flctl, flctl->read_bytes, 0); + wait_completion(flctl); break; case NAND_CMD_ERASE1: @@ -650,29 +859,57 @@ static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command, default: break; } - return; + goto runtime_exit; read_normal_exit: writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ + empty_fifo(flctl); start_translation(flctl); read_fiforeg(flctl, flctl->read_bytes, 0); wait_completion(flctl); +runtime_exit: + pm_runtime_put_sync(&flctl->pdev->dev); return; } static void flctl_select_chip(struct mtd_info *mtd, int chipnr) { struct sh_flctl *flctl = mtd_to_flctl(mtd); - uint32_t flcmncr_val = readl(FLCMNCR(flctl)); + int ret; switch (chipnr) { case -1: - flcmncr_val &= ~CE0_ENABLE; - writel(flcmncr_val, FLCMNCR(flctl)); + flctl->flcmncr_base &= ~CE0_ENABLE; + + pm_runtime_get_sync(&flctl->pdev->dev); + writel(flctl->flcmncr_base, FLCMNCR(flctl)); + + if (flctl->qos_request) { + dev_pm_qos_remove_request(&flctl->pm_qos); + flctl->qos_request = 0; + } + + pm_runtime_put_sync(&flctl->pdev->dev); break; case 0: - flcmncr_val |= CE0_ENABLE; - writel(flcmncr_val, FLCMNCR(flctl)); + flctl->flcmncr_base |= CE0_ENABLE; + + if (!flctl->qos_request) { + ret = dev_pm_qos_add_request(&flctl->pdev->dev, + &flctl->pm_qos, + DEV_PM_QOS_RESUME_LATENCY, + 100); + if (ret < 0) + dev_err(&flctl->pdev->dev, + "PM QoS request failed: %d\n", ret); + flctl->qos_request = 1; + } + + if (flctl->holden) { + pm_runtime_get_sync(&flctl->pdev->dev); + writel(HOLDEN, FLHOLDCR(flctl)); + pm_runtime_put_sync(&flctl->pdev->dev); + } break; default: BUG(); @@ -682,57 +919,36 @@ static void flctl_select_chip(struct mtd_info *mtd, int chipnr) static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct sh_flctl *flctl = mtd_to_flctl(mtd); - int i, index = flctl->index; - for (i = 0; i < len; i++) - flctl->done_buff[index + i] = buf[i]; + memcpy(&flctl->done_buff[flctl->index], buf, len); flctl->index += len; } static uint8_t flctl_read_byte(struct mtd_info *mtd) { struct sh_flctl *flctl = mtd_to_flctl(mtd); - int index = flctl->index; uint8_t data; - data = flctl->done_buff[index]; + data = flctl->done_buff[flctl->index]; flctl->index++; return data; } static uint16_t flctl_read_word(struct mtd_info *mtd) { - struct sh_flctl *flctl = mtd_to_flctl(mtd); - int index = flctl->index; - uint16_t data; - uint16_t *buf = (uint16_t *)&flctl->done_buff[index]; + struct sh_flctl *flctl = mtd_to_flctl(mtd); + uint16_t *buf = (uint16_t *)&flctl->done_buff[flctl->index]; - data = *buf; - flctl->index += 2; - return data; + flctl->index += 2; + return *buf; } static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { - int i; - - for (i = 0; i < len; i++) - buf[i] = flctl_read_byte(mtd); -} - -static int flctl_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) -{ - int i; - - for (i = 0; i < len; i++) - if (buf[i] != flctl_read_byte(mtd)) - return -EFAULT; - return 0; -} + struct sh_flctl *flctl = mtd_to_flctl(mtd); -static void flctl_register_init(struct sh_flctl *flctl, unsigned long val) -{ - writel(val, FLCMNCR(flctl)); + memcpy(buf, &flctl->done_buff[flctl->index], len); + flctl->index += len; } static int flctl_chip_init_tail(struct mtd_info *mtd) @@ -781,13 +997,13 @@ static int flctl_chip_init_tail(struct mtd_info *mtd) chip->ecc.size = 512; chip->ecc.bytes = 10; + chip->ecc.strength = 4; chip->ecc.read_page = flctl_read_page_hwecc; chip->ecc.write_page = flctl_write_page_hwecc; chip->ecc.mode = NAND_ECC_HW; /* 4 symbols ECC enabled */ - writel(readl(FLCMNCR(flctl)) | _4ECCEN | ECCPOS2 | ECCPOS_02, - FLCMNCR(flctl)); + flctl->flcmncr_base |= _4ECCEN; } else { chip->ecc.mode = NAND_ECC_SOFT; } @@ -795,37 +1011,114 @@ static int flctl_chip_init_tail(struct mtd_info *mtd) return 0; } -static int __devinit flctl_probe(struct platform_device *pdev) +static irqreturn_t flctl_handle_flste(int irq, void *dev_id) +{ + struct sh_flctl *flctl = dev_id; + + dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl))); + writel(flctl->flintdmacr_base, FLINTDMACR(flctl)); + + return IRQ_HANDLED; +} + +struct flctl_soc_config { + unsigned long flcmncr_val; + unsigned has_hwecc:1; + unsigned use_holden:1; +}; + +static struct flctl_soc_config flctl_sh7372_config = { + .flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL, + .has_hwecc = 1, + .use_holden = 1, +}; + +static const struct of_device_id of_flctl_match[] = { + { .compatible = "renesas,shmobile-flctl-sh7372", + .data = &flctl_sh7372_config }, + {}, +}; +MODULE_DEVICE_TABLE(of, of_flctl_match); + +static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev) +{ + const struct of_device_id *match; + struct flctl_soc_config *config; + struct sh_flctl_platform_data *pdata; + struct device_node *dn = dev->of_node; + int ret; + + match = of_match_device(of_flctl_match, dev); + if (match) + config = (struct flctl_soc_config *)match->data; + else { + dev_err(dev, "%s: no OF configuration attached\n", __func__); + return NULL; + } + + pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data), + GFP_KERNEL); + if (!pdata) + return NULL; + + /* set SoC specific options */ + pdata->flcmncr_val = config->flcmncr_val; + pdata->has_hwecc = config->has_hwecc; + pdata->use_holden = config->use_holden; + + /* parse user defined options */ + ret = of_get_nand_bus_width(dn); + if (ret == 16) + pdata->flcmncr_val |= SEL_16BIT; + else if (ret != 8) { + dev_err(dev, "%s: invalid bus width\n", __func__); + return NULL; + } + + return pdata; +} + +static int flctl_probe(struct platform_device *pdev) { struct resource *res; struct sh_flctl *flctl; struct mtd_info *flctl_mtd; struct nand_chip *nand; struct sh_flctl_platform_data *pdata; - int ret = -ENXIO; + int ret; + int irq; + struct mtd_part_parser_data ppdata = {}; - pdata = pdev->dev.platform_data; - if (pdata == NULL) { - dev_err(&pdev->dev, "no platform data defined\n"); - return -EINVAL; - } - - flctl = kzalloc(sizeof(struct sh_flctl), GFP_KERNEL); - if (!flctl) { - dev_err(&pdev->dev, "failed to allocate driver data\n"); + flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL); + if (!flctl) return -ENOMEM; - } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - if (!res) { - dev_err(&pdev->dev, "failed to get I/O memory\n"); - goto err; + flctl->reg = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(flctl->reg)) + return PTR_ERR(flctl->reg); + + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_err(&pdev->dev, "failed to get flste irq data\n"); + return -ENXIO; } - flctl->reg = ioremap(res->start, resource_size(res)); - if (flctl->reg == NULL) { - dev_err(&pdev->dev, "failed to remap I/O memory\n"); - goto err; + ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED, + "flste", flctl); + if (ret) { + dev_err(&pdev->dev, "request interrupt failed.\n"); + return ret; + } + + if (pdev->dev.of_node) + pdata = flctl_parse_dt(&pdev->dev); + else + pdata = dev_get_platdata(&pdev->dev); + + if (!pdata) { + dev_err(&pdev->dev, "no setup data defined\n"); + return -EINVAL; } platform_set_drvdata(pdev, flctl); @@ -834,10 +1127,9 @@ static int __devinit flctl_probe(struct platform_device *pdev) flctl_mtd->priv = nand; flctl->pdev = pdev; flctl->hwecc = pdata->has_hwecc; - - flctl_register_init(flctl, pdata->flcmncr_val); - - nand->options = NAND_NO_AUTOINCR; + flctl->holden = pdata->use_holden; + flctl->flcmncr_base = pdata->flcmncr_val; + flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE; /* Set address of hardware control function */ /* 20 us command delay time */ @@ -846,7 +1138,6 @@ static int __devinit flctl_probe(struct platform_device *pdev) nand->read_byte = flctl_read_byte; nand->write_buf = flctl_write_buf; nand->read_buf = flctl_read_buf; - nand->verify_buf = flctl_verify_buf; nand->select_chip = flctl_select_chip; nand->cmdfunc = flctl_cmdfunc; @@ -855,33 +1146,42 @@ static int __devinit flctl_probe(struct platform_device *pdev) nand->read_word = flctl_read_word; } + pm_runtime_enable(&pdev->dev); + pm_runtime_resume(&pdev->dev); + + flctl_setup_dma(flctl); + ret = nand_scan_ident(flctl_mtd, 1, NULL); if (ret) - goto err; + goto err_chip; ret = flctl_chip_init_tail(flctl_mtd); if (ret) - goto err; + goto err_chip; ret = nand_scan_tail(flctl_mtd); if (ret) - goto err; + goto err_chip; - add_mtd_partitions(flctl_mtd, pdata->parts, pdata->nr_parts); + ppdata.of_node = pdev->dev.of_node; + ret = mtd_device_parse_register(flctl_mtd, NULL, &ppdata, pdata->parts, + pdata->nr_parts); return 0; -err: - kfree(flctl); +err_chip: + flctl_release_dma(flctl); + pm_runtime_disable(&pdev->dev); return ret; } -static int __devexit flctl_remove(struct platform_device *pdev) +static int flctl_remove(struct platform_device *pdev) { struct sh_flctl *flctl = platform_get_drvdata(pdev); + flctl_release_dma(flctl); nand_release(&flctl->mtd); - kfree(flctl); + pm_runtime_disable(&pdev->dev); return 0; } @@ -891,21 +1191,11 @@ static struct platform_driver flctl_driver = { .driver = { .name = "sh_flctl", .owner = THIS_MODULE, + .of_match_table = of_match_ptr(of_flctl_match), }, }; -static int __init flctl_nand_init(void) -{ - return platform_driver_probe(&flctl_driver, flctl_probe); -} - -static void __exit flctl_nand_cleanup(void) -{ - platform_driver_unregister(&flctl_driver); -} - -module_init(flctl_nand_init); -module_exit(flctl_nand_cleanup); +module_platform_driver_probe(flctl_driver, flctl_probe); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Yoshihiro Shimoda"); diff --git a/drivers/mtd/nand/sharpsl.c b/drivers/mtd/nand/sharpsl.c index 54ec7542a7b..e81059b5838 100644 --- a/drivers/mtd/nand/sharpsl.c +++ b/drivers/mtd/nand/sharpsl.c @@ -103,24 +103,16 @@ static int sharpsl_nand_calculate_ecc(struct mtd_info *mtd, const u_char * dat, return readb(sharpsl->io + ECCCNTR) != 0; } -#ifdef CONFIG_MTD_PARTITIONS -static const char *part_probes[] = { "cmdlinepart", NULL }; -#endif - /* * Main initialization routine */ -static int __devinit sharpsl_nand_probe(struct platform_device *pdev) +static int sharpsl_nand_probe(struct platform_device *pdev) { struct nand_chip *this; -#ifdef CONFIG_MTD_PARTITIONS - struct mtd_partition *sharpsl_partition_info; - int nr_partitions; -#endif struct resource *r; int err = 0; struct sharpsl_nand *sharpsl; - struct sharpsl_nand_platform_data *data = pdev->dev.platform_data; + struct sharpsl_nand_platform_data *data = dev_get_platdata(&pdev->dev); if (!data) { dev_err(&pdev->dev, "no platform data!\n"); @@ -129,10 +121,8 @@ static int __devinit sharpsl_nand_probe(struct platform_device *pdev) /* Allocate memory for MTD device structure and private data */ sharpsl = kzalloc(sizeof(struct sharpsl_nand), GFP_KERNEL); - if (!sharpsl) { - printk("Unable to allocate SharpSL NAND MTD device structure.\n"); + if (!sharpsl) return -ENOMEM; - } r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!r) { @@ -144,7 +134,7 @@ static int __devinit sharpsl_nand_probe(struct platform_device *pdev) /* map physical address */ sharpsl->io = ioremap(r->start, resource_size(r)); if (!sharpsl->io) { - printk("ioremap to access Sharp SL NAND chip failed\n"); + dev_err(&pdev->dev, "ioremap to access Sharp SL NAND chip failed\n"); err = -EIO; goto err_ioremap; } @@ -175,6 +165,7 @@ static int __devinit sharpsl_nand_probe(struct platform_device *pdev) this->ecc.mode = NAND_ECC_HW; this->ecc.size = 256; this->ecc.bytes = 3; + this->ecc.strength = 1; this->badblock_pattern = data->badblock_pattern; this->ecc.layout = data->ecc_layout; this->ecc.hwctl = sharpsl_nand_enable_hwecc; @@ -188,18 +179,9 @@ static int __devinit sharpsl_nand_probe(struct platform_device *pdev) /* Register the partitions */ sharpsl->mtd.name = "sharpsl-nand"; -#ifdef CONFIG_MTD_PARTITIONS - nr_partitions = parse_mtd_partitions(&sharpsl->mtd, part_probes, &sharpsl_partition_info, 0); - if (nr_partitions <= 0) { - nr_partitions = data->nr_partitions; - sharpsl_partition_info = data->partitions; - } - if (nr_partitions > 0) - err = add_mtd_partitions(&sharpsl->mtd, sharpsl_partition_info, nr_partitions); - else -#endif - err = add_mtd_device(&sharpsl->mtd); + err = mtd_device_parse_register(&sharpsl->mtd, NULL, NULL, + data->partitions, data->nr_partitions); if (err) goto err_add; @@ -210,7 +192,6 @@ err_add: nand_release(&sharpsl->mtd); err_scan: - platform_set_drvdata(pdev, NULL); iounmap(sharpsl->io); err_ioremap: err_get_res: @@ -221,15 +202,13 @@ err_get_res: /* * Clean up routine */ -static int __devexit sharpsl_nand_remove(struct platform_device *pdev) +static int sharpsl_nand_remove(struct platform_device *pdev) { struct sharpsl_nand *sharpsl = platform_get_drvdata(pdev); /* Release resources, unregister device */ nand_release(&sharpsl->mtd); - platform_set_drvdata(pdev, NULL); - iounmap(sharpsl->io); /* Free the MTD device structure */ @@ -244,20 +223,10 @@ static struct platform_driver sharpsl_nand_driver = { .owner = THIS_MODULE, }, .probe = sharpsl_nand_probe, - .remove = __devexit_p(sharpsl_nand_remove), + .remove = sharpsl_nand_remove, }; -static int __init sharpsl_nand_init(void) -{ - return platform_driver_register(&sharpsl_nand_driver); -} -module_init(sharpsl_nand_init); - -static void __exit sharpsl_nand_exit(void) -{ - platform_driver_unregister(&sharpsl_nand_driver); -} -module_exit(sharpsl_nand_exit); +module_platform_driver(sharpsl_nand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>"); diff --git a/drivers/mtd/nand/sm_common.c b/drivers/mtd/nand/sm_common.c index ac80fb362e6..e06b5e5d328 100644 --- a/drivers/mtd/nand/sm_common.c +++ b/drivers/mtd/nand/sm_common.c @@ -8,6 +8,8 @@ */ #include <linux/kernel.h> #include <linux/mtd/nand.h> +#include <linux/module.h> +#include <linux/sizes.h> #include "sm_common.h" static struct nand_ecclayout nand_oob_sm = { @@ -40,76 +42,67 @@ static int sm_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct mtd_oob_ops ops; struct sm_oob oob; - int ret, error = 0; + int ret; memset(&oob, -1, SM_OOB_SIZE); oob.block_status = 0x0F; /* As long as this function is called on erase block boundaries it will work correctly for 256 byte nand */ - ops.mode = MTD_OOB_PLACE; + ops.mode = MTD_OPS_PLACE_OOB; ops.ooboffs = 0; ops.ooblen = mtd->oobsize; ops.oobbuf = (void *)&oob; ops.datbuf = NULL; - ret = mtd->write_oob(mtd, ofs, &ops); + ret = mtd_write_oob(mtd, ofs, &ops); if (ret < 0 || ops.oobretlen != SM_OOB_SIZE) { printk(KERN_NOTICE "sm_common: can't mark sector at %i as bad\n", (int)ofs); - error = -EIO; - } else - mtd->ecc_stats.badblocks++; + return -EIO; + } - return error; + return 0; } - static struct nand_flash_dev nand_smartmedia_flash_ids[] = { - {"SmartMedia 1MiB 5V", 0x6e, 256, 1, 0x1000, 0}, - {"SmartMedia 1MiB 3,3V", 0xe8, 256, 1, 0x1000, 0}, - {"SmartMedia 1MiB 3,3V", 0xec, 256, 1, 0x1000, 0}, - {"SmartMedia 2MiB 3,3V", 0xea, 256, 2, 0x1000, 0}, - {"SmartMedia 2MiB 5V", 0x64, 256, 2, 0x1000, 0}, - {"SmartMedia 2MiB 3,3V ROM", 0x5d, 512, 2, 0x2000, NAND_ROM}, - {"SmartMedia 4MiB 3,3V", 0xe3, 512, 4, 0x2000, 0}, - {"SmartMedia 4MiB 3,3/5V", 0xe5, 512, 4, 0x2000, 0}, - {"SmartMedia 4MiB 5V", 0x6b, 512, 4, 0x2000, 0}, - {"SmartMedia 4MiB 3,3V ROM", 0xd5, 512, 4, 0x2000, NAND_ROM}, - {"SmartMedia 8MiB 3,3V", 0xe6, 512, 8, 0x2000, 0}, - {"SmartMedia 8MiB 3,3V ROM", 0xd6, 512, 8, 0x2000, NAND_ROM}, - {"SmartMedia 16MiB 3,3V", 0x73, 512, 16, 0x4000, 0}, - {"SmartMedia 16MiB 3,3V ROM", 0x57, 512, 16, 0x4000, NAND_ROM}, - {"SmartMedia 32MiB 3,3V", 0x75, 512, 32, 0x4000, 0}, - {"SmartMedia 32MiB 3,3V ROM", 0x58, 512, 32, 0x4000, NAND_ROM}, - {"SmartMedia 64MiB 3,3V", 0x76, 512, 64, 0x4000, 0}, - {"SmartMedia 64MiB 3,3V ROM", 0xd9, 512, 64, 0x4000, NAND_ROM}, - {"SmartMedia 128MiB 3,3V", 0x79, 512, 128, 0x4000, 0}, - {"SmartMedia 128MiB 3,3V ROM", 0xda, 512, 128, 0x4000, NAND_ROM}, - {"SmartMedia 256MiB 3,3V", 0x71, 512, 256, 0x4000 }, - {"SmartMedia 256MiB 3,3V ROM", 0x5b, 512, 256, 0x4000, NAND_ROM}, - {NULL,} + LEGACY_ID_NAND("SmartMedia 2MiB 3,3V ROM", 0x5d, 2, SZ_8K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 4MiB 3,3V", 0xe3, 4, SZ_8K, 0), + LEGACY_ID_NAND("SmartMedia 4MiB 3,3/5V", 0xe5, 4, SZ_8K, 0), + LEGACY_ID_NAND("SmartMedia 4MiB 5V", 0x6b, 4, SZ_8K, 0), + LEGACY_ID_NAND("SmartMedia 4MiB 3,3V ROM", 0xd5, 4, SZ_8K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 8MiB 3,3V", 0xe6, 8, SZ_8K, 0), + LEGACY_ID_NAND("SmartMedia 8MiB 3,3V ROM", 0xd6, 8, SZ_8K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 16MiB 3,3V", 0x73, 16, SZ_16K, 0), + LEGACY_ID_NAND("SmartMedia 16MiB 3,3V ROM", 0x57, 16, SZ_16K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 32MiB 3,3V", 0x75, 32, SZ_16K, 0), + LEGACY_ID_NAND("SmartMedia 32MiB 3,3V ROM", 0x58, 32, SZ_16K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 64MiB 3,3V", 0x76, 64, SZ_16K, 0), + LEGACY_ID_NAND("SmartMedia 64MiB 3,3V ROM", 0xd9, 64, SZ_16K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 128MiB 3,3V", 0x79, 128, SZ_16K, 0), + LEGACY_ID_NAND("SmartMedia 128MiB 3,3V ROM", 0xda, 128, SZ_16K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 256MiB 3, 3V", 0x71, 256, SZ_16K, 0), + LEGACY_ID_NAND("SmartMedia 256MiB 3,3V ROM", 0x5b, 256, SZ_16K, NAND_ROM), + {NULL} }; -#define XD_TYPEM (NAND_NO_AUTOINCR | NAND_BROKEN_XD) static struct nand_flash_dev nand_xd_flash_ids[] = { - - {"xD 16MiB 3,3V", 0x73, 512, 16, 0x4000, 0}, - {"xD 32MiB 3,3V", 0x75, 512, 32, 0x4000, 0}, - {"xD 64MiB 3,3V", 0x76, 512, 64, 0x4000, 0}, - {"xD 128MiB 3,3V", 0x79, 512, 128, 0x4000, 0}, - {"xD 256MiB 3,3V", 0x71, 512, 256, 0x4000, XD_TYPEM}, - {"xD 512MiB 3,3V", 0xdc, 512, 512, 0x4000, XD_TYPEM}, - {"xD 1GiB 3,3V", 0xd3, 512, 1024, 0x4000, XD_TYPEM}, - {"xD 2GiB 3,3V", 0xd5, 512, 2048, 0x4000, XD_TYPEM}, - {NULL,} + LEGACY_ID_NAND("xD 16MiB 3,3V", 0x73, 16, SZ_16K, 0), + LEGACY_ID_NAND("xD 32MiB 3,3V", 0x75, 32, SZ_16K, 0), + LEGACY_ID_NAND("xD 64MiB 3,3V", 0x76, 64, SZ_16K, 0), + LEGACY_ID_NAND("xD 128MiB 3,3V", 0x79, 128, SZ_16K, 0), + LEGACY_ID_NAND("xD 256MiB 3,3V", 0x71, 256, SZ_16K, NAND_BROKEN_XD), + LEGACY_ID_NAND("xD 512MiB 3,3V", 0xdc, 512, SZ_16K, NAND_BROKEN_XD), + LEGACY_ID_NAND("xD 1GiB 3,3V", 0xd3, 1024, SZ_16K, NAND_BROKEN_XD), + LEGACY_ID_NAND("xD 2GiB 3,3V", 0xd5, 2048, SZ_16K, NAND_BROKEN_XD), + {NULL} }; int sm_register_device(struct mtd_info *mtd, int smartmedia) { - struct nand_chip *chip = (struct nand_chip *)mtd->priv; + struct nand_chip *chip = mtd->priv; int ret; chip->options |= NAND_SKIP_BBTSCAN; @@ -121,7 +114,7 @@ int sm_register_device(struct mtd_info *mtd, int smartmedia) if (ret) return ret; - /* Bad block marker postion */ + /* Bad block marker position */ chip->badblockpos = 0x05; chip->badblockbits = 7; chip->block_markbad = sm_block_markbad; @@ -139,7 +132,7 @@ int sm_register_device(struct mtd_info *mtd, int smartmedia) if (ret) return ret; - return add_mtd_device(mtd); + return mtd_device_register(mtd, NULL, 0); } EXPORT_SYMBOL_GPL(sm_register_device); diff --git a/drivers/mtd/nand/socrates_nand.c b/drivers/mtd/nand/socrates_nand.c index cc728b12de8..fe8058a4505 100644 --- a/drivers/mtd/nand/socrates_nand.c +++ b/drivers/mtd/nand/socrates_nand.c @@ -15,6 +15,7 @@ #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> +#include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/io.h> @@ -98,24 +99,6 @@ static uint16_t socrates_nand_read_word(struct mtd_info *mtd) return word; } -/** - * socrates_nand_verify_buf - Verify chip data against buffer - * @mtd: MTD device structure - * @buf: buffer containing the data to compare - * @len: number of bytes to compare - */ -static int socrates_nand_verify_buf(struct mtd_info *mtd, const u8 *buf, - int len) -{ - int i; - - for (i = 0; i < len; i++) { - if (buf[i] != socrates_nand_read_byte(mtd)) - return -EFAULT; - } - return 0; -} - /* * Hardware specific access to control-lines */ @@ -155,38 +138,25 @@ static int socrates_nand_device_ready(struct mtd_info *mtd) return 1; } -#ifdef CONFIG_MTD_PARTITIONS -static const char *part_probes[] = { "cmdlinepart", NULL }; -#endif - /* * Probe for the NAND device. */ -static int __devinit socrates_nand_probe(struct of_device *ofdev, - const struct of_device_id *ofid) +static int socrates_nand_probe(struct platform_device *ofdev) { struct socrates_nand_host *host; struct mtd_info *mtd; struct nand_chip *nand_chip; int res; - -#ifdef CONFIG_MTD_PARTITIONS - struct mtd_partition *partitions = NULL; - int num_partitions = 0; -#endif + struct mtd_part_parser_data ppdata; /* Allocate memory for the device structure (and zero it) */ - host = kzalloc(sizeof(struct socrates_nand_host), GFP_KERNEL); - if (!host) { - printk(KERN_ERR - "socrates_nand: failed to allocate device structure.\n"); + host = devm_kzalloc(&ofdev->dev, sizeof(*host), GFP_KERNEL); + if (!host) return -ENOMEM; - } host->io_base = of_iomap(ofdev->dev.of_node, 0); if (host->io_base == NULL) { - printk(KERN_ERR "socrates_nand: ioremap failed\n"); - kfree(host); + dev_err(&ofdev->dev, "ioremap failed\n"); return -EIO; } @@ -199,6 +169,7 @@ static int __devinit socrates_nand_probe(struct of_device *ofdev, mtd->name = "socrates_nand"; mtd->owner = THIS_MODULE; mtd->dev.parent = &ofdev->dev; + ppdata.of_node = ofdev->dev.of_node; /*should never be accessed directly */ nand_chip->IO_ADDR_R = (void *)0xdeadbeef; @@ -209,7 +180,6 @@ static int __devinit socrates_nand_probe(struct of_device *ofdev, nand_chip->read_word = socrates_nand_read_word; nand_chip->write_buf = socrates_nand_write_buf; nand_chip->read_buf = socrates_nand_read_buf; - nand_chip->verify_buf = socrates_nand_verify_buf; nand_chip->dev_ready = socrates_nand_device_ready; nand_chip->ecc.mode = NAND_ECC_SOFT; /* enable ECC */ @@ -231,61 +201,28 @@ static int __devinit socrates_nand_probe(struct of_device *ofdev, goto out; } -#ifdef CONFIG_MTD_PARTITIONS -#ifdef CONFIG_MTD_CMDLINE_PARTS - num_partitions = parse_mtd_partitions(mtd, part_probes, - &partitions, 0); - if (num_partitions < 0) { - res = num_partitions; - goto release; - } -#endif - -#ifdef CONFIG_MTD_OF_PARTS - if (num_partitions == 0) { - num_partitions = of_mtd_parse_partitions(&ofdev->dev, - ofdev->dev.of_node, - &partitions); - if (num_partitions < 0) { - res = num_partitions; - goto release; - } - } -#endif - if (partitions && (num_partitions > 0)) - res = add_mtd_partitions(mtd, partitions, num_partitions); - else -#endif - res = add_mtd_device(mtd); - + res = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0); if (!res) return res; -#ifdef CONFIG_MTD_PARTITIONS -release: -#endif nand_release(mtd); out: - dev_set_drvdata(&ofdev->dev, NULL); iounmap(host->io_base); - kfree(host); return res; } /* * Remove a NAND device. */ -static int __devexit socrates_nand_remove(struct of_device *ofdev) +static int socrates_nand_remove(struct platform_device *ofdev) { struct socrates_nand_host *host = dev_get_drvdata(&ofdev->dev); struct mtd_info *mtd = &host->mtd; nand_release(mtd); - dev_set_drvdata(&ofdev->dev, NULL); iounmap(host->io_base); - kfree(host); return 0; } @@ -300,28 +237,17 @@ static const struct of_device_id socrates_nand_match[] = MODULE_DEVICE_TABLE(of, socrates_nand_match); -static struct of_platform_driver socrates_nand_driver = { +static struct platform_driver socrates_nand_driver = { .driver = { .name = "socrates_nand", .owner = THIS_MODULE, .of_match_table = socrates_nand_match, }, .probe = socrates_nand_probe, - .remove = __devexit_p(socrates_nand_remove), + .remove = socrates_nand_remove, }; -static int __init socrates_nand_init(void) -{ - return of_register_platform_driver(&socrates_nand_driver); -} - -static void __exit socrates_nand_exit(void) -{ - of_unregister_platform_driver(&socrates_nand_driver); -} - -module_init(socrates_nand_init); -module_exit(socrates_nand_exit); +module_platform_driver(socrates_nand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Ilya Yanok"); diff --git a/drivers/mtd/nand/spia.c b/drivers/mtd/nand/spia.c deleted file mode 100644 index 0cc6d0acb8f..00000000000 --- a/drivers/mtd/nand/spia.c +++ /dev/null @@ -1,176 +0,0 @@ -/* - * drivers/mtd/nand/spia.c - * - * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) - * - * - * 10-29-2001 TG change to support hardwarespecific access - * to controllines (due to change in nand.c) - * page_cache added - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Overview: - * This is a device driver for the NAND flash device found on the - * SPIA board which utilizes the Toshiba TC58V64AFT part. This is - * a 64Mibit (8MiB x 8 bits) NAND flash device. - */ - -#include <linux/kernel.h> -#include <linux/init.h> -#include <linux/slab.h> -#include <linux/module.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/partitions.h> -#include <asm/io.h> - -/* - * MTD structure for SPIA board - */ -static struct mtd_info *spia_mtd = NULL; - -/* - * Values specific to the SPIA board (used with EP7212 processor) - */ -#define SPIA_IO_BASE 0xd0000000 /* Start of EP7212 IO address space */ -#define SPIA_FIO_BASE 0xf0000000 /* Address where flash is mapped */ -#define SPIA_PEDR 0x0080 /* - * IO offset to Port E data register - * where the CLE, ALE and NCE pins - * are wired to. - */ -#define SPIA_PEDDR 0x00c0 /* - * IO offset to Port E data direction - * register so we can control the IO - * lines. - */ - -/* - * Module stuff - */ - -static int spia_io_base = SPIA_IO_BASE; -static int spia_fio_base = SPIA_FIO_BASE; -static int spia_pedr = SPIA_PEDR; -static int spia_peddr = SPIA_PEDDR; - -module_param(spia_io_base, int, 0); -module_param(spia_fio_base, int, 0); -module_param(spia_pedr, int, 0); -module_param(spia_peddr, int, 0); - -/* - * Define partitions for flash device - */ -static const struct mtd_partition partition_info[] = { - { - .name = "SPIA flash partition 1", - .offset = 0, - .size = 2 * 1024 * 1024}, - { - .name = "SPIA flash partition 2", - .offset = 2 * 1024 * 1024, - .size = 6 * 1024 * 1024} -}; - -#define NUM_PARTITIONS 2 - -/* - * hardware specific access to control-lines - * - * ctrl: - * NAND_CNE: bit 0 -> bit 2 - * NAND_CLE: bit 1 -> bit 0 - * NAND_ALE: bit 2 -> bit 1 - */ -static void spia_hwcontrol(struct mtd_info *mtd, int cmd) -{ - struct nand_chip *chip = mtd->priv; - - if (ctrl & NAND_CTRL_CHANGE) { - void __iomem *addr = spia_io_base + spia_pedr; - unsigned char bits; - - bits = (ctrl & NAND_CNE) << 2; - bits |= (ctrl & NAND_CLE | NAND_ALE) >> 1; - writeb((readb(addr) & ~0x7) | bits, addr); - } - - if (cmd != NAND_CMD_NONE) - writeb(cmd, chip->IO_ADDR_W); -} - -/* - * Main initialization routine - */ -static int __init spia_init(void) -{ - struct nand_chip *this; - - /* Allocate memory for MTD device structure and private data */ - spia_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); - if (!spia_mtd) { - printk("Unable to allocate SPIA NAND MTD device structure.\n"); - return -ENOMEM; - } - - /* Get pointer to private data */ - this = (struct nand_chip *)(&spia_mtd[1]); - - /* Initialize structures */ - memset(spia_mtd, 0, sizeof(struct mtd_info)); - memset(this, 0, sizeof(struct nand_chip)); - - /* Link the private data with the MTD structure */ - spia_mtd->priv = this; - spia_mtd->owner = THIS_MODULE; - - /* - * Set GPIO Port E control register so that the pins are configured - * to be outputs for controlling the NAND flash. - */ - (*(volatile unsigned char *)(spia_io_base + spia_peddr)) = 0x07; - - /* Set address of NAND IO lines */ - this->IO_ADDR_R = (void __iomem *)spia_fio_base; - this->IO_ADDR_W = (void __iomem *)spia_fio_base; - /* Set address of hardware control function */ - this->cmd_ctrl = spia_hwcontrol; - /* 15 us command delay time */ - this->chip_delay = 15; - - /* Scan to find existence of the device */ - if (nand_scan(spia_mtd, 1)) { - kfree(spia_mtd); - return -ENXIO; - } - - /* Register the partitions */ - add_mtd_partitions(spia_mtd, partition_info, NUM_PARTITIONS); - - /* Return happy */ - return 0; -} - -module_init(spia_init); - -/* - * Clean up routine - */ -static void __exit spia_cleanup(void) -{ - /* Release resources, unregister device */ - nand_release(spia_mtd); - - /* Free the MTD device structure */ - kfree(spia_mtd); -} - -module_exit(spia_cleanup); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com"); -MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on SPIA board"); diff --git a/drivers/mtd/nand/tmio_nand.c b/drivers/mtd/nand/tmio_nand.c index 3041d1f7ae3..fb8fd35fa66 100644 --- a/drivers/mtd/nand/tmio_nand.c +++ b/drivers/mtd/nand/tmio_nand.c @@ -4,7 +4,7 @@ * Slightly murky pre-git history of the driver: * * Copyright (c) Ian Molton 2004, 2005, 2008 - * Original work, independant of sharps code. Included hardware ECC support. + * Original work, independent of sharps code. Included hardware ECC support. * Hard ECC did not work for writes in the early revisions. * Copyright (c) Dirk Opfer 2005. * Modifications developed from sharps code but @@ -121,9 +121,6 @@ struct tmio_nand { #define mtd_to_tmio(m) container_of(m, struct tmio_nand, mtd) -#ifdef CONFIG_MTD_CMDLINE_PARTS -static const char *part_probes[] = { "cmdlinepart", NULL }; -#endif /*--------------------------------------------------------------------------*/ @@ -259,18 +256,6 @@ static void tmio_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) tmio_ioread16_rep(tmio->fcr + FCR_DATA, buf, len >> 1); } -static int -tmio_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct tmio_nand *tmio = mtd_to_tmio(mtd); - u16 *p = (u16 *) buf; - - for (len >>= 1; len; len--) - if (*(p++) != tmio_ioread16(tmio->fcr + FCR_DATA)) - return -EFAULT; - return 0; -} - static void tmio_nand_enable_hwecc(struct mtd_info *mtd, int mode) { struct tmio_nand *tmio = mtd_to_tmio(mtd); @@ -319,7 +304,7 @@ static int tmio_nand_correct_data(struct mtd_info *mtd, unsigned char *buf, static int tmio_hw_init(struct platform_device *dev, struct tmio_nand *tmio) { - struct mfd_cell *cell = dev_get_platdata(&dev->dev); + const struct mfd_cell *cell = mfd_get_cell(dev); int ret; if (cell->enable) { @@ -363,7 +348,7 @@ static int tmio_hw_init(struct platform_device *dev, struct tmio_nand *tmio) static void tmio_hw_stop(struct platform_device *dev, struct tmio_nand *tmio) { - struct mfd_cell *cell = dev_get_platdata(&dev->dev); + const struct mfd_cell *cell = mfd_get_cell(dev); tmio_iowrite8(FCR_MODE_POWER_OFF, tmio->fcr + FCR_MODE); if (cell->disable) @@ -372,8 +357,7 @@ static void tmio_hw_stop(struct platform_device *dev, struct tmio_nand *tmio) static int tmio_probe(struct platform_device *dev) { - struct mfd_cell *cell = dev_get_platdata(&dev->dev); - struct tmio_nand_data *data = cell->driver_data; + struct tmio_nand_data *data = dev_get_platdata(&dev->dev); struct resource *fcr = platform_get_resource(dev, IORESOURCE_MEM, 0); struct resource *ccr = platform_get_resource(dev, @@ -382,20 +366,14 @@ static int tmio_probe(struct platform_device *dev) struct tmio_nand *tmio; struct mtd_info *mtd; struct nand_chip *nand_chip; -#ifdef CONFIG_MTD_PARTITIONS - struct mtd_partition *parts; - int nbparts = 0; -#endif int retval; if (data == NULL) dev_warn(&dev->dev, "NULL platform data!\n"); - tmio = kzalloc(sizeof *tmio, GFP_KERNEL); - if (!tmio) { - retval = -ENOMEM; - goto err_kzalloc; - } + tmio = devm_kzalloc(&dev->dev, sizeof(*tmio), GFP_KERNEL); + if (!tmio) + return -ENOMEM; tmio->dev = dev; @@ -405,22 +383,18 @@ static int tmio_probe(struct platform_device *dev) mtd->priv = nand_chip; mtd->name = "tmio-nand"; - tmio->ccr = ioremap(ccr->start, resource_size(ccr)); - if (!tmio->ccr) { - retval = -EIO; - goto err_iomap_ccr; - } + tmio->ccr = devm_ioremap(&dev->dev, ccr->start, resource_size(ccr)); + if (!tmio->ccr) + return -EIO; tmio->fcr_base = fcr->start & 0xfffff; - tmio->fcr = ioremap(fcr->start, resource_size(fcr)); - if (!tmio->fcr) { - retval = -EIO; - goto err_iomap_fcr; - } + tmio->fcr = devm_ioremap(&dev->dev, fcr->start, resource_size(fcr)); + if (!tmio->fcr) + return -EIO; retval = tmio_hw_init(dev, tmio); if (retval) - goto err_hwinit; + return retval; /* Set address of NAND IO lines */ nand_chip->IO_ADDR_R = tmio->fcr; @@ -432,12 +406,12 @@ static int tmio_probe(struct platform_device *dev) nand_chip->read_byte = tmio_nand_read_byte; nand_chip->write_buf = tmio_nand_write_buf; nand_chip->read_buf = tmio_nand_read_buf; - nand_chip->verify_buf = tmio_nand_verify_buf; /* set eccmode using hardware ECC */ nand_chip->ecc.mode = NAND_ECC_HW; nand_chip->ecc.size = 512; nand_chip->ecc.bytes = 6; + nand_chip->ecc.strength = 2; nand_chip->ecc.hwctl = tmio_nand_enable_hwecc; nand_chip->ecc.calculate = tmio_nand_calculate_ecc; nand_chip->ecc.correct = tmio_nand_correct_data; @@ -448,8 +422,8 @@ static int tmio_probe(struct platform_device *dev) /* 15 us command delay time */ nand_chip->chip_delay = 15; - retval = request_irq(irq, &tmio_irq, - IRQF_DISABLED, dev_name(&dev->dev), tmio); + retval = devm_request_irq(&dev->dev, irq, &tmio_irq, 0, + dev_name(&dev->dev), tmio); if (retval) { dev_err(&dev->dev, "request_irq error %d\n", retval); goto err_irq; @@ -461,41 +435,19 @@ static int tmio_probe(struct platform_device *dev) /* Scan to find existence of the device */ if (nand_scan(mtd, 1)) { retval = -ENODEV; - goto err_scan; + goto err_irq; } /* Register the partitions */ -#ifdef CONFIG_MTD_PARTITIONS -#ifdef CONFIG_MTD_CMDLINE_PARTS - nbparts = parse_mtd_partitions(mtd, part_probes, &parts, 0); -#endif - if (nbparts <= 0 && data) { - parts = data->partition; - nbparts = data->num_partitions; - } - - if (nbparts) - retval = add_mtd_partitions(mtd, parts, nbparts); - else -#endif - retval = add_mtd_device(mtd); - + retval = mtd_device_parse_register(mtd, NULL, NULL, + data ? data->partition : NULL, + data ? data->num_partitions : 0); if (!retval) return retval; nand_release(mtd); -err_scan: - if (tmio->irq) - free_irq(tmio->irq, tmio); err_irq: tmio_hw_stop(dev, tmio); -err_hwinit: - iounmap(tmio->fcr); -err_iomap_fcr: - iounmap(tmio->ccr); -err_iomap_ccr: - kfree(tmio); -err_kzalloc: return retval; } @@ -504,19 +456,14 @@ static int tmio_remove(struct platform_device *dev) struct tmio_nand *tmio = platform_get_drvdata(dev); nand_release(&tmio->mtd); - if (tmio->irq) - free_irq(tmio->irq, tmio); tmio_hw_stop(dev, tmio); - iounmap(tmio->fcr); - iounmap(tmio->ccr); - kfree(tmio); return 0; } #ifdef CONFIG_PM static int tmio_suspend(struct platform_device *dev, pm_message_t state) { - struct mfd_cell *cell = dev_get_platdata(&dev->dev); + const struct mfd_cell *cell = mfd_get_cell(dev); if (cell->suspend) cell->suspend(dev); @@ -527,7 +474,7 @@ static int tmio_suspend(struct platform_device *dev, pm_message_t state) static int tmio_resume(struct platform_device *dev) { - struct mfd_cell *cell = dev_get_platdata(&dev->dev); + const struct mfd_cell *cell = mfd_get_cell(dev); /* FIXME - is this required or merely another attack of the broken * SHARP platform? Looks suspicious. @@ -553,18 +500,7 @@ static struct platform_driver tmio_driver = { .resume = tmio_resume, }; -static int __init tmio_init(void) -{ - return platform_driver_register(&tmio_driver); -} - -static void __exit tmio_exit(void) -{ - platform_driver_unregister(&tmio_driver); -} - -module_init(tmio_init); -module_exit(tmio_exit); +module_platform_driver(tmio_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Ian Molton, Dirk Opfer, Chris Humbert, Dmitry Baryshkov"); diff --git a/drivers/mtd/nand/txx9ndfmc.c b/drivers/mtd/nand/txx9ndfmc.c index 054a41c0ef4..c1622a5ba81 100644 --- a/drivers/mtd/nand/txx9ndfmc.c +++ b/drivers/mtd/nand/txx9ndfmc.c @@ -9,6 +9,7 @@ * (C) Copyright TOSHIBA CORPORATION 2004-2007 * All Rights Reserved. */ +#include <linux/err.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/module.h> @@ -74,9 +75,6 @@ struct txx9ndfmc_drvdata { unsigned char hold; /* in gbusclock */ unsigned char spw; /* in gbusclock */ struct nand_hw_control hw_control; -#ifdef CONFIG_MTD_PARTITIONS - struct mtd_partition *parts[MAX_TXX9NDFMC_DEV]; -#endif }; static struct platform_device *mtd_to_platdev(struct mtd_info *mtd) @@ -89,7 +87,7 @@ static struct platform_device *mtd_to_platdev(struct mtd_info *mtd) static void __iomem *ndregaddr(struct platform_device *dev, unsigned int reg) { struct txx9ndfmc_drvdata *drvdata = platform_get_drvdata(dev); - struct txx9ndfmc_platform_data *plat = dev->dev.platform_data; + struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev); return drvdata->base + (reg << plat->shift); } @@ -134,25 +132,13 @@ static void txx9ndfmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) *buf++ = __raw_readl(ndfdtr); } -static int txx9ndfmc_verify_buf(struct mtd_info *mtd, const uint8_t *buf, - int len) -{ - struct platform_device *dev = mtd_to_platdev(mtd); - void __iomem *ndfdtr = ndregaddr(dev, TXX9_NDFDTR); - - while (len--) - if (*buf++ != (uint8_t)__raw_readl(ndfdtr)) - return -EFAULT; - return 0; -} - static void txx9ndfmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct nand_chip *chip = mtd->priv; struct txx9ndfmc_priv *txx9_priv = chip->priv; struct platform_device *dev = txx9_priv->dev; - struct txx9ndfmc_platform_data *plat = dev->dev.platform_data; + struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev); if (ctrl & NAND_CTRL_CHANGE) { u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR); @@ -239,7 +225,7 @@ static void txx9ndfmc_enable_hwecc(struct mtd_info *mtd, int mode) static void txx9ndfmc_initialize(struct platform_device *dev) { - struct txx9ndfmc_platform_data *plat = dev->dev.platform_data; + struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev); struct txx9ndfmc_drvdata *drvdata = platform_get_drvdata(dev); int tmout = 100; @@ -277,8 +263,9 @@ static int txx9ndfmc_nand_scan(struct mtd_info *mtd) ret = nand_scan_ident(mtd, 1, NULL); if (!ret) { if (mtd->writesize >= 512) { - chip->ecc.size = mtd->writesize; - chip->ecc.bytes = 3 * (mtd->writesize / 256); + /* Hardware ECC 6 byte ECC per 512 Byte data */ + chip->ecc.size = 512; + chip->ecc.bytes = 6; } ret = nand_scan_tail(mtd); } @@ -287,29 +274,20 @@ static int txx9ndfmc_nand_scan(struct mtd_info *mtd) static int __init txx9ndfmc_probe(struct platform_device *dev) { - struct txx9ndfmc_platform_data *plat = dev->dev.platform_data; -#ifdef CONFIG_MTD_PARTITIONS - static const char *probes[] = { "cmdlinepart", NULL }; -#endif + struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev); int hold, spw; int i; struct txx9ndfmc_drvdata *drvdata; unsigned long gbusclk = plat->gbus_clock; struct resource *res; - res = platform_get_resource(dev, IORESOURCE_MEM, 0); - if (!res) - return -ENODEV; drvdata = devm_kzalloc(&dev->dev, sizeof(*drvdata), GFP_KERNEL); if (!drvdata) return -ENOMEM; - if (!devm_request_mem_region(&dev->dev, res->start, - resource_size(res), dev_name(&dev->dev))) - return -EBUSY; - drvdata->base = devm_ioremap(&dev->dev, res->start, - resource_size(res)); - if (!drvdata->base) - return -EBUSY; + res = platform_get_resource(dev, IORESOURCE_MEM, 0); + drvdata->base = devm_ioremap_resource(&dev->dev, res); + if (IS_ERR(drvdata->base)) + return PTR_ERR(drvdata->base); hold = plat->hold ?: 20; /* tDH */ spw = plat->spw ?: 90; /* max(tREADID, tWP, tRP) */ @@ -336,19 +314,13 @@ static int __init txx9ndfmc_probe(struct platform_device *dev) struct txx9ndfmc_priv *txx9_priv; struct nand_chip *chip; struct mtd_info *mtd; -#ifdef CONFIG_MTD_PARTITIONS - int nr_parts; -#endif if (!(plat->ch_mask & (1 << i))) continue; txx9_priv = kzalloc(sizeof(struct txx9ndfmc_priv), GFP_KERNEL); - if (!txx9_priv) { - dev_err(&dev->dev, "Unable to allocate " - "TXx9 NDFMC MTD device structure.\n"); + if (!txx9_priv) continue; - } chip = &txx9_priv->chip; mtd = &txx9_priv->mtd; mtd->owner = THIS_MODULE; @@ -358,7 +330,6 @@ static int __init txx9ndfmc_probe(struct platform_device *dev) chip->read_byte = txx9ndfmc_read_byte; chip->read_buf = txx9ndfmc_read_buf; chip->write_buf = txx9ndfmc_write_buf; - chip->verify_buf = txx9ndfmc_verify_buf; chip->cmd_ctrl = txx9ndfmc_cmd_ctrl; chip->dev_ready = txx9ndfmc_dev_ready; chip->ecc.calculate = txx9ndfmc_calculate_ecc; @@ -368,6 +339,7 @@ static int __init txx9ndfmc_probe(struct platform_device *dev) /* txx9ndfmc_nand_scan will overwrite ecc.size and ecc.bytes */ chip->ecc.size = 256; chip->ecc.bytes = 3; + chip->ecc.strength = 1; chip->chip_delay = 100; chip->controller = &drvdata->hw_control; @@ -398,13 +370,7 @@ static int __init txx9ndfmc_probe(struct platform_device *dev) } mtd->name = txx9_priv->mtdname; -#ifdef CONFIG_MTD_PARTITIONS - nr_parts = parse_mtd_partitions(mtd, probes, - &drvdata->parts[i], 0); - if (nr_parts > 0) - add_mtd_partitions(mtd, drvdata->parts[i], nr_parts); -#endif - add_mtd_device(mtd); + mtd_device_parse_register(mtd, NULL, NULL, NULL, 0); drvdata->mtds[i] = mtd; } @@ -416,7 +382,6 @@ static int __exit txx9ndfmc_remove(struct platform_device *dev) struct txx9ndfmc_drvdata *drvdata = platform_get_drvdata(dev); int i; - platform_set_drvdata(dev, NULL); if (!drvdata) return 0; for (i = 0; i < MAX_TXX9NDFMC_DEV; i++) { @@ -430,9 +395,6 @@ static int __exit txx9ndfmc_remove(struct platform_device *dev) txx9_priv = chip->priv; nand_release(mtd); -#ifdef CONFIG_MTD_PARTITIONS - kfree(drvdata->parts[i]); -#endif kfree(txx9_priv->mtdname); kfree(txx9_priv); } @@ -459,18 +421,7 @@ static struct platform_driver txx9ndfmc_driver = { }, }; -static int __init txx9ndfmc_init(void) -{ - return platform_driver_probe(&txx9ndfmc_driver, txx9ndfmc_probe); -} - -static void __exit txx9ndfmc_exit(void) -{ - platform_driver_unregister(&txx9ndfmc_driver); -} - -module_init(txx9ndfmc_init); -module_exit(txx9ndfmc_exit); +module_platform_driver_probe(txx9ndfmc_driver, txx9ndfmc_probe); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("TXx9 SoC NAND flash controller driver"); diff --git a/drivers/mtd/nand/xway_nand.c b/drivers/mtd/nand/xway_nand.c new file mode 100644 index 00000000000..3f81dc8f214 --- /dev/null +++ b/drivers/mtd/nand/xway_nand.c @@ -0,0 +1,201 @@ +/* + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published + * by the Free Software Foundation. + * + * Copyright © 2012 John Crispin <blogic@openwrt.org> + */ + +#include <linux/mtd/nand.h> +#include <linux/of_gpio.h> +#include <linux/of_platform.h> + +#include <lantiq_soc.h> + +/* nand registers */ +#define EBU_ADDSEL1 0x24 +#define EBU_NAND_CON 0xB0 +#define EBU_NAND_WAIT 0xB4 +#define EBU_NAND_ECC0 0xB8 +#define EBU_NAND_ECC_AC 0xBC + +/* nand commands */ +#define NAND_CMD_ALE (1 << 2) +#define NAND_CMD_CLE (1 << 3) +#define NAND_CMD_CS (1 << 4) +#define NAND_WRITE_CMD_RESET 0xff +#define NAND_WRITE_CMD (NAND_CMD_CS | NAND_CMD_CLE) +#define NAND_WRITE_ADDR (NAND_CMD_CS | NAND_CMD_ALE) +#define NAND_WRITE_DATA (NAND_CMD_CS) +#define NAND_READ_DATA (NAND_CMD_CS) +#define NAND_WAIT_WR_C (1 << 3) +#define NAND_WAIT_RD (0x1) + +/* we need to tel the ebu which addr we mapped the nand to */ +#define ADDSEL1_MASK(x) (x << 4) +#define ADDSEL1_REGEN 1 + +/* we need to tell the EBU that we have nand attached and set it up properly */ +#define BUSCON1_SETUP (1 << 22) +#define BUSCON1_BCGEN_RES (0x3 << 12) +#define BUSCON1_WAITWRC2 (2 << 8) +#define BUSCON1_WAITRDC2 (2 << 6) +#define BUSCON1_HOLDC1 (1 << 4) +#define BUSCON1_RECOVC1 (1 << 2) +#define BUSCON1_CMULT4 1 + +#define NAND_CON_CE (1 << 20) +#define NAND_CON_OUT_CS1 (1 << 10) +#define NAND_CON_IN_CS1 (1 << 8) +#define NAND_CON_PRE_P (1 << 7) +#define NAND_CON_WP_P (1 << 6) +#define NAND_CON_SE_P (1 << 5) +#define NAND_CON_CS_P (1 << 4) +#define NAND_CON_CSMUX (1 << 1) +#define NAND_CON_NANDM 1 + +static void xway_reset_chip(struct nand_chip *chip) +{ + unsigned long nandaddr = (unsigned long) chip->IO_ADDR_W; + unsigned long flags; + + nandaddr &= ~NAND_WRITE_ADDR; + nandaddr |= NAND_WRITE_CMD; + + /* finish with a reset */ + spin_lock_irqsave(&ebu_lock, flags); + writeb(NAND_WRITE_CMD_RESET, (void __iomem *) nandaddr); + while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0) + ; + spin_unlock_irqrestore(&ebu_lock, flags); +} + +static void xway_select_chip(struct mtd_info *mtd, int chip) +{ + + switch (chip) { + case -1: + ltq_ebu_w32_mask(NAND_CON_CE, 0, EBU_NAND_CON); + ltq_ebu_w32_mask(NAND_CON_NANDM, 0, EBU_NAND_CON); + break; + case 0: + ltq_ebu_w32_mask(0, NAND_CON_NANDM, EBU_NAND_CON); + ltq_ebu_w32_mask(0, NAND_CON_CE, EBU_NAND_CON); + break; + default: + BUG(); + } +} + +static void xway_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) +{ + struct nand_chip *this = mtd->priv; + unsigned long nandaddr = (unsigned long) this->IO_ADDR_W; + unsigned long flags; + + if (ctrl & NAND_CTRL_CHANGE) { + nandaddr &= ~(NAND_WRITE_CMD | NAND_WRITE_ADDR); + if (ctrl & NAND_CLE) + nandaddr |= NAND_WRITE_CMD; + else + nandaddr |= NAND_WRITE_ADDR; + this->IO_ADDR_W = (void __iomem *) nandaddr; + } + + if (cmd != NAND_CMD_NONE) { + spin_lock_irqsave(&ebu_lock, flags); + writeb(cmd, this->IO_ADDR_W); + while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0) + ; + spin_unlock_irqrestore(&ebu_lock, flags); + } +} + +static int xway_dev_ready(struct mtd_info *mtd) +{ + return ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_RD; +} + +static unsigned char xway_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + unsigned long nandaddr = (unsigned long) this->IO_ADDR_R; + unsigned long flags; + int ret; + + spin_lock_irqsave(&ebu_lock, flags); + ret = ltq_r8((void __iomem *)(nandaddr + NAND_READ_DATA)); + spin_unlock_irqrestore(&ebu_lock, flags); + + return ret; +} + +static int xway_nand_probe(struct platform_device *pdev) +{ + struct nand_chip *this = platform_get_drvdata(pdev); + unsigned long nandaddr = (unsigned long) this->IO_ADDR_W; + const __be32 *cs = of_get_property(pdev->dev.of_node, + "lantiq,cs", NULL); + u32 cs_flag = 0; + + /* load our CS from the DT. Either we find a valid 1 or default to 0 */ + if (cs && (*cs == 1)) + cs_flag = NAND_CON_IN_CS1 | NAND_CON_OUT_CS1; + + /* setup the EBU to run in NAND mode on our base addr */ + ltq_ebu_w32(CPHYSADDR(nandaddr) + | ADDSEL1_MASK(3) | ADDSEL1_REGEN, EBU_ADDSEL1); + + ltq_ebu_w32(BUSCON1_SETUP | BUSCON1_BCGEN_RES | BUSCON1_WAITWRC2 + | BUSCON1_WAITRDC2 | BUSCON1_HOLDC1 | BUSCON1_RECOVC1 + | BUSCON1_CMULT4, LTQ_EBU_BUSCON1); + + ltq_ebu_w32(NAND_CON_NANDM | NAND_CON_CSMUX | NAND_CON_CS_P + | NAND_CON_SE_P | NAND_CON_WP_P | NAND_CON_PRE_P + | cs_flag, EBU_NAND_CON); + + /* finish with a reset */ + xway_reset_chip(this); + + return 0; +} + +/* allow users to override the partition in DT using the cmdline */ +static const char *part_probes[] = { "cmdlinepart", "ofpart", NULL }; + +static struct platform_nand_data xway_nand_data = { + .chip = { + .nr_chips = 1, + .chip_delay = 30, + .part_probe_types = part_probes, + }, + .ctrl = { + .probe = xway_nand_probe, + .cmd_ctrl = xway_cmd_ctrl, + .dev_ready = xway_dev_ready, + .select_chip = xway_select_chip, + .read_byte = xway_read_byte, + } +}; + +/* + * Try to find the node inside the DT. If it is available attach out + * platform_nand_data + */ +static int __init xway_register_nand(void) +{ + struct device_node *node; + struct platform_device *pdev; + + node = of_find_compatible_node(NULL, NULL, "lantiq,nand-xway"); + if (!node) + return -ENOENT; + pdev = of_find_device_by_node(node); + if (!pdev) + return -EINVAL; + pdev->dev.platform_data = &xway_nand_data; + of_node_put(node); + return 0; +} + +subsys_initcall(xway_register_nand); diff --git a/drivers/mtd/nftlcore.c b/drivers/mtd/nftlcore.c index a4578bf903a..46f27de018c 100644 --- a/drivers/mtd/nftlcore.c +++ b/drivers/mtd/nftlcore.c @@ -1,11 +1,22 @@ -/* Linux driver for NAND Flash Translation Layer */ -/* (c) 1999 Machine Vision Holdings, Inc. */ -/* Author: David Woodhouse <dwmw2@infradead.org> */ - /* - The contents of this file are distributed under the GNU General - Public License version 2. The author places no additional - restrictions of any kind on it. + * Linux driver for NAND Flash Translation Layer + * + * Copyright © 1999 Machine Vision Holdings, Inc. + * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #define PRERELEASE @@ -39,27 +50,18 @@ static void nftl_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) struct NFTLrecord *nftl; unsigned long temp; - if (mtd->type != MTD_NANDFLASH || mtd->size > UINT_MAX) + if (!mtd_type_is_nand(mtd) || mtd->size > UINT_MAX) return; /* OK, this is moderately ugly. But probably safe. Alternatives? */ if (memcmp(mtd->name, "DiskOnChip", 10)) return; - if (!mtd->block_isbad) { - printk(KERN_ERR -"NFTL no longer supports the old DiskOnChip drivers loaded via docprobe.\n" -"Please use the new diskonchip driver under the NAND subsystem.\n"); - return; - } - - DEBUG(MTD_DEBUG_LEVEL1, "NFTL: add_mtd for %s\n", mtd->name); + pr_debug("NFTL: add_mtd for %s\n", mtd->name); nftl = kzalloc(sizeof(struct NFTLrecord), GFP_KERNEL); - if (!nftl) { - printk(KERN_WARNING "NFTL: out of memory for data structures\n"); + if (!nftl) return; - } nftl->mbd.mtd = mtd; nftl->mbd.devnum = -1; @@ -121,7 +123,7 @@ static void nftl_remove_dev(struct mtd_blktrans_dev *dev) { struct NFTLrecord *nftl = (void *)dev; - DEBUG(MTD_DEBUG_LEVEL1, "NFTL: remove_dev (i=%d)\n", dev->devnum); + pr_debug("NFTL: remove_dev (i=%d)\n", dev->devnum); del_mtd_blktrans_dev(dev); kfree(nftl->ReplUnitTable); @@ -138,13 +140,13 @@ int nftl_read_oob(struct mtd_info *mtd, loff_t offs, size_t len, struct mtd_oob_ops ops; int res; - ops.mode = MTD_OOB_PLACE; + ops.mode = MTD_OPS_PLACE_OOB; ops.ooboffs = offs & mask; ops.ooblen = len; ops.oobbuf = buf; ops.datbuf = NULL; - res = mtd->read_oob(mtd, offs & ~mask, &ops); + res = mtd_read_oob(mtd, offs & ~mask, &ops); *retlen = ops.oobretlen; return res; } @@ -159,13 +161,13 @@ int nftl_write_oob(struct mtd_info *mtd, loff_t offs, size_t len, struct mtd_oob_ops ops; int res; - ops.mode = MTD_OOB_PLACE; + ops.mode = MTD_OPS_PLACE_OOB; ops.ooboffs = offs & mask; ops.ooblen = len; ops.oobbuf = buf; ops.datbuf = NULL; - res = mtd->write_oob(mtd, offs & ~mask, &ops); + res = mtd_write_oob(mtd, offs & ~mask, &ops); *retlen = ops.oobretlen; return res; } @@ -182,14 +184,14 @@ static int nftl_write(struct mtd_info *mtd, loff_t offs, size_t len, struct mtd_oob_ops ops; int res; - ops.mode = MTD_OOB_PLACE; + ops.mode = MTD_OPS_PLACE_OOB; ops.ooboffs = offs & mask; ops.ooblen = mtd->oobsize; ops.oobbuf = oob; ops.datbuf = buf; ops.len = len; - res = mtd->write_oob(mtd, offs & ~mask, &ops); + res = mtd_write_oob(mtd, offs & ~mask, &ops); *retlen = ops.retlen; return res; } @@ -209,7 +211,7 @@ static u16 NFTL_findfreeblock(struct NFTLrecord *nftl, int desperate ) /* Normally, we force a fold to happen before we run out of free blocks completely */ if (!desperate && nftl->numfreeEUNs < 2) { - DEBUG(MTD_DEBUG_LEVEL1, "NFTL_findfreeblock: there are too few free EUNs\n"); + pr_debug("NFTL_findfreeblock: there are too few free EUNs\n"); return BLOCK_NIL; } @@ -280,8 +282,7 @@ static u16 NFTL_foldchain (struct NFTLrecord *nftl, unsigned thisVUC, unsigned p if (block == 2) { foldmark = oob.u.c.FoldMark | oob.u.c.FoldMark1; if (foldmark == FOLD_MARK_IN_PROGRESS) { - DEBUG(MTD_DEBUG_LEVEL1, - "Write Inhibited on EUN %d\n", thisEUN); + pr_debug("Write Inhibited on EUN %d\n", thisEUN); inplace = 0; } else { /* There's no other reason not to do inplace, @@ -346,7 +347,7 @@ static u16 NFTL_foldchain (struct NFTLrecord *nftl, unsigned thisVUC, unsigned p if (BlockLastState[block] != SECTOR_FREE && BlockMap[block] != BLOCK_NIL && BlockMap[block] != targetEUN) { - DEBUG(MTD_DEBUG_LEVEL1, "Setting inplace to 0. VUC %d, " + pr_debug("Setting inplace to 0. VUC %d, " "block %d was %x lastEUN, " "and is in EUN %d (%s) %d\n", thisVUC, block, BlockLastState[block], @@ -362,14 +363,14 @@ static u16 NFTL_foldchain (struct NFTLrecord *nftl, unsigned thisVUC, unsigned p pendingblock < ((thisVUC + 1)* (nftl->EraseSize / 512)) && BlockLastState[pendingblock - (thisVUC * (nftl->EraseSize / 512))] != SECTOR_FREE) { - DEBUG(MTD_DEBUG_LEVEL1, "Pending write not free in EUN %d. " + pr_debug("Pending write not free in EUN %d. " "Folding out of place.\n", targetEUN); inplace = 0; } } if (!inplace) { - DEBUG(MTD_DEBUG_LEVEL1, "Cannot fold Virtual Unit Chain %d in place. " + pr_debug("Cannot fold Virtual Unit Chain %d in place. " "Trying out-of-place\n", thisVUC); /* We need to find a targetEUN to fold into. */ targetEUN = NFTL_findfreeblock(nftl, 1); @@ -399,7 +400,7 @@ static u16 NFTL_foldchain (struct NFTLrecord *nftl, unsigned thisVUC, unsigned p and the Erase Unit into which we are supposed to be copying. Go for it. */ - DEBUG(MTD_DEBUG_LEVEL1,"Folding chain %d into unit %d\n", thisVUC, targetEUN); + pr_debug("Folding chain %d into unit %d\n", thisVUC, targetEUN); for (block = 0; block < nftl->EraseSize / 512 ; block++) { unsigned char movebuf[512]; int ret; @@ -415,12 +416,17 @@ static u16 NFTL_foldchain (struct NFTLrecord *nftl, unsigned thisVUC, unsigned p if (BlockMap[block] == BLOCK_NIL) continue; - ret = mtd->read(mtd, (nftl->EraseSize * BlockMap[block]) + (block * 512), - 512, &retlen, movebuf); - if (ret < 0 && ret != -EUCLEAN) { - ret = mtd->read(mtd, (nftl->EraseSize * BlockMap[block]) - + (block * 512), 512, &retlen, - movebuf); + ret = mtd_read(mtd, + (nftl->EraseSize * BlockMap[block]) + (block * 512), + 512, + &retlen, + movebuf); + if (ret < 0 && !mtd_is_bitflip(ret)) { + ret = mtd_read(mtd, + (nftl->EraseSize * BlockMap[block]) + (block * 512), + 512, + &retlen, + movebuf); if (ret != -EIO) printk("Error went away on retry.\n"); } @@ -446,7 +452,7 @@ static u16 NFTL_foldchain (struct NFTLrecord *nftl, unsigned thisVUC, unsigned p has duplicate chains, we need to free one of the chains because it's not necessary any more. */ thisEUN = nftl->EUNtable[thisVUC]; - DEBUG(MTD_DEBUG_LEVEL1,"Want to erase\n"); + pr_debug("Want to erase\n"); /* For each block in the old chain (except the targetEUN of course), free it and make it available for future use */ @@ -559,7 +565,7 @@ static inline u16 NFTL_findwriteunit(struct NFTLrecord *nftl, unsigned block) (writeEUN * nftl->EraseSize) + blockofs, 8, &retlen, (char *)&bci); - DEBUG(MTD_DEBUG_LEVEL2, "Status of block %d in EUN %d is %x\n", + pr_debug("Status of block %d in EUN %d is %x\n", block , writeEUN, le16_to_cpu(bci.Status)); status = bci.Status | bci.Status1; @@ -612,7 +618,7 @@ static inline u16 NFTL_findwriteunit(struct NFTLrecord *nftl, unsigned block) but they are reserved for when we're desperate. Well, now we're desperate. */ - DEBUG(MTD_DEBUG_LEVEL1, "Using desperate==1 to find free EUN to accommodate write to VUC %d\n", thisVUC); + pr_debug("Using desperate==1 to find free EUN to accommodate write to VUC %d\n", thisVUC); writeEUN = NFTL_findfreeblock(nftl, 1); } if (writeEUN == BLOCK_NIL) { @@ -763,9 +769,9 @@ static int nftl_readblock(struct mtd_blktrans_dev *mbd, unsigned long block, } else { loff_t ptr = (lastgoodEUN * nftl->EraseSize) + blockofs; size_t retlen; - int res = mtd->read(mtd, ptr, 512, &retlen, buffer); + int res = mtd_read(mtd, ptr, 512, &retlen, buffer); - if (res < 0 && res != -EUCLEAN) + if (res < 0 && !mtd_is_bitflip(res)) return -EIO; } return 0; diff --git a/drivers/mtd/nftlmount.c b/drivers/mtd/nftlmount.c index 8b22b1836e9..51b9d6af307 100644 --- a/drivers/mtd/nftlmount.c +++ b/drivers/mtd/nftlmount.c @@ -2,7 +2,8 @@ * NFTL mount code with extensive checks * * Author: Fabrice Bellard (fabrice.bellard@netgem.com) - * Copyright (C) 2000 Netgem S.A. + * Copyright © 2000 Netgem S.A. + * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -31,7 +32,7 @@ /* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the * various device information of the NFTL partition and Bad Unit Table. Update - * the ReplUnitTable[] table accroding to the Bad Unit Table. ReplUnitTable[] + * the ReplUnitTable[] table according to the Bad Unit Table. ReplUnitTable[] * is used for management of Erase Unit in other routines in nftl.c and nftlmount.c */ static int find_boot_record(struct NFTLrecord *nftl) @@ -62,8 +63,8 @@ static int find_boot_record(struct NFTLrecord *nftl) /* Check for ANAND header first. Then can whinge if it's found but later checks fail */ - ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE, - &retlen, buf); + ret = mtd_read(mtd, block * nftl->EraseSize, SECTORSIZE, + &retlen, buf); /* We ignore ret in case the ECC of the MediaHeader is invalid (which is apparently acceptable) */ if (retlen != SECTORSIZE) { @@ -241,7 +242,8 @@ The new DiskOnChip driver already scanned the bad block table. Just query it. if (buf[i & (SECTORSIZE - 1)] != 0xff) nftl->ReplUnitTable[i] = BLOCK_RESERVED; #endif - if (nftl->mbd.mtd->block_isbad(nftl->mbd.mtd, i * nftl->EraseSize)) + if (mtd_block_isbad(nftl->mbd.mtd, + i * nftl->EraseSize)) nftl->ReplUnitTable[i] = BLOCK_RESERVED; } @@ -273,7 +275,7 @@ static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int int i; for (i = 0; i < len; i += SECTORSIZE) { - if (mtd->read(mtd, address, SECTORSIZE, &retlen, buf)) + if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf)) return -1; if (memcmpb(buf, 0xff, SECTORSIZE) != 0) return -1; @@ -296,7 +298,7 @@ static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int * * Return: 0 when succeed, -1 on error. * - * ToDo: 1. Is it neceressary to check_free_sector after erasing ?? + * ToDo: 1. Is it necessary to check_free_sector after erasing ?? */ int NFTL_formatblock(struct NFTLrecord *nftl, int block) { @@ -325,7 +327,7 @@ int NFTL_formatblock(struct NFTLrecord *nftl, int block) instr->mtd = nftl->mbd.mtd; instr->addr = block * nftl->EraseSize; instr->len = nftl->EraseSize; - mtd->erase(mtd, instr); + mtd_erase(mtd, instr); if (instr->state == MTD_ERASE_FAILED) { printk("Error while formatting block %d\n", block); @@ -336,7 +338,7 @@ int NFTL_formatblock(struct NFTLrecord *nftl, int block) nb_erases = le32_to_cpu(uci.WearInfo); nb_erases++; - /* wrap (almost impossible with current flashs) or free block */ + /* wrap (almost impossible with current flash) or free block */ if (nb_erases == 0) nb_erases = 1; @@ -354,7 +356,7 @@ int NFTL_formatblock(struct NFTLrecord *nftl, int block) fail: /* could not format, update the bad block table (caller is responsible for setting the ReplUnitTable to BLOCK_RESERVED on failure) */ - nftl->mbd.mtd->block_markbad(nftl->mbd.mtd, instr->addr); + mtd_block_markbad(nftl->mbd.mtd, instr->addr); return -1; } @@ -362,10 +364,10 @@ fail: * Mark as 'IGNORE' each incorrect sector. This check is only done if the chain * was being folded when NFTL was interrupted. * - * The check_free_sectors in this function is neceressary. There is a possible + * The check_free_sectors in this function is necessary. There is a possible * situation that after writing the Data area, the Block Control Information is * not updated according (due to power failure or something) which leaves the block - * in an umconsistent state. So we have to check if a block is really FREE in this + * in an inconsistent state. So we have to check if a block is really FREE in this * case. */ static void check_sectors_in_chain(struct NFTLrecord *nftl, unsigned int first_block) { @@ -427,7 +429,7 @@ static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block) for (;;) { length++; - /* avoid infinite loops, although this is guaranted not to + /* avoid infinite loops, although this is guaranteed not to happen because of the previous checks */ if (length >= nftl->nb_blocks) { printk("nftl: length too long %d !\n", length); @@ -446,11 +448,11 @@ static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block) /* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a * Virtual Unit Chain, i.e. all the units are disconnected. * - * It is not stricly correct to begin from the first block of the chain because + * It is not strictly correct to begin from the first block of the chain because * if we stop the code, we may see again a valid chain if there was a first_block * flag in a block inside it. But is it really a problem ? * - * FixMe: Figure out what the last statesment means. What if power failure when we are + * FixMe: Figure out what the last statement means. What if power failure when we are * in the for (;;) loop formatting blocks ?? */ static void format_chain(struct NFTLrecord *nftl, unsigned int first_block) @@ -484,7 +486,7 @@ static void format_chain(struct NFTLrecord *nftl, unsigned int first_block) * totally free (only 0xff). * * Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the - * following critia: + * following criteria: * 1. */ static int check_and_mark_free_block(struct NFTLrecord *nftl, int block) { @@ -501,7 +503,7 @@ static int check_and_mark_free_block(struct NFTLrecord *nftl, int block) erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1)); if (erase_mark != ERASE_MARK) { /* if no erase mark, the block must be totally free. This is - possible in two cases : empty filsystem or interrupted erase (very unlikely) */ + possible in two cases : empty filesystem or interrupted erase (very unlikely) */ if (check_free_sectors (nftl, block * nftl->EraseSize, nftl->EraseSize, 1) != 0) return -1; @@ -543,7 +545,7 @@ static int check_and_mark_free_block(struct NFTLrecord *nftl, int block) /* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS * to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2 * is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted - * for some reason. A clean up/check of the VUC is neceressary in this case. + * for some reason. A clean up/check of the VUC is necessary in this case. * * WARNING: return 0 if read error */ @@ -656,7 +658,7 @@ int NFTL_mount(struct NFTLrecord *s) printk("Block %d: incorrect logical block: %d expected: %d\n", block, logical_block, first_logical_block); /* the chain is incorrect : we must format it, - but we need to read it completly */ + but we need to read it completely */ do_format_chain = 1; } if (is_first_block) { @@ -668,7 +670,7 @@ int NFTL_mount(struct NFTLrecord *s) printk("Block %d: incorrectly marked as first block in chain\n", block); /* the chain is incorrect : we must format it, - but we need to read it completly */ + but we need to read it completely */ do_format_chain = 1; } else { printk("Block %d: folding in progress - ignoring first block flag\n", diff --git a/drivers/mtd/ofpart.c b/drivers/mtd/ofpart.c index 4f0d635674f..aa26c32e1bc 100644 --- a/drivers/mtd/ofpart.c +++ b/drivers/mtd/ofpart.c @@ -1,11 +1,11 @@ /* * Flash partitions described by the OF (or flattened) device tree * - * Copyright (C) 2006 MontaVista Software Inc. + * Copyright © 2006 MontaVista Software Inc. * Author: Vitaly Wool <vwool@ru.mvista.com> * * Revised to handle newer style flash binding by: - * Copyright (C) 2007 David Gibson, IBM Corporation. + * Copyright © 2007 David Gibson, IBM Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the @@ -20,19 +20,36 @@ #include <linux/slab.h> #include <linux/mtd/partitions.h> -int __devinit of_mtd_parse_partitions(struct device *dev, - struct device_node *node, - struct mtd_partition **pparts) +static bool node_has_compatible(struct device_node *pp) { + return of_get_property(pp, "compatible", NULL); +} + +static int parse_ofpart_partitions(struct mtd_info *master, + struct mtd_partition **pparts, + struct mtd_part_parser_data *data) +{ + struct device_node *node; const char *partname; struct device_node *pp; int nr_parts, i; + + if (!data) + return 0; + + node = data->of_node; + if (!node) + return 0; + /* First count the subnodes */ - pp = NULL; nr_parts = 0; - while ((pp = of_get_next_child(node, pp))) + for_each_child_of_node(node, pp) { + if (node_has_compatible(pp)) + continue; + nr_parts++; + } if (nr_parts == 0) return 0; @@ -41,11 +58,14 @@ int __devinit of_mtd_parse_partitions(struct device *dev, if (!*pparts) return -ENOMEM; - pp = NULL; i = 0; - while ((pp = of_get_next_child(node, pp))) { - const u32 *reg; + for_each_child_of_node(node, pp) { + const __be32 *reg; int len; + int a_cells, s_cells; + + if (node_has_compatible(pp)) + continue; reg = of_get_property(pp, "reg", &len); if (!reg) { @@ -53,23 +73,28 @@ int __devinit of_mtd_parse_partitions(struct device *dev, continue; } - (*pparts)[i].offset = reg[0]; - (*pparts)[i].size = reg[1]; + a_cells = of_n_addr_cells(pp); + s_cells = of_n_size_cells(pp); + (*pparts)[i].offset = of_read_number(reg, a_cells); + (*pparts)[i].size = of_read_number(reg + a_cells, s_cells); partname = of_get_property(pp, "label", &len); if (!partname) partname = of_get_property(pp, "name", &len); - (*pparts)[i].name = (char *)partname; + (*pparts)[i].name = partname; if (of_get_property(pp, "read-only", &len)) - (*pparts)[i].mask_flags = MTD_WRITEABLE; + (*pparts)[i].mask_flags |= MTD_WRITEABLE; + + if (of_get_property(pp, "lock", &len)) + (*pparts)[i].mask_flags |= MTD_POWERUP_LOCK; i++; } if (!i) { of_node_put(pp); - dev_err(dev, "No valid partition found on %s\n", node->full_name); + pr_err("No valid partition found on %s\n", node->full_name); kfree(*pparts); *pparts = NULL; return -EINVAL; @@ -77,6 +102,97 @@ int __devinit of_mtd_parse_partitions(struct device *dev, return nr_parts; } -EXPORT_SYMBOL(of_mtd_parse_partitions); + +static struct mtd_part_parser ofpart_parser = { + .owner = THIS_MODULE, + .parse_fn = parse_ofpart_partitions, + .name = "ofpart", +}; + +static int parse_ofoldpart_partitions(struct mtd_info *master, + struct mtd_partition **pparts, + struct mtd_part_parser_data *data) +{ + struct device_node *dp; + int i, plen, nr_parts; + const struct { + __be32 offset, len; + } *part; + const char *names; + + if (!data) + return 0; + + dp = data->of_node; + if (!dp) + return 0; + + part = of_get_property(dp, "partitions", &plen); + if (!part) + return 0; /* No partitions found */ + + pr_warning("Device tree uses obsolete partition map binding: %s\n", + dp->full_name); + + nr_parts = plen / sizeof(part[0]); + + *pparts = kzalloc(nr_parts * sizeof(*(*pparts)), GFP_KERNEL); + if (!*pparts) + return -ENOMEM; + + names = of_get_property(dp, "partition-names", &plen); + + for (i = 0; i < nr_parts; i++) { + (*pparts)[i].offset = be32_to_cpu(part->offset); + (*pparts)[i].size = be32_to_cpu(part->len) & ~1; + /* bit 0 set signifies read only partition */ + if (be32_to_cpu(part->len) & 1) + (*pparts)[i].mask_flags = MTD_WRITEABLE; + + if (names && (plen > 0)) { + int len = strlen(names) + 1; + + (*pparts)[i].name = names; + plen -= len; + names += len; + } else { + (*pparts)[i].name = "unnamed"; + } + + part++; + } + + return nr_parts; +} + +static struct mtd_part_parser ofoldpart_parser = { + .owner = THIS_MODULE, + .parse_fn = parse_ofoldpart_partitions, + .name = "ofoldpart", +}; + +static int __init ofpart_parser_init(void) +{ + register_mtd_parser(&ofpart_parser); + register_mtd_parser(&ofoldpart_parser); + return 0; +} + +static void __exit ofpart_parser_exit(void) +{ + deregister_mtd_parser(&ofpart_parser); + deregister_mtd_parser(&ofoldpart_parser); +} + +module_init(ofpart_parser_init); +module_exit(ofpart_parser_exit); MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("Parser for MTD partitioning information in device tree"); +MODULE_AUTHOR("Vitaly Wool, David Gibson"); +/* + * When MTD core cannot find the requested parser, it tries to load the module + * with the same name. Since we provide the ofoldpart parser, we should have + * the corresponding alias. + */ +MODULE_ALIAS("ofoldpart"); diff --git a/drivers/mtd/onenand/Kconfig b/drivers/mtd/onenand/Kconfig index 9a49d68ba5f..ab2607273e8 100644 --- a/drivers/mtd/onenand/Kconfig +++ b/drivers/mtd/onenand/Kconfig @@ -1,7 +1,7 @@ menuconfig MTD_ONENAND tristate "OneNAND Device Support" depends on MTD - select MTD_PARTITIONS + depends on HAS_IOMEM help This enables support for accessing all type of OneNAND flash devices. For further information see @@ -25,21 +25,21 @@ config MTD_ONENAND_GENERIC config MTD_ONENAND_OMAP2 tristate "OneNAND on OMAP2/OMAP3 support" - depends on MTD_ONENAND && (ARCH_OMAP2 || ARCH_OMAP3) + depends on ARCH_OMAP2 || ARCH_OMAP3 help Support for a OneNAND flash device connected to an OMAP2/OMAP3 CPU via the GPMC memory controller. config MTD_ONENAND_SAMSUNG tristate "OneNAND on Samsung SOC controller support" - depends on MTD_ONENAND && (ARCH_S3C64XX || ARCH_S5PC100 || ARCH_S5PV210) + depends on ARCH_S3C64XX || ARCH_S5PC100 || ARCH_S5PV210 || ARCH_EXYNOS4 help - Support for a OneNAND flash device connected to an Samsung SOC - S3C64XX/S5PC1XX controller. + Support for a OneNAND flash device connected to an Samsung SOC. + S3C64XX/S5PC100 use command mapping method. + S5PC110/S5PC210 use generic OneNAND method. config MTD_ONENAND_OTP bool "OneNAND OTP Support" - select HAVE_MTD_OTP help One Block of the NAND Flash Array memory is reserved as a One-Time Programmable Block memory area. @@ -67,10 +67,4 @@ config MTD_ONENAND_2X_PROGRAM And more recent chips -config MTD_ONENAND_SIM - tristate "OneNAND simulator support" - help - The simulator may simulate various OneNAND flash chips for the - OneNAND MTD layer. - endif # MTD_ONENAND diff --git a/drivers/mtd/onenand/Makefile b/drivers/mtd/onenand/Makefile index 2b7884c7577..9d6540e8b3d 100644 --- a/drivers/mtd/onenand/Makefile +++ b/drivers/mtd/onenand/Makefile @@ -10,7 +10,4 @@ obj-$(CONFIG_MTD_ONENAND_GENERIC) += generic.o obj-$(CONFIG_MTD_ONENAND_OMAP2) += omap2.o obj-$(CONFIG_MTD_ONENAND_SAMSUNG) += samsung.o -# Simulator -obj-$(CONFIG_MTD_ONENAND_SIM) += onenand_sim.o - onenand-objs = onenand_base.o onenand_bbt.o diff --git a/drivers/mtd/onenand/generic.c b/drivers/mtd/onenand/generic.c index e78914938c5..093c29ac1a1 100644 --- a/drivers/mtd/onenand/generic.c +++ b/drivers/mtd/onenand/generic.c @@ -13,7 +13,6 @@ */ #include <linux/module.h> -#include <linux/init.h> #include <linux/slab.h> #include <linux/platform_device.h> #include <linux/mtd/mtd.h> @@ -30,20 +29,15 @@ */ #define DRIVER_NAME "onenand-flash" -#ifdef CONFIG_MTD_PARTITIONS -static const char *part_probes[] = { "cmdlinepart", NULL, }; -#endif - struct onenand_info { struct mtd_info mtd; - struct mtd_partition *parts; struct onenand_chip onenand; }; -static int __devinit generic_onenand_probe(struct platform_device *pdev) +static int generic_onenand_probe(struct platform_device *pdev) { struct onenand_info *info; - struct onenand_platform_data *pdata = pdev->dev.platform_data; + struct onenand_platform_data *pdata = dev_get_platdata(&pdev->dev); struct resource *res = pdev->resource; unsigned long size = resource_size(res); int err; @@ -63,7 +57,7 @@ static int __devinit generic_onenand_probe(struct platform_device *pdev) goto out_release_mem_region; } - info->onenand.mmcontrol = pdata ? pdata->mmcontrol : 0; + info->onenand.mmcontrol = pdata ? pdata->mmcontrol : NULL; info->onenand.irq = platform_get_irq(pdev, 0); info->mtd.name = dev_name(&pdev->dev); @@ -75,15 +69,9 @@ static int __devinit generic_onenand_probe(struct platform_device *pdev) goto out_iounmap; } -#ifdef CONFIG_MTD_PARTITIONS - err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0); - if (err > 0) - add_mtd_partitions(&info->mtd, info->parts, err); - else if (err <= 0 && pdata && pdata->parts) - add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts); - else -#endif - err = add_mtd_device(&info->mtd); + err = mtd_device_parse_register(&info->mtd, NULL, NULL, + pdata ? pdata->parts : NULL, + pdata ? pdata->nr_parts : 0); platform_set_drvdata(pdev, info); @@ -99,20 +87,13 @@ out_free_info: return err; } -static int __devexit generic_onenand_remove(struct platform_device *pdev) +static int generic_onenand_remove(struct platform_device *pdev) { struct onenand_info *info = platform_get_drvdata(pdev); struct resource *res = pdev->resource; unsigned long size = resource_size(res); - platform_set_drvdata(pdev, NULL); - if (info) { - if (info->parts) - del_mtd_partitions(&info->mtd); - else - del_mtd_device(&info->mtd); - onenand_release(&info->mtd); release_mem_region(res->start, size); iounmap(info->onenand.base); @@ -128,24 +109,12 @@ static struct platform_driver generic_onenand_driver = { .owner = THIS_MODULE, }, .probe = generic_onenand_probe, - .remove = __devexit_p(generic_onenand_remove), + .remove = generic_onenand_remove, }; -MODULE_ALIAS(DRIVER_NAME); - -static int __init generic_onenand_init(void) -{ - return platform_driver_register(&generic_onenand_driver); -} - -static void __exit generic_onenand_exit(void) -{ - platform_driver_unregister(&generic_onenand_driver); -} - -module_init(generic_onenand_init); -module_exit(generic_onenand_exit); +module_platform_driver(generic_onenand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>"); MODULE_DESCRIPTION("Glue layer for OneNAND flash on generic boards"); +MODULE_ALIAS("platform:" DRIVER_NAME); diff --git a/drivers/mtd/onenand/omap2.c b/drivers/mtd/onenand/omap2.c index 9f322f1a7f2..d945473c388 100644 --- a/drivers/mtd/onenand/omap2.c +++ b/drivers/mtd/onenand/omap2.c @@ -25,7 +25,6 @@ #include <linux/device.h> #include <linux/module.h> -#include <linux/init.h> #include <linux/mtd/mtd.h> #include <linux/mtd/onenand.h> #include <linux/mtd/partitions.h> @@ -35,34 +34,33 @@ #include <linux/dma-mapping.h> #include <linux/io.h> #include <linux/slab.h> +#include <linux/regulator/consumer.h> #include <asm/mach/flash.h> -#include <plat/gpmc.h> -#include <plat/onenand.h> -#include <mach/gpio.h> +#include <linux/platform_data/mtd-onenand-omap2.h> +#include <asm/gpio.h> -#include <plat/dma.h> - -#include <plat/board.h> +#include <linux/omap-dma.h> #define DRIVER_NAME "omap2-onenand" -#define ONENAND_IO_SIZE SZ_128K #define ONENAND_BUFRAM_SIZE (1024 * 5) struct omap2_onenand { struct platform_device *pdev; int gpmc_cs; unsigned long phys_base; + unsigned int mem_size; int gpio_irq; struct mtd_info mtd; - struct mtd_partition *parts; struct onenand_chip onenand; struct completion irq_done; struct completion dma_done; int dma_channel; int freq; - int (*setup)(void __iomem *base, int freq); + int (*setup)(void __iomem *base, int *freq_ptr); + struct regulator *regulator; + u8 flags; }; static void omap2_onenand_dma_cb(int lch, u16 ch_status, void *data) @@ -108,8 +106,9 @@ static void wait_warn(char *msg, int state, unsigned int ctrl, static int omap2_onenand_wait(struct mtd_info *mtd, int state) { struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); + struct onenand_chip *this = mtd->priv; unsigned int intr = 0; - unsigned int ctrl; + unsigned int ctrl, ctrl_mask; unsigned long timeout; u32 syscfg; @@ -141,11 +140,9 @@ static int omap2_onenand_wait(struct mtd_info *mtd, int state) wait_err("controller error", state, ctrl, intr); return -EIO; } - if ((intr & intr_flags) != intr_flags) { - wait_err("timeout", state, ctrl, intr); - return -EIO; - } - return 0; + if ((intr & intr_flags) == intr_flags) + return 0; + /* Continue in wait for interrupt branch */ } if (state != FL_READING) { @@ -156,12 +153,12 @@ static int omap2_onenand_wait(struct mtd_info *mtd, int state) if (!(syscfg & ONENAND_SYS_CFG1_IOBE)) { syscfg |= ONENAND_SYS_CFG1_IOBE; write_reg(c, syscfg, ONENAND_REG_SYS_CFG1); - if (cpu_is_omap34xx()) + if (c->flags & ONENAND_IN_OMAP34XX) /* Add a delay to let GPIO settle */ syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); } - INIT_COMPLETION(c->irq_done); + reinit_completion(&c->irq_done); if (c->gpio_irq) { result = gpio_get_value(c->gpio_irq); if (result == -1) { @@ -180,7 +177,8 @@ retry: if (result == 0) { /* Timeout after 20ms */ ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); - if (ctrl & ONENAND_CTRL_ONGO) { + if (ctrl & ONENAND_CTRL_ONGO && + !this->ongoing) { /* * The operation seems to be still going * so give it some more time. @@ -269,7 +267,11 @@ retry: return -EIO; } - if (ctrl & 0xFE9F) + ctrl_mask = 0xFE9F; + if (this->ongoing) + ctrl_mask &= ~0x8000; + + if (ctrl & ctrl_mask) wait_warn("unexpected controller status", state, ctrl, intr); return 0; @@ -346,7 +348,7 @@ static int omap3_onenand_read_bufferram(struct mtd_info *mtd, int area, omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, dma_dst, 0, 0); - INIT_COMPLETION(c->dma_done); + reinit_completion(&c->dma_done); omap_start_dma(c->dma_channel); timeout = jiffies + msecs_to_jiffies(20); @@ -417,7 +419,7 @@ static int omap3_onenand_write_bufferram(struct mtd_info *mtd, int area, omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, dma_dst, 0, 0); - INIT_COMPLETION(c->dma_done); + reinit_completion(&c->dma_done); omap_start_dma(c->dma_channel); timeout = jiffies + msecs_to_jiffies(20); @@ -442,13 +444,19 @@ out_copy: #else -int omap3_onenand_read_bufferram(struct mtd_info *mtd, int area, - unsigned char *buffer, int offset, - size_t count); +static int omap3_onenand_read_bufferram(struct mtd_info *mtd, int area, + unsigned char *buffer, int offset, + size_t count) +{ + return -ENOSYS; +} -int omap3_onenand_write_bufferram(struct mtd_info *mtd, int area, - const unsigned char *buffer, - int offset, size_t count); +static int omap3_onenand_write_bufferram(struct mtd_info *mtd, int area, + const unsigned char *buffer, + int offset, size_t count) +{ + return -ENOSYS; +} #endif @@ -490,7 +498,7 @@ static int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area, omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, dma_dst, 0, 0); - INIT_COMPLETION(c->dma_done); + reinit_completion(&c->dma_done); omap_start_dma(c->dma_channel); wait_for_completion(&c->dma_done); @@ -535,7 +543,7 @@ static int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area, omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, dma_dst, 0, 0); - INIT_COMPLETION(c->dma_done); + reinit_completion(&c->dma_done); omap_start_dma(c->dma_channel); wait_for_completion(&c->dma_done); @@ -546,58 +554,69 @@ static int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area, #else -int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area, - unsigned char *buffer, int offset, - size_t count); +static int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area, + unsigned char *buffer, int offset, + size_t count) +{ + return -ENOSYS; +} -int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area, - const unsigned char *buffer, - int offset, size_t count); +static int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area, + const unsigned char *buffer, + int offset, size_t count) +{ + return -ENOSYS; +} #endif static struct platform_driver omap2_onenand_driver; -static int __adjust_timing(struct device *dev, void *data) +static void omap2_onenand_shutdown(struct platform_device *pdev) { - int ret = 0; - struct omap2_onenand *c; + struct omap2_onenand *c = dev_get_drvdata(&pdev->dev); - c = dev_get_drvdata(dev); + /* With certain content in the buffer RAM, the OMAP boot ROM code + * can recognize the flash chip incorrectly. Zero it out before + * soft reset. + */ + memset((__force void *)c->onenand.base, 0, ONENAND_BUFRAM_SIZE); +} - BUG_ON(c->setup == NULL); +static int omap2_onenand_enable(struct mtd_info *mtd) +{ + int ret; + struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); - /* DMA is not in use so this is all that is needed */ - /* Revisit for OMAP3! */ - ret = c->setup(c->onenand.base, c->freq); + ret = regulator_enable(c->regulator); + if (ret != 0) + dev_err(&c->pdev->dev, "can't enable regulator\n"); return ret; } -int omap2_onenand_rephase(void) +static int omap2_onenand_disable(struct mtd_info *mtd) { - return driver_for_each_device(&omap2_onenand_driver.driver, NULL, - NULL, __adjust_timing); -} + int ret; + struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); -static void omap2_onenand_shutdown(struct platform_device *pdev) -{ - struct omap2_onenand *c = dev_get_drvdata(&pdev->dev); + ret = regulator_disable(c->regulator); + if (ret != 0) + dev_err(&c->pdev->dev, "can't disable regulator\n"); - /* With certain content in the buffer RAM, the OMAP boot ROM code - * can recognize the flash chip incorrectly. Zero it out before - * soft reset. - */ - memset((__force void *)c->onenand.base, 0, ONENAND_BUFRAM_SIZE); + return ret; } -static int __devinit omap2_onenand_probe(struct platform_device *pdev) +static int omap2_onenand_probe(struct platform_device *pdev) { struct omap_onenand_platform_data *pdata; struct omap2_onenand *c; + struct onenand_chip *this; int r; + struct resource *res; + struct mtd_part_parser_data ppdata = {}; - pdata = pdev->dev.platform_data; + pdata = dev_get_platdata(&pdev->dev); if (pdata == NULL) { dev_err(&pdev->dev, "platform data missing\n"); return -ENODEV; @@ -609,6 +628,7 @@ static int __devinit omap2_onenand_probe(struct platform_device *pdev) init_completion(&c->irq_done); init_completion(&c->dma_done); + c->flags = pdata->flags; c->gpmc_cs = pdata->cs; c->gpio_irq = pdata->gpio_irq; c->dma_channel = pdata->dma_channel; @@ -617,27 +637,31 @@ static int __devinit omap2_onenand_probe(struct platform_device *pdev) c->gpio_irq = 0; } - r = gpmc_cs_request(c->gpmc_cs, ONENAND_IO_SIZE, &c->phys_base); - if (r < 0) { - dev_err(&pdev->dev, "Cannot request GPMC CS\n"); + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (res == NULL) { + r = -EINVAL; + dev_err(&pdev->dev, "error getting memory resource\n"); goto err_kfree; } - if (request_mem_region(c->phys_base, ONENAND_IO_SIZE, + c->phys_base = res->start; + c->mem_size = resource_size(res); + + if (request_mem_region(c->phys_base, c->mem_size, pdev->dev.driver->name) == NULL) { - dev_err(&pdev->dev, "Cannot reserve memory region at 0x%08lx, " - "size: 0x%x\n", c->phys_base, ONENAND_IO_SIZE); + dev_err(&pdev->dev, "Cannot reserve memory region at 0x%08lx, size: 0x%x\n", + c->phys_base, c->mem_size); r = -EBUSY; - goto err_free_cs; + goto err_kfree; } - c->onenand.base = ioremap(c->phys_base, ONENAND_IO_SIZE); + c->onenand.base = ioremap(c->phys_base, c->mem_size); if (c->onenand.base == NULL) { r = -ENOMEM; goto err_release_mem_region; } if (pdata->onenand_setup != NULL) { - r = pdata->onenand_setup(c->onenand.base, c->freq); + r = pdata->onenand_setup(c->onenand.base, &c->freq); if (r < 0) { dev_err(&pdev->dev, "Onenand platform setup failed: " "%d\n", r); @@ -682,8 +706,8 @@ static int __devinit omap2_onenand_probe(struct platform_device *pdev) } dev_info(&pdev->dev, "initializing on CS%d, phys base 0x%08lx, virtual " - "base %p\n", c->gpmc_cs, c->phys_base, - c->onenand.base); + "base %p, freq %d MHz\n", c->gpmc_cs, c->phys_base, + c->onenand.base, c->freq); c->pdev = pdev; c->mtd.name = dev_name(&pdev->dev); @@ -692,11 +716,10 @@ static int __devinit omap2_onenand_probe(struct platform_device *pdev) c->mtd.dev.parent = &pdev->dev; + this = &c->onenand; if (c->dma_channel >= 0) { - struct onenand_chip *this = &c->onenand; - this->wait = omap2_onenand_wait; - if (cpu_is_omap34xx()) { + if (c->flags & ONENAND_IN_OMAP34XX) { this->read_bufferram = omap3_onenand_read_bufferram; this->write_bufferram = omap3_onenand_write_bufferram; } else { @@ -705,32 +728,28 @@ static int __devinit omap2_onenand_probe(struct platform_device *pdev) } } - if ((r = onenand_scan(&c->mtd, 1)) < 0) - goto err_release_dma; - - switch ((c->onenand.version_id >> 4) & 0xf) { - case 0: - c->freq = 40; - break; - case 1: - c->freq = 54; - break; - case 2: - c->freq = 66; - break; - case 3: - c->freq = 83; - break; + if (pdata->regulator_can_sleep) { + c->regulator = regulator_get(&pdev->dev, "vonenand"); + if (IS_ERR(c->regulator)) { + dev_err(&pdev->dev, "Failed to get regulator\n"); + r = PTR_ERR(c->regulator); + goto err_release_dma; + } + c->onenand.enable = omap2_onenand_enable; + c->onenand.disable = omap2_onenand_disable; } -#ifdef CONFIG_MTD_PARTITIONS - if (pdata->parts != NULL) - r = add_mtd_partitions(&c->mtd, pdata->parts, - pdata->nr_parts); - else -#endif - r = add_mtd_device(&c->mtd); - if (r < 0) + if (pdata->skip_initial_unlocking) + this->options |= ONENAND_SKIP_INITIAL_UNLOCKING; + + if ((r = onenand_scan(&c->mtd, 1)) < 0) + goto err_release_regulator; + + ppdata.of_node = pdata->of_node; + r = mtd_device_parse_register(&c->mtd, NULL, &ppdata, + pdata ? pdata->parts : NULL, + pdata ? pdata->nr_parts : 0); + if (r) goto err_release_onenand; platform_set_drvdata(pdev, c); @@ -739,6 +758,8 @@ static int __devinit omap2_onenand_probe(struct platform_device *pdev) err_release_onenand: onenand_release(&c->mtd); +err_release_regulator: + regulator_put(c->regulator); err_release_dma: if (c->dma_channel != -1) omap_free_dma(c->dma_channel); @@ -750,42 +771,28 @@ err_release_gpio: err_iounmap: iounmap(c->onenand.base); err_release_mem_region: - release_mem_region(c->phys_base, ONENAND_IO_SIZE); -err_free_cs: - gpmc_cs_free(c->gpmc_cs); + release_mem_region(c->phys_base, c->mem_size); err_kfree: kfree(c); return r; } -static int __devexit omap2_onenand_remove(struct platform_device *pdev) +static int omap2_onenand_remove(struct platform_device *pdev) { struct omap2_onenand *c = dev_get_drvdata(&pdev->dev); - BUG_ON(c == NULL); - -#ifdef CONFIG_MTD_PARTITIONS - if (c->parts) - del_mtd_partitions(&c->mtd); - else - del_mtd_device(&c->mtd); -#else - del_mtd_device(&c->mtd); -#endif - onenand_release(&c->mtd); + regulator_put(c->regulator); if (c->dma_channel != -1) omap_free_dma(c->dma_channel); omap2_onenand_shutdown(pdev); - platform_set_drvdata(pdev, NULL); if (c->gpio_irq) { free_irq(gpio_to_irq(c->gpio_irq), c); gpio_free(c->gpio_irq); } iounmap(c->onenand.base); - release_mem_region(c->phys_base, ONENAND_IO_SIZE); - gpmc_cs_free(c->gpmc_cs); + release_mem_region(c->phys_base, c->mem_size); kfree(c); return 0; @@ -793,7 +800,7 @@ static int __devexit omap2_onenand_remove(struct platform_device *pdev) static struct platform_driver omap2_onenand_driver = { .probe = omap2_onenand_probe, - .remove = __devexit_p(omap2_onenand_remove), + .remove = omap2_onenand_remove, .shutdown = omap2_onenand_shutdown, .driver = { .name = DRIVER_NAME, @@ -801,21 +808,9 @@ static struct platform_driver omap2_onenand_driver = { }, }; -static int __init omap2_onenand_init(void) -{ - printk(KERN_INFO "OneNAND driver initializing\n"); - return platform_driver_register(&omap2_onenand_driver); -} - -static void __exit omap2_onenand_exit(void) -{ - platform_driver_unregister(&omap2_onenand_driver); -} - -module_init(omap2_onenand_init); -module_exit(omap2_onenand_exit); +module_platform_driver(omap2_onenand_driver); -MODULE_ALIAS(DRIVER_NAME); +MODULE_ALIAS("platform:" DRIVER_NAME); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Jarkko Lavinen <jarkko.lavinen@nokia.com>"); MODULE_DESCRIPTION("Glue layer for OneNAND flash on OMAP2 / OMAP3"); diff --git a/drivers/mtd/onenand/onenand_base.c b/drivers/mtd/onenand/onenand_base.c index 26caf2590da..635ee002769 100644 --- a/drivers/mtd/onenand/onenand_base.c +++ b/drivers/mtd/onenand/onenand_base.c @@ -24,7 +24,6 @@ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/slab.h> -#include <linux/init.h> #include <linux/sched.h> #include <linux/delay.h> #include <linux/interrupt.h> @@ -65,11 +64,11 @@ MODULE_PARM_DESC(otp, "Corresponding behaviour of OneNAND in OTP" " : 2 -> 1st Block lock" " : 3 -> BOTH OTP Block and 1st Block lock"); -/** - * onenand_oob_128 - oob info for Flex-Onenand with 4KB page - * For now, we expose only 64 out of 80 ecc bytes +/* + * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page + * For now, we expose only 64 out of 80 ecc bytes */ -static struct nand_ecclayout onenand_oob_128 = { +static struct nand_ecclayout flexonenand_oob_128 = { .eccbytes = 64, .eccpos = { 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, @@ -86,6 +85,35 @@ static struct nand_ecclayout onenand_oob_128 = { } }; +/* + * onenand_oob_128 - oob info for OneNAND with 4KB page + * + * Based on specification: + * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010 + * + * For eccpos we expose only 64 bytes out of 72 (see struct nand_ecclayout) + * + * oobfree uses the spare area fields marked as + * "Managed by internal ECC logic for Logical Sector Number area" + */ +static struct nand_ecclayout onenand_oob_128 = { + .eccbytes = 64, + .eccpos = { + 7, 8, 9, 10, 11, 12, 13, 14, 15, + 23, 24, 25, 26, 27, 28, 29, 30, 31, + 39, 40, 41, 42, 43, 44, 45, 46, 47, + 55, 56, 57, 58, 59, 60, 61, 62, 63, + 71, 72, 73, 74, 75, 76, 77, 78, 79, + 87, 88, 89, 90, 91, 92, 93, 94, 95, + 103, 104, 105, 106, 107, 108, 109, 110, 111, + 119 + }, + .oobfree = { + {2, 3}, {18, 3}, {34, 3}, {50, 3}, + {66, 3}, {82, 3}, {98, 3}, {114, 3} + } +}; + /** * onenand_oob_64 - oob info for large (2KB) page */ @@ -377,8 +405,11 @@ static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t le default: block = onenand_block(this, addr); - page = (int) (addr - onenand_addr(this, block)) >> this->page_shift; - + if (FLEXONENAND(this)) + page = (int) (addr - onenand_addr(this, block))>>\ + this->page_shift; + else + page = (int) (addr >> this->page_shift); if (ONENAND_IS_2PLANE(this)) { /* Make the even block number */ block &= ~1; @@ -397,8 +428,7 @@ static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t le value = onenand_bufferram_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); - if (ONENAND_IS_MLC(this) || ONENAND_IS_2PLANE(this) || - ONENAND_IS_4KB_PAGE(this)) + if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) /* It is always BufferRAM0 */ ONENAND_SET_BUFFERRAM0(this); else @@ -427,7 +457,7 @@ static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t le case FLEXONENAND_CMD_RECOVER_LSB: case ONENAND_CMD_READ: case ONENAND_CMD_READOOB: - if (ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this)) + if (ONENAND_IS_4KB_PAGE(this)) /* It is always BufferRAM0 */ dataram = ONENAND_SET_BUFFERRAM0(this); else @@ -946,6 +976,8 @@ static int onenand_get_device(struct mtd_info *mtd, int new_state) if (this->state == FL_READY) { this->state = new_state; spin_unlock(&this->chip_lock); + if (new_state != FL_PM_SUSPENDED && this->enable) + this->enable(mtd); break; } if (new_state == FL_PM_SUSPENDED) { @@ -972,6 +1004,8 @@ static void onenand_release_device(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; + if (this->state != FL_PM_SUSPENDED && this->disable) + this->disable(mtd); /* Release the chip */ spin_lock(&this->chip_lock); this->state = FL_READY; @@ -980,7 +1014,7 @@ static void onenand_release_device(struct mtd_info *mtd) } /** - * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer + * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer * @param mtd MTD device structure * @param buf destination address * @param column oob offset to read from @@ -1044,7 +1078,7 @@ static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status) return status; /* check if we failed due to uncorrectable error */ - if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR) + if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR) return status; /* check if address lies in MLC region */ @@ -1087,10 +1121,10 @@ static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from, int ret = 0; int writesize = this->writesize; - DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n", - __func__, (unsigned int) from, (int) len); + pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from, + (int)len); - if (ops->mode == MTD_OOB_AUTO) + if (ops->mode == MTD_OPS_AUTO_OOB) oobsize = this->ecclayout->oobavail; else oobsize = mtd->oobsize; @@ -1124,8 +1158,10 @@ static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from, if (unlikely(ret)) ret = onenand_recover_lsb(mtd, from, ret); onenand_update_bufferram(mtd, from, !ret); - if (ret == -EBADMSG) + if (mtd_is_eccerr(ret)) ret = 0; + if (ret) + break; } this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen); @@ -1133,7 +1169,7 @@ static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from, thisooblen = oobsize - oobcolumn; thisooblen = min_t(int, thisooblen, ooblen - oobread); - if (ops->mode == MTD_OOB_AUTO) + if (ops->mode == MTD_OPS_AUTO_OOB) onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen); else this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen); @@ -1164,7 +1200,8 @@ static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from, if (mtd->ecc_stats.failed - stats.failed) return -EBADMSG; - return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0; + /* return max bitflips per ecc step; ONENANDs correct 1 bit only */ + return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0; } /** @@ -1189,10 +1226,10 @@ static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from, int ret = 0, boundary = 0; int writesize = this->writesize; - DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n", - __func__, (unsigned int) from, (int) len); + pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from, + (int)len); - if (ops->mode == MTD_OOB_AUTO) + if (ops->mode == MTD_OPS_AUTO_OOB) oobsize = this->ecclayout->oobavail; else oobsize = mtd->oobsize; @@ -1218,7 +1255,7 @@ static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from, this->command(mtd, ONENAND_CMD_READ, from, writesize); ret = this->wait(mtd, FL_READING); onenand_update_bufferram(mtd, from, !ret); - if (ret == -EBADMSG) + if (mtd_is_eccerr(ret)) ret = 0; } } @@ -1254,7 +1291,7 @@ static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from, thisooblen = oobsize - oobcolumn; thisooblen = min_t(int, thisooblen, ooblen - oobread); - if (ops->mode == MTD_OOB_AUTO) + if (ops->mode == MTD_OPS_AUTO_OOB) onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen); else this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen); @@ -1278,7 +1315,7 @@ static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from, /* Now wait for load */ ret = this->wait(mtd, FL_READING); onenand_update_bufferram(mtd, from, !ret); - if (ret == -EBADMSG) + if (mtd_is_eccerr(ret)) ret = 0; } @@ -1296,7 +1333,8 @@ static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from, if (mtd->ecc_stats.failed - stats.failed) return -EBADMSG; - return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0; + /* return max bitflips per ecc step; ONENANDs correct 1 bit only */ + return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0; } /** @@ -1314,19 +1352,19 @@ static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from, struct mtd_ecc_stats stats; int read = 0, thislen, column, oobsize; size_t len = ops->ooblen; - mtd_oob_mode_t mode = ops->mode; + unsigned int mode = ops->mode; u_char *buf = ops->oobbuf; int ret = 0, readcmd; from += ops->ooboffs; - DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n", - __func__, (unsigned int) from, (int) len); + pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from, + (int)len); /* Initialize return length value */ ops->oobretlen = 0; - if (mode == MTD_OOB_AUTO) + if (mode == MTD_OPS_AUTO_OOB) oobsize = this->ecclayout->oobavail; else oobsize = mtd->oobsize; @@ -1350,7 +1388,7 @@ static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from, stats = mtd->ecc_stats; - readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; + readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; while (read < len) { cond_resched(); @@ -1366,13 +1404,13 @@ static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from, if (unlikely(ret)) ret = onenand_recover_lsb(mtd, from, ret); - if (ret && ret != -EBADMSG) { + if (ret && !mtd_is_eccerr(ret)) { printk(KERN_ERR "%s: read failed = 0x%x\n", __func__, ret); break; } - if (mode == MTD_OOB_AUTO) + if (mode == MTD_OPS_AUTO_OOB) onenand_transfer_auto_oob(mtd, buf, column, thislen); else this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen); @@ -1426,7 +1464,7 @@ static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len, int ret; onenand_get_device(mtd, FL_READING); - ret = ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this) ? + ret = ONENAND_IS_4KB_PAGE(this) ? onenand_mlc_read_ops_nolock(mtd, from, &ops) : onenand_read_ops_nolock(mtd, from, &ops); onenand_release_device(mtd); @@ -1450,10 +1488,10 @@ static int onenand_read_oob(struct mtd_info *mtd, loff_t from, int ret; switch (ops->mode) { - case MTD_OOB_PLACE: - case MTD_OOB_AUTO: + case MTD_OPS_PLACE_OOB: + case MTD_OPS_AUTO_OOB: break; - case MTD_OOB_RAW: + case MTD_OPS_RAW: /* Not implemented yet */ default: return -EINVAL; @@ -1461,7 +1499,7 @@ static int onenand_read_oob(struct mtd_info *mtd, loff_t from, onenand_get_device(mtd, FL_READING); if (ops->datbuf) - ret = ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this) ? + ret = ONENAND_IS_4KB_PAGE(this) ? onenand_mlc_read_ops_nolock(mtd, from, ops) : onenand_read_ops_nolock(mtd, from, ops); else @@ -1482,8 +1520,7 @@ static int onenand_bbt_wait(struct mtd_info *mtd, int state) { struct onenand_chip *this = mtd->priv; unsigned long timeout; - unsigned int interrupt; - unsigned int ctrl; + unsigned int interrupt, ctrl, ecc, addr1, addr8; /* The 20 msec is enough */ timeout = jiffies + msecs_to_jiffies(20); @@ -1495,25 +1532,28 @@ static int onenand_bbt_wait(struct mtd_info *mtd, int state) /* To get correct interrupt status in timeout case */ interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); + addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1); + addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8); if (interrupt & ONENAND_INT_READ) { - int ecc = onenand_read_ecc(this); + ecc = onenand_read_ecc(this); if (ecc & ONENAND_ECC_2BIT_ALL) { - printk(KERN_WARNING "%s: ecc error = 0x%04x, " - "controller error 0x%04x\n", - __func__, ecc, ctrl); + printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x " + "intr 0x%04x addr1 %#x addr8 %#x\n", + __func__, ecc, ctrl, interrupt, addr1, addr8); return ONENAND_BBT_READ_ECC_ERROR; } } else { - printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n", - __func__, ctrl, interrupt); + printk(KERN_ERR "%s: read timeout! ctrl 0x%04x " + "intr 0x%04x addr1 %#x addr8 %#x\n", + __func__, ctrl, interrupt, addr1, addr8); return ONENAND_BBT_READ_FATAL_ERROR; } /* Initial bad block case: 0x2400 or 0x0400 */ if (ctrl & ONENAND_CTRL_ERROR) { - printk(KERN_DEBUG "%s: controller error = 0x%04x\n", - __func__, ctrl); + printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x " + "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8); return ONENAND_BBT_READ_ERROR; } @@ -1537,8 +1577,8 @@ int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, size_t len = ops->ooblen; u_char *buf = ops->oobbuf; - DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %zi\n", - __func__, (unsigned int) from, len); + pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from, + len); /* Initialize return value */ ops->oobretlen = 0; @@ -1555,7 +1595,7 @@ int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, column = from & (mtd->oobsize - 1); - readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; + readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; while (read < len) { cond_resched(); @@ -1609,7 +1649,7 @@ static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to u_char *oob_buf = this->oob_buf; int status, i, readcmd; - readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; + readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; this->command(mtd, readcmd, to, mtd->oobsize); onenand_update_bufferram(mtd, to, 0); @@ -1638,11 +1678,10 @@ static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, int ret = 0; int thislen, column; + column = addr & (this->writesize - 1); + while (len != 0) { - thislen = min_t(int, this->writesize, len); - column = addr & (this->writesize - 1); - if (column + thislen > this->writesize) - thislen = this->writesize - column; + thislen = min_t(int, this->writesize - column, len); this->command(mtd, ONENAND_CMD_READ, addr, this->writesize); @@ -1656,12 +1695,13 @@ static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize); - if (memcmp(buf, this->verify_buf, thislen)) + if (memcmp(buf, this->verify_buf + column, thislen)) return -EBADMSG; len -= thislen; buf += thislen; addr += thislen; + column = 0; } return 0; @@ -1711,18 +1751,8 @@ static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len, /* Wait for any existing operation to clear */ onenand_panic_wait(mtd); - DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n", - __func__, (unsigned int) to, (int) len); - - /* Initialize retlen, in case of early exit */ - *retlen = 0; - - /* Do not allow writes past end of device */ - if (unlikely((to + len) > mtd->size)) { - printk(KERN_ERR "%s: Attempt write to past end of device\n", - __func__); - return -EINVAL; - } + pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, + (int)len); /* Reject writes, which are not page aligned */ if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) { @@ -1782,7 +1812,7 @@ static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len, } /** - * onenand_fill_auto_oob - [Internal] oob auto-placement transfer + * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer * @param mtd MTD device structure * @param oob_buf oob buffer * @param buf source address @@ -1842,22 +1872,15 @@ static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to, const u_char *buf = ops->datbuf; const u_char *oob = ops->oobbuf; u_char *oobbuf; - int ret = 0; + int ret = 0, cmd; - DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n", - __func__, (unsigned int) to, (int) len); + pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, + (int)len); /* Initialize retlen, in case of early exit */ ops->retlen = 0; ops->oobretlen = 0; - /* Do not allow writes past end of device */ - if (unlikely((to + len) > mtd->size)) { - printk(KERN_ERR "%s: Attempt write to past end of device\n", - __func__); - return -EINVAL; - } - /* Reject writes, which are not page aligned */ if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) { printk(KERN_ERR "%s: Attempt to write not page aligned data\n", @@ -1869,7 +1892,7 @@ static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to, if (!len) return 0; - if (ops->mode == MTD_OOB_AUTO) + if (ops->mode == MTD_OPS_AUTO_OOB) oobsize = this->ecclayout->oobavail; else oobsize = mtd->oobsize; @@ -1906,7 +1929,7 @@ static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to, /* We send data to spare ram with oobsize * to prevent byte access */ memset(oobbuf, 0xff, mtd->oobsize); - if (ops->mode == MTD_OOB_AUTO) + if (ops->mode == MTD_OPS_AUTO_OOB) onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen); else memcpy(oobbuf + oobcolumn, oob, thisooblen); @@ -1951,7 +1974,19 @@ static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to, ONENAND_SET_NEXT_BUFFERRAM(this); } - this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize); + this->ongoing = 0; + cmd = ONENAND_CMD_PROG; + + /* Exclude 1st OTP and OTP blocks for cache program feature */ + if (ONENAND_IS_CACHE_PROGRAM(this) && + likely(onenand_block(this, to) != 0) && + ONENAND_IS_4KB_PAGE(this) && + ((written + thislen) < len)) { + cmd = ONENAND_CMD_2X_CACHE_PROG; + this->ongoing = 1; + } + + this->command(mtd, cmd, to, mtd->writesize); /* * 2 PLANE, MLC, and Flex-OneNAND wait here @@ -2004,7 +2039,7 @@ static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to, /** - * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band + * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band * @param mtd MTD device structure * @param to offset to write to * @param len number of bytes to write @@ -2023,17 +2058,17 @@ static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to, u_char *oobbuf; size_t len = ops->ooblen; const u_char *buf = ops->oobbuf; - mtd_oob_mode_t mode = ops->mode; + unsigned int mode = ops->mode; to += ops->ooboffs; - DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n", - __func__, (unsigned int) to, (int) len); + pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, + (int)len); /* Initialize retlen, in case of early exit */ ops->oobretlen = 0; - if (mode == MTD_OOB_AUTO) + if (mode == MTD_OPS_AUTO_OOB) oobsize = this->ecclayout->oobavail; else oobsize = mtd->oobsize; @@ -2064,7 +2099,7 @@ static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to, oobbuf = this->oob_buf; - oobcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB; + oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB; /* Loop until all data write */ while (written < len) { @@ -2077,13 +2112,13 @@ static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to, /* We send data to spare ram with oobsize * to prevent byte access */ memset(oobbuf, 0xff, mtd->oobsize); - if (mode == MTD_OOB_AUTO) + if (mode == MTD_OPS_AUTO_OOB) onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen); else memcpy(oobbuf + column, buf, thislen); this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); - if (ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this)) { + if (ONENAND_IS_4KB_PAGE(this)) { /* Set main area of DataRAM to 0xff*/ memset(this->page_buf, 0xff, mtd->writesize); this->write_bufferram(mtd, ONENAND_DATARAM, @@ -2166,10 +2201,10 @@ static int onenand_write_oob(struct mtd_info *mtd, loff_t to, int ret; switch (ops->mode) { - case MTD_OOB_PLACE: - case MTD_OOB_AUTO: + case MTD_OPS_PLACE_OOB: + case MTD_OPS_AUTO_OOB: break; - case MTD_OOB_RAW: + case MTD_OPS_RAW: /* Not implemented yet */ default: return -EINVAL; @@ -2230,7 +2265,7 @@ static int onenand_multiblock_erase_verify(struct mtd_info *mtd, } /** - * onenand_multiblock_erase - [Internal] erase block(s) using multiblock erase + * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase * @param mtd MTD device structure * @param instr erase instruction * @param region erase region @@ -2346,7 +2381,7 @@ static int onenand_multiblock_erase(struct mtd_info *mtd, /** - * onenand_block_by_block_erase - [Internal] erase block(s) using regular erase + * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase * @param mtd MTD device structure * @param instr erase instruction * @param region erase region @@ -2402,7 +2437,7 @@ static int onenand_block_by_block_erase(struct mtd_info *mtd, len -= block_size; addr += block_size; - if (addr == region_end) { + if (region && addr == region_end) { if (!len) break; region++; @@ -2438,14 +2473,9 @@ static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr) struct mtd_erase_region_info *region = NULL; loff_t region_offset = 0; - DEBUG(MTD_DEBUG_LEVEL3, "%s: start=0x%012llx, len=%llu\n", __func__, - (unsigned long long) instr->addr, (unsigned long long) instr->len); - - /* Do not allow erase past end of device */ - if (unlikely((len + addr) > mtd->size)) { - printk(KERN_ERR "%s: Erase past end of device\n", __func__); - return -EINVAL; - } + pr_debug("%s: start=0x%012llx, len=%llu\n", __func__, + (unsigned long long)instr->addr, + (unsigned long long)instr->len); if (FLEXONENAND(this)) { /* Find the eraseregion of this address */ @@ -2473,12 +2503,11 @@ static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr) return -EINVAL; } - instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; - /* Grab the lock and see if the device is available */ onenand_get_device(mtd, FL_ERASING); - if (region || instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) { + if (ONENAND_IS_4KB_PAGE(this) || region || + instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) { /* region is set for Flex-OneNAND (no mb erase) */ ret = onenand_block_by_block_erase(mtd, instr, region, block_size); @@ -2506,7 +2535,7 @@ static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr) */ static void onenand_sync(struct mtd_info *mtd) { - DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__); + pr_debug("%s: called\n", __func__); /* Grab the lock and see if the device is available */ onenand_get_device(mtd, FL_SYNCING); @@ -2526,10 +2555,6 @@ static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs) { int ret; - /* Check for invalid offset */ - if (ofs > mtd->size) - return -EINVAL; - onenand_get_device(mtd, FL_READING); ret = onenand_block_isbad_nolock(mtd, ofs, 0); onenand_release_device(mtd); @@ -2550,7 +2575,7 @@ static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) struct bbm_info *bbm = this->bbm; u_char buf[2] = {0, 0}; struct mtd_oob_ops ops = { - .mode = MTD_OOB_PLACE, + .mode = MTD_OPS_PLACE_OOB, .ooblen = 2, .oobbuf = buf, .ooboffs = 0, @@ -2580,7 +2605,6 @@ static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) */ static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs) { - struct onenand_chip *this = mtd->priv; int ret; ret = onenand_block_isbad(mtd, ofs); @@ -2592,7 +2616,7 @@ static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs) } onenand_get_device(mtd, FL_WRITING); - ret = this->block_markbad(mtd, ofs); + ret = mtd_block_markbad(mtd, ofs); onenand_release_device(mtd); return ret; } @@ -2870,7 +2894,7 @@ static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr, } /** - * onenand_otp_write_oob_nolock - [Internal] OneNAND write out-of-band, specific to OTP + * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP * @param mtd MTD device structure * @param to offset to write to * @param len number of bytes to write @@ -3026,7 +3050,7 @@ static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len, this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); this->wait(mtd, FL_OTPING); - ret = ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this) ? + ret = ONENAND_IS_4KB_PAGE(this) ? onenand_mlc_read_ops_nolock(mtd, from, &ops) : onenand_read_ops_nolock(mtd, from, &ops); @@ -3118,7 +3142,7 @@ static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len, this->command(mtd, ONENAND_CMD_RESET, 0, 0); this->wait(mtd, FL_RESETING); } else { - ops.mode = MTD_OOB_PLACE; + ops.mode = MTD_OPS_PLACE_OOB; ops.ooblen = len; ops.oobbuf = buf; ops.ooboffs = 0; @@ -3213,20 +3237,17 @@ static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len, /** * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info * @param mtd MTD device structure - * @param buf the databuffer to put/get data * @param len number of bytes to read + * @param retlen pointer to variable to store the number of read bytes + * @param buf the databuffer to put/get data * * Read factory OTP info. */ -static int onenand_get_fact_prot_info(struct mtd_info *mtd, - struct otp_info *buf, size_t len) +static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) { - size_t retlen; - int ret; - - ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY); - - return ret ? : retlen; + return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL, + MTD_OTP_FACTORY); } /** @@ -3248,20 +3269,17 @@ static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, /** * onenand_get_user_prot_info - [MTD Interface] Read user OTP info * @param mtd MTD device structure - * @param buf the databuffer to put/get data + * @param retlen pointer to variable to store the number of read bytes * @param len number of bytes to read + * @param buf the databuffer to put/get data * * Read user OTP info. */ -static int onenand_get_user_prot_info(struct mtd_info *mtd, - struct otp_info *buf, size_t len) +static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) { - size_t retlen; - int ret; - - ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER); - - return ret ? : retlen; + return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL, + MTD_OTP_USER); } /** @@ -3362,19 +3380,35 @@ static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, static void onenand_check_features(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; - unsigned int density, process; + unsigned int density, process, numbufs; /* Lock scheme depends on density and process */ density = onenand_get_density(this->device_id); process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT; + numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8; /* Lock scheme */ switch (density) { case ONENAND_DEVICE_DENSITY_4Gb: if (ONENAND_IS_DDP(this)) this->options |= ONENAND_HAS_2PLANE; - else + else if (numbufs == 1) { this->options |= ONENAND_HAS_4KB_PAGE; + this->options |= ONENAND_HAS_CACHE_PROGRAM; + /* + * There are two different 4KiB pagesize chips + * and no way to detect it by H/W config values. + * + * To detect the correct NOP for each chips, + * It should check the version ID as workaround. + * + * Now it has as following + * KFM4G16Q4M has NOP 4 with version ID 0x0131 + * KFM4G16Q5M has NOP 1 with versoin ID 0x013e + */ + if ((this->version_id & 0xf) == 0xe) + this->options |= ONENAND_HAS_NOP_1; + } case ONENAND_DEVICE_DENSITY_2Gb: /* 2Gb DDP does not have 2 plane */ @@ -3395,7 +3429,11 @@ static void onenand_check_features(struct mtd_info *mtd) break; } - if (ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this)) + /* The MLC has 4KiB pagesize. */ + if (ONENAND_IS_MLC(this)) + this->options |= ONENAND_HAS_4KB_PAGE; + + if (ONENAND_IS_4KB_PAGE(this)) this->options &= ~ONENAND_HAS_2PLANE; if (FLEXONENAND(this)) { @@ -3411,6 +3449,8 @@ static void onenand_check_features(struct mtd_info *mtd) printk(KERN_DEBUG "Chip has 2 plane\n"); if (this->options & ONENAND_HAS_4KB_PAGE) printk(KERN_DEBUG "Chip has 4KiB pagesize\n"); + if (this->options & ONENAND_HAS_CACHE_PROGRAM) + printk(KERN_DEBUG "Chip has cache program feature\n"); } /** @@ -3478,7 +3518,7 @@ static int flexonenand_get_boundary(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; unsigned die, bdry; - int ret, syscfg, locked; + int syscfg, locked; /* Disable ECC */ syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); @@ -3489,7 +3529,7 @@ static int flexonenand_get_boundary(struct mtd_info *mtd) this->wait(mtd, FL_SYNCING); this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); - ret = this->wait(mtd, FL_READING); + this->wait(mtd, FL_READING); bdry = this->read_word(this->base + ONENAND_DATARAM); if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3) @@ -3499,7 +3539,7 @@ static int flexonenand_get_boundary(struct mtd_info *mtd) this->boundary[die] = bdry & FLEXONENAND_PI_MASK; this->command(mtd, ONENAND_CMD_RESET, 0, 0); - ret = this->wait(mtd, FL_RESETING); + this->wait(mtd, FL_RESETING); printk(KERN_INFO "Die %d boundary: %d%s\n", die, this->boundary[die], locked ? "(Locked)" : "(Unlocked)"); @@ -3602,7 +3642,7 @@ static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int int i, ret; int block; struct mtd_oob_ops ops = { - .mode = MTD_OOB_PLACE, + .mode = MTD_OPS_PLACE_OOB, .ooboffs = 0, .ooblen = mtd->oobsize, .datbuf = NULL, @@ -3643,7 +3683,7 @@ static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int * flexonenand_set_boundary - Writes the SLC boundary * @param mtd - mtd info structure */ -int flexonenand_set_boundary(struct mtd_info *mtd, int die, +static int flexonenand_set_boundary(struct mtd_info *mtd, int die, int boundary, int lock) { struct onenand_chip *this = mtd->priv; @@ -3683,7 +3723,7 @@ int flexonenand_set_boundary(struct mtd_info *mtd, int die, /* Check is boundary is locked */ this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); - ret = this->wait(mtd, FL_READING); + this->wait(mtd, FL_READING); thisboundary = this->read_word(this->base + ONENAND_DATARAM); if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) { @@ -3730,17 +3770,16 @@ out: } /** - * onenand_probe - [OneNAND Interface] Probe the OneNAND device + * onenand_chip_probe - [OneNAND Interface] The generic chip probe * @param mtd MTD device structure * * OneNAND detection method: * Compare the values from command with ones from register */ -static int onenand_probe(struct mtd_info *mtd) +static int onenand_chip_probe(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; - int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id; - int density; + int bram_maf_id, bram_dev_id, maf_id, dev_id; int syscfg; /* Save system configuration 1 */ @@ -3763,12 +3802,6 @@ static int onenand_probe(struct mtd_info *mtd) /* Restore system configuration 1 */ this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); - /* Workaround */ - if (syscfg & ONENAND_SYS_CFG1_SYNC_WRITE) { - bram_maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID); - bram_dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); - } - /* Check manufacturer ID */ if (onenand_check_maf(bram_maf_id)) return -ENXIO; @@ -3776,13 +3809,34 @@ static int onenand_probe(struct mtd_info *mtd) /* Read manufacturer and device IDs from Register */ maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID); dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); - ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID); - this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY); /* Check OneNAND device */ if (maf_id != bram_maf_id || dev_id != bram_dev_id) return -ENXIO; + return 0; +} + +/** + * onenand_probe - [OneNAND Interface] Probe the OneNAND device + * @param mtd MTD device structure + */ +static int onenand_probe(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + int dev_id, ver_id; + int density; + int ret; + + ret = this->chip_probe(mtd); + if (ret) + return ret; + + /* Device and version IDs from Register */ + dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); + ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID); + this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY); + /* Flash device information */ onenand_print_device_info(dev_id, ver_id); this->device_id = dev_id; @@ -3812,7 +3866,7 @@ static int onenand_probe(struct mtd_info *mtd) /* The data buffer size is equal to page size */ mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE); /* We use the full BufferRAM */ - if (ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this)) + if (ONENAND_IS_4KB_PAGE(this)) mtd->writesize <<= 1; mtd->oobsize = mtd->writesize >> 5; @@ -3909,6 +3963,9 @@ int onenand_scan(struct mtd_info *mtd, int maxchips) if (!this->unlock_all) this->unlock_all = onenand_unlock_all; + if (!this->chip_probe) + this->chip_probe = onenand_chip_probe; + if (!this->read_bufferram) this->read_bufferram = onenand_read_bufferram; if (!this->write_bufferram) @@ -3931,11 +3988,8 @@ int onenand_scan(struct mtd_info *mtd, int maxchips) /* Allocate buffers, if necessary */ if (!this->page_buf) { this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL); - if (!this->page_buf) { - printk(KERN_ERR "%s: Can't allocate page_buf\n", - __func__); + if (!this->page_buf) return -ENOMEM; - } #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL); if (!this->verify_buf) { @@ -3948,8 +4002,6 @@ int onenand_scan(struct mtd_info *mtd, int maxchips) if (!this->oob_buf) { this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL); if (!this->oob_buf) { - printk(KERN_ERR "%s: Can't allocate oob_buf\n", - __func__); if (this->options & ONENAND_PAGEBUF_ALLOC) { this->options &= ~ONENAND_PAGEBUF_ALLOC; kfree(this->page_buf); @@ -3968,8 +4020,15 @@ int onenand_scan(struct mtd_info *mtd, int maxchips) */ switch (mtd->oobsize) { case 128: - this->ecclayout = &onenand_oob_128; - mtd->subpage_sft = 0; + if (FLEXONENAND(this)) { + this->ecclayout = &flexonenand_oob_128; + mtd->subpage_sft = 0; + } else { + this->ecclayout = &onenand_oob_128; + mtd->subpage_sft = 2; + } + if (ONENAND_IS_NOP_1(this)) + mtd->subpage_sft = 0; break; case 64: this->ecclayout = &onenand_oob_64; @@ -4004,37 +4063,40 @@ int onenand_scan(struct mtd_info *mtd, int maxchips) mtd->oobavail = this->ecclayout->oobavail; mtd->ecclayout = this->ecclayout; + mtd->ecc_strength = 1; /* Fill in remaining MTD driver data */ - mtd->type = MTD_NANDFLASH; + mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH; mtd->flags = MTD_CAP_NANDFLASH; - mtd->erase = onenand_erase; - mtd->point = NULL; - mtd->unpoint = NULL; - mtd->read = onenand_read; - mtd->write = onenand_write; - mtd->read_oob = onenand_read_oob; - mtd->write_oob = onenand_write_oob; - mtd->panic_write = onenand_panic_write; + mtd->_erase = onenand_erase; + mtd->_point = NULL; + mtd->_unpoint = NULL; + mtd->_read = onenand_read; + mtd->_write = onenand_write; + mtd->_read_oob = onenand_read_oob; + mtd->_write_oob = onenand_write_oob; + mtd->_panic_write = onenand_panic_write; #ifdef CONFIG_MTD_ONENAND_OTP - mtd->get_fact_prot_info = onenand_get_fact_prot_info; - mtd->read_fact_prot_reg = onenand_read_fact_prot_reg; - mtd->get_user_prot_info = onenand_get_user_prot_info; - mtd->read_user_prot_reg = onenand_read_user_prot_reg; - mtd->write_user_prot_reg = onenand_write_user_prot_reg; - mtd->lock_user_prot_reg = onenand_lock_user_prot_reg; + mtd->_get_fact_prot_info = onenand_get_fact_prot_info; + mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg; + mtd->_get_user_prot_info = onenand_get_user_prot_info; + mtd->_read_user_prot_reg = onenand_read_user_prot_reg; + mtd->_write_user_prot_reg = onenand_write_user_prot_reg; + mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg; #endif - mtd->sync = onenand_sync; - mtd->lock = onenand_lock; - mtd->unlock = onenand_unlock; - mtd->suspend = onenand_suspend; - mtd->resume = onenand_resume; - mtd->block_isbad = onenand_block_isbad; - mtd->block_markbad = onenand_block_markbad; + mtd->_sync = onenand_sync; + mtd->_lock = onenand_lock; + mtd->_unlock = onenand_unlock; + mtd->_suspend = onenand_suspend; + mtd->_resume = onenand_resume; + mtd->_block_isbad = onenand_block_isbad; + mtd->_block_markbad = onenand_block_markbad; mtd->owner = THIS_MODULE; + mtd->writebufsize = mtd->writesize; /* Unlock whole block */ - this->unlock_all(mtd); + if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING)) + this->unlock_all(mtd); ret = this->scan_bbt(mtd); if ((!FLEXONENAND(this)) || ret) @@ -4056,12 +4118,8 @@ void onenand_release(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; -#ifdef CONFIG_MTD_PARTITIONS /* Deregister partitions */ - del_mtd_partitions (mtd); -#endif - /* Deregister the device */ - del_mtd_device (mtd); + mtd_device_unregister(mtd); /* Free bad block table memory, if allocated */ if (this->bbm) { diff --git a/drivers/mtd/onenand/onenand_bbt.c b/drivers/mtd/onenand/onenand_bbt.c index a91fcac1af0..08d0085f3e9 100644 --- a/drivers/mtd/onenand/onenand_bbt.c +++ b/drivers/mtd/onenand/onenand_bbt.c @@ -15,7 +15,7 @@ #include <linux/slab.h> #include <linux/mtd/mtd.h> #include <linux/mtd/onenand.h> -#include <linux/mtd/compatmac.h> +#include <linux/export.h> /** * check_short_pattern - [GENERIC] check if a pattern is in the buffer @@ -81,7 +81,7 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr startblock = 0; from = 0; - ops.mode = MTD_OOB_PLACE; + ops.mode = MTD_OPS_PLACE_OOB; ops.ooblen = readlen; ops.oobbuf = buf; ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0; @@ -92,16 +92,18 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr for (j = 0; j < len; j++) { /* No need to read pages fully, * just read required OOB bytes */ - ret = onenand_bbt_read_oob(mtd, from + j * mtd->writesize + bd->offs, &ops); + ret = onenand_bbt_read_oob(mtd, + from + j * this->writesize + bd->offs, &ops); /* If it is a initial bad block, just ignore it */ if (ret == ONENAND_BBT_READ_FATAL_ERROR) return -EIO; - if (ret || check_short_pattern(&buf[j * scanlen], scanlen, mtd->writesize, bd)) { + if (ret || check_short_pattern(&buf[j * scanlen], + scanlen, this->writesize, bd)) { bbm->bbt[i >> 3] |= 0x03 << (i & 0x6); - printk(KERN_WARNING "Bad eraseblock %d at 0x%08x\n", - i >> 1, (unsigned int) from); + printk(KERN_INFO "OneNAND eraseblock %d is an " + "initial bad block\n", i >> 1); mtd->ecc_stats.badblocks++; break; } @@ -131,7 +133,6 @@ static inline int onenand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_desc { struct onenand_chip *this = mtd->priv; - bd->options &= ~NAND_BBT_SCANEMPTY; return create_bbt(mtd, this->page_buf, bd, -1); } @@ -152,7 +153,7 @@ static int onenand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt) block = (int) (onenand_block(this, offs) << 1); res = (bbm->bbt[block >> 3] >> (block & 0x06)) & 0x03; - DEBUG(MTD_DEBUG_LEVEL2, "onenand_isbad_bbt: bbt info for offs 0x%08x: (block %d) 0x%02x\n", + pr_debug("onenand_isbad_bbt: bbt info for offs 0x%08x: (block %d) 0x%02x\n", (unsigned int) offs, block >> 1, res); switch ((int) res) { @@ -187,10 +188,8 @@ int onenand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) len = this->chipsize >> (this->erase_shift + 2); /* Allocate memory (2bit per block) and clear the memory bad block table */ bbm->bbt = kzalloc(len, GFP_KERNEL); - if (!bbm->bbt) { - printk(KERN_ERR "onenand_scan_bbt: Out of memory\n"); + if (!bbm->bbt) return -ENOMEM; - } /* Set the bad block position */ bbm->badblockpos = ONENAND_BADBLOCK_POS; diff --git a/drivers/mtd/onenand/onenand_sim.c b/drivers/mtd/onenand/onenand_sim.c deleted file mode 100644 index 8b246061d51..00000000000 --- a/drivers/mtd/onenand/onenand_sim.c +++ /dev/null @@ -1,563 +0,0 @@ -/* - * linux/drivers/mtd/onenand/onenand_sim.c - * - * The OneNAND simulator - * - * Copyright © 2005-2007 Samsung Electronics - * Kyungmin Park <kyungmin.park@samsung.com> - * - * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com> - * Flex-OneNAND simulator support - * Copyright (C) Samsung Electronics, 2008 - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - */ - -#include <linux/kernel.h> -#include <linux/slab.h> -#include <linux/module.h> -#include <linux/init.h> -#include <linux/vmalloc.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/partitions.h> -#include <linux/mtd/onenand.h> - -#include <linux/io.h> - -#ifndef CONFIG_ONENAND_SIM_MANUFACTURER -#define CONFIG_ONENAND_SIM_MANUFACTURER 0xec -#endif - -#ifndef CONFIG_ONENAND_SIM_DEVICE_ID -#define CONFIG_ONENAND_SIM_DEVICE_ID 0x04 -#endif - -#define CONFIG_FLEXONENAND ((CONFIG_ONENAND_SIM_DEVICE_ID >> 9) & 1) - -#ifndef CONFIG_ONENAND_SIM_VERSION_ID -#define CONFIG_ONENAND_SIM_VERSION_ID 0x1e -#endif - -#ifndef CONFIG_ONENAND_SIM_TECHNOLOGY_ID -#define CONFIG_ONENAND_SIM_TECHNOLOGY_ID CONFIG_FLEXONENAND -#endif - -/* Initial boundary values for Flex-OneNAND Simulator */ -#ifndef CONFIG_FLEXONENAND_SIM_DIE0_BOUNDARY -#define CONFIG_FLEXONENAND_SIM_DIE0_BOUNDARY 0x01 -#endif - -#ifndef CONFIG_FLEXONENAND_SIM_DIE1_BOUNDARY -#define CONFIG_FLEXONENAND_SIM_DIE1_BOUNDARY 0x01 -#endif - -static int manuf_id = CONFIG_ONENAND_SIM_MANUFACTURER; -static int device_id = CONFIG_ONENAND_SIM_DEVICE_ID; -static int version_id = CONFIG_ONENAND_SIM_VERSION_ID; -static int technology_id = CONFIG_ONENAND_SIM_TECHNOLOGY_ID; -static int boundary[] = { - CONFIG_FLEXONENAND_SIM_DIE0_BOUNDARY, - CONFIG_FLEXONENAND_SIM_DIE1_BOUNDARY, -}; - -struct onenand_flash { - void __iomem *base; - void __iomem *data; -}; - -#define ONENAND_CORE(flash) (flash->data) -#define ONENAND_CORE_SPARE(flash, this, offset) \ - ((flash->data) + (this->chipsize) + (offset >> 5)) - -#define ONENAND_MAIN_AREA(this, offset) \ - (this->base + ONENAND_DATARAM + offset) - -#define ONENAND_SPARE_AREA(this, offset) \ - (this->base + ONENAND_SPARERAM + offset) - -#define ONENAND_GET_WP_STATUS(this) \ - (readw(this->base + ONENAND_REG_WP_STATUS)) - -#define ONENAND_SET_WP_STATUS(v, this) \ - (writew(v, this->base + ONENAND_REG_WP_STATUS)) - -/* It has all 0xff chars */ -#define MAX_ONENAND_PAGESIZE (4096 + 128) -static unsigned char *ffchars; - -#if CONFIG_FLEXONENAND -#define PARTITION_NAME "Flex-OneNAND simulator partition" -#else -#define PARTITION_NAME "OneNAND simulator partition" -#endif - -static struct mtd_partition os_partitions[] = { - { - .name = PARTITION_NAME, - .offset = 0, - .size = MTDPART_SIZ_FULL, - }, -}; - -/* - * OneNAND simulator mtd - */ -struct onenand_info { - struct mtd_info mtd; - struct mtd_partition *parts; - struct onenand_chip onenand; - struct onenand_flash flash; -}; - -static struct onenand_info *info; - -#define DPRINTK(format, args...) \ -do { \ - printk(KERN_DEBUG "%s[%d]: " format "\n", __func__, \ - __LINE__, ##args); \ -} while (0) - -/** - * onenand_lock_handle - Handle Lock scheme - * @this: OneNAND device structure - * @cmd: The command to be sent - * - * Send lock command to OneNAND device. - * The lock scheme depends on chip type. - */ -static void onenand_lock_handle(struct onenand_chip *this, int cmd) -{ - int block_lock_scheme; - int status; - - status = ONENAND_GET_WP_STATUS(this); - block_lock_scheme = !(this->options & ONENAND_HAS_CONT_LOCK); - - switch (cmd) { - case ONENAND_CMD_UNLOCK: - case ONENAND_CMD_UNLOCK_ALL: - if (block_lock_scheme) - ONENAND_SET_WP_STATUS(ONENAND_WP_US, this); - else - ONENAND_SET_WP_STATUS(status | ONENAND_WP_US, this); - break; - - case ONENAND_CMD_LOCK: - if (block_lock_scheme) - ONENAND_SET_WP_STATUS(ONENAND_WP_LS, this); - else - ONENAND_SET_WP_STATUS(status | ONENAND_WP_LS, this); - break; - - case ONENAND_CMD_LOCK_TIGHT: - if (block_lock_scheme) - ONENAND_SET_WP_STATUS(ONENAND_WP_LTS, this); - else - ONENAND_SET_WP_STATUS(status | ONENAND_WP_LTS, this); - break; - - default: - break; - } -} - -/** - * onenand_bootram_handle - Handle BootRAM area - * @this: OneNAND device structure - * @cmd: The command to be sent - * - * Emulate BootRAM area. It is possible to do basic operation using BootRAM. - */ -static void onenand_bootram_handle(struct onenand_chip *this, int cmd) -{ - switch (cmd) { - case ONENAND_CMD_READID: - writew(manuf_id, this->base); - writew(device_id, this->base + 2); - writew(version_id, this->base + 4); - break; - - default: - /* REVIST: Handle other commands */ - break; - } -} - -/** - * onenand_update_interrupt - Set interrupt register - * @this: OneNAND device structure - * @cmd: The command to be sent - * - * Update interrupt register. The status depends on command. - */ -static void onenand_update_interrupt(struct onenand_chip *this, int cmd) -{ - int interrupt = ONENAND_INT_MASTER; - - switch (cmd) { - case ONENAND_CMD_READ: - case ONENAND_CMD_READOOB: - interrupt |= ONENAND_INT_READ; - break; - - case ONENAND_CMD_PROG: - case ONENAND_CMD_PROGOOB: - interrupt |= ONENAND_INT_WRITE; - break; - - case ONENAND_CMD_ERASE: - interrupt |= ONENAND_INT_ERASE; - break; - - case ONENAND_CMD_RESET: - interrupt |= ONENAND_INT_RESET; - break; - - default: - break; - } - - writew(interrupt, this->base + ONENAND_REG_INTERRUPT); -} - -/** - * onenand_check_overwrite - Check if over-write happened - * @dest: The destination pointer - * @src: The source pointer - * @count: The length to be check - * - * Returns: 0 on same, otherwise 1 - * - * Compare the source with destination - */ -static int onenand_check_overwrite(void *dest, void *src, size_t count) -{ - unsigned int *s = (unsigned int *) src; - unsigned int *d = (unsigned int *) dest; - int i; - - count >>= 2; - for (i = 0; i < count; i++) - if ((*s++ ^ *d++) != 0) - return 1; - - return 0; -} - -/** - * onenand_data_handle - Handle OneNAND Core and DataRAM - * @this: OneNAND device structure - * @cmd: The command to be sent - * @dataram: Which dataram used - * @offset: The offset to OneNAND Core - * - * Copy data from OneNAND Core to DataRAM (read) - * Copy data from DataRAM to OneNAND Core (write) - * Erase the OneNAND Core (erase) - */ -static void onenand_data_handle(struct onenand_chip *this, int cmd, - int dataram, unsigned int offset) -{ - struct mtd_info *mtd = &info->mtd; - struct onenand_flash *flash = this->priv; - int main_offset, spare_offset, die = 0; - void __iomem *src; - void __iomem *dest; - unsigned int i; - static int pi_operation; - int erasesize, rgn; - - if (dataram) { - main_offset = mtd->writesize; - spare_offset = mtd->oobsize; - } else { - main_offset = 0; - spare_offset = 0; - } - - if (pi_operation) { - die = readw(this->base + ONENAND_REG_START_ADDRESS2); - die >>= ONENAND_DDP_SHIFT; - } - - switch (cmd) { - case FLEXONENAND_CMD_PI_ACCESS: - pi_operation = 1; - break; - - case ONENAND_CMD_RESET: - pi_operation = 0; - break; - - case ONENAND_CMD_READ: - src = ONENAND_CORE(flash) + offset; - dest = ONENAND_MAIN_AREA(this, main_offset); - if (pi_operation) { - writew(boundary[die], this->base + ONENAND_DATARAM); - break; - } - memcpy(dest, src, mtd->writesize); - /* Fall through */ - - case ONENAND_CMD_READOOB: - src = ONENAND_CORE_SPARE(flash, this, offset); - dest = ONENAND_SPARE_AREA(this, spare_offset); - memcpy(dest, src, mtd->oobsize); - break; - - case ONENAND_CMD_PROG: - src = ONENAND_MAIN_AREA(this, main_offset); - dest = ONENAND_CORE(flash) + offset; - if (pi_operation) { - boundary[die] = readw(this->base + ONENAND_DATARAM); - break; - } - /* To handle partial write */ - for (i = 0; i < (1 << mtd->subpage_sft); i++) { - int off = i * this->subpagesize; - if (!memcmp(src + off, ffchars, this->subpagesize)) - continue; - if (memcmp(dest + off, ffchars, this->subpagesize) && - onenand_check_overwrite(dest + off, src + off, this->subpagesize)) - printk(KERN_ERR "over-write happend at 0x%08x\n", offset); - memcpy(dest + off, src + off, this->subpagesize); - } - /* Fall through */ - - case ONENAND_CMD_PROGOOB: - src = ONENAND_SPARE_AREA(this, spare_offset); - /* Check all data is 0xff chars */ - if (!memcmp(src, ffchars, mtd->oobsize)) - break; - - dest = ONENAND_CORE_SPARE(flash, this, offset); - if (memcmp(dest, ffchars, mtd->oobsize) && - onenand_check_overwrite(dest, src, mtd->oobsize)) - printk(KERN_ERR "OOB: over-write happend at 0x%08x\n", - offset); - memcpy(dest, src, mtd->oobsize); - break; - - case ONENAND_CMD_ERASE: - if (pi_operation) - break; - - if (FLEXONENAND(this)) { - rgn = flexonenand_region(mtd, offset); - erasesize = mtd->eraseregions[rgn].erasesize; - } else - erasesize = mtd->erasesize; - - memset(ONENAND_CORE(flash) + offset, 0xff, erasesize); - memset(ONENAND_CORE_SPARE(flash, this, offset), 0xff, - (erasesize >> 5)); - break; - - default: - break; - } -} - -/** - * onenand_command_handle - Handle command - * @this: OneNAND device structure - * @cmd: The command to be sent - * - * Emulate OneNAND command. - */ -static void onenand_command_handle(struct onenand_chip *this, int cmd) -{ - unsigned long offset = 0; - int block = -1, page = -1, bufferram = -1; - int dataram = 0; - - switch (cmd) { - case ONENAND_CMD_UNLOCK: - case ONENAND_CMD_LOCK: - case ONENAND_CMD_LOCK_TIGHT: - case ONENAND_CMD_UNLOCK_ALL: - onenand_lock_handle(this, cmd); - break; - - case ONENAND_CMD_BUFFERRAM: - /* Do nothing */ - return; - - default: - block = (int) readw(this->base + ONENAND_REG_START_ADDRESS1); - if (block & (1 << ONENAND_DDP_SHIFT)) { - block &= ~(1 << ONENAND_DDP_SHIFT); - /* The half of chip block */ - block += this->chipsize >> (this->erase_shift + 1); - } - if (cmd == ONENAND_CMD_ERASE) - break; - - page = (int) readw(this->base + ONENAND_REG_START_ADDRESS8); - page = (page >> ONENAND_FPA_SHIFT); - bufferram = (int) readw(this->base + ONENAND_REG_START_BUFFER); - bufferram >>= ONENAND_BSA_SHIFT; - bufferram &= ONENAND_BSA_DATARAM1; - dataram = (bufferram == ONENAND_BSA_DATARAM1) ? 1 : 0; - break; - } - - if (block != -1) - offset = onenand_addr(this, block); - - if (page != -1) - offset += page << this->page_shift; - - onenand_data_handle(this, cmd, dataram, offset); - - onenand_update_interrupt(this, cmd); -} - -/** - * onenand_writew - [OneNAND Interface] Emulate write operation - * @value: value to write - * @addr: address to write - * - * Write OneNAND register with value - */ -static void onenand_writew(unsigned short value, void __iomem * addr) -{ - struct onenand_chip *this = info->mtd.priv; - - /* BootRAM handling */ - if (addr < this->base + ONENAND_DATARAM) { - onenand_bootram_handle(this, value); - return; - } - /* Command handling */ - if (addr == this->base + ONENAND_REG_COMMAND) - onenand_command_handle(this, value); - - writew(value, addr); -} - -/** - * flash_init - Initialize OneNAND simulator - * @flash: OneNAND simulator data strucutres - * - * Initialize OneNAND simulator. - */ -static int __init flash_init(struct onenand_flash *flash) -{ - int density, size; - int buffer_size; - - flash->base = kzalloc(131072, GFP_KERNEL); - if (!flash->base) { - printk(KERN_ERR "Unable to allocate base address.\n"); - return -ENOMEM; - } - - density = device_id >> ONENAND_DEVICE_DENSITY_SHIFT; - density &= ONENAND_DEVICE_DENSITY_MASK; - size = ((16 << 20) << density); - - ONENAND_CORE(flash) = vmalloc(size + (size >> 5)); - if (!ONENAND_CORE(flash)) { - printk(KERN_ERR "Unable to allocate nand core address.\n"); - kfree(flash->base); - return -ENOMEM; - } - - memset(ONENAND_CORE(flash), 0xff, size + (size >> 5)); - - /* Setup registers */ - writew(manuf_id, flash->base + ONENAND_REG_MANUFACTURER_ID); - writew(device_id, flash->base + ONENAND_REG_DEVICE_ID); - writew(version_id, flash->base + ONENAND_REG_VERSION_ID); - writew(technology_id, flash->base + ONENAND_REG_TECHNOLOGY); - - if (density < 2 && (!CONFIG_FLEXONENAND)) - buffer_size = 0x0400; /* 1KiB page */ - else - buffer_size = 0x0800; /* 2KiB page */ - writew(buffer_size, flash->base + ONENAND_REG_DATA_BUFFER_SIZE); - - return 0; -} - -/** - * flash_exit - Clean up OneNAND simulator - * @flash: OneNAND simulator data structures - * - * Clean up OneNAND simulator. - */ -static void flash_exit(struct onenand_flash *flash) -{ - vfree(ONENAND_CORE(flash)); - kfree(flash->base); -} - -static int __init onenand_sim_init(void) -{ - /* Allocate all 0xff chars pointer */ - ffchars = kmalloc(MAX_ONENAND_PAGESIZE, GFP_KERNEL); - if (!ffchars) { - printk(KERN_ERR "Unable to allocate ff chars.\n"); - return -ENOMEM; - } - memset(ffchars, 0xff, MAX_ONENAND_PAGESIZE); - - /* Allocate OneNAND simulator mtd pointer */ - info = kzalloc(sizeof(struct onenand_info), GFP_KERNEL); - if (!info) { - printk(KERN_ERR "Unable to allocate core structures.\n"); - kfree(ffchars); - return -ENOMEM; - } - - /* Override write_word function */ - info->onenand.write_word = onenand_writew; - - if (flash_init(&info->flash)) { - printk(KERN_ERR "Unable to allocate flash.\n"); - kfree(ffchars); - kfree(info); - return -ENOMEM; - } - - info->parts = os_partitions; - - info->onenand.base = info->flash.base; - info->onenand.priv = &info->flash; - - info->mtd.name = "OneNAND simulator"; - info->mtd.priv = &info->onenand; - info->mtd.owner = THIS_MODULE; - - if (onenand_scan(&info->mtd, 1)) { - flash_exit(&info->flash); - kfree(ffchars); - kfree(info); - return -ENXIO; - } - - add_mtd_partitions(&info->mtd, info->parts, ARRAY_SIZE(os_partitions)); - - return 0; -} - -static void __exit onenand_sim_exit(void) -{ - struct onenand_chip *this = info->mtd.priv; - struct onenand_flash *flash = this->priv; - - onenand_release(&info->mtd); - flash_exit(flash); - kfree(ffchars); - kfree(info); -} - -module_init(onenand_sim_init); -module_exit(onenand_sim_exit); - -MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>"); -MODULE_DESCRIPTION("The OneNAND flash simulator"); -MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/onenand/samsung.c b/drivers/mtd/onenand/samsung.c index 2750317cb58..efb819c3df2 100644 --- a/drivers/mtd/onenand/samsung.c +++ b/drivers/mtd/onenand/samsung.c @@ -22,11 +22,12 @@ #include <linux/mtd/onenand.h> #include <linux/mtd/partitions.h> #include <linux/dma-mapping.h> +#include <linux/interrupt.h> +#include <linux/io.h> #include <asm/mach/flash.h> -#include <plat/regs-onenand.h> -#include <linux/io.h> +#include "samsung.h" enum soc_type { TYPE_S3C6400, @@ -58,7 +59,7 @@ enum soc_type { #define MAP_11 (0x3) #define S3C64XX_CMD_MAP_SHIFT 24 -#define S5PC1XX_CMD_MAP_SHIFT 26 +#define S5PC100_CMD_MAP_SHIFT 26 #define S3C6400_FBA_SHIFT 10 #define S3C6400_FPA_SHIFT 4 @@ -81,6 +82,17 @@ enum soc_type { #define S5PC110_DMA_TRANS_CMD 0x418 #define S5PC110_DMA_TRANS_STATUS 0x41C #define S5PC110_DMA_TRANS_DIR 0x420 +#define S5PC110_INTC_DMA_CLR 0x1004 +#define S5PC110_INTC_ONENAND_CLR 0x1008 +#define S5PC110_INTC_DMA_MASK 0x1024 +#define S5PC110_INTC_ONENAND_MASK 0x1028 +#define S5PC110_INTC_DMA_PEND 0x1044 +#define S5PC110_INTC_ONENAND_PEND 0x1048 +#define S5PC110_INTC_DMA_STATUS 0x1064 +#define S5PC110_INTC_ONENAND_STATUS 0x1068 + +#define S5PC110_INTC_DMA_TD (1 << 24) +#define S5PC110_INTC_DMA_TE (1 << 16) #define S5PC110_DMA_CFG_SINGLE (0x0 << 16) #define S5PC110_DMA_CFG_4BURST (0x2 << 16) @@ -134,9 +146,7 @@ struct s3c_onenand { void __iomem *dma_addr; struct resource *dma_res; unsigned long phys_base; -#ifdef CONFIG_MTD_PARTITIONS - struct mtd_partition *parts; -#endif + struct completion complete; }; #define CMD_MAP_00(dev, addr) (dev->cmd_map(MAP_00, ((addr) << 1))) @@ -146,10 +156,6 @@ struct s3c_onenand { static struct s3c_onenand *onenand; -#ifdef CONFIG_MTD_PARTITIONS -static const char *part_probes[] = { "cmdlinepart", NULL, }; -#endif - static inline int s3c_read_reg(int offset) { return readl(onenand->base + offset); @@ -191,7 +197,7 @@ static unsigned int s3c64xx_cmd_map(unsigned type, unsigned val) static unsigned int s5pc1xx_cmd_map(unsigned type, unsigned val) { - return (type << S5PC1XX_CMD_MAP_SHIFT) | val; + return (type << S5PC100_CMD_MAP_SHIFT) | val; } static unsigned int s3c6400_mem_addr(int fba, int fpa, int fsa) @@ -531,10 +537,13 @@ static int onenand_write_bufferram(struct mtd_info *mtd, int area, return 0; } -static int s5pc110_dma_ops(void *dst, void *src, size_t count, int direction) +static int (*s5pc110_dma_ops)(dma_addr_t dst, dma_addr_t src, size_t count, int direction); + +static int s5pc110_dma_poll(dma_addr_t dst, dma_addr_t src, size_t count, int direction) { void __iomem *base = onenand->dma_addr; int status; + unsigned long timeout; writel(src, base + S5PC110_DMA_SRC_ADDR); writel(dst, base + S5PC110_DMA_DST_ADDR); @@ -552,17 +561,78 @@ static int s5pc110_dma_ops(void *dst, void *src, size_t count, int direction) writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD); + /* + * There's no exact timeout values at Spec. + * In real case it takes under 1 msec. + * So 20 msecs are enough. + */ + timeout = jiffies + msecs_to_jiffies(20); + do { status = readl(base + S5PC110_DMA_TRANS_STATUS); - } while (!(status & S5PC110_DMA_TRANS_STATUS_TD)); + if (status & S5PC110_DMA_TRANS_STATUS_TE) { + writel(S5PC110_DMA_TRANS_CMD_TEC, + base + S5PC110_DMA_TRANS_CMD); + return -EIO; + } + } while (!(status & S5PC110_DMA_TRANS_STATUS_TD) && + time_before(jiffies, timeout)); - if (status & S5PC110_DMA_TRANS_STATUS_TE) { - writel(S5PC110_DMA_TRANS_CMD_TEC, base + S5PC110_DMA_TRANS_CMD); - writel(S5PC110_DMA_TRANS_CMD_TDC, base + S5PC110_DMA_TRANS_CMD); - return -EIO; + writel(S5PC110_DMA_TRANS_CMD_TDC, base + S5PC110_DMA_TRANS_CMD); + + return 0; +} + +static irqreturn_t s5pc110_onenand_irq(int irq, void *data) +{ + void __iomem *base = onenand->dma_addr; + int status, cmd = 0; + + status = readl(base + S5PC110_INTC_DMA_STATUS); + + if (likely(status & S5PC110_INTC_DMA_TD)) + cmd = S5PC110_DMA_TRANS_CMD_TDC; + + if (unlikely(status & S5PC110_INTC_DMA_TE)) + cmd = S5PC110_DMA_TRANS_CMD_TEC; + + writel(cmd, base + S5PC110_DMA_TRANS_CMD); + writel(status, base + S5PC110_INTC_DMA_CLR); + + if (!onenand->complete.done) + complete(&onenand->complete); + + return IRQ_HANDLED; +} + +static int s5pc110_dma_irq(dma_addr_t dst, dma_addr_t src, size_t count, int direction) +{ + void __iomem *base = onenand->dma_addr; + int status; + + status = readl(base + S5PC110_INTC_DMA_MASK); + if (status) { + status &= ~(S5PC110_INTC_DMA_TD | S5PC110_INTC_DMA_TE); + writel(status, base + S5PC110_INTC_DMA_MASK); } - writel(S5PC110_DMA_TRANS_CMD_TDC, base + S5PC110_DMA_TRANS_CMD); + writel(src, base + S5PC110_DMA_SRC_ADDR); + writel(dst, base + S5PC110_DMA_DST_ADDR); + + if (direction == S5PC110_DMA_DIR_READ) { + writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG); + writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG); + } else { + writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG); + writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG); + } + + writel(count, base + S5PC110_DMA_TRANS_SIZE); + writel(direction, base + S5PC110_DMA_TRANS_DIR); + + writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD); + + wait_for_completion_timeout(&onenand->complete, msecs_to_jiffies(20)); return 0; } @@ -571,13 +641,13 @@ static int s5pc110_read_bufferram(struct mtd_info *mtd, int area, unsigned char *buffer, int offset, size_t count) { struct onenand_chip *this = mtd->priv; - void __iomem *bufferram; void __iomem *p; void *buf = (void *) buffer; dma_addr_t dma_src, dma_dst; - int err; + int err, ofs, page_dma = 0; + struct device *dev = &onenand->pdev->dev; - p = bufferram = this->base + area; + p = this->base + area; if (ONENAND_CURRENT_BUFFERRAM(this)) { if (area == ONENAND_DATARAM) p += this->writesize; @@ -599,21 +669,30 @@ static int s5pc110_read_bufferram(struct mtd_info *mtd, int area, page = vmalloc_to_page(buf); if (!page) goto normal; - buf = page_address(page) + ((size_t) buf & ~PAGE_MASK); - } - /* DMA routine */ - dma_src = onenand->phys_base + (p - this->base); - dma_dst = dma_map_single(&onenand->pdev->dev, - buf, count, DMA_FROM_DEVICE); - if (dma_mapping_error(&onenand->pdev->dev, dma_dst)) { - dev_err(&onenand->pdev->dev, - "Couldn't map a %d byte buffer for DMA\n", count); + /* Page offset */ + ofs = ((size_t) buf & ~PAGE_MASK); + page_dma = 1; + + /* DMA routine */ + dma_src = onenand->phys_base + (p - this->base); + dma_dst = dma_map_page(dev, page, ofs, count, DMA_FROM_DEVICE); + } else { + /* DMA routine */ + dma_src = onenand->phys_base + (p - this->base); + dma_dst = dma_map_single(dev, buf, count, DMA_FROM_DEVICE); + } + if (dma_mapping_error(dev, dma_dst)) { + dev_err(dev, "Couldn't map a %d byte buffer for DMA\n", count); goto normal; } - err = s5pc110_dma_ops((void *) dma_dst, (void *) dma_src, + err = s5pc110_dma_ops(dma_dst, dma_src, count, S5PC110_DMA_DIR_READ); - dma_unmap_single(&onenand->pdev->dev, dma_dst, count, DMA_FROM_DEVICE); + + if (page_dma) + dma_unmap_page(dev, dma_dst, count, DMA_FROM_DEVICE); + else + dma_unmap_single(dev, dma_dst, count, DMA_FROM_DEVICE); if (!err) return 0; @@ -621,7 +700,7 @@ static int s5pc110_read_bufferram(struct mtd_info *mtd, int area, normal: if (count != mtd->writesize) { /* Copy the bufferram to memory to prevent unaligned access */ - memcpy(this->page_buf, bufferram, mtd->writesize); + memcpy(this->page_buf, p, mtd->writesize); p = this->page_buf + offset; } @@ -630,6 +709,12 @@ normal: return 0; } +static int s5pc110_chip_probe(struct mtd_info *mtd) +{ + /* Now just return 0 */ + return 0; +} + static int s3c_onenand_bbt_wait(struct mtd_info *mtd, int state) { unsigned int flags = INT_ACT | LOAD_CMP; @@ -755,8 +840,8 @@ static void s3c_onenand_setup(struct mtd_info *mtd) onenand->cmd_map = s5pc1xx_cmd_map; } else if (onenand->type == TYPE_S5PC110) { /* Use generic onenand functions */ - onenand->cmd_map = s5pc1xx_cmd_map; this->read_bufferram = s5pc110_read_bufferram; + this->chip_probe = s5pc110_chip_probe; return; } else { BUG(); @@ -781,17 +866,14 @@ static int s3c_onenand_probe(struct platform_device *pdev) struct mtd_info *mtd; struct resource *r; int size, err; - unsigned long onenand_ctrl_cfg = 0; - pdata = pdev->dev.platform_data; + pdata = dev_get_platdata(&pdev->dev); /* No need to check pdata. the platform data is optional */ size = sizeof(struct mtd_info) + sizeof(struct onenand_chip); mtd = kzalloc(size, GFP_KERNEL); - if (!mtd) { - dev_err(&pdev->dev, "failed to allocate memory\n"); + if (!mtd) return -ENOMEM; - } onenand = kzalloc(sizeof(struct s3c_onenand), GFP_KERNEL); if (!onenand) { @@ -839,7 +921,7 @@ static int s3c_onenand_probe(struct platform_device *pdev) r = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!r) { dev_err(&pdev->dev, "no buffer memory resource defined\n"); - return -ENOENT; + err = -ENOENT; goto ahb_resource_failed; } @@ -880,7 +962,7 @@ static int s3c_onenand_probe(struct platform_device *pdev) r = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!r) { dev_err(&pdev->dev, "no dma memory resource defined\n"); - return -ENOENT; + err = -ENOENT; goto dma_resource_failed; } @@ -901,13 +983,19 @@ static int s3c_onenand_probe(struct platform_device *pdev) onenand->phys_base = onenand->base_res->start; - onenand_ctrl_cfg = readl(onenand->dma_addr + 0x100); - if ((onenand_ctrl_cfg & ONENAND_SYS_CFG1_SYNC_WRITE) && - onenand->dma_addr) - writel(onenand_ctrl_cfg & ~ONENAND_SYS_CFG1_SYNC_WRITE, - onenand->dma_addr + 0x100); - else - onenand_ctrl_cfg = 0; + s5pc110_dma_ops = s5pc110_dma_poll; + /* Interrupt support */ + r = platform_get_resource(pdev, IORESOURCE_IRQ, 0); + if (r) { + init_completion(&onenand->complete); + s5pc110_dma_ops = s5pc110_dma_irq; + err = request_irq(r->start, s5pc110_onenand_irq, + IRQF_SHARED, "onenand", &onenand); + if (err) { + dev_err(&pdev->dev, "failed to get irq\n"); + goto scan_failed; + } + } } if (onenand_scan(mtd, 1)) { @@ -915,10 +1003,7 @@ static int s3c_onenand_probe(struct platform_device *pdev) goto scan_failed; } - if (onenand->type == TYPE_S5PC110) { - if (onenand_ctrl_cfg && onenand->dma_addr) - writel(onenand_ctrl_cfg, onenand->dma_addr + 0x100); - } else { + if (onenand->type != TYPE_S5PC110) { /* S3C doesn't handle subpage write */ mtd->subpage_sft = 0; this->subpagesize = mtd->writesize; @@ -927,15 +1012,9 @@ static int s3c_onenand_probe(struct platform_device *pdev) if (s3c_read_reg(MEM_CFG_OFFSET) & ONENAND_SYS_CFG1_SYNC_READ) dev_info(&onenand->pdev->dev, "OneNAND Sync. Burst Read enabled\n"); -#ifdef CONFIG_MTD_PARTITIONS - err = parse_mtd_partitions(mtd, part_probes, &onenand->parts, 0); - if (err > 0) - add_mtd_partitions(mtd, onenand->parts, err); - else if (err <= 0 && pdata && pdata->parts) - add_mtd_partitions(mtd, pdata->parts, pdata->nr_parts); - else -#endif - err = add_mtd_device(mtd); + err = mtd_device_parse_register(mtd, NULL, NULL, + pdata ? pdata->parts : NULL, + pdata ? pdata->nr_parts : 0); platform_set_drvdata(pdev, mtd); @@ -972,7 +1051,7 @@ onenand_fail: return err; } -static int __devexit s3c_onenand_remove(struct platform_device *pdev) +static int s3c_onenand_remove(struct platform_device *pdev) { struct mtd_info *mtd = platform_get_drvdata(pdev); @@ -992,7 +1071,6 @@ static int __devexit s3c_onenand_remove(struct platform_device *pdev) release_mem_region(onenand->base_res->start, resource_size(onenand->base_res)); - platform_set_drvdata(pdev, NULL); kfree(onenand->oob_buf); kfree(onenand->page_buf); kfree(onenand); @@ -1007,7 +1085,7 @@ static int s3c_pm_ops_suspend(struct device *dev) struct onenand_chip *this = mtd->priv; this->wait(mtd, FL_PM_SUSPENDED); - return mtd->suspend(mtd); + return 0; } static int s3c_pm_ops_resume(struct device *dev) @@ -1016,7 +1094,6 @@ static int s3c_pm_ops_resume(struct device *dev) struct mtd_info *mtd = platform_get_drvdata(pdev); struct onenand_chip *this = mtd->priv; - mtd->resume(mtd); this->unlock_all(mtd); return 0; } @@ -1050,21 +1127,10 @@ static struct platform_driver s3c_onenand_driver = { }, .id_table = s3c_onenand_driver_ids, .probe = s3c_onenand_probe, - .remove = __devexit_p(s3c_onenand_remove), + .remove = s3c_onenand_remove, }; -static int __init s3c_onenand_init(void) -{ - return platform_driver_register(&s3c_onenand_driver); -} - -static void __exit s3c_onenand_exit(void) -{ - platform_driver_unregister(&s3c_onenand_driver); -} - -module_init(s3c_onenand_init); -module_exit(s3c_onenand_exit); +module_platform_driver(s3c_onenand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>"); diff --git a/drivers/mtd/onenand/samsung.h b/drivers/mtd/onenand/samsung.h new file mode 100644 index 00000000000..9016dc0136a --- /dev/null +++ b/drivers/mtd/onenand/samsung.h @@ -0,0 +1,59 @@ +/* + * Copyright (C) 2008-2010 Samsung Electronics + * Kyungmin Park <kyungmin.park@samsung.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ +#ifndef __SAMSUNG_ONENAND_H__ +#define __SAMSUNG_ONENAND_H__ + +/* + * OneNAND Controller + */ +#define MEM_CFG_OFFSET 0x0000 +#define BURST_LEN_OFFSET 0x0010 +#define MEM_RESET_OFFSET 0x0020 +#define INT_ERR_STAT_OFFSET 0x0030 +#define INT_ERR_MASK_OFFSET 0x0040 +#define INT_ERR_ACK_OFFSET 0x0050 +#define ECC_ERR_STAT_OFFSET 0x0060 +#define MANUFACT_ID_OFFSET 0x0070 +#define DEVICE_ID_OFFSET 0x0080 +#define DATA_BUF_SIZE_OFFSET 0x0090 +#define BOOT_BUF_SIZE_OFFSET 0x00A0 +#define BUF_AMOUNT_OFFSET 0x00B0 +#define TECH_OFFSET 0x00C0 +#define FBA_WIDTH_OFFSET 0x00D0 +#define FPA_WIDTH_OFFSET 0x00E0 +#define FSA_WIDTH_OFFSET 0x00F0 +#define TRANS_SPARE_OFFSET 0x0140 +#define DBS_DFS_WIDTH_OFFSET 0x0160 +#define INT_PIN_ENABLE_OFFSET 0x01A0 +#define ACC_CLOCK_OFFSET 0x01C0 +#define FLASH_VER_ID_OFFSET 0x01F0 +#define FLASH_AUX_CNTRL_OFFSET 0x0300 /* s3c64xx only */ + +#define ONENAND_MEM_RESET_HOT 0x3 +#define ONENAND_MEM_RESET_COLD 0x2 +#define ONENAND_MEM_RESET_WARM 0x1 + +#define CACHE_OP_ERR (1 << 13) +#define RST_CMP (1 << 12) +#define RDY_ACT (1 << 11) +#define INT_ACT (1 << 10) +#define UNSUP_CMD (1 << 9) +#define LOCKED_BLK (1 << 8) +#define BLK_RW_CMP (1 << 7) +#define ERS_CMP (1 << 6) +#define PGM_CMP (1 << 5) +#define LOAD_CMP (1 << 4) +#define ERS_FAIL (1 << 3) +#define PGM_FAIL (1 << 2) +#define INT_TO (1 << 1) +#define LD_FAIL_ECC_ERR (1 << 0) + +#define TSRF (1 << 0) + +#endif diff --git a/drivers/mtd/redboot.c b/drivers/mtd/redboot.c index 2d600a1bf2a..5da911ebdf4 100644 --- a/drivers/mtd/redboot.c +++ b/drivers/mtd/redboot.c @@ -1,6 +1,24 @@ /* * Parse RedBoot-style Flash Image System (FIS) tables and * produce a Linux partition array to match. + * + * Copyright © 2001 Red Hat UK Limited + * Copyright © 2001-2010 David Woodhouse <dwmw2@infradead.org> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * */ #include <linux/kernel.h> @@ -10,6 +28,7 @@ #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> +#include <linux/module.h> struct fis_image_desc { unsigned char name[16]; // Null terminated name @@ -38,8 +57,8 @@ static inline int redboot_checksum(struct fis_image_desc *img) } static int parse_redboot_partitions(struct mtd_info *master, - struct mtd_partition **pparts, - unsigned long fis_origin) + struct mtd_partition **pparts, + struct mtd_part_parser_data *data) { int nrparts = 0; struct fis_image_desc *buf; @@ -59,8 +78,7 @@ static int parse_redboot_partitions(struct mtd_info *master, if ( directory < 0 ) { offset = master->size + directory * master->erasesize; - while (master->block_isbad && - master->block_isbad(master, offset)) { + while (mtd_block_isbad(master, offset)) { if (!offset) { nogood: printk(KERN_NOTICE "Failed to find a non-bad block to check for RedBoot partition table\n"); @@ -70,8 +88,7 @@ static int parse_redboot_partitions(struct mtd_info *master, } } else { offset = directory * master->erasesize; - while (master->block_isbad && - master->block_isbad(master, offset)) { + while (mtd_block_isbad(master, offset)) { offset += master->erasesize; if (offset == master->size) goto nogood; @@ -85,8 +102,8 @@ static int parse_redboot_partitions(struct mtd_info *master, printk(KERN_NOTICE "Searching for RedBoot partition table in %s at offset 0x%lx\n", master->name, offset); - ret = master->read(master, offset, - master->erasesize, &retlen, (void *)buf); + ret = mtd_read(master, offset, master->erasesize, &retlen, + (void *)buf); if (ret) goto out; @@ -179,11 +196,10 @@ static int parse_redboot_partitions(struct mtd_info *master, goto out; } new_fl->img = &buf[i]; - if (fis_origin) { - buf[i].flash_base -= fis_origin; - } else { - buf[i].flash_base &= master->size-1; - } + if (data && data->origin) + buf[i].flash_base -= data->origin; + else + buf[i].flash_base &= master->size-1; /* I'm sure the JFFS2 code has done me permanent damage. * I now think the following is _normal_ @@ -279,9 +295,13 @@ static struct mtd_part_parser redboot_parser = { .name = "RedBoot", }; +/* mtd parsers will request the module by parser name */ +MODULE_ALIAS("RedBoot"); + static int __init redboot_parser_init(void) { - return register_mtd_parser(&redboot_parser); + register_mtd_parser(&redboot_parser); + return 0; } static void __exit redboot_parser_exit(void) diff --git a/drivers/mtd/rfd_ftl.c b/drivers/mtd/rfd_ftl.c index 63b83c0d9a1..d1cbf26db2c 100644 --- a/drivers/mtd/rfd_ftl.c +++ b/drivers/mtd/rfd_ftl.c @@ -1,7 +1,7 @@ /* * rfd_ftl.c -- resident flash disk (flash translation layer) * - * Copyright (C) 2005 Sean Young <sean@mess.org> + * Copyright © 2005 Sean Young <sean@mess.org> * * This type of flash translation layer (FTL) is used by the Embedded BIOS * by General Software. It is known as the Resident Flash Disk (RFD), see: @@ -18,6 +18,7 @@ #include <linux/vmalloc.h> #include <linux/slab.h> #include <linux/jiffies.h> +#include <linux/module.h> #include <asm/types.h> @@ -199,9 +200,9 @@ static int scan_header(struct partition *part) part->sector_map[i] = -1; for (i=0, blocks_found=0; i<part->total_blocks; i++) { - rc = part->mbd.mtd->read(part->mbd.mtd, - i * part->block_size, part->header_size, - &retlen, (u_char*)part->header_cache); + rc = mtd_read(part->mbd.mtd, i * part->block_size, + part->header_size, &retlen, + (u_char *)part->header_cache); if (!rc && retlen != part->header_size) rc = -EIO; @@ -249,8 +250,8 @@ static int rfd_ftl_readsect(struct mtd_blktrans_dev *dev, u_long sector, char *b addr = part->sector_map[sector]; if (addr != -1) { - rc = part->mbd.mtd->read(part->mbd.mtd, addr, SECTOR_SIZE, - &retlen, (u_char*)buf); + rc = mtd_read(part->mbd.mtd, addr, SECTOR_SIZE, &retlen, + (u_char *)buf); if (!rc && retlen != SECTOR_SIZE) rc = -EIO; @@ -303,9 +304,8 @@ static void erase_callback(struct erase_info *erase) part->blocks[i].used_sectors = 0; part->blocks[i].erases++; - rc = part->mbd.mtd->write(part->mbd.mtd, - part->blocks[i].offset, sizeof(magic), &retlen, - (u_char*)&magic); + rc = mtd_write(part->mbd.mtd, part->blocks[i].offset, sizeof(magic), + &retlen, (u_char *)&magic); if (!rc && retlen != sizeof(magic)) rc = -EIO; @@ -341,7 +341,7 @@ static int erase_block(struct partition *part, int block) part->blocks[block].state = BLOCK_ERASING; part->blocks[block].free_sectors = 0; - rc = part->mbd.mtd->erase(part->mbd.mtd, erase); + rc = mtd_erase(part->mbd.mtd, erase); if (rc) { printk(KERN_ERR PREFIX "erase of region %llx,%llx on '%s' " @@ -371,9 +371,8 @@ static int move_block_contents(struct partition *part, int block_no, u_long *old if (!map) goto err2; - rc = part->mbd.mtd->read(part->mbd.mtd, - part->blocks[block_no].offset, part->header_size, - &retlen, (u_char*)map); + rc = mtd_read(part->mbd.mtd, part->blocks[block_no].offset, + part->header_size, &retlen, (u_char *)map); if (!rc && retlen != part->header_size) rc = -EIO; @@ -412,8 +411,8 @@ static int move_block_contents(struct partition *part, int block_no, u_long *old } continue; } - rc = part->mbd.mtd->read(part->mbd.mtd, addr, - SECTOR_SIZE, &retlen, sector_data); + rc = mtd_read(part->mbd.mtd, addr, SECTOR_SIZE, &retlen, + sector_data); if (!rc && retlen != SECTOR_SIZE) rc = -EIO; @@ -449,8 +448,7 @@ static int reclaim_block(struct partition *part, u_long *old_sector) int rc; /* we have a race if sync doesn't exist */ - if (part->mbd.mtd->sync) - part->mbd.mtd->sync(part->mbd.mtd); + mtd_sync(part->mbd.mtd); score = 0x7fffffff; /* MAX_INT */ best_block = -1; @@ -562,8 +560,9 @@ static int find_writable_block(struct partition *part, u_long *old_sector) } } - rc = part->mbd.mtd->read(part->mbd.mtd, part->blocks[block].offset, - part->header_size, &retlen, (u_char*)part->header_cache); + rc = mtd_read(part->mbd.mtd, part->blocks[block].offset, + part->header_size, &retlen, + (u_char *)part->header_cache); if (!rc && retlen != part->header_size) rc = -EIO; @@ -594,8 +593,8 @@ static int mark_sector_deleted(struct partition *part, u_long old_addr) addr = part->blocks[block].offset + (HEADER_MAP_OFFSET + offset) * sizeof(u16); - rc = part->mbd.mtd->write(part->mbd.mtd, addr, - sizeof(del), &retlen, (u_char*)&del); + rc = mtd_write(part->mbd.mtd, addr, sizeof(del), &retlen, + (u_char *)&del); if (!rc && retlen != sizeof(del)) rc = -EIO; @@ -603,8 +602,7 @@ static int mark_sector_deleted(struct partition *part, u_long old_addr) if (rc) { printk(KERN_ERR PREFIX "error writing '%s' at " "0x%lx\n", part->mbd.mtd->name, addr); - if (rc) - goto err; + goto err; } if (block == part->current_block) part->header_cache[offset + HEADER_MAP_OFFSET] = del; @@ -667,8 +665,8 @@ static int do_writesect(struct mtd_blktrans_dev *dev, u_long sector, char *buf, addr = (i + part->header_sectors_per_block) * SECTOR_SIZE + block->offset; - rc = part->mbd.mtd->write(part->mbd.mtd, - addr, SECTOR_SIZE, &retlen, (u_char*)buf); + rc = mtd_write(part->mbd.mtd, addr, SECTOR_SIZE, &retlen, + (u_char *)buf); if (!rc && retlen != SECTOR_SIZE) rc = -EIO; @@ -676,8 +674,7 @@ static int do_writesect(struct mtd_blktrans_dev *dev, u_long sector, char *buf, if (rc) { printk(KERN_ERR PREFIX "error writing '%s' at 0x%lx\n", part->mbd.mtd->name, addr); - if (rc) - goto err; + goto err; } part->sector_map[sector] = addr; @@ -687,8 +684,8 @@ static int do_writesect(struct mtd_blktrans_dev *dev, u_long sector, char *buf, part->header_cache[i + HEADER_MAP_OFFSET] = entry; addr = block->offset + (HEADER_MAP_OFFSET + i) * sizeof(u16); - rc = part->mbd.mtd->write(part->mbd.mtd, addr, - sizeof(entry), &retlen, (u_char*)&entry); + rc = mtd_write(part->mbd.mtd, addr, sizeof(entry), &retlen, + (u_char *)&entry); if (!rc && retlen != sizeof(entry)) rc = -EIO; @@ -696,8 +693,7 @@ static int do_writesect(struct mtd_blktrans_dev *dev, u_long sector, char *buf, if (rc) { printk(KERN_ERR PREFIX "error writing '%s' at 0x%lx\n", part->mbd.mtd->name, addr); - if (rc) - goto err; + goto err; } block->used_sectors++; block->free_sectors--; diff --git a/drivers/mtd/sm_ftl.c b/drivers/mtd/sm_ftl.c index 67822cf6c02..cf49c22673b 100644 --- a/drivers/mtd/sm_ftl.c +++ b/drivers/mtd/sm_ftl.c @@ -22,10 +22,10 @@ -struct workqueue_struct *cache_flush_workqueue; +static struct workqueue_struct *cache_flush_workqueue; static int cache_timeout = 1000; -module_param(cache_timeout, bool, S_IRUGO); +module_param(cache_timeout, int, S_IRUGO); MODULE_PARM_DESC(cache_timeout, "Timeout (in ms) for cache flush (1000 ms default"); @@ -34,14 +34,14 @@ module_param(debug, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(debug, "Debug level (0-2)"); -/* ------------------- sysfs attributtes ---------------------------------- */ +/* ------------------- sysfs attributes ---------------------------------- */ struct sm_sysfs_attribute { struct device_attribute dev_attr; char *data; int len; }; -ssize_t sm_attr_show(struct device *dev, struct device_attribute *attr, +static ssize_t sm_attr_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sm_sysfs_attribute *sm_attr = @@ -54,27 +54,28 @@ ssize_t sm_attr_show(struct device *dev, struct device_attribute *attr, #define NUM_ATTRIBUTES 1 #define SM_CIS_VENDOR_OFFSET 0x59 -struct attribute_group *sm_create_sysfs_attributes(struct sm_ftl *ftl) +static struct attribute_group *sm_create_sysfs_attributes(struct sm_ftl *ftl) { struct attribute_group *attr_group; struct attribute **attributes; struct sm_sysfs_attribute *vendor_attribute; + char *vendor; - int vendor_len = strnlen(ftl->cis_buffer + SM_CIS_VENDOR_OFFSET, - SM_SMALL_PAGE - SM_CIS_VENDOR_OFFSET); - - char *vendor = kmalloc(vendor_len, GFP_KERNEL); - memcpy(vendor, ftl->cis_buffer + SM_CIS_VENDOR_OFFSET, vendor_len); - vendor[vendor_len] = 0; + vendor = kstrndup(ftl->cis_buffer + SM_CIS_VENDOR_OFFSET, + SM_SMALL_PAGE - SM_CIS_VENDOR_OFFSET, GFP_KERNEL); + if (!vendor) + goto error1; /* Initialize sysfs attributes */ vendor_attribute = kzalloc(sizeof(struct sm_sysfs_attribute), GFP_KERNEL); + if (!vendor_attribute) + goto error2; sysfs_attr_init(&vendor_attribute->dev_attr.attr); vendor_attribute->data = vendor; - vendor_attribute->len = vendor_len; + vendor_attribute->len = strlen(vendor); vendor_attribute->dev_attr.attr.name = "vendor"; vendor_attribute->dev_attr.attr.mode = S_IRUGO; vendor_attribute->dev_attr.show = sm_attr_show; @@ -83,15 +84,27 @@ struct attribute_group *sm_create_sysfs_attributes(struct sm_ftl *ftl) /* Create array of pointers to the attributes */ attributes = kzalloc(sizeof(struct attribute *) * (NUM_ATTRIBUTES + 1), GFP_KERNEL); + if (!attributes) + goto error3; attributes[0] = &vendor_attribute->dev_attr.attr; /* Finally create the attribute group */ attr_group = kzalloc(sizeof(struct attribute_group), GFP_KERNEL); + if (!attr_group) + goto error4; attr_group->attrs = attributes; return attr_group; +error4: + kfree(attributes); +error3: + kfree(vendor_attribute); +error2: + kfree(vendor); +error1: + return NULL; } -void sm_delete_sysfs_attributes(struct sm_ftl *ftl) +static void sm_delete_sysfs_attributes(struct sm_ftl *ftl) { struct attribute **attributes = ftl->disk_attributes->attrs; int i; @@ -122,7 +135,7 @@ static int sm_get_lba(uint8_t *lba) if ((lba[0] & 0xF8) != 0x10) return -2; - /* check parity - endianess doesn't matter */ + /* check parity - endianness doesn't matter */ if (hweight16(*(uint16_t *)lba) & 1) return -2; @@ -131,7 +144,7 @@ static int sm_get_lba(uint8_t *lba) /* - * Read LBA asscociated with block + * Read LBA associated with block * returns -1, if block is erased * returns -2 if error happens */ @@ -236,11 +249,11 @@ static int sm_read_sector(struct sm_ftl *ftl, return 0; } - /* User might not need the oob, but we do for data vertification */ + /* User might not need the oob, but we do for data verification */ if (!oob) oob = &tmp_oob; - ops.mode = ftl->smallpagenand ? MTD_OOB_RAW : MTD_OOB_PLACE; + ops.mode = ftl->smallpagenand ? MTD_OPS_RAW : MTD_OPS_PLACE_OOB; ops.ooboffs = 0; ops.ooblen = SM_OOB_SIZE; ops.oobbuf = (void *)oob; @@ -260,12 +273,12 @@ again: return ret; } - /* Unfortunelly, oob read will _always_ succeed, + /* Unfortunately, oob read will _always_ succeed, despite card removal..... */ - ret = mtd->read_oob(mtd, sm_mkoffset(ftl, zone, block, boffset), &ops); + ret = mtd_read_oob(mtd, sm_mkoffset(ftl, zone, block, boffset), &ops); /* Test for unknown errors */ - if (ret != 0 && ret != -EUCLEAN && ret != -EBADMSG) { + if (ret != 0 && !mtd_is_bitflip_or_eccerr(ret)) { dbg("read of block %d at zone %d, failed due to error (%d)", block, zone, ret); goto again; @@ -290,7 +303,7 @@ again: } /* Test ECC*/ - if (ret == -EBADMSG || + if (mtd_is_eccerr(ret) || (ftl->smallpagenand && sm_correct_sector(buffer, oob))) { dbg("read of block %d at zone %d, failed due to ECC error", @@ -320,17 +333,16 @@ static int sm_write_sector(struct sm_ftl *ftl, if (ftl->unstable) return -EIO; - ops.mode = ftl->smallpagenand ? MTD_OOB_RAW : MTD_OOB_PLACE; + ops.mode = ftl->smallpagenand ? MTD_OPS_RAW : MTD_OPS_PLACE_OOB; ops.len = SM_SECTOR_SIZE; ops.datbuf = buffer; ops.ooboffs = 0; ops.ooblen = SM_OOB_SIZE; ops.oobbuf = (void *)oob; - ret = mtd->write_oob(mtd, sm_mkoffset(ftl, zone, block, boffset), &ops); + ret = mtd_write_oob(mtd, sm_mkoffset(ftl, zone, block, boffset), &ops); /* Now we assume that hardware will catch write bitflip errors */ - /* If you are paranoid, use CONFIG_MTD_NAND_VERIFY_WRITE */ if (ret) { dbg("write to block %d at zone %d, failed with error %d", @@ -431,14 +443,14 @@ static void sm_mark_block_bad(struct sm_ftl *ftl, int zone, int block) /* We aren't checking the return value, because we don't care */ /* This also fails on fake xD cards, but I guess these won't expose - any bad blocks till fail completly */ + any bad blocks till fail completely */ for (boffset = 0; boffset < ftl->block_size; boffset += SM_SECTOR_SIZE) sm_write_sector(ftl, zone, block, boffset, NULL, &oob); } /* * Erase a block within a zone - * If erase succedes, it updates free block fifo, otherwise marks block as bad + * If erase succeeds, it updates free block fifo, otherwise marks block as bad */ static int sm_erase_block(struct sm_ftl *ftl, int zone_num, uint16_t block, int put_free) @@ -463,7 +475,7 @@ static int sm_erase_block(struct sm_ftl *ftl, int zone_num, uint16_t block, return -EIO; } - if (mtd->erase(mtd, &erase)) { + if (mtd_erase(mtd, &erase)) { sm_printk("erase of block %d in zone %d failed", block, zone_num); goto error; @@ -494,7 +506,7 @@ static void sm_erase_callback(struct erase_info *self) complete(&ftl->erase_completion); } -/* Throughtly test that block is valid. */ +/* Thoroughly test that block is valid. */ static int sm_check_block(struct sm_ftl *ftl, int zone, int block) { int boffset; @@ -510,7 +522,7 @@ static int sm_check_block(struct sm_ftl *ftl, int zone, int block) for (boffset = 0; boffset < ftl->block_size; boffset += SM_SECTOR_SIZE) { - /* This shoudn't happen anyway */ + /* This shouldn't happen anyway */ if (sm_read_sector(ftl, zone, block, boffset, NULL, &oob)) return -2; @@ -524,7 +536,7 @@ static int sm_check_block(struct sm_ftl *ftl, int zone, int block) return -EIO; } - /* If the block is sliced (partialy erased usually) erase it */ + /* If the block is sliced (partially erased usually) erase it */ if (i == 2) { sm_erase_block(ftl, zone, block, 1); return 1; @@ -556,7 +568,7 @@ static const uint8_t cis_signature[] = { }; /* Find out media parameters. * This ideally has to be based on nand id, but for now device size is enough */ -int sm_get_media_info(struct sm_ftl *ftl, struct mtd_info *mtd) +static int sm_get_media_info(struct sm_ftl *ftl, struct mtd_info *mtd) { int i; int size_in_megs = mtd->size / (1024 * 1024); @@ -629,8 +641,8 @@ int sm_get_media_info(struct sm_ftl *ftl, struct mtd_info *mtd) if (!ftl->smallpagenand && mtd->oobsize < SM_OOB_SIZE) return -ENODEV; - /* We use these functions for IO */ - if (!mtd->read_oob || !mtd->write_oob) + /* We use OOB */ + if (!mtd_has_oob(mtd)) return -ENODEV; /* Find geometry information */ @@ -862,8 +874,8 @@ static int sm_init_zone(struct sm_ftl *ftl, int zone_num) return 0; } -/* Get and automaticly initialize an FTL mapping for one zone */ -struct ftl_zone *sm_get_zone(struct sm_ftl *ftl, int zone_num) +/* Get and automatically initialize an FTL mapping for one zone */ +static struct ftl_zone *sm_get_zone(struct sm_ftl *ftl, int zone_num) { struct ftl_zone *zone; int error; @@ -884,7 +896,7 @@ struct ftl_zone *sm_get_zone(struct sm_ftl *ftl, int zone_num) /* ----------------- cache handling ------------------------------------------*/ /* Initialize the one block cache */ -void sm_cache_init(struct sm_ftl *ftl) +static void sm_cache_init(struct sm_ftl *ftl) { ftl->cache_data_invalid_bitmap = 0xFFFFFFFF; ftl->cache_clean = 1; @@ -894,7 +906,7 @@ void sm_cache_init(struct sm_ftl *ftl) } /* Put sector in one block cache */ -void sm_cache_put(struct sm_ftl *ftl, char *buffer, int boffset) +static void sm_cache_put(struct sm_ftl *ftl, char *buffer, int boffset) { memcpy(ftl->cache_data + boffset, buffer, SM_SECTOR_SIZE); clear_bit(boffset / SM_SECTOR_SIZE, &ftl->cache_data_invalid_bitmap); @@ -902,7 +914,7 @@ void sm_cache_put(struct sm_ftl *ftl, char *buffer, int boffset) } /* Read a sector from the cache */ -int sm_cache_get(struct sm_ftl *ftl, char *buffer, int boffset) +static int sm_cache_get(struct sm_ftl *ftl, char *buffer, int boffset) { if (test_bit(boffset / SM_SECTOR_SIZE, &ftl->cache_data_invalid_bitmap)) @@ -913,7 +925,7 @@ int sm_cache_get(struct sm_ftl *ftl, char *buffer, int boffset) } /* Write the cache to hardware */ -int sm_cache_flush(struct sm_ftl *ftl) +static int sm_cache_flush(struct sm_ftl *ftl) { struct ftl_zone *zone; @@ -1092,7 +1104,7 @@ static int sm_flush(struct mtd_blktrans_dev *dev) } /* outside interface: device is released */ -static int sm_release(struct mtd_blktrans_dev *dev) +static void sm_release(struct mtd_blktrans_dev *dev) { struct sm_ftl *ftl = dev->priv; @@ -1101,7 +1113,6 @@ static int sm_release(struct mtd_blktrans_dev *dev) cancel_work_sync(&ftl->flush_work); sm_cache_flush(ftl); mutex_unlock(&ftl->mutex); - return 0; } /* outside interface: get geometry */ @@ -1178,6 +1189,8 @@ static void sm_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) } ftl->disk_attributes = sm_create_sysfs_attributes(ftl); + if (!ftl->disk_attributes) + goto error6; trans->disk_attributes = ftl->disk_attributes; sm_printk("Found %d MiB xD/SmartMedia FTL on mtd%d", @@ -1238,7 +1251,7 @@ static void sm_remove_dev(struct mtd_blktrans_dev *dev) static struct mtd_blktrans_ops sm_ftl_ops = { .name = "smblk", - .major = -1, + .major = 0, .part_bits = SM_FTL_PARTN_BITS, .blksize = SM_SECTOR_SIZE, .getgeo = sm_getgeo, @@ -1258,10 +1271,10 @@ static struct mtd_blktrans_ops sm_ftl_ops = { static __init int sm_module_init(void) { int error = 0; - cache_flush_workqueue = create_freezeable_workqueue("smflush"); - if (IS_ERR(cache_flush_workqueue)) - return PTR_ERR(cache_flush_workqueue); + cache_flush_workqueue = create_freezable_workqueue("smflush"); + if (!cache_flush_workqueue) + return -ENOMEM; error = register_mtd_blktrans(&sm_ftl_ops); if (error) diff --git a/drivers/mtd/sm_ftl.h b/drivers/mtd/sm_ftl.h index e30e48e7f63..43bb7300785 100644 --- a/drivers/mtd/sm_ftl.h +++ b/drivers/mtd/sm_ftl.h @@ -20,7 +20,7 @@ struct ftl_zone { - int initialized; + bool initialized; int16_t *lba_to_phys_table; /* LBA to physical table */ struct kfifo free_sectors; /* queue of free sectors */ }; @@ -37,8 +37,8 @@ struct sm_ftl { int zone_count; /* number of zones */ int max_lba; /* maximum lba in a zone */ int smallpagenand; /* 256 bytes/page nand */ - int readonly; /* is FS readonly */ - int unstable; + bool readonly; /* is FS readonly */ + bool unstable; int cis_block; /* CIS block location */ int cis_boffset; /* CIS offset in the block */ int cis_page_offset; /* CIS offset in the page */ @@ -49,7 +49,7 @@ struct sm_ftl { int cache_zone; /* zone of cached block */ unsigned char *cache_data; /* cached block data */ long unsigned int cache_data_invalid_bitmap; - int cache_clean; + bool cache_clean; struct work_struct flush_work; struct timer_list timer; diff --git a/drivers/mtd/spi-nor/Kconfig b/drivers/mtd/spi-nor/Kconfig new file mode 100644 index 00000000000..f8acfa4310e --- /dev/null +++ b/drivers/mtd/spi-nor/Kconfig @@ -0,0 +1,17 @@ +menuconfig MTD_SPI_NOR + tristate "SPI-NOR device support" + depends on MTD + help + This is the framework for the SPI NOR which can be used by the SPI + device drivers and the SPI-NOR device driver. + +if MTD_SPI_NOR + +config SPI_FSL_QUADSPI + tristate "Freescale Quad SPI controller" + depends on ARCH_MXC + help + This enables support for the Quad SPI controller in master mode. + We only connect the NOR to this controller now. + +endif # MTD_SPI_NOR diff --git a/drivers/mtd/spi-nor/Makefile b/drivers/mtd/spi-nor/Makefile new file mode 100644 index 00000000000..6a7ce146224 --- /dev/null +++ b/drivers/mtd/spi-nor/Makefile @@ -0,0 +1,2 @@ +obj-$(CONFIG_MTD_SPI_NOR) += spi-nor.o +obj-$(CONFIG_SPI_FSL_QUADSPI) += fsl-quadspi.o diff --git a/drivers/mtd/spi-nor/fsl-quadspi.c b/drivers/mtd/spi-nor/fsl-quadspi.c new file mode 100644 index 00000000000..8d659a2888d --- /dev/null +++ b/drivers/mtd/spi-nor/fsl-quadspi.c @@ -0,0 +1,1009 @@ +/* + * Freescale QuadSPI driver. + * + * Copyright (C) 2013 Freescale Semiconductor, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + */ +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/interrupt.h> +#include <linux/errno.h> +#include <linux/platform_device.h> +#include <linux/sched.h> +#include <linux/delay.h> +#include <linux/io.h> +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/timer.h> +#include <linux/jiffies.h> +#include <linux/completion.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/spi-nor.h> + +/* The registers */ +#define QUADSPI_MCR 0x00 +#define QUADSPI_MCR_RESERVED_SHIFT 16 +#define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT) +#define QUADSPI_MCR_MDIS_SHIFT 14 +#define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT) +#define QUADSPI_MCR_CLR_TXF_SHIFT 11 +#define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT) +#define QUADSPI_MCR_CLR_RXF_SHIFT 10 +#define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT) +#define QUADSPI_MCR_DDR_EN_SHIFT 7 +#define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT) +#define QUADSPI_MCR_END_CFG_SHIFT 2 +#define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT) +#define QUADSPI_MCR_SWRSTHD_SHIFT 1 +#define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT) +#define QUADSPI_MCR_SWRSTSD_SHIFT 0 +#define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT) + +#define QUADSPI_IPCR 0x08 +#define QUADSPI_IPCR_SEQID_SHIFT 24 +#define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT) + +#define QUADSPI_BUF0CR 0x10 +#define QUADSPI_BUF1CR 0x14 +#define QUADSPI_BUF2CR 0x18 +#define QUADSPI_BUFXCR_INVALID_MSTRID 0xe + +#define QUADSPI_BUF3CR 0x1c +#define QUADSPI_BUF3CR_ALLMST_SHIFT 31 +#define QUADSPI_BUF3CR_ALLMST (1 << QUADSPI_BUF3CR_ALLMST_SHIFT) + +#define QUADSPI_BFGENCR 0x20 +#define QUADSPI_BFGENCR_PAR_EN_SHIFT 16 +#define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT)) +#define QUADSPI_BFGENCR_SEQID_SHIFT 12 +#define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT) + +#define QUADSPI_BUF0IND 0x30 +#define QUADSPI_BUF1IND 0x34 +#define QUADSPI_BUF2IND 0x38 +#define QUADSPI_SFAR 0x100 + +#define QUADSPI_SMPR 0x108 +#define QUADSPI_SMPR_DDRSMP_SHIFT 16 +#define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT) +#define QUADSPI_SMPR_FSDLY_SHIFT 6 +#define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT) +#define QUADSPI_SMPR_FSPHS_SHIFT 5 +#define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT) +#define QUADSPI_SMPR_HSENA_SHIFT 0 +#define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT) + +#define QUADSPI_RBSR 0x10c +#define QUADSPI_RBSR_RDBFL_SHIFT 8 +#define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT) + +#define QUADSPI_RBCT 0x110 +#define QUADSPI_RBCT_WMRK_MASK 0x1F +#define QUADSPI_RBCT_RXBRD_SHIFT 8 +#define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT) + +#define QUADSPI_TBSR 0x150 +#define QUADSPI_TBDR 0x154 +#define QUADSPI_SR 0x15c +#define QUADSPI_SR_IP_ACC_SHIFT 1 +#define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT) +#define QUADSPI_SR_AHB_ACC_SHIFT 2 +#define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT) + +#define QUADSPI_FR 0x160 +#define QUADSPI_FR_TFF_MASK 0x1 + +#define QUADSPI_SFA1AD 0x180 +#define QUADSPI_SFA2AD 0x184 +#define QUADSPI_SFB1AD 0x188 +#define QUADSPI_SFB2AD 0x18c +#define QUADSPI_RBDR 0x200 + +#define QUADSPI_LUTKEY 0x300 +#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0 + +#define QUADSPI_LCKCR 0x304 +#define QUADSPI_LCKER_LOCK 0x1 +#define QUADSPI_LCKER_UNLOCK 0x2 + +#define QUADSPI_RSER 0x164 +#define QUADSPI_RSER_TFIE (0x1 << 0) + +#define QUADSPI_LUT_BASE 0x310 + +/* + * The definition of the LUT register shows below: + * + * --------------------------------------------------- + * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | + * --------------------------------------------------- + */ +#define OPRND0_SHIFT 0 +#define PAD0_SHIFT 8 +#define INSTR0_SHIFT 10 +#define OPRND1_SHIFT 16 + +/* Instruction set for the LUT register. */ +#define LUT_STOP 0 +#define LUT_CMD 1 +#define LUT_ADDR 2 +#define LUT_DUMMY 3 +#define LUT_MODE 4 +#define LUT_MODE2 5 +#define LUT_MODE4 6 +#define LUT_READ 7 +#define LUT_WRITE 8 +#define LUT_JMP_ON_CS 9 +#define LUT_ADDR_DDR 10 +#define LUT_MODE_DDR 11 +#define LUT_MODE2_DDR 12 +#define LUT_MODE4_DDR 13 +#define LUT_READ_DDR 14 +#define LUT_WRITE_DDR 15 +#define LUT_DATA_LEARN 16 + +/* + * The PAD definitions for LUT register. + * + * The pad stands for the lines number of IO[0:3]. + * For example, the Quad read need four IO lines, so you should + * set LUT_PAD4 which means we use four IO lines. + */ +#define LUT_PAD1 0 +#define LUT_PAD2 1 +#define LUT_PAD4 2 + +/* Oprands for the LUT register. */ +#define ADDR24BIT 0x18 +#define ADDR32BIT 0x20 + +/* Macros for constructing the LUT register. */ +#define LUT0(ins, pad, opr) \ + (((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \ + ((LUT_##ins) << INSTR0_SHIFT)) + +#define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT) + +/* other macros for LUT register. */ +#define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4) +#define QUADSPI_LUT_NUM 64 + +/* SEQID -- we can have 16 seqids at most. */ +#define SEQID_QUAD_READ 0 +#define SEQID_WREN 1 +#define SEQID_WRDI 2 +#define SEQID_RDSR 3 +#define SEQID_SE 4 +#define SEQID_CHIP_ERASE 5 +#define SEQID_PP 6 +#define SEQID_RDID 7 +#define SEQID_WRSR 8 +#define SEQID_RDCR 9 +#define SEQID_EN4B 10 +#define SEQID_BRWR 11 + +enum fsl_qspi_devtype { + FSL_QUADSPI_VYBRID, + FSL_QUADSPI_IMX6SX, +}; + +struct fsl_qspi_devtype_data { + enum fsl_qspi_devtype devtype; + int rxfifo; + int txfifo; +}; + +static struct fsl_qspi_devtype_data vybrid_data = { + .devtype = FSL_QUADSPI_VYBRID, + .rxfifo = 128, + .txfifo = 64 +}; + +static struct fsl_qspi_devtype_data imx6sx_data = { + .devtype = FSL_QUADSPI_IMX6SX, + .rxfifo = 128, + .txfifo = 512 +}; + +#define FSL_QSPI_MAX_CHIP 4 +struct fsl_qspi { + struct mtd_info mtd[FSL_QSPI_MAX_CHIP]; + struct spi_nor nor[FSL_QSPI_MAX_CHIP]; + void __iomem *iobase; + void __iomem *ahb_base; /* Used when read from AHB bus */ + u32 memmap_phy; + struct clk *clk, *clk_en; + struct device *dev; + struct completion c; + struct fsl_qspi_devtype_data *devtype_data; + u32 nor_size; + u32 nor_num; + u32 clk_rate; + unsigned int chip_base_addr; /* We may support two chips. */ +}; + +static inline int is_vybrid_qspi(struct fsl_qspi *q) +{ + return q->devtype_data->devtype == FSL_QUADSPI_VYBRID; +} + +static inline int is_imx6sx_qspi(struct fsl_qspi *q) +{ + return q->devtype_data->devtype == FSL_QUADSPI_IMX6SX; +} + +/* + * An IC bug makes us to re-arrange the 32-bit data. + * The following chips, such as IMX6SLX, have fixed this bug. + */ +static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a) +{ + return is_vybrid_qspi(q) ? __swab32(a) : a; +} + +static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q) +{ + writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); + writel(QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR); +} + +static inline void fsl_qspi_lock_lut(struct fsl_qspi *q) +{ + writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); + writel(QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR); +} + +static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id) +{ + struct fsl_qspi *q = dev_id; + u32 reg; + + /* clear interrupt */ + reg = readl(q->iobase + QUADSPI_FR); + writel(reg, q->iobase + QUADSPI_FR); + + if (reg & QUADSPI_FR_TFF_MASK) + complete(&q->c); + + dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg); + return IRQ_HANDLED; +} + +static void fsl_qspi_init_lut(struct fsl_qspi *q) +{ + void __iomem *base = q->iobase; + int rxfifo = q->devtype_data->rxfifo; + u32 lut_base; + u8 cmd, addrlen, dummy; + int i; + + fsl_qspi_unlock_lut(q); + + /* Clear all the LUT table */ + for (i = 0; i < QUADSPI_LUT_NUM; i++) + writel(0, base + QUADSPI_LUT_BASE + i * 4); + + /* Quad Read */ + lut_base = SEQID_QUAD_READ * 4; + + if (q->nor_size <= SZ_16M) { + cmd = SPINOR_OP_READ_1_1_4; + addrlen = ADDR24BIT; + dummy = 8; + } else { + /* use the 4-byte address */ + cmd = SPINOR_OP_READ_1_1_4; + addrlen = ADDR32BIT; + dummy = 8; + } + + writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen), + base + QUADSPI_LUT(lut_base)); + writel(LUT0(DUMMY, PAD1, dummy) | LUT1(READ, PAD4, rxfifo), + base + QUADSPI_LUT(lut_base + 1)); + + /* Write enable */ + lut_base = SEQID_WREN * 4; + writel(LUT0(CMD, PAD1, SPINOR_OP_WREN), base + QUADSPI_LUT(lut_base)); + + /* Page Program */ + lut_base = SEQID_PP * 4; + + if (q->nor_size <= SZ_16M) { + cmd = SPINOR_OP_PP; + addrlen = ADDR24BIT; + } else { + /* use the 4-byte address */ + cmd = SPINOR_OP_PP; + addrlen = ADDR32BIT; + } + + writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen), + base + QUADSPI_LUT(lut_base)); + writel(LUT0(WRITE, PAD1, 0), base + QUADSPI_LUT(lut_base + 1)); + + /* Read Status */ + lut_base = SEQID_RDSR * 4; + writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(READ, PAD1, 0x1), + base + QUADSPI_LUT(lut_base)); + + /* Erase a sector */ + lut_base = SEQID_SE * 4; + + if (q->nor_size <= SZ_16M) { + cmd = SPINOR_OP_SE; + addrlen = ADDR24BIT; + } else { + /* use the 4-byte address */ + cmd = SPINOR_OP_SE; + addrlen = ADDR32BIT; + } + + writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen), + base + QUADSPI_LUT(lut_base)); + + /* Erase the whole chip */ + lut_base = SEQID_CHIP_ERASE * 4; + writel(LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE), + base + QUADSPI_LUT(lut_base)); + + /* READ ID */ + lut_base = SEQID_RDID * 4; + writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(READ, PAD1, 0x8), + base + QUADSPI_LUT(lut_base)); + + /* Write Register */ + lut_base = SEQID_WRSR * 4; + writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(WRITE, PAD1, 0x2), + base + QUADSPI_LUT(lut_base)); + + /* Read Configuration Register */ + lut_base = SEQID_RDCR * 4; + writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(READ, PAD1, 0x1), + base + QUADSPI_LUT(lut_base)); + + /* Write disable */ + lut_base = SEQID_WRDI * 4; + writel(LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + QUADSPI_LUT(lut_base)); + + /* Enter 4 Byte Mode (Micron) */ + lut_base = SEQID_EN4B * 4; + writel(LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + QUADSPI_LUT(lut_base)); + + /* Enter 4 Byte Mode (Spansion) */ + lut_base = SEQID_BRWR * 4; + writel(LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + QUADSPI_LUT(lut_base)); + + fsl_qspi_lock_lut(q); +} + +/* Get the SEQID for the command */ +static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd) +{ + switch (cmd) { + case SPINOR_OP_READ_1_1_4: + return SEQID_QUAD_READ; + case SPINOR_OP_WREN: + return SEQID_WREN; + case SPINOR_OP_WRDI: + return SEQID_WRDI; + case SPINOR_OP_RDSR: + return SEQID_RDSR; + case SPINOR_OP_SE: + return SEQID_SE; + case SPINOR_OP_CHIP_ERASE: + return SEQID_CHIP_ERASE; + case SPINOR_OP_PP: + return SEQID_PP; + case SPINOR_OP_RDID: + return SEQID_RDID; + case SPINOR_OP_WRSR: + return SEQID_WRSR; + case SPINOR_OP_RDCR: + return SEQID_RDCR; + case SPINOR_OP_EN4B: + return SEQID_EN4B; + case SPINOR_OP_BRWR: + return SEQID_BRWR; + default: + dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd); + break; + } + return -EINVAL; +} + +static int +fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len) +{ + void __iomem *base = q->iobase; + int seqid; + u32 reg, reg2; + int err; + + init_completion(&q->c); + dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n", + q->chip_base_addr, addr, len, cmd); + + /* save the reg */ + reg = readl(base + QUADSPI_MCR); + + writel(q->memmap_phy + q->chip_base_addr + addr, base + QUADSPI_SFAR); + writel(QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS, + base + QUADSPI_RBCT); + writel(reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR); + + do { + reg2 = readl(base + QUADSPI_SR); + if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) { + udelay(1); + dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2); + continue; + } + break; + } while (1); + + /* trigger the LUT now */ + seqid = fsl_qspi_get_seqid(q, cmd); + writel((seqid << QUADSPI_IPCR_SEQID_SHIFT) | len, base + QUADSPI_IPCR); + + /* Wait for the interrupt. */ + err = wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000)); + if (!err) { + dev_err(q->dev, + "cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n", + cmd, addr, readl(base + QUADSPI_FR), + readl(base + QUADSPI_SR)); + err = -ETIMEDOUT; + } else { + err = 0; + } + + /* restore the MCR */ + writel(reg, base + QUADSPI_MCR); + + return err; +} + +/* Read out the data from the QUADSPI_RBDR buffer registers. */ +static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf) +{ + u32 tmp; + int i = 0; + + while (len > 0) { + tmp = readl(q->iobase + QUADSPI_RBDR + i * 4); + tmp = fsl_qspi_endian_xchg(q, tmp); + dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n", + q->chip_base_addr, tmp); + + if (len >= 4) { + *((u32 *)rxbuf) = tmp; + rxbuf += 4; + } else { + memcpy(rxbuf, &tmp, len); + break; + } + + len -= 4; + i++; + } +} + +/* + * If we have changed the content of the flash by writing or erasing, + * we need to invalidate the AHB buffer. If we do not do so, we may read out + * the wrong data. The spec tells us reset the AHB domain and Serial Flash + * domain at the same time. + */ +static inline void fsl_qspi_invalid(struct fsl_qspi *q) +{ + u32 reg; + + reg = readl(q->iobase + QUADSPI_MCR); + reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK; + writel(reg, q->iobase + QUADSPI_MCR); + + /* + * The minimum delay : 1 AHB + 2 SFCK clocks. + * Delay 1 us is enough. + */ + udelay(1); + + reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK); + writel(reg, q->iobase + QUADSPI_MCR); +} + +static int fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor, + u8 opcode, unsigned int to, u32 *txbuf, + unsigned count, size_t *retlen) +{ + int ret, i, j; + u32 tmp; + + dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n", + q->chip_base_addr, to, count); + + /* clear the TX FIFO. */ + tmp = readl(q->iobase + QUADSPI_MCR); + writel(tmp | QUADSPI_MCR_CLR_RXF_MASK, q->iobase + QUADSPI_MCR); + + /* fill the TX data to the FIFO */ + for (j = 0, i = ((count + 3) / 4); j < i; j++) { + tmp = fsl_qspi_endian_xchg(q, *txbuf); + writel(tmp, q->iobase + QUADSPI_TBDR); + txbuf++; + } + + /* Trigger it */ + ret = fsl_qspi_runcmd(q, opcode, to, count); + + if (ret == 0 && retlen) + *retlen += count; + + return ret; +} + +static void fsl_qspi_set_map_addr(struct fsl_qspi *q) +{ + int nor_size = q->nor_size; + void __iomem *base = q->iobase; + + writel(nor_size + q->memmap_phy, base + QUADSPI_SFA1AD); + writel(nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD); + writel(nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD); + writel(nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD); +} + +/* + * There are two different ways to read out the data from the flash: + * the "IP Command Read" and the "AHB Command Read". + * + * The IC guy suggests we use the "AHB Command Read" which is faster + * then the "IP Command Read". (What's more is that there is a bug in + * the "IP Command Read" in the Vybrid.) + * + * After we set up the registers for the "AHB Command Read", we can use + * the memcpy to read the data directly. A "missed" access to the buffer + * causes the controller to clear the buffer, and use the sequence pointed + * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash. + */ +static void fsl_qspi_init_abh_read(struct fsl_qspi *q) +{ + void __iomem *base = q->iobase; + int seqid; + + /* AHB configuration for access buffer 0/1/2 .*/ + writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR); + writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR); + writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR); + writel(QUADSPI_BUF3CR_ALLMST, base + QUADSPI_BUF3CR); + + /* We only use the buffer3 */ + writel(0, base + QUADSPI_BUF0IND); + writel(0, base + QUADSPI_BUF1IND); + writel(0, base + QUADSPI_BUF2IND); + + /* Set the default lut sequence for AHB Read. */ + seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode); + writel(seqid << QUADSPI_BFGENCR_SEQID_SHIFT, + q->iobase + QUADSPI_BFGENCR); +} + +/* We use this function to do some basic init for spi_nor_scan(). */ +static int fsl_qspi_nor_setup(struct fsl_qspi *q) +{ + void __iomem *base = q->iobase; + u32 reg; + int ret; + + /* the default frequency, we will change it in the future.*/ + ret = clk_set_rate(q->clk, 66000000); + if (ret) + return ret; + + /* Init the LUT table. */ + fsl_qspi_init_lut(q); + + /* Disable the module */ + writel(QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK, + base + QUADSPI_MCR); + + reg = readl(base + QUADSPI_SMPR); + writel(reg & ~(QUADSPI_SMPR_FSDLY_MASK + | QUADSPI_SMPR_FSPHS_MASK + | QUADSPI_SMPR_HSENA_MASK + | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR); + + /* Enable the module */ + writel(QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK, + base + QUADSPI_MCR); + + /* enable the interrupt */ + writel(QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER); + + return 0; +} + +static int fsl_qspi_nor_setup_last(struct fsl_qspi *q) +{ + unsigned long rate = q->clk_rate; + int ret; + + if (is_imx6sx_qspi(q)) + rate *= 4; + + ret = clk_set_rate(q->clk, rate); + if (ret) + return ret; + + /* Init the LUT table again. */ + fsl_qspi_init_lut(q); + + /* Init for AHB read */ + fsl_qspi_init_abh_read(q); + + return 0; +} + +static struct of_device_id fsl_qspi_dt_ids[] = { + { .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, }, + { .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids); + +static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor) +{ + q->chip_base_addr = q->nor_size * (nor - q->nor); +} + +static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) +{ + int ret; + struct fsl_qspi *q = nor->priv; + + ret = fsl_qspi_runcmd(q, opcode, 0, len); + if (ret) + return ret; + + fsl_qspi_read_data(q, len, buf); + return 0; +} + +static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len, + int write_enable) +{ + struct fsl_qspi *q = nor->priv; + int ret; + + if (!buf) { + ret = fsl_qspi_runcmd(q, opcode, 0, 1); + if (ret) + return ret; + + if (opcode == SPINOR_OP_CHIP_ERASE) + fsl_qspi_invalid(q); + + } else if (len > 0) { + ret = fsl_qspi_nor_write(q, nor, opcode, 0, + (u32 *)buf, len, NULL); + } else { + dev_err(q->dev, "invalid cmd %d\n", opcode); + ret = -EINVAL; + } + + return ret; +} + +static void fsl_qspi_write(struct spi_nor *nor, loff_t to, + size_t len, size_t *retlen, const u_char *buf) +{ + struct fsl_qspi *q = nor->priv; + + fsl_qspi_nor_write(q, nor, nor->program_opcode, to, + (u32 *)buf, len, retlen); + + /* invalid the data in the AHB buffer. */ + fsl_qspi_invalid(q); +} + +static int fsl_qspi_read(struct spi_nor *nor, loff_t from, + size_t len, size_t *retlen, u_char *buf) +{ + struct fsl_qspi *q = nor->priv; + u8 cmd = nor->read_opcode; + int ret; + + dev_dbg(q->dev, "cmd [%x],read from (0x%p, 0x%.8x, 0x%.8x),len:%d\n", + cmd, q->ahb_base, q->chip_base_addr, (unsigned int)from, len); + + /* Wait until the previous command is finished. */ + ret = nor->wait_till_ready(nor); + if (ret) + return ret; + + /* Read out the data directly from the AHB buffer.*/ + memcpy(buf, q->ahb_base + q->chip_base_addr + from, len); + + *retlen += len; + return 0; +} + +static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs) +{ + struct fsl_qspi *q = nor->priv; + int ret; + + dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n", + nor->mtd->erasesize / 1024, q->chip_base_addr, (u32)offs); + + /* Wait until finished previous write command. */ + ret = nor->wait_till_ready(nor); + if (ret) + return ret; + + /* Send write enable, then erase commands. */ + ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0); + if (ret) + return ret; + + ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0); + if (ret) + return ret; + + fsl_qspi_invalid(q); + return 0; +} + +static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops) +{ + struct fsl_qspi *q = nor->priv; + int ret; + + ret = clk_enable(q->clk_en); + if (ret) + return ret; + + ret = clk_enable(q->clk); + if (ret) { + clk_disable(q->clk_en); + return ret; + } + + fsl_qspi_set_base_addr(q, nor); + return 0; +} + +static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops) +{ + struct fsl_qspi *q = nor->priv; + + clk_disable(q->clk); + clk_disable(q->clk_en); +} + +static int fsl_qspi_probe(struct platform_device *pdev) +{ + struct device_node *np = pdev->dev.of_node; + struct mtd_part_parser_data ppdata; + struct device *dev = &pdev->dev; + struct fsl_qspi *q; + struct resource *res; + struct spi_nor *nor; + struct mtd_info *mtd; + int ret, i = 0; + bool has_second_chip = false; + const struct of_device_id *of_id = + of_match_device(fsl_qspi_dt_ids, &pdev->dev); + + q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL); + if (!q) + return -ENOMEM; + + q->nor_num = of_get_child_count(dev->of_node); + if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP) + return -ENODEV; + + /* find the resources */ + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI"); + q->iobase = devm_ioremap_resource(dev, res); + if (IS_ERR(q->iobase)) { + ret = PTR_ERR(q->iobase); + goto map_failed; + } + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, + "QuadSPI-memory"); + q->ahb_base = devm_ioremap_resource(dev, res); + if (IS_ERR(q->ahb_base)) { + ret = PTR_ERR(q->ahb_base); + goto map_failed; + } + q->memmap_phy = res->start; + + /* find the clocks */ + q->clk_en = devm_clk_get(dev, "qspi_en"); + if (IS_ERR(q->clk_en)) { + ret = PTR_ERR(q->clk_en); + goto map_failed; + } + + q->clk = devm_clk_get(dev, "qspi"); + if (IS_ERR(q->clk)) { + ret = PTR_ERR(q->clk); + goto map_failed; + } + + ret = clk_prepare_enable(q->clk_en); + if (ret) { + dev_err(dev, "can not enable the qspi_en clock\n"); + goto map_failed; + } + + ret = clk_prepare_enable(q->clk); + if (ret) { + clk_disable_unprepare(q->clk_en); + dev_err(dev, "can not enable the qspi clock\n"); + goto map_failed; + } + + /* find the irq */ + ret = platform_get_irq(pdev, 0); + if (ret < 0) { + dev_err(dev, "failed to get the irq\n"); + goto irq_failed; + } + + ret = devm_request_irq(dev, ret, + fsl_qspi_irq_handler, 0, pdev->name, q); + if (ret) { + dev_err(dev, "failed to request irq.\n"); + goto irq_failed; + } + + q->dev = dev; + q->devtype_data = (struct fsl_qspi_devtype_data *)of_id->data; + platform_set_drvdata(pdev, q); + + ret = fsl_qspi_nor_setup(q); + if (ret) + goto irq_failed; + + if (of_get_property(np, "fsl,qspi-has-second-chip", NULL)) + has_second_chip = true; + + /* iterate the subnodes. */ + for_each_available_child_of_node(dev->of_node, np) { + const struct spi_device_id *id; + char modalias[40]; + + /* skip the holes */ + if (!has_second_chip) + i *= 2; + + nor = &q->nor[i]; + mtd = &q->mtd[i]; + + nor->mtd = mtd; + nor->dev = dev; + nor->priv = q; + mtd->priv = nor; + + /* fill the hooks */ + nor->read_reg = fsl_qspi_read_reg; + nor->write_reg = fsl_qspi_write_reg; + nor->read = fsl_qspi_read; + nor->write = fsl_qspi_write; + nor->erase = fsl_qspi_erase; + + nor->prepare = fsl_qspi_prep; + nor->unprepare = fsl_qspi_unprep; + + if (of_modalias_node(np, modalias, sizeof(modalias)) < 0) + goto map_failed; + + id = spi_nor_match_id(modalias); + if (!id) + goto map_failed; + + ret = of_property_read_u32(np, "spi-max-frequency", + &q->clk_rate); + if (ret < 0) + goto map_failed; + + /* set the chip address for READID */ + fsl_qspi_set_base_addr(q, nor); + + ret = spi_nor_scan(nor, id, SPI_NOR_QUAD); + if (ret) + goto map_failed; + + ppdata.of_node = np; + ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0); + if (ret) + goto map_failed; + + /* Set the correct NOR size now. */ + if (q->nor_size == 0) { + q->nor_size = mtd->size; + + /* Map the SPI NOR to accessiable address */ + fsl_qspi_set_map_addr(q); + } + + /* + * The TX FIFO is 64 bytes in the Vybrid, but the Page Program + * may writes 265 bytes per time. The write is working in the + * unit of the TX FIFO, not in the unit of the SPI NOR's page + * size. + * + * So shrink the spi_nor->page_size if it is larger then the + * TX FIFO. + */ + if (nor->page_size > q->devtype_data->txfifo) + nor->page_size = q->devtype_data->txfifo; + + i++; + } + + /* finish the rest init. */ + ret = fsl_qspi_nor_setup_last(q); + if (ret) + goto last_init_failed; + + clk_disable(q->clk); + clk_disable(q->clk_en); + dev_info(dev, "QuadSPI SPI NOR flash driver\n"); + return 0; + +last_init_failed: + for (i = 0; i < q->nor_num; i++) + mtd_device_unregister(&q->mtd[i]); + +irq_failed: + clk_disable_unprepare(q->clk); + clk_disable_unprepare(q->clk_en); +map_failed: + dev_err(dev, "Freescale QuadSPI probe failed\n"); + return ret; +} + +static int fsl_qspi_remove(struct platform_device *pdev) +{ + struct fsl_qspi *q = platform_get_drvdata(pdev); + int i; + + for (i = 0; i < q->nor_num; i++) + mtd_device_unregister(&q->mtd[i]); + + /* disable the hardware */ + writel(QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR); + writel(0x0, q->iobase + QUADSPI_RSER); + + clk_unprepare(q->clk); + clk_unprepare(q->clk_en); + return 0; +} + +static struct platform_driver fsl_qspi_driver = { + .driver = { + .name = "fsl-quadspi", + .bus = &platform_bus_type, + .owner = THIS_MODULE, + .of_match_table = fsl_qspi_dt_ids, + }, + .probe = fsl_qspi_probe, + .remove = fsl_qspi_remove, +}; +module_platform_driver(fsl_qspi_driver); + +MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver"); +MODULE_AUTHOR("Freescale Semiconductor Inc."); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/spi-nor/spi-nor.c b/drivers/mtd/spi-nor/spi-nor.c new file mode 100644 index 00000000000..c713c865671 --- /dev/null +++ b/drivers/mtd/spi-nor/spi-nor.c @@ -0,0 +1,1107 @@ +/* + * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with + * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c + * + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + * + * This code is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#include <linux/err.h> +#include <linux/errno.h> +#include <linux/module.h> +#include <linux/device.h> +#include <linux/mutex.h> +#include <linux/math64.h> + +#include <linux/mtd/cfi.h> +#include <linux/mtd/mtd.h> +#include <linux/of_platform.h> +#include <linux/spi/flash.h> +#include <linux/mtd/spi-nor.h> + +/* Define max times to check status register before we give up. */ +#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */ + +#define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16) + +/* + * Read the status register, returning its value in the location + * Return the status register value. + * Returns negative if error occurred. + */ +static int read_sr(struct spi_nor *nor) +{ + int ret; + u8 val; + + ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1); + if (ret < 0) { + pr_err("error %d reading SR\n", (int) ret); + return ret; + } + + return val; +} + +/* + * Read configuration register, returning its value in the + * location. Return the configuration register value. + * Returns negative if error occured. + */ +static int read_cr(struct spi_nor *nor) +{ + int ret; + u8 val; + + ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1); + if (ret < 0) { + dev_err(nor->dev, "error %d reading CR\n", ret); + return ret; + } + + return val; +} + +/* + * Dummy Cycle calculation for different type of read. + * It can be used to support more commands with + * different dummy cycle requirements. + */ +static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor) +{ + switch (nor->flash_read) { + case SPI_NOR_FAST: + case SPI_NOR_DUAL: + case SPI_NOR_QUAD: + return 1; + case SPI_NOR_NORMAL: + return 0; + } + return 0; +} + +/* + * Write status register 1 byte + * Returns negative if error occurred. + */ +static inline int write_sr(struct spi_nor *nor, u8 val) +{ + nor->cmd_buf[0] = val; + return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0); +} + +/* + * Set write enable latch with Write Enable command. + * Returns negative if error occurred. + */ +static inline int write_enable(struct spi_nor *nor) +{ + return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0); +} + +/* + * Send write disble instruction to the chip. + */ +static inline int write_disable(struct spi_nor *nor) +{ + return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0); +} + +static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd) +{ + return mtd->priv; +} + +/* Enable/disable 4-byte addressing mode. */ +static inline int set_4byte(struct spi_nor *nor, u32 jedec_id, int enable) +{ + int status; + bool need_wren = false; + u8 cmd; + + switch (JEDEC_MFR(jedec_id)) { + case CFI_MFR_ST: /* Micron, actually */ + /* Some Micron need WREN command; all will accept it */ + need_wren = true; + case CFI_MFR_MACRONIX: + case 0xEF /* winbond */: + if (need_wren) + write_enable(nor); + + cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B; + status = nor->write_reg(nor, cmd, NULL, 0, 0); + if (need_wren) + write_disable(nor); + + return status; + default: + /* Spansion style */ + nor->cmd_buf[0] = enable << 7; + return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0); + } +} + +static int spi_nor_wait_till_ready(struct spi_nor *nor) +{ + unsigned long deadline; + int sr; + + deadline = jiffies + MAX_READY_WAIT_JIFFIES; + + do { + cond_resched(); + + sr = read_sr(nor); + if (sr < 0) + break; + else if (!(sr & SR_WIP)) + return 0; + } while (!time_after_eq(jiffies, deadline)); + + return -ETIMEDOUT; +} + +/* + * Service routine to read status register until ready, or timeout occurs. + * Returns non-zero if error. + */ +static int wait_till_ready(struct spi_nor *nor) +{ + return nor->wait_till_ready(nor); +} + +/* + * Erase the whole flash memory + * + * Returns 0 if successful, non-zero otherwise. + */ +static int erase_chip(struct spi_nor *nor) +{ + int ret; + + dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10)); + + /* Wait until finished previous write command. */ + ret = wait_till_ready(nor); + if (ret) + return ret; + + /* Send write enable, then erase commands. */ + write_enable(nor); + + return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0); +} + +static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops) +{ + int ret = 0; + + mutex_lock(&nor->lock); + + if (nor->prepare) { + ret = nor->prepare(nor, ops); + if (ret) { + dev_err(nor->dev, "failed in the preparation.\n"); + mutex_unlock(&nor->lock); + return ret; + } + } + return ret; +} + +static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops) +{ + if (nor->unprepare) + nor->unprepare(nor, ops); + mutex_unlock(&nor->lock); +} + +/* + * Erase an address range on the nor chip. The address range may extend + * one or more erase sectors. Return an error is there is a problem erasing. + */ +static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + u32 addr, len; + uint32_t rem; + int ret; + + dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr, + (long long)instr->len); + + div_u64_rem(instr->len, mtd->erasesize, &rem); + if (rem) + return -EINVAL; + + addr = instr->addr; + len = instr->len; + + ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE); + if (ret) + return ret; + + /* whole-chip erase? */ + if (len == mtd->size) { + if (erase_chip(nor)) { + ret = -EIO; + goto erase_err; + } + + /* REVISIT in some cases we could speed up erasing large regions + * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up + * to use "small sector erase", but that's not always optimal. + */ + + /* "sector"-at-a-time erase */ + } else { + while (len) { + if (nor->erase(nor, addr)) { + ret = -EIO; + goto erase_err; + } + + addr += mtd->erasesize; + len -= mtd->erasesize; + } + } + + spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE); + + instr->state = MTD_ERASE_DONE; + mtd_erase_callback(instr); + + return ret; + +erase_err: + spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE); + instr->state = MTD_ERASE_FAILED; + return ret; +} + +static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + uint32_t offset = ofs; + uint8_t status_old, status_new; + int ret = 0; + + ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK); + if (ret) + return ret; + + /* Wait until finished previous command */ + ret = wait_till_ready(nor); + if (ret) + goto err; + + status_old = read_sr(nor); + + if (offset < mtd->size - (mtd->size / 2)) + status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0; + else if (offset < mtd->size - (mtd->size / 4)) + status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1; + else if (offset < mtd->size - (mtd->size / 8)) + status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0; + else if (offset < mtd->size - (mtd->size / 16)) + status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2; + else if (offset < mtd->size - (mtd->size / 32)) + status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0; + else if (offset < mtd->size - (mtd->size / 64)) + status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1; + else + status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0; + + /* Only modify protection if it will not unlock other areas */ + if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) > + (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) { + write_enable(nor); + ret = write_sr(nor, status_new); + if (ret) + goto err; + } + +err: + spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK); + return ret; +} + +static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + uint32_t offset = ofs; + uint8_t status_old, status_new; + int ret = 0; + + ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK); + if (ret) + return ret; + + /* Wait until finished previous command */ + ret = wait_till_ready(nor); + if (ret) + goto err; + + status_old = read_sr(nor); + + if (offset+len > mtd->size - (mtd->size / 64)) + status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0); + else if (offset+len > mtd->size - (mtd->size / 32)) + status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0; + else if (offset+len > mtd->size - (mtd->size / 16)) + status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1; + else if (offset+len > mtd->size - (mtd->size / 8)) + status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0; + else if (offset+len > mtd->size - (mtd->size / 4)) + status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2; + else if (offset+len > mtd->size - (mtd->size / 2)) + status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0; + else + status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1; + + /* Only modify protection if it will not lock other areas */ + if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) < + (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) { + write_enable(nor); + ret = write_sr(nor, status_new); + if (ret) + goto err; + } + +err: + spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK); + return ret; +} + +struct flash_info { + /* JEDEC id zero means "no ID" (most older chips); otherwise it has + * a high byte of zero plus three data bytes: the manufacturer id, + * then a two byte device id. + */ + u32 jedec_id; + u16 ext_id; + + /* The size listed here is what works with SPINOR_OP_SE, which isn't + * necessarily called a "sector" by the vendor. + */ + unsigned sector_size; + u16 n_sectors; + + u16 page_size; + u16 addr_width; + + u16 flags; +#define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */ +#define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */ +#define SST_WRITE 0x04 /* use SST byte programming */ +#define SPI_NOR_NO_FR 0x08 /* Can't do fastread */ +#define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */ +#define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */ +#define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */ +}; + +#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ + ((kernel_ulong_t)&(struct flash_info) { \ + .jedec_id = (_jedec_id), \ + .ext_id = (_ext_id), \ + .sector_size = (_sector_size), \ + .n_sectors = (_n_sectors), \ + .page_size = 256, \ + .flags = (_flags), \ + }) + +#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \ + ((kernel_ulong_t)&(struct flash_info) { \ + .sector_size = (_sector_size), \ + .n_sectors = (_n_sectors), \ + .page_size = (_page_size), \ + .addr_width = (_addr_width), \ + .flags = (_flags), \ + }) + +/* NOTE: double check command sets and memory organization when you add + * more nor chips. This current list focusses on newer chips, which + * have been converging on command sets which including JEDEC ID. + */ +const struct spi_device_id spi_nor_ids[] = { + /* Atmel -- some are (confusingly) marketed as "DataFlash" */ + { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) }, + { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) }, + + { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) }, + { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) }, + { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) }, + + { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) }, + { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) }, + { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) }, + { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, + + { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) }, + + /* EON -- en25xxx */ + { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) }, + { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) }, + { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) }, + { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) }, + { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) }, + { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) }, + + /* ESMT */ + { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) }, + + /* Everspin */ + { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, + { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, + + /* GigaDevice */ + { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) }, + { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) }, + + /* Intel/Numonyx -- xxxs33b */ + { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) }, + { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) }, + { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) }, + + /* Macronix */ + { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) }, + { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) }, + { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) }, + { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) }, + { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) }, + { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) }, + { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) }, + { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) }, + { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) }, + { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) }, + { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) }, + { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) }, + { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) }, + + /* Micron */ + { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) }, + { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) }, + { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) }, + { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) }, + { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) }, + + /* PMC */ + { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) }, + { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) }, + { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) }, + + /* Spansion -- single (large) sector size only, at least + * for the chips listed here (without boot sectors). + */ + { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, + { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) }, + { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) }, + { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, + { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, + { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) }, + { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) }, + { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) }, + { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) }, + { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) }, + { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) }, + { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) }, + { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) }, + { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) }, + { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) }, + { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) }, + { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) }, + { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, + + /* SST -- large erase sizes are "overlays", "sectors" are 4K */ + { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, + { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) }, + { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) }, + { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) }, + { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) }, + { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) }, + { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) }, + { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) }, + { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, + + /* ST Microelectronics -- newer production may have feature updates */ + { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) }, + { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) }, + { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) }, + { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) }, + { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) }, + { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) }, + { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) }, + { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) }, + { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) }, + { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) }, + + { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) }, + { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) }, + { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) }, + { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) }, + { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) }, + { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) }, + { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) }, + { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) }, + { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) }, + + { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) }, + { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) }, + { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) }, + + { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) }, + { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) }, + { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) }, + + { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) }, + { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) }, + { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) }, + { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) }, + { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) }, + + /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ + { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) }, + { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) }, + { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) }, + { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) }, + { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) }, + { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) }, + { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) }, + { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) }, + { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) }, + { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, + { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) }, + { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) }, + { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) }, + { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) }, + { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) }, + + /* Catalyst / On Semiconductor -- non-JEDEC */ + { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, + { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, + { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, + { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, + { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, + { }, +}; +EXPORT_SYMBOL_GPL(spi_nor_ids); + +static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor) +{ + int tmp; + u8 id[5]; + u32 jedec; + u16 ext_jedec; + struct flash_info *info; + + tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, 5); + if (tmp < 0) { + dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp); + return ERR_PTR(tmp); + } + jedec = id[0]; + jedec = jedec << 8; + jedec |= id[1]; + jedec = jedec << 8; + jedec |= id[2]; + + ext_jedec = id[3] << 8 | id[4]; + + for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) { + info = (void *)spi_nor_ids[tmp].driver_data; + if (info->jedec_id == jedec) { + if (info->ext_id == 0 || info->ext_id == ext_jedec) + return &spi_nor_ids[tmp]; + } + } + dev_err(nor->dev, "unrecognized JEDEC id %06x\n", jedec); + return ERR_PTR(-ENODEV); +} + +static const struct spi_device_id *jedec_probe(struct spi_nor *nor) +{ + return nor->read_id(nor); +} + +static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + int ret; + + dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len); + + ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ); + if (ret) + return ret; + + ret = nor->read(nor, from, len, retlen, buf); + + spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ); + return ret; +} + +static int sst_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + size_t actual; + int ret; + + dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); + + ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE); + if (ret) + return ret; + + /* Wait until finished previous write command. */ + ret = wait_till_ready(nor); + if (ret) + goto time_out; + + write_enable(nor); + + nor->sst_write_second = false; + + actual = to % 2; + /* Start write from odd address. */ + if (actual) { + nor->program_opcode = SPINOR_OP_BP; + + /* write one byte. */ + nor->write(nor, to, 1, retlen, buf); + ret = wait_till_ready(nor); + if (ret) + goto time_out; + } + to += actual; + + /* Write out most of the data here. */ + for (; actual < len - 1; actual += 2) { + nor->program_opcode = SPINOR_OP_AAI_WP; + + /* write two bytes. */ + nor->write(nor, to, 2, retlen, buf + actual); + ret = wait_till_ready(nor); + if (ret) + goto time_out; + to += 2; + nor->sst_write_second = true; + } + nor->sst_write_second = false; + + write_disable(nor); + ret = wait_till_ready(nor); + if (ret) + goto time_out; + + /* Write out trailing byte if it exists. */ + if (actual != len) { + write_enable(nor); + + nor->program_opcode = SPINOR_OP_BP; + nor->write(nor, to, 1, retlen, buf + actual); + + ret = wait_till_ready(nor); + if (ret) + goto time_out; + write_disable(nor); + } +time_out: + spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE); + return ret; +} + +/* + * Write an address range to the nor chip. Data must be written in + * FLASH_PAGESIZE chunks. The address range may be any size provided + * it is within the physical boundaries. + */ +static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + u32 page_offset, page_size, i; + int ret; + + dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); + + ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE); + if (ret) + return ret; + + /* Wait until finished previous write command. */ + ret = wait_till_ready(nor); + if (ret) + goto write_err; + + write_enable(nor); + + page_offset = to & (nor->page_size - 1); + + /* do all the bytes fit onto one page? */ + if (page_offset + len <= nor->page_size) { + nor->write(nor, to, len, retlen, buf); + } else { + /* the size of data remaining on the first page */ + page_size = nor->page_size - page_offset; + nor->write(nor, to, page_size, retlen, buf); + + /* write everything in nor->page_size chunks */ + for (i = page_size; i < len; i += page_size) { + page_size = len - i; + if (page_size > nor->page_size) + page_size = nor->page_size; + + wait_till_ready(nor); + write_enable(nor); + + nor->write(nor, to + i, page_size, retlen, buf + i); + } + } + +write_err: + spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE); + return 0; +} + +static int macronix_quad_enable(struct spi_nor *nor) +{ + int ret, val; + + val = read_sr(nor); + write_enable(nor); + + nor->cmd_buf[0] = val | SR_QUAD_EN_MX; + nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0); + + if (wait_till_ready(nor)) + return 1; + + ret = read_sr(nor); + if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) { + dev_err(nor->dev, "Macronix Quad bit not set\n"); + return -EINVAL; + } + + return 0; +} + +/* + * Write status Register and configuration register with 2 bytes + * The first byte will be written to the status register, while the + * second byte will be written to the configuration register. + * Return negative if error occured. + */ +static int write_sr_cr(struct spi_nor *nor, u16 val) +{ + nor->cmd_buf[0] = val & 0xff; + nor->cmd_buf[1] = (val >> 8); + + return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0); +} + +static int spansion_quad_enable(struct spi_nor *nor) +{ + int ret; + int quad_en = CR_QUAD_EN_SPAN << 8; + + write_enable(nor); + + ret = write_sr_cr(nor, quad_en); + if (ret < 0) { + dev_err(nor->dev, + "error while writing configuration register\n"); + return -EINVAL; + } + + /* read back and check it */ + ret = read_cr(nor); + if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) { + dev_err(nor->dev, "Spansion Quad bit not set\n"); + return -EINVAL; + } + + return 0; +} + +static int set_quad_mode(struct spi_nor *nor, u32 jedec_id) +{ + int status; + + switch (JEDEC_MFR(jedec_id)) { + case CFI_MFR_MACRONIX: + status = macronix_quad_enable(nor); + if (status) { + dev_err(nor->dev, "Macronix quad-read not enabled\n"); + return -EINVAL; + } + return status; + default: + status = spansion_quad_enable(nor); + if (status) { + dev_err(nor->dev, "Spansion quad-read not enabled\n"); + return -EINVAL; + } + return status; + } +} + +static int spi_nor_check(struct spi_nor *nor) +{ + if (!nor->dev || !nor->read || !nor->write || + !nor->read_reg || !nor->write_reg || !nor->erase) { + pr_err("spi-nor: please fill all the necessary fields!\n"); + return -EINVAL; + } + + if (!nor->read_id) + nor->read_id = spi_nor_read_id; + if (!nor->wait_till_ready) + nor->wait_till_ready = spi_nor_wait_till_ready; + + return 0; +} + +int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id, + enum read_mode mode) +{ + struct flash_info *info; + struct flash_platform_data *data; + struct device *dev = nor->dev; + struct mtd_info *mtd = nor->mtd; + struct device_node *np = dev->of_node; + int ret; + int i; + + ret = spi_nor_check(nor); + if (ret) + return ret; + + /* Platform data helps sort out which chip type we have, as + * well as how this board partitions it. If we don't have + * a chip ID, try the JEDEC id commands; they'll work for most + * newer chips, even if we don't recognize the particular chip. + */ + data = dev_get_platdata(dev); + if (data && data->type) { + const struct spi_device_id *plat_id; + + for (i = 0; i < ARRAY_SIZE(spi_nor_ids) - 1; i++) { + plat_id = &spi_nor_ids[i]; + if (strcmp(data->type, plat_id->name)) + continue; + break; + } + + if (i < ARRAY_SIZE(spi_nor_ids) - 1) + id = plat_id; + else + dev_warn(dev, "unrecognized id %s\n", data->type); + } + + info = (void *)id->driver_data; + + if (info->jedec_id) { + const struct spi_device_id *jid; + + jid = jedec_probe(nor); + if (IS_ERR(jid)) { + return PTR_ERR(jid); + } else if (jid != id) { + /* + * JEDEC knows better, so overwrite platform ID. We + * can't trust partitions any longer, but we'll let + * mtd apply them anyway, since some partitions may be + * marked read-only, and we don't want to lose that + * information, even if it's not 100% accurate. + */ + dev_warn(dev, "found %s, expected %s\n", + jid->name, id->name); + id = jid; + info = (void *)jid->driver_data; + } + } + + mutex_init(&nor->lock); + + /* + * Atmel, SST and Intel/Numonyx serial nor tend to power + * up with the software protection bits set + */ + + if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL || + JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL || + JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) { + write_enable(nor); + write_sr(nor, 0); + } + + if (data && data->name) + mtd->name = data->name; + else + mtd->name = dev_name(dev); + + mtd->type = MTD_NORFLASH; + mtd->writesize = 1; + mtd->flags = MTD_CAP_NORFLASH; + mtd->size = info->sector_size * info->n_sectors; + mtd->_erase = spi_nor_erase; + mtd->_read = spi_nor_read; + + /* nor protection support for STmicro chips */ + if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) { + mtd->_lock = spi_nor_lock; + mtd->_unlock = spi_nor_unlock; + } + + /* sst nor chips use AAI word program */ + if (info->flags & SST_WRITE) + mtd->_write = sst_write; + else + mtd->_write = spi_nor_write; + + /* prefer "small sector" erase if possible */ + if (info->flags & SECT_4K) { + nor->erase_opcode = SPINOR_OP_BE_4K; + mtd->erasesize = 4096; + } else if (info->flags & SECT_4K_PMC) { + nor->erase_opcode = SPINOR_OP_BE_4K_PMC; + mtd->erasesize = 4096; + } else { + nor->erase_opcode = SPINOR_OP_SE; + mtd->erasesize = info->sector_size; + } + + if (info->flags & SPI_NOR_NO_ERASE) + mtd->flags |= MTD_NO_ERASE; + + mtd->dev.parent = dev; + nor->page_size = info->page_size; + mtd->writebufsize = nor->page_size; + + if (np) { + /* If we were instantiated by DT, use it */ + if (of_property_read_bool(np, "m25p,fast-read")) + nor->flash_read = SPI_NOR_FAST; + else + nor->flash_read = SPI_NOR_NORMAL; + } else { + /* If we weren't instantiated by DT, default to fast-read */ + nor->flash_read = SPI_NOR_FAST; + } + + /* Some devices cannot do fast-read, no matter what DT tells us */ + if (info->flags & SPI_NOR_NO_FR) + nor->flash_read = SPI_NOR_NORMAL; + + /* Quad/Dual-read mode takes precedence over fast/normal */ + if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) { + ret = set_quad_mode(nor, info->jedec_id); + if (ret) { + dev_err(dev, "quad mode not supported\n"); + return ret; + } + nor->flash_read = SPI_NOR_QUAD; + } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) { + nor->flash_read = SPI_NOR_DUAL; + } + + /* Default commands */ + switch (nor->flash_read) { + case SPI_NOR_QUAD: + nor->read_opcode = SPINOR_OP_READ_1_1_4; + break; + case SPI_NOR_DUAL: + nor->read_opcode = SPINOR_OP_READ_1_1_2; + break; + case SPI_NOR_FAST: + nor->read_opcode = SPINOR_OP_READ_FAST; + break; + case SPI_NOR_NORMAL: + nor->read_opcode = SPINOR_OP_READ; + break; + default: + dev_err(dev, "No Read opcode defined\n"); + return -EINVAL; + } + + nor->program_opcode = SPINOR_OP_PP; + + if (info->addr_width) + nor->addr_width = info->addr_width; + else if (mtd->size > 0x1000000) { + /* enable 4-byte addressing if the device exceeds 16MiB */ + nor->addr_width = 4; + if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) { + /* Dedicated 4-byte command set */ + switch (nor->flash_read) { + case SPI_NOR_QUAD: + nor->read_opcode = SPINOR_OP_READ4_1_1_4; + break; + case SPI_NOR_DUAL: + nor->read_opcode = SPINOR_OP_READ4_1_1_2; + break; + case SPI_NOR_FAST: + nor->read_opcode = SPINOR_OP_READ4_FAST; + break; + case SPI_NOR_NORMAL: + nor->read_opcode = SPINOR_OP_READ4; + break; + } + nor->program_opcode = SPINOR_OP_PP_4B; + /* No small sector erase for 4-byte command set */ + nor->erase_opcode = SPINOR_OP_SE_4B; + mtd->erasesize = info->sector_size; + } else + set_4byte(nor, info->jedec_id, 1); + } else { + nor->addr_width = 3; + } + + nor->read_dummy = spi_nor_read_dummy_cycles(nor); + + dev_info(dev, "%s (%lld Kbytes)\n", id->name, + (long long)mtd->size >> 10); + + dev_dbg(dev, + "mtd .name = %s, .size = 0x%llx (%lldMiB), " + ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", + mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20), + mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions); + + if (mtd->numeraseregions) + for (i = 0; i < mtd->numeraseregions; i++) + dev_dbg(dev, + "mtd.eraseregions[%d] = { .offset = 0x%llx, " + ".erasesize = 0x%.8x (%uKiB), " + ".numblocks = %d }\n", + i, (long long)mtd->eraseregions[i].offset, + mtd->eraseregions[i].erasesize, + mtd->eraseregions[i].erasesize / 1024, + mtd->eraseregions[i].numblocks); + return 0; +} +EXPORT_SYMBOL_GPL(spi_nor_scan); + +const struct spi_device_id *spi_nor_match_id(char *name) +{ + const struct spi_device_id *id = spi_nor_ids; + + while (id->name[0]) { + if (!strcmp(name, id->name)) + return id; + id++; + } + return NULL; +} +EXPORT_SYMBOL_GPL(spi_nor_match_id); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>"); +MODULE_AUTHOR("Mike Lavender"); +MODULE_DESCRIPTION("framework for SPI NOR"); diff --git a/drivers/mtd/ssfdc.c b/drivers/mtd/ssfdc.c index 81c4ecdc11f..daf82ba7aba 100644 --- a/drivers/mtd/ssfdc.c +++ b/drivers/mtd/ssfdc.c @@ -1,6 +1,6 @@ /* * Linux driver for SSFDC Flash Translation Layer (Read only) - * (c) 2005 Eptar srl + * © 2005 Eptar srl * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com> * * Based on NTFL and MTDBLOCK_RO drivers @@ -122,9 +122,9 @@ static int get_valid_cis_sector(struct mtd_info *mtd) * is not SSFDC formatted */ for (k = 0, offset = 0; k < 4; k++, offset += mtd->erasesize) { - if (!mtd->block_isbad(mtd, offset)) { - ret = mtd->read(mtd, offset, SECTOR_SIZE, &retlen, - sect_buf); + if (mtd_block_isbad(mtd, offset)) { + ret = mtd_read(mtd, offset, SECTOR_SIZE, &retlen, + sect_buf); /* CIS pattern match on the sector buffer */ if (ret < 0 || retlen != SECTOR_SIZE) { @@ -135,8 +135,7 @@ static int get_valid_cis_sector(struct mtd_info *mtd) /* Found */ cis_sector = (int)(offset >> SECTOR_SHIFT); } else { - DEBUG(MTD_DEBUG_LEVEL1, - "SSFDC_RO: CIS/IDI sector not found" + pr_debug("SSFDC_RO: CIS/IDI sector not found" " on %s (mtd%d)\n", mtd->name, mtd->index); } @@ -157,7 +156,7 @@ static int read_physical_sector(struct mtd_info *mtd, uint8_t *sect_buf, size_t retlen; loff_t offset = (loff_t)sect_no << SECTOR_SHIFT; - ret = mtd->read(mtd, offset, SECTOR_SIZE, &retlen, sect_buf); + ret = mtd_read(mtd, offset, SECTOR_SIZE, &retlen, sect_buf); if (ret < 0 || retlen != SECTOR_SIZE) return -1; @@ -170,13 +169,13 @@ static int read_raw_oob(struct mtd_info *mtd, loff_t offs, uint8_t *buf) struct mtd_oob_ops ops; int ret; - ops.mode = MTD_OOB_RAW; + ops.mode = MTD_OPS_RAW; ops.ooboffs = 0; ops.ooblen = OOB_SIZE; ops.oobbuf = buf; ops.datbuf = NULL; - ret = mtd->read_oob(mtd, offs, &ops); + ret = mtd_read_oob(mtd, offs, &ops); if (ret < 0 || ops.oobretlen != OOB_SIZE) return -1; @@ -221,8 +220,7 @@ static int get_logical_address(uint8_t *oob_buf) block_address >>= 1; if (get_parity(block_address, 10) != parity) { - DEBUG(MTD_DEBUG_LEVEL0, - "SSFDC_RO: logical address field%d" + pr_debug("SSFDC_RO: logical address field%d" "parity error(0x%04X)\n", j+1, block_address); } else { @@ -235,7 +233,7 @@ static int get_logical_address(uint8_t *oob_buf) if (!ok) block_address = -2; - DEBUG(MTD_DEBUG_LEVEL3, "SSFDC_RO: get_logical_address() %d\n", + pr_debug("SSFDC_RO: get_logical_address() %d\n", block_address); return block_address; @@ -249,7 +247,7 @@ static int build_logical_block_map(struct ssfdcr_record *ssfdc) int ret, block_address, phys_block; struct mtd_info *mtd = ssfdc->mbd.mtd; - DEBUG(MTD_DEBUG_LEVEL1, "SSFDC_RO: build_block_map() nblks=%d (%luK)\n", + pr_debug("SSFDC_RO: build_block_map() nblks=%d (%luK)\n", ssfdc->map_len, (unsigned long)ssfdc->map_len * ssfdc->erase_size / 1024); @@ -257,13 +255,12 @@ static int build_logical_block_map(struct ssfdcr_record *ssfdc) for (phys_block = ssfdc->cis_block + 1; phys_block < ssfdc->map_len; phys_block++) { offset = (unsigned long)phys_block * ssfdc->erase_size; - if (mtd->block_isbad(mtd, offset)) + if (mtd_block_isbad(mtd, offset)) continue; /* skip bad blocks */ ret = read_raw_oob(mtd, offset, oob_buf); if (ret < 0) { - DEBUG(MTD_DEBUG_LEVEL0, - "SSFDC_RO: mtd read_oob() failed at %lu\n", + pr_debug("SSFDC_RO: mtd read_oob() failed at %lu\n", offset); return -1; } @@ -279,8 +276,7 @@ static int build_logical_block_map(struct ssfdcr_record *ssfdc) ssfdc->logic_block_map[block_address] = (unsigned short)phys_block; - DEBUG(MTD_DEBUG_LEVEL2, - "SSFDC_RO: build_block_map() phys_block=%d," + pr_debug("SSFDC_RO: build_block_map() phys_block=%d," "logic_block_addr=%d, zone=%d\n", phys_block, block_address, zone_index); } @@ -294,7 +290,7 @@ static void ssfdcr_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) int cis_sector; /* Check for small page NAND flash */ - if (mtd->type != MTD_NANDFLASH || mtd->oobsize != OOB_SIZE || + if (!mtd_type_is_nand(mtd) || mtd->oobsize != OOB_SIZE || mtd->size > UINT_MAX) return; @@ -304,11 +300,8 @@ static void ssfdcr_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) return; ssfdc = kzalloc(sizeof(struct ssfdcr_record), GFP_KERNEL); - if (!ssfdc) { - printk(KERN_WARNING - "SSFDC_RO: out of memory for data structures\n"); + if (!ssfdc) return; - } ssfdc->mbd.mtd = mtd; ssfdc->mbd.devnum = -1; @@ -319,8 +312,7 @@ static void ssfdcr_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) ssfdc->erase_size = mtd->erasesize; ssfdc->map_len = (u32)mtd->size / mtd->erasesize; - DEBUG(MTD_DEBUG_LEVEL1, - "SSFDC_RO: cis_block=%d,erase_size=%d,map_len=%d,n_zones=%d\n", + pr_debug("SSFDC_RO: cis_block=%d,erase_size=%d,map_len=%d,n_zones=%d\n", ssfdc->cis_block, ssfdc->erase_size, ssfdc->map_len, DIV_ROUND_UP(ssfdc->map_len, MAX_PHYS_BLK_PER_ZONE)); @@ -331,7 +323,7 @@ static void ssfdcr_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) ssfdc->cylinders = (unsigned short)(((u32)mtd->size >> SECTOR_SHIFT) / ((long)ssfdc->sectors * (long)ssfdc->heads)); - DEBUG(MTD_DEBUG_LEVEL1, "SSFDC_RO: using C:%d H:%d S:%d == %ld sects\n", + pr_debug("SSFDC_RO: using C:%d H:%d S:%d == %ld sects\n", ssfdc->cylinders, ssfdc->heads , ssfdc->sectors, (long)ssfdc->cylinders * (long)ssfdc->heads * (long)ssfdc->sectors); @@ -342,11 +334,8 @@ static void ssfdcr_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) /* Allocate logical block map */ ssfdc->logic_block_map = kmalloc(sizeof(ssfdc->logic_block_map[0]) * ssfdc->map_len, GFP_KERNEL); - if (!ssfdc->logic_block_map) { - printk(KERN_WARNING - "SSFDC_RO: out of memory for data structures\n"); + if (!ssfdc->logic_block_map) goto out_err; - } memset(ssfdc->logic_block_map, 0xff, sizeof(ssfdc->logic_block_map[0]) * ssfdc->map_len); @@ -371,7 +360,7 @@ static void ssfdcr_remove_dev(struct mtd_blktrans_dev *dev) { struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev; - DEBUG(MTD_DEBUG_LEVEL1, "SSFDC_RO: remove_dev (i=%d)\n", dev->devnum); + pr_debug("SSFDC_RO: remove_dev (i=%d)\n", dev->devnum); del_mtd_blktrans_dev(dev); kfree(ssfdc->logic_block_map); @@ -387,8 +376,7 @@ static int ssfdcr_readsect(struct mtd_blktrans_dev *dev, offset = (int)(logic_sect_no % sectors_per_block); block_address = (int)(logic_sect_no / sectors_per_block); - DEBUG(MTD_DEBUG_LEVEL3, - "SSFDC_RO: ssfdcr_readsect(%lu) sec_per_blk=%d, ofst=%d," + pr_debug("SSFDC_RO: ssfdcr_readsect(%lu) sec_per_blk=%d, ofst=%d," " block_addr=%d\n", logic_sect_no, sectors_per_block, offset, block_address); @@ -397,8 +385,7 @@ static int ssfdcr_readsect(struct mtd_blktrans_dev *dev, block_address = ssfdc->logic_block_map[block_address]; - DEBUG(MTD_DEBUG_LEVEL3, - "SSFDC_RO: ssfdcr_readsect() phys_block_addr=%d\n", + pr_debug("SSFDC_RO: ssfdcr_readsect() phys_block_addr=%d\n", block_address); if (block_address < 0xffff) { @@ -407,8 +394,7 @@ static int ssfdcr_readsect(struct mtd_blktrans_dev *dev, sect_no = (unsigned long)block_address * sectors_per_block + offset; - DEBUG(MTD_DEBUG_LEVEL3, - "SSFDC_RO: ssfdcr_readsect() phys_sect_no=%lu\n", + pr_debug("SSFDC_RO: ssfdcr_readsect() phys_sect_no=%lu\n", sect_no); if (read_physical_sector(ssfdc->mbd.mtd, buf, sect_no) < 0) @@ -424,7 +410,7 @@ static int ssfdcr_getgeo(struct mtd_blktrans_dev *dev, struct hd_geometry *geo) { struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev; - DEBUG(MTD_DEBUG_LEVEL1, "SSFDC_RO: ssfdcr_getgeo() C=%d, H=%d, S=%d\n", + pr_debug("SSFDC_RO: ssfdcr_getgeo() C=%d, H=%d, S=%d\n", ssfdc->cylinders, ssfdc->heads, ssfdc->sectors); geo->heads = ssfdc->heads; diff --git a/drivers/mtd/tests/Makefile b/drivers/mtd/tests/Makefile index b44dcab940d..937a829bb70 100644 --- a/drivers/mtd/tests/Makefile +++ b/drivers/mtd/tests/Makefile @@ -6,3 +6,13 @@ obj-$(CONFIG_MTD_TESTS) += mtd_stresstest.o obj-$(CONFIG_MTD_TESTS) += mtd_subpagetest.o obj-$(CONFIG_MTD_TESTS) += mtd_torturetest.o obj-$(CONFIG_MTD_TESTS) += mtd_nandecctest.o +obj-$(CONFIG_MTD_TESTS) += mtd_nandbiterrs.o + +mtd_oobtest-objs := oobtest.o mtd_test.o +mtd_pagetest-objs := pagetest.o mtd_test.o +mtd_readtest-objs := readtest.o mtd_test.o +mtd_speedtest-objs := speedtest.o mtd_test.o +mtd_stresstest-objs := stresstest.o mtd_test.o +mtd_subpagetest-objs := subpagetest.o mtd_test.o +mtd_torturetest-objs := torturetest.o mtd_test.o +mtd_nandbiterrs-objs := nandbiterrs.o mtd_test.o diff --git a/drivers/mtd/tests/mtd_nandecctest.c b/drivers/mtd/tests/mtd_nandecctest.c index 70d6d7d0d65..e579f9027c4 100644 --- a/drivers/mtd/tests/mtd_nandecctest.c +++ b/drivers/mtd/tests/mtd_nandecctest.c @@ -1,63 +1,292 @@ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + #include <linux/kernel.h> #include <linux/module.h> #include <linux/list.h> #include <linux/random.h> #include <linux/string.h> #include <linux/bitops.h> -#include <linux/jiffies.h> +#include <linux/slab.h> #include <linux/mtd/nand_ecc.h> -#if defined(CONFIG_MTD_NAND) || defined(CONFIG_MTD_NAND_MODULE) +/* + * Test the implementation for software ECC + * + * No actual MTD device is needed, So we don't need to warry about losing + * important data by human error. + * + * This covers possible patterns of corruption which can be reliably corrected + * or detected. + */ + +#if IS_ENABLED(CONFIG_MTD_NAND) + +struct nand_ecc_test { + const char *name; + void (*prepare)(void *, void *, void *, void *, const size_t); + int (*verify)(void *, void *, void *, const size_t); +}; -static void inject_single_bit_error(void *data, size_t size) +/* + * The reason for this __change_bit_le() instead of __change_bit() is to inject + * bit error properly within the region which is not a multiple of + * sizeof(unsigned long) on big-endian systems + */ +#ifdef __LITTLE_ENDIAN +#define __change_bit_le(nr, addr) __change_bit(nr, addr) +#elif defined(__BIG_ENDIAN) +#define __change_bit_le(nr, addr) \ + __change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr) +#else +#error "Unknown byte order" +#endif + +static void single_bit_error_data(void *error_data, void *correct_data, + size_t size) { - unsigned long offset = random32() % (size * BITS_PER_BYTE); + unsigned int offset = prandom_u32() % (size * BITS_PER_BYTE); - __change_bit(offset, data); + memcpy(error_data, correct_data, size); + __change_bit_le(offset, error_data); } -static unsigned char data[512]; -static unsigned char error_data[512]; +static void double_bit_error_data(void *error_data, void *correct_data, + size_t size) +{ + unsigned int offset[2]; + + offset[0] = prandom_u32() % (size * BITS_PER_BYTE); + do { + offset[1] = prandom_u32() % (size * BITS_PER_BYTE); + } while (offset[0] == offset[1]); + + memcpy(error_data, correct_data, size); -static int nand_ecc_test(const size_t size) + __change_bit_le(offset[0], error_data); + __change_bit_le(offset[1], error_data); +} + +static unsigned int random_ecc_bit(size_t size) { - unsigned char code[3]; - unsigned char error_code[3]; - char testname[30]; + unsigned int offset = prandom_u32() % (3 * BITS_PER_BYTE); + + if (size == 256) { + /* + * Don't inject a bit error into the insignificant bits (16th + * and 17th bit) in ECC code for 256 byte data block + */ + while (offset == 16 || offset == 17) + offset = prandom_u32() % (3 * BITS_PER_BYTE); + } - BUG_ON(sizeof(data) < size); + return offset; +} - sprintf(testname, "nand-ecc-%zu", size); +static void single_bit_error_ecc(void *error_ecc, void *correct_ecc, + size_t size) +{ + unsigned int offset = random_ecc_bit(size); - get_random_bytes(data, size); + memcpy(error_ecc, correct_ecc, 3); + __change_bit_le(offset, error_ecc); +} - memcpy(error_data, data, size); - inject_single_bit_error(error_data, size); +static void double_bit_error_ecc(void *error_ecc, void *correct_ecc, + size_t size) +{ + unsigned int offset[2]; - __nand_calculate_ecc(data, size, code); - __nand_calculate_ecc(error_data, size, error_code); - __nand_correct_data(error_data, code, error_code, size); + offset[0] = random_ecc_bit(size); + do { + offset[1] = random_ecc_bit(size); + } while (offset[0] == offset[1]); - if (!memcmp(data, error_data, size)) { - printk(KERN_INFO "mtd_nandecctest: ok - %s\n", testname); + memcpy(error_ecc, correct_ecc, 3); + __change_bit_le(offset[0], error_ecc); + __change_bit_le(offset[1], error_ecc); +} + +static void no_bit_error(void *error_data, void *error_ecc, + void *correct_data, void *correct_ecc, const size_t size) +{ + memcpy(error_data, correct_data, size); + memcpy(error_ecc, correct_ecc, 3); +} + +static int no_bit_error_verify(void *error_data, void *error_ecc, + void *correct_data, const size_t size) +{ + unsigned char calc_ecc[3]; + int ret; + + __nand_calculate_ecc(error_data, size, calc_ecc); + ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size); + if (ret == 0 && !memcmp(correct_data, error_data, size)) return 0; - } - printk(KERN_ERR "mtd_nandecctest: not ok - %s\n", testname); + return -EINVAL; +} + +static void single_bit_error_in_data(void *error_data, void *error_ecc, + void *correct_data, void *correct_ecc, const size_t size) +{ + single_bit_error_data(error_data, correct_data, size); + memcpy(error_ecc, correct_ecc, 3); +} + +static void single_bit_error_in_ecc(void *error_data, void *error_ecc, + void *correct_data, void *correct_ecc, const size_t size) +{ + memcpy(error_data, correct_data, size); + single_bit_error_ecc(error_ecc, correct_ecc, size); +} + +static int single_bit_error_correct(void *error_data, void *error_ecc, + void *correct_data, const size_t size) +{ + unsigned char calc_ecc[3]; + int ret; + + __nand_calculate_ecc(error_data, size, calc_ecc); + ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size); + if (ret == 1 && !memcmp(correct_data, error_data, size)) + return 0; + + return -EINVAL; +} + +static void double_bit_error_in_data(void *error_data, void *error_ecc, + void *correct_data, void *correct_ecc, const size_t size) +{ + double_bit_error_data(error_data, correct_data, size); + memcpy(error_ecc, correct_ecc, 3); +} + +static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc, + void *correct_data, void *correct_ecc, const size_t size) +{ + single_bit_error_data(error_data, correct_data, size); + single_bit_error_ecc(error_ecc, correct_ecc, size); +} + +static void double_bit_error_in_ecc(void *error_data, void *error_ecc, + void *correct_data, void *correct_ecc, const size_t size) +{ + memcpy(error_data, correct_data, size); + double_bit_error_ecc(error_ecc, correct_ecc, size); +} + +static int double_bit_error_detect(void *error_data, void *error_ecc, + void *correct_data, const size_t size) +{ + unsigned char calc_ecc[3]; + int ret; + + __nand_calculate_ecc(error_data, size, calc_ecc); + ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size); - printk(KERN_DEBUG "hexdump of data:\n"); - print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 16, 4, - data, size, false); - printk(KERN_DEBUG "hexdump of error data:\n"); - print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 16, 4, + return (ret == -1) ? 0 : -EINVAL; +} + +static const struct nand_ecc_test nand_ecc_test[] = { + { + .name = "no-bit-error", + .prepare = no_bit_error, + .verify = no_bit_error_verify, + }, + { + .name = "single-bit-error-in-data-correct", + .prepare = single_bit_error_in_data, + .verify = single_bit_error_correct, + }, + { + .name = "single-bit-error-in-ecc-correct", + .prepare = single_bit_error_in_ecc, + .verify = single_bit_error_correct, + }, + { + .name = "double-bit-error-in-data-detect", + .prepare = double_bit_error_in_data, + .verify = double_bit_error_detect, + }, + { + .name = "single-bit-error-in-data-and-ecc-detect", + .prepare = single_bit_error_in_data_and_ecc, + .verify = double_bit_error_detect, + }, + { + .name = "double-bit-error-in-ecc-detect", + .prepare = double_bit_error_in_ecc, + .verify = double_bit_error_detect, + }, +}; + +static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data, + void *correct_ecc, const size_t size) +{ + pr_info("hexdump of error data:\n"); + print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4, error_data, size, false); + print_hex_dump(KERN_INFO, "hexdump of error ecc: ", + DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false); + + pr_info("hexdump of correct data:\n"); + print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4, + correct_data, size, false); + print_hex_dump(KERN_INFO, "hexdump of correct ecc: ", + DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false); +} + +static int nand_ecc_test_run(const size_t size) +{ + int i; + int err = 0; + void *error_data; + void *error_ecc; + void *correct_data; + void *correct_ecc; - return -1; + error_data = kmalloc(size, GFP_KERNEL); + error_ecc = kmalloc(3, GFP_KERNEL); + correct_data = kmalloc(size, GFP_KERNEL); + correct_ecc = kmalloc(3, GFP_KERNEL); + + if (!error_data || !error_ecc || !correct_data || !correct_ecc) { + err = -ENOMEM; + goto error; + } + + prandom_bytes(correct_data, size); + __nand_calculate_ecc(correct_data, size, correct_ecc); + + for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) { + nand_ecc_test[i].prepare(error_data, error_ecc, + correct_data, correct_ecc, size); + err = nand_ecc_test[i].verify(error_data, error_ecc, + correct_data, size); + + if (err) { + pr_err("not ok - %s-%zd\n", + nand_ecc_test[i].name, size); + dump_data_ecc(error_data, error_ecc, + correct_data, correct_ecc, size); + break; + } + pr_info("ok - %s-%zd\n", + nand_ecc_test[i].name, size); + } +error: + kfree(error_data); + kfree(error_ecc); + kfree(correct_data); + kfree(correct_ecc); + + return err; } #else -static int nand_ecc_test(const size_t size) +static int nand_ecc_test_run(const size_t size) { return 0; } @@ -66,12 +295,13 @@ static int nand_ecc_test(const size_t size) static int __init ecc_test_init(void) { - srandom32(jiffies); + int err; - nand_ecc_test(256); - nand_ecc_test(512); + err = nand_ecc_test_run(256); + if (err) + return err; - return 0; + return nand_ecc_test_run(512); } static void __exit ecc_test_exit(void) diff --git a/drivers/mtd/tests/mtd_pagetest.c b/drivers/mtd/tests/mtd_pagetest.c deleted file mode 100644 index 6bc1b8276c6..00000000000 --- a/drivers/mtd/tests/mtd_pagetest.c +++ /dev/null @@ -1,633 +0,0 @@ -/* - * Copyright (C) 2006-2008 Nokia Corporation - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; see the file COPYING. If not, write to the Free Software - * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. - * - * Test page read and write on MTD device. - * - * Author: Adrian Hunter <ext-adrian.hunter@nokia.com> - */ - -#include <asm/div64.h> -#include <linux/init.h> -#include <linux/module.h> -#include <linux/moduleparam.h> -#include <linux/err.h> -#include <linux/mtd/mtd.h> -#include <linux/slab.h> -#include <linux/sched.h> - -#define PRINT_PREF KERN_INFO "mtd_pagetest: " - -static int dev; -module_param(dev, int, S_IRUGO); -MODULE_PARM_DESC(dev, "MTD device number to use"); - -static struct mtd_info *mtd; -static unsigned char *twopages; -static unsigned char *writebuf; -static unsigned char *boundary; -static unsigned char *bbt; - -static int pgsize; -static int bufsize; -static int ebcnt; -static int pgcnt; -static int errcnt; -static unsigned long next = 1; - -static inline unsigned int simple_rand(void) -{ - next = next * 1103515245 + 12345; - return (unsigned int)((next / 65536) % 32768); -} - -static inline void simple_srand(unsigned long seed) -{ - next = seed; -} - -static void set_random_data(unsigned char *buf, size_t len) -{ - size_t i; - - for (i = 0; i < len; ++i) - buf[i] = simple_rand(); -} - -static int erase_eraseblock(int ebnum) -{ - int err; - struct erase_info ei; - loff_t addr = ebnum * mtd->erasesize; - - memset(&ei, 0, sizeof(struct erase_info)); - ei.mtd = mtd; - ei.addr = addr; - ei.len = mtd->erasesize; - - err = mtd->erase(mtd, &ei); - if (err) { - printk(PRINT_PREF "error %d while erasing EB %d\n", err, ebnum); - return err; - } - - if (ei.state == MTD_ERASE_FAILED) { - printk(PRINT_PREF "some erase error occurred at EB %d\n", - ebnum); - return -EIO; - } - - return 0; -} - -static int write_eraseblock(int ebnum) -{ - int err = 0; - size_t written = 0; - loff_t addr = ebnum * mtd->erasesize; - - set_random_data(writebuf, mtd->erasesize); - cond_resched(); - err = mtd->write(mtd, addr, mtd->erasesize, &written, writebuf); - if (err || written != mtd->erasesize) - printk(PRINT_PREF "error: write failed at %#llx\n", - (long long)addr); - - return err; -} - -static int verify_eraseblock(int ebnum) -{ - uint32_t j; - size_t read = 0; - int err = 0, i; - loff_t addr0, addrn; - loff_t addr = ebnum * mtd->erasesize; - - addr0 = 0; - for (i = 0; i < ebcnt && bbt[i]; ++i) - addr0 += mtd->erasesize; - - addrn = mtd->size; - for (i = 0; i < ebcnt && bbt[ebcnt - i - 1]; ++i) - addrn -= mtd->erasesize; - - set_random_data(writebuf, mtd->erasesize); - for (j = 0; j < pgcnt - 1; ++j, addr += pgsize) { - /* Do a read to set the internal dataRAMs to different data */ - err = mtd->read(mtd, addr0, bufsize, &read, twopages); - if (err == -EUCLEAN) - err = 0; - if (err || read != bufsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr0); - return err; - } - err = mtd->read(mtd, addrn - bufsize, bufsize, &read, twopages); - if (err == -EUCLEAN) - err = 0; - if (err || read != bufsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)(addrn - bufsize)); - return err; - } - memset(twopages, 0, bufsize); - read = 0; - err = mtd->read(mtd, addr, bufsize, &read, twopages); - if (err == -EUCLEAN) - err = 0; - if (err || read != bufsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr); - break; - } - if (memcmp(twopages, writebuf + (j * pgsize), bufsize)) { - printk(PRINT_PREF "error: verify failed at %#llx\n", - (long long)addr); - errcnt += 1; - } - } - /* Check boundary between eraseblocks */ - if (addr <= addrn - pgsize - pgsize && !bbt[ebnum + 1]) { - unsigned long oldnext = next; - /* Do a read to set the internal dataRAMs to different data */ - err = mtd->read(mtd, addr0, bufsize, &read, twopages); - if (err == -EUCLEAN) - err = 0; - if (err || read != bufsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr0); - return err; - } - err = mtd->read(mtd, addrn - bufsize, bufsize, &read, twopages); - if (err == -EUCLEAN) - err = 0; - if (err || read != bufsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)(addrn - bufsize)); - return err; - } - memset(twopages, 0, bufsize); - read = 0; - err = mtd->read(mtd, addr, bufsize, &read, twopages); - if (err == -EUCLEAN) - err = 0; - if (err || read != bufsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr); - return err; - } - memcpy(boundary, writebuf + mtd->erasesize - pgsize, pgsize); - set_random_data(boundary + pgsize, pgsize); - if (memcmp(twopages, boundary, bufsize)) { - printk(PRINT_PREF "error: verify failed at %#llx\n", - (long long)addr); - errcnt += 1; - } - next = oldnext; - } - return err; -} - -static int crosstest(void) -{ - size_t read = 0; - int err = 0, i; - loff_t addr, addr0, addrn; - unsigned char *pp1, *pp2, *pp3, *pp4; - - printk(PRINT_PREF "crosstest\n"); - pp1 = kmalloc(pgsize * 4, GFP_KERNEL); - if (!pp1) { - printk(PRINT_PREF "error: cannot allocate memory\n"); - return -ENOMEM; - } - pp2 = pp1 + pgsize; - pp3 = pp2 + pgsize; - pp4 = pp3 + pgsize; - memset(pp1, 0, pgsize * 4); - - addr0 = 0; - for (i = 0; i < ebcnt && bbt[i]; ++i) - addr0 += mtd->erasesize; - - addrn = mtd->size; - for (i = 0; i < ebcnt && bbt[ebcnt - i - 1]; ++i) - addrn -= mtd->erasesize; - - /* Read 2nd-to-last page to pp1 */ - read = 0; - addr = addrn - pgsize - pgsize; - err = mtd->read(mtd, addr, pgsize, &read, pp1); - if (err == -EUCLEAN) - err = 0; - if (err || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr); - kfree(pp1); - return err; - } - - /* Read 3rd-to-last page to pp1 */ - read = 0; - addr = addrn - pgsize - pgsize - pgsize; - err = mtd->read(mtd, addr, pgsize, &read, pp1); - if (err == -EUCLEAN) - err = 0; - if (err || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr); - kfree(pp1); - return err; - } - - /* Read first page to pp2 */ - read = 0; - addr = addr0; - printk(PRINT_PREF "reading page at %#llx\n", (long long)addr); - err = mtd->read(mtd, addr, pgsize, &read, pp2); - if (err == -EUCLEAN) - err = 0; - if (err || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr); - kfree(pp1); - return err; - } - - /* Read last page to pp3 */ - read = 0; - addr = addrn - pgsize; - printk(PRINT_PREF "reading page at %#llx\n", (long long)addr); - err = mtd->read(mtd, addr, pgsize, &read, pp3); - if (err == -EUCLEAN) - err = 0; - if (err || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr); - kfree(pp1); - return err; - } - - /* Read first page again to pp4 */ - read = 0; - addr = addr0; - printk(PRINT_PREF "reading page at %#llx\n", (long long)addr); - err = mtd->read(mtd, addr, pgsize, &read, pp4); - if (err == -EUCLEAN) - err = 0; - if (err || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr); - kfree(pp1); - return err; - } - - /* pp2 and pp4 should be the same */ - printk(PRINT_PREF "verifying pages read at %#llx match\n", - (long long)addr0); - if (memcmp(pp2, pp4, pgsize)) { - printk(PRINT_PREF "verify failed!\n"); - errcnt += 1; - } else if (!err) - printk(PRINT_PREF "crosstest ok\n"); - kfree(pp1); - return err; -} - -static int erasecrosstest(void) -{ - size_t read = 0, written = 0; - int err = 0, i, ebnum, ok = 1, ebnum2; - loff_t addr0; - char *readbuf = twopages; - - printk(PRINT_PREF "erasecrosstest\n"); - - ebnum = 0; - addr0 = 0; - for (i = 0; i < ebcnt && bbt[i]; ++i) { - addr0 += mtd->erasesize; - ebnum += 1; - } - - ebnum2 = ebcnt - 1; - while (ebnum2 && bbt[ebnum2]) - ebnum2 -= 1; - - printk(PRINT_PREF "erasing block %d\n", ebnum); - err = erase_eraseblock(ebnum); - if (err) - return err; - - printk(PRINT_PREF "writing 1st page of block %d\n", ebnum); - set_random_data(writebuf, pgsize); - strcpy(writebuf, "There is no data like this!"); - err = mtd->write(mtd, addr0, pgsize, &written, writebuf); - if (err || written != pgsize) { - printk(PRINT_PREF "error: write failed at %#llx\n", - (long long)addr0); - return err ? err : -1; - } - - printk(PRINT_PREF "reading 1st page of block %d\n", ebnum); - memset(readbuf, 0, pgsize); - err = mtd->read(mtd, addr0, pgsize, &read, readbuf); - if (err == -EUCLEAN) - err = 0; - if (err || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr0); - return err ? err : -1; - } - - printk(PRINT_PREF "verifying 1st page of block %d\n", ebnum); - if (memcmp(writebuf, readbuf, pgsize)) { - printk(PRINT_PREF "verify failed!\n"); - errcnt += 1; - ok = 0; - return err; - } - - printk(PRINT_PREF "erasing block %d\n", ebnum); - err = erase_eraseblock(ebnum); - if (err) - return err; - - printk(PRINT_PREF "writing 1st page of block %d\n", ebnum); - set_random_data(writebuf, pgsize); - strcpy(writebuf, "There is no data like this!"); - err = mtd->write(mtd, addr0, pgsize, &written, writebuf); - if (err || written != pgsize) { - printk(PRINT_PREF "error: write failed at %#llx\n", - (long long)addr0); - return err ? err : -1; - } - - printk(PRINT_PREF "erasing block %d\n", ebnum2); - err = erase_eraseblock(ebnum2); - if (err) - return err; - - printk(PRINT_PREF "reading 1st page of block %d\n", ebnum); - memset(readbuf, 0, pgsize); - err = mtd->read(mtd, addr0, pgsize, &read, readbuf); - if (err == -EUCLEAN) - err = 0; - if (err || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr0); - return err ? err : -1; - } - - printk(PRINT_PREF "verifying 1st page of block %d\n", ebnum); - if (memcmp(writebuf, readbuf, pgsize)) { - printk(PRINT_PREF "verify failed!\n"); - errcnt += 1; - ok = 0; - } - - if (ok && !err) - printk(PRINT_PREF "erasecrosstest ok\n"); - return err; -} - -static int erasetest(void) -{ - size_t read = 0, written = 0; - int err = 0, i, ebnum, ok = 1; - loff_t addr0; - - printk(PRINT_PREF "erasetest\n"); - - ebnum = 0; - addr0 = 0; - for (i = 0; i < ebcnt && bbt[i]; ++i) { - addr0 += mtd->erasesize; - ebnum += 1; - } - - printk(PRINT_PREF "erasing block %d\n", ebnum); - err = erase_eraseblock(ebnum); - if (err) - return err; - - printk(PRINT_PREF "writing 1st page of block %d\n", ebnum); - set_random_data(writebuf, pgsize); - err = mtd->write(mtd, addr0, pgsize, &written, writebuf); - if (err || written != pgsize) { - printk(PRINT_PREF "error: write failed at %#llx\n", - (long long)addr0); - return err ? err : -1; - } - - printk(PRINT_PREF "erasing block %d\n", ebnum); - err = erase_eraseblock(ebnum); - if (err) - return err; - - printk(PRINT_PREF "reading 1st page of block %d\n", ebnum); - err = mtd->read(mtd, addr0, pgsize, &read, twopages); - if (err == -EUCLEAN) - err = 0; - if (err || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr0); - return err ? err : -1; - } - - printk(PRINT_PREF "verifying 1st page of block %d is all 0xff\n", - ebnum); - for (i = 0; i < pgsize; ++i) - if (twopages[i] != 0xff) { - printk(PRINT_PREF "verifying all 0xff failed at %d\n", - i); - errcnt += 1; - ok = 0; - break; - } - - if (ok && !err) - printk(PRINT_PREF "erasetest ok\n"); - - return err; -} - -static int is_block_bad(int ebnum) -{ - loff_t addr = ebnum * mtd->erasesize; - int ret; - - ret = mtd->block_isbad(mtd, addr); - if (ret) - printk(PRINT_PREF "block %d is bad\n", ebnum); - return ret; -} - -static int scan_for_bad_eraseblocks(void) -{ - int i, bad = 0; - - bbt = kzalloc(ebcnt, GFP_KERNEL); - if (!bbt) { - printk(PRINT_PREF "error: cannot allocate memory\n"); - return -ENOMEM; - } - - printk(PRINT_PREF "scanning for bad eraseblocks\n"); - for (i = 0; i < ebcnt; ++i) { - bbt[i] = is_block_bad(i) ? 1 : 0; - if (bbt[i]) - bad += 1; - cond_resched(); - } - printk(PRINT_PREF "scanned %d eraseblocks, %d are bad\n", i, bad); - return 0; -} - -static int __init mtd_pagetest_init(void) -{ - int err = 0; - uint64_t tmp; - uint32_t i; - - printk(KERN_INFO "\n"); - printk(KERN_INFO "=================================================\n"); - printk(PRINT_PREF "MTD device: %d\n", dev); - - mtd = get_mtd_device(NULL, dev); - if (IS_ERR(mtd)) { - err = PTR_ERR(mtd); - printk(PRINT_PREF "error: cannot get MTD device\n"); - return err; - } - - if (mtd->type != MTD_NANDFLASH) { - printk(PRINT_PREF "this test requires NAND flash\n"); - goto out; - } - - tmp = mtd->size; - do_div(tmp, mtd->erasesize); - ebcnt = tmp; - pgcnt = mtd->erasesize / mtd->writesize; - pgsize = mtd->writesize; - - printk(PRINT_PREF "MTD device size %llu, eraseblock size %u, " - "page size %u, count of eraseblocks %u, pages per " - "eraseblock %u, OOB size %u\n", - (unsigned long long)mtd->size, mtd->erasesize, - pgsize, ebcnt, pgcnt, mtd->oobsize); - - err = -ENOMEM; - bufsize = pgsize * 2; - writebuf = kmalloc(mtd->erasesize, GFP_KERNEL); - if (!writebuf) { - printk(PRINT_PREF "error: cannot allocate memory\n"); - goto out; - } - twopages = kmalloc(bufsize, GFP_KERNEL); - if (!twopages) { - printk(PRINT_PREF "error: cannot allocate memory\n"); - goto out; - } - boundary = kmalloc(bufsize, GFP_KERNEL); - if (!boundary) { - printk(PRINT_PREF "error: cannot allocate memory\n"); - goto out; - } - - err = scan_for_bad_eraseblocks(); - if (err) - goto out; - - /* Erase all eraseblocks */ - printk(PRINT_PREF "erasing whole device\n"); - for (i = 0; i < ebcnt; ++i) { - if (bbt[i]) - continue; - err = erase_eraseblock(i); - if (err) - goto out; - cond_resched(); - } - printk(PRINT_PREF "erased %u eraseblocks\n", i); - - /* Write all eraseblocks */ - simple_srand(1); - printk(PRINT_PREF "writing whole device\n"); - for (i = 0; i < ebcnt; ++i) { - if (bbt[i]) - continue; - err = write_eraseblock(i); - if (err) - goto out; - if (i % 256 == 0) - printk(PRINT_PREF "written up to eraseblock %u\n", i); - cond_resched(); - } - printk(PRINT_PREF "written %u eraseblocks\n", i); - - /* Check all eraseblocks */ - simple_srand(1); - printk(PRINT_PREF "verifying all eraseblocks\n"); - for (i = 0; i < ebcnt; ++i) { - if (bbt[i]) - continue; - err = verify_eraseblock(i); - if (err) - goto out; - if (i % 256 == 0) - printk(PRINT_PREF "verified up to eraseblock %u\n", i); - cond_resched(); - } - printk(PRINT_PREF "verified %u eraseblocks\n", i); - - err = crosstest(); - if (err) - goto out; - - err = erasecrosstest(); - if (err) - goto out; - - err = erasetest(); - if (err) - goto out; - - printk(PRINT_PREF "finished with %d errors\n", errcnt); -out: - - kfree(bbt); - kfree(boundary); - kfree(twopages); - kfree(writebuf); - put_mtd_device(mtd); - if (err) - printk(PRINT_PREF "error %d occurred\n", err); - printk(KERN_INFO "=================================================\n"); - return err; -} -module_init(mtd_pagetest_init); - -static void __exit mtd_pagetest_exit(void) -{ - return; -} -module_exit(mtd_pagetest_exit); - -MODULE_DESCRIPTION("NAND page test"); -MODULE_AUTHOR("Adrian Hunter"); -MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/tests/mtd_test.c b/drivers/mtd/tests/mtd_test.c new file mode 100644 index 00000000000..111ee46a742 --- /dev/null +++ b/drivers/mtd/tests/mtd_test.c @@ -0,0 +1,113 @@ +#define pr_fmt(fmt) "mtd_test: " fmt + +#include <linux/module.h> +#include <linux/sched.h> +#include <linux/printk.h> + +#include "mtd_test.h" + +int mtdtest_erase_eraseblock(struct mtd_info *mtd, unsigned int ebnum) +{ + int err; + struct erase_info ei; + loff_t addr = ebnum * mtd->erasesize; + + memset(&ei, 0, sizeof(struct erase_info)); + ei.mtd = mtd; + ei.addr = addr; + ei.len = mtd->erasesize; + + err = mtd_erase(mtd, &ei); + if (err) { + pr_info("error %d while erasing EB %d\n", err, ebnum); + return err; + } + + if (ei.state == MTD_ERASE_FAILED) { + pr_info("some erase error occurred at EB %d\n", ebnum); + return -EIO; + } + return 0; +} + +static int is_block_bad(struct mtd_info *mtd, unsigned int ebnum) +{ + int ret; + loff_t addr = ebnum * mtd->erasesize; + + ret = mtd_block_isbad(mtd, addr); + if (ret) + pr_info("block %d is bad\n", ebnum); + + return ret; +} + +int mtdtest_scan_for_bad_eraseblocks(struct mtd_info *mtd, unsigned char *bbt, + unsigned int eb, int ebcnt) +{ + int i, bad = 0; + + if (!mtd_can_have_bb(mtd)) + return 0; + + pr_info("scanning for bad eraseblocks\n"); + for (i = 0; i < ebcnt; ++i) { + bbt[i] = is_block_bad(mtd, eb + i) ? 1 : 0; + if (bbt[i]) + bad += 1; + cond_resched(); + } + pr_info("scanned %d eraseblocks, %d are bad\n", i, bad); + + return 0; +} + +int mtdtest_erase_good_eraseblocks(struct mtd_info *mtd, unsigned char *bbt, + unsigned int eb, int ebcnt) +{ + int err; + unsigned int i; + + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = mtdtest_erase_eraseblock(mtd, eb + i); + if (err) + return err; + cond_resched(); + } + + return 0; +} + +int mtdtest_read(struct mtd_info *mtd, loff_t addr, size_t size, void *buf) +{ + size_t read; + int err; + + err = mtd_read(mtd, addr, size, &read, buf); + /* Ignore corrected ECC errors */ + if (mtd_is_bitflip(err)) + err = 0; + if (!err && read != size) + err = -EIO; + if (err) + pr_err("error: read failed at %#llx\n", addr); + + return err; +} + +int mtdtest_write(struct mtd_info *mtd, loff_t addr, size_t size, + const void *buf) +{ + size_t written; + int err; + + err = mtd_write(mtd, addr, size, &written, buf); + if (!err && written != size) + err = -EIO; + if (err) + pr_err("error: write failed at %#llx\n", addr); + + return err; +} diff --git a/drivers/mtd/tests/mtd_test.h b/drivers/mtd/tests/mtd_test.h new file mode 100644 index 00000000000..f437c776c54 --- /dev/null +++ b/drivers/mtd/tests/mtd_test.h @@ -0,0 +1,11 @@ +#include <linux/mtd/mtd.h> + +int mtdtest_erase_eraseblock(struct mtd_info *mtd, unsigned int ebnum); +int mtdtest_scan_for_bad_eraseblocks(struct mtd_info *mtd, unsigned char *bbt, + unsigned int eb, int ebcnt); +int mtdtest_erase_good_eraseblocks(struct mtd_info *mtd, unsigned char *bbt, + unsigned int eb, int ebcnt); + +int mtdtest_read(struct mtd_info *mtd, loff_t addr, size_t size, void *buf); +int mtdtest_write(struct mtd_info *mtd, loff_t addr, size_t size, + const void *buf); diff --git a/drivers/mtd/tests/nandbiterrs.c b/drivers/mtd/tests/nandbiterrs.c new file mode 100644 index 00000000000..6f976159611 --- /dev/null +++ b/drivers/mtd/tests/nandbiterrs.c @@ -0,0 +1,428 @@ +/* + * Copyright © 2012 NetCommWireless + * Iwo Mergler <Iwo.Mergler@netcommwireless.com.au> + * + * Test for multi-bit error recovery on a NAND page This mostly tests the + * ECC controller / driver. + * + * There are two test modes: + * + * 0 - artificially inserting bit errors until the ECC fails + * This is the default method and fairly quick. It should + * be independent of the quality of the FLASH. + * + * 1 - re-writing the same pattern repeatedly until the ECC fails. + * This method relies on the physics of NAND FLASH to eventually + * generate '0' bits if '1' has been written sufficient times. + * Depending on the NAND, the first bit errors will appear after + * 1000 or more writes and then will usually snowball, reaching the + * limits of the ECC quickly. + * + * The test stops after 10000 cycles, should your FLASH be + * exceptionally good and not generate bit errors before that. Try + * a different page in that case. + * + * Please note that neither of these tests will significantly 'use up' any + * FLASH endurance. Only a maximum of two erase operations will be performed. + * + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published by + * the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; see the file COPYING. If not, write to the Free Software + * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/init.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/mtd/mtd.h> +#include <linux/err.h> +#include <linux/mtd/nand.h> +#include <linux/slab.h> +#include "mtd_test.h" + +static int dev; +module_param(dev, int, S_IRUGO); +MODULE_PARM_DESC(dev, "MTD device number to use"); + +static unsigned page_offset; +module_param(page_offset, uint, S_IRUGO); +MODULE_PARM_DESC(page_offset, "Page number relative to dev start"); + +static unsigned seed; +module_param(seed, uint, S_IRUGO); +MODULE_PARM_DESC(seed, "Random seed"); + +static int mode; +module_param(mode, int, S_IRUGO); +MODULE_PARM_DESC(mode, "0=incremental errors, 1=overwrite test"); + +static unsigned max_overwrite = 10000; + +static loff_t offset; /* Offset of the page we're using. */ +static unsigned eraseblock; /* Eraseblock number for our page. */ + +/* We assume that the ECC can correct up to a certain number + * of biterrors per subpage. */ +static unsigned subsize; /* Size of subpages */ +static unsigned subcount; /* Number of subpages per page */ + +static struct mtd_info *mtd; /* MTD device */ + +static uint8_t *wbuffer; /* One page write / compare buffer */ +static uint8_t *rbuffer; /* One page read buffer */ + +/* 'random' bytes from known offsets */ +static uint8_t hash(unsigned offset) +{ + unsigned v = offset; + unsigned char c; + v ^= 0x7f7edfd3; + v = v ^ (v >> 3); + v = v ^ (v >> 5); + v = v ^ (v >> 13); + c = v & 0xFF; + /* Reverse bits of result. */ + c = (c & 0x0F) << 4 | (c & 0xF0) >> 4; + c = (c & 0x33) << 2 | (c & 0xCC) >> 2; + c = (c & 0x55) << 1 | (c & 0xAA) >> 1; + return c; +} + +/* Writes wbuffer to page */ +static int write_page(int log) +{ + if (log) + pr_info("write_page\n"); + + return mtdtest_write(mtd, offset, mtd->writesize, wbuffer); +} + +/* Re-writes the data area while leaving the OOB alone. */ +static int rewrite_page(int log) +{ + int err = 0; + struct mtd_oob_ops ops; + + if (log) + pr_info("rewrite page\n"); + + ops.mode = MTD_OPS_RAW; /* No ECC */ + ops.len = mtd->writesize; + ops.retlen = 0; + ops.ooblen = 0; + ops.oobretlen = 0; + ops.ooboffs = 0; + ops.datbuf = wbuffer; + ops.oobbuf = NULL; + + err = mtd_write_oob(mtd, offset, &ops); + if (err || ops.retlen != mtd->writesize) { + pr_err("error: write_oob failed (%d)\n", err); + if (!err) + err = -EIO; + } + + return err; +} + +/* Reads page into rbuffer. Returns number of corrected bit errors (>=0) + * or error (<0) */ +static int read_page(int log) +{ + int err = 0; + size_t read; + struct mtd_ecc_stats oldstats; + + if (log) + pr_info("read_page\n"); + + /* Saving last mtd stats */ + memcpy(&oldstats, &mtd->ecc_stats, sizeof(oldstats)); + + err = mtd_read(mtd, offset, mtd->writesize, &read, rbuffer); + if (err == -EUCLEAN) + err = mtd->ecc_stats.corrected - oldstats.corrected; + + if (err < 0 || read != mtd->writesize) { + pr_err("error: read failed at %#llx\n", (long long)offset); + if (err >= 0) + err = -EIO; + } + + return err; +} + +/* Verifies rbuffer against random sequence */ +static int verify_page(int log) +{ + unsigned i, errs = 0; + + if (log) + pr_info("verify_page\n"); + + for (i = 0; i < mtd->writesize; i++) { + if (rbuffer[i] != hash(i+seed)) { + pr_err("Error: page offset %u, expected %02x, got %02x\n", + i, hash(i+seed), rbuffer[i]); + errs++; + } + } + + if (errs) + return -EIO; + else + return 0; +} + +#define CBIT(v, n) ((v) & (1 << (n))) +#define BCLR(v, n) ((v) = (v) & ~(1 << (n))) + +/* Finds the first '1' bit in wbuffer starting at offset 'byte' + * and sets it to '0'. */ +static int insert_biterror(unsigned byte) +{ + int bit; + + while (byte < mtd->writesize) { + for (bit = 7; bit >= 0; bit--) { + if (CBIT(wbuffer[byte], bit)) { + BCLR(wbuffer[byte], bit); + pr_info("Inserted biterror @ %u/%u\n", byte, bit); + return 0; + } + } + byte++; + } + pr_err("biterror: Failed to find a '1' bit\n"); + return -EIO; +} + +/* Writes 'random' data to page and then introduces deliberate bit + * errors into the page, while verifying each step. */ +static int incremental_errors_test(void) +{ + int err = 0; + unsigned i; + unsigned errs_per_subpage = 0; + + pr_info("incremental biterrors test\n"); + + for (i = 0; i < mtd->writesize; i++) + wbuffer[i] = hash(i+seed); + + err = write_page(1); + if (err) + goto exit; + + while (1) { + + err = rewrite_page(1); + if (err) + goto exit; + + err = read_page(1); + if (err > 0) + pr_info("Read reported %d corrected bit errors\n", err); + if (err < 0) { + pr_err("After %d biterrors per subpage, read reported error %d\n", + errs_per_subpage, err); + err = 0; + goto exit; + } + + err = verify_page(1); + if (err) { + pr_err("ECC failure, read data is incorrect despite read success\n"); + goto exit; + } + + pr_info("Successfully corrected %d bit errors per subpage\n", + errs_per_subpage); + + for (i = 0; i < subcount; i++) { + err = insert_biterror(i * subsize); + if (err < 0) + goto exit; + } + errs_per_subpage++; + } + +exit: + return err; +} + + +/* Writes 'random' data to page and then re-writes that same data repeatedly. + This eventually develops bit errors (bits written as '1' will slowly become + '0'), which are corrected as far as the ECC is capable of. */ +static int overwrite_test(void) +{ + int err = 0; + unsigned i; + unsigned max_corrected = 0; + unsigned opno = 0; + /* We don't expect more than this many correctable bit errors per + * page. */ + #define MAXBITS 512 + static unsigned bitstats[MAXBITS]; /* bit error histogram. */ + + memset(bitstats, 0, sizeof(bitstats)); + + pr_info("overwrite biterrors test\n"); + + for (i = 0; i < mtd->writesize; i++) + wbuffer[i] = hash(i+seed); + + err = write_page(1); + if (err) + goto exit; + + while (opno < max_overwrite) { + + err = rewrite_page(0); + if (err) + break; + + err = read_page(0); + if (err >= 0) { + if (err >= MAXBITS) { + pr_info("Implausible number of bit errors corrected\n"); + err = -EIO; + break; + } + bitstats[err]++; + if (err > max_corrected) { + max_corrected = err; + pr_info("Read reported %d corrected bit errors\n", + err); + } + } else { /* err < 0 */ + pr_info("Read reported error %d\n", err); + err = 0; + break; + } + + err = verify_page(0); + if (err) { + bitstats[max_corrected] = opno; + pr_info("ECC failure, read data is incorrect despite read success\n"); + break; + } + + opno++; + } + + /* At this point bitstats[0] contains the number of ops with no bit + * errors, bitstats[1] the number of ops with 1 bit error, etc. */ + pr_info("Bit error histogram (%d operations total):\n", opno); + for (i = 0; i < max_corrected; i++) + pr_info("Page reads with %3d corrected bit errors: %d\n", + i, bitstats[i]); + +exit: + return err; +} + +static int __init mtd_nandbiterrs_init(void) +{ + int err = 0; + + printk("\n"); + printk(KERN_INFO "==================================================\n"); + pr_info("MTD device: %d\n", dev); + + mtd = get_mtd_device(NULL, dev); + if (IS_ERR(mtd)) { + err = PTR_ERR(mtd); + pr_err("error: cannot get MTD device\n"); + goto exit_mtddev; + } + + if (!mtd_type_is_nand(mtd)) { + pr_info("this test requires NAND flash\n"); + err = -ENODEV; + goto exit_nand; + } + + pr_info("MTD device size %llu, eraseblock=%u, page=%u, oob=%u\n", + (unsigned long long)mtd->size, mtd->erasesize, + mtd->writesize, mtd->oobsize); + + subsize = mtd->writesize >> mtd->subpage_sft; + subcount = mtd->writesize / subsize; + + pr_info("Device uses %d subpages of %d bytes\n", subcount, subsize); + + offset = page_offset * mtd->writesize; + eraseblock = mtd_div_by_eb(offset, mtd); + + pr_info("Using page=%u, offset=%llu, eraseblock=%u\n", + page_offset, offset, eraseblock); + + wbuffer = kmalloc(mtd->writesize, GFP_KERNEL); + if (!wbuffer) { + err = -ENOMEM; + goto exit_wbuffer; + } + + rbuffer = kmalloc(mtd->writesize, GFP_KERNEL); + if (!rbuffer) { + err = -ENOMEM; + goto exit_rbuffer; + } + + err = mtdtest_erase_eraseblock(mtd, eraseblock); + if (err) + goto exit_error; + + if (mode == 0) + err = incremental_errors_test(); + else + err = overwrite_test(); + + if (err) + goto exit_error; + + /* We leave the block un-erased in case of test failure. */ + err = mtdtest_erase_eraseblock(mtd, eraseblock); + if (err) + goto exit_error; + + err = -EIO; + pr_info("finished successfully.\n"); + printk(KERN_INFO "==================================================\n"); + +exit_error: + kfree(rbuffer); +exit_rbuffer: + kfree(wbuffer); +exit_wbuffer: + /* Nothing */ +exit_nand: + put_mtd_device(mtd); +exit_mtddev: + return err; +} + +static void __exit mtd_nandbiterrs_exit(void) +{ + return; +} + +module_init(mtd_nandbiterrs_init); +module_exit(mtd_nandbiterrs_exit); + +MODULE_DESCRIPTION("NAND bit error recovery test"); +MODULE_AUTHOR("Iwo Mergler"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/tests/mtd_oobtest.c b/drivers/mtd/tests/oobtest.c index dec92ae6111..f19ab1acde1 100644 --- a/drivers/mtd/tests/mtd_oobtest.c +++ b/drivers/mtd/tests/oobtest.c @@ -19,6 +19,8 @@ * Author: Adrian Hunter <ext-adrian.hunter@nokia.com> */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + #include <asm/div64.h> #include <linux/init.h> #include <linux/module.h> @@ -27,10 +29,11 @@ #include <linux/mtd/mtd.h> #include <linux/slab.h> #include <linux/sched.h> +#include <linux/random.h> -#define PRINT_PREF KERN_INFO "mtd_oobtest: " +#include "mtd_test.h" -static int dev; +static int dev = -EINVAL; module_param(dev, int, S_IRUGO); MODULE_PARM_DESC(dev, "MTD device number to use"); @@ -46,70 +49,7 @@ static int use_offset; static int use_len; static int use_len_max; static int vary_offset; -static unsigned long next = 1; - -static inline unsigned int simple_rand(void) -{ - next = next * 1103515245 + 12345; - return (unsigned int)((next / 65536) % 32768); -} - -static inline void simple_srand(unsigned long seed) -{ - next = seed; -} - -static void set_random_data(unsigned char *buf, size_t len) -{ - size_t i; - - for (i = 0; i < len; ++i) - buf[i] = simple_rand(); -} - -static int erase_eraseblock(int ebnum) -{ - int err; - struct erase_info ei; - loff_t addr = ebnum * mtd->erasesize; - - memset(&ei, 0, sizeof(struct erase_info)); - ei.mtd = mtd; - ei.addr = addr; - ei.len = mtd->erasesize; - - err = mtd->erase(mtd, &ei); - if (err) { - printk(PRINT_PREF "error %d while erasing EB %d\n", err, ebnum); - return err; - } - - if (ei.state == MTD_ERASE_FAILED) { - printk(PRINT_PREF "some erase error occurred at EB %d\n", - ebnum); - return -EIO; - } - - return 0; -} - -static int erase_whole_device(void) -{ - int err; - unsigned int i; - - printk(PRINT_PREF "erasing whole device\n"); - for (i = 0; i < ebcnt; ++i) { - if (bbt[i]) - continue; - err = erase_eraseblock(i); - if (err) - return err; - cond_resched(); - } - printk(PRINT_PREF "erased %u eraseblocks\n", i); - return 0; -} +static struct rnd_state rnd_state; static void do_vary_offset(void) { @@ -129,21 +69,21 @@ static int write_eraseblock(int ebnum) int err = 0; loff_t addr = ebnum * mtd->erasesize; + prandom_bytes_state(&rnd_state, writebuf, use_len_max * pgcnt); for (i = 0; i < pgcnt; ++i, addr += mtd->writesize) { - set_random_data(writebuf, use_len); - ops.mode = MTD_OOB_AUTO; + ops.mode = MTD_OPS_AUTO_OOB; ops.len = 0; ops.retlen = 0; ops.ooblen = use_len; ops.oobretlen = 0; ops.ooboffs = use_offset; ops.datbuf = NULL; - ops.oobbuf = writebuf; - err = mtd->write_oob(mtd, addr, &ops); + ops.oobbuf = writebuf + (use_len_max * i) + use_offset; + err = mtd_write_oob(mtd, addr, &ops); if (err || ops.oobretlen != use_len) { - printk(PRINT_PREF "error: writeoob failed at %#llx\n", + pr_err("error: writeoob failed at %#llx\n", (long long)addr); - printk(PRINT_PREF "error: use_len %d, use_offset %d\n", + pr_err("error: use_len %d, use_offset %d\n", use_len, use_offset); errcnt += 1; return err ? err : -1; @@ -160,7 +100,7 @@ static int write_whole_device(void) int err; unsigned int i; - printk(PRINT_PREF "writing OOBs of whole device\n"); + pr_info("writing OOBs of whole device\n"); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; @@ -168,10 +108,10 @@ static int write_whole_device(void) if (err) return err; if (i % 256 == 0) - printk(PRINT_PREF "written up to eraseblock %u\n", i); + pr_info("written up to eraseblock %u\n", i); cond_resched(); } - printk(PRINT_PREF "written %u eraseblocks\n", i); + pr_info("written %u eraseblocks\n", i); return 0; } @@ -182,9 +122,9 @@ static int verify_eraseblock(int ebnum) int err = 0; loff_t addr = ebnum * mtd->erasesize; + prandom_bytes_state(&rnd_state, writebuf, use_len_max * pgcnt); for (i = 0; i < pgcnt; ++i, addr += mtd->writesize) { - set_random_data(writebuf, use_len); - ops.mode = MTD_OOB_AUTO; + ops.mode = MTD_OPS_AUTO_OOB; ops.len = 0; ops.retlen = 0; ops.ooblen = use_len; @@ -192,26 +132,27 @@ static int verify_eraseblock(int ebnum) ops.ooboffs = use_offset; ops.datbuf = NULL; ops.oobbuf = readbuf; - err = mtd->read_oob(mtd, addr, &ops); + err = mtd_read_oob(mtd, addr, &ops); if (err || ops.oobretlen != use_len) { - printk(PRINT_PREF "error: readoob failed at %#llx\n", + pr_err("error: readoob failed at %#llx\n", (long long)addr); errcnt += 1; return err ? err : -1; } - if (memcmp(readbuf, writebuf, use_len)) { - printk(PRINT_PREF "error: verify failed at %#llx\n", + if (memcmp(readbuf, writebuf + (use_len_max * i) + use_offset, + use_len)) { + pr_err("error: verify failed at %#llx\n", (long long)addr); errcnt += 1; if (errcnt > 1000) { - printk(PRINT_PREF "error: too many errors\n"); + pr_err("error: too many errors\n"); return -1; } } if (use_offset != 0 || use_len < mtd->ecclayout->oobavail) { int k; - ops.mode = MTD_OOB_AUTO; + ops.mode = MTD_OPS_AUTO_OOB; ops.len = 0; ops.retlen = 0; ops.ooblen = mtd->ecclayout->oobavail; @@ -219,31 +160,32 @@ static int verify_eraseblock(int ebnum) ops.ooboffs = 0; ops.datbuf = NULL; ops.oobbuf = readbuf; - err = mtd->read_oob(mtd, addr, &ops); + err = mtd_read_oob(mtd, addr, &ops); if (err || ops.oobretlen != mtd->ecclayout->oobavail) { - printk(PRINT_PREF "error: readoob failed at " - "%#llx\n", (long long)addr); + pr_err("error: readoob failed at %#llx\n", + (long long)addr); errcnt += 1; return err ? err : -1; } - if (memcmp(readbuf + use_offset, writebuf, use_len)) { - printk(PRINT_PREF "error: verify failed at " - "%#llx\n", (long long)addr); + if (memcmp(readbuf + use_offset, + writebuf + (use_len_max * i) + use_offset, + use_len)) { + pr_err("error: verify failed at %#llx\n", + (long long)addr); errcnt += 1; if (errcnt > 1000) { - printk(PRINT_PREF "error: too many " - "errors\n"); + pr_err("error: too many errors\n"); return -1; } } for (k = 0; k < use_offset; ++k) if (readbuf[k] != 0xff) { - printk(PRINT_PREF "error: verify 0xff " + pr_err("error: verify 0xff " "failed at %#llx\n", (long long)addr); errcnt += 1; if (errcnt > 1000) { - printk(PRINT_PREF "error: too " + pr_err("error: too " "many errors\n"); return -1; } @@ -251,12 +193,12 @@ static int verify_eraseblock(int ebnum) for (k = use_offset + use_len; k < mtd->ecclayout->oobavail; ++k) if (readbuf[k] != 0xff) { - printk(PRINT_PREF "error: verify 0xff " + pr_err("error: verify 0xff " "failed at %#llx\n", (long long)addr); errcnt += 1; if (errcnt > 1000) { - printk(PRINT_PREF "error: too " + pr_err("error: too " "many errors\n"); return -1; } @@ -275,8 +217,8 @@ static int verify_eraseblock_in_one_go(int ebnum) loff_t addr = ebnum * mtd->erasesize; size_t len = mtd->ecclayout->oobavail * pgcnt; - set_random_data(writebuf, len); - ops.mode = MTD_OOB_AUTO; + prandom_bytes_state(&rnd_state, writebuf, len); + ops.mode = MTD_OPS_AUTO_OOB; ops.len = 0; ops.retlen = 0; ops.ooblen = len; @@ -284,19 +226,19 @@ static int verify_eraseblock_in_one_go(int ebnum) ops.ooboffs = 0; ops.datbuf = NULL; ops.oobbuf = readbuf; - err = mtd->read_oob(mtd, addr, &ops); + err = mtd_read_oob(mtd, addr, &ops); if (err || ops.oobretlen != len) { - printk(PRINT_PREF "error: readoob failed at %#llx\n", + pr_err("error: readoob failed at %#llx\n", (long long)addr); errcnt += 1; return err ? err : -1; } if (memcmp(readbuf, writebuf, len)) { - printk(PRINT_PREF "error: verify failed at %#llx\n", + pr_err("error: verify failed at %#llx\n", (long long)addr); errcnt += 1; if (errcnt > 1000) { - printk(PRINT_PREF "error: too many errors\n"); + pr_err("error: too many errors\n"); return -1; } } @@ -309,7 +251,7 @@ static int verify_all_eraseblocks(void) int err; unsigned int i; - printk(PRINT_PREF "verifying all eraseblocks\n"); + pr_info("verifying all eraseblocks\n"); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; @@ -317,42 +259,10 @@ static int verify_all_eraseblocks(void) if (err) return err; if (i % 256 == 0) - printk(PRINT_PREF "verified up to eraseblock %u\n", i); + pr_info("verified up to eraseblock %u\n", i); cond_resched(); } - printk(PRINT_PREF "verified %u eraseblocks\n", i); - return 0; -} - -static int is_block_bad(int ebnum) -{ - int ret; - loff_t addr = ebnum * mtd->erasesize; - - ret = mtd->block_isbad(mtd, addr); - if (ret) - printk(PRINT_PREF "block %d is bad\n", ebnum); - return ret; -} - -static int scan_for_bad_eraseblocks(void) -{ - int i, bad = 0; - - bbt = kmalloc(ebcnt, GFP_KERNEL); - if (!bbt) { - printk(PRINT_PREF "error: cannot allocate memory\n"); - return -ENOMEM; - } - - printk(PRINT_PREF "scanning for bad eraseblocks\n"); - for (i = 0; i < ebcnt; ++i) { - bbt[i] = is_block_bad(i) ? 1 : 0; - if (bbt[i]) - bad += 1; - cond_resched(); - } - printk(PRINT_PREF "scanned %d eraseblocks, %d are bad\n", i, bad); + pr_info("verified %u eraseblocks\n", i); return 0; } @@ -366,17 +276,24 @@ static int __init mtd_oobtest_init(void) printk(KERN_INFO "\n"); printk(KERN_INFO "=================================================\n"); - printk(PRINT_PREF "MTD device: %d\n", dev); + + if (dev < 0) { + pr_info("Please specify a valid mtd-device via module parameter\n"); + pr_crit("CAREFUL: This test wipes all data on the specified MTD device!\n"); + return -EINVAL; + } + + pr_info("MTD device: %d\n", dev); mtd = get_mtd_device(NULL, dev); if (IS_ERR(mtd)) { err = PTR_ERR(mtd); - printk(PRINT_PREF "error: cannot get MTD device\n"); + pr_err("error: cannot get MTD device\n"); return err; } - if (mtd->type != MTD_NANDFLASH) { - printk(PRINT_PREF "this test requires NAND flash\n"); + if (!mtd_type_is_nand(mtd)) { + pr_info("this test requires NAND flash\n"); goto out; } @@ -385,7 +302,7 @@ static int __init mtd_oobtest_init(void) ebcnt = tmp; pgcnt = mtd->erasesize / mtd->writesize; - printk(PRINT_PREF "MTD device size %llu, eraseblock size %u, " + pr_info("MTD device size %llu, eraseblock size %u, " "page size %u, count of eraseblocks %u, pages per " "eraseblock %u, OOB size %u\n", (unsigned long long)mtd->size, mtd->erasesize, @@ -393,17 +310,16 @@ static int __init mtd_oobtest_init(void) err = -ENOMEM; readbuf = kmalloc(mtd->erasesize, GFP_KERNEL); - if (!readbuf) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!readbuf) goto out; - } writebuf = kmalloc(mtd->erasesize, GFP_KERNEL); - if (!writebuf) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!writebuf) + goto out; + bbt = kzalloc(ebcnt, GFP_KERNEL); + if (!bbt) goto out; - } - err = scan_for_bad_eraseblocks(); + err = mtdtest_scan_for_bad_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; @@ -413,18 +329,18 @@ static int __init mtd_oobtest_init(void) vary_offset = 0; /* First test: write all OOB, read it back and verify */ - printk(PRINT_PREF "test 1 of 5\n"); + pr_info("test 1 of 5\n"); - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; - simple_srand(1); + prandom_seed_state(&rnd_state, 1); err = write_whole_device(); if (err) goto out; - simple_srand(1); + prandom_seed_state(&rnd_state, 1); err = verify_all_eraseblocks(); if (err) goto out; @@ -433,20 +349,20 @@ static int __init mtd_oobtest_init(void) * Second test: write all OOB, a block at a time, read it back and * verify. */ - printk(PRINT_PREF "test 2 of 5\n"); + pr_info("test 2 of 5\n"); - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; - simple_srand(3); + prandom_seed_state(&rnd_state, 3); err = write_whole_device(); if (err) goto out; /* Check all eraseblocks */ - simple_srand(3); - printk(PRINT_PREF "verifying all eraseblocks\n"); + prandom_seed_state(&rnd_state, 3); + pr_info("verifying all eraseblocks\n"); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; @@ -454,18 +370,18 @@ static int __init mtd_oobtest_init(void) if (err) goto out; if (i % 256 == 0) - printk(PRINT_PREF "verified up to eraseblock %u\n", i); + pr_info("verified up to eraseblock %u\n", i); cond_resched(); } - printk(PRINT_PREF "verified %u eraseblocks\n", i); + pr_info("verified %u eraseblocks\n", i); /* * Third test: write OOB at varying offsets and lengths, read it back * and verify. */ - printk(PRINT_PREF "test 3 of 5\n"); + pr_info("test 3 of 5\n"); - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; @@ -474,7 +390,7 @@ static int __init mtd_oobtest_init(void) use_len = mtd->ecclayout->oobavail; use_len_max = mtd->ecclayout->oobavail; vary_offset = 1; - simple_srand(5); + prandom_seed_state(&rnd_state, 5); err = write_whole_device(); if (err) @@ -485,7 +401,7 @@ static int __init mtd_oobtest_init(void) use_len = mtd->ecclayout->oobavail; use_len_max = mtd->ecclayout->oobavail; vary_offset = 1; - simple_srand(5); + prandom_seed_state(&rnd_state, 5); err = verify_all_eraseblocks(); if (err) goto out; @@ -496,9 +412,9 @@ static int __init mtd_oobtest_init(void) vary_offset = 0; /* Fourth test: try to write off end of device */ - printk(PRINT_PREF "test 4 of 5\n"); + pr_info("test 4 of 5\n"); - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; @@ -507,7 +423,7 @@ static int __init mtd_oobtest_init(void) addr0 += mtd->erasesize; /* Attempt to write off end of OOB */ - ops.mode = MTD_OOB_AUTO; + ops.mode = MTD_OPS_AUTO_OOB; ops.len = 0; ops.retlen = 0; ops.ooblen = 1; @@ -515,19 +431,19 @@ static int __init mtd_oobtest_init(void) ops.ooboffs = mtd->ecclayout->oobavail; ops.datbuf = NULL; ops.oobbuf = writebuf; - printk(PRINT_PREF "attempting to start write past end of OOB\n"); - printk(PRINT_PREF "an error is expected...\n"); - err = mtd->write_oob(mtd, addr0, &ops); + pr_info("attempting to start write past end of OOB\n"); + pr_info("an error is expected...\n"); + err = mtd_write_oob(mtd, addr0, &ops); if (err) { - printk(PRINT_PREF "error occurred as expected\n"); + pr_info("error occurred as expected\n"); err = 0; } else { - printk(PRINT_PREF "error: can write past end of OOB\n"); + pr_err("error: can write past end of OOB\n"); errcnt += 1; } /* Attempt to read off end of OOB */ - ops.mode = MTD_OOB_AUTO; + ops.mode = MTD_OPS_AUTO_OOB; ops.len = 0; ops.retlen = 0; ops.ooblen = 1; @@ -535,23 +451,23 @@ static int __init mtd_oobtest_init(void) ops.ooboffs = mtd->ecclayout->oobavail; ops.datbuf = NULL; ops.oobbuf = readbuf; - printk(PRINT_PREF "attempting to start read past end of OOB\n"); - printk(PRINT_PREF "an error is expected...\n"); - err = mtd->read_oob(mtd, addr0, &ops); + pr_info("attempting to start read past end of OOB\n"); + pr_info("an error is expected...\n"); + err = mtd_read_oob(mtd, addr0, &ops); if (err) { - printk(PRINT_PREF "error occurred as expected\n"); + pr_info("error occurred as expected\n"); err = 0; } else { - printk(PRINT_PREF "error: can read past end of OOB\n"); + pr_err("error: can read past end of OOB\n"); errcnt += 1; } if (bbt[ebcnt - 1]) - printk(PRINT_PREF "skipping end of device tests because last " + pr_info("skipping end of device tests because last " "block is bad\n"); else { /* Attempt to write off end of device */ - ops.mode = MTD_OOB_AUTO; + ops.mode = MTD_OPS_AUTO_OOB; ops.len = 0; ops.retlen = 0; ops.ooblen = mtd->ecclayout->oobavail + 1; @@ -559,19 +475,19 @@ static int __init mtd_oobtest_init(void) ops.ooboffs = 0; ops.datbuf = NULL; ops.oobbuf = writebuf; - printk(PRINT_PREF "attempting to write past end of device\n"); - printk(PRINT_PREF "an error is expected...\n"); - err = mtd->write_oob(mtd, mtd->size - mtd->writesize, &ops); + pr_info("attempting to write past end of device\n"); + pr_info("an error is expected...\n"); + err = mtd_write_oob(mtd, mtd->size - mtd->writesize, &ops); if (err) { - printk(PRINT_PREF "error occurred as expected\n"); + pr_info("error occurred as expected\n"); err = 0; } else { - printk(PRINT_PREF "error: wrote past end of device\n"); + pr_err("error: wrote past end of device\n"); errcnt += 1; } /* Attempt to read off end of device */ - ops.mode = MTD_OOB_AUTO; + ops.mode = MTD_OPS_AUTO_OOB; ops.len = 0; ops.retlen = 0; ops.ooblen = mtd->ecclayout->oobavail + 1; @@ -579,23 +495,23 @@ static int __init mtd_oobtest_init(void) ops.ooboffs = 0; ops.datbuf = NULL; ops.oobbuf = readbuf; - printk(PRINT_PREF "attempting to read past end of device\n"); - printk(PRINT_PREF "an error is expected...\n"); - err = mtd->read_oob(mtd, mtd->size - mtd->writesize, &ops); + pr_info("attempting to read past end of device\n"); + pr_info("an error is expected...\n"); + err = mtd_read_oob(mtd, mtd->size - mtd->writesize, &ops); if (err) { - printk(PRINT_PREF "error occurred as expected\n"); + pr_info("error occurred as expected\n"); err = 0; } else { - printk(PRINT_PREF "error: read past end of device\n"); + pr_err("error: read past end of device\n"); errcnt += 1; } - err = erase_eraseblock(ebcnt - 1); + err = mtdtest_erase_eraseblock(mtd, ebcnt - 1); if (err) goto out; /* Attempt to write off end of device */ - ops.mode = MTD_OOB_AUTO; + ops.mode = MTD_OPS_AUTO_OOB; ops.len = 0; ops.retlen = 0; ops.ooblen = mtd->ecclayout->oobavail; @@ -603,19 +519,19 @@ static int __init mtd_oobtest_init(void) ops.ooboffs = 1; ops.datbuf = NULL; ops.oobbuf = writebuf; - printk(PRINT_PREF "attempting to write past end of device\n"); - printk(PRINT_PREF "an error is expected...\n"); - err = mtd->write_oob(mtd, mtd->size - mtd->writesize, &ops); + pr_info("attempting to write past end of device\n"); + pr_info("an error is expected...\n"); + err = mtd_write_oob(mtd, mtd->size - mtd->writesize, &ops); if (err) { - printk(PRINT_PREF "error occurred as expected\n"); + pr_info("error occurred as expected\n"); err = 0; } else { - printk(PRINT_PREF "error: wrote past end of device\n"); + pr_err("error: wrote past end of device\n"); errcnt += 1; } /* Attempt to read off end of device */ - ops.mode = MTD_OOB_AUTO; + ops.mode = MTD_OPS_AUTO_OOB; ops.len = 0; ops.retlen = 0; ops.ooblen = mtd->ecclayout->oobavail; @@ -623,29 +539,29 @@ static int __init mtd_oobtest_init(void) ops.ooboffs = 1; ops.datbuf = NULL; ops.oobbuf = readbuf; - printk(PRINT_PREF "attempting to read past end of device\n"); - printk(PRINT_PREF "an error is expected...\n"); - err = mtd->read_oob(mtd, mtd->size - mtd->writesize, &ops); + pr_info("attempting to read past end of device\n"); + pr_info("an error is expected...\n"); + err = mtd_read_oob(mtd, mtd->size - mtd->writesize, &ops); if (err) { - printk(PRINT_PREF "error occurred as expected\n"); + pr_info("error occurred as expected\n"); err = 0; } else { - printk(PRINT_PREF "error: read past end of device\n"); + pr_err("error: read past end of device\n"); errcnt += 1; } } /* Fifth test: write / read across block boundaries */ - printk(PRINT_PREF "test 5 of 5\n"); + pr_info("test 5 of 5\n"); /* Erase all eraseblocks */ - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; /* Write all eraseblocks */ - simple_srand(11); - printk(PRINT_PREF "writing OOBs of whole device\n"); + prandom_seed_state(&rnd_state, 11); + pr_info("writing OOBs of whole device\n"); for (i = 0; i < ebcnt - 1; ++i) { int cnt = 2; int pg; @@ -653,37 +569,37 @@ static int __init mtd_oobtest_init(void) if (bbt[i] || bbt[i + 1]) continue; addr = (i + 1) * mtd->erasesize - mtd->writesize; + prandom_bytes_state(&rnd_state, writebuf, sz * cnt); for (pg = 0; pg < cnt; ++pg) { - set_random_data(writebuf, sz); - ops.mode = MTD_OOB_AUTO; + ops.mode = MTD_OPS_AUTO_OOB; ops.len = 0; ops.retlen = 0; ops.ooblen = sz; ops.oobretlen = 0; ops.ooboffs = 0; ops.datbuf = NULL; - ops.oobbuf = writebuf; - err = mtd->write_oob(mtd, addr, &ops); + ops.oobbuf = writebuf + pg * sz; + err = mtd_write_oob(mtd, addr, &ops); if (err) goto out; if (i % 256 == 0) - printk(PRINT_PREF "written up to eraseblock " - "%u\n", i); + pr_info("written up to eraseblock %u\n", i); cond_resched(); addr += mtd->writesize; } } - printk(PRINT_PREF "written %u eraseblocks\n", i); + pr_info("written %u eraseblocks\n", i); /* Check all eraseblocks */ - simple_srand(11); - printk(PRINT_PREF "verifying all eraseblocks\n"); + prandom_seed_state(&rnd_state, 11); + pr_info("verifying all eraseblocks\n"); for (i = 0; i < ebcnt - 1; ++i) { if (bbt[i] || bbt[i + 1]) continue; - set_random_data(writebuf, mtd->ecclayout->oobavail * 2); + prandom_bytes_state(&rnd_state, writebuf, + mtd->ecclayout->oobavail * 2); addr = (i + 1) * mtd->erasesize - mtd->writesize; - ops.mode = MTD_OOB_AUTO; + ops.mode = MTD_OPS_AUTO_OOB; ops.len = 0; ops.retlen = 0; ops.ooblen = mtd->ecclayout->oobavail * 2; @@ -691,32 +607,32 @@ static int __init mtd_oobtest_init(void) ops.ooboffs = 0; ops.datbuf = NULL; ops.oobbuf = readbuf; - err = mtd->read_oob(mtd, addr, &ops); + err = mtd_read_oob(mtd, addr, &ops); if (err) goto out; if (memcmp(readbuf, writebuf, mtd->ecclayout->oobavail * 2)) { - printk(PRINT_PREF "error: verify failed at %#llx\n", + pr_err("error: verify failed at %#llx\n", (long long)addr); errcnt += 1; if (errcnt > 1000) { - printk(PRINT_PREF "error: too many errors\n"); + pr_err("error: too many errors\n"); goto out; } } if (i % 256 == 0) - printk(PRINT_PREF "verified up to eraseblock %u\n", i); + pr_info("verified up to eraseblock %u\n", i); cond_resched(); } - printk(PRINT_PREF "verified %u eraseblocks\n", i); + pr_info("verified %u eraseblocks\n", i); - printk(PRINT_PREF "finished with %d errors\n", errcnt); + pr_info("finished with %d errors\n", errcnt); out: kfree(bbt); kfree(writebuf); kfree(readbuf); put_mtd_device(mtd); if (err) - printk(PRINT_PREF "error %d occurred\n", err); + pr_info("error %d occurred\n", err); printk(KERN_INFO "=================================================\n"); return err; } diff --git a/drivers/mtd/tests/pagetest.c b/drivers/mtd/tests/pagetest.c new file mode 100644 index 00000000000..ed2d3f656fd --- /dev/null +++ b/drivers/mtd/tests/pagetest.c @@ -0,0 +1,464 @@ +/* + * Copyright (C) 2006-2008 Nokia Corporation + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published by + * the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; see the file COPYING. If not, write to the Free Software + * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + * + * Test page read and write on MTD device. + * + * Author: Adrian Hunter <ext-adrian.hunter@nokia.com> + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <asm/div64.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/err.h> +#include <linux/mtd/mtd.h> +#include <linux/slab.h> +#include <linux/sched.h> +#include <linux/random.h> + +#include "mtd_test.h" + +static int dev = -EINVAL; +module_param(dev, int, S_IRUGO); +MODULE_PARM_DESC(dev, "MTD device number to use"); + +static struct mtd_info *mtd; +static unsigned char *twopages; +static unsigned char *writebuf; +static unsigned char *boundary; +static unsigned char *bbt; + +static int pgsize; +static int bufsize; +static int ebcnt; +static int pgcnt; +static int errcnt; +static struct rnd_state rnd_state; + +static int write_eraseblock(int ebnum) +{ + loff_t addr = ebnum * mtd->erasesize; + + prandom_bytes_state(&rnd_state, writebuf, mtd->erasesize); + cond_resched(); + return mtdtest_write(mtd, addr, mtd->erasesize, writebuf); +} + +static int verify_eraseblock(int ebnum) +{ + uint32_t j; + int err = 0, i; + loff_t addr0, addrn; + loff_t addr = ebnum * mtd->erasesize; + + addr0 = 0; + for (i = 0; i < ebcnt && bbt[i]; ++i) + addr0 += mtd->erasesize; + + addrn = mtd->size; + for (i = 0; i < ebcnt && bbt[ebcnt - i - 1]; ++i) + addrn -= mtd->erasesize; + + prandom_bytes_state(&rnd_state, writebuf, mtd->erasesize); + for (j = 0; j < pgcnt - 1; ++j, addr += pgsize) { + /* Do a read to set the internal dataRAMs to different data */ + err = mtdtest_read(mtd, addr0, bufsize, twopages); + if (err) + return err; + err = mtdtest_read(mtd, addrn - bufsize, bufsize, twopages); + if (err) + return err; + memset(twopages, 0, bufsize); + err = mtdtest_read(mtd, addr, bufsize, twopages); + if (err) + break; + if (memcmp(twopages, writebuf + (j * pgsize), bufsize)) { + pr_err("error: verify failed at %#llx\n", + (long long)addr); + errcnt += 1; + } + } + /* Check boundary between eraseblocks */ + if (addr <= addrn - pgsize - pgsize && !bbt[ebnum + 1]) { + struct rnd_state old_state = rnd_state; + + /* Do a read to set the internal dataRAMs to different data */ + err = mtdtest_read(mtd, addr0, bufsize, twopages); + if (err) + return err; + err = mtdtest_read(mtd, addrn - bufsize, bufsize, twopages); + if (err) + return err; + memset(twopages, 0, bufsize); + err = mtdtest_read(mtd, addr, bufsize, twopages); + if (err) + return err; + memcpy(boundary, writebuf + mtd->erasesize - pgsize, pgsize); + prandom_bytes_state(&rnd_state, boundary + pgsize, pgsize); + if (memcmp(twopages, boundary, bufsize)) { + pr_err("error: verify failed at %#llx\n", + (long long)addr); + errcnt += 1; + } + rnd_state = old_state; + } + return err; +} + +static int crosstest(void) +{ + int err = 0, i; + loff_t addr, addr0, addrn; + unsigned char *pp1, *pp2, *pp3, *pp4; + + pr_info("crosstest\n"); + pp1 = kmalloc(pgsize * 4, GFP_KERNEL); + if (!pp1) + return -ENOMEM; + pp2 = pp1 + pgsize; + pp3 = pp2 + pgsize; + pp4 = pp3 + pgsize; + memset(pp1, 0, pgsize * 4); + + addr0 = 0; + for (i = 0; i < ebcnt && bbt[i]; ++i) + addr0 += mtd->erasesize; + + addrn = mtd->size; + for (i = 0; i < ebcnt && bbt[ebcnt - i - 1]; ++i) + addrn -= mtd->erasesize; + + /* Read 2nd-to-last page to pp1 */ + addr = addrn - pgsize - pgsize; + err = mtdtest_read(mtd, addr, pgsize, pp1); + if (err) { + kfree(pp1); + return err; + } + + /* Read 3rd-to-last page to pp1 */ + addr = addrn - pgsize - pgsize - pgsize; + err = mtdtest_read(mtd, addr, pgsize, pp1); + if (err) { + kfree(pp1); + return err; + } + + /* Read first page to pp2 */ + addr = addr0; + pr_info("reading page at %#llx\n", (long long)addr); + err = mtdtest_read(mtd, addr, pgsize, pp2); + if (err) { + kfree(pp1); + return err; + } + + /* Read last page to pp3 */ + addr = addrn - pgsize; + pr_info("reading page at %#llx\n", (long long)addr); + err = mtdtest_read(mtd, addr, pgsize, pp3); + if (err) { + kfree(pp1); + return err; + } + + /* Read first page again to pp4 */ + addr = addr0; + pr_info("reading page at %#llx\n", (long long)addr); + err = mtdtest_read(mtd, addr, pgsize, pp4); + if (err) { + kfree(pp1); + return err; + } + + /* pp2 and pp4 should be the same */ + pr_info("verifying pages read at %#llx match\n", + (long long)addr0); + if (memcmp(pp2, pp4, pgsize)) { + pr_err("verify failed!\n"); + errcnt += 1; + } else if (!err) + pr_info("crosstest ok\n"); + kfree(pp1); + return err; +} + +static int erasecrosstest(void) +{ + int err = 0, i, ebnum, ebnum2; + loff_t addr0; + char *readbuf = twopages; + + pr_info("erasecrosstest\n"); + + ebnum = 0; + addr0 = 0; + for (i = 0; i < ebcnt && bbt[i]; ++i) { + addr0 += mtd->erasesize; + ebnum += 1; + } + + ebnum2 = ebcnt - 1; + while (ebnum2 && bbt[ebnum2]) + ebnum2 -= 1; + + pr_info("erasing block %d\n", ebnum); + err = mtdtest_erase_eraseblock(mtd, ebnum); + if (err) + return err; + + pr_info("writing 1st page of block %d\n", ebnum); + prandom_bytes_state(&rnd_state, writebuf, pgsize); + strcpy(writebuf, "There is no data like this!"); + err = mtdtest_write(mtd, addr0, pgsize, writebuf); + if (err) + return err; + + pr_info("reading 1st page of block %d\n", ebnum); + memset(readbuf, 0, pgsize); + err = mtdtest_read(mtd, addr0, pgsize, readbuf); + if (err) + return err; + + pr_info("verifying 1st page of block %d\n", ebnum); + if (memcmp(writebuf, readbuf, pgsize)) { + pr_err("verify failed!\n"); + errcnt += 1; + return -1; + } + + pr_info("erasing block %d\n", ebnum); + err = mtdtest_erase_eraseblock(mtd, ebnum); + if (err) + return err; + + pr_info("writing 1st page of block %d\n", ebnum); + prandom_bytes_state(&rnd_state, writebuf, pgsize); + strcpy(writebuf, "There is no data like this!"); + err = mtdtest_write(mtd, addr0, pgsize, writebuf); + if (err) + return err; + + pr_info("erasing block %d\n", ebnum2); + err = mtdtest_erase_eraseblock(mtd, ebnum2); + if (err) + return err; + + pr_info("reading 1st page of block %d\n", ebnum); + memset(readbuf, 0, pgsize); + err = mtdtest_read(mtd, addr0, pgsize, readbuf); + if (err) + return err; + + pr_info("verifying 1st page of block %d\n", ebnum); + if (memcmp(writebuf, readbuf, pgsize)) { + pr_err("verify failed!\n"); + errcnt += 1; + return -1; + } + + if (!err) + pr_info("erasecrosstest ok\n"); + return err; +} + +static int erasetest(void) +{ + int err = 0, i, ebnum, ok = 1; + loff_t addr0; + + pr_info("erasetest\n"); + + ebnum = 0; + addr0 = 0; + for (i = 0; i < ebcnt && bbt[i]; ++i) { + addr0 += mtd->erasesize; + ebnum += 1; + } + + pr_info("erasing block %d\n", ebnum); + err = mtdtest_erase_eraseblock(mtd, ebnum); + if (err) + return err; + + pr_info("writing 1st page of block %d\n", ebnum); + prandom_bytes_state(&rnd_state, writebuf, pgsize); + err = mtdtest_write(mtd, addr0, pgsize, writebuf); + if (err) + return err; + + pr_info("erasing block %d\n", ebnum); + err = mtdtest_erase_eraseblock(mtd, ebnum); + if (err) + return err; + + pr_info("reading 1st page of block %d\n", ebnum); + err = mtdtest_read(mtd, addr0, pgsize, twopages); + if (err) + return err; + + pr_info("verifying 1st page of block %d is all 0xff\n", + ebnum); + for (i = 0; i < pgsize; ++i) + if (twopages[i] != 0xff) { + pr_err("verifying all 0xff failed at %d\n", + i); + errcnt += 1; + ok = 0; + break; + } + + if (ok && !err) + pr_info("erasetest ok\n"); + + return err; +} + +static int __init mtd_pagetest_init(void) +{ + int err = 0; + uint64_t tmp; + uint32_t i; + + printk(KERN_INFO "\n"); + printk(KERN_INFO "=================================================\n"); + + if (dev < 0) { + pr_info("Please specify a valid mtd-device via module parameter\n"); + pr_crit("CAREFUL: This test wipes all data on the specified MTD device!\n"); + return -EINVAL; + } + + pr_info("MTD device: %d\n", dev); + + mtd = get_mtd_device(NULL, dev); + if (IS_ERR(mtd)) { + err = PTR_ERR(mtd); + pr_err("error: cannot get MTD device\n"); + return err; + } + + if (!mtd_type_is_nand(mtd)) { + pr_info("this test requires NAND flash\n"); + goto out; + } + + tmp = mtd->size; + do_div(tmp, mtd->erasesize); + ebcnt = tmp; + pgcnt = mtd->erasesize / mtd->writesize; + pgsize = mtd->writesize; + + pr_info("MTD device size %llu, eraseblock size %u, " + "page size %u, count of eraseblocks %u, pages per " + "eraseblock %u, OOB size %u\n", + (unsigned long long)mtd->size, mtd->erasesize, + pgsize, ebcnt, pgcnt, mtd->oobsize); + + err = -ENOMEM; + bufsize = pgsize * 2; + writebuf = kmalloc(mtd->erasesize, GFP_KERNEL); + if (!writebuf) + goto out; + twopages = kmalloc(bufsize, GFP_KERNEL); + if (!twopages) + goto out; + boundary = kmalloc(bufsize, GFP_KERNEL); + if (!boundary) + goto out; + + bbt = kzalloc(ebcnt, GFP_KERNEL); + if (!bbt) + goto out; + err = mtdtest_scan_for_bad_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + + /* Erase all eraseblocks */ + pr_info("erasing whole device\n"); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + pr_info("erased %u eraseblocks\n", ebcnt); + + /* Write all eraseblocks */ + prandom_seed_state(&rnd_state, 1); + pr_info("writing whole device\n"); + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = write_eraseblock(i); + if (err) + goto out; + if (i % 256 == 0) + pr_info("written up to eraseblock %u\n", i); + cond_resched(); + } + pr_info("written %u eraseblocks\n", i); + + /* Check all eraseblocks */ + prandom_seed_state(&rnd_state, 1); + pr_info("verifying all eraseblocks\n"); + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = verify_eraseblock(i); + if (err) + goto out; + if (i % 256 == 0) + pr_info("verified up to eraseblock %u\n", i); + cond_resched(); + } + pr_info("verified %u eraseblocks\n", i); + + err = crosstest(); + if (err) + goto out; + + err = erasecrosstest(); + if (err) + goto out; + + err = erasetest(); + if (err) + goto out; + + pr_info("finished with %d errors\n", errcnt); +out: + + kfree(bbt); + kfree(boundary); + kfree(twopages); + kfree(writebuf); + put_mtd_device(mtd); + if (err) + pr_info("error %d occurred\n", err); + printk(KERN_INFO "=================================================\n"); + return err; +} +module_init(mtd_pagetest_init); + +static void __exit mtd_pagetest_exit(void) +{ + return; +} +module_exit(mtd_pagetest_exit); + +MODULE_DESCRIPTION("NAND page test"); +MODULE_AUTHOR("Adrian Hunter"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/tests/mtd_readtest.c b/drivers/mtd/tests/readtest.c index afe71aa15c4..626e66d0f7e 100644 --- a/drivers/mtd/tests/mtd_readtest.c +++ b/drivers/mtd/tests/readtest.c @@ -19,6 +19,8 @@ * Author: Adrian Hunter <ext-adrian.hunter@nokia.com> */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + #include <linux/init.h> #include <linux/module.h> #include <linux/moduleparam.h> @@ -27,9 +29,9 @@ #include <linux/slab.h> #include <linux/sched.h> -#define PRINT_PREF KERN_INFO "mtd_readtest: " +#include "mtd_test.h" -static int dev; +static int dev = -EINVAL; module_param(dev, int, S_IRUGO); MODULE_PARM_DESC(dev, "MTD device number to use"); @@ -44,29 +46,22 @@ static int pgcnt; static int read_eraseblock_by_page(int ebnum) { - size_t read = 0; int i, ret, err = 0; loff_t addr = ebnum * mtd->erasesize; void *buf = iobuf; void *oobbuf = iobuf1; for (i = 0; i < pgcnt; i++) { - memset(buf, 0 , pgcnt); - ret = mtd->read(mtd, addr, pgsize, &read, buf); - if (ret == -EUCLEAN) - ret = 0; - if (ret || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr); + memset(buf, 0 , pgsize); + ret = mtdtest_read(mtd, addr, pgsize, buf); + if (ret) { if (!err) err = ret; - if (!err) - err = -EINVAL; } if (mtd->oobsize) { struct mtd_oob_ops ops; - ops.mode = MTD_OOB_PLACE; + ops.mode = MTD_OPS_PLACE_OOB; ops.len = 0; ops.retlen = 0; ops.ooblen = mtd->oobsize; @@ -74,9 +69,10 @@ static int read_eraseblock_by_page(int ebnum) ops.ooboffs = 0; ops.datbuf = NULL; ops.oobbuf = oobbuf; - ret = mtd->read_oob(mtd, addr, &ops); - if (ret || ops.oobretlen != mtd->oobsize) { - printk(PRINT_PREF "error: read oob failed at " + ret = mtd_read_oob(mtd, addr, &ops); + if ((ret && !mtd_is_bitflip(ret)) || + ops.oobretlen != mtd->oobsize) { + pr_err("error: read oob failed at " "%#llx\n", (long long)addr); if (!err) err = ret; @@ -98,7 +94,7 @@ static void dump_eraseblock(int ebnum) char line[128]; int pg, oob; - printk(PRINT_PREF "dumping eraseblock %d\n", ebnum); + pr_info("dumping eraseblock %d\n", ebnum); n = mtd->erasesize; for (i = 0; i < n;) { char *p = line; @@ -111,7 +107,7 @@ static void dump_eraseblock(int ebnum) } if (!mtd->oobsize) return; - printk(PRINT_PREF "dumping oob from eraseblock %d\n", ebnum); + pr_info("dumping oob from eraseblock %d\n", ebnum); n = mtd->oobsize; for (pg = 0, i = 0; pg < pgcnt; pg++) for (oob = 0; oob < n;) { @@ -126,42 +122,6 @@ static void dump_eraseblock(int ebnum) } } -static int is_block_bad(int ebnum) -{ - loff_t addr = ebnum * mtd->erasesize; - int ret; - - ret = mtd->block_isbad(mtd, addr); - if (ret) - printk(PRINT_PREF "block %d is bad\n", ebnum); - return ret; -} - -static int scan_for_bad_eraseblocks(void) -{ - int i, bad = 0; - - bbt = kzalloc(ebcnt, GFP_KERNEL); - if (!bbt) { - printk(PRINT_PREF "error: cannot allocate memory\n"); - return -ENOMEM; - } - - /* NOR flash does not implement block_isbad */ - if (mtd->block_isbad == NULL) - return 0; - - printk(PRINT_PREF "scanning for bad eraseblocks\n"); - for (i = 0; i < ebcnt; ++i) { - bbt[i] = is_block_bad(i) ? 1 : 0; - if (bbt[i]) - bad += 1; - cond_resched(); - } - printk(PRINT_PREF "scanned %d eraseblocks, %d are bad\n", i, bad); - return 0; -} - static int __init mtd_readtest_init(void) { uint64_t tmp; @@ -169,17 +129,23 @@ static int __init mtd_readtest_init(void) printk(KERN_INFO "\n"); printk(KERN_INFO "=================================================\n"); - printk(PRINT_PREF "MTD device: %d\n", dev); + + if (dev < 0) { + pr_info("Please specify a valid mtd-device via module parameter\n"); + return -EINVAL; + } + + pr_info("MTD device: %d\n", dev); mtd = get_mtd_device(NULL, dev); if (IS_ERR(mtd)) { err = PTR_ERR(mtd); - printk(PRINT_PREF "error: Cannot get MTD device\n"); + pr_err("error: Cannot get MTD device\n"); return err; } if (mtd->writesize == 1) { - printk(PRINT_PREF "not NAND flash, assume page size is 512 " + pr_info("not NAND flash, assume page size is 512 " "bytes.\n"); pgsize = 512; } else @@ -190,7 +156,7 @@ static int __init mtd_readtest_init(void) ebcnt = tmp; pgcnt = mtd->erasesize / pgsize; - printk(PRINT_PREF "MTD device size %llu, eraseblock size %u, " + pr_info("MTD device size %llu, eraseblock size %u, " "page size %u, count of eraseblocks %u, pages per " "eraseblock %u, OOB size %u\n", (unsigned long long)mtd->size, mtd->erasesize, @@ -198,22 +164,21 @@ static int __init mtd_readtest_init(void) err = -ENOMEM; iobuf = kmalloc(mtd->erasesize, GFP_KERNEL); - if (!iobuf) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!iobuf) goto out; - } iobuf1 = kmalloc(mtd->erasesize, GFP_KERNEL); - if (!iobuf1) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!iobuf1) goto out; - } - err = scan_for_bad_eraseblocks(); + bbt = kzalloc(ebcnt, GFP_KERNEL); + if (!bbt) + goto out; + err = mtdtest_scan_for_bad_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; /* Read all eraseblocks 1 page at a time */ - printk(PRINT_PREF "testing page read\n"); + pr_info("testing page read\n"); for (i = 0; i < ebcnt; ++i) { int ret; @@ -229,9 +194,9 @@ static int __init mtd_readtest_init(void) } if (err) - printk(PRINT_PREF "finished with errors\n"); + pr_info("finished with errors\n"); else - printk(PRINT_PREF "finished\n"); + pr_info("finished\n"); out: @@ -240,7 +205,7 @@ out: kfree(bbt); put_mtd_device(mtd); if (err) - printk(PRINT_PREF "error %d occurred\n", err); + pr_info("error %d occurred\n", err); printk(KERN_INFO "=================================================\n"); return err; } diff --git a/drivers/mtd/tests/mtd_speedtest.c b/drivers/mtd/tests/speedtest.c index 161feeb7b8b..87ff6a29f84 100644 --- a/drivers/mtd/tests/mtd_speedtest.c +++ b/drivers/mtd/tests/speedtest.c @@ -16,9 +16,11 @@ * * Test read and write speed of a MTD device. * - * Author: Adrian Hunter <ext-adrian.hunter@nokia.com> + * Author: Adrian Hunter <adrian.hunter@nokia.com> */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + #include <linux/init.h> #include <linux/module.h> #include <linux/moduleparam.h> @@ -26,13 +28,19 @@ #include <linux/mtd/mtd.h> #include <linux/slab.h> #include <linux/sched.h> +#include <linux/random.h> -#define PRINT_PREF KERN_INFO "mtd_speedtest: " +#include "mtd_test.h" -static int dev; +static int dev = -EINVAL; module_param(dev, int, S_IRUGO); MODULE_PARM_DESC(dev, "MTD device number to use"); +static int count; +module_param(count, int, S_IRUGO); +MODULE_PARM_DESC(count, "Maximum number of eraseblocks to use " + "(0 means use all)"); + static struct mtd_info *mtd; static unsigned char *iobuf; static unsigned char *bbt; @@ -42,28 +50,8 @@ static int ebcnt; static int pgcnt; static int goodebcnt; static struct timeval start, finish; -static unsigned long next = 1; - -static inline unsigned int simple_rand(void) -{ - next = next * 1103515245 + 12345; - return (unsigned int)((next / 65536) % 32768); -} -static inline void simple_srand(unsigned long seed) -{ - next = seed; -} - -static void set_random_data(unsigned char *buf, size_t len) -{ - size_t i; - - for (i = 0; i < len; ++i) - buf[i] = simple_rand(); -} - -static int erase_eraseblock(int ebnum) +static int multiblock_erase(int ebnum, int blocks) { int err; struct erase_info ei; @@ -72,71 +60,41 @@ static int erase_eraseblock(int ebnum) memset(&ei, 0, sizeof(struct erase_info)); ei.mtd = mtd; ei.addr = addr; - ei.len = mtd->erasesize; + ei.len = mtd->erasesize * blocks; - err = mtd->erase(mtd, &ei); + err = mtd_erase(mtd, &ei); if (err) { - printk(PRINT_PREF "error %d while erasing EB %d\n", err, ebnum); + pr_err("error %d while erasing EB %d, blocks %d\n", + err, ebnum, blocks); return err; } if (ei.state == MTD_ERASE_FAILED) { - printk(PRINT_PREF "some erase error occurred at EB %d\n", - ebnum); + pr_err("some erase error occurred at EB %d," + "blocks %d\n", ebnum, blocks); return -EIO; } return 0; } -static int erase_whole_device(void) -{ - int err; - unsigned int i; - - for (i = 0; i < ebcnt; ++i) { - if (bbt[i]) - continue; - err = erase_eraseblock(i); - if (err) - return err; - cond_resched(); - } - return 0; -} - static int write_eraseblock(int ebnum) { - size_t written = 0; - int err = 0; loff_t addr = ebnum * mtd->erasesize; - err = mtd->write(mtd, addr, mtd->erasesize, &written, iobuf); - if (err || written != mtd->erasesize) { - printk(PRINT_PREF "error: write failed at %#llx\n", addr); - if (!err) - err = -EINVAL; - } - - return err; + return mtdtest_write(mtd, addr, mtd->erasesize, iobuf); } static int write_eraseblock_by_page(int ebnum) { - size_t written = 0; int i, err = 0; loff_t addr = ebnum * mtd->erasesize; void *buf = iobuf; for (i = 0; i < pgcnt; i++) { - err = mtd->write(mtd, addr, pgsize, &written, buf); - if (err || written != pgsize) { - printk(PRINT_PREF "error: write failed at %#llx\n", - addr); - if (!err) - err = -EINVAL; + err = mtdtest_write(mtd, addr, pgsize, buf); + if (err) break; - } addr += pgsize; buf += pgsize; } @@ -146,74 +104,41 @@ static int write_eraseblock_by_page(int ebnum) static int write_eraseblock_by_2pages(int ebnum) { - size_t written = 0, sz = pgsize * 2; + size_t sz = pgsize * 2; int i, n = pgcnt / 2, err = 0; loff_t addr = ebnum * mtd->erasesize; void *buf = iobuf; for (i = 0; i < n; i++) { - err = mtd->write(mtd, addr, sz, &written, buf); - if (err || written != sz) { - printk(PRINT_PREF "error: write failed at %#llx\n", - addr); - if (!err) - err = -EINVAL; + err = mtdtest_write(mtd, addr, sz, buf); + if (err) return err; - } addr += sz; buf += sz; } - if (pgcnt % 2) { - err = mtd->write(mtd, addr, pgsize, &written, buf); - if (err || written != pgsize) { - printk(PRINT_PREF "error: write failed at %#llx\n", - addr); - if (!err) - err = -EINVAL; - } - } + if (pgcnt % 2) + err = mtdtest_write(mtd, addr, pgsize, buf); return err; } static int read_eraseblock(int ebnum) { - size_t read = 0; - int err = 0; loff_t addr = ebnum * mtd->erasesize; - err = mtd->read(mtd, addr, mtd->erasesize, &read, iobuf); - /* Ignore corrected ECC errors */ - if (err == -EUCLEAN) - err = 0; - if (err || read != mtd->erasesize) { - printk(PRINT_PREF "error: read failed at %#llx\n", addr); - if (!err) - err = -EINVAL; - } - - return err; + return mtdtest_read(mtd, addr, mtd->erasesize, iobuf); } static int read_eraseblock_by_page(int ebnum) { - size_t read = 0; int i, err = 0; loff_t addr = ebnum * mtd->erasesize; void *buf = iobuf; for (i = 0; i < pgcnt; i++) { - err = mtd->read(mtd, addr, pgsize, &read, buf); - /* Ignore corrected ECC errors */ - if (err == -EUCLEAN) - err = 0; - if (err || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - addr); - if (!err) - err = -EINVAL; + err = mtdtest_read(mtd, addr, pgsize, buf); + if (err) break; - } addr += pgsize; buf += pgsize; } @@ -223,53 +148,24 @@ static int read_eraseblock_by_page(int ebnum) static int read_eraseblock_by_2pages(int ebnum) { - size_t read = 0, sz = pgsize * 2; + size_t sz = pgsize * 2; int i, n = pgcnt / 2, err = 0; loff_t addr = ebnum * mtd->erasesize; void *buf = iobuf; for (i = 0; i < n; i++) { - err = mtd->read(mtd, addr, sz, &read, buf); - /* Ignore corrected ECC errors */ - if (err == -EUCLEAN) - err = 0; - if (err || read != sz) { - printk(PRINT_PREF "error: read failed at %#llx\n", - addr); - if (!err) - err = -EINVAL; + err = mtdtest_read(mtd, addr, sz, buf); + if (err) return err; - } addr += sz; buf += sz; } - if (pgcnt % 2) { - err = mtd->read(mtd, addr, pgsize, &read, buf); - /* Ignore corrected ECC errors */ - if (err == -EUCLEAN) - err = 0; - if (err || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - addr); - if (!err) - err = -EINVAL; - } - } + if (pgcnt % 2) + err = mtdtest_read(mtd, addr, pgsize, buf); return err; } -static int is_block_bad(int ebnum) -{ - loff_t addr = ebnum * mtd->erasesize; - int ret; - - ret = mtd->block_isbad(mtd, addr); - if (ret) - printk(PRINT_PREF "block %d is bad\n", ebnum); - return ret; -} - static inline void start_timing(void) { do_gettimeofday(&start); @@ -282,61 +178,47 @@ static inline void stop_timing(void) static long calc_speed(void) { - long ms, k, speed; + uint64_t k; + long ms; ms = (finish.tv_sec - start.tv_sec) * 1000 + (finish.tv_usec - start.tv_usec) / 1000; - k = goodebcnt * mtd->erasesize / 1024; - speed = (k * 1000) / ms; - return speed; -} - -static int scan_for_bad_eraseblocks(void) -{ - int i, bad = 0; - - bbt = kzalloc(ebcnt, GFP_KERNEL); - if (!bbt) { - printk(PRINT_PREF "error: cannot allocate memory\n"); - return -ENOMEM; - } - - /* NOR flash does not implement block_isbad */ - if (mtd->block_isbad == NULL) - goto out; - - printk(PRINT_PREF "scanning for bad eraseblocks\n"); - for (i = 0; i < ebcnt; ++i) { - bbt[i] = is_block_bad(i) ? 1 : 0; - if (bbt[i]) - bad += 1; - cond_resched(); - } - printk(PRINT_PREF "scanned %d eraseblocks, %d are bad\n", i, bad); -out: - goodebcnt = ebcnt - bad; - return 0; + if (ms == 0) + return 0; + k = goodebcnt * (mtd->erasesize / 1024) * 1000; + do_div(k, ms); + return k; } static int __init mtd_speedtest_init(void) { - int err, i; + int err, i, blocks, j, k; long speed; uint64_t tmp; printk(KERN_INFO "\n"); printk(KERN_INFO "=================================================\n"); - printk(PRINT_PREF "MTD device: %d\n", dev); + + if (dev < 0) { + pr_info("Please specify a valid mtd-device via module parameter\n"); + pr_crit("CAREFUL: This test wipes all data on the specified MTD device!\n"); + return -EINVAL; + } + + if (count) + pr_info("MTD device: %d count: %d\n", dev, count); + else + pr_info("MTD device: %d\n", dev); mtd = get_mtd_device(NULL, dev); if (IS_ERR(mtd)) { err = PTR_ERR(mtd); - printk(PRINT_PREF "error: cannot get MTD device\n"); + pr_err("error: cannot get MTD device\n"); return err; } if (mtd->writesize == 1) { - printk(PRINT_PREF "not NAND flash, assume page size is 512 " + pr_info("not NAND flash, assume page size is 512 " "bytes.\n"); pgsize = 512; } else @@ -347,32 +229,39 @@ static int __init mtd_speedtest_init(void) ebcnt = tmp; pgcnt = mtd->erasesize / pgsize; - printk(PRINT_PREF "MTD device size %llu, eraseblock size %u, " + pr_info("MTD device size %llu, eraseblock size %u, " "page size %u, count of eraseblocks %u, pages per " "eraseblock %u, OOB size %u\n", (unsigned long long)mtd->size, mtd->erasesize, pgsize, ebcnt, pgcnt, mtd->oobsize); + if (count > 0 && count < ebcnt) + ebcnt = count; + err = -ENOMEM; iobuf = kmalloc(mtd->erasesize, GFP_KERNEL); - if (!iobuf) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!iobuf) goto out; - } - simple_srand(1); - set_random_data(iobuf, mtd->erasesize); + prandom_bytes(iobuf, mtd->erasesize); - err = scan_for_bad_eraseblocks(); + bbt = kzalloc(ebcnt, GFP_KERNEL); + if (!bbt) + goto out; + err = mtdtest_scan_for_bad_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; + for (i = 0; i < ebcnt; i++) { + if (!bbt[i]) + goodebcnt++; + } - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; /* Write all eraseblocks, 1 eraseblock at a time */ - printk(PRINT_PREF "testing eraseblock write speed\n"); + pr_info("testing eraseblock write speed\n"); start_timing(); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) @@ -384,10 +273,10 @@ static int __init mtd_speedtest_init(void) } stop_timing(); speed = calc_speed(); - printk(PRINT_PREF "eraseblock write speed is %ld KiB/s\n", speed); + pr_info("eraseblock write speed is %ld KiB/s\n", speed); /* Read all eraseblocks, 1 eraseblock at a time */ - printk(PRINT_PREF "testing eraseblock read speed\n"); + pr_info("testing eraseblock read speed\n"); start_timing(); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) @@ -399,14 +288,14 @@ static int __init mtd_speedtest_init(void) } stop_timing(); speed = calc_speed(); - printk(PRINT_PREF "eraseblock read speed is %ld KiB/s\n", speed); + pr_info("eraseblock read speed is %ld KiB/s\n", speed); - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; /* Write all eraseblocks, 1 page at a time */ - printk(PRINT_PREF "testing page write speed\n"); + pr_info("testing page write speed\n"); start_timing(); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) @@ -418,10 +307,10 @@ static int __init mtd_speedtest_init(void) } stop_timing(); speed = calc_speed(); - printk(PRINT_PREF "page write speed is %ld KiB/s\n", speed); + pr_info("page write speed is %ld KiB/s\n", speed); /* Read all eraseblocks, 1 page at a time */ - printk(PRINT_PREF "testing page read speed\n"); + pr_info("testing page read speed\n"); start_timing(); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) @@ -433,14 +322,14 @@ static int __init mtd_speedtest_init(void) } stop_timing(); speed = calc_speed(); - printk(PRINT_PREF "page read speed is %ld KiB/s\n", speed); + pr_info("page read speed is %ld KiB/s\n", speed); - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; /* Write all eraseblocks, 2 pages at a time */ - printk(PRINT_PREF "testing 2 page write speed\n"); + pr_info("testing 2 page write speed\n"); start_timing(); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) @@ -452,10 +341,10 @@ static int __init mtd_speedtest_init(void) } stop_timing(); speed = calc_speed(); - printk(PRINT_PREF "2 page write speed is %ld KiB/s\n", speed); + pr_info("2 page write speed is %ld KiB/s\n", speed); /* Read all eraseblocks, 2 pages at a time */ - printk(PRINT_PREF "testing 2 page read speed\n"); + pr_info("testing 2 page read speed\n"); start_timing(); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) @@ -467,30 +356,50 @@ static int __init mtd_speedtest_init(void) } stop_timing(); speed = calc_speed(); - printk(PRINT_PREF "2 page read speed is %ld KiB/s\n", speed); + pr_info("2 page read speed is %ld KiB/s\n", speed); /* Erase all eraseblocks */ - printk(PRINT_PREF "Testing erase speed\n"); + pr_info("Testing erase speed\n"); start_timing(); - for (i = 0; i < ebcnt; ++i) { - if (bbt[i]) - continue; - err = erase_eraseblock(i); - if (err) - goto out; - cond_resched(); - } + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; stop_timing(); speed = calc_speed(); - printk(PRINT_PREF "erase speed is %ld KiB/s\n", speed); - - printk(PRINT_PREF "finished\n"); + pr_info("erase speed is %ld KiB/s\n", speed); + + /* Multi-block erase all eraseblocks */ + for (k = 1; k < 7; k++) { + blocks = 1 << k; + pr_info("Testing %dx multi-block erase speed\n", + blocks); + start_timing(); + for (i = 0; i < ebcnt; ) { + for (j = 0; j < blocks && (i + j) < ebcnt; j++) + if (bbt[i + j]) + break; + if (j < 1) { + i++; + continue; + } + err = multiblock_erase(i, j); + if (err) + goto out; + cond_resched(); + i += j; + } + stop_timing(); + speed = calc_speed(); + pr_info("%dx multi-block erase speed is %ld KiB/s\n", + blocks, speed); + } + pr_info("finished\n"); out: kfree(iobuf); kfree(bbt); put_mtd_device(mtd); if (err) - printk(PRINT_PREF "error %d occurred\n", err); + pr_info("error %d occurred\n", err); printk(KERN_INFO "=================================================\n"); return err; } diff --git a/drivers/mtd/tests/mtd_stresstest.c b/drivers/mtd/tests/stresstest.c index 531625fc925..c9d42cc2df1 100644 --- a/drivers/mtd/tests/mtd_stresstest.c +++ b/drivers/mtd/tests/stresstest.c @@ -19,6 +19,8 @@ * Author: Adrian Hunter <ext-adrian.hunter@nokia.com> */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + #include <linux/init.h> #include <linux/module.h> #include <linux/moduleparam.h> @@ -27,10 +29,11 @@ #include <linux/slab.h> #include <linux/sched.h> #include <linux/vmalloc.h> +#include <linux/random.h> -#define PRINT_PREF KERN_INFO "mtd_stresstest: " +#include "mtd_test.h" -static int dev; +static int dev = -EINVAL; module_param(dev, int, S_IRUGO); MODULE_PARM_DESC(dev, "MTD device number to use"); @@ -48,28 +51,13 @@ static int pgsize; static int bufsize; static int ebcnt; static int pgcnt; -static unsigned long next = 1; - -static inline unsigned int simple_rand(void) -{ - next = next * 1103515245 + 12345; - return (unsigned int)((next / 65536) % 32768); -} - -static inline void simple_srand(unsigned long seed) -{ - next = seed; -} static int rand_eb(void) { - int eb; + unsigned int eb; again: - if (ebcnt < 32768) - eb = simple_rand(); - else - eb = (simple_rand() << 15) | simple_rand(); + eb = prandom_u32(); /* Read or write up 2 eraseblocks at a time - hence 'ebcnt - 1' */ eb %= (ebcnt - 1); if (bbt[eb]) @@ -79,71 +67,27 @@ again: static int rand_offs(void) { - int offs; + unsigned int offs; - if (bufsize < 32768) - offs = simple_rand(); - else - offs = (simple_rand() << 15) | simple_rand(); + offs = prandom_u32(); offs %= bufsize; return offs; } static int rand_len(int offs) { - int len; + unsigned int len; - if (bufsize < 32768) - len = simple_rand(); - else - len = (simple_rand() << 15) | simple_rand(); + len = prandom_u32(); len %= (bufsize - offs); return len; } -static int erase_eraseblock(int ebnum) -{ - int err; - struct erase_info ei; - loff_t addr = ebnum * mtd->erasesize; - - memset(&ei, 0, sizeof(struct erase_info)); - ei.mtd = mtd; - ei.addr = addr; - ei.len = mtd->erasesize; - - err = mtd->erase(mtd, &ei); - if (unlikely(err)) { - printk(PRINT_PREF "error %d while erasing EB %d\n", err, ebnum); - return err; - } - - if (unlikely(ei.state == MTD_ERASE_FAILED)) { - printk(PRINT_PREF "some erase error occurred at EB %d\n", - ebnum); - return -EIO; - } - - return 0; -} - -static int is_block_bad(int ebnum) -{ - loff_t addr = ebnum * mtd->erasesize; - int ret; - - ret = mtd->block_isbad(mtd, addr); - if (ret) - printk(PRINT_PREF "block %d is bad\n", ebnum); - return ret; -} - static int do_read(void) { - size_t read = 0; int eb = rand_eb(); int offs = rand_offs(); - int len = rand_len(offs), err; + int len = rand_len(offs); loff_t addr; if (bbt[eb + 1]) { @@ -153,28 +97,17 @@ static int do_read(void) len = mtd->erasesize - offs; } addr = eb * mtd->erasesize + offs; - err = mtd->read(mtd, addr, len, &read, readbuf); - if (err == -EUCLEAN) - err = 0; - if (unlikely(err || read != len)) { - printk(PRINT_PREF "error: read failed at 0x%llx\n", - (long long)addr); - if (!err) - err = -EINVAL; - return err; - } - return 0; + return mtdtest_read(mtd, addr, len, readbuf); } static int do_write(void) { int eb = rand_eb(), offs, err, len; - size_t written = 0; loff_t addr; offs = offsets[eb]; if (offs >= mtd->erasesize) { - err = erase_eraseblock(eb); + err = mtdtest_erase_eraseblock(mtd, eb); if (err) return err; offs = offsets[eb] = 0; @@ -185,21 +118,16 @@ static int do_write(void) if (bbt[eb + 1]) len = mtd->erasesize - offs; else { - err = erase_eraseblock(eb + 1); + err = mtdtest_erase_eraseblock(mtd, eb + 1); if (err) return err; offsets[eb + 1] = 0; } } addr = eb * mtd->erasesize + offs; - err = mtd->write(mtd, addr, len, &written, writebuf); - if (unlikely(err || written != len)) { - printk(PRINT_PREF "error: write failed at 0x%llx\n", - (long long)addr); - if (!err) - err = -EINVAL; + err = mtdtest_write(mtd, addr, len, writebuf); + if (unlikely(err)) return err; - } offs += len; while (offs > mtd->erasesize) { offsets[eb++] = mtd->erasesize; @@ -211,37 +139,12 @@ static int do_write(void) static int do_operation(void) { - if (simple_rand() & 1) + if (prandom_u32() & 1) return do_read(); else return do_write(); } -static int scan_for_bad_eraseblocks(void) -{ - int i, bad = 0; - - bbt = kzalloc(ebcnt, GFP_KERNEL); - if (!bbt) { - printk(PRINT_PREF "error: cannot allocate memory\n"); - return -ENOMEM; - } - - /* NOR flash does not implement block_isbad */ - if (mtd->block_isbad == NULL) - return 0; - - printk(PRINT_PREF "scanning for bad eraseblocks\n"); - for (i = 0; i < ebcnt; ++i) { - bbt[i] = is_block_bad(i) ? 1 : 0; - if (bbt[i]) - bad += 1; - cond_resched(); - } - printk(PRINT_PREF "scanned %d eraseblocks, %d are bad\n", i, bad); - return 0; -} - static int __init mtd_stresstest_init(void) { int err; @@ -250,17 +153,24 @@ static int __init mtd_stresstest_init(void) printk(KERN_INFO "\n"); printk(KERN_INFO "=================================================\n"); - printk(PRINT_PREF "MTD device: %d\n", dev); + + if (dev < 0) { + pr_info("Please specify a valid mtd-device via module parameter\n"); + pr_crit("CAREFUL: This test wipes all data on the specified MTD device!\n"); + return -EINVAL; + } + + pr_info("MTD device: %d\n", dev); mtd = get_mtd_device(NULL, dev); if (IS_ERR(mtd)) { err = PTR_ERR(mtd); - printk(PRINT_PREF "error: cannot get MTD device\n"); + pr_err("error: cannot get MTD device\n"); return err; } if (mtd->writesize == 1) { - printk(PRINT_PREF "not NAND flash, assume page size is 512 " + pr_info("not NAND flash, assume page size is 512 " "bytes.\n"); pgsize = 512; } else @@ -271,12 +181,18 @@ static int __init mtd_stresstest_init(void) ebcnt = tmp; pgcnt = mtd->erasesize / pgsize; - printk(PRINT_PREF "MTD device size %llu, eraseblock size %u, " + pr_info("MTD device size %llu, eraseblock size %u, " "page size %u, count of eraseblocks %u, pages per " "eraseblock %u, OOB size %u\n", (unsigned long long)mtd->size, mtd->erasesize, pgsize, ebcnt, pgcnt, mtd->oobsize); + if (ebcnt < 2) { + pr_err("error: need at least 2 eraseblocks\n"); + err = -ENOSPC; + goto out_put_mtd; + } + /* Read or write up 2 eraseblocks at a time */ bufsize = mtd->erasesize * 2; @@ -284,40 +200,40 @@ static int __init mtd_stresstest_init(void) readbuf = vmalloc(bufsize); writebuf = vmalloc(bufsize); offsets = kmalloc(ebcnt * sizeof(int), GFP_KERNEL); - if (!readbuf || !writebuf || !offsets) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!readbuf || !writebuf || !offsets) goto out; - } for (i = 0; i < ebcnt; i++) offsets[i] = mtd->erasesize; - simple_srand(current->pid); - for (i = 0; i < bufsize; i++) - writebuf[i] = simple_rand(); + prandom_bytes(writebuf, bufsize); - err = scan_for_bad_eraseblocks(); + bbt = kzalloc(ebcnt, GFP_KERNEL); + if (!bbt) + goto out; + err = mtdtest_scan_for_bad_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; /* Do operations */ - printk(PRINT_PREF "doing operations\n"); + pr_info("doing operations\n"); for (op = 0; op < count; op++) { if ((op & 1023) == 0) - printk(PRINT_PREF "%d operations done\n", op); + pr_info("%d operations done\n", op); err = do_operation(); if (err) goto out; cond_resched(); } - printk(PRINT_PREF "finished, %d operations done\n", op); + pr_info("finished, %d operations done\n", op); out: kfree(offsets); kfree(bbt); vfree(writebuf); vfree(readbuf); +out_put_mtd: put_mtd_device(mtd); if (err) - printk(PRINT_PREF "error %d occurred\n", err); + pr_info("error %d occurred\n", err); printk(KERN_INFO "=================================================\n"); return err; } diff --git a/drivers/mtd/tests/mtd_subpagetest.c b/drivers/mtd/tests/subpagetest.c index 11204e8aab5..a876371ad41 100644 --- a/drivers/mtd/tests/mtd_subpagetest.c +++ b/drivers/mtd/tests/subpagetest.c @@ -19,6 +19,8 @@ * */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + #include <linux/init.h> #include <linux/module.h> #include <linux/moduleparam.h> @@ -26,10 +28,11 @@ #include <linux/mtd/mtd.h> #include <linux/slab.h> #include <linux/sched.h> +#include <linux/random.h> -#define PRINT_PREF KERN_INFO "mtd_subpagetest: " +#include "mtd_test.h" -static int dev; +static int dev = -EINVAL; module_param(dev, int, S_IRUGO); MODULE_PARM_DESC(dev, "MTD device number to use"); @@ -43,104 +46,41 @@ static int bufsize; static int ebcnt; static int pgcnt; static int errcnt; -static unsigned long next = 1; - -static inline unsigned int simple_rand(void) -{ - next = next * 1103515245 + 12345; - return (unsigned int)((next / 65536) % 32768); -} - -static inline void simple_srand(unsigned long seed) -{ - next = seed; -} - -static void set_random_data(unsigned char *buf, size_t len) -{ - size_t i; - - for (i = 0; i < len; ++i) - buf[i] = simple_rand(); -} +static struct rnd_state rnd_state; static inline void clear_data(unsigned char *buf, size_t len) { memset(buf, 0, len); } -static int erase_eraseblock(int ebnum) -{ - int err; - struct erase_info ei; - loff_t addr = ebnum * mtd->erasesize; - - memset(&ei, 0, sizeof(struct erase_info)); - ei.mtd = mtd; - ei.addr = addr; - ei.len = mtd->erasesize; - - err = mtd->erase(mtd, &ei); - if (err) { - printk(PRINT_PREF "error %d while erasing EB %d\n", err, ebnum); - return err; - } - - if (ei.state == MTD_ERASE_FAILED) { - printk(PRINT_PREF "some erase error occurred at EB %d\n", - ebnum); - return -EIO; - } - - return 0; -} - -static int erase_whole_device(void) -{ - int err; - unsigned int i; - - printk(PRINT_PREF "erasing whole device\n"); - for (i = 0; i < ebcnt; ++i) { - if (bbt[i]) - continue; - err = erase_eraseblock(i); - if (err) - return err; - cond_resched(); - } - printk(PRINT_PREF "erased %u eraseblocks\n", i); - return 0; -} - static int write_eraseblock(int ebnum) { - size_t written = 0; + size_t written; int err = 0; loff_t addr = ebnum * mtd->erasesize; - set_random_data(writebuf, subpgsize); - err = mtd->write(mtd, addr, subpgsize, &written, writebuf); + prandom_bytes_state(&rnd_state, writebuf, subpgsize); + err = mtd_write(mtd, addr, subpgsize, &written, writebuf); if (unlikely(err || written != subpgsize)) { - printk(PRINT_PREF "error: write failed at %#llx\n", + pr_err("error: write failed at %#llx\n", (long long)addr); if (written != subpgsize) { - printk(PRINT_PREF " write size: %#x\n", subpgsize); - printk(PRINT_PREF " written: %#zx\n", written); + pr_err(" write size: %#x\n", subpgsize); + pr_err(" written: %#zx\n", written); } return err ? err : -1; } addr += subpgsize; - set_random_data(writebuf, subpgsize); - err = mtd->write(mtd, addr, subpgsize, &written, writebuf); + prandom_bytes_state(&rnd_state, writebuf, subpgsize); + err = mtd_write(mtd, addr, subpgsize, &written, writebuf); if (unlikely(err || written != subpgsize)) { - printk(PRINT_PREF "error: write failed at %#llx\n", + pr_err("error: write failed at %#llx\n", (long long)addr); if (written != subpgsize) { - printk(PRINT_PREF " write size: %#x\n", subpgsize); - printk(PRINT_PREF " written: %#zx\n", written); + pr_err(" write size: %#x\n", subpgsize); + pr_err(" written: %#zx\n", written); } return err ? err : -1; } @@ -150,22 +90,22 @@ static int write_eraseblock(int ebnum) static int write_eraseblock2(int ebnum) { - size_t written = 0; + size_t written; int err = 0, k; loff_t addr = ebnum * mtd->erasesize; for (k = 1; k < 33; ++k) { if (addr + (subpgsize * k) > (ebnum + 1) * mtd->erasesize) break; - set_random_data(writebuf, subpgsize * k); - err = mtd->write(mtd, addr, subpgsize * k, &written, writebuf); + prandom_bytes_state(&rnd_state, writebuf, subpgsize * k); + err = mtd_write(mtd, addr, subpgsize * k, &written, writebuf); if (unlikely(err || written != subpgsize * k)) { - printk(PRINT_PREF "error: write failed at %#llx\n", + pr_err("error: write failed at %#llx\n", (long long)addr); if (written != subpgsize) { - printk(PRINT_PREF " write size: %#x\n", + pr_err(" write size: %#x\n", subpgsize * k); - printk(PRINT_PREF " written: %#08zx\n", + pr_err(" written: %#08zx\n", written); } return err ? err : -1; @@ -189,61 +129,59 @@ static void print_subpage(unsigned char *p) static int verify_eraseblock(int ebnum) { - size_t read = 0; + size_t read; int err = 0; loff_t addr = ebnum * mtd->erasesize; - set_random_data(writebuf, subpgsize); + prandom_bytes_state(&rnd_state, writebuf, subpgsize); clear_data(readbuf, subpgsize); - read = 0; - err = mtd->read(mtd, addr, subpgsize, &read, readbuf); + err = mtd_read(mtd, addr, subpgsize, &read, readbuf); if (unlikely(err || read != subpgsize)) { - if (err == -EUCLEAN && read == subpgsize) { - printk(PRINT_PREF "ECC correction at %#llx\n", + if (mtd_is_bitflip(err) && read == subpgsize) { + pr_info("ECC correction at %#llx\n", (long long)addr); err = 0; } else { - printk(PRINT_PREF "error: read failed at %#llx\n", + pr_err("error: read failed at %#llx\n", (long long)addr); return err ? err : -1; } } if (unlikely(memcmp(readbuf, writebuf, subpgsize))) { - printk(PRINT_PREF "error: verify failed at %#llx\n", + pr_err("error: verify failed at %#llx\n", (long long)addr); - printk(PRINT_PREF "------------- written----------------\n"); + pr_info("------------- written----------------\n"); print_subpage(writebuf); - printk(PRINT_PREF "------------- read ------------------\n"); + pr_info("------------- read ------------------\n"); print_subpage(readbuf); - printk(PRINT_PREF "-------------------------------------\n"); + pr_info("-------------------------------------\n"); errcnt += 1; } addr += subpgsize; - set_random_data(writebuf, subpgsize); + prandom_bytes_state(&rnd_state, writebuf, subpgsize); clear_data(readbuf, subpgsize); - read = 0; - err = mtd->read(mtd, addr, subpgsize, &read, readbuf); + err = mtd_read(mtd, addr, subpgsize, &read, readbuf); if (unlikely(err || read != subpgsize)) { - if (err == -EUCLEAN && read == subpgsize) { - printk(PRINT_PREF "ECC correction at %#llx\n", + if (mtd_is_bitflip(err) && read == subpgsize) { + pr_info("ECC correction at %#llx\n", (long long)addr); err = 0; } else { - printk(PRINT_PREF "error: read failed at %#llx\n", + pr_err("error: read failed at %#llx\n", (long long)addr); return err ? err : -1; } } if (unlikely(memcmp(readbuf, writebuf, subpgsize))) { - printk(PRINT_PREF "error: verify failed at %#llx\n", + pr_info("error: verify failed at %#llx\n", (long long)addr); - printk(PRINT_PREF "------------- written----------------\n"); + pr_info("------------- written----------------\n"); print_subpage(writebuf); - printk(PRINT_PREF "------------- read ------------------\n"); + pr_info("------------- read ------------------\n"); print_subpage(readbuf); - printk(PRINT_PREF "-------------------------------------\n"); + pr_info("-------------------------------------\n"); errcnt += 1; } @@ -252,30 +190,29 @@ static int verify_eraseblock(int ebnum) static int verify_eraseblock2(int ebnum) { - size_t read = 0; + size_t read; int err = 0, k; loff_t addr = ebnum * mtd->erasesize; for (k = 1; k < 33; ++k) { if (addr + (subpgsize * k) > (ebnum + 1) * mtd->erasesize) break; - set_random_data(writebuf, subpgsize * k); + prandom_bytes_state(&rnd_state, writebuf, subpgsize * k); clear_data(readbuf, subpgsize * k); - read = 0; - err = mtd->read(mtd, addr, subpgsize * k, &read, readbuf); + err = mtd_read(mtd, addr, subpgsize * k, &read, readbuf); if (unlikely(err || read != subpgsize * k)) { - if (err == -EUCLEAN && read == subpgsize * k) { - printk(PRINT_PREF "ECC correction at %#llx\n", + if (mtd_is_bitflip(err) && read == subpgsize * k) { + pr_info("ECC correction at %#llx\n", (long long)addr); err = 0; } else { - printk(PRINT_PREF "error: read failed at " + pr_err("error: read failed at " "%#llx\n", (long long)addr); return err ? err : -1; } } if (unlikely(memcmp(readbuf, writebuf, subpgsize * k))) { - printk(PRINT_PREF "error: verify failed at %#llx\n", + pr_err("error: verify failed at %#llx\n", (long long)addr); errcnt += 1; } @@ -288,28 +225,27 @@ static int verify_eraseblock2(int ebnum) static int verify_eraseblock_ff(int ebnum) { uint32_t j; - size_t read = 0; + size_t read; int err = 0; loff_t addr = ebnum * mtd->erasesize; memset(writebuf, 0xff, subpgsize); for (j = 0; j < mtd->erasesize / subpgsize; ++j) { clear_data(readbuf, subpgsize); - read = 0; - err = mtd->read(mtd, addr, subpgsize, &read, readbuf); + err = mtd_read(mtd, addr, subpgsize, &read, readbuf); if (unlikely(err || read != subpgsize)) { - if (err == -EUCLEAN && read == subpgsize) { - printk(PRINT_PREF "ECC correction at %#llx\n", + if (mtd_is_bitflip(err) && read == subpgsize) { + pr_info("ECC correction at %#llx\n", (long long)addr); err = 0; } else { - printk(PRINT_PREF "error: read failed at " + pr_err("error: read failed at " "%#llx\n", (long long)addr); return err ? err : -1; } } if (unlikely(memcmp(readbuf, writebuf, subpgsize))) { - printk(PRINT_PREF "error: verify 0xff failed at " + pr_err("error: verify 0xff failed at " "%#llx\n", (long long)addr); errcnt += 1; } @@ -324,7 +260,7 @@ static int verify_all_eraseblocks_ff(void) int err; unsigned int i; - printk(PRINT_PREF "verifying all eraseblocks for 0xff\n"); + pr_info("verifying all eraseblocks for 0xff\n"); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; @@ -332,42 +268,10 @@ static int verify_all_eraseblocks_ff(void) if (err) return err; if (i % 256 == 0) - printk(PRINT_PREF "verified up to eraseblock %u\n", i); - cond_resched(); - } - printk(PRINT_PREF "verified %u eraseblocks\n", i); - return 0; -} - -static int is_block_bad(int ebnum) -{ - loff_t addr = ebnum * mtd->erasesize; - int ret; - - ret = mtd->block_isbad(mtd, addr); - if (ret) - printk(PRINT_PREF "block %d is bad\n", ebnum); - return ret; -} - -static int scan_for_bad_eraseblocks(void) -{ - int i, bad = 0; - - bbt = kzalloc(ebcnt, GFP_KERNEL); - if (!bbt) { - printk(PRINT_PREF "error: cannot allocate memory\n"); - return -ENOMEM; - } - - printk(PRINT_PREF "scanning for bad eraseblocks\n"); - for (i = 0; i < ebcnt; ++i) { - bbt[i] = is_block_bad(i) ? 1 : 0; - if (bbt[i]) - bad += 1; + pr_info("verified up to eraseblock %u\n", i); cond_resched(); } - printk(PRINT_PREF "scanned %d eraseblocks, %d are bad\n", i, bad); + pr_info("verified %u eraseblocks\n", i); return 0; } @@ -379,22 +283,34 @@ static int __init mtd_subpagetest_init(void) printk(KERN_INFO "\n"); printk(KERN_INFO "=================================================\n"); - printk(PRINT_PREF "MTD device: %d\n", dev); + + if (dev < 0) { + pr_info("Please specify a valid mtd-device via module parameter\n"); + pr_crit("CAREFUL: This test wipes all data on the specified MTD device!\n"); + return -EINVAL; + } + + pr_info("MTD device: %d\n", dev); mtd = get_mtd_device(NULL, dev); if (IS_ERR(mtd)) { err = PTR_ERR(mtd); - printk(PRINT_PREF "error: cannot get MTD device\n"); + pr_err("error: cannot get MTD device\n"); return err; } - if (mtd->type != MTD_NANDFLASH) { - printk(PRINT_PREF "this test requires NAND flash\n"); + if (!mtd_type_is_nand(mtd)) { + pr_info("this test requires NAND flash\n"); goto out; } subpgsize = mtd->writesize >> mtd->subpage_sft; - printk(PRINT_PREF "MTD device size %llu, eraseblock size %u, " + tmp = mtd->size; + do_div(tmp, mtd->erasesize); + ebcnt = tmp; + pgcnt = mtd->erasesize / mtd->writesize; + + pr_info("MTD device size %llu, eraseblock size %u, " "page size %u, subpage size %u, count of eraseblocks %u, " "pages per eraseblock %u, OOB size %u\n", (unsigned long long)mtd->size, mtd->erasesize, @@ -403,31 +319,25 @@ static int __init mtd_subpagetest_init(void) err = -ENOMEM; bufsize = subpgsize * 32; writebuf = kmalloc(bufsize, GFP_KERNEL); - if (!writebuf) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!writebuf) goto out; - } readbuf = kmalloc(bufsize, GFP_KERNEL); - if (!readbuf) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!readbuf) + goto out; + bbt = kzalloc(ebcnt, GFP_KERNEL); + if (!bbt) goto out; - } - - tmp = mtd->size; - do_div(tmp, mtd->erasesize); - ebcnt = tmp; - pgcnt = mtd->erasesize / mtd->writesize; - err = scan_for_bad_eraseblocks(); + err = mtdtest_scan_for_bad_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; - printk(PRINT_PREF "writing whole device\n"); - simple_srand(1); + pr_info("writing whole device\n"); + prandom_seed_state(&rnd_state, 1); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; @@ -435,13 +345,13 @@ static int __init mtd_subpagetest_init(void) if (unlikely(err)) goto out; if (i % 256 == 0) - printk(PRINT_PREF "written up to eraseblock %u\n", i); + pr_info("written up to eraseblock %u\n", i); cond_resched(); } - printk(PRINT_PREF "written %u eraseblocks\n", i); + pr_info("written %u eraseblocks\n", i); - simple_srand(1); - printk(PRINT_PREF "verifying all eraseblocks\n"); + prandom_seed_state(&rnd_state, 1); + pr_info("verifying all eraseblocks\n"); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; @@ -449,12 +359,12 @@ static int __init mtd_subpagetest_init(void) if (unlikely(err)) goto out; if (i % 256 == 0) - printk(PRINT_PREF "verified up to eraseblock %u\n", i); + pr_info("verified up to eraseblock %u\n", i); cond_resched(); } - printk(PRINT_PREF "verified %u eraseblocks\n", i); + pr_info("verified %u eraseblocks\n", i); - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; @@ -463,8 +373,8 @@ static int __init mtd_subpagetest_init(void) goto out; /* Write all eraseblocks */ - simple_srand(3); - printk(PRINT_PREF "writing whole device\n"); + prandom_seed_state(&rnd_state, 3); + pr_info("writing whole device\n"); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; @@ -472,14 +382,14 @@ static int __init mtd_subpagetest_init(void) if (unlikely(err)) goto out; if (i % 256 == 0) - printk(PRINT_PREF "written up to eraseblock %u\n", i); + pr_info("written up to eraseblock %u\n", i); cond_resched(); } - printk(PRINT_PREF "written %u eraseblocks\n", i); + pr_info("written %u eraseblocks\n", i); /* Check all eraseblocks */ - simple_srand(3); - printk(PRINT_PREF "verifying all eraseblocks\n"); + prandom_seed_state(&rnd_state, 3); + pr_info("verifying all eraseblocks\n"); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; @@ -487,12 +397,12 @@ static int __init mtd_subpagetest_init(void) if (unlikely(err)) goto out; if (i % 256 == 0) - printk(PRINT_PREF "verified up to eraseblock %u\n", i); + pr_info("verified up to eraseblock %u\n", i); cond_resched(); } - printk(PRINT_PREF "verified %u eraseblocks\n", i); + pr_info("verified %u eraseblocks\n", i); - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; @@ -500,7 +410,7 @@ static int __init mtd_subpagetest_init(void) if (err) goto out; - printk(PRINT_PREF "finished with %d errors\n", errcnt); + pr_info("finished with %d errors\n", errcnt); out: kfree(bbt); @@ -508,7 +418,7 @@ out: kfree(writebuf); put_mtd_device(mtd); if (err) - printk(PRINT_PREF "error %d occurred\n", err); + pr_info("error %d occurred\n", err); printk(KERN_INFO "=================================================\n"); return err; } diff --git a/drivers/mtd/tests/mtd_torturetest.c b/drivers/mtd/tests/torturetest.c index 5c6c3d24890..eeab96973cf 100644 --- a/drivers/mtd/tests/mtd_torturetest.c +++ b/drivers/mtd/tests/torturetest.c @@ -23,6 +23,8 @@ * damage caused by this program. */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + #include <linux/init.h> #include <linux/module.h> #include <linux/moduleparam.h> @@ -30,8 +32,8 @@ #include <linux/mtd/mtd.h> #include <linux/slab.h> #include <linux/sched.h> +#include "mtd_test.h" -#define PRINT_PREF KERN_INFO "mtd_torturetest: " #define RETRIES 3 static int eb = 8; @@ -46,7 +48,7 @@ static int pgcnt; module_param(pgcnt, int, S_IRUGO); MODULE_PARM_DESC(pgcnt, "number of pages per eraseblock to torture (0 => all)"); -static int dev; +static int dev = -EINVAL; module_param(dev, int, S_IRUGO); MODULE_PARM_DESC(dev, "MTD device number to use"); @@ -92,42 +94,13 @@ static inline void stop_timing(void) } /* - * Erase eraseblock number @ebnum. - */ -static inline int erase_eraseblock(int ebnum) -{ - int err; - struct erase_info ei; - loff_t addr = ebnum * mtd->erasesize; - - memset(&ei, 0, sizeof(struct erase_info)); - ei.mtd = mtd; - ei.addr = addr; - ei.len = mtd->erasesize; - - err = mtd->erase(mtd, &ei); - if (err) { - printk(PRINT_PREF "error %d while erasing EB %d\n", err, ebnum); - return err; - } - - if (ei.state == MTD_ERASE_FAILED) { - printk(PRINT_PREF "some erase error occurred at EB %d\n", - ebnum); - return -EIO; - } - - return 0; -} - -/* * Check that the contents of eraseblock number @enbum is equivalent to the * @buf buffer. */ static inline int check_eraseblock(int ebnum, unsigned char *buf) { int err, retries = 0; - size_t read = 0; + size_t read; loff_t addr = ebnum * mtd->erasesize; size_t len = mtd->erasesize; @@ -137,42 +110,42 @@ static inline int check_eraseblock(int ebnum, unsigned char *buf) } retry: - err = mtd->read(mtd, addr, len, &read, check_buf); - if (err == -EUCLEAN) - printk(PRINT_PREF "single bit flip occurred at EB %d " + err = mtd_read(mtd, addr, len, &read, check_buf); + if (mtd_is_bitflip(err)) + pr_err("single bit flip occurred at EB %d " "MTD reported that it was fixed.\n", ebnum); else if (err) { - printk(PRINT_PREF "error %d while reading EB %d, " + pr_err("error %d while reading EB %d, " "read %zd\n", err, ebnum, read); return err; } if (read != len) { - printk(PRINT_PREF "failed to read %zd bytes from EB %d, " + pr_err("failed to read %zd bytes from EB %d, " "read only %zd, but no error reported\n", len, ebnum, read); return -EIO; } if (memcmp(buf, check_buf, len)) { - printk(PRINT_PREF "read wrong data from EB %d\n", ebnum); + pr_err("read wrong data from EB %d\n", ebnum); report_corrupt(check_buf, buf); if (retries++ < RETRIES) { /* Try read again */ yield(); - printk(PRINT_PREF "re-try reading data from EB %d\n", + pr_info("re-try reading data from EB %d\n", ebnum); goto retry; } else { - printk(PRINT_PREF "retried %d times, still errors, " + pr_info("retried %d times, still errors, " "give-up\n", RETRIES); return -EINVAL; } } if (retries != 0) - printk(PRINT_PREF "only attempt number %d was OK (!!!)\n", + pr_info("only attempt number %d was OK (!!!)\n", retries); return 0; @@ -181,7 +154,7 @@ retry: static inline int write_pattern(int ebnum, void *buf) { int err; - size_t written = 0; + size_t written; loff_t addr = ebnum * mtd->erasesize; size_t len = mtd->erasesize; @@ -189,14 +162,14 @@ static inline int write_pattern(int ebnum, void *buf) addr = (ebnum + 1) * mtd->erasesize - pgcnt * pgsize; len = pgcnt * pgsize; } - err = mtd->write(mtd, addr, len, &written, buf); + err = mtd_write(mtd, addr, len, &written, buf); if (err) { - printk(PRINT_PREF "error %d while writing EB %d, written %zd" + pr_err("error %d while writing EB %d, written %zd" " bytes\n", err, ebnum, written); return err; } if (written != len) { - printk(PRINT_PREF "written only %zd bytes of %zd, but no error" + pr_info("written only %zd bytes of %zd, but no error" " reported\n", written, len); return -EIO; } @@ -207,63 +180,66 @@ static inline int write_pattern(int ebnum, void *buf) static int __init tort_init(void) { int err = 0, i, infinite = !cycles_count; - int bad_ebs[ebcnt]; + unsigned char *bad_ebs; printk(KERN_INFO "\n"); printk(KERN_INFO "=================================================\n"); - printk(PRINT_PREF "Warning: this program is trying to wear out your " + pr_info("Warning: this program is trying to wear out your " "flash, stop it if this is not wanted.\n"); - printk(PRINT_PREF "MTD device: %d\n", dev); - printk(PRINT_PREF "torture %d eraseblocks (%d-%d) of mtd%d\n", + + if (dev < 0) { + pr_info("Please specify a valid mtd-device via module parameter\n"); + pr_crit("CAREFUL: This test wipes all data on the specified MTD device!\n"); + return -EINVAL; + } + + pr_info("MTD device: %d\n", dev); + pr_info("torture %d eraseblocks (%d-%d) of mtd%d\n", ebcnt, eb, eb + ebcnt - 1, dev); if (pgcnt) - printk(PRINT_PREF "torturing just %d pages per eraseblock\n", + pr_info("torturing just %d pages per eraseblock\n", pgcnt); - printk(PRINT_PREF "write verify %s\n", check ? "enabled" : "disabled"); + pr_info("write verify %s\n", check ? "enabled" : "disabled"); mtd = get_mtd_device(NULL, dev); if (IS_ERR(mtd)) { err = PTR_ERR(mtd); - printk(PRINT_PREF "error: cannot get MTD device\n"); + pr_err("error: cannot get MTD device\n"); return err; } if (mtd->writesize == 1) { - printk(PRINT_PREF "not NAND flash, assume page size is 512 " + pr_info("not NAND flash, assume page size is 512 " "bytes.\n"); pgsize = 512; } else pgsize = mtd->writesize; if (pgcnt && (pgcnt > mtd->erasesize / pgsize || pgcnt < 0)) { - printk(PRINT_PREF "error: invalid pgcnt value %d\n", pgcnt); + pr_err("error: invalid pgcnt value %d\n", pgcnt); goto out_mtd; } err = -ENOMEM; patt_5A5 = kmalloc(mtd->erasesize, GFP_KERNEL); - if (!patt_5A5) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!patt_5A5) goto out_mtd; - } patt_A5A = kmalloc(mtd->erasesize, GFP_KERNEL); - if (!patt_A5A) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!patt_A5A) goto out_patt_5A5; - } patt_FF = kmalloc(mtd->erasesize, GFP_KERNEL); - if (!patt_FF) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!patt_FF) goto out_patt_A5A; - } check_buf = kmalloc(mtd->erasesize, GFP_KERNEL); - if (!check_buf) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!check_buf) goto out_patt_FF; - } + + bad_ebs = kzalloc(ebcnt, GFP_KERNEL); + if (!bad_ebs) + goto out_check_buf; err = 0; @@ -279,42 +255,16 @@ static int __init tort_init(void) } } - /* - * Check if there is a bad eraseblock among those we are going to test. - */ - memset(&bad_ebs[0], 0, sizeof(int) * ebcnt); - if (mtd->block_isbad) { - for (i = eb; i < eb + ebcnt; i++) { - err = mtd->block_isbad(mtd, - (loff_t)i * mtd->erasesize); - - if (err < 0) { - printk(PRINT_PREF "block_isbad() returned %d " - "for EB %d\n", err, i); - goto out; - } - - if (err) { - printk("EB %d is bad. Skip it.\n", i); - bad_ebs[i - eb] = 1; - } - } - } + err = mtdtest_scan_for_bad_eraseblocks(mtd, bad_ebs, eb, ebcnt); + if (err) + goto out; start_timing(); while (1) { int i; void *patt; - /* Erase all eraseblocks */ - for (i = eb; i < eb + ebcnt; i++) { - if (bad_ebs[i - eb]) - continue; - err = erase_eraseblock(i); - if (err) - goto out; - cond_resched(); - } + mtdtest_erase_good_eraseblocks(mtd, bad_ebs, eb, ebcnt); /* Check if the eraseblocks contain only 0xFF bytes */ if (check) { @@ -323,7 +273,7 @@ static int __init tort_init(void) continue; err = check_eraseblock(i, patt_FF); if (err) { - printk(PRINT_PREF "verify failed" + pr_info("verify failed" " for 0xFF... pattern\n"); goto out; } @@ -356,7 +306,7 @@ static int __init tort_init(void) patt = patt_A5A; err = check_eraseblock(i, patt); if (err) { - printk(PRINT_PREF "verify failed for %s" + pr_info("verify failed for %s" " pattern\n", ((eb + erase_cycles) & 1) ? "0x55AA55..." : "0xAA55AA..."); @@ -374,7 +324,7 @@ static int __init tort_init(void) stop_timing(); ms = (finish.tv_sec - start.tv_sec) * 1000 + (finish.tv_usec - start.tv_usec) / 1000; - printk(PRINT_PREF "%08u erase cycles done, took %lu " + pr_info("%08u erase cycles done, took %lu " "milliseconds (%lu seconds)\n", erase_cycles, ms, ms / 1000); start_timing(); @@ -385,8 +335,10 @@ static int __init tort_init(void) } out: - printk(PRINT_PREF "finished after %u erase cycles\n", + pr_info("finished after %u erase cycles\n", erase_cycles); + kfree(bad_ebs); +out_check_buf: kfree(check_buf); out_patt_FF: kfree(patt_FF); @@ -397,7 +349,7 @@ out_patt_5A5: out_mtd: put_mtd_device(mtd); if (err) - printk(PRINT_PREF "error %d occurred during torturing\n", err); + pr_info("error %d occurred during torturing\n", err); printk(KERN_INFO "=================================================\n"); return err; } @@ -435,9 +387,9 @@ static void report_corrupt(unsigned char *read, unsigned char *written) &bits) >= 0) pages++; - printk(PRINT_PREF "verify fails on %d pages, %d bytes/%d bits\n", + pr_info("verify fails on %d pages, %d bytes/%d bits\n", pages, bytes, bits); - printk(PRINT_PREF "The following is a list of all differences between" + pr_info("The following is a list of all differences between" " what was read from flash and what was expected\n"); for (i = 0; i < check_len; i += pgsize) { @@ -451,7 +403,7 @@ static void report_corrupt(unsigned char *read, unsigned char *written) printk("-------------------------------------------------------" "----------------------------------\n"); - printk(PRINT_PREF "Page %zd has %d bytes/%d bits failing verify," + pr_info("Page %zd has %d bytes/%d bits failing verify," " starting at offset 0x%x\n", (mtd->erasesize - check_len + i) / pgsize, bytes, bits, first); diff --git a/drivers/mtd/ubi/Kconfig b/drivers/mtd/ubi/Kconfig index f702a163d8d..f0855ce08ed 100644 --- a/drivers/mtd/ubi/Kconfig +++ b/drivers/mtd/ubi/Kconfig @@ -1,9 +1,5 @@ -menu "UBI - Unsorted block images" - depends on MTD - -config MTD_UBI - tristate "Enable UBI" - depends on MTD +menuconfig MTD_UBI + tristate "Enable UBI - Unsorted block images" select CRC32 help UBI is a software layer above MTD layer which admits of LVM-like @@ -12,11 +8,12 @@ config MTD_UBI capabilities. Please, consult the MTD web site for more details (www.linux-mtd.infradead.org). +if MTD_UBI + config MTD_UBI_WL_THRESHOLD int "UBI wear-leveling threshold" default 4096 range 2 65536 - depends on MTD_UBI help This parameter defines the maximum difference between the highest erase counter value and the lowest erase counter value of eraseblocks @@ -30,26 +27,58 @@ config MTD_UBI_WL_THRESHOLD life-cycle less than 10000, the threshold should be lessened (e.g., to 128 or 256, although it does not have to be power of 2). -config MTD_UBI_BEB_RESERVE - int "Percentage of reserved eraseblocks for bad eraseblocks handling" - default 1 - range 0 25 - depends on MTD_UBI +config MTD_UBI_BEB_LIMIT + int "Maximum expected bad eraseblock count per 1024 eraseblocks" + default 20 + range 0 768 + help + This option specifies the maximum bad physical eraseblocks UBI + expects on the MTD device (per 1024 eraseblocks). If the underlying + flash does not admit of bad eraseblocks (e.g. NOR flash), this value + is ignored. + + NAND datasheets often specify the minimum and maximum NVM (Number of + Valid Blocks) for the flashes' endurance lifetime. The maximum + expected bad eraseblocks per 1024 eraseblocks then can be calculated + as "1024 * (1 - MinNVB / MaxNVB)", which gives 20 for most NANDs + (MaxNVB is basically the total count of eraseblocks on the chip). + + To put it differently, if this value is 20, UBI will try to reserve + about 1.9% of physical eraseblocks for bad blocks handling. And that + will be 1.9% of eraseblocks on the entire NAND chip, not just the MTD + partition UBI attaches. This means that if you have, say, a NAND + flash chip admits maximum 40 bad eraseblocks, and it is split on two + MTD partitions of the same size, UBI will reserve 40 eraseblocks when + attaching a partition. + + This option can be overridden by the "mtd=" UBI module parameter or + by the "attach" ioctl. + + Leave the default value if unsure. + +config MTD_UBI_FASTMAP + bool "UBI Fastmap (Experimental feature)" + default n help - If the MTD device admits of bad eraseblocks (e.g. NAND flash), UBI - reserves some amount of physical eraseblocks to handle new bad - eraseblocks. For example, if a flash physical eraseblock becomes bad, - UBI uses these reserved physical eraseblocks to relocate the bad one. - This option specifies how many physical eraseblocks will be reserved - for bad eraseblock handling (percents of total number of good flash - eraseblocks). If the underlying flash does not admit of bad - eraseblocks (e.g. NOR flash), this value is ignored and nothing is - reserved. Leave the default value if unsure. + Important: this feature is experimental so far and the on-flash + format for fastmap may change in the next kernel versions + + Fastmap is a mechanism which allows attaching an UBI device + in nearly constant time. Instead of scanning the whole MTD device it + only has to locate a checkpoint (called fastmap) on the device. + The on-flash fastmap contains all information needed to attach + the device. Using fastmap makes only sense on large devices where + attaching by scanning takes long. UBI will not automatically install + a fastmap on old images, but you can set the UBI module parameter + fm_autoconvert to 1 if you want so. Please note that fastmap-enabled + images are still usable with UBI implementations without + fastmap support. On typical flash devices the whole fastmap fits + into one PEB. UBI will reserve PEBs to hold two fastmaps. + + If in doubt, say "N". config MTD_UBI_GLUEBI tristate "MTD devices emulation driver (gluebi)" - default n - depends on MTD_UBI help This option enables gluebi - an additional driver which emulates MTD devices on top of UBI volumes: for each UBI volumes an MTD device is @@ -58,5 +87,20 @@ config MTD_UBI_GLUEBI work on top of UBI. Do not enable this unless you use legacy software. -source "drivers/mtd/ubi/Kconfig.debug" -endmenu +config MTD_UBI_BLOCK + bool "Read-only block devices on top of UBI volumes" + default n + depends on BLOCK + help + This option enables read-only UBI block devices support. UBI block + devices will be layered on top of UBI volumes, which means that the + UBI driver will transparently handle things like bad eraseblocks and + bit-flips. You can put any block-oriented file system on top of UBI + volumes in read-only mode (e.g., ext4), but it is probably most + practical for read-only file systems, like squashfs. + + When selected, this feature will be built in the UBI driver. + + If in doubt, say "N". + +endif # MTD_UBI diff --git a/drivers/mtd/ubi/Kconfig.debug b/drivers/mtd/ubi/Kconfig.debug deleted file mode 100644 index 2246f154e2f..00000000000 --- a/drivers/mtd/ubi/Kconfig.debug +++ /dev/null @@ -1,94 +0,0 @@ -comment "UBI debugging options" - depends on MTD_UBI - -config MTD_UBI_DEBUG - bool "UBI debugging" - depends on SYSFS - depends on MTD_UBI - select DEBUG_FS - select KALLSYMS_ALL - help - This option enables UBI debugging. - -config MTD_UBI_DEBUG_MSG - bool "UBI debugging messages" - depends on MTD_UBI_DEBUG - default n - help - This option enables UBI debugging messages. - -config MTD_UBI_DEBUG_PARANOID - bool "Extra self-checks" - default n - depends on MTD_UBI_DEBUG - help - This option enables extra checks in UBI code. Note this slows UBI down - significantly. - -config MTD_UBI_DEBUG_DISABLE_BGT - bool "Do not enable the UBI background thread" - depends on MTD_UBI_DEBUG - default n - help - This option switches the background thread off by default. The thread - may be also be enabled/disabled via UBI sysfs. - -config MTD_UBI_DEBUG_EMULATE_BITFLIPS - bool "Emulate flash bit-flips" - depends on MTD_UBI_DEBUG - default n - help - This option emulates bit-flips with probability 1/50, which in turn - causes scrubbing. Useful for debugging and stressing UBI. - -config MTD_UBI_DEBUG_EMULATE_WRITE_FAILURES - bool "Emulate flash write failures" - depends on MTD_UBI_DEBUG - default n - help - This option emulates write failures with probability 1/100. Useful for - debugging and testing how UBI handlines errors. - -config MTD_UBI_DEBUG_EMULATE_ERASE_FAILURES - bool "Emulate flash erase failures" - depends on MTD_UBI_DEBUG - default n - help - This option emulates erase failures with probability 1/100. Useful for - debugging and testing how UBI handlines errors. - -menu "Additional UBI debugging messages" - depends on MTD_UBI_DEBUG - -config MTD_UBI_DEBUG_MSG_BLD - bool "Additional UBI initialization and build messages" - default n - depends on MTD_UBI_DEBUG - help - This option enables detailed UBI initialization and device build - debugging messages. - -config MTD_UBI_DEBUG_MSG_EBA - bool "Eraseblock association unit messages" - default n - depends on MTD_UBI_DEBUG - help - This option enables debugging messages from the UBI eraseblock - association unit. - -config MTD_UBI_DEBUG_MSG_WL - bool "Wear-leveling unit messages" - default n - depends on MTD_UBI_DEBUG - help - This option enables debugging messages from the UBI wear-leveling - unit. - -config MTD_UBI_DEBUG_MSG_IO - bool "Input/output unit messages" - default n - depends on MTD_UBI_DEBUG - help - This option enables debugging messages from the UBI input/output unit. - -endmenu # UBI debugging messages diff --git a/drivers/mtd/ubi/Makefile b/drivers/mtd/ubi/Makefile index c9302a5452b..4e3c3d70d8c 100644 --- a/drivers/mtd/ubi/Makefile +++ b/drivers/mtd/ubi/Makefile @@ -1,7 +1,8 @@ obj-$(CONFIG_MTD_UBI) += ubi.o -ubi-y += vtbl.o vmt.o upd.o build.o cdev.o kapi.o eba.o io.o wl.o scan.o -ubi-y += misc.o +ubi-y += vtbl.o vmt.o upd.o build.o cdev.o kapi.o eba.o io.o wl.o attach.o +ubi-y += misc.o debug.o +ubi-$(CONFIG_MTD_UBI_FASTMAP) += fastmap.o +ubi-$(CONFIG_MTD_UBI_BLOCK) += block.o -ubi-$(CONFIG_MTD_UBI_DEBUG) += debug.o obj-$(CONFIG_MTD_UBI_GLUEBI) += gluebi.o diff --git a/drivers/mtd/ubi/attach.c b/drivers/mtd/ubi/attach.c new file mode 100644 index 00000000000..6f27d9a1be3 --- /dev/null +++ b/drivers/mtd/ubi/attach.c @@ -0,0 +1,1757 @@ +/* + * Copyright (c) International Business Machines Corp., 2006 + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See + * the GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + * Author: Artem Bityutskiy (Битюцкий Артём) + */ + +/* + * UBI attaching sub-system. + * + * This sub-system is responsible for attaching MTD devices and it also + * implements flash media scanning. + * + * The attaching information is represented by a &struct ubi_attach_info' + * object. Information about volumes is represented by &struct ubi_ainf_volume + * objects which are kept in volume RB-tree with root at the @volumes field. + * The RB-tree is indexed by the volume ID. + * + * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These + * objects are kept in per-volume RB-trees with the root at the corresponding + * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of + * per-volume objects and each of these objects is the root of RB-tree of + * per-LEB objects. + * + * Corrupted physical eraseblocks are put to the @corr list, free physical + * eraseblocks are put to the @free list and the physical eraseblock to be + * erased are put to the @erase list. + * + * About corruptions + * ~~~~~~~~~~~~~~~~~ + * + * UBI protects EC and VID headers with CRC-32 checksums, so it can detect + * whether the headers are corrupted or not. Sometimes UBI also protects the + * data with CRC-32, e.g., when it executes the atomic LEB change operation, or + * when it moves the contents of a PEB for wear-leveling purposes. + * + * UBI tries to distinguish between 2 types of corruptions. + * + * 1. Corruptions caused by power cuts. These are expected corruptions and UBI + * tries to handle them gracefully, without printing too many warnings and + * error messages. The idea is that we do not lose important data in these + * cases - we may lose only the data which were being written to the media just + * before the power cut happened, and the upper layers (e.g., UBIFS) are + * supposed to handle such data losses (e.g., by using the FS journal). + * + * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like + * the reason is a power cut, UBI puts this PEB to the @erase list, and all + * PEBs in the @erase list are scheduled for erasure later. + * + * 2. Unexpected corruptions which are not caused by power cuts. During + * attaching, such PEBs are put to the @corr list and UBI preserves them. + * Obviously, this lessens the amount of available PEBs, and if at some point + * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs + * about such PEBs every time the MTD device is attached. + * + * However, it is difficult to reliably distinguish between these types of + * corruptions and UBI's strategy is as follows (in case of attaching by + * scanning). UBI assumes corruption type 2 if the VID header is corrupted and + * the data area does not contain all 0xFFs, and there were no bit-flips or + * integrity errors (e.g., ECC errors in case of NAND) while reading the data + * area. Otherwise UBI assumes corruption type 1. So the decision criteria + * are as follows. + * o If the data area contains only 0xFFs, there are no data, and it is safe + * to just erase this PEB - this is corruption type 1. + * o If the data area has bit-flips or data integrity errors (ECC errors on + * NAND), it is probably a PEB which was being erased when power cut + * happened, so this is corruption type 1. However, this is just a guess, + * which might be wrong. + * o Otherwise this is corruption type 2. + */ + +#include <linux/err.h> +#include <linux/slab.h> +#include <linux/crc32.h> +#include <linux/math64.h> +#include <linux/random.h> +#include "ubi.h" + +static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai); + +/* Temporary variables used during scanning */ +static struct ubi_ec_hdr *ech; +static struct ubi_vid_hdr *vidh; + +/** + * add_to_list - add physical eraseblock to a list. + * @ai: attaching information + * @pnum: physical eraseblock number to add + * @vol_id: the last used volume id for the PEB + * @lnum: the last used LEB number for the PEB + * @ec: erase counter of the physical eraseblock + * @to_head: if not zero, add to the head of the list + * @list: the list to add to + * + * This function allocates a 'struct ubi_ainf_peb' object for physical + * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists. + * It stores the @lnum and @vol_id alongside, which can both be + * %UBI_UNKNOWN if they are not available, not readable, or not assigned. + * If @to_head is not zero, PEB will be added to the head of the list, which + * basically means it will be processed first later. E.g., we add corrupted + * PEBs (corrupted due to power cuts) to the head of the erase list to make + * sure we erase them first and get rid of corruptions ASAP. This function + * returns zero in case of success and a negative error code in case of + * failure. + */ +static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id, + int lnum, int ec, int to_head, struct list_head *list) +{ + struct ubi_ainf_peb *aeb; + + if (list == &ai->free) { + dbg_bld("add to free: PEB %d, EC %d", pnum, ec); + } else if (list == &ai->erase) { + dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); + } else if (list == &ai->alien) { + dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); + ai->alien_peb_count += 1; + } else + BUG(); + + aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); + if (!aeb) + return -ENOMEM; + + aeb->pnum = pnum; + aeb->vol_id = vol_id; + aeb->lnum = lnum; + aeb->ec = ec; + if (to_head) + list_add(&aeb->u.list, list); + else + list_add_tail(&aeb->u.list, list); + return 0; +} + +/** + * add_corrupted - add a corrupted physical eraseblock. + * @ai: attaching information + * @pnum: physical eraseblock number to add + * @ec: erase counter of the physical eraseblock + * + * This function allocates a 'struct ubi_ainf_peb' object for a corrupted + * physical eraseblock @pnum and adds it to the 'corr' list. The corruption + * was presumably not caused by a power cut. Returns zero in case of success + * and a negative error code in case of failure. + */ +static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec) +{ + struct ubi_ainf_peb *aeb; + + dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); + + aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); + if (!aeb) + return -ENOMEM; + + ai->corr_peb_count += 1; + aeb->pnum = pnum; + aeb->ec = ec; + list_add(&aeb->u.list, &ai->corr); + return 0; +} + +/** + * validate_vid_hdr - check volume identifier header. + * @vid_hdr: the volume identifier header to check + * @av: information about the volume this logical eraseblock belongs to + * @pnum: physical eraseblock number the VID header came from + * + * This function checks that data stored in @vid_hdr is consistent. Returns + * non-zero if an inconsistency was found and zero if not. + * + * Note, UBI does sanity check of everything it reads from the flash media. + * Most of the checks are done in the I/O sub-system. Here we check that the + * information in the VID header is consistent to the information in other VID + * headers of the same volume. + */ +static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr, + const struct ubi_ainf_volume *av, int pnum) +{ + int vol_type = vid_hdr->vol_type; + int vol_id = be32_to_cpu(vid_hdr->vol_id); + int used_ebs = be32_to_cpu(vid_hdr->used_ebs); + int data_pad = be32_to_cpu(vid_hdr->data_pad); + + if (av->leb_count != 0) { + int av_vol_type; + + /* + * This is not the first logical eraseblock belonging to this + * volume. Ensure that the data in its VID header is consistent + * to the data in previous logical eraseblock headers. + */ + + if (vol_id != av->vol_id) { + ubi_err("inconsistent vol_id"); + goto bad; + } + + if (av->vol_type == UBI_STATIC_VOLUME) + av_vol_type = UBI_VID_STATIC; + else + av_vol_type = UBI_VID_DYNAMIC; + + if (vol_type != av_vol_type) { + ubi_err("inconsistent vol_type"); + goto bad; + } + + if (used_ebs != av->used_ebs) { + ubi_err("inconsistent used_ebs"); + goto bad; + } + + if (data_pad != av->data_pad) { + ubi_err("inconsistent data_pad"); + goto bad; + } + } + + return 0; + +bad: + ubi_err("inconsistent VID header at PEB %d", pnum); + ubi_dump_vid_hdr(vid_hdr); + ubi_dump_av(av); + return -EINVAL; +} + +/** + * add_volume - add volume to the attaching information. + * @ai: attaching information + * @vol_id: ID of the volume to add + * @pnum: physical eraseblock number + * @vid_hdr: volume identifier header + * + * If the volume corresponding to the @vid_hdr logical eraseblock is already + * present in the attaching information, this function does nothing. Otherwise + * it adds corresponding volume to the attaching information. Returns a pointer + * to the allocated "av" object in case of success and a negative error code in + * case of failure. + */ +static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai, + int vol_id, int pnum, + const struct ubi_vid_hdr *vid_hdr) +{ + struct ubi_ainf_volume *av; + struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; + + ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); + + /* Walk the volume RB-tree to look if this volume is already present */ + while (*p) { + parent = *p; + av = rb_entry(parent, struct ubi_ainf_volume, rb); + + if (vol_id == av->vol_id) + return av; + + if (vol_id > av->vol_id) + p = &(*p)->rb_left; + else + p = &(*p)->rb_right; + } + + /* The volume is absent - add it */ + av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL); + if (!av) + return ERR_PTR(-ENOMEM); + + av->highest_lnum = av->leb_count = 0; + av->vol_id = vol_id; + av->root = RB_ROOT; + av->used_ebs = be32_to_cpu(vid_hdr->used_ebs); + av->data_pad = be32_to_cpu(vid_hdr->data_pad); + av->compat = vid_hdr->compat; + av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME + : UBI_STATIC_VOLUME; + if (vol_id > ai->highest_vol_id) + ai->highest_vol_id = vol_id; + + rb_link_node(&av->rb, parent, p); + rb_insert_color(&av->rb, &ai->volumes); + ai->vols_found += 1; + dbg_bld("added volume %d", vol_id); + return av; +} + +/** + * ubi_compare_lebs - find out which logical eraseblock is newer. + * @ubi: UBI device description object + * @aeb: first logical eraseblock to compare + * @pnum: physical eraseblock number of the second logical eraseblock to + * compare + * @vid_hdr: volume identifier header of the second logical eraseblock + * + * This function compares 2 copies of a LEB and informs which one is newer. In + * case of success this function returns a positive value, in case of failure, a + * negative error code is returned. The success return codes use the following + * bits: + * o bit 0 is cleared: the first PEB (described by @aeb) is newer than the + * second PEB (described by @pnum and @vid_hdr); + * o bit 0 is set: the second PEB is newer; + * o bit 1 is cleared: no bit-flips were detected in the newer LEB; + * o bit 1 is set: bit-flips were detected in the newer LEB; + * o bit 2 is cleared: the older LEB is not corrupted; + * o bit 2 is set: the older LEB is corrupted. + */ +int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb, + int pnum, const struct ubi_vid_hdr *vid_hdr) +{ + int len, err, second_is_newer, bitflips = 0, corrupted = 0; + uint32_t data_crc, crc; + struct ubi_vid_hdr *vh = NULL; + unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); + + if (sqnum2 == aeb->sqnum) { + /* + * This must be a really ancient UBI image which has been + * created before sequence numbers support has been added. At + * that times we used 32-bit LEB versions stored in logical + * eraseblocks. That was before UBI got into mainline. We do not + * support these images anymore. Well, those images still work, + * but only if no unclean reboots happened. + */ + ubi_err("unsupported on-flash UBI format"); + return -EINVAL; + } + + /* Obviously the LEB with lower sequence counter is older */ + second_is_newer = (sqnum2 > aeb->sqnum); + + /* + * Now we know which copy is newer. If the copy flag of the PEB with + * newer version is not set, then we just return, otherwise we have to + * check data CRC. For the second PEB we already have the VID header, + * for the first one - we'll need to re-read it from flash. + * + * Note: this may be optimized so that we wouldn't read twice. + */ + + if (second_is_newer) { + if (!vid_hdr->copy_flag) { + /* It is not a copy, so it is newer */ + dbg_bld("second PEB %d is newer, copy_flag is unset", + pnum); + return 1; + } + } else { + if (!aeb->copy_flag) { + /* It is not a copy, so it is newer */ + dbg_bld("first PEB %d is newer, copy_flag is unset", + pnum); + return bitflips << 1; + } + + vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); + if (!vh) + return -ENOMEM; + + pnum = aeb->pnum; + err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); + if (err) { + if (err == UBI_IO_BITFLIPS) + bitflips = 1; + else { + ubi_err("VID of PEB %d header is bad, but it was OK earlier, err %d", + pnum, err); + if (err > 0) + err = -EIO; + + goto out_free_vidh; + } + } + + vid_hdr = vh; + } + + /* Read the data of the copy and check the CRC */ + + len = be32_to_cpu(vid_hdr->data_size); + + mutex_lock(&ubi->buf_mutex); + err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len); + if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) + goto out_unlock; + + data_crc = be32_to_cpu(vid_hdr->data_crc); + crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len); + if (crc != data_crc) { + dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", + pnum, crc, data_crc); + corrupted = 1; + bitflips = 0; + second_is_newer = !second_is_newer; + } else { + dbg_bld("PEB %d CRC is OK", pnum); + bitflips = !!err; + } + mutex_unlock(&ubi->buf_mutex); + + ubi_free_vid_hdr(ubi, vh); + + if (second_is_newer) + dbg_bld("second PEB %d is newer, copy_flag is set", pnum); + else + dbg_bld("first PEB %d is newer, copy_flag is set", pnum); + + return second_is_newer | (bitflips << 1) | (corrupted << 2); + +out_unlock: + mutex_unlock(&ubi->buf_mutex); +out_free_vidh: + ubi_free_vid_hdr(ubi, vh); + return err; +} + +/** + * ubi_add_to_av - add used physical eraseblock to the attaching information. + * @ubi: UBI device description object + * @ai: attaching information + * @pnum: the physical eraseblock number + * @ec: erase counter + * @vid_hdr: the volume identifier header + * @bitflips: if bit-flips were detected when this physical eraseblock was read + * + * This function adds information about a used physical eraseblock to the + * 'used' tree of the corresponding volume. The function is rather complex + * because it has to handle cases when this is not the first physical + * eraseblock belonging to the same logical eraseblock, and the newer one has + * to be picked, while the older one has to be dropped. This function returns + * zero in case of success and a negative error code in case of failure. + */ +int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum, + int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips) +{ + int err, vol_id, lnum; + unsigned long long sqnum; + struct ubi_ainf_volume *av; + struct ubi_ainf_peb *aeb; + struct rb_node **p, *parent = NULL; + + vol_id = be32_to_cpu(vid_hdr->vol_id); + lnum = be32_to_cpu(vid_hdr->lnum); + sqnum = be64_to_cpu(vid_hdr->sqnum); + + dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d", + pnum, vol_id, lnum, ec, sqnum, bitflips); + + av = add_volume(ai, vol_id, pnum, vid_hdr); + if (IS_ERR(av)) + return PTR_ERR(av); + + if (ai->max_sqnum < sqnum) + ai->max_sqnum = sqnum; + + /* + * Walk the RB-tree of logical eraseblocks of volume @vol_id to look + * if this is the first instance of this logical eraseblock or not. + */ + p = &av->root.rb_node; + while (*p) { + int cmp_res; + + parent = *p; + aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); + if (lnum != aeb->lnum) { + if (lnum < aeb->lnum) + p = &(*p)->rb_left; + else + p = &(*p)->rb_right; + continue; + } + + /* + * There is already a physical eraseblock describing the same + * logical eraseblock present. + */ + + dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d", + aeb->pnum, aeb->sqnum, aeb->ec); + + /* + * Make sure that the logical eraseblocks have different + * sequence numbers. Otherwise the image is bad. + * + * However, if the sequence number is zero, we assume it must + * be an ancient UBI image from the era when UBI did not have + * sequence numbers. We still can attach these images, unless + * there is a need to distinguish between old and new + * eraseblocks, in which case we'll refuse the image in + * 'ubi_compare_lebs()'. In other words, we attach old clean + * images, but refuse attaching old images with duplicated + * logical eraseblocks because there was an unclean reboot. + */ + if (aeb->sqnum == sqnum && sqnum != 0) { + ubi_err("two LEBs with same sequence number %llu", + sqnum); + ubi_dump_aeb(aeb, 0); + ubi_dump_vid_hdr(vid_hdr); + return -EINVAL; + } + + /* + * Now we have to drop the older one and preserve the newer + * one. + */ + cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr); + if (cmp_res < 0) + return cmp_res; + + if (cmp_res & 1) { + /* + * This logical eraseblock is newer than the one + * found earlier. + */ + err = validate_vid_hdr(vid_hdr, av, pnum); + if (err) + return err; + + err = add_to_list(ai, aeb->pnum, aeb->vol_id, + aeb->lnum, aeb->ec, cmp_res & 4, + &ai->erase); + if (err) + return err; + + aeb->ec = ec; + aeb->pnum = pnum; + aeb->vol_id = vol_id; + aeb->lnum = lnum; + aeb->scrub = ((cmp_res & 2) || bitflips); + aeb->copy_flag = vid_hdr->copy_flag; + aeb->sqnum = sqnum; + + if (av->highest_lnum == lnum) + av->last_data_size = + be32_to_cpu(vid_hdr->data_size); + + return 0; + } else { + /* + * This logical eraseblock is older than the one found + * previously. + */ + return add_to_list(ai, pnum, vol_id, lnum, ec, + cmp_res & 4, &ai->erase); + } + } + + /* + * We've met this logical eraseblock for the first time, add it to the + * attaching information. + */ + + err = validate_vid_hdr(vid_hdr, av, pnum); + if (err) + return err; + + aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); + if (!aeb) + return -ENOMEM; + + aeb->ec = ec; + aeb->pnum = pnum; + aeb->vol_id = vol_id; + aeb->lnum = lnum; + aeb->scrub = bitflips; + aeb->copy_flag = vid_hdr->copy_flag; + aeb->sqnum = sqnum; + + if (av->highest_lnum <= lnum) { + av->highest_lnum = lnum; + av->last_data_size = be32_to_cpu(vid_hdr->data_size); + } + + av->leb_count += 1; + rb_link_node(&aeb->u.rb, parent, p); + rb_insert_color(&aeb->u.rb, &av->root); + return 0; +} + +/** + * ubi_find_av - find volume in the attaching information. + * @ai: attaching information + * @vol_id: the requested volume ID + * + * This function returns a pointer to the volume description or %NULL if there + * are no data about this volume in the attaching information. + */ +struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai, + int vol_id) +{ + struct ubi_ainf_volume *av; + struct rb_node *p = ai->volumes.rb_node; + + while (p) { + av = rb_entry(p, struct ubi_ainf_volume, rb); + + if (vol_id == av->vol_id) + return av; + + if (vol_id > av->vol_id) + p = p->rb_left; + else + p = p->rb_right; + } + + return NULL; +} + +/** + * ubi_remove_av - delete attaching information about a volume. + * @ai: attaching information + * @av: the volume attaching information to delete + */ +void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av) +{ + struct rb_node *rb; + struct ubi_ainf_peb *aeb; + + dbg_bld("remove attaching information about volume %d", av->vol_id); + + while ((rb = rb_first(&av->root))) { + aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb); + rb_erase(&aeb->u.rb, &av->root); + list_add_tail(&aeb->u.list, &ai->erase); + } + + rb_erase(&av->rb, &ai->volumes); + kfree(av); + ai->vols_found -= 1; +} + +/** + * early_erase_peb - erase a physical eraseblock. + * @ubi: UBI device description object + * @ai: attaching information + * @pnum: physical eraseblock number to erase; + * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown) + * + * This function erases physical eraseblock 'pnum', and writes the erase + * counter header to it. This function should only be used on UBI device + * initialization stages, when the EBA sub-system had not been yet initialized. + * This function returns zero in case of success and a negative error code in + * case of failure. + */ +static int early_erase_peb(struct ubi_device *ubi, + const struct ubi_attach_info *ai, int pnum, int ec) +{ + int err; + struct ubi_ec_hdr *ec_hdr; + + if ((long long)ec >= UBI_MAX_ERASECOUNTER) { + /* + * Erase counter overflow. Upgrade UBI and use 64-bit + * erase counters internally. + */ + ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec); + return -EINVAL; + } + + ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); + if (!ec_hdr) + return -ENOMEM; + + ec_hdr->ec = cpu_to_be64(ec); + + err = ubi_io_sync_erase(ubi, pnum, 0); + if (err < 0) + goto out_free; + + err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); + +out_free: + kfree(ec_hdr); + return err; +} + +/** + * ubi_early_get_peb - get a free physical eraseblock. + * @ubi: UBI device description object + * @ai: attaching information + * + * This function returns a free physical eraseblock. It is supposed to be + * called on the UBI initialization stages when the wear-leveling sub-system is + * not initialized yet. This function picks a physical eraseblocks from one of + * the lists, writes the EC header if it is needed, and removes it from the + * list. + * + * This function returns a pointer to the "aeb" of the found free PEB in case + * of success and an error code in case of failure. + */ +struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi, + struct ubi_attach_info *ai) +{ + int err = 0; + struct ubi_ainf_peb *aeb, *tmp_aeb; + + if (!list_empty(&ai->free)) { + aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list); + list_del(&aeb->u.list); + dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec); + return aeb; + } + + /* + * We try to erase the first physical eraseblock from the erase list + * and pick it if we succeed, or try to erase the next one if not. And + * so forth. We don't want to take care about bad eraseblocks here - + * they'll be handled later. + */ + list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) { + if (aeb->ec == UBI_UNKNOWN) + aeb->ec = ai->mean_ec; + + err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1); + if (err) + continue; + + aeb->ec += 1; + list_del(&aeb->u.list); + dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec); + return aeb; + } + + ubi_err("no free eraseblocks"); + return ERR_PTR(-ENOSPC); +} + +/** + * check_corruption - check the data area of PEB. + * @ubi: UBI device description object + * @vid_hdr: the (corrupted) VID header of this PEB + * @pnum: the physical eraseblock number to check + * + * This is a helper function which is used to distinguish between VID header + * corruptions caused by power cuts and other reasons. If the PEB contains only + * 0xFF bytes in the data area, the VID header is most probably corrupted + * because of a power cut (%0 is returned in this case). Otherwise, it was + * probably corrupted for some other reasons (%1 is returned in this case). A + * negative error code is returned if a read error occurred. + * + * If the corruption reason was a power cut, UBI can safely erase this PEB. + * Otherwise, it should preserve it to avoid possibly destroying important + * information. + */ +static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr, + int pnum) +{ + int err; + + mutex_lock(&ubi->buf_mutex); + memset(ubi->peb_buf, 0x00, ubi->leb_size); + + err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start, + ubi->leb_size); + if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { + /* + * Bit-flips or integrity errors while reading the data area. + * It is difficult to say for sure what type of corruption is + * this, but presumably a power cut happened while this PEB was + * erased, so it became unstable and corrupted, and should be + * erased. + */ + err = 0; + goto out_unlock; + } + + if (err) + goto out_unlock; + + if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size)) + goto out_unlock; + + ubi_err("PEB %d contains corrupted VID header, and the data does not contain all 0xFF", + pnum); + ubi_err("this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection"); + ubi_dump_vid_hdr(vid_hdr); + pr_err("hexdump of PEB %d offset %d, length %d", + pnum, ubi->leb_start, ubi->leb_size); + ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, + ubi->peb_buf, ubi->leb_size, 1); + err = 1; + +out_unlock: + mutex_unlock(&ubi->buf_mutex); + return err; +} + +/** + * scan_peb - scan and process UBI headers of a PEB. + * @ubi: UBI device description object + * @ai: attaching information + * @pnum: the physical eraseblock number + * @vid: The volume ID of the found volume will be stored in this pointer + * @sqnum: The sqnum of the found volume will be stored in this pointer + * + * This function reads UBI headers of PEB @pnum, checks them, and adds + * information about this PEB to the corresponding list or RB-tree in the + * "attaching info" structure. Returns zero if the physical eraseblock was + * successfully handled and a negative error code in case of failure. + */ +static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai, + int pnum, int *vid, unsigned long long *sqnum) +{ + long long uninitialized_var(ec); + int err, bitflips = 0, vol_id = -1, ec_err = 0; + + dbg_bld("scan PEB %d", pnum); + + /* Skip bad physical eraseblocks */ + err = ubi_io_is_bad(ubi, pnum); + if (err < 0) + return err; + else if (err) { + ai->bad_peb_count += 1; + return 0; + } + + err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); + if (err < 0) + return err; + switch (err) { + case 0: + break; + case UBI_IO_BITFLIPS: + bitflips = 1; + break; + case UBI_IO_FF: + ai->empty_peb_count += 1; + return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, + UBI_UNKNOWN, 0, &ai->erase); + case UBI_IO_FF_BITFLIPS: + ai->empty_peb_count += 1; + return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, + UBI_UNKNOWN, 1, &ai->erase); + case UBI_IO_BAD_HDR_EBADMSG: + case UBI_IO_BAD_HDR: + /* + * We have to also look at the VID header, possibly it is not + * corrupted. Set %bitflips flag in order to make this PEB be + * moved and EC be re-created. + */ + ec_err = err; + ec = UBI_UNKNOWN; + bitflips = 1; + break; + default: + ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err); + return -EINVAL; + } + + if (!ec_err) { + int image_seq; + + /* Make sure UBI version is OK */ + if (ech->version != UBI_VERSION) { + ubi_err("this UBI version is %d, image version is %d", + UBI_VERSION, (int)ech->version); + return -EINVAL; + } + + ec = be64_to_cpu(ech->ec); + if (ec > UBI_MAX_ERASECOUNTER) { + /* + * Erase counter overflow. The EC headers have 64 bits + * reserved, but we anyway make use of only 31 bit + * values, as this seems to be enough for any existing + * flash. Upgrade UBI and use 64-bit erase counters + * internally. + */ + ubi_err("erase counter overflow, max is %d", + UBI_MAX_ERASECOUNTER); + ubi_dump_ec_hdr(ech); + return -EINVAL; + } + + /* + * Make sure that all PEBs have the same image sequence number. + * This allows us to detect situations when users flash UBI + * images incorrectly, so that the flash has the new UBI image + * and leftovers from the old one. This feature was added + * relatively recently, and the sequence number was always + * zero, because old UBI implementations always set it to zero. + * For this reasons, we do not panic if some PEBs have zero + * sequence number, while other PEBs have non-zero sequence + * number. + */ + image_seq = be32_to_cpu(ech->image_seq); + if (!ubi->image_seq) + ubi->image_seq = image_seq; + if (image_seq && ubi->image_seq != image_seq) { + ubi_err("bad image sequence number %d in PEB %d, expected %d", + image_seq, pnum, ubi->image_seq); + ubi_dump_ec_hdr(ech); + return -EINVAL; + } + } + + /* OK, we've done with the EC header, let's look at the VID header */ + + err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0); + if (err < 0) + return err; + switch (err) { + case 0: + break; + case UBI_IO_BITFLIPS: + bitflips = 1; + break; + case UBI_IO_BAD_HDR_EBADMSG: + if (ec_err == UBI_IO_BAD_HDR_EBADMSG) + /* + * Both EC and VID headers are corrupted and were read + * with data integrity error, probably this is a bad + * PEB, bit it is not marked as bad yet. This may also + * be a result of power cut during erasure. + */ + ai->maybe_bad_peb_count += 1; + case UBI_IO_BAD_HDR: + if (ec_err) + /* + * Both headers are corrupted. There is a possibility + * that this a valid UBI PEB which has corresponding + * LEB, but the headers are corrupted. However, it is + * impossible to distinguish it from a PEB which just + * contains garbage because of a power cut during erase + * operation. So we just schedule this PEB for erasure. + * + * Besides, in case of NOR flash, we deliberately + * corrupt both headers because NOR flash erasure is + * slow and can start from the end. + */ + err = 0; + else + /* + * The EC was OK, but the VID header is corrupted. We + * have to check what is in the data area. + */ + err = check_corruption(ubi, vidh, pnum); + + if (err < 0) + return err; + else if (!err) + /* This corruption is caused by a power cut */ + err = add_to_list(ai, pnum, UBI_UNKNOWN, + UBI_UNKNOWN, ec, 1, &ai->erase); + else + /* This is an unexpected corruption */ + err = add_corrupted(ai, pnum, ec); + if (err) + return err; + goto adjust_mean_ec; + case UBI_IO_FF_BITFLIPS: + err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, + ec, 1, &ai->erase); + if (err) + return err; + goto adjust_mean_ec; + case UBI_IO_FF: + if (ec_err || bitflips) + err = add_to_list(ai, pnum, UBI_UNKNOWN, + UBI_UNKNOWN, ec, 1, &ai->erase); + else + err = add_to_list(ai, pnum, UBI_UNKNOWN, + UBI_UNKNOWN, ec, 0, &ai->free); + if (err) + return err; + goto adjust_mean_ec; + default: + ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d", + err); + return -EINVAL; + } + + vol_id = be32_to_cpu(vidh->vol_id); + if (vid) + *vid = vol_id; + if (sqnum) + *sqnum = be64_to_cpu(vidh->sqnum); + if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) { + int lnum = be32_to_cpu(vidh->lnum); + + /* Unsupported internal volume */ + switch (vidh->compat) { + case UBI_COMPAT_DELETE: + if (vol_id != UBI_FM_SB_VOLUME_ID + && vol_id != UBI_FM_DATA_VOLUME_ID) { + ubi_msg("\"delete\" compatible internal volume %d:%d found, will remove it", + vol_id, lnum); + } + err = add_to_list(ai, pnum, vol_id, lnum, + ec, 1, &ai->erase); + if (err) + return err; + return 0; + + case UBI_COMPAT_RO: + ubi_msg("read-only compatible internal volume %d:%d found, switch to read-only mode", + vol_id, lnum); + ubi->ro_mode = 1; + break; + + case UBI_COMPAT_PRESERVE: + ubi_msg("\"preserve\" compatible internal volume %d:%d found", + vol_id, lnum); + err = add_to_list(ai, pnum, vol_id, lnum, + ec, 0, &ai->alien); + if (err) + return err; + return 0; + + case UBI_COMPAT_REJECT: + ubi_err("incompatible internal volume %d:%d found", + vol_id, lnum); + return -EINVAL; + } + } + + if (ec_err) + ubi_warn("valid VID header but corrupted EC header at PEB %d", + pnum); + err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips); + if (err) + return err; + +adjust_mean_ec: + if (!ec_err) { + ai->ec_sum += ec; + ai->ec_count += 1; + if (ec > ai->max_ec) + ai->max_ec = ec; + if (ec < ai->min_ec) + ai->min_ec = ec; + } + + return 0; +} + +/** + * late_analysis - analyze the overall situation with PEB. + * @ubi: UBI device description object + * @ai: attaching information + * + * This is a helper function which takes a look what PEBs we have after we + * gather information about all of them ("ai" is compete). It decides whether + * the flash is empty and should be formatted of whether there are too many + * corrupted PEBs and we should not attach this MTD device. Returns zero if we + * should proceed with attaching the MTD device, and %-EINVAL if we should not. + */ +static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai) +{ + struct ubi_ainf_peb *aeb; + int max_corr, peb_count; + + peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count; + max_corr = peb_count / 20 ?: 8; + + /* + * Few corrupted PEBs is not a problem and may be just a result of + * unclean reboots. However, many of them may indicate some problems + * with the flash HW or driver. + */ + if (ai->corr_peb_count) { + ubi_err("%d PEBs are corrupted and preserved", + ai->corr_peb_count); + pr_err("Corrupted PEBs are:"); + list_for_each_entry(aeb, &ai->corr, u.list) + pr_cont(" %d", aeb->pnum); + pr_cont("\n"); + + /* + * If too many PEBs are corrupted, we refuse attaching, + * otherwise, only print a warning. + */ + if (ai->corr_peb_count >= max_corr) { + ubi_err("too many corrupted PEBs, refusing"); + return -EINVAL; + } + } + + if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) { + /* + * All PEBs are empty, or almost all - a couple PEBs look like + * they may be bad PEBs which were not marked as bad yet. + * + * This piece of code basically tries to distinguish between + * the following situations: + * + * 1. Flash is empty, but there are few bad PEBs, which are not + * marked as bad so far, and which were read with error. We + * want to go ahead and format this flash. While formatting, + * the faulty PEBs will probably be marked as bad. + * + * 2. Flash contains non-UBI data and we do not want to format + * it and destroy possibly important information. + */ + if (ai->maybe_bad_peb_count <= 2) { + ai->is_empty = 1; + ubi_msg("empty MTD device detected"); + get_random_bytes(&ubi->image_seq, + sizeof(ubi->image_seq)); + } else { + ubi_err("MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it"); + return -EINVAL; + } + + } + + return 0; +} + +/** + * destroy_av - free volume attaching information. + * @av: volume attaching information + * @ai: attaching information + * + * This function destroys the volume attaching information. + */ +static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av) +{ + struct ubi_ainf_peb *aeb; + struct rb_node *this = av->root.rb_node; + + while (this) { + if (this->rb_left) + this = this->rb_left; + else if (this->rb_right) + this = this->rb_right; + else { + aeb = rb_entry(this, struct ubi_ainf_peb, u.rb); + this = rb_parent(this); + if (this) { + if (this->rb_left == &aeb->u.rb) + this->rb_left = NULL; + else + this->rb_right = NULL; + } + + kmem_cache_free(ai->aeb_slab_cache, aeb); + } + } + kfree(av); +} + +/** + * destroy_ai - destroy attaching information. + * @ai: attaching information + */ +static void destroy_ai(struct ubi_attach_info *ai) +{ + struct ubi_ainf_peb *aeb, *aeb_tmp; + struct ubi_ainf_volume *av; + struct rb_node *rb; + + list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) { + list_del(&aeb->u.list); + kmem_cache_free(ai->aeb_slab_cache, aeb); + } + list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) { + list_del(&aeb->u.list); + kmem_cache_free(ai->aeb_slab_cache, aeb); + } + list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) { + list_del(&aeb->u.list); + kmem_cache_free(ai->aeb_slab_cache, aeb); + } + list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) { + list_del(&aeb->u.list); + kmem_cache_free(ai->aeb_slab_cache, aeb); + } + + /* Destroy the volume RB-tree */ + rb = ai->volumes.rb_node; + while (rb) { + if (rb->rb_left) + rb = rb->rb_left; + else if (rb->rb_right) + rb = rb->rb_right; + else { + av = rb_entry(rb, struct ubi_ainf_volume, rb); + + rb = rb_parent(rb); + if (rb) { + if (rb->rb_left == &av->rb) + rb->rb_left = NULL; + else + rb->rb_right = NULL; + } + + destroy_av(ai, av); + } + } + + if (ai->aeb_slab_cache) + kmem_cache_destroy(ai->aeb_slab_cache); + + kfree(ai); +} + +/** + * scan_all - scan entire MTD device. + * @ubi: UBI device description object + * @ai: attach info object + * @start: start scanning at this PEB + * + * This function does full scanning of an MTD device and returns complete + * information about it in form of a "struct ubi_attach_info" object. In case + * of failure, an error code is returned. + */ +static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai, + int start) +{ + int err, pnum; + struct rb_node *rb1, *rb2; + struct ubi_ainf_volume *av; + struct ubi_ainf_peb *aeb; + + err = -ENOMEM; + + ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); + if (!ech) + return err; + + vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); + if (!vidh) + goto out_ech; + + for (pnum = start; pnum < ubi->peb_count; pnum++) { + cond_resched(); + + dbg_gen("process PEB %d", pnum); + err = scan_peb(ubi, ai, pnum, NULL, NULL); + if (err < 0) + goto out_vidh; + } + + ubi_msg("scanning is finished"); + + /* Calculate mean erase counter */ + if (ai->ec_count) + ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count); + + err = late_analysis(ubi, ai); + if (err) + goto out_vidh; + + /* + * In case of unknown erase counter we use the mean erase counter + * value. + */ + ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { + ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) + if (aeb->ec == UBI_UNKNOWN) + aeb->ec = ai->mean_ec; + } + + list_for_each_entry(aeb, &ai->free, u.list) { + if (aeb->ec == UBI_UNKNOWN) + aeb->ec = ai->mean_ec; + } + + list_for_each_entry(aeb, &ai->corr, u.list) + if (aeb->ec == UBI_UNKNOWN) + aeb->ec = ai->mean_ec; + + list_for_each_entry(aeb, &ai->erase, u.list) + if (aeb->ec == UBI_UNKNOWN) + aeb->ec = ai->mean_ec; + + err = self_check_ai(ubi, ai); + if (err) + goto out_vidh; + + ubi_free_vid_hdr(ubi, vidh); + kfree(ech); + + return 0; + +out_vidh: + ubi_free_vid_hdr(ubi, vidh); +out_ech: + kfree(ech); + return err; +} + +#ifdef CONFIG_MTD_UBI_FASTMAP + +/** + * scan_fastmap - try to find a fastmap and attach from it. + * @ubi: UBI device description object + * @ai: attach info object + * + * Returns 0 on success, negative return values indicate an internal + * error. + * UBI_NO_FASTMAP denotes that no fastmap was found. + * UBI_BAD_FASTMAP denotes that the found fastmap was invalid. + */ +static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info *ai) +{ + int err, pnum, fm_anchor = -1; + unsigned long long max_sqnum = 0; + + err = -ENOMEM; + + ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); + if (!ech) + goto out; + + vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); + if (!vidh) + goto out_ech; + + for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) { + int vol_id = -1; + unsigned long long sqnum = -1; + cond_resched(); + + dbg_gen("process PEB %d", pnum); + err = scan_peb(ubi, ai, pnum, &vol_id, &sqnum); + if (err < 0) + goto out_vidh; + + if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) { + max_sqnum = sqnum; + fm_anchor = pnum; + } + } + + ubi_free_vid_hdr(ubi, vidh); + kfree(ech); + + if (fm_anchor < 0) + return UBI_NO_FASTMAP; + + return ubi_scan_fastmap(ubi, ai, fm_anchor); + +out_vidh: + ubi_free_vid_hdr(ubi, vidh); +out_ech: + kfree(ech); +out: + return err; +} + +#endif + +static struct ubi_attach_info *alloc_ai(const char *slab_name) +{ + struct ubi_attach_info *ai; + + ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL); + if (!ai) + return ai; + + INIT_LIST_HEAD(&ai->corr); + INIT_LIST_HEAD(&ai->free); + INIT_LIST_HEAD(&ai->erase); + INIT_LIST_HEAD(&ai->alien); + ai->volumes = RB_ROOT; + ai->aeb_slab_cache = kmem_cache_create(slab_name, + sizeof(struct ubi_ainf_peb), + 0, 0, NULL); + if (!ai->aeb_slab_cache) { + kfree(ai); + ai = NULL; + } + + return ai; +} + +/** + * ubi_attach - attach an MTD device. + * @ubi: UBI device descriptor + * @force_scan: if set to non-zero attach by scanning + * + * This function returns zero in case of success and a negative error code in + * case of failure. + */ +int ubi_attach(struct ubi_device *ubi, int force_scan) +{ + int err; + struct ubi_attach_info *ai; + + ai = alloc_ai("ubi_aeb_slab_cache"); + if (!ai) + return -ENOMEM; + +#ifdef CONFIG_MTD_UBI_FASTMAP + /* On small flash devices we disable fastmap in any case. */ + if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) { + ubi->fm_disabled = 1; + force_scan = 1; + } + + if (force_scan) + err = scan_all(ubi, ai, 0); + else { + err = scan_fast(ubi, ai); + if (err > 0) { + if (err != UBI_NO_FASTMAP) { + destroy_ai(ai); + ai = alloc_ai("ubi_aeb_slab_cache2"); + if (!ai) + return -ENOMEM; + + err = scan_all(ubi, ai, 0); + } else { + err = scan_all(ubi, ai, UBI_FM_MAX_START); + } + } + } +#else + err = scan_all(ubi, ai, 0); +#endif + if (err) + goto out_ai; + + ubi->bad_peb_count = ai->bad_peb_count; + ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count; + ubi->corr_peb_count = ai->corr_peb_count; + ubi->max_ec = ai->max_ec; + ubi->mean_ec = ai->mean_ec; + dbg_gen("max. sequence number: %llu", ai->max_sqnum); + + err = ubi_read_volume_table(ubi, ai); + if (err) + goto out_ai; + + err = ubi_wl_init(ubi, ai); + if (err) + goto out_vtbl; + + err = ubi_eba_init(ubi, ai); + if (err) + goto out_wl; + +#ifdef CONFIG_MTD_UBI_FASTMAP + if (ubi->fm && ubi_dbg_chk_gen(ubi)) { + struct ubi_attach_info *scan_ai; + + scan_ai = alloc_ai("ubi_ckh_aeb_slab_cache"); + if (!scan_ai) { + err = -ENOMEM; + goto out_wl; + } + + err = scan_all(ubi, scan_ai, 0); + if (err) { + destroy_ai(scan_ai); + goto out_wl; + } + + err = self_check_eba(ubi, ai, scan_ai); + destroy_ai(scan_ai); + + if (err) + goto out_wl; + } +#endif + + destroy_ai(ai); + return 0; + +out_wl: + ubi_wl_close(ubi); +out_vtbl: + ubi_free_internal_volumes(ubi); + vfree(ubi->vtbl); +out_ai: + destroy_ai(ai); + return err; +} + +/** + * self_check_ai - check the attaching information. + * @ubi: UBI device description object + * @ai: attaching information + * + * This function returns zero if the attaching information is all right, and a + * negative error code if not or if an error occurred. + */ +static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai) +{ + int pnum, err, vols_found = 0; + struct rb_node *rb1, *rb2; + struct ubi_ainf_volume *av; + struct ubi_ainf_peb *aeb, *last_aeb; + uint8_t *buf; + + if (!ubi_dbg_chk_gen(ubi)) + return 0; + + /* + * At first, check that attaching information is OK. + */ + ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { + int leb_count = 0; + + cond_resched(); + + vols_found += 1; + + if (ai->is_empty) { + ubi_err("bad is_empty flag"); + goto bad_av; + } + + if (av->vol_id < 0 || av->highest_lnum < 0 || + av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 || + av->data_pad < 0 || av->last_data_size < 0) { + ubi_err("negative values"); + goto bad_av; + } + + if (av->vol_id >= UBI_MAX_VOLUMES && + av->vol_id < UBI_INTERNAL_VOL_START) { + ubi_err("bad vol_id"); + goto bad_av; + } + + if (av->vol_id > ai->highest_vol_id) { + ubi_err("highest_vol_id is %d, but vol_id %d is there", + ai->highest_vol_id, av->vol_id); + goto out; + } + + if (av->vol_type != UBI_DYNAMIC_VOLUME && + av->vol_type != UBI_STATIC_VOLUME) { + ubi_err("bad vol_type"); + goto bad_av; + } + + if (av->data_pad > ubi->leb_size / 2) { + ubi_err("bad data_pad"); + goto bad_av; + } + + last_aeb = NULL; + ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { + cond_resched(); + + last_aeb = aeb; + leb_count += 1; + + if (aeb->pnum < 0 || aeb->ec < 0) { + ubi_err("negative values"); + goto bad_aeb; + } + + if (aeb->ec < ai->min_ec) { + ubi_err("bad ai->min_ec (%d), %d found", + ai->min_ec, aeb->ec); + goto bad_aeb; + } + + if (aeb->ec > ai->max_ec) { + ubi_err("bad ai->max_ec (%d), %d found", + ai->max_ec, aeb->ec); + goto bad_aeb; + } + + if (aeb->pnum >= ubi->peb_count) { + ubi_err("too high PEB number %d, total PEBs %d", + aeb->pnum, ubi->peb_count); + goto bad_aeb; + } + + if (av->vol_type == UBI_STATIC_VOLUME) { + if (aeb->lnum >= av->used_ebs) { + ubi_err("bad lnum or used_ebs"); + goto bad_aeb; + } + } else { + if (av->used_ebs != 0) { + ubi_err("non-zero used_ebs"); + goto bad_aeb; + } + } + + if (aeb->lnum > av->highest_lnum) { + ubi_err("incorrect highest_lnum or lnum"); + goto bad_aeb; + } + } + + if (av->leb_count != leb_count) { + ubi_err("bad leb_count, %d objects in the tree", + leb_count); + goto bad_av; + } + + if (!last_aeb) + continue; + + aeb = last_aeb; + + if (aeb->lnum != av->highest_lnum) { + ubi_err("bad highest_lnum"); + goto bad_aeb; + } + } + + if (vols_found != ai->vols_found) { + ubi_err("bad ai->vols_found %d, should be %d", + ai->vols_found, vols_found); + goto out; + } + + /* Check that attaching information is correct */ + ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { + last_aeb = NULL; + ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { + int vol_type; + + cond_resched(); + + last_aeb = aeb; + + err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1); + if (err && err != UBI_IO_BITFLIPS) { + ubi_err("VID header is not OK (%d)", err); + if (err > 0) + err = -EIO; + return err; + } + + vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? + UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; + if (av->vol_type != vol_type) { + ubi_err("bad vol_type"); + goto bad_vid_hdr; + } + + if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) { + ubi_err("bad sqnum %llu", aeb->sqnum); + goto bad_vid_hdr; + } + + if (av->vol_id != be32_to_cpu(vidh->vol_id)) { + ubi_err("bad vol_id %d", av->vol_id); + goto bad_vid_hdr; + } + + if (av->compat != vidh->compat) { + ubi_err("bad compat %d", vidh->compat); + goto bad_vid_hdr; + } + + if (aeb->lnum != be32_to_cpu(vidh->lnum)) { + ubi_err("bad lnum %d", aeb->lnum); + goto bad_vid_hdr; + } + + if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) { + ubi_err("bad used_ebs %d", av->used_ebs); + goto bad_vid_hdr; + } + + if (av->data_pad != be32_to_cpu(vidh->data_pad)) { + ubi_err("bad data_pad %d", av->data_pad); + goto bad_vid_hdr; + } + } + + if (!last_aeb) + continue; + + if (av->highest_lnum != be32_to_cpu(vidh->lnum)) { + ubi_err("bad highest_lnum %d", av->highest_lnum); + goto bad_vid_hdr; + } + + if (av->last_data_size != be32_to_cpu(vidh->data_size)) { + ubi_err("bad last_data_size %d", av->last_data_size); + goto bad_vid_hdr; + } + } + + /* + * Make sure that all the physical eraseblocks are in one of the lists + * or trees. + */ + buf = kzalloc(ubi->peb_count, GFP_KERNEL); + if (!buf) + return -ENOMEM; + + for (pnum = 0; pnum < ubi->peb_count; pnum++) { + err = ubi_io_is_bad(ubi, pnum); + if (err < 0) { + kfree(buf); + return err; + } else if (err) + buf[pnum] = 1; + } + + ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) + ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) + buf[aeb->pnum] = 1; + + list_for_each_entry(aeb, &ai->free, u.list) + buf[aeb->pnum] = 1; + + list_for_each_entry(aeb, &ai->corr, u.list) + buf[aeb->pnum] = 1; + + list_for_each_entry(aeb, &ai->erase, u.list) + buf[aeb->pnum] = 1; + + list_for_each_entry(aeb, &ai->alien, u.list) + buf[aeb->pnum] = 1; + + err = 0; + for (pnum = 0; pnum < ubi->peb_count; pnum++) + if (!buf[pnum]) { + ubi_err("PEB %d is not referred", pnum); + err = 1; + } + + kfree(buf); + if (err) + goto out; + return 0; + +bad_aeb: + ubi_err("bad attaching information about LEB %d", aeb->lnum); + ubi_dump_aeb(aeb, 0); + ubi_dump_av(av); + goto out; + +bad_av: + ubi_err("bad attaching information about volume %d", av->vol_id); + ubi_dump_av(av); + goto out; + +bad_vid_hdr: + ubi_err("bad attaching information about volume %d", av->vol_id); + ubi_dump_av(av); + ubi_dump_vid_hdr(vidh); + +out: + dump_stack(); + return -EINVAL; +} diff --git a/drivers/mtd/ubi/block.c b/drivers/mtd/ubi/block.c new file mode 100644 index 00000000000..8457df7ec5a --- /dev/null +++ b/drivers/mtd/ubi/block.c @@ -0,0 +1,649 @@ +/* + * Copyright (c) 2014 Ezequiel Garcia + * Copyright (c) 2011 Free Electrons + * + * Driver parameter handling strongly based on drivers/mtd/ubi/build.c + * Copyright (c) International Business Machines Corp., 2006 + * Copyright (c) Nokia Corporation, 2007 + * Authors: Artem Bityutskiy, Frank Haverkamp + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, version 2. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See + * the GNU General Public License for more details. + */ + +/* + * Read-only block devices on top of UBI volumes + * + * A simple implementation to allow a block device to be layered on top of a + * UBI volume. The implementation is provided by creating a static 1-to-1 + * mapping between the block device and the UBI volume. + * + * The addressed byte is obtained from the addressed block sector, which is + * mapped linearly into the corresponding LEB: + * + * LEB number = addressed byte / LEB size + * + * This feature is compiled in the UBI core, and adds a 'block' parameter + * to allow early creation of block devices on top of UBI volumes. Runtime + * block creation/removal for UBI volumes is provided through two UBI ioctls: + * UBI_IOCVOLCRBLK and UBI_IOCVOLRMBLK. + */ + +#include <linux/module.h> +#include <linux/init.h> +#include <linux/err.h> +#include <linux/kernel.h> +#include <linux/list.h> +#include <linux/mutex.h> +#include <linux/slab.h> +#include <linux/vmalloc.h> +#include <linux/mtd/ubi.h> +#include <linux/workqueue.h> +#include <linux/blkdev.h> +#include <linux/hdreg.h> +#include <asm/div64.h> + +#include "ubi-media.h" +#include "ubi.h" + +/* Maximum number of supported devices */ +#define UBIBLOCK_MAX_DEVICES 32 + +/* Maximum length of the 'block=' parameter */ +#define UBIBLOCK_PARAM_LEN 63 + +/* Maximum number of comma-separated items in the 'block=' parameter */ +#define UBIBLOCK_PARAM_COUNT 2 + +struct ubiblock_param { + int ubi_num; + int vol_id; + char name[UBIBLOCK_PARAM_LEN+1]; +}; + +/* Numbers of elements set in the @ubiblock_param array */ +static int ubiblock_devs __initdata; + +/* MTD devices specification parameters */ +static struct ubiblock_param ubiblock_param[UBIBLOCK_MAX_DEVICES] __initdata; + +struct ubiblock { + struct ubi_volume_desc *desc; + int ubi_num; + int vol_id; + int refcnt; + int leb_size; + + struct gendisk *gd; + struct request_queue *rq; + + struct workqueue_struct *wq; + struct work_struct work; + + struct mutex dev_mutex; + spinlock_t queue_lock; + struct list_head list; +}; + +/* Linked list of all ubiblock instances */ +static LIST_HEAD(ubiblock_devices); +static DEFINE_MUTEX(devices_mutex); +static int ubiblock_major; + +static int __init ubiblock_set_param(const char *val, + const struct kernel_param *kp) +{ + int i, ret; + size_t len; + struct ubiblock_param *param; + char buf[UBIBLOCK_PARAM_LEN]; + char *pbuf = &buf[0]; + char *tokens[UBIBLOCK_PARAM_COUNT]; + + if (!val) + return -EINVAL; + + len = strnlen(val, UBIBLOCK_PARAM_LEN); + if (len == 0) { + ubi_warn("block: empty 'block=' parameter - ignored\n"); + return 0; + } + + if (len == UBIBLOCK_PARAM_LEN) { + ubi_err("block: parameter \"%s\" is too long, max. is %d\n", + val, UBIBLOCK_PARAM_LEN); + return -EINVAL; + } + + strcpy(buf, val); + + /* Get rid of the final newline */ + if (buf[len - 1] == '\n') + buf[len - 1] = '\0'; + + for (i = 0; i < UBIBLOCK_PARAM_COUNT; i++) + tokens[i] = strsep(&pbuf, ","); + + param = &ubiblock_param[ubiblock_devs]; + if (tokens[1]) { + /* Two parameters: can be 'ubi, vol_id' or 'ubi, vol_name' */ + ret = kstrtoint(tokens[0], 10, ¶m->ubi_num); + if (ret < 0) + return -EINVAL; + + /* Second param can be a number or a name */ + ret = kstrtoint(tokens[1], 10, ¶m->vol_id); + if (ret < 0) { + param->vol_id = -1; + strcpy(param->name, tokens[1]); + } + + } else { + /* One parameter: must be device path */ + strcpy(param->name, tokens[0]); + param->ubi_num = -1; + param->vol_id = -1; + } + + ubiblock_devs++; + + return 0; +} + +static struct kernel_param_ops ubiblock_param_ops = { + .set = ubiblock_set_param, +}; +module_param_cb(block, &ubiblock_param_ops, NULL, 0); +MODULE_PARM_DESC(block, "Attach block devices to UBI volumes. Parameter format: block=<path|dev,num|dev,name>.\n" + "Multiple \"block\" parameters may be specified.\n" + "UBI volumes may be specified by their number, name, or path to the device node.\n" + "Examples\n" + "Using the UBI volume path:\n" + "ubi.block=/dev/ubi0_0\n" + "Using the UBI device, and the volume name:\n" + "ubi.block=0,rootfs\n" + "Using both UBI device number and UBI volume number:\n" + "ubi.block=0,0\n"); + +static struct ubiblock *find_dev_nolock(int ubi_num, int vol_id) +{ + struct ubiblock *dev; + + list_for_each_entry(dev, &ubiblock_devices, list) + if (dev->ubi_num == ubi_num && dev->vol_id == vol_id) + return dev; + return NULL; +} + +static int ubiblock_read_to_buf(struct ubiblock *dev, char *buffer, + int leb, int offset, int len) +{ + int ret; + + ret = ubi_read(dev->desc, leb, buffer, offset, len); + if (ret) { + ubi_err("%s ubi_read error %d", + dev->gd->disk_name, ret); + return ret; + } + return 0; +} + +static int ubiblock_read(struct ubiblock *dev, char *buffer, + sector_t sec, int len) +{ + int ret, leb, offset; + int bytes_left = len; + int to_read = len; + u64 pos = sec << 9; + + /* Get LEB:offset address to read from */ + offset = do_div(pos, dev->leb_size); + leb = pos; + + while (bytes_left) { + /* + * We can only read one LEB at a time. Therefore if the read + * length is larger than one LEB size, we split the operation. + */ + if (offset + to_read > dev->leb_size) + to_read = dev->leb_size - offset; + + ret = ubiblock_read_to_buf(dev, buffer, leb, offset, to_read); + if (ret) + return ret; + + buffer += to_read; + bytes_left -= to_read; + to_read = bytes_left; + leb += 1; + offset = 0; + } + return 0; +} + +static int do_ubiblock_request(struct ubiblock *dev, struct request *req) +{ + int len, ret; + sector_t sec; + + if (req->cmd_type != REQ_TYPE_FS) + return -EIO; + + if (blk_rq_pos(req) + blk_rq_cur_sectors(req) > + get_capacity(req->rq_disk)) + return -EIO; + + if (rq_data_dir(req) != READ) + return -ENOSYS; /* Write not implemented */ + + sec = blk_rq_pos(req); + len = blk_rq_cur_bytes(req); + + /* + * Let's prevent the device from being removed while we're doing I/O + * work. Notice that this means we serialize all the I/O operations, + * but it's probably of no impact given the NAND core serializes + * flash access anyway. + */ + mutex_lock(&dev->dev_mutex); + ret = ubiblock_read(dev, bio_data(req->bio), sec, len); + mutex_unlock(&dev->dev_mutex); + + return ret; +} + +static void ubiblock_do_work(struct work_struct *work) +{ + struct ubiblock *dev = + container_of(work, struct ubiblock, work); + struct request_queue *rq = dev->rq; + struct request *req; + int res; + + spin_lock_irq(rq->queue_lock); + + req = blk_fetch_request(rq); + while (req) { + + spin_unlock_irq(rq->queue_lock); + res = do_ubiblock_request(dev, req); + spin_lock_irq(rq->queue_lock); + + /* + * If we're done with this request, + * we need to fetch a new one + */ + if (!__blk_end_request_cur(req, res)) + req = blk_fetch_request(rq); + } + + spin_unlock_irq(rq->queue_lock); +} + +static void ubiblock_request(struct request_queue *rq) +{ + struct ubiblock *dev; + struct request *req; + + dev = rq->queuedata; + + if (!dev) + while ((req = blk_fetch_request(rq)) != NULL) + __blk_end_request_all(req, -ENODEV); + else + queue_work(dev->wq, &dev->work); +} + +static int ubiblock_open(struct block_device *bdev, fmode_t mode) +{ + struct ubiblock *dev = bdev->bd_disk->private_data; + int ret; + + mutex_lock(&dev->dev_mutex); + if (dev->refcnt > 0) { + /* + * The volume is already open, just increase the reference + * counter. + */ + goto out_done; + } + + /* + * We want users to be aware they should only mount us as read-only. + * It's just a paranoid check, as write requests will get rejected + * in any case. + */ + if (mode & FMODE_WRITE) { + ret = -EPERM; + goto out_unlock; + } + + dev->desc = ubi_open_volume(dev->ubi_num, dev->vol_id, UBI_READONLY); + if (IS_ERR(dev->desc)) { + ubi_err("%s failed to open ubi volume %d_%d", + dev->gd->disk_name, dev->ubi_num, dev->vol_id); + ret = PTR_ERR(dev->desc); + dev->desc = NULL; + goto out_unlock; + } + +out_done: + dev->refcnt++; + mutex_unlock(&dev->dev_mutex); + return 0; + +out_unlock: + mutex_unlock(&dev->dev_mutex); + return ret; +} + +static void ubiblock_release(struct gendisk *gd, fmode_t mode) +{ + struct ubiblock *dev = gd->private_data; + + mutex_lock(&dev->dev_mutex); + dev->refcnt--; + if (dev->refcnt == 0) { + ubi_close_volume(dev->desc); + dev->desc = NULL; + } + mutex_unlock(&dev->dev_mutex); +} + +static int ubiblock_getgeo(struct block_device *bdev, struct hd_geometry *geo) +{ + /* Some tools might require this information */ + geo->heads = 1; + geo->cylinders = 1; + geo->sectors = get_capacity(bdev->bd_disk); + geo->start = 0; + return 0; +} + +static const struct block_device_operations ubiblock_ops = { + .owner = THIS_MODULE, + .open = ubiblock_open, + .release = ubiblock_release, + .getgeo = ubiblock_getgeo, +}; + +int ubiblock_create(struct ubi_volume_info *vi) +{ + struct ubiblock *dev; + struct gendisk *gd; + int disk_capacity; + int ret; + + /* Check that the volume isn't already handled */ + mutex_lock(&devices_mutex); + if (find_dev_nolock(vi->ubi_num, vi->vol_id)) { + mutex_unlock(&devices_mutex); + return -EEXIST; + } + mutex_unlock(&devices_mutex); + + dev = kzalloc(sizeof(struct ubiblock), GFP_KERNEL); + if (!dev) + return -ENOMEM; + + mutex_init(&dev->dev_mutex); + + dev->ubi_num = vi->ubi_num; + dev->vol_id = vi->vol_id; + dev->leb_size = vi->usable_leb_size; + + /* Initialize the gendisk of this ubiblock device */ + gd = alloc_disk(1); + if (!gd) { + ubi_err("block: alloc_disk failed"); + ret = -ENODEV; + goto out_free_dev; + } + + gd->fops = &ubiblock_ops; + gd->major = ubiblock_major; + gd->first_minor = dev->ubi_num * UBI_MAX_VOLUMES + dev->vol_id; + gd->private_data = dev; + sprintf(gd->disk_name, "ubiblock%d_%d", dev->ubi_num, dev->vol_id); + disk_capacity = (vi->size * vi->usable_leb_size) >> 9; + set_capacity(gd, disk_capacity); + dev->gd = gd; + + spin_lock_init(&dev->queue_lock); + dev->rq = blk_init_queue(ubiblock_request, &dev->queue_lock); + if (!dev->rq) { + ubi_err("block: blk_init_queue failed"); + ret = -ENODEV; + goto out_put_disk; + } + + dev->rq->queuedata = dev; + dev->gd->queue = dev->rq; + + /* + * Create one workqueue per volume (per registered block device). + * Rembember workqueues are cheap, they're not threads. + */ + dev->wq = alloc_workqueue("%s", 0, 0, gd->disk_name); + if (!dev->wq) { + ret = -ENOMEM; + goto out_free_queue; + } + INIT_WORK(&dev->work, ubiblock_do_work); + + mutex_lock(&devices_mutex); + list_add_tail(&dev->list, &ubiblock_devices); + mutex_unlock(&devices_mutex); + + /* Must be the last step: anyone can call file ops from now on */ + add_disk(dev->gd); + ubi_msg("%s created from ubi%d:%d(%s)", + dev->gd->disk_name, dev->ubi_num, dev->vol_id, vi->name); + return 0; + +out_free_queue: + blk_cleanup_queue(dev->rq); +out_put_disk: + put_disk(dev->gd); +out_free_dev: + kfree(dev); + + return ret; +} + +static void ubiblock_cleanup(struct ubiblock *dev) +{ + del_gendisk(dev->gd); + blk_cleanup_queue(dev->rq); + ubi_msg("%s released", dev->gd->disk_name); + put_disk(dev->gd); +} + +int ubiblock_remove(struct ubi_volume_info *vi) +{ + struct ubiblock *dev; + + mutex_lock(&devices_mutex); + dev = find_dev_nolock(vi->ubi_num, vi->vol_id); + if (!dev) { + mutex_unlock(&devices_mutex); + return -ENODEV; + } + + /* Found a device, let's lock it so we can check if it's busy */ + mutex_lock(&dev->dev_mutex); + if (dev->refcnt > 0) { + mutex_unlock(&dev->dev_mutex); + mutex_unlock(&devices_mutex); + return -EBUSY; + } + + /* Remove from device list */ + list_del(&dev->list); + mutex_unlock(&devices_mutex); + + /* Flush pending work and stop this workqueue */ + destroy_workqueue(dev->wq); + + ubiblock_cleanup(dev); + mutex_unlock(&dev->dev_mutex); + kfree(dev); + return 0; +} + +static void ubiblock_resize(struct ubi_volume_info *vi) +{ + struct ubiblock *dev; + int disk_capacity; + + /* + * Need to lock the device list until we stop using the device, + * otherwise the device struct might get released in + * 'ubiblock_remove()'. + */ + mutex_lock(&devices_mutex); + dev = find_dev_nolock(vi->ubi_num, vi->vol_id); + if (!dev) { + mutex_unlock(&devices_mutex); + return; + } + + mutex_lock(&dev->dev_mutex); + disk_capacity = (vi->size * vi->usable_leb_size) >> 9; + set_capacity(dev->gd, disk_capacity); + ubi_msg("%s resized to %d LEBs", dev->gd->disk_name, vi->size); + mutex_unlock(&dev->dev_mutex); + mutex_unlock(&devices_mutex); +} + +static int ubiblock_notify(struct notifier_block *nb, + unsigned long notification_type, void *ns_ptr) +{ + struct ubi_notification *nt = ns_ptr; + + switch (notification_type) { + case UBI_VOLUME_ADDED: + /* + * We want to enforce explicit block device creation for + * volumes, so when a volume is added we do nothing. + */ + break; + case UBI_VOLUME_REMOVED: + ubiblock_remove(&nt->vi); + break; + case UBI_VOLUME_RESIZED: + ubiblock_resize(&nt->vi); + break; + default: + break; + } + return NOTIFY_OK; +} + +static struct notifier_block ubiblock_notifier = { + .notifier_call = ubiblock_notify, +}; + +static struct ubi_volume_desc * __init +open_volume_desc(const char *name, int ubi_num, int vol_id) +{ + if (ubi_num == -1) + /* No ubi num, name must be a vol device path */ + return ubi_open_volume_path(name, UBI_READONLY); + else if (vol_id == -1) + /* No vol_id, must be vol_name */ + return ubi_open_volume_nm(ubi_num, name, UBI_READONLY); + else + return ubi_open_volume(ubi_num, vol_id, UBI_READONLY); +} + +static int __init ubiblock_create_from_param(void) +{ + int i, ret; + struct ubiblock_param *p; + struct ubi_volume_desc *desc; + struct ubi_volume_info vi; + + for (i = 0; i < ubiblock_devs; i++) { + p = &ubiblock_param[i]; + + desc = open_volume_desc(p->name, p->ubi_num, p->vol_id); + if (IS_ERR(desc)) { + ubi_err("block: can't open volume, err=%ld\n", + PTR_ERR(desc)); + ret = PTR_ERR(desc); + break; + } + + ubi_get_volume_info(desc, &vi); + ubi_close_volume(desc); + + ret = ubiblock_create(&vi); + if (ret) { + ubi_err("block: can't add '%s' volume, err=%d\n", + vi.name, ret); + break; + } + } + return ret; +} + +static void ubiblock_remove_all(void) +{ + struct ubiblock *next; + struct ubiblock *dev; + + list_for_each_entry_safe(dev, next, &ubiblock_devices, list) { + /* Flush pending work and stop workqueue */ + destroy_workqueue(dev->wq); + /* The module is being forcefully removed */ + WARN_ON(dev->desc); + /* Remove from device list */ + list_del(&dev->list); + ubiblock_cleanup(dev); + kfree(dev); + } +} + +int __init ubiblock_init(void) +{ + int ret; + + ubiblock_major = register_blkdev(0, "ubiblock"); + if (ubiblock_major < 0) + return ubiblock_major; + + /* Attach block devices from 'block=' module param */ + ret = ubiblock_create_from_param(); + if (ret) + goto err_remove; + + /* + * Block devices are only created upon user requests, so we ignore + * existing volumes. + */ + ret = ubi_register_volume_notifier(&ubiblock_notifier, 1); + if (ret) + goto err_unreg; + return 0; + +err_unreg: + unregister_blkdev(ubiblock_major, "ubiblock"); +err_remove: + ubiblock_remove_all(); + return ret; +} + +void __exit ubiblock_exit(void) +{ + ubi_unregister_volume_notifier(&ubiblock_notifier); + ubiblock_remove_all(); + unregister_blkdev(ubiblock_major, "ubiblock"); +} diff --git a/drivers/mtd/ubi/build.c b/drivers/mtd/ubi/build.c index 13b05cb33b0..6e30a3c280d 100644 --- a/drivers/mtd/ubi/build.c +++ b/drivers/mtd/ubi/build.c @@ -27,10 +27,6 @@ * module load parameters or the kernel boot parameters. If MTD devices were * specified, UBI does not attach any MTD device, but it is possible to do * later using the "UBI control device". - * - * At the moment we only attach UBI devices by scanning, which will become a - * bottleneck when flashes reach certain large size. Then one may improve UBI - * and add other methods, although it does not seem to be easy to do. */ #include <linux/err.h> @@ -40,15 +36,23 @@ #include <linux/namei.h> #include <linux/stat.h> #include <linux/miscdevice.h> +#include <linux/mtd/partitions.h> #include <linux/log2.h> #include <linux/kthread.h> #include <linux/kernel.h> #include <linux/slab.h> +#include <linux/major.h> #include "ubi.h" /* Maximum length of the 'mtd=' parameter */ #define MTD_PARAM_LEN_MAX 64 +/* Maximum number of comma-separated items in the 'mtd=' parameter */ +#define MTD_PARAM_MAX_COUNT 4 + +/* Maximum value for the number of bad PEBs per 1024 PEBs */ +#define MAX_MTD_UBI_BEB_LIMIT 768 + #ifdef CONFIG_MTD_UBI_MODULE #define ubi_is_module() 1 #else @@ -60,10 +64,13 @@ * @name: MTD character device node path, MTD device name, or MTD device number * string * @vid_hdr_offs: VID header offset + * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs */ struct mtd_dev_param { char name[MTD_PARAM_LEN_MAX]; + int ubi_num; int vid_hdr_offs; + int max_beb_per1024; }; /* Numbers of elements set in the @mtd_dev_param array */ @@ -71,7 +78,10 @@ static int __initdata mtd_devs; /* MTD devices specification parameters */ static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES]; - +#ifdef CONFIG_MTD_UBI_FASTMAP +/* UBI module parameter to enable fastmap automatically on non-fastmap images */ +static bool fm_autoconvert; +#endif /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ struct class *ubi_class; @@ -95,8 +105,8 @@ DEFINE_MUTEX(ubi_devices_mutex); static DEFINE_SPINLOCK(ubi_devices_lock); /* "Show" method for files in '/<sysfs>/class/ubi/' */ -static ssize_t ubi_version_show(struct class *class, struct class_attribute *attr, - char *buf) +static ssize_t ubi_version_show(struct class *class, + struct class_attribute *attr, char *buf) { return sprintf(buf, "%d\n", UBI_VERSION); } @@ -148,6 +158,19 @@ int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) ubi_do_get_device_info(ubi, &nt.di); ubi_do_get_volume_info(ubi, vol, &nt.vi); + +#ifdef CONFIG_MTD_UBI_FASTMAP + switch (ntype) { + case UBI_VOLUME_ADDED: + case UBI_VOLUME_REMOVED: + case UBI_VOLUME_RESIZED: + case UBI_VOLUME_RENAMED: + if (ubi_update_fastmap(ubi)) { + ubi_err("Unable to update fastmap!"); + ubi_ro_mode(ubi); + } + } +#endif return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); } @@ -554,10 +577,10 @@ static void uif_close(struct ubi_device *ubi) } /** - * free_internal_volumes - free internal volumes. + * ubi_free_internal_volumes - free internal volumes. * @ubi: UBI device description object */ -static void free_internal_volumes(struct ubi_device *ubi) +void ubi_free_internal_volumes(struct ubi_device *ubi) { int i; @@ -568,60 +591,38 @@ static void free_internal_volumes(struct ubi_device *ubi) } } -/** - * attach_by_scanning - attach an MTD device using scanning method. - * @ubi: UBI device descriptor - * - * This function returns zero in case of success and a negative error code in - * case of failure. - * - * Note, currently this is the only method to attach UBI devices. Hopefully in - * the future we'll have more scalable attaching methods and avoid full media - * scanning. But even in this case scanning will be needed as a fall-back - * attaching method if there are some on-flash table corruptions. - */ -static int attach_by_scanning(struct ubi_device *ubi) +static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) { - int err; - struct ubi_scan_info *si; - - si = ubi_scan(ubi); - if (IS_ERR(si)) - return PTR_ERR(si); - - ubi->bad_peb_count = si->bad_peb_count; - ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count; - ubi->max_ec = si->max_ec; - ubi->mean_ec = si->mean_ec; + int limit, device_pebs; + uint64_t device_size; - err = ubi_read_volume_table(ubi, si); - if (err) - goto out_si; - - err = ubi_wl_init_scan(ubi, si); - if (err) - goto out_vtbl; + if (!max_beb_per1024) + return 0; - err = ubi_eba_init_scan(ubi, si); - if (err) - goto out_wl; + /* + * Here we are using size of the entire flash chip and + * not just the MTD partition size because the maximum + * number of bad eraseblocks is a percentage of the + * whole device and bad eraseblocks are not fairly + * distributed over the flash chip. So the worst case + * is that all the bad eraseblocks of the chip are in + * the MTD partition we are attaching (ubi->mtd). + */ + device_size = mtd_get_device_size(ubi->mtd); + device_pebs = mtd_div_by_eb(device_size, ubi->mtd); + limit = mult_frac(device_pebs, max_beb_per1024, 1024); - ubi_scan_destroy_si(si); - return 0; + /* Round it up */ + if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) + limit += 1; -out_wl: - ubi_wl_close(ubi); -out_vtbl: - free_internal_volumes(ubi); - vfree(ubi->vtbl); -out_si: - ubi_scan_destroy_si(si); - return err; + return limit; } /** * io_init - initialize I/O sub-system for a given UBI device. * @ubi: UBI device description object + * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs * * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are * assumed: @@ -634,8 +635,11 @@ out_si: * This function returns zero in case of success and a negative error code in * case of failure. */ -static int io_init(struct ubi_device *ubi) +static int io_init(struct ubi_device *ubi, int max_beb_per1024) { + dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); + dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); + if (ubi->mtd->numeraseregions != 0) { /* * Some flashes have several erase regions. Different regions @@ -662,8 +666,10 @@ static int io_init(struct ubi_device *ubi) ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); ubi->flash_size = ubi->mtd->size; - if (ubi->mtd->block_isbad && ubi->mtd->block_markbad) + if (mtd_can_have_bb(ubi->mtd)) { ubi->bad_allowed = 1; + ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); + } if (ubi->mtd->type == MTD_NORFLASH) { ubi_assert(ubi->mtd->writesize == 1); @@ -688,14 +694,28 @@ static int io_init(struct ubi_device *ubi) ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); + ubi->max_write_size = ubi->mtd->writebufsize; + /* + * Maximum write size has to be greater or equivalent to min. I/O + * size, and be multiple of min. I/O size. + */ + if (ubi->max_write_size < ubi->min_io_size || + ubi->max_write_size % ubi->min_io_size || + !is_power_of_2(ubi->max_write_size)) { + ubi_err("bad write buffer size %d for %d min. I/O unit", + ubi->max_write_size, ubi->min_io_size); + return -EINVAL; + } + /* Calculate default aligned sizes of EC and VID headers */ ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); - dbg_msg("min_io_size %d", ubi->min_io_size); - dbg_msg("hdrs_min_io_size %d", ubi->hdrs_min_io_size); - dbg_msg("ec_hdr_alsize %d", ubi->ec_hdr_alsize); - dbg_msg("vid_hdr_alsize %d", ubi->vid_hdr_alsize); + dbg_gen("min_io_size %d", ubi->min_io_size); + dbg_gen("max_write_size %d", ubi->max_write_size); + dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); + dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); + dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); if (ubi->vid_hdr_offset == 0) /* Default offset */ @@ -709,13 +729,13 @@ static int io_init(struct ubi_device *ubi) } /* Similar for the data offset */ - ubi->leb_start = ubi->vid_hdr_offset + UBI_EC_HDR_SIZE; + ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); - dbg_msg("vid_hdr_offset %d", ubi->vid_hdr_offset); - dbg_msg("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); - dbg_msg("vid_hdr_shift %d", ubi->vid_hdr_shift); - dbg_msg("leb_start %d", ubi->leb_start); + dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); + dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); + dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); + dbg_gen("leb_start %d", ubi->leb_start); /* The shift must be aligned to 32-bit boundary */ if (ubi->vid_hdr_shift % 4) { @@ -741,7 +761,7 @@ static int io_init(struct ubi_device *ubi) ubi->max_erroneous = ubi->peb_count / 10; if (ubi->max_erroneous < 16) ubi->max_erroneous = 16; - dbg_msg("max_erroneous %d", ubi->max_erroneous); + dbg_gen("max_erroneous %d", ubi->max_erroneous); /* * It may happen that EC and VID headers are situated in one minimal @@ -749,36 +769,24 @@ static int io_init(struct ubi_device *ubi) * read-only mode. */ if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { - ubi_warn("EC and VID headers are in the same minimal I/O unit, " - "switch to read-only mode"); + ubi_warn("EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); ubi->ro_mode = 1; } ubi->leb_size = ubi->peb_size - ubi->leb_start; if (!(ubi->mtd->flags & MTD_WRITEABLE)) { - ubi_msg("MTD device %d is write-protected, attach in " - "read-only mode", ubi->mtd->index); + ubi_msg("MTD device %d is write-protected, attach in read-only mode", + ubi->mtd->index); ubi->ro_mode = 1; } - ubi_msg("physical eraseblock size: %d bytes (%d KiB)", - ubi->peb_size, ubi->peb_size >> 10); - ubi_msg("logical eraseblock size: %d bytes", ubi->leb_size); - ubi_msg("smallest flash I/O unit: %d", ubi->min_io_size); - if (ubi->hdrs_min_io_size != ubi->min_io_size) - ubi_msg("sub-page size: %d", - ubi->hdrs_min_io_size); - ubi_msg("VID header offset: %d (aligned %d)", - ubi->vid_hdr_offset, ubi->vid_hdr_aloffset); - ubi_msg("data offset: %d", ubi->leb_start); - /* - * Note, ideally, we have to initialize ubi->bad_peb_count here. But + * Note, ideally, we have to initialize @ubi->bad_peb_count here. But * unfortunately, MTD does not provide this information. We should loop * over all physical eraseblocks and invoke mtd->block_is_bad() for - * each physical eraseblock. So, we skip ubi->bad_peb_count - * uninitialized and initialize it after scanning. + * each physical eraseblock. So, we leave @ubi->bad_peb_count + * uninitialized so far. */ return 0; @@ -789,7 +797,7 @@ static int io_init(struct ubi_device *ubi) * @ubi: UBI device description object * @vol_id: ID of the volume to re-size * - * This function re-sizes the volume marked by the @UBI_VTBL_AUTORESIZE_FLG in + * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in * the volume table to the largest possible size. See comments in ubi-header.h * for more description of the flag. Returns zero in case of success and a * negative error code in case of failure. @@ -800,6 +808,11 @@ static int autoresize(struct ubi_device *ubi, int vol_id) struct ubi_volume *vol = ubi->volumes[vol_id]; int err, old_reserved_pebs = vol->reserved_pebs; + if (ubi->ro_mode) { + ubi_warn("skip auto-resize because of R/O mode"); + return 0; + } + /* * Clear the auto-resize flag in the volume in-memory copy of the * volume table, and 'ubi_resize_volume()' will propagate this change @@ -814,8 +827,7 @@ static int autoresize(struct ubi_device *ubi, int vol_id) * No available PEBs to re-size the volume, clear the flag on * flash and exit. */ - memcpy(&vtbl_rec, &ubi->vtbl[vol_id], - sizeof(struct ubi_vtbl_record)); + vtbl_rec = ubi->vtbl[vol_id]; err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); if (err) ubi_err("cannot clean auto-resize flag for volume %d", @@ -841,6 +853,7 @@ static int autoresize(struct ubi_device *ubi, int vol_id) * @mtd: MTD device description object * @ubi_num: number to assign to the new UBI device * @vid_hdr_offset: VID header offset + * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs * * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in @@ -851,11 +864,18 @@ static int autoresize(struct ubi_device *ubi, int vol_id) * Note, the invocations of this function has to be serialized by the * @ubi_devices_mutex. */ -int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset) +int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, + int vid_hdr_offset, int max_beb_per1024) { struct ubi_device *ubi; int i, err, ref = 0; + if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) + return -EINVAL; + + if (!max_beb_per1024) + max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; + /* * Check if we already have the same MTD device attached. * @@ -865,7 +885,7 @@ int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset) for (i = 0; i < UBI_MAX_DEVICES; i++) { ubi = ubi_devices[i]; if (ubi && mtd->index == ubi->mtd->index) { - dbg_err("mtd%d is already attached to ubi%d", + ubi_err("mtd%d is already attached to ubi%d", mtd->index, i); return -EEXIST; } @@ -880,8 +900,8 @@ int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset) * no sense to attach emulated MTD devices, so we prohibit this. */ if (mtd->type == MTD_UBIVOLUME) { - ubi_err("refuse attaching mtd%d - it is already emulated on " - "top of UBI", mtd->index); + ubi_err("refuse attaching mtd%d - it is already emulated on top of UBI", + mtd->index); return -EINVAL; } @@ -891,7 +911,7 @@ int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset) if (!ubi_devices[ubi_num]) break; if (ubi_num == UBI_MAX_DEVICES) { - dbg_err("only %d UBI devices may be created", + ubi_err("only %d UBI devices may be created", UBI_MAX_DEVICES); return -ENFILE; } @@ -901,7 +921,7 @@ int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset) /* Make sure ubi_num is not busy */ if (ubi_devices[ubi_num]) { - dbg_err("ubi%d already exists", ubi_num); + ubi_err("ubi%d already exists", ubi_num); return -EEXIST; } } @@ -915,36 +935,61 @@ int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset) ubi->vid_hdr_offset = vid_hdr_offset; ubi->autoresize_vol_id = -1; +#ifdef CONFIG_MTD_UBI_FASTMAP + ubi->fm_pool.used = ubi->fm_pool.size = 0; + ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; + + /* + * fm_pool.max_size is 5% of the total number of PEBs but it's also + * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. + */ + ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, + ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); + if (ubi->fm_pool.max_size < UBI_FM_MIN_POOL_SIZE) + ubi->fm_pool.max_size = UBI_FM_MIN_POOL_SIZE; + + ubi->fm_wl_pool.max_size = UBI_FM_WL_POOL_SIZE; + ubi->fm_disabled = !fm_autoconvert; + + if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) + <= UBI_FM_MAX_START) { + ubi_err("More than %i PEBs are needed for fastmap, sorry.", + UBI_FM_MAX_START); + ubi->fm_disabled = 1; + } + + ubi_msg("default fastmap pool size: %d", ubi->fm_pool.max_size); + ubi_msg("default fastmap WL pool size: %d", ubi->fm_wl_pool.max_size); +#else + ubi->fm_disabled = 1; +#endif mutex_init(&ubi->buf_mutex); mutex_init(&ubi->ckvol_mutex); mutex_init(&ubi->device_mutex); spin_lock_init(&ubi->volumes_lock); + mutex_init(&ubi->fm_mutex); + init_rwsem(&ubi->fm_sem); ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num); - err = io_init(ubi); + err = io_init(ubi, max_beb_per1024); if (err) goto out_free; err = -ENOMEM; - ubi->peb_buf1 = vmalloc(ubi->peb_size); - if (!ubi->peb_buf1) - goto out_free; - - ubi->peb_buf2 = vmalloc(ubi->peb_size); - if (!ubi->peb_buf2) + ubi->peb_buf = vmalloc(ubi->peb_size); + if (!ubi->peb_buf) goto out_free; -#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID - mutex_init(&ubi->dbg_buf_mutex); - ubi->dbg_peb_buf = vmalloc(ubi->peb_size); - if (!ubi->dbg_peb_buf) +#ifdef CONFIG_MTD_UBI_FASTMAP + ubi->fm_size = ubi_calc_fm_size(ubi); + ubi->fm_buf = vzalloc(ubi->fm_size); + if (!ubi->fm_buf) goto out_free; #endif - - err = attach_by_scanning(ubi); + err = ubi_attach(ubi, 0); if (err) { - dbg_err("failed to attach by scanning, error %d", err); + ubi_err("failed to attach mtd%d, error %d", mtd->index, err); goto out_free; } @@ -958,38 +1003,43 @@ int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset) if (err) goto out_detach; - ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name); + err = ubi_debugfs_init_dev(ubi); + if (err) + goto out_uif; + + ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); if (IS_ERR(ubi->bgt_thread)) { err = PTR_ERR(ubi->bgt_thread); ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name, err); - goto out_uif; + goto out_debugfs; } - ubi_msg("attached mtd%d to ubi%d", mtd->index, ubi_num); - ubi_msg("MTD device name: \"%s\"", mtd->name); - ubi_msg("MTD device size: %llu MiB", ubi->flash_size >> 20); - ubi_msg("number of good PEBs: %d", ubi->good_peb_count); - ubi_msg("number of bad PEBs: %d", ubi->bad_peb_count); - ubi_msg("max. allowed volumes: %d", ubi->vtbl_slots); - ubi_msg("wear-leveling threshold: %d", CONFIG_MTD_UBI_WL_THRESHOLD); - ubi_msg("number of internal volumes: %d", UBI_INT_VOL_COUNT); - ubi_msg("number of user volumes: %d", - ubi->vol_count - UBI_INT_VOL_COUNT); - ubi_msg("available PEBs: %d", ubi->avail_pebs); - ubi_msg("total number of reserved PEBs: %d", ubi->rsvd_pebs); - ubi_msg("number of PEBs reserved for bad PEB handling: %d", - ubi->beb_rsvd_pebs); - ubi_msg("max/mean erase counter: %d/%d", ubi->max_ec, ubi->mean_ec); - ubi_msg("image sequence number: %d", ubi->image_seq); + ubi_msg("attached mtd%d (name \"%s\", size %llu MiB) to ubi%d", + mtd->index, mtd->name, ubi->flash_size >> 20, ubi_num); + ubi_msg("PEB size: %d bytes (%d KiB), LEB size: %d bytes", + ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); + ubi_msg("min./max. I/O unit sizes: %d/%d, sub-page size %d", + ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); + ubi_msg("VID header offset: %d (aligned %d), data offset: %d", + ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); + ubi_msg("good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", + ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); + ubi_msg("user volume: %d, internal volumes: %d, max. volumes count: %d", + ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, + ubi->vtbl_slots); + ubi_msg("max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", + ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, + ubi->image_seq); + ubi_msg("available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", + ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); /* * The below lock makes sure we do not race with 'ubi_thread()' which * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. */ spin_lock(&ubi->wl_lock); - if (!DBG_DISABLE_BGT) - ubi->thread_enabled = 1; + ubi->thread_enabled = 1; wake_up_process(ubi->bgt_thread); spin_unlock(&ubi->wl_lock); @@ -997,18 +1047,19 @@ int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset) ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); return ubi_num; +out_debugfs: + ubi_debugfs_exit_dev(ubi); out_uif: + get_device(&ubi->dev); + ubi_assert(ref); uif_close(ubi); out_detach: ubi_wl_close(ubi); - free_internal_volumes(ubi); + ubi_free_internal_volumes(ubi); vfree(ubi->vtbl); out_free: - vfree(ubi->peb_buf1); - vfree(ubi->peb_buf2); -#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID - vfree(ubi->dbg_peb_buf); -#endif + vfree(ubi->peb_buf); + vfree(ubi->fm_buf); if (ref) put_device(&ubi->dev); else @@ -1057,8 +1108,12 @@ int ubi_detach_mtd_dev(int ubi_num, int anyway) ubi_assert(ubi_num == ubi->ubi_num); ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); - dbg_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num); - + ubi_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num); +#ifdef CONFIG_MTD_UBI_FASTMAP + /* If we don't write a new fastmap at detach time we lose all + * EC updates that have been made since the last written fastmap. */ + ubi_update_fastmap(ubi); +#endif /* * Before freeing anything, we have to stop the background thread to * prevent it from doing anything on this device while we are freeing. @@ -1072,16 +1127,15 @@ int ubi_detach_mtd_dev(int ubi_num, int anyway) */ get_device(&ubi->dev); + ubi_debugfs_exit_dev(ubi); uif_close(ubi); + ubi_wl_close(ubi); - free_internal_volumes(ubi); + ubi_free_internal_volumes(ubi); vfree(ubi->vtbl); put_mtd_device(ubi->mtd); - vfree(ubi->peb_buf1); - vfree(ubi->peb_buf2); -#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID - vfree(ubi->dbg_peb_buf); -#endif + vfree(ubi->peb_buf); + vfree(ubi->fm_buf); ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num); put_device(&ubi->dev); return 0; @@ -1191,8 +1245,15 @@ static int __init ubi_init(void) ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", sizeof(struct ubi_wl_entry), 0, 0, NULL); - if (!ubi_wl_entry_slab) + if (!ubi_wl_entry_slab) { + err = -ENOMEM; goto out_dev_unreg; + } + + err = ubi_debugfs_init(); + if (err) + goto out_slab; + /* Attach MTD devices */ for (i = 0; i < mtd_devs; i++) { @@ -1204,12 +1265,16 @@ static int __init ubi_init(void) mtd = open_mtd_device(p->name); if (IS_ERR(mtd)) { err = PTR_ERR(mtd); - goto out_detach; + ubi_err("cannot open mtd %s, error %d", p->name, err); + /* See comment below re-ubi_is_module(). */ + if (ubi_is_module()) + goto out_detach; + continue; } mutex_lock(&ubi_devices_mutex); - err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO, - p->vid_hdr_offs); + err = ubi_attach_mtd_dev(mtd, p->ubi_num, + p->vid_hdr_offs, p->max_beb_per1024); mutex_unlock(&ubi_devices_mutex); if (err < 0) { ubi_err("cannot attach mtd%d", mtd->index); @@ -1233,6 +1298,15 @@ static int __init ubi_init(void) } } + err = ubiblock_init(); + if (err) { + ubi_err("block: cannot initialize, error %d", err); + + /* See comment above re-ubi_is_module(). */ + if (ubi_is_module()) + goto out_detach; + } + return 0; out_detach: @@ -1242,6 +1316,8 @@ out_detach: ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); mutex_unlock(&ubi_devices_mutex); } + ubi_debugfs_exit(); +out_slab: kmem_cache_destroy(ubi_wl_entry_slab); out_dev_unreg: misc_deregister(&ubi_ctrl_cdev); @@ -1250,21 +1326,24 @@ out_version: out_class: class_destroy(ubi_class); out: - ubi_err("UBI error: cannot initialize UBI, error %d", err); + ubi_err("cannot initialize UBI, error %d", err); return err; } -module_init(ubi_init); +late_initcall(ubi_init); static void __exit ubi_exit(void) { int i; + ubiblock_exit(); + for (i = 0; i < UBI_MAX_DEVICES; i++) if (ubi_devices[i]) { mutex_lock(&ubi_devices_mutex); ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); mutex_unlock(&ubi_devices_mutex); } + ubi_debugfs_exit(); kmem_cache_destroy(ubi_wl_entry_slab); misc_deregister(&ubi_ctrl_cdev); class_remove_file(ubi_class, &ubi_version); @@ -1286,8 +1365,7 @@ static int __init bytes_str_to_int(const char *str) result = simple_strtoul(str, &endp, 0); if (str == endp || result >= INT_MAX) { - printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n", - str); + ubi_err("incorrect bytes count: \"%s\"\n", str); return -EINVAL; } @@ -1303,8 +1381,7 @@ static int __init bytes_str_to_int(const char *str) case '\0': break; default: - printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n", - str); + ubi_err("incorrect bytes count: \"%s\"\n", str); return -EINVAL; } @@ -1325,27 +1402,26 @@ static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp) struct mtd_dev_param *p; char buf[MTD_PARAM_LEN_MAX]; char *pbuf = &buf[0]; - char *tokens[2] = {NULL, NULL}; + char *tokens[MTD_PARAM_MAX_COUNT], *token; if (!val) return -EINVAL; if (mtd_devs == UBI_MAX_DEVICES) { - printk(KERN_ERR "UBI error: too many parameters, max. is %d\n", - UBI_MAX_DEVICES); + ubi_err("too many parameters, max. is %d\n", + UBI_MAX_DEVICES); return -EINVAL; } len = strnlen(val, MTD_PARAM_LEN_MAX); if (len == MTD_PARAM_LEN_MAX) { - printk(KERN_ERR "UBI error: parameter \"%s\" is too long, " - "max. is %d\n", val, MTD_PARAM_LEN_MAX); + ubi_err("parameter \"%s\" is too long, max. is %d\n", + val, MTD_PARAM_LEN_MAX); return -EINVAL; } if (len == 0) { - printk(KERN_WARNING "UBI warning: empty 'mtd=' parameter - " - "ignored\n"); + pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); return 0; } @@ -1355,42 +1431,69 @@ static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp) if (buf[len - 1] == '\n') buf[len - 1] = '\0'; - for (i = 0; i < 2; i++) + for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) tokens[i] = strsep(&pbuf, ","); if (pbuf) { - printk(KERN_ERR "UBI error: too many arguments at \"%s\"\n", - val); + ubi_err("too many arguments at \"%s\"\n", val); return -EINVAL; } p = &mtd_dev_param[mtd_devs]; strcpy(&p->name[0], tokens[0]); - if (tokens[1]) - p->vid_hdr_offs = bytes_str_to_int(tokens[1]); + token = tokens[1]; + if (token) { + p->vid_hdr_offs = bytes_str_to_int(token); + + if (p->vid_hdr_offs < 0) + return p->vid_hdr_offs; + } + + token = tokens[2]; + if (token) { + int err = kstrtoint(token, 10, &p->max_beb_per1024); + + if (err) { + ubi_err("bad value for max_beb_per1024 parameter: %s", + token); + return -EINVAL; + } + } - if (p->vid_hdr_offs < 0) - return p->vid_hdr_offs; + token = tokens[3]; + if (token) { + int err = kstrtoint(token, 10, &p->ubi_num); + + if (err) { + ubi_err("bad value for ubi_num parameter: %s", token); + return -EINVAL; + } + } else + p->ubi_num = UBI_DEV_NUM_AUTO; mtd_devs += 1; return 0; } module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000); -MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: " - "mtd=<name|num|path>[,<vid_hdr_offs>].\n" +MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" "Multiple \"mtd\" parameters may be specified.\n" - "MTD devices may be specified by their number, name, or " - "path to the MTD character device node.\n" - "Optional \"vid_hdr_offs\" parameter specifies UBI VID " - "header position to be used by UBI.\n" - "Example 1: mtd=/dev/mtd0 - attach MTD device " - "/dev/mtd0.\n" - "Example 2: mtd=content,1984 mtd=4 - attach MTD device " - "with name \"content\" using VID header offset 1984, and " - "MTD device number 4 with default VID header offset."); - + "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" + "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" + "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" + __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" + "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" + "\n" + "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" + "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" + "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" + "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" + "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); +#ifdef CONFIG_MTD_UBI_FASTMAP +module_param(fm_autoconvert, bool, 0644); +MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); +#endif MODULE_VERSION(__stringify(UBI_VERSION)); MODULE_DESCRIPTION("UBI - Unsorted Block Images"); MODULE_AUTHOR("Artem Bityutskiy"); diff --git a/drivers/mtd/ubi/cdev.c b/drivers/mtd/ubi/cdev.c index 4dfa6b90c21..7646220ca6e 100644 --- a/drivers/mtd/ubi/cdev.c +++ b/drivers/mtd/ubi/cdev.c @@ -63,7 +63,7 @@ static int get_exclusive(struct ubi_volume_desc *desc) users = vol->readers + vol->writers + vol->exclusive; ubi_assert(users > 0); if (users > 1) { - dbg_err("%d users for volume %d", users, vol->vol_id); + ubi_err("%d users for volume %d", users, vol->vol_id); err = -EBUSY; } else { vol->readers = vol->writers = 0; @@ -115,7 +115,7 @@ static int vol_cdev_open(struct inode *inode, struct file *file) mode = UBI_READONLY; dbg_gen("open device %d, volume %d, mode %d", - ubi_num, vol_id, mode); + ubi_num, vol_id, mode); desc = ubi_open_volume(ubi_num, vol_id, mode); if (IS_ERR(desc)) @@ -140,9 +140,9 @@ static int vol_cdev_release(struct inode *inode, struct file *file) vol->updating = 0; vfree(vol->upd_buf); } else if (vol->changing_leb) { - dbg_gen("only %lld of %lld bytes received for atomic LEB change" - " for volume %d:%d, cancel", vol->upd_received, - vol->upd_bytes, vol->ubi->ubi_num, vol->vol_id); + dbg_gen("only %lld of %lld bytes received for atomic LEB change for volume %d:%d, cancel", + vol->upd_received, vol->upd_bytes, vol->ubi->ubi_num, + vol->vol_id); vol->changing_leb = 0; vfree(vol->upd_buf); } @@ -155,46 +155,27 @@ static loff_t vol_cdev_llseek(struct file *file, loff_t offset, int origin) { struct ubi_volume_desc *desc = file->private_data; struct ubi_volume *vol = desc->vol; - loff_t new_offset; if (vol->updating) { - /* Update is in progress, seeking is prohibited */ - dbg_err("updating"); + /* Update is in progress, seeking is prohibited */ + ubi_err("updating"); return -EBUSY; } - switch (origin) { - case 0: /* SEEK_SET */ - new_offset = offset; - break; - case 1: /* SEEK_CUR */ - new_offset = file->f_pos + offset; - break; - case 2: /* SEEK_END */ - new_offset = vol->used_bytes + offset; - break; - default: - return -EINVAL; - } - - if (new_offset < 0 || new_offset > vol->used_bytes) { - dbg_err("bad seek %lld", new_offset); - return -EINVAL; - } - - dbg_gen("seek volume %d, offset %lld, origin %d, new offset %lld", - vol->vol_id, offset, origin, new_offset); - - file->f_pos = new_offset; - return new_offset; + return fixed_size_llseek(file, offset, origin, vol->used_bytes); } -static int vol_cdev_fsync(struct file *file, int datasync) +static int vol_cdev_fsync(struct file *file, loff_t start, loff_t end, + int datasync) { struct ubi_volume_desc *desc = file->private_data; struct ubi_device *ubi = desc->vol->ubi; - - return ubi_sync(ubi->ubi_num); + struct inode *inode = file_inode(file); + int err; + mutex_lock(&inode->i_mutex); + err = ubi_sync(ubi->ubi_num); + mutex_unlock(&inode->i_mutex); + return err; } @@ -212,11 +193,11 @@ static ssize_t vol_cdev_read(struct file *file, __user char *buf, size_t count, count, *offp, vol->vol_id); if (vol->updating) { - dbg_err("updating"); + ubi_err("updating"); return -EBUSY; } if (vol->upd_marker) { - dbg_err("damaged volume, update marker is set"); + ubi_err("damaged volume, update marker is set"); return -EBADF; } if (*offp == vol->used_bytes || count == 0) @@ -296,7 +277,7 @@ static ssize_t vol_cdev_direct_write(struct file *file, const char __user *buf, lnum = div_u64_rem(*offp, vol->usable_leb_size, &off); if (off & (ubi->min_io_size - 1)) { - dbg_err("unaligned position"); + ubi_err("unaligned position"); return -EINVAL; } @@ -305,7 +286,7 @@ static ssize_t vol_cdev_direct_write(struct file *file, const char __user *buf, /* We can write only in fractions of the minimum I/O unit */ if (count & (ubi->min_io_size - 1)) { - dbg_err("unaligned write length"); + ubi_err("unaligned write length"); return -EINVAL; } @@ -330,8 +311,7 @@ static ssize_t vol_cdev_direct_write(struct file *file, const char __user *buf, break; } - err = ubi_eba_write_leb(ubi, vol, lnum, tbuf, off, len, - UBI_UNKNOWN); + err = ubi_eba_write_leb(ubi, vol, lnum, tbuf, off, len); if (err) break; @@ -473,9 +453,6 @@ static long vol_cdev_ioctl(struct file *file, unsigned int cmd, if (req.lnum < 0 || req.lnum >= vol->reserved_pebs || req.bytes < 0 || req.lnum >= vol->usable_leb_size) break; - if (req.dtype != UBI_LONGTERM && req.dtype != UBI_SHORTTERM && - req.dtype != UBI_UNKNOWN) - break; err = get_exclusive(desc); if (err < 0) @@ -514,7 +491,7 @@ static long vol_cdev_ioctl(struct file *file, unsigned int cmd, if (err) break; - err = ubi_wl_flush(ubi); + err = ubi_wl_flush(ubi, UBI_ALL, UBI_ALL); break; } @@ -528,7 +505,7 @@ static long vol_cdev_ioctl(struct file *file, unsigned int cmd, err = -EFAULT; break; } - err = ubi_leb_map(desc, req.lnum, req.dtype); + err = ubi_leb_map(desc, req.lnum); break; } @@ -561,18 +538,18 @@ static long vol_cdev_ioctl(struct file *file, unsigned int cmd, } /* Set volume property command */ - case UBI_IOCSETPROP: + case UBI_IOCSETVOLPROP: { - struct ubi_set_prop_req req; + struct ubi_set_vol_prop_req req; err = copy_from_user(&req, argp, - sizeof(struct ubi_set_prop_req)); + sizeof(struct ubi_set_vol_prop_req)); if (err) { err = -EFAULT; break; } switch (req.property) { - case UBI_PROP_DIRECT_WRITE: + case UBI_VOL_PROP_DIRECT_WRITE: mutex_lock(&ubi->device_mutex); desc->vol->direct_writes = !!req.value; mutex_unlock(&ubi->device_mutex); @@ -584,6 +561,26 @@ static long vol_cdev_ioctl(struct file *file, unsigned int cmd, break; } + /* Create a R/O block device on top of the UBI volume */ + case UBI_IOCVOLCRBLK: + { + struct ubi_volume_info vi; + + ubi_get_volume_info(desc, &vi); + err = ubiblock_create(&vi); + break; + } + + /* Remove the R/O block device */ + case UBI_IOCVOLRMBLK: + { + struct ubi_volume_info vi; + + ubi_get_volume_info(desc, &vi); + err = ubiblock_remove(&vi); + break; + } + default: err = -ENOTTY; break; @@ -628,6 +625,9 @@ static int verify_mkvol_req(const struct ubi_device *ubi, if (req->alignment != 1 && n) goto bad; + if (!req->name[0] || !req->name_len) + goto bad; + if (req->name_len > UBI_VOL_NAME_MAX) { err = -ENAMETOOLONG; goto bad; @@ -640,8 +640,8 @@ static int verify_mkvol_req(const struct ubi_device *ubi, return 0; bad: - dbg_err("bad volume creation request"); - ubi_dbg_dump_mkvol_req(req); + ubi_err("bad volume creation request"); + ubi_dump_mkvol_req(req); return err; } @@ -706,12 +706,12 @@ static int rename_volumes(struct ubi_device *ubi, for (i = 0; i < req->count - 1; i++) { for (n = i + 1; n < req->count; n++) { if (req->ents[i].vol_id == req->ents[n].vol_id) { - dbg_err("duplicated volume id %d", + ubi_err("duplicated volume id %d", req->ents[i].vol_id); return -EINVAL; } if (!strcmp(req->ents[i].name, req->ents[n].name)) { - dbg_err("duplicated volume name \"%s\"", + ubi_err("duplicated volume name \"%s\"", req->ents[i].name); return -EINVAL; } @@ -731,10 +731,10 @@ static int rename_volumes(struct ubi_device *ubi, goto out_free; } - re->desc = ubi_open_volume(ubi->ubi_num, vol_id, UBI_EXCLUSIVE); + re->desc = ubi_open_volume(ubi->ubi_num, vol_id, UBI_READWRITE); if (IS_ERR(re->desc)) { err = PTR_ERR(re->desc); - dbg_err("cannot open volume %d, error %d", vol_id, err); + ubi_err("cannot open volume %d, error %d", vol_id, err); kfree(re); goto out_free; } @@ -750,7 +750,7 @@ static int rename_volumes(struct ubi_device *ubi, re->new_name_len = name_len; memcpy(re->new_name, name, name_len); list_add_tail(&re->list, &rename_list); - dbg_msg("will rename volume %d from \"%s\" to \"%s\"", + dbg_gen("will rename volume %d from \"%s\" to \"%s\"", vol_id, re->desc->vol->name, name); } @@ -793,23 +793,23 @@ static int rename_volumes(struct ubi_device *ubi, continue; /* The volume exists but busy, or an error occurred */ - dbg_err("cannot open volume \"%s\", error %d", + ubi_err("cannot open volume \"%s\", error %d", re->new_name, err); goto out_free; } - re = kzalloc(sizeof(struct ubi_rename_entry), GFP_KERNEL); - if (!re) { + re1 = kzalloc(sizeof(struct ubi_rename_entry), GFP_KERNEL); + if (!re1) { err = -ENOMEM; ubi_close_volume(desc); goto out_free; } - re->remove = 1; - re->desc = desc; - list_add(&re->list, &rename_list); - dbg_msg("will remove volume %d, name \"%s\"", - re->desc->vol->vol_id, re->desc->vol->name); + re1->remove = 1; + re1->desc = desc; + list_add(&re1->list, &rename_list); + dbg_gen("will remove volume %d, name \"%s\"", + re1->desc->vol->vol_id, re1->desc->vol->name); } mutex_lock(&ubi->device_mutex); @@ -939,7 +939,7 @@ static long ubi_cdev_ioctl(struct file *file, unsigned int cmd, { struct ubi_rnvol_req *req; - dbg_msg("re-name volumes"); + dbg_gen("re-name volumes"); req = kmalloc(sizeof(struct ubi_rnvol_req), GFP_KERNEL); if (!req) { err = -ENOMEM; @@ -1007,7 +1007,8 @@ static long ctrl_cdev_ioctl(struct file *file, unsigned int cmd, * 'ubi_attach_mtd_dev()'. */ mutex_lock(&ubi_devices_mutex); - err = ubi_attach_mtd_dev(mtd, req.ubi_num, req.vid_hdr_offset); + err = ubi_attach_mtd_dev(mtd, req.ubi_num, req.vid_hdr_offset, + req.max_beb_per1024); mutex_unlock(&ubi_devices_mutex); if (err < 0) put_mtd_device(mtd); @@ -1023,7 +1024,7 @@ static long ctrl_cdev_ioctl(struct file *file, unsigned int cmd, { int ubi_num; - dbg_gen("dettach MTD device"); + dbg_gen("detach MTD device"); err = get_user(ubi_num, (__user int32_t *)argp); if (err) { err = -EFAULT; @@ -1100,4 +1101,5 @@ const struct file_operations ubi_ctrl_cdev_operations = { .owner = THIS_MODULE, .unlocked_ioctl = ctrl_cdev_ioctl, .compat_ioctl = ctrl_cdev_compat_ioctl, + .llseek = no_llseek, }; diff --git a/drivers/mtd/ubi/debug.c b/drivers/mtd/ubi/debug.c index 4876977e52c..63cb1d7236c 100644 --- a/drivers/mtd/ubi/debug.c +++ b/drivers/mtd/ubi/debug.c @@ -18,214 +18,432 @@ * Author: Artem Bityutskiy (Битюцкий Артём) */ -/* - * Here we keep all the UBI debugging stuff which should normally be disabled - * and compiled-out, but it is extremely helpful when hunting bugs or doing big - * changes. +#include "ubi.h" +#include <linux/debugfs.h> +#include <linux/uaccess.h> +#include <linux/module.h> + + +/** + * ubi_dump_flash - dump a region of flash. + * @ubi: UBI device description object + * @pnum: the physical eraseblock number to dump + * @offset: the starting offset within the physical eraseblock to dump + * @len: the length of the region to dump */ +void ubi_dump_flash(struct ubi_device *ubi, int pnum, int offset, int len) +{ + int err; + size_t read; + void *buf; + loff_t addr = (loff_t)pnum * ubi->peb_size + offset; -#ifdef CONFIG_MTD_UBI_DEBUG + buf = vmalloc(len); + if (!buf) + return; + err = mtd_read(ubi->mtd, addr, len, &read, buf); + if (err && err != -EUCLEAN) { + ubi_err("error %d while reading %d bytes from PEB %d:%d, read %zd bytes", + err, len, pnum, offset, read); + goto out; + } -#include "ubi.h" + ubi_msg("dumping %d bytes of data from PEB %d, offset %d", + len, pnum, offset); + print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); +out: + vfree(buf); + return; +} /** - * ubi_dbg_dump_ec_hdr - dump an erase counter header. + * ubi_dump_ec_hdr - dump an erase counter header. * @ec_hdr: the erase counter header to dump */ -void ubi_dbg_dump_ec_hdr(const struct ubi_ec_hdr *ec_hdr) +void ubi_dump_ec_hdr(const struct ubi_ec_hdr *ec_hdr) { - printk(KERN_DEBUG "Erase counter header dump:\n"); - printk(KERN_DEBUG "\tmagic %#08x\n", - be32_to_cpu(ec_hdr->magic)); - printk(KERN_DEBUG "\tversion %d\n", (int)ec_hdr->version); - printk(KERN_DEBUG "\tec %llu\n", - (long long)be64_to_cpu(ec_hdr->ec)); - printk(KERN_DEBUG "\tvid_hdr_offset %d\n", - be32_to_cpu(ec_hdr->vid_hdr_offset)); - printk(KERN_DEBUG "\tdata_offset %d\n", - be32_to_cpu(ec_hdr->data_offset)); - printk(KERN_DEBUG "\timage_seq %d\n", - be32_to_cpu(ec_hdr->image_seq)); - printk(KERN_DEBUG "\thdr_crc %#08x\n", - be32_to_cpu(ec_hdr->hdr_crc)); - printk(KERN_DEBUG "erase counter header hexdump:\n"); + pr_err("Erase counter header dump:\n"); + pr_err("\tmagic %#08x\n", be32_to_cpu(ec_hdr->magic)); + pr_err("\tversion %d\n", (int)ec_hdr->version); + pr_err("\tec %llu\n", (long long)be64_to_cpu(ec_hdr->ec)); + pr_err("\tvid_hdr_offset %d\n", be32_to_cpu(ec_hdr->vid_hdr_offset)); + pr_err("\tdata_offset %d\n", be32_to_cpu(ec_hdr->data_offset)); + pr_err("\timage_seq %d\n", be32_to_cpu(ec_hdr->image_seq)); + pr_err("\thdr_crc %#08x\n", be32_to_cpu(ec_hdr->hdr_crc)); + pr_err("erase counter header hexdump:\n"); print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, ec_hdr, UBI_EC_HDR_SIZE, 1); } /** - * ubi_dbg_dump_vid_hdr - dump a volume identifier header. + * ubi_dump_vid_hdr - dump a volume identifier header. * @vid_hdr: the volume identifier header to dump */ -void ubi_dbg_dump_vid_hdr(const struct ubi_vid_hdr *vid_hdr) +void ubi_dump_vid_hdr(const struct ubi_vid_hdr *vid_hdr) { - printk(KERN_DEBUG "Volume identifier header dump:\n"); - printk(KERN_DEBUG "\tmagic %08x\n", be32_to_cpu(vid_hdr->magic)); - printk(KERN_DEBUG "\tversion %d\n", (int)vid_hdr->version); - printk(KERN_DEBUG "\tvol_type %d\n", (int)vid_hdr->vol_type); - printk(KERN_DEBUG "\tcopy_flag %d\n", (int)vid_hdr->copy_flag); - printk(KERN_DEBUG "\tcompat %d\n", (int)vid_hdr->compat); - printk(KERN_DEBUG "\tvol_id %d\n", be32_to_cpu(vid_hdr->vol_id)); - printk(KERN_DEBUG "\tlnum %d\n", be32_to_cpu(vid_hdr->lnum)); - printk(KERN_DEBUG "\tdata_size %d\n", be32_to_cpu(vid_hdr->data_size)); - printk(KERN_DEBUG "\tused_ebs %d\n", be32_to_cpu(vid_hdr->used_ebs)); - printk(KERN_DEBUG "\tdata_pad %d\n", be32_to_cpu(vid_hdr->data_pad)); - printk(KERN_DEBUG "\tsqnum %llu\n", + pr_err("Volume identifier header dump:\n"); + pr_err("\tmagic %08x\n", be32_to_cpu(vid_hdr->magic)); + pr_err("\tversion %d\n", (int)vid_hdr->version); + pr_err("\tvol_type %d\n", (int)vid_hdr->vol_type); + pr_err("\tcopy_flag %d\n", (int)vid_hdr->copy_flag); + pr_err("\tcompat %d\n", (int)vid_hdr->compat); + pr_err("\tvol_id %d\n", be32_to_cpu(vid_hdr->vol_id)); + pr_err("\tlnum %d\n", be32_to_cpu(vid_hdr->lnum)); + pr_err("\tdata_size %d\n", be32_to_cpu(vid_hdr->data_size)); + pr_err("\tused_ebs %d\n", be32_to_cpu(vid_hdr->used_ebs)); + pr_err("\tdata_pad %d\n", be32_to_cpu(vid_hdr->data_pad)); + pr_err("\tsqnum %llu\n", (unsigned long long)be64_to_cpu(vid_hdr->sqnum)); - printk(KERN_DEBUG "\thdr_crc %08x\n", be32_to_cpu(vid_hdr->hdr_crc)); - printk(KERN_DEBUG "Volume identifier header hexdump:\n"); + pr_err("\thdr_crc %08x\n", be32_to_cpu(vid_hdr->hdr_crc)); + pr_err("Volume identifier header hexdump:\n"); print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, vid_hdr, UBI_VID_HDR_SIZE, 1); } /** - * ubi_dbg_dump_vol_info- dump volume information. + * ubi_dump_vol_info - dump volume information. * @vol: UBI volume description object */ -void ubi_dbg_dump_vol_info(const struct ubi_volume *vol) +void ubi_dump_vol_info(const struct ubi_volume *vol) { - printk(KERN_DEBUG "Volume information dump:\n"); - printk(KERN_DEBUG "\tvol_id %d\n", vol->vol_id); - printk(KERN_DEBUG "\treserved_pebs %d\n", vol->reserved_pebs); - printk(KERN_DEBUG "\talignment %d\n", vol->alignment); - printk(KERN_DEBUG "\tdata_pad %d\n", vol->data_pad); - printk(KERN_DEBUG "\tvol_type %d\n", vol->vol_type); - printk(KERN_DEBUG "\tname_len %d\n", vol->name_len); - printk(KERN_DEBUG "\tusable_leb_size %d\n", vol->usable_leb_size); - printk(KERN_DEBUG "\tused_ebs %d\n", vol->used_ebs); - printk(KERN_DEBUG "\tused_bytes %lld\n", vol->used_bytes); - printk(KERN_DEBUG "\tlast_eb_bytes %d\n", vol->last_eb_bytes); - printk(KERN_DEBUG "\tcorrupted %d\n", vol->corrupted); - printk(KERN_DEBUG "\tupd_marker %d\n", vol->upd_marker); + pr_err("Volume information dump:\n"); + pr_err("\tvol_id %d\n", vol->vol_id); + pr_err("\treserved_pebs %d\n", vol->reserved_pebs); + pr_err("\talignment %d\n", vol->alignment); + pr_err("\tdata_pad %d\n", vol->data_pad); + pr_err("\tvol_type %d\n", vol->vol_type); + pr_err("\tname_len %d\n", vol->name_len); + pr_err("\tusable_leb_size %d\n", vol->usable_leb_size); + pr_err("\tused_ebs %d\n", vol->used_ebs); + pr_err("\tused_bytes %lld\n", vol->used_bytes); + pr_err("\tlast_eb_bytes %d\n", vol->last_eb_bytes); + pr_err("\tcorrupted %d\n", vol->corrupted); + pr_err("\tupd_marker %d\n", vol->upd_marker); if (vol->name_len <= UBI_VOL_NAME_MAX && strnlen(vol->name, vol->name_len + 1) == vol->name_len) { - printk(KERN_DEBUG "\tname %s\n", vol->name); + pr_err("\tname %s\n", vol->name); } else { - printk(KERN_DEBUG "\t1st 5 characters of name: %c%c%c%c%c\n", + pr_err("\t1st 5 characters of name: %c%c%c%c%c\n", vol->name[0], vol->name[1], vol->name[2], vol->name[3], vol->name[4]); } } /** - * ubi_dbg_dump_vtbl_record - dump a &struct ubi_vtbl_record object. + * ubi_dump_vtbl_record - dump a &struct ubi_vtbl_record object. * @r: the object to dump * @idx: volume table index */ -void ubi_dbg_dump_vtbl_record(const struct ubi_vtbl_record *r, int idx) +void ubi_dump_vtbl_record(const struct ubi_vtbl_record *r, int idx) { int name_len = be16_to_cpu(r->name_len); - printk(KERN_DEBUG "Volume table record %d dump:\n", idx); - printk(KERN_DEBUG "\treserved_pebs %d\n", - be32_to_cpu(r->reserved_pebs)); - printk(KERN_DEBUG "\talignment %d\n", be32_to_cpu(r->alignment)); - printk(KERN_DEBUG "\tdata_pad %d\n", be32_to_cpu(r->data_pad)); - printk(KERN_DEBUG "\tvol_type %d\n", (int)r->vol_type); - printk(KERN_DEBUG "\tupd_marker %d\n", (int)r->upd_marker); - printk(KERN_DEBUG "\tname_len %d\n", name_len); + pr_err("Volume table record %d dump:\n", idx); + pr_err("\treserved_pebs %d\n", be32_to_cpu(r->reserved_pebs)); + pr_err("\talignment %d\n", be32_to_cpu(r->alignment)); + pr_err("\tdata_pad %d\n", be32_to_cpu(r->data_pad)); + pr_err("\tvol_type %d\n", (int)r->vol_type); + pr_err("\tupd_marker %d\n", (int)r->upd_marker); + pr_err("\tname_len %d\n", name_len); if (r->name[0] == '\0') { - printk(KERN_DEBUG "\tname NULL\n"); + pr_err("\tname NULL\n"); return; } if (name_len <= UBI_VOL_NAME_MAX && strnlen(&r->name[0], name_len + 1) == name_len) { - printk(KERN_DEBUG "\tname %s\n", &r->name[0]); + pr_err("\tname %s\n", &r->name[0]); } else { - printk(KERN_DEBUG "\t1st 5 characters of name: %c%c%c%c%c\n", + pr_err("\t1st 5 characters of name: %c%c%c%c%c\n", r->name[0], r->name[1], r->name[2], r->name[3], r->name[4]); } - printk(KERN_DEBUG "\tcrc %#08x\n", be32_to_cpu(r->crc)); + pr_err("\tcrc %#08x\n", be32_to_cpu(r->crc)); } /** - * ubi_dbg_dump_sv - dump a &struct ubi_scan_volume object. - * @sv: the object to dump + * ubi_dump_av - dump a &struct ubi_ainf_volume object. + * @av: the object to dump */ -void ubi_dbg_dump_sv(const struct ubi_scan_volume *sv) +void ubi_dump_av(const struct ubi_ainf_volume *av) { - printk(KERN_DEBUG "Volume scanning information dump:\n"); - printk(KERN_DEBUG "\tvol_id %d\n", sv->vol_id); - printk(KERN_DEBUG "\thighest_lnum %d\n", sv->highest_lnum); - printk(KERN_DEBUG "\tleb_count %d\n", sv->leb_count); - printk(KERN_DEBUG "\tcompat %d\n", sv->compat); - printk(KERN_DEBUG "\tvol_type %d\n", sv->vol_type); - printk(KERN_DEBUG "\tused_ebs %d\n", sv->used_ebs); - printk(KERN_DEBUG "\tlast_data_size %d\n", sv->last_data_size); - printk(KERN_DEBUG "\tdata_pad %d\n", sv->data_pad); + pr_err("Volume attaching information dump:\n"); + pr_err("\tvol_id %d\n", av->vol_id); + pr_err("\thighest_lnum %d\n", av->highest_lnum); + pr_err("\tleb_count %d\n", av->leb_count); + pr_err("\tcompat %d\n", av->compat); + pr_err("\tvol_type %d\n", av->vol_type); + pr_err("\tused_ebs %d\n", av->used_ebs); + pr_err("\tlast_data_size %d\n", av->last_data_size); + pr_err("\tdata_pad %d\n", av->data_pad); } /** - * ubi_dbg_dump_seb - dump a &struct ubi_scan_leb object. - * @seb: the object to dump + * ubi_dump_aeb - dump a &struct ubi_ainf_peb object. + * @aeb: the object to dump * @type: object type: 0 - not corrupted, 1 - corrupted */ -void ubi_dbg_dump_seb(const struct ubi_scan_leb *seb, int type) +void ubi_dump_aeb(const struct ubi_ainf_peb *aeb, int type) { - printk(KERN_DEBUG "eraseblock scanning information dump:\n"); - printk(KERN_DEBUG "\tec %d\n", seb->ec); - printk(KERN_DEBUG "\tpnum %d\n", seb->pnum); + pr_err("eraseblock attaching information dump:\n"); + pr_err("\tec %d\n", aeb->ec); + pr_err("\tpnum %d\n", aeb->pnum); if (type == 0) { - printk(KERN_DEBUG "\tlnum %d\n", seb->lnum); - printk(KERN_DEBUG "\tscrub %d\n", seb->scrub); - printk(KERN_DEBUG "\tsqnum %llu\n", seb->sqnum); + pr_err("\tlnum %d\n", aeb->lnum); + pr_err("\tscrub %d\n", aeb->scrub); + pr_err("\tsqnum %llu\n", aeb->sqnum); } } /** - * ubi_dbg_dump_mkvol_req - dump a &struct ubi_mkvol_req object. + * ubi_dump_mkvol_req - dump a &struct ubi_mkvol_req object. * @req: the object to dump */ -void ubi_dbg_dump_mkvol_req(const struct ubi_mkvol_req *req) +void ubi_dump_mkvol_req(const struct ubi_mkvol_req *req) { char nm[17]; - printk(KERN_DEBUG "Volume creation request dump:\n"); - printk(KERN_DEBUG "\tvol_id %d\n", req->vol_id); - printk(KERN_DEBUG "\talignment %d\n", req->alignment); - printk(KERN_DEBUG "\tbytes %lld\n", (long long)req->bytes); - printk(KERN_DEBUG "\tvol_type %d\n", req->vol_type); - printk(KERN_DEBUG "\tname_len %d\n", req->name_len); + pr_err("Volume creation request dump:\n"); + pr_err("\tvol_id %d\n", req->vol_id); + pr_err("\talignment %d\n", req->alignment); + pr_err("\tbytes %lld\n", (long long)req->bytes); + pr_err("\tvol_type %d\n", req->vol_type); + pr_err("\tname_len %d\n", req->name_len); memcpy(nm, req->name, 16); nm[16] = 0; - printk(KERN_DEBUG "\t1st 16 characters of name: %s\n", nm); + pr_err("\t1st 16 characters of name: %s\n", nm); +} + +/* + * Root directory for UBI stuff in debugfs. Contains sub-directories which + * contain the stuff specific to particular UBI devices. + */ +static struct dentry *dfs_rootdir; + +/** + * ubi_debugfs_init - create UBI debugfs directory. + * + * Create UBI debugfs directory. Returns zero in case of success and a negative + * error code in case of failure. + */ +int ubi_debugfs_init(void) +{ + if (!IS_ENABLED(CONFIG_DEBUG_FS)) + return 0; + + dfs_rootdir = debugfs_create_dir("ubi", NULL); + if (IS_ERR_OR_NULL(dfs_rootdir)) { + int err = dfs_rootdir ? -ENODEV : PTR_ERR(dfs_rootdir); + + ubi_err("cannot create \"ubi\" debugfs directory, error %d\n", + err); + return err; + } + + return 0; +} + +/** + * ubi_debugfs_exit - remove UBI debugfs directory. + */ +void ubi_debugfs_exit(void) +{ + if (IS_ENABLED(CONFIG_DEBUG_FS)) + debugfs_remove(dfs_rootdir); +} + +/* Read an UBI debugfs file */ +static ssize_t dfs_file_read(struct file *file, char __user *user_buf, + size_t count, loff_t *ppos) +{ + unsigned long ubi_num = (unsigned long)file->private_data; + struct dentry *dent = file->f_path.dentry; + struct ubi_device *ubi; + struct ubi_debug_info *d; + char buf[3]; + int val; + + ubi = ubi_get_device(ubi_num); + if (!ubi) + return -ENODEV; + d = &ubi->dbg; + + if (dent == d->dfs_chk_gen) + val = d->chk_gen; + else if (dent == d->dfs_chk_io) + val = d->chk_io; + else if (dent == d->dfs_disable_bgt) + val = d->disable_bgt; + else if (dent == d->dfs_emulate_bitflips) + val = d->emulate_bitflips; + else if (dent == d->dfs_emulate_io_failures) + val = d->emulate_io_failures; + else { + count = -EINVAL; + goto out; + } + + if (val) + buf[0] = '1'; + else + buf[0] = '0'; + buf[1] = '\n'; + buf[2] = 0x00; + + count = simple_read_from_buffer(user_buf, count, ppos, buf, 2); + +out: + ubi_put_device(ubi); + return count; } +/* Write an UBI debugfs file */ +static ssize_t dfs_file_write(struct file *file, const char __user *user_buf, + size_t count, loff_t *ppos) +{ + unsigned long ubi_num = (unsigned long)file->private_data; + struct dentry *dent = file->f_path.dentry; + struct ubi_device *ubi; + struct ubi_debug_info *d; + size_t buf_size; + char buf[8]; + int val; + + ubi = ubi_get_device(ubi_num); + if (!ubi) + return -ENODEV; + d = &ubi->dbg; + + buf_size = min_t(size_t, count, (sizeof(buf) - 1)); + if (copy_from_user(buf, user_buf, buf_size)) { + count = -EFAULT; + goto out; + } + + if (buf[0] == '1') + val = 1; + else if (buf[0] == '0') + val = 0; + else { + count = -EINVAL; + goto out; + } + + if (dent == d->dfs_chk_gen) + d->chk_gen = val; + else if (dent == d->dfs_chk_io) + d->chk_io = val; + else if (dent == d->dfs_disable_bgt) + d->disable_bgt = val; + else if (dent == d->dfs_emulate_bitflips) + d->emulate_bitflips = val; + else if (dent == d->dfs_emulate_io_failures) + d->emulate_io_failures = val; + else + count = -EINVAL; + +out: + ubi_put_device(ubi); + return count; +} + +/* File operations for all UBI debugfs files */ +static const struct file_operations dfs_fops = { + .read = dfs_file_read, + .write = dfs_file_write, + .open = simple_open, + .llseek = no_llseek, + .owner = THIS_MODULE, +}; + /** - * ubi_dbg_dump_flash - dump a region of flash. + * ubi_debugfs_init_dev - initialize debugfs for an UBI device. * @ubi: UBI device description object - * @pnum: the physical eraseblock number to dump - * @offset: the starting offset within the physical eraseblock to dump - * @len: the length of the region to dump + * + * This function creates all debugfs files for UBI device @ubi. Returns zero in + * case of success and a negative error code in case of failure. */ -void ubi_dbg_dump_flash(struct ubi_device *ubi, int pnum, int offset, int len) +int ubi_debugfs_init_dev(struct ubi_device *ubi) { - int err; - size_t read; - void *buf; - loff_t addr = (loff_t)pnum * ubi->peb_size + offset; + int err, n; + unsigned long ubi_num = ubi->ubi_num; + const char *fname; + struct dentry *dent; + struct ubi_debug_info *d = &ubi->dbg; - buf = vmalloc(len); - if (!buf) - return; - err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf); - if (err && err != -EUCLEAN) { - ubi_err("error %d while reading %d bytes from PEB %d:%d, " - "read %zd bytes", err, len, pnum, offset, read); + if (!IS_ENABLED(CONFIG_DEBUG_FS)) + return 0; + + n = snprintf(d->dfs_dir_name, UBI_DFS_DIR_LEN + 1, UBI_DFS_DIR_NAME, + ubi->ubi_num); + if (n == UBI_DFS_DIR_LEN) { + /* The array size is too small */ + fname = UBI_DFS_DIR_NAME; + dent = ERR_PTR(-EINVAL); goto out; } - dbg_msg("dumping %d bytes of data from PEB %d, offset %d", - len, pnum, offset); - print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); + fname = d->dfs_dir_name; + dent = debugfs_create_dir(fname, dfs_rootdir); + if (IS_ERR_OR_NULL(dent)) + goto out; + d->dfs_dir = dent; + + fname = "chk_gen"; + dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, (void *)ubi_num, + &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_chk_gen = dent; + + fname = "chk_io"; + dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, (void *)ubi_num, + &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_chk_io = dent; + + fname = "tst_disable_bgt"; + dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, (void *)ubi_num, + &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_disable_bgt = dent; + + fname = "tst_emulate_bitflips"; + dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, (void *)ubi_num, + &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_emulate_bitflips = dent; + + fname = "tst_emulate_io_failures"; + dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, (void *)ubi_num, + &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_emulate_io_failures = dent; + + return 0; + +out_remove: + debugfs_remove_recursive(d->dfs_dir); out: - vfree(buf); - return; + err = dent ? PTR_ERR(dent) : -ENODEV; + ubi_err("cannot create \"%s\" debugfs file or directory, error %d\n", + fname, err); + return err; } -#endif /* CONFIG_MTD_UBI_DEBUG */ +/** + * dbg_debug_exit_dev - free all debugfs files corresponding to device @ubi + * @ubi: UBI device description object + */ +void ubi_debugfs_exit_dev(struct ubi_device *ubi) +{ + if (IS_ENABLED(CONFIG_DEBUG_FS)) + debugfs_remove_recursive(ubi->dbg.dfs_dir); +} diff --git a/drivers/mtd/ubi/debug.h b/drivers/mtd/ubi/debug.h index 17a10712972..cba89fcd158 100644 --- a/drivers/mtd/ubi/debug.h +++ b/drivers/mtd/ubi/debug.h @@ -21,165 +21,110 @@ #ifndef __UBI_DEBUG_H__ #define __UBI_DEBUG_H__ -#ifdef CONFIG_MTD_UBI_DEBUG -#include <linux/random.h> +void ubi_dump_flash(struct ubi_device *ubi, int pnum, int offset, int len); +void ubi_dump_ec_hdr(const struct ubi_ec_hdr *ec_hdr); +void ubi_dump_vid_hdr(const struct ubi_vid_hdr *vid_hdr); -#define dbg_err(fmt, ...) ubi_err(fmt, ##__VA_ARGS__) +#include <linux/random.h> #define ubi_assert(expr) do { \ if (unlikely(!(expr))) { \ - printk(KERN_CRIT "UBI assert failed in %s at %u (pid %d)\n", \ + pr_crit("UBI assert failed in %s at %u (pid %d)\n", \ __func__, __LINE__, current->pid); \ - ubi_dbg_dump_stack(); \ + dump_stack(); \ } \ } while (0) -#define dbg_msg(fmt, ...) \ - printk(KERN_DEBUG "UBI DBG (pid %d): %s: " fmt "\n", \ - current->pid, __func__, ##__VA_ARGS__) - -#define ubi_dbg_dump_stack() dump_stack() +#define ubi_dbg_print_hex_dump(l, ps, pt, r, g, b, len, a) \ + print_hex_dump(l, ps, pt, r, g, b, len, a) -struct ubi_ec_hdr; -struct ubi_vid_hdr; -struct ubi_volume; -struct ubi_vtbl_record; -struct ubi_scan_volume; -struct ubi_scan_leb; -struct ubi_mkvol_req; +#define ubi_dbg_msg(type, fmt, ...) \ + pr_debug("UBI DBG " type " (pid %d): " fmt "\n", current->pid, \ + ##__VA_ARGS__) -void ubi_dbg_dump_ec_hdr(const struct ubi_ec_hdr *ec_hdr); -void ubi_dbg_dump_vid_hdr(const struct ubi_vid_hdr *vid_hdr); -void ubi_dbg_dump_vol_info(const struct ubi_volume *vol); -void ubi_dbg_dump_vtbl_record(const struct ubi_vtbl_record *r, int idx); -void ubi_dbg_dump_sv(const struct ubi_scan_volume *sv); -void ubi_dbg_dump_seb(const struct ubi_scan_leb *seb, int type); -void ubi_dbg_dump_mkvol_req(const struct ubi_mkvol_req *req); -void ubi_dbg_dump_flash(struct ubi_device *ubi, int pnum, int offset, int len); - -#ifdef CONFIG_MTD_UBI_DEBUG_MSG /* General debugging messages */ -#define dbg_gen(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__) -#else -#define dbg_gen(fmt, ...) ({}) -#endif - -#ifdef CONFIG_MTD_UBI_DEBUG_MSG_EBA +#define dbg_gen(fmt, ...) ubi_dbg_msg("gen", fmt, ##__VA_ARGS__) /* Messages from the eraseblock association sub-system */ -#define dbg_eba(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__) -#else -#define dbg_eba(fmt, ...) ({}) -#endif - -#ifdef CONFIG_MTD_UBI_DEBUG_MSG_WL +#define dbg_eba(fmt, ...) ubi_dbg_msg("eba", fmt, ##__VA_ARGS__) /* Messages from the wear-leveling sub-system */ -#define dbg_wl(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__) -#else -#define dbg_wl(fmt, ...) ({}) -#endif - -#ifdef CONFIG_MTD_UBI_DEBUG_MSG_IO +#define dbg_wl(fmt, ...) ubi_dbg_msg("wl", fmt, ##__VA_ARGS__) /* Messages from the input/output sub-system */ -#define dbg_io(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__) -#else -#define dbg_io(fmt, ...) ({}) -#endif - -#ifdef CONFIG_MTD_UBI_DEBUG_MSG_BLD +#define dbg_io(fmt, ...) ubi_dbg_msg("io", fmt, ##__VA_ARGS__) /* Initialization and build messages */ -#define dbg_bld(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__) -#define UBI_IO_DEBUG 1 -#else -#define dbg_bld(fmt, ...) ({}) -#define UBI_IO_DEBUG 0 -#endif +#define dbg_bld(fmt, ...) ubi_dbg_msg("bld", fmt, ##__VA_ARGS__) + +void ubi_dump_vol_info(const struct ubi_volume *vol); +void ubi_dump_vtbl_record(const struct ubi_vtbl_record *r, int idx); +void ubi_dump_av(const struct ubi_ainf_volume *av); +void ubi_dump_aeb(const struct ubi_ainf_peb *aeb, int type); +void ubi_dump_mkvol_req(const struct ubi_mkvol_req *req); +int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, + int len); +int ubi_debugfs_init(void); +void ubi_debugfs_exit(void); +int ubi_debugfs_init_dev(struct ubi_device *ubi); +void ubi_debugfs_exit_dev(struct ubi_device *ubi); -#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID -int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len); -int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum, - int offset, int len); -#else -#define ubi_dbg_check_all_ff(ubi, pnum, offset, len) 0 -#define ubi_dbg_check_write(ubi, buf, pnum, offset, len) 0 -#endif - -#ifdef CONFIG_MTD_UBI_DEBUG_DISABLE_BGT -#define DBG_DISABLE_BGT 1 -#else -#define DBG_DISABLE_BGT 0 -#endif +/** + * ubi_dbg_is_bgt_disabled - if the background thread is disabled. + * @ubi: UBI device description object + * + * Returns non-zero if the UBI background thread is disabled for testing + * purposes. + */ +static inline int ubi_dbg_is_bgt_disabled(const struct ubi_device *ubi) +{ + return ubi->dbg.disable_bgt; +} -#ifdef CONFIG_MTD_UBI_DEBUG_EMULATE_BITFLIPS /** * ubi_dbg_is_bitflip - if it is time to emulate a bit-flip. + * @ubi: UBI device description object * * Returns non-zero if a bit-flip should be emulated, otherwise returns zero. */ -static inline int ubi_dbg_is_bitflip(void) +static inline int ubi_dbg_is_bitflip(const struct ubi_device *ubi) { - return !(random32() % 200); + if (ubi->dbg.emulate_bitflips) + return !(prandom_u32() % 200); + return 0; } -#else -#define ubi_dbg_is_bitflip() 0 -#endif -#ifdef CONFIG_MTD_UBI_DEBUG_EMULATE_WRITE_FAILURES /** * ubi_dbg_is_write_failure - if it is time to emulate a write failure. + * @ubi: UBI device description object * * Returns non-zero if a write failure should be emulated, otherwise returns * zero. */ -static inline int ubi_dbg_is_write_failure(void) +static inline int ubi_dbg_is_write_failure(const struct ubi_device *ubi) { - return !(random32() % 500); + if (ubi->dbg.emulate_io_failures) + return !(prandom_u32() % 500); + return 0; } -#else -#define ubi_dbg_is_write_failure() 0 -#endif -#ifdef CONFIG_MTD_UBI_DEBUG_EMULATE_ERASE_FAILURES /** * ubi_dbg_is_erase_failure - if its time to emulate an erase failure. + * @ubi: UBI device description object * * Returns non-zero if an erase failure should be emulated, otherwise returns * zero. */ -static inline int ubi_dbg_is_erase_failure(void) +static inline int ubi_dbg_is_erase_failure(const struct ubi_device *ubi) { - return !(random32() % 400); + if (ubi->dbg.emulate_io_failures) + return !(prandom_u32() % 400); + return 0; } -#else -#define ubi_dbg_is_erase_failure() 0 -#endif - -#else -#define ubi_assert(expr) ({}) -#define dbg_err(fmt, ...) ({}) -#define dbg_msg(fmt, ...) ({}) -#define dbg_gen(fmt, ...) ({}) -#define dbg_eba(fmt, ...) ({}) -#define dbg_wl(fmt, ...) ({}) -#define dbg_io(fmt, ...) ({}) -#define dbg_bld(fmt, ...) ({}) -#define ubi_dbg_dump_stack() ({}) -#define ubi_dbg_dump_ec_hdr(ec_hdr) ({}) -#define ubi_dbg_dump_vid_hdr(vid_hdr) ({}) -#define ubi_dbg_dump_vol_info(vol) ({}) -#define ubi_dbg_dump_vtbl_record(r, idx) ({}) -#define ubi_dbg_dump_sv(sv) ({}) -#define ubi_dbg_dump_seb(seb, type) ({}) -#define ubi_dbg_dump_mkvol_req(req) ({}) -#define ubi_dbg_dump_flash(ubi, pnum, offset, len) ({}) - -#define UBI_IO_DEBUG 0 -#define DBG_DISABLE_BGT 0 -#define ubi_dbg_is_bitflip() 0 -#define ubi_dbg_is_write_failure() 0 -#define ubi_dbg_is_erase_failure() 0 -#define ubi_dbg_check_all_ff(ubi, pnum, offset, len) 0 -#define ubi_dbg_check_write(ubi, buf, pnum, offset, len) 0 +static inline int ubi_dbg_chk_io(const struct ubi_device *ubi) +{ + return ubi->dbg.chk_io; +} -#endif /* !CONFIG_MTD_UBI_DEBUG */ +static inline int ubi_dbg_chk_gen(const struct ubi_device *ubi) +{ + return ubi->dbg.chk_gen; +} #endif /* !__UBI_DEBUG_H__ */ diff --git a/drivers/mtd/ubi/eba.c b/drivers/mtd/ubi/eba.c index 9f87c99189a..0e11671dadc 100644 --- a/drivers/mtd/ubi/eba.c +++ b/drivers/mtd/ubi/eba.c @@ -57,7 +57,7 @@ * global sequence counter value. It also increases the global sequence * counter. */ -static unsigned long long next_sqnum(struct ubi_device *ubi) +unsigned long long ubi_next_sqnum(struct ubi_device *ubi) { unsigned long long sqnum; @@ -340,8 +340,10 @@ int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol, dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum); + down_read(&ubi->fm_sem); vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED; - err = ubi_wl_put_peb(ubi, pnum, 0); + up_read(&ubi->fm_sem); + err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0); out_unlock: leb_write_unlock(ubi, vol_id, lnum); @@ -418,10 +420,10 @@ retry: * may try to recover data. FIXME: but this is * not implemented. */ - if (err == UBI_IO_BAD_VID_HDR) { - ubi_warn("corrupted VID header at PEB " - "%d, LEB %d:%d", pnum, vol_id, - lnum); + if (err == UBI_IO_BAD_HDR_EBADMSG || + err == UBI_IO_BAD_HDR) { + ubi_warn("corrupted VID header at PEB %d, LEB %d:%d", + pnum, vol_id, lnum); err = -EBADMSG; } else ubi_ro_mode(ubi); @@ -442,7 +444,7 @@ retry: if (err == UBI_IO_BITFLIPS) { scrub = 1; err = 0; - } else if (err == -EBADMSG) { + } else if (mtd_is_eccerr(err)) { if (vol->vol_type == UBI_DYNAMIC_VOLUME) goto out_unlock; scrub = 1; @@ -506,7 +508,7 @@ static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum, return -ENOMEM; retry: - new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN); + new_pnum = ubi_wl_get_peb(ubi); if (new_pnum < 0) { ubi_free_vid_hdr(ubi, vid_hdr); return new_pnum; @@ -521,25 +523,25 @@ retry: goto out_put; } - vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr); if (err) goto write_error; data_size = offset + len; mutex_lock(&ubi->buf_mutex); - memset(ubi->peb_buf1 + offset, 0xFF, len); + memset(ubi->peb_buf + offset, 0xFF, len); /* Read everything before the area where the write failure happened */ if (offset > 0) { - err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset); + err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset); if (err && err != UBI_IO_BITFLIPS) goto out_unlock; } - memcpy(ubi->peb_buf1 + offset, buf, len); + memcpy(ubi->peb_buf + offset, buf, len); - err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size); + err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size); if (err) { mutex_unlock(&ubi->buf_mutex); goto write_error; @@ -548,8 +550,10 @@ retry: mutex_unlock(&ubi->buf_mutex); ubi_free_vid_hdr(ubi, vid_hdr); + down_read(&ubi->fm_sem); vol->eba_tbl[lnum] = new_pnum; - ubi_wl_put_peb(ubi, pnum, 1); + up_read(&ubi->fm_sem); + ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); ubi_msg("data was successfully recovered"); return 0; @@ -557,7 +561,7 @@ retry: out_unlock: mutex_unlock(&ubi->buf_mutex); out_put: - ubi_wl_put_peb(ubi, new_pnum, 1); + ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1); ubi_free_vid_hdr(ubi, vid_hdr); return err; @@ -567,7 +571,7 @@ write_error: * get another one. */ ubi_warn("failed to write to PEB %d", new_pnum); - ubi_wl_put_peb(ubi, new_pnum, 1); + ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1); if (++tries > UBI_IO_RETRIES) { ubi_free_vid_hdr(ubi, vid_hdr); return err; @@ -584,7 +588,6 @@ write_error: * @buf: the data to write * @offset: offset within the logical eraseblock where to write * @len: how many bytes to write - * @dtype: data type * * This function writes data to logical eraseblock @lnum of a dynamic volume * @vol. Returns zero in case of success and a negative error code in case @@ -592,7 +595,7 @@ write_error: * written to the flash media, but may be some garbage. */ int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, - const void *buf, int offset, int len, int dtype) + const void *buf, int offset, int len) { int err, pnum, tries = 0, vol_id = vol->vol_id; struct ubi_vid_hdr *vid_hdr; @@ -633,14 +636,14 @@ int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, } vid_hdr->vol_type = UBI_VID_DYNAMIC; - vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); vid_hdr->vol_id = cpu_to_be32(vol_id); vid_hdr->lnum = cpu_to_be32(lnum); vid_hdr->compat = ubi_get_compat(ubi, vol_id); vid_hdr->data_pad = cpu_to_be32(vol->data_pad); retry: - pnum = ubi_wl_get_peb(ubi, dtype); + pnum = ubi_wl_get_peb(ubi); if (pnum < 0) { ubi_free_vid_hdr(ubi, vid_hdr); leb_write_unlock(ubi, vol_id, lnum); @@ -660,14 +663,15 @@ retry: if (len) { err = ubi_io_write_data(ubi, buf, pnum, offset, len); if (err) { - ubi_warn("failed to write %d bytes at offset %d of " - "LEB %d:%d, PEB %d", len, offset, vol_id, - lnum, pnum); + ubi_warn("failed to write %d bytes at offset %d of LEB %d:%d, PEB %d", + len, offset, vol_id, lnum, pnum); goto write_error; } } + down_read(&ubi->fm_sem); vol->eba_tbl[lnum] = pnum; + up_read(&ubi->fm_sem); leb_write_unlock(ubi, vol_id, lnum); ubi_free_vid_hdr(ubi, vid_hdr); @@ -686,7 +690,7 @@ write_error: * eraseblock, so just put it and request a new one. We assume that if * this physical eraseblock went bad, the erase code will handle that. */ - err = ubi_wl_put_peb(ubi, pnum, 1); + err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); if (err || ++tries > UBI_IO_RETRIES) { ubi_ro_mode(ubi); leb_write_unlock(ubi, vol_id, lnum); @@ -694,7 +698,7 @@ write_error: return err; } - vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); ubi_msg("try another PEB"); goto retry; } @@ -706,7 +710,6 @@ write_error: * @lnum: logical eraseblock number * @buf: data to write * @len: how many bytes to write - * @dtype: data type * @used_ebs: how many logical eraseblocks will this volume contain * * This function writes data to logical eraseblock @lnum of static volume @@ -723,8 +726,7 @@ write_error: * code in case of failure. */ int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, - int lnum, const void *buf, int len, int dtype, - int used_ebs) + int lnum, const void *buf, int len, int used_ebs) { int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id; struct ubi_vid_hdr *vid_hdr; @@ -749,7 +751,7 @@ int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, return err; } - vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); vid_hdr->vol_id = cpu_to_be32(vol_id); vid_hdr->lnum = cpu_to_be32(lnum); vid_hdr->compat = ubi_get_compat(ubi, vol_id); @@ -762,7 +764,7 @@ int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, vid_hdr->data_crc = cpu_to_be32(crc); retry: - pnum = ubi_wl_get_peb(ubi, dtype); + pnum = ubi_wl_get_peb(ubi); if (pnum < 0) { ubi_free_vid_hdr(ubi, vid_hdr); leb_write_unlock(ubi, vol_id, lnum); @@ -787,7 +789,9 @@ retry: } ubi_assert(vol->eba_tbl[lnum] < 0); + down_read(&ubi->fm_sem); vol->eba_tbl[lnum] = pnum; + up_read(&ubi->fm_sem); leb_write_unlock(ubi, vol_id, lnum); ubi_free_vid_hdr(ubi, vid_hdr); @@ -806,7 +810,7 @@ write_error: return err; } - err = ubi_wl_put_peb(ubi, pnum, 1); + err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); if (err || ++tries > UBI_IO_RETRIES) { ubi_ro_mode(ubi); leb_write_unlock(ubi, vol_id, lnum); @@ -814,7 +818,7 @@ write_error: return err; } - vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); ubi_msg("try another PEB"); goto retry; } @@ -826,7 +830,6 @@ write_error: * @lnum: logical eraseblock number * @buf: data to write * @len: how many bytes to write - * @dtype: data type * * This function changes the contents of a logical eraseblock atomically. @buf * has to contain new logical eraseblock data, and @len - the length of the @@ -838,7 +841,7 @@ write_error: * LEB change may be done at a time. This is ensured by @ubi->alc_mutex. */ int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, - int lnum, const void *buf, int len, int dtype) + int lnum, const void *buf, int len) { int err, pnum, tries = 0, vol_id = vol->vol_id; struct ubi_vid_hdr *vid_hdr; @@ -855,7 +858,7 @@ int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, err = ubi_eba_unmap_leb(ubi, vol, lnum); if (err) return err; - return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype); + return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0); } vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); @@ -867,7 +870,7 @@ int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, if (err) goto out_mutex; - vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); vid_hdr->vol_id = cpu_to_be32(vol_id); vid_hdr->lnum = cpu_to_be32(lnum); vid_hdr->compat = ubi_get_compat(ubi, vol_id); @@ -880,7 +883,7 @@ int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, vid_hdr->data_crc = cpu_to_be32(crc); retry: - pnum = ubi_wl_get_peb(ubi, dtype); + pnum = ubi_wl_get_peb(ubi); if (pnum < 0) { err = pnum; goto out_leb_unlock; @@ -904,12 +907,14 @@ retry: } if (vol->eba_tbl[lnum] >= 0) { - err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 0); + err = ubi_wl_put_peb(ubi, vol_id, lnum, vol->eba_tbl[lnum], 0); if (err) goto out_leb_unlock; } + down_read(&ubi->fm_sem); vol->eba_tbl[lnum] = pnum; + up_read(&ubi->fm_sem); out_leb_unlock: leb_write_unlock(ubi, vol_id, lnum); @@ -929,13 +934,13 @@ write_error: goto out_leb_unlock; } - err = ubi_wl_put_peb(ubi, pnum, 1); + err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); if (err || ++tries > UBI_IO_RETRIES) { ubi_ro_mode(ubi); goto out_leb_unlock; } - vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); ubi_msg("try another PEB"); goto retry; } @@ -961,8 +966,8 @@ write_error: */ static int is_error_sane(int err) { - if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_VID_HDR || - err == -ETIMEDOUT) + if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR || + err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT) return 0; return 1; } @@ -978,7 +983,7 @@ static int is_error_sane(int err) * physical eraseblock @to. The @vid_hdr buffer may be changed by this * function. Returns: * o %0 in case of success; - * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_CANCEL_BITFLIPS, etc; + * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc; * o a negative error code in case of failure. */ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, @@ -1027,12 +1032,14 @@ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the * LEB is already locked, we just do not move it and return - * %MOVE_CANCEL_RACE, which means that UBI will re-try, but later. + * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because + * we do not know the reasons of the contention - it may be just a + * normal I/O on this LEB, so we want to re-try. */ err = leb_write_trylock(ubi, vol_id, lnum); if (err) { dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum); - return MOVE_CANCEL_RACE; + return MOVE_RETRY; } /* @@ -1041,22 +1048,21 @@ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, * cancel it. */ if (vol->eba_tbl[lnum] != from) { - dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to " - "PEB %d, cancel", vol_id, lnum, from, - vol->eba_tbl[lnum]); + dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel", + vol_id, lnum, from, vol->eba_tbl[lnum]); err = MOVE_CANCEL_RACE; goto out_unlock_leb; } /* * OK, now the LEB is locked and we can safely start moving it. Since - * this function utilizes the @ubi->peb_buf1 buffer which is shared + * this function utilizes the @ubi->peb_buf buffer which is shared * with some other functions - we lock the buffer by taking the * @ubi->buf_mutex. */ mutex_lock(&ubi->buf_mutex); dbg_wl("read %d bytes of data", aldata_size); - err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size); + err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size); if (err && err != UBI_IO_BITFLIPS) { ubi_warn("error %d while reading data from PEB %d", err, from); @@ -1076,10 +1082,10 @@ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, */ if (vid_hdr->vol_type == UBI_VID_DYNAMIC) aldata_size = data_size = - ubi_calc_data_len(ubi, ubi->peb_buf1, data_size); + ubi_calc_data_len(ubi, ubi->peb_buf, data_size); cond_resched(); - crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size); + crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); cond_resched(); /* @@ -1093,7 +1099,7 @@ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, vid_hdr->data_size = cpu_to_be32(data_size); vid_hdr->data_crc = cpu_to_be32(crc); } - vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); err = ubi_io_write_vid_hdr(ubi, to, vid_hdr); if (err) { @@ -1108,17 +1114,17 @@ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1); if (err) { if (err != UBI_IO_BITFLIPS) { - ubi_warn("error %d while reading VID header back from " - "PEB %d", err, to); + ubi_warn("error %d while reading VID header back from PEB %d", + err, to); if (is_error_sane(err)) err = MOVE_TARGET_RD_ERR; } else - err = MOVE_CANCEL_BITFLIPS; + err = MOVE_TARGET_BITFLIPS; goto out_unlock_buf; } if (data_size > 0) { - err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size); + err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size); if (err) { if (err == -EIO) err = MOVE_TARGET_WR_ERR; @@ -1131,31 +1137,33 @@ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, * We've written the data and are going to read it back to make * sure it was written correctly. */ - - err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size); + memset(ubi->peb_buf, 0xFF, aldata_size); + err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size); if (err) { if (err != UBI_IO_BITFLIPS) { - ubi_warn("error %d while reading data back " - "from PEB %d", err, to); + ubi_warn("error %d while reading data back from PEB %d", + err, to); if (is_error_sane(err)) err = MOVE_TARGET_RD_ERR; } else - err = MOVE_CANCEL_BITFLIPS; + err = MOVE_TARGET_BITFLIPS; goto out_unlock_buf; } cond_resched(); - if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) { - ubi_warn("read data back from PEB %d and it is " - "different", to); + if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) { + ubi_warn("read data back from PEB %d and it is different", + to); err = -EINVAL; goto out_unlock_buf; } } ubi_assert(vol->eba_tbl[lnum] == from); + down_read(&ubi->fm_sem); vol->eba_tbl[lnum] = to; + up_read(&ubi->fm_sem); out_unlock_buf: mutex_unlock(&ubi->buf_mutex); @@ -1165,19 +1173,156 @@ out_unlock_leb: } /** - * ubi_eba_init_scan - initialize the EBA sub-system using scanning information. + * print_rsvd_warning - warn about not having enough reserved PEBs. + * @ubi: UBI device description object + * + * This is a helper function for 'ubi_eba_init()' which is called when UBI + * cannot reserve enough PEBs for bad block handling. This function makes a + * decision whether we have to print a warning or not. The algorithm is as + * follows: + * o if this is a new UBI image, then just print the warning + * o if this is an UBI image which has already been used for some time, print + * a warning only if we can reserve less than 10% of the expected amount of + * the reserved PEB. + * + * The idea is that when UBI is used, PEBs become bad, and the reserved pool + * of PEBs becomes smaller, which is normal and we do not want to scare users + * with a warning every time they attach the MTD device. This was an issue + * reported by real users. + */ +static void print_rsvd_warning(struct ubi_device *ubi, + struct ubi_attach_info *ai) +{ + /* + * The 1 << 18 (256KiB) number is picked randomly, just a reasonably + * large number to distinguish between newly flashed and used images. + */ + if (ai->max_sqnum > (1 << 18)) { + int min = ubi->beb_rsvd_level / 10; + + if (!min) + min = 1; + if (ubi->beb_rsvd_pebs > min) + return; + } + + ubi_warn("cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d", + ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); + if (ubi->corr_peb_count) + ubi_warn("%d PEBs are corrupted and not used", + ubi->corr_peb_count); +} + +/** + * self_check_eba - run a self check on the EBA table constructed by fastmap. + * @ubi: UBI device description object + * @ai_fastmap: UBI attach info object created by fastmap + * @ai_scan: UBI attach info object created by scanning + * + * Returns < 0 in case of an internal error, 0 otherwise. + * If a bad EBA table entry was found it will be printed out and + * ubi_assert() triggers. + */ +int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap, + struct ubi_attach_info *ai_scan) +{ + int i, j, num_volumes, ret = 0; + int **scan_eba, **fm_eba; + struct ubi_ainf_volume *av; + struct ubi_volume *vol; + struct ubi_ainf_peb *aeb; + struct rb_node *rb; + + num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; + + scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL); + if (!scan_eba) + return -ENOMEM; + + fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL); + if (!fm_eba) { + kfree(scan_eba); + return -ENOMEM; + } + + for (i = 0; i < num_volumes; i++) { + vol = ubi->volumes[i]; + if (!vol) + continue; + + scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba), + GFP_KERNEL); + if (!scan_eba[i]) { + ret = -ENOMEM; + goto out_free; + } + + fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba), + GFP_KERNEL); + if (!fm_eba[i]) { + ret = -ENOMEM; + goto out_free; + } + + for (j = 0; j < vol->reserved_pebs; j++) + scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED; + + av = ubi_find_av(ai_scan, idx2vol_id(ubi, i)); + if (!av) + continue; + + ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) + scan_eba[i][aeb->lnum] = aeb->pnum; + + av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i)); + if (!av) + continue; + + ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) + fm_eba[i][aeb->lnum] = aeb->pnum; + + for (j = 0; j < vol->reserved_pebs; j++) { + if (scan_eba[i][j] != fm_eba[i][j]) { + if (scan_eba[i][j] == UBI_LEB_UNMAPPED || + fm_eba[i][j] == UBI_LEB_UNMAPPED) + continue; + + ubi_err("LEB:%i:%i is PEB:%i instead of %i!", + vol->vol_id, i, fm_eba[i][j], + scan_eba[i][j]); + ubi_assert(0); + } + } + } + +out_free: + for (i = 0; i < num_volumes; i++) { + if (!ubi->volumes[i]) + continue; + + kfree(scan_eba[i]); + kfree(fm_eba[i]); + } + + kfree(scan_eba); + kfree(fm_eba); + return ret; +} + +/** + * ubi_eba_init - initialize the EBA sub-system using attaching information. * @ubi: UBI device description object - * @si: scanning information + * @ai: attaching information * * This function returns zero in case of success and a negative error code in * case of failure. */ -int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) +int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai) { int i, j, err, num_volumes; - struct ubi_scan_volume *sv; + struct ubi_ainf_volume *av; struct ubi_volume *vol; - struct ubi_scan_leb *seb; + struct ubi_ainf_peb *aeb; struct rb_node *rb; dbg_eba("initialize EBA sub-system"); @@ -1186,7 +1331,7 @@ int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) mutex_init(&ubi->alc_mutex); ubi->ltree = RB_ROOT; - ubi->global_sqnum = si->max_sqnum + 1; + ubi->global_sqnum = ai->max_sqnum + 1; num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; for (i = 0; i < num_volumes; i++) { @@ -1206,24 +1351,27 @@ int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) for (j = 0; j < vol->reserved_pebs; j++) vol->eba_tbl[j] = UBI_LEB_UNMAPPED; - sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i)); - if (!sv) + av = ubi_find_av(ai, idx2vol_id(ubi, i)); + if (!av) continue; - ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) { - if (seb->lnum >= vol->reserved_pebs) + ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { + if (aeb->lnum >= vol->reserved_pebs) /* * This may happen in case of an unclean reboot * during re-size. */ - ubi_scan_move_to_list(sv, seb, &si->erase); - vol->eba_tbl[seb->lnum] = seb->pnum; + ubi_move_aeb_to_list(av, aeb, &ai->erase); + vol->eba_tbl[aeb->lnum] = aeb->pnum; } } if (ubi->avail_pebs < EBA_RESERVED_PEBS) { ubi_err("no enough physical eraseblocks (%d, need %d)", ubi->avail_pebs, EBA_RESERVED_PEBS); + if (ubi->corr_peb_count) + ubi_err("%d PEBs are corrupted and not used", + ubi->corr_peb_count); err = -ENOSPC; goto out_free; } @@ -1236,9 +1384,7 @@ int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) if (ubi->avail_pebs < ubi->beb_rsvd_level) { /* No enough free physical eraseblocks */ ubi->beb_rsvd_pebs = ubi->avail_pebs; - ubi_warn("cannot reserve enough PEBs for bad PEB " - "handling, reserved %d, need %d", - ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); + print_rsvd_warning(ubi, ai); } else ubi->beb_rsvd_pebs = ubi->beb_rsvd_level; diff --git a/drivers/mtd/ubi/fastmap.c b/drivers/mtd/ubi/fastmap.c new file mode 100644 index 00000000000..0431b46d9fd --- /dev/null +++ b/drivers/mtd/ubi/fastmap.c @@ -0,0 +1,1567 @@ +/* + * Copyright (c) 2012 Linutronix GmbH + * Author: Richard Weinberger <richard@nod.at> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; version 2. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See + * the GNU General Public License for more details. + * + */ + +#include <linux/crc32.h> +#include "ubi.h" + +/** + * ubi_calc_fm_size - calculates the fastmap size in bytes for an UBI device. + * @ubi: UBI device description object + */ +size_t ubi_calc_fm_size(struct ubi_device *ubi) +{ + size_t size; + + size = sizeof(struct ubi_fm_hdr) + \ + sizeof(struct ubi_fm_scan_pool) + \ + sizeof(struct ubi_fm_scan_pool) + \ + (ubi->peb_count * sizeof(struct ubi_fm_ec)) + \ + (sizeof(struct ubi_fm_eba) + \ + (ubi->peb_count * sizeof(__be32))) + \ + sizeof(struct ubi_fm_volhdr) * UBI_MAX_VOLUMES; + return roundup(size, ubi->leb_size); +} + + +/** + * new_fm_vhdr - allocate a new volume header for fastmap usage. + * @ubi: UBI device description object + * @vol_id: the VID of the new header + * + * Returns a new struct ubi_vid_hdr on success. + * NULL indicates out of memory. + */ +static struct ubi_vid_hdr *new_fm_vhdr(struct ubi_device *ubi, int vol_id) +{ + struct ubi_vid_hdr *new; + + new = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); + if (!new) + goto out; + + new->vol_type = UBI_VID_DYNAMIC; + new->vol_id = cpu_to_be32(vol_id); + + /* UBI implementations without fastmap support have to delete the + * fastmap. + */ + new->compat = UBI_COMPAT_DELETE; + +out: + return new; +} + +/** + * add_aeb - create and add a attach erase block to a given list. + * @ai: UBI attach info object + * @list: the target list + * @pnum: PEB number of the new attach erase block + * @ec: erease counter of the new LEB + * @scrub: scrub this PEB after attaching + * + * Returns 0 on success, < 0 indicates an internal error. + */ +static int add_aeb(struct ubi_attach_info *ai, struct list_head *list, + int pnum, int ec, int scrub) +{ + struct ubi_ainf_peb *aeb; + + aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); + if (!aeb) + return -ENOMEM; + + aeb->pnum = pnum; + aeb->ec = ec; + aeb->lnum = -1; + aeb->scrub = scrub; + aeb->copy_flag = aeb->sqnum = 0; + + ai->ec_sum += aeb->ec; + ai->ec_count++; + + if (ai->max_ec < aeb->ec) + ai->max_ec = aeb->ec; + + if (ai->min_ec > aeb->ec) + ai->min_ec = aeb->ec; + + list_add_tail(&aeb->u.list, list); + + return 0; +} + +/** + * add_vol - create and add a new volume to ubi_attach_info. + * @ai: ubi_attach_info object + * @vol_id: VID of the new volume + * @used_ebs: number of used EBS + * @data_pad: data padding value of the new volume + * @vol_type: volume type + * @last_eb_bytes: number of bytes in the last LEB + * + * Returns the new struct ubi_ainf_volume on success. + * NULL indicates an error. + */ +static struct ubi_ainf_volume *add_vol(struct ubi_attach_info *ai, int vol_id, + int used_ebs, int data_pad, u8 vol_type, + int last_eb_bytes) +{ + struct ubi_ainf_volume *av; + struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; + + while (*p) { + parent = *p; + av = rb_entry(parent, struct ubi_ainf_volume, rb); + + if (vol_id > av->vol_id) + p = &(*p)->rb_left; + else + p = &(*p)->rb_right; + } + + av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL); + if (!av) + goto out; + + av->highest_lnum = av->leb_count = 0; + av->vol_id = vol_id; + av->used_ebs = used_ebs; + av->data_pad = data_pad; + av->last_data_size = last_eb_bytes; + av->compat = 0; + av->vol_type = vol_type; + av->root = RB_ROOT; + + dbg_bld("found volume (ID %i)", vol_id); + + rb_link_node(&av->rb, parent, p); + rb_insert_color(&av->rb, &ai->volumes); + +out: + return av; +} + +/** + * assign_aeb_to_av - assigns a SEB to a given ainf_volume and removes it + * from it's original list. + * @ai: ubi_attach_info object + * @aeb: the to be assigned SEB + * @av: target scan volume + */ +static void assign_aeb_to_av(struct ubi_attach_info *ai, + struct ubi_ainf_peb *aeb, + struct ubi_ainf_volume *av) +{ + struct ubi_ainf_peb *tmp_aeb; + struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; + + p = &av->root.rb_node; + while (*p) { + parent = *p; + + tmp_aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); + if (aeb->lnum != tmp_aeb->lnum) { + if (aeb->lnum < tmp_aeb->lnum) + p = &(*p)->rb_left; + else + p = &(*p)->rb_right; + + continue; + } else + break; + } + + list_del(&aeb->u.list); + av->leb_count++; + + rb_link_node(&aeb->u.rb, parent, p); + rb_insert_color(&aeb->u.rb, &av->root); +} + +/** + * update_vol - inserts or updates a LEB which was found a pool. + * @ubi: the UBI device object + * @ai: attach info object + * @av: the volume this LEB belongs to + * @new_vh: the volume header derived from new_aeb + * @new_aeb: the AEB to be examined + * + * Returns 0 on success, < 0 indicates an internal error. + */ +static int update_vol(struct ubi_device *ubi, struct ubi_attach_info *ai, + struct ubi_ainf_volume *av, struct ubi_vid_hdr *new_vh, + struct ubi_ainf_peb *new_aeb) +{ + struct rb_node **p = &av->root.rb_node, *parent = NULL; + struct ubi_ainf_peb *aeb, *victim; + int cmp_res; + + while (*p) { + parent = *p; + aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); + + if (be32_to_cpu(new_vh->lnum) != aeb->lnum) { + if (be32_to_cpu(new_vh->lnum) < aeb->lnum) + p = &(*p)->rb_left; + else + p = &(*p)->rb_right; + + continue; + } + + /* This case can happen if the fastmap gets written + * because of a volume change (creation, deletion, ..). + * Then a PEB can be within the persistent EBA and the pool. + */ + if (aeb->pnum == new_aeb->pnum) { + ubi_assert(aeb->lnum == new_aeb->lnum); + kmem_cache_free(ai->aeb_slab_cache, new_aeb); + + return 0; + } + + cmp_res = ubi_compare_lebs(ubi, aeb, new_aeb->pnum, new_vh); + if (cmp_res < 0) + return cmp_res; + + /* new_aeb is newer */ + if (cmp_res & 1) { + victim = kmem_cache_alloc(ai->aeb_slab_cache, + GFP_KERNEL); + if (!victim) + return -ENOMEM; + + victim->ec = aeb->ec; + victim->pnum = aeb->pnum; + list_add_tail(&victim->u.list, &ai->erase); + + if (av->highest_lnum == be32_to_cpu(new_vh->lnum)) + av->last_data_size = \ + be32_to_cpu(new_vh->data_size); + + dbg_bld("vol %i: AEB %i's PEB %i is the newer", + av->vol_id, aeb->lnum, new_aeb->pnum); + + aeb->ec = new_aeb->ec; + aeb->pnum = new_aeb->pnum; + aeb->copy_flag = new_vh->copy_flag; + aeb->scrub = new_aeb->scrub; + kmem_cache_free(ai->aeb_slab_cache, new_aeb); + + /* new_aeb is older */ + } else { + dbg_bld("vol %i: AEB %i's PEB %i is old, dropping it", + av->vol_id, aeb->lnum, new_aeb->pnum); + list_add_tail(&new_aeb->u.list, &ai->erase); + } + + return 0; + } + /* This LEB is new, let's add it to the volume */ + + if (av->highest_lnum <= be32_to_cpu(new_vh->lnum)) { + av->highest_lnum = be32_to_cpu(new_vh->lnum); + av->last_data_size = be32_to_cpu(new_vh->data_size); + } + + if (av->vol_type == UBI_STATIC_VOLUME) + av->used_ebs = be32_to_cpu(new_vh->used_ebs); + + av->leb_count++; + + rb_link_node(&new_aeb->u.rb, parent, p); + rb_insert_color(&new_aeb->u.rb, &av->root); + + return 0; +} + +/** + * process_pool_aeb - we found a non-empty PEB in a pool. + * @ubi: UBI device object + * @ai: attach info object + * @new_vh: the volume header derived from new_aeb + * @new_aeb: the AEB to be examined + * + * Returns 0 on success, < 0 indicates an internal error. + */ +static int process_pool_aeb(struct ubi_device *ubi, struct ubi_attach_info *ai, + struct ubi_vid_hdr *new_vh, + struct ubi_ainf_peb *new_aeb) +{ + struct ubi_ainf_volume *av, *tmp_av = NULL; + struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; + int found = 0; + + if (be32_to_cpu(new_vh->vol_id) == UBI_FM_SB_VOLUME_ID || + be32_to_cpu(new_vh->vol_id) == UBI_FM_DATA_VOLUME_ID) { + kmem_cache_free(ai->aeb_slab_cache, new_aeb); + + return 0; + } + + /* Find the volume this SEB belongs to */ + while (*p) { + parent = *p; + tmp_av = rb_entry(parent, struct ubi_ainf_volume, rb); + + if (be32_to_cpu(new_vh->vol_id) > tmp_av->vol_id) + p = &(*p)->rb_left; + else if (be32_to_cpu(new_vh->vol_id) < tmp_av->vol_id) + p = &(*p)->rb_right; + else { + found = 1; + break; + } + } + + if (found) + av = tmp_av; + else { + ubi_err("orphaned volume in fastmap pool!"); + return UBI_BAD_FASTMAP; + } + + ubi_assert(be32_to_cpu(new_vh->vol_id) == av->vol_id); + + return update_vol(ubi, ai, av, new_vh, new_aeb); +} + +/** + * unmap_peb - unmap a PEB. + * If fastmap detects a free PEB in the pool it has to check whether + * this PEB has been unmapped after writing the fastmap. + * + * @ai: UBI attach info object + * @pnum: The PEB to be unmapped + */ +static void unmap_peb(struct ubi_attach_info *ai, int pnum) +{ + struct ubi_ainf_volume *av; + struct rb_node *node, *node2; + struct ubi_ainf_peb *aeb; + + for (node = rb_first(&ai->volumes); node; node = rb_next(node)) { + av = rb_entry(node, struct ubi_ainf_volume, rb); + + for (node2 = rb_first(&av->root); node2; + node2 = rb_next(node2)) { + aeb = rb_entry(node2, struct ubi_ainf_peb, u.rb); + if (aeb->pnum == pnum) { + rb_erase(&aeb->u.rb, &av->root); + kmem_cache_free(ai->aeb_slab_cache, aeb); + return; + } + } + } +} + +/** + * scan_pool - scans a pool for changed (no longer empty PEBs). + * @ubi: UBI device object + * @ai: attach info object + * @pebs: an array of all PEB numbers in the to be scanned pool + * @pool_size: size of the pool (number of entries in @pebs) + * @max_sqnum: pointer to the maximal sequence number + * @eba_orphans: list of PEBs which need to be scanned + * @free: list of PEBs which are most likely free (and go into @ai->free) + * + * Returns 0 on success, if the pool is unusable UBI_BAD_FASTMAP is returned. + * < 0 indicates an internal error. + */ +static int scan_pool(struct ubi_device *ubi, struct ubi_attach_info *ai, + int *pebs, int pool_size, unsigned long long *max_sqnum, + struct list_head *eba_orphans, struct list_head *free) +{ + struct ubi_vid_hdr *vh; + struct ubi_ec_hdr *ech; + struct ubi_ainf_peb *new_aeb, *tmp_aeb; + int i, pnum, err, found_orphan, ret = 0; + + ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); + if (!ech) + return -ENOMEM; + + vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); + if (!vh) { + kfree(ech); + return -ENOMEM; + } + + dbg_bld("scanning fastmap pool: size = %i", pool_size); + + /* + * Now scan all PEBs in the pool to find changes which have been made + * after the creation of the fastmap + */ + for (i = 0; i < pool_size; i++) { + int scrub = 0; + int image_seq; + + pnum = be32_to_cpu(pebs[i]); + + if (ubi_io_is_bad(ubi, pnum)) { + ubi_err("bad PEB in fastmap pool!"); + ret = UBI_BAD_FASTMAP; + goto out; + } + + err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); + if (err && err != UBI_IO_BITFLIPS) { + ubi_err("unable to read EC header! PEB:%i err:%i", + pnum, err); + ret = err > 0 ? UBI_BAD_FASTMAP : err; + goto out; + } else if (err == UBI_IO_BITFLIPS) + scrub = 1; + + /* + * Older UBI implementations have image_seq set to zero, so + * we shouldn't fail if image_seq == 0. + */ + image_seq = be32_to_cpu(ech->image_seq); + + if (image_seq && (image_seq != ubi->image_seq)) { + ubi_err("bad image seq: 0x%x, expected: 0x%x", + be32_to_cpu(ech->image_seq), ubi->image_seq); + ret = UBI_BAD_FASTMAP; + goto out; + } + + err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); + if (err == UBI_IO_FF || err == UBI_IO_FF_BITFLIPS) { + unsigned long long ec = be64_to_cpu(ech->ec); + unmap_peb(ai, pnum); + dbg_bld("Adding PEB to free: %i", pnum); + if (err == UBI_IO_FF_BITFLIPS) + add_aeb(ai, free, pnum, ec, 1); + else + add_aeb(ai, free, pnum, ec, 0); + continue; + } else if (err == 0 || err == UBI_IO_BITFLIPS) { + dbg_bld("Found non empty PEB:%i in pool", pnum); + + if (err == UBI_IO_BITFLIPS) + scrub = 1; + + found_orphan = 0; + list_for_each_entry(tmp_aeb, eba_orphans, u.list) { + if (tmp_aeb->pnum == pnum) { + found_orphan = 1; + break; + } + } + if (found_orphan) { + list_del(&tmp_aeb->u.list); + kmem_cache_free(ai->aeb_slab_cache, tmp_aeb); + } + + new_aeb = kmem_cache_alloc(ai->aeb_slab_cache, + GFP_KERNEL); + if (!new_aeb) { + ret = -ENOMEM; + goto out; + } + + new_aeb->ec = be64_to_cpu(ech->ec); + new_aeb->pnum = pnum; + new_aeb->lnum = be32_to_cpu(vh->lnum); + new_aeb->sqnum = be64_to_cpu(vh->sqnum); + new_aeb->copy_flag = vh->copy_flag; + new_aeb->scrub = scrub; + + if (*max_sqnum < new_aeb->sqnum) + *max_sqnum = new_aeb->sqnum; + + err = process_pool_aeb(ubi, ai, vh, new_aeb); + if (err) { + ret = err > 0 ? UBI_BAD_FASTMAP : err; + goto out; + } + } else { + /* We are paranoid and fall back to scanning mode */ + ubi_err("fastmap pool PEBs contains damaged PEBs!"); + ret = err > 0 ? UBI_BAD_FASTMAP : err; + goto out; + } + + } + +out: + ubi_free_vid_hdr(ubi, vh); + kfree(ech); + return ret; +} + +/** + * count_fastmap_pebs - Counts the PEBs found by fastmap. + * @ai: The UBI attach info object + */ +static int count_fastmap_pebs(struct ubi_attach_info *ai) +{ + struct ubi_ainf_peb *aeb; + struct ubi_ainf_volume *av; + struct rb_node *rb1, *rb2; + int n = 0; + + list_for_each_entry(aeb, &ai->erase, u.list) + n++; + + list_for_each_entry(aeb, &ai->free, u.list) + n++; + + ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) + ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) + n++; + + return n; +} + +/** + * ubi_attach_fastmap - creates ubi_attach_info from a fastmap. + * @ubi: UBI device object + * @ai: UBI attach info object + * @fm: the fastmap to be attached + * + * Returns 0 on success, UBI_BAD_FASTMAP if the found fastmap was unusable. + * < 0 indicates an internal error. + */ +static int ubi_attach_fastmap(struct ubi_device *ubi, + struct ubi_attach_info *ai, + struct ubi_fastmap_layout *fm) +{ + struct list_head used, eba_orphans, free; + struct ubi_ainf_volume *av; + struct ubi_ainf_peb *aeb, *tmp_aeb, *_tmp_aeb; + struct ubi_ec_hdr *ech; + struct ubi_fm_sb *fmsb; + struct ubi_fm_hdr *fmhdr; + struct ubi_fm_scan_pool *fmpl1, *fmpl2; + struct ubi_fm_ec *fmec; + struct ubi_fm_volhdr *fmvhdr; + struct ubi_fm_eba *fm_eba; + int ret, i, j, pool_size, wl_pool_size; + size_t fm_pos = 0, fm_size = ubi->fm_size; + unsigned long long max_sqnum = 0; + void *fm_raw = ubi->fm_buf; + + INIT_LIST_HEAD(&used); + INIT_LIST_HEAD(&free); + INIT_LIST_HEAD(&eba_orphans); + INIT_LIST_HEAD(&ai->corr); + INIT_LIST_HEAD(&ai->free); + INIT_LIST_HEAD(&ai->erase); + INIT_LIST_HEAD(&ai->alien); + ai->volumes = RB_ROOT; + ai->min_ec = UBI_MAX_ERASECOUNTER; + + ai->aeb_slab_cache = kmem_cache_create("ubi_ainf_peb_slab", + sizeof(struct ubi_ainf_peb), + 0, 0, NULL); + if (!ai->aeb_slab_cache) { + ret = -ENOMEM; + goto fail; + } + + fmsb = (struct ubi_fm_sb *)(fm_raw); + ai->max_sqnum = fmsb->sqnum; + fm_pos += sizeof(struct ubi_fm_sb); + if (fm_pos >= fm_size) + goto fail_bad; + + fmhdr = (struct ubi_fm_hdr *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmhdr); + if (fm_pos >= fm_size) + goto fail_bad; + + if (be32_to_cpu(fmhdr->magic) != UBI_FM_HDR_MAGIC) { + ubi_err("bad fastmap header magic: 0x%x, expected: 0x%x", + be32_to_cpu(fmhdr->magic), UBI_FM_HDR_MAGIC); + goto fail_bad; + } + + fmpl1 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmpl1); + if (fm_pos >= fm_size) + goto fail_bad; + if (be32_to_cpu(fmpl1->magic) != UBI_FM_POOL_MAGIC) { + ubi_err("bad fastmap pool magic: 0x%x, expected: 0x%x", + be32_to_cpu(fmpl1->magic), UBI_FM_POOL_MAGIC); + goto fail_bad; + } + + fmpl2 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmpl2); + if (fm_pos >= fm_size) + goto fail_bad; + if (be32_to_cpu(fmpl2->magic) != UBI_FM_POOL_MAGIC) { + ubi_err("bad fastmap pool magic: 0x%x, expected: 0x%x", + be32_to_cpu(fmpl2->magic), UBI_FM_POOL_MAGIC); + goto fail_bad; + } + + pool_size = be16_to_cpu(fmpl1->size); + wl_pool_size = be16_to_cpu(fmpl2->size); + fm->max_pool_size = be16_to_cpu(fmpl1->max_size); + fm->max_wl_pool_size = be16_to_cpu(fmpl2->max_size); + + if (pool_size > UBI_FM_MAX_POOL_SIZE || pool_size < 0) { + ubi_err("bad pool size: %i", pool_size); + goto fail_bad; + } + + if (wl_pool_size > UBI_FM_MAX_POOL_SIZE || wl_pool_size < 0) { + ubi_err("bad WL pool size: %i", wl_pool_size); + goto fail_bad; + } + + + if (fm->max_pool_size > UBI_FM_MAX_POOL_SIZE || + fm->max_pool_size < 0) { + ubi_err("bad maximal pool size: %i", fm->max_pool_size); + goto fail_bad; + } + + if (fm->max_wl_pool_size > UBI_FM_MAX_POOL_SIZE || + fm->max_wl_pool_size < 0) { + ubi_err("bad maximal WL pool size: %i", fm->max_wl_pool_size); + goto fail_bad; + } + + /* read EC values from free list */ + for (i = 0; i < be32_to_cpu(fmhdr->free_peb_count); i++) { + fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmec); + if (fm_pos >= fm_size) + goto fail_bad; + + add_aeb(ai, &ai->free, be32_to_cpu(fmec->pnum), + be32_to_cpu(fmec->ec), 0); + } + + /* read EC values from used list */ + for (i = 0; i < be32_to_cpu(fmhdr->used_peb_count); i++) { + fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmec); + if (fm_pos >= fm_size) + goto fail_bad; + + add_aeb(ai, &used, be32_to_cpu(fmec->pnum), + be32_to_cpu(fmec->ec), 0); + } + + /* read EC values from scrub list */ + for (i = 0; i < be32_to_cpu(fmhdr->scrub_peb_count); i++) { + fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmec); + if (fm_pos >= fm_size) + goto fail_bad; + + add_aeb(ai, &used, be32_to_cpu(fmec->pnum), + be32_to_cpu(fmec->ec), 1); + } + + /* read EC values from erase list */ + for (i = 0; i < be32_to_cpu(fmhdr->erase_peb_count); i++) { + fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmec); + if (fm_pos >= fm_size) + goto fail_bad; + + add_aeb(ai, &ai->erase, be32_to_cpu(fmec->pnum), + be32_to_cpu(fmec->ec), 1); + } + + ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count); + ai->bad_peb_count = be32_to_cpu(fmhdr->bad_peb_count); + + /* Iterate over all volumes and read their EBA table */ + for (i = 0; i < be32_to_cpu(fmhdr->vol_count); i++) { + fmvhdr = (struct ubi_fm_volhdr *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmvhdr); + if (fm_pos >= fm_size) + goto fail_bad; + + if (be32_to_cpu(fmvhdr->magic) != UBI_FM_VHDR_MAGIC) { + ubi_err("bad fastmap vol header magic: 0x%x, " \ + "expected: 0x%x", + be32_to_cpu(fmvhdr->magic), UBI_FM_VHDR_MAGIC); + goto fail_bad; + } + + av = add_vol(ai, be32_to_cpu(fmvhdr->vol_id), + be32_to_cpu(fmvhdr->used_ebs), + be32_to_cpu(fmvhdr->data_pad), + fmvhdr->vol_type, + be32_to_cpu(fmvhdr->last_eb_bytes)); + + if (!av) + goto fail_bad; + + ai->vols_found++; + if (ai->highest_vol_id < be32_to_cpu(fmvhdr->vol_id)) + ai->highest_vol_id = be32_to_cpu(fmvhdr->vol_id); + + fm_eba = (struct ubi_fm_eba *)(fm_raw + fm_pos); + fm_pos += sizeof(*fm_eba); + fm_pos += (sizeof(__be32) * be32_to_cpu(fm_eba->reserved_pebs)); + if (fm_pos >= fm_size) + goto fail_bad; + + if (be32_to_cpu(fm_eba->magic) != UBI_FM_EBA_MAGIC) { + ubi_err("bad fastmap EBA header magic: 0x%x, " \ + "expected: 0x%x", + be32_to_cpu(fm_eba->magic), UBI_FM_EBA_MAGIC); + goto fail_bad; + } + + for (j = 0; j < be32_to_cpu(fm_eba->reserved_pebs); j++) { + int pnum = be32_to_cpu(fm_eba->pnum[j]); + + if ((int)be32_to_cpu(fm_eba->pnum[j]) < 0) + continue; + + aeb = NULL; + list_for_each_entry(tmp_aeb, &used, u.list) { + if (tmp_aeb->pnum == pnum) { + aeb = tmp_aeb; + break; + } + } + + /* This can happen if a PEB is already in an EBA known + * by this fastmap but the PEB itself is not in the used + * list. + * In this case the PEB can be within the fastmap pool + * or while writing the fastmap it was in the protection + * queue. + */ + if (!aeb) { + aeb = kmem_cache_alloc(ai->aeb_slab_cache, + GFP_KERNEL); + if (!aeb) { + ret = -ENOMEM; + + goto fail; + } + + aeb->lnum = j; + aeb->pnum = be32_to_cpu(fm_eba->pnum[j]); + aeb->ec = -1; + aeb->scrub = aeb->copy_flag = aeb->sqnum = 0; + list_add_tail(&aeb->u.list, &eba_orphans); + continue; + } + + aeb->lnum = j; + + if (av->highest_lnum <= aeb->lnum) + av->highest_lnum = aeb->lnum; + + assign_aeb_to_av(ai, aeb, av); + + dbg_bld("inserting PEB:%i (LEB %i) to vol %i", + aeb->pnum, aeb->lnum, av->vol_id); + } + + ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); + if (!ech) { + ret = -ENOMEM; + goto fail; + } + + list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &eba_orphans, + u.list) { + int err; + + if (ubi_io_is_bad(ubi, tmp_aeb->pnum)) { + ubi_err("bad PEB in fastmap EBA orphan list"); + ret = UBI_BAD_FASTMAP; + kfree(ech); + goto fail; + } + + err = ubi_io_read_ec_hdr(ubi, tmp_aeb->pnum, ech, 0); + if (err && err != UBI_IO_BITFLIPS) { + ubi_err("unable to read EC header! PEB:%i " \ + "err:%i", tmp_aeb->pnum, err); + ret = err > 0 ? UBI_BAD_FASTMAP : err; + kfree(ech); + + goto fail; + } else if (err == UBI_IO_BITFLIPS) + tmp_aeb->scrub = 1; + + tmp_aeb->ec = be64_to_cpu(ech->ec); + assign_aeb_to_av(ai, tmp_aeb, av); + } + + kfree(ech); + } + + ret = scan_pool(ubi, ai, fmpl1->pebs, pool_size, &max_sqnum, + &eba_orphans, &free); + if (ret) + goto fail; + + ret = scan_pool(ubi, ai, fmpl2->pebs, wl_pool_size, &max_sqnum, + &eba_orphans, &free); + if (ret) + goto fail; + + if (max_sqnum > ai->max_sqnum) + ai->max_sqnum = max_sqnum; + + list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &free, u.list) + list_move_tail(&tmp_aeb->u.list, &ai->free); + + ubi_assert(list_empty(&used)); + ubi_assert(list_empty(&eba_orphans)); + ubi_assert(list_empty(&free)); + + /* + * If fastmap is leaking PEBs (must not happen), raise a + * fat warning and fall back to scanning mode. + * We do this here because in ubi_wl_init() it's too late + * and we cannot fall back to scanning. + */ + if (WARN_ON(count_fastmap_pebs(ai) != ubi->peb_count - + ai->bad_peb_count - fm->used_blocks)) + goto fail_bad; + + return 0; + +fail_bad: + ret = UBI_BAD_FASTMAP; +fail: + list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &used, u.list) { + list_del(&tmp_aeb->u.list); + kmem_cache_free(ai->aeb_slab_cache, tmp_aeb); + } + list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &eba_orphans, u.list) { + list_del(&tmp_aeb->u.list); + kmem_cache_free(ai->aeb_slab_cache, tmp_aeb); + } + list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &free, u.list) { + list_del(&tmp_aeb->u.list); + kmem_cache_free(ai->aeb_slab_cache, tmp_aeb); + } + + return ret; +} + +/** + * ubi_scan_fastmap - scan the fastmap. + * @ubi: UBI device object + * @ai: UBI attach info to be filled + * @fm_anchor: The fastmap starts at this PEB + * + * Returns 0 on success, UBI_NO_FASTMAP if no fastmap was found, + * UBI_BAD_FASTMAP if one was found but is not usable. + * < 0 indicates an internal error. + */ +int ubi_scan_fastmap(struct ubi_device *ubi, struct ubi_attach_info *ai, + int fm_anchor) +{ + struct ubi_fm_sb *fmsb, *fmsb2; + struct ubi_vid_hdr *vh; + struct ubi_ec_hdr *ech; + struct ubi_fastmap_layout *fm; + int i, used_blocks, pnum, ret = 0; + size_t fm_size; + __be32 crc, tmp_crc; + unsigned long long sqnum = 0; + + mutex_lock(&ubi->fm_mutex); + memset(ubi->fm_buf, 0, ubi->fm_size); + + fmsb = kmalloc(sizeof(*fmsb), GFP_KERNEL); + if (!fmsb) { + ret = -ENOMEM; + goto out; + } + + fm = kzalloc(sizeof(*fm), GFP_KERNEL); + if (!fm) { + ret = -ENOMEM; + kfree(fmsb); + goto out; + } + + ret = ubi_io_read(ubi, fmsb, fm_anchor, ubi->leb_start, sizeof(*fmsb)); + if (ret && ret != UBI_IO_BITFLIPS) + goto free_fm_sb; + else if (ret == UBI_IO_BITFLIPS) + fm->to_be_tortured[0] = 1; + + if (be32_to_cpu(fmsb->magic) != UBI_FM_SB_MAGIC) { + ubi_err("bad super block magic: 0x%x, expected: 0x%x", + be32_to_cpu(fmsb->magic), UBI_FM_SB_MAGIC); + ret = UBI_BAD_FASTMAP; + goto free_fm_sb; + } + + if (fmsb->version != UBI_FM_FMT_VERSION) { + ubi_err("bad fastmap version: %i, expected: %i", + fmsb->version, UBI_FM_FMT_VERSION); + ret = UBI_BAD_FASTMAP; + goto free_fm_sb; + } + + used_blocks = be32_to_cpu(fmsb->used_blocks); + if (used_blocks > UBI_FM_MAX_BLOCKS || used_blocks < 1) { + ubi_err("number of fastmap blocks is invalid: %i", used_blocks); + ret = UBI_BAD_FASTMAP; + goto free_fm_sb; + } + + fm_size = ubi->leb_size * used_blocks; + if (fm_size != ubi->fm_size) { + ubi_err("bad fastmap size: %zi, expected: %zi", fm_size, + ubi->fm_size); + ret = UBI_BAD_FASTMAP; + goto free_fm_sb; + } + + ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); + if (!ech) { + ret = -ENOMEM; + goto free_fm_sb; + } + + vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); + if (!vh) { + ret = -ENOMEM; + goto free_hdr; + } + + for (i = 0; i < used_blocks; i++) { + int image_seq; + + pnum = be32_to_cpu(fmsb->block_loc[i]); + + if (ubi_io_is_bad(ubi, pnum)) { + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } + + ret = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); + if (ret && ret != UBI_IO_BITFLIPS) { + ubi_err("unable to read fastmap block# %i EC (PEB: %i)", + i, pnum); + if (ret > 0) + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } else if (ret == UBI_IO_BITFLIPS) + fm->to_be_tortured[i] = 1; + + image_seq = be32_to_cpu(ech->image_seq); + if (!ubi->image_seq) + ubi->image_seq = image_seq; + + /* + * Older UBI implementations have image_seq set to zero, so + * we shouldn't fail if image_seq == 0. + */ + if (image_seq && (image_seq != ubi->image_seq)) { + ubi_err("wrong image seq:%d instead of %d", + be32_to_cpu(ech->image_seq), ubi->image_seq); + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } + + ret = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); + if (ret && ret != UBI_IO_BITFLIPS) { + ubi_err("unable to read fastmap block# %i (PEB: %i)", + i, pnum); + goto free_hdr; + } + + if (i == 0) { + if (be32_to_cpu(vh->vol_id) != UBI_FM_SB_VOLUME_ID) { + ubi_err("bad fastmap anchor vol_id: 0x%x," \ + " expected: 0x%x", + be32_to_cpu(vh->vol_id), + UBI_FM_SB_VOLUME_ID); + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } + } else { + if (be32_to_cpu(vh->vol_id) != UBI_FM_DATA_VOLUME_ID) { + ubi_err("bad fastmap data vol_id: 0x%x," \ + " expected: 0x%x", + be32_to_cpu(vh->vol_id), + UBI_FM_DATA_VOLUME_ID); + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } + } + + if (sqnum < be64_to_cpu(vh->sqnum)) + sqnum = be64_to_cpu(vh->sqnum); + + ret = ubi_io_read(ubi, ubi->fm_buf + (ubi->leb_size * i), pnum, + ubi->leb_start, ubi->leb_size); + if (ret && ret != UBI_IO_BITFLIPS) { + ubi_err("unable to read fastmap block# %i (PEB: %i, " \ + "err: %i)", i, pnum, ret); + goto free_hdr; + } + } + + kfree(fmsb); + fmsb = NULL; + + fmsb2 = (struct ubi_fm_sb *)(ubi->fm_buf); + tmp_crc = be32_to_cpu(fmsb2->data_crc); + fmsb2->data_crc = 0; + crc = crc32(UBI_CRC32_INIT, ubi->fm_buf, fm_size); + if (crc != tmp_crc) { + ubi_err("fastmap data CRC is invalid"); + ubi_err("CRC should be: 0x%x, calc: 0x%x", tmp_crc, crc); + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } + + fmsb2->sqnum = sqnum; + + fm->used_blocks = used_blocks; + + ret = ubi_attach_fastmap(ubi, ai, fm); + if (ret) { + if (ret > 0) + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } + + for (i = 0; i < used_blocks; i++) { + struct ubi_wl_entry *e; + + e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); + if (!e) { + while (i--) + kfree(fm->e[i]); + + ret = -ENOMEM; + goto free_hdr; + } + + e->pnum = be32_to_cpu(fmsb2->block_loc[i]); + e->ec = be32_to_cpu(fmsb2->block_ec[i]); + fm->e[i] = e; + } + + ubi->fm = fm; + ubi->fm_pool.max_size = ubi->fm->max_pool_size; + ubi->fm_wl_pool.max_size = ubi->fm->max_wl_pool_size; + ubi_msg("attached by fastmap"); + ubi_msg("fastmap pool size: %d", ubi->fm_pool.max_size); + ubi_msg("fastmap WL pool size: %d", ubi->fm_wl_pool.max_size); + ubi->fm_disabled = 0; + + ubi_free_vid_hdr(ubi, vh); + kfree(ech); +out: + mutex_unlock(&ubi->fm_mutex); + if (ret == UBI_BAD_FASTMAP) + ubi_err("Attach by fastmap failed, doing a full scan!"); + return ret; + +free_hdr: + ubi_free_vid_hdr(ubi, vh); + kfree(ech); +free_fm_sb: + kfree(fmsb); + kfree(fm); + goto out; +} + +/** + * ubi_write_fastmap - writes a fastmap. + * @ubi: UBI device object + * @new_fm: the to be written fastmap + * + * Returns 0 on success, < 0 indicates an internal error. + */ +static int ubi_write_fastmap(struct ubi_device *ubi, + struct ubi_fastmap_layout *new_fm) +{ + size_t fm_pos = 0; + void *fm_raw; + struct ubi_fm_sb *fmsb; + struct ubi_fm_hdr *fmh; + struct ubi_fm_scan_pool *fmpl1, *fmpl2; + struct ubi_fm_ec *fec; + struct ubi_fm_volhdr *fvh; + struct ubi_fm_eba *feba; + struct rb_node *node; + struct ubi_wl_entry *wl_e; + struct ubi_volume *vol; + struct ubi_vid_hdr *avhdr, *dvhdr; + struct ubi_work *ubi_wrk; + int ret, i, j, free_peb_count, used_peb_count, vol_count; + int scrub_peb_count, erase_peb_count; + + fm_raw = ubi->fm_buf; + memset(ubi->fm_buf, 0, ubi->fm_size); + + avhdr = new_fm_vhdr(ubi, UBI_FM_SB_VOLUME_ID); + if (!avhdr) { + ret = -ENOMEM; + goto out; + } + + dvhdr = new_fm_vhdr(ubi, UBI_FM_DATA_VOLUME_ID); + if (!dvhdr) { + ret = -ENOMEM; + goto out_kfree; + } + + spin_lock(&ubi->volumes_lock); + spin_lock(&ubi->wl_lock); + + fmsb = (struct ubi_fm_sb *)fm_raw; + fm_pos += sizeof(*fmsb); + ubi_assert(fm_pos <= ubi->fm_size); + + fmh = (struct ubi_fm_hdr *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmh); + ubi_assert(fm_pos <= ubi->fm_size); + + fmsb->magic = cpu_to_be32(UBI_FM_SB_MAGIC); + fmsb->version = UBI_FM_FMT_VERSION; + fmsb->used_blocks = cpu_to_be32(new_fm->used_blocks); + /* the max sqnum will be filled in while *reading* the fastmap */ + fmsb->sqnum = 0; + + fmh->magic = cpu_to_be32(UBI_FM_HDR_MAGIC); + free_peb_count = 0; + used_peb_count = 0; + scrub_peb_count = 0; + erase_peb_count = 0; + vol_count = 0; + + fmpl1 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmpl1); + fmpl1->magic = cpu_to_be32(UBI_FM_POOL_MAGIC); + fmpl1->size = cpu_to_be16(ubi->fm_pool.size); + fmpl1->max_size = cpu_to_be16(ubi->fm_pool.max_size); + + for (i = 0; i < ubi->fm_pool.size; i++) + fmpl1->pebs[i] = cpu_to_be32(ubi->fm_pool.pebs[i]); + + fmpl2 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmpl2); + fmpl2->magic = cpu_to_be32(UBI_FM_POOL_MAGIC); + fmpl2->size = cpu_to_be16(ubi->fm_wl_pool.size); + fmpl2->max_size = cpu_to_be16(ubi->fm_wl_pool.max_size); + + for (i = 0; i < ubi->fm_wl_pool.size; i++) + fmpl2->pebs[i] = cpu_to_be32(ubi->fm_wl_pool.pebs[i]); + + for (node = rb_first(&ubi->free); node; node = rb_next(node)) { + wl_e = rb_entry(node, struct ubi_wl_entry, u.rb); + fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + + fec->pnum = cpu_to_be32(wl_e->pnum); + fec->ec = cpu_to_be32(wl_e->ec); + + free_peb_count++; + fm_pos += sizeof(*fec); + ubi_assert(fm_pos <= ubi->fm_size); + } + fmh->free_peb_count = cpu_to_be32(free_peb_count); + + for (node = rb_first(&ubi->used); node; node = rb_next(node)) { + wl_e = rb_entry(node, struct ubi_wl_entry, u.rb); + fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + + fec->pnum = cpu_to_be32(wl_e->pnum); + fec->ec = cpu_to_be32(wl_e->ec); + + used_peb_count++; + fm_pos += sizeof(*fec); + ubi_assert(fm_pos <= ubi->fm_size); + } + fmh->used_peb_count = cpu_to_be32(used_peb_count); + + for (node = rb_first(&ubi->scrub); node; node = rb_next(node)) { + wl_e = rb_entry(node, struct ubi_wl_entry, u.rb); + fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + + fec->pnum = cpu_to_be32(wl_e->pnum); + fec->ec = cpu_to_be32(wl_e->ec); + + scrub_peb_count++; + fm_pos += sizeof(*fec); + ubi_assert(fm_pos <= ubi->fm_size); + } + fmh->scrub_peb_count = cpu_to_be32(scrub_peb_count); + + + list_for_each_entry(ubi_wrk, &ubi->works, list) { + if (ubi_is_erase_work(ubi_wrk)) { + wl_e = ubi_wrk->e; + ubi_assert(wl_e); + + fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + + fec->pnum = cpu_to_be32(wl_e->pnum); + fec->ec = cpu_to_be32(wl_e->ec); + + erase_peb_count++; + fm_pos += sizeof(*fec); + ubi_assert(fm_pos <= ubi->fm_size); + } + } + fmh->erase_peb_count = cpu_to_be32(erase_peb_count); + + for (i = 0; i < UBI_MAX_VOLUMES + UBI_INT_VOL_COUNT; i++) { + vol = ubi->volumes[i]; + + if (!vol) + continue; + + vol_count++; + + fvh = (struct ubi_fm_volhdr *)(fm_raw + fm_pos); + fm_pos += sizeof(*fvh); + ubi_assert(fm_pos <= ubi->fm_size); + + fvh->magic = cpu_to_be32(UBI_FM_VHDR_MAGIC); + fvh->vol_id = cpu_to_be32(vol->vol_id); + fvh->vol_type = vol->vol_type; + fvh->used_ebs = cpu_to_be32(vol->used_ebs); + fvh->data_pad = cpu_to_be32(vol->data_pad); + fvh->last_eb_bytes = cpu_to_be32(vol->last_eb_bytes); + + ubi_assert(vol->vol_type == UBI_DYNAMIC_VOLUME || + vol->vol_type == UBI_STATIC_VOLUME); + + feba = (struct ubi_fm_eba *)(fm_raw + fm_pos); + fm_pos += sizeof(*feba) + (sizeof(__be32) * vol->reserved_pebs); + ubi_assert(fm_pos <= ubi->fm_size); + + for (j = 0; j < vol->reserved_pebs; j++) + feba->pnum[j] = cpu_to_be32(vol->eba_tbl[j]); + + feba->reserved_pebs = cpu_to_be32(j); + feba->magic = cpu_to_be32(UBI_FM_EBA_MAGIC); + } + fmh->vol_count = cpu_to_be32(vol_count); + fmh->bad_peb_count = cpu_to_be32(ubi->bad_peb_count); + + avhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); + avhdr->lnum = 0; + + spin_unlock(&ubi->wl_lock); + spin_unlock(&ubi->volumes_lock); + + dbg_bld("writing fastmap SB to PEB %i", new_fm->e[0]->pnum); + ret = ubi_io_write_vid_hdr(ubi, new_fm->e[0]->pnum, avhdr); + if (ret) { + ubi_err("unable to write vid_hdr to fastmap SB!"); + goto out_kfree; + } + + for (i = 0; i < new_fm->used_blocks; i++) { + fmsb->block_loc[i] = cpu_to_be32(new_fm->e[i]->pnum); + fmsb->block_ec[i] = cpu_to_be32(new_fm->e[i]->ec); + } + + fmsb->data_crc = 0; + fmsb->data_crc = cpu_to_be32(crc32(UBI_CRC32_INIT, fm_raw, + ubi->fm_size)); + + for (i = 1; i < new_fm->used_blocks; i++) { + dvhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); + dvhdr->lnum = cpu_to_be32(i); + dbg_bld("writing fastmap data to PEB %i sqnum %llu", + new_fm->e[i]->pnum, be64_to_cpu(dvhdr->sqnum)); + ret = ubi_io_write_vid_hdr(ubi, new_fm->e[i]->pnum, dvhdr); + if (ret) { + ubi_err("unable to write vid_hdr to PEB %i!", + new_fm->e[i]->pnum); + goto out_kfree; + } + } + + for (i = 0; i < new_fm->used_blocks; i++) { + ret = ubi_io_write(ubi, fm_raw + (i * ubi->leb_size), + new_fm->e[i]->pnum, ubi->leb_start, ubi->leb_size); + if (ret) { + ubi_err("unable to write fastmap to PEB %i!", + new_fm->e[i]->pnum); + goto out_kfree; + } + } + + ubi_assert(new_fm); + ubi->fm = new_fm; + + dbg_bld("fastmap written!"); + +out_kfree: + ubi_free_vid_hdr(ubi, avhdr); + ubi_free_vid_hdr(ubi, dvhdr); +out: + return ret; +} + +/** + * erase_block - Manually erase a PEB. + * @ubi: UBI device object + * @pnum: PEB to be erased + * + * Returns the new EC value on success, < 0 indicates an internal error. + */ +static int erase_block(struct ubi_device *ubi, int pnum) +{ + int ret; + struct ubi_ec_hdr *ec_hdr; + long long ec; + + ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); + if (!ec_hdr) + return -ENOMEM; + + ret = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); + if (ret < 0) + goto out; + else if (ret && ret != UBI_IO_BITFLIPS) { + ret = -EINVAL; + goto out; + } + + ret = ubi_io_sync_erase(ubi, pnum, 0); + if (ret < 0) + goto out; + + ec = be64_to_cpu(ec_hdr->ec); + ec += ret; + if (ec > UBI_MAX_ERASECOUNTER) { + ret = -EINVAL; + goto out; + } + + ec_hdr->ec = cpu_to_be64(ec); + ret = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); + if (ret < 0) + goto out; + + ret = ec; +out: + kfree(ec_hdr); + return ret; +} + +/** + * invalidate_fastmap - destroys a fastmap. + * @ubi: UBI device object + * @fm: the fastmap to be destroyed + * + * Returns 0 on success, < 0 indicates an internal error. + */ +static int invalidate_fastmap(struct ubi_device *ubi, + struct ubi_fastmap_layout *fm) +{ + int ret; + struct ubi_vid_hdr *vh; + + ret = erase_block(ubi, fm->e[0]->pnum); + if (ret < 0) + return ret; + + vh = new_fm_vhdr(ubi, UBI_FM_SB_VOLUME_ID); + if (!vh) + return -ENOMEM; + + /* deleting the current fastmap SB is not enough, an old SB may exist, + * so create a (corrupted) SB such that fastmap will find it and fall + * back to scanning mode in any case */ + vh->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); + ret = ubi_io_write_vid_hdr(ubi, fm->e[0]->pnum, vh); + + return ret; +} + +/** + * ubi_update_fastmap - will be called by UBI if a volume changes or + * a fastmap pool becomes full. + * @ubi: UBI device object + * + * Returns 0 on success, < 0 indicates an internal error. + */ +int ubi_update_fastmap(struct ubi_device *ubi) +{ + int ret, i; + struct ubi_fastmap_layout *new_fm, *old_fm; + struct ubi_wl_entry *tmp_e; + + mutex_lock(&ubi->fm_mutex); + + ubi_refill_pools(ubi); + + if (ubi->ro_mode || ubi->fm_disabled) { + mutex_unlock(&ubi->fm_mutex); + return 0; + } + + ret = ubi_ensure_anchor_pebs(ubi); + if (ret) { + mutex_unlock(&ubi->fm_mutex); + return ret; + } + + new_fm = kzalloc(sizeof(*new_fm), GFP_KERNEL); + if (!new_fm) { + mutex_unlock(&ubi->fm_mutex); + return -ENOMEM; + } + + new_fm->used_blocks = ubi->fm_size / ubi->leb_size; + + for (i = 0; i < new_fm->used_blocks; i++) { + new_fm->e[i] = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); + if (!new_fm->e[i]) { + while (i--) + kfree(new_fm->e[i]); + + kfree(new_fm); + mutex_unlock(&ubi->fm_mutex); + return -ENOMEM; + } + } + + old_fm = ubi->fm; + ubi->fm = NULL; + + if (new_fm->used_blocks > UBI_FM_MAX_BLOCKS) { + ubi_err("fastmap too large"); + ret = -ENOSPC; + goto err; + } + + for (i = 1; i < new_fm->used_blocks; i++) { + spin_lock(&ubi->wl_lock); + tmp_e = ubi_wl_get_fm_peb(ubi, 0); + spin_unlock(&ubi->wl_lock); + + if (!tmp_e && !old_fm) { + int j; + ubi_err("could not get any free erase block"); + + for (j = 1; j < i; j++) + ubi_wl_put_fm_peb(ubi, new_fm->e[j], j, 0); + + ret = -ENOSPC; + goto err; + } else if (!tmp_e && old_fm) { + ret = erase_block(ubi, old_fm->e[i]->pnum); + if (ret < 0) { + int j; + + for (j = 1; j < i; j++) + ubi_wl_put_fm_peb(ubi, new_fm->e[j], + j, 0); + + ubi_err("could not erase old fastmap PEB"); + goto err; + } + + new_fm->e[i]->pnum = old_fm->e[i]->pnum; + new_fm->e[i]->ec = old_fm->e[i]->ec; + } else { + new_fm->e[i]->pnum = tmp_e->pnum; + new_fm->e[i]->ec = tmp_e->ec; + + if (old_fm) + ubi_wl_put_fm_peb(ubi, old_fm->e[i], i, + old_fm->to_be_tortured[i]); + } + } + + spin_lock(&ubi->wl_lock); + tmp_e = ubi_wl_get_fm_peb(ubi, 1); + spin_unlock(&ubi->wl_lock); + + if (old_fm) { + /* no fresh anchor PEB was found, reuse the old one */ + if (!tmp_e) { + ret = erase_block(ubi, old_fm->e[0]->pnum); + if (ret < 0) { + int i; + ubi_err("could not erase old anchor PEB"); + + for (i = 1; i < new_fm->used_blocks; i++) + ubi_wl_put_fm_peb(ubi, new_fm->e[i], + i, 0); + goto err; + } + + new_fm->e[0]->pnum = old_fm->e[0]->pnum; + new_fm->e[0]->ec = ret; + } else { + /* we've got a new anchor PEB, return the old one */ + ubi_wl_put_fm_peb(ubi, old_fm->e[0], 0, + old_fm->to_be_tortured[0]); + + new_fm->e[0]->pnum = tmp_e->pnum; + new_fm->e[0]->ec = tmp_e->ec; + } + } else { + if (!tmp_e) { + int i; + ubi_err("could not find any anchor PEB"); + + for (i = 1; i < new_fm->used_blocks; i++) + ubi_wl_put_fm_peb(ubi, new_fm->e[i], i, 0); + + ret = -ENOSPC; + goto err; + } + + new_fm->e[0]->pnum = tmp_e->pnum; + new_fm->e[0]->ec = tmp_e->ec; + } + + down_write(&ubi->work_sem); + down_write(&ubi->fm_sem); + ret = ubi_write_fastmap(ubi, new_fm); + up_write(&ubi->fm_sem); + up_write(&ubi->work_sem); + + if (ret) + goto err; + +out_unlock: + mutex_unlock(&ubi->fm_mutex); + kfree(old_fm); + return ret; + +err: + kfree(new_fm); + + ubi_warn("Unable to write new fastmap, err=%i", ret); + + ret = 0; + if (old_fm) { + ret = invalidate_fastmap(ubi, old_fm); + if (ret < 0) + ubi_err("Unable to invalidiate current fastmap!"); + else if (ret) + ret = 0; + } + goto out_unlock; +} diff --git a/drivers/mtd/ubi/gluebi.c b/drivers/mtd/ubi/gluebi.c index 9aa81584c8a..b93807b4c45 100644 --- a/drivers/mtd/ubi/gluebi.c +++ b/drivers/mtd/ubi/gluebi.c @@ -41,7 +41,7 @@ #include "ubi-media.h" #define err_msg(fmt, ...) \ - printk(KERN_DEBUG "gluebi (pid %d): %s: " fmt "\n", \ + pr_err("gluebi (pid %d): %s: " fmt "\n", \ current->pid, __func__, ##__VA_ARGS__) /** @@ -171,21 +171,17 @@ static void gluebi_put_device(struct mtd_info *mtd) static int gluebi_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, unsigned char *buf) { - int err = 0, lnum, offs, total_read; + int err = 0, lnum, offs, bytes_left; struct gluebi_device *gluebi; - if (len < 0 || from < 0 || from + len > mtd->size) - return -EINVAL; - gluebi = container_of(mtd, struct gluebi_device, mtd); - lnum = div_u64_rem(from, mtd->erasesize, &offs); - total_read = len; - while (total_read) { + bytes_left = len; + while (bytes_left) { size_t to_read = mtd->erasesize - offs; - if (to_read > total_read) - to_read = total_read; + if (to_read > bytes_left) + to_read = bytes_left; err = ubi_read(gluebi->desc, lnum, buf, offs, to_read); if (err) @@ -193,11 +189,11 @@ static int gluebi_read(struct mtd_info *mtd, loff_t from, size_t len, lnum += 1; offs = 0; - total_read -= to_read; + bytes_left -= to_read; buf += to_read; } - *retlen = len - total_read; + *retlen = len - bytes_left; return err; } @@ -215,40 +211,33 @@ static int gluebi_read(struct mtd_info *mtd, loff_t from, size_t len, static int gluebi_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { - int err = 0, lnum, offs, total_written; + int err = 0, lnum, offs, bytes_left; struct gluebi_device *gluebi; - if (len < 0 || to < 0 || len + to > mtd->size) - return -EINVAL; - gluebi = container_of(mtd, struct gluebi_device, mtd); - - if (!(mtd->flags & MTD_WRITEABLE)) - return -EROFS; - lnum = div_u64_rem(to, mtd->erasesize, &offs); if (len % mtd->writesize || offs % mtd->writesize) return -EINVAL; - total_written = len; - while (total_written) { + bytes_left = len; + while (bytes_left) { size_t to_write = mtd->erasesize - offs; - if (to_write > total_written) - to_write = total_written; + if (to_write > bytes_left) + to_write = bytes_left; - err = ubi_write(gluebi->desc, lnum, buf, offs, to_write); + err = ubi_leb_write(gluebi->desc, lnum, buf, offs, to_write); if (err) break; lnum += 1; offs = 0; - total_written -= to_write; + bytes_left -= to_write; buf += to_write; } - *retlen = len - total_written; + *retlen = len - bytes_left; return err; } @@ -265,21 +254,13 @@ static int gluebi_erase(struct mtd_info *mtd, struct erase_info *instr) int err, i, lnum, count; struct gluebi_device *gluebi; - if (instr->addr < 0 || instr->addr > mtd->size - mtd->erasesize) - return -EINVAL; - if (instr->len < 0 || instr->addr + instr->len > mtd->size) - return -EINVAL; if (mtd_mod_by_ws(instr->addr, mtd) || mtd_mod_by_ws(instr->len, mtd)) return -EINVAL; lnum = mtd_div_by_eb(instr->addr, mtd); count = mtd_div_by_eb(instr->len, mtd); - gluebi = container_of(mtd, struct gluebi_device, mtd); - if (!(mtd->flags & MTD_WRITEABLE)) - return -EROFS; - for (i = 0; i < count - 1; i++) { err = ubi_leb_unmap(gluebi->desc, lnum + i); if (err) @@ -340,11 +321,11 @@ static int gluebi_create(struct ubi_device_info *di, mtd->owner = THIS_MODULE; mtd->writesize = di->min_io_size; mtd->erasesize = vi->usable_leb_size; - mtd->read = gluebi_read; - mtd->write = gluebi_write; - mtd->erase = gluebi_erase; - mtd->get_device = gluebi_get_device; - mtd->put_device = gluebi_put_device; + mtd->_read = gluebi_read; + mtd->_write = gluebi_write; + mtd->_erase = gluebi_erase; + mtd->_get_device = gluebi_get_device; + mtd->_put_device = gluebi_put_device; /* * In case of dynamic a volume, MTD device size is just volume size. In @@ -360,12 +341,11 @@ static int gluebi_create(struct ubi_device_info *di, mutex_lock(&devices_mutex); g = find_gluebi_nolock(vi->ubi_num, vi->vol_id); if (g) - err_msg("gluebi MTD device %d form UBI device %d volume %d " - "already exists", g->mtd.index, vi->ubi_num, - vi->vol_id); + err_msg("gluebi MTD device %d form UBI device %d volume %d already exists", + g->mtd.index, vi->ubi_num, vi->vol_id); mutex_unlock(&devices_mutex); - if (add_mtd_device(mtd)) { + if (mtd_device_register(mtd, NULL, 0)) { err_msg("cannot add MTD device"); kfree(mtd->name); kfree(gluebi); @@ -395,8 +375,8 @@ static int gluebi_remove(struct ubi_volume_info *vi) mutex_lock(&devices_mutex); gluebi = find_gluebi_nolock(vi->ubi_num, vi->vol_id); if (!gluebi) { - err_msg("got remove notification for unknown UBI device %d " - "volume %d", vi->ubi_num, vi->vol_id); + err_msg("got remove notification for unknown UBI device %d volume %d", + vi->ubi_num, vi->vol_id); err = -ENOENT; } else if (gluebi->refcnt) err = -EBUSY; @@ -407,11 +387,10 @@ static int gluebi_remove(struct ubi_volume_info *vi) return err; mtd = &gluebi->mtd; - err = del_mtd_device(mtd); + err = mtd_device_unregister(mtd); if (err) { - err_msg("cannot remove fake MTD device %d, UBI device %d, " - "volume %d, error %d", mtd->index, gluebi->ubi_num, - gluebi->vol_id, err); + err_msg("cannot remove fake MTD device %d, UBI device %d, volume %d, error %d", + mtd->index, gluebi->ubi_num, gluebi->vol_id, err); mutex_lock(&devices_mutex); list_add_tail(&gluebi->list, &gluebi_devices); mutex_unlock(&devices_mutex); @@ -441,8 +420,8 @@ static int gluebi_updated(struct ubi_volume_info *vi) gluebi = find_gluebi_nolock(vi->ubi_num, vi->vol_id); if (!gluebi) { mutex_unlock(&devices_mutex); - err_msg("got update notification for unknown UBI device %d " - "volume %d", vi->ubi_num, vi->vol_id); + err_msg("got update notification for unknown UBI device %d volume %d", + vi->ubi_num, vi->vol_id); return -ENOENT; } @@ -468,8 +447,8 @@ static int gluebi_resized(struct ubi_volume_info *vi) gluebi = find_gluebi_nolock(vi->ubi_num, vi->vol_id); if (!gluebi) { mutex_unlock(&devices_mutex); - err_msg("got update notification for unknown UBI device %d " - "volume %d", vi->ubi_num, vi->vol_id); + err_msg("got update notification for unknown UBI device %d volume %d", + vi->ubi_num, vi->vol_id); return -ENOENT; } gluebi->mtd.size = vi->used_bytes; @@ -524,11 +503,11 @@ static void __exit ubi_gluebi_exit(void) int err; struct mtd_info *mtd = &gluebi->mtd; - err = del_mtd_device(mtd); + err = mtd_device_unregister(mtd); if (err) - err_msg("error %d while removing gluebi MTD device %d, " - "UBI device %d, volume %d - ignoring", err, - mtd->index, gluebi->ubi_num, gluebi->vol_id); + err_msg("error %d while removing gluebi MTD device %d, UBI device %d, volume %d - ignoring", + err, mtd->index, gluebi->ubi_num, + gluebi->vol_id); kfree(mtd->name); kfree(gluebi); } diff --git a/drivers/mtd/ubi/io.c b/drivers/mtd/ubi/io.c index 4b979e34b15..d36134925d3 100644 --- a/drivers/mtd/ubi/io.c +++ b/drivers/mtd/ubi/io.c @@ -91,21 +91,15 @@ #include <linux/slab.h> #include "ubi.h" -#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID -static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum); -static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); -static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, - const struct ubi_ec_hdr *ec_hdr); -static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); -static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, - const struct ubi_vid_hdr *vid_hdr); -#else -#define paranoid_check_not_bad(ubi, pnum) 0 -#define paranoid_check_peb_ec_hdr(ubi, pnum) 0 -#define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0 -#define paranoid_check_peb_vid_hdr(ubi, pnum) 0 -#define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0 -#endif +static int self_check_not_bad(const struct ubi_device *ubi, int pnum); +static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); +static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, + const struct ubi_ec_hdr *ec_hdr); +static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); +static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, + const struct ubi_vid_hdr *vid_hdr); +static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, + int offset, int len); /** * ubi_io_read - read data from a physical eraseblock. @@ -142,15 +136,39 @@ int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); ubi_assert(len > 0); - err = paranoid_check_not_bad(ubi, pnum); + err = self_check_not_bad(ubi, pnum); if (err) return err; + /* + * Deliberately corrupt the buffer to improve robustness. Indeed, if we + * do not do this, the following may happen: + * 1. The buffer contains data from previous operation, e.g., read from + * another PEB previously. The data looks like expected, e.g., if we + * just do not read anything and return - the caller would not + * notice this. E.g., if we are reading a VID header, the buffer may + * contain a valid VID header from another PEB. + * 2. The driver is buggy and returns us success or -EBADMSG or + * -EUCLEAN, but it does not actually put any data to the buffer. + * + * This may confuse UBI or upper layers - they may think the buffer + * contains valid data while in fact it is just old data. This is + * especially possible because UBI (and UBIFS) relies on CRC, and + * treats data as correct even in case of ECC errors if the CRC is + * correct. + * + * Try to prevent this situation by changing the first byte of the + * buffer. + */ + *((uint8_t *)buf) ^= 0xFF; + addr = (loff_t)pnum * ubi->peb_size + offset; retry: - err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf); + err = mtd_read(ubi->mtd, addr, len, &read, buf); if (err) { - if (err == -EUCLEAN) { + const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : ""; + + if (mtd_is_bitflip(err)) { /* * -EUCLEAN is reported if there was a bit-flip which * was corrected, so this is harmless. @@ -159,36 +177,35 @@ retry: * enabled. A corresponding message will be printed * later, when it is has been scrubbed. */ - dbg_msg("fixable bit-flip detected at PEB %d", pnum); + ubi_msg("fixable bit-flip detected at PEB %d", pnum); ubi_assert(len == read); return UBI_IO_BITFLIPS; } - if (read != len && retries++ < UBI_IO_RETRIES) { - dbg_io("error %d while reading %d bytes from PEB %d:%d," - " read only %zd bytes, retry", - err, len, pnum, offset, read); + if (retries++ < UBI_IO_RETRIES) { + ubi_warn("error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry", + err, errstr, len, pnum, offset, read); yield(); goto retry; } - ubi_err("error %d while reading %d bytes from PEB %d:%d, " - "read %zd bytes", err, len, pnum, offset, read); - ubi_dbg_dump_stack(); + ubi_err("error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes", + err, errstr, len, pnum, offset, read); + dump_stack(); /* * The driver should never return -EBADMSG if it failed to read * all the requested data. But some buggy drivers might do * this, so we change it to -EIO. */ - if (read != len && err == -EBADMSG) { + if (read != len && mtd_is_eccerr(err)) { ubi_assert(0); err = -EIO; } } else { ubi_assert(len == read); - if (ubi_dbg_is_bitflip()) { + if (ubi_dbg_is_bitflip(ubi)) { dbg_gen("bit-flip (emulated)"); err = UBI_IO_BITFLIPS; } @@ -233,14 +250,12 @@ int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, return -EROFS; } - /* The below has to be compiled out if paranoid checks are disabled */ - - err = paranoid_check_not_bad(ubi, pnum); + err = self_check_not_bad(ubi, pnum); if (err) return err; /* The area we are writing to has to contain all 0xFF bytes */ - err = ubi_dbg_check_all_ff(ubi, pnum, offset, len); + err = ubi_self_check_all_ff(ubi, pnum, offset, len); if (err) return err; @@ -249,33 +264,33 @@ int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, * We write to the data area of the physical eraseblock. Make * sure it has valid EC and VID headers. */ - err = paranoid_check_peb_ec_hdr(ubi, pnum); + err = self_check_peb_ec_hdr(ubi, pnum); if (err) return err; - err = paranoid_check_peb_vid_hdr(ubi, pnum); + err = self_check_peb_vid_hdr(ubi, pnum); if (err) return err; } - if (ubi_dbg_is_write_failure()) { - dbg_err("cannot write %d bytes to PEB %d:%d " - "(emulated)", len, pnum, offset); - ubi_dbg_dump_stack(); + if (ubi_dbg_is_write_failure(ubi)) { + ubi_err("cannot write %d bytes to PEB %d:%d (emulated)", + len, pnum, offset); + dump_stack(); return -EIO; } addr = (loff_t)pnum * ubi->peb_size + offset; - err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf); + err = mtd_write(ubi->mtd, addr, len, &written, buf); if (err) { - ubi_err("error %d while writing %d bytes to PEB %d:%d, written " - "%zd bytes", err, len, pnum, offset, written); - ubi_dbg_dump_stack(); - ubi_dbg_dump_flash(ubi, pnum, offset, len); + ubi_err("error %d while writing %d bytes to PEB %d:%d, written %zd bytes", + err, len, pnum, offset, written); + dump_stack(); + ubi_dump_flash(ubi, pnum, offset, len); } else ubi_assert(written == len); if (!err) { - err = ubi_dbg_check_write(ubi, buf, pnum, offset, len); + err = self_check_write(ubi, buf, pnum, offset, len); if (err) return err; @@ -286,7 +301,7 @@ int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, offset += len; len = ubi->peb_size - offset; if (len) - err = ubi_dbg_check_all_ff(ubi, pnum, offset, len); + err = ubi_self_check_all_ff(ubi, pnum, offset, len); } return err; @@ -320,6 +335,12 @@ static int do_sync_erase(struct ubi_device *ubi, int pnum) wait_queue_head_t wq; dbg_io("erase PEB %d", pnum); + ubi_assert(pnum >= 0 && pnum < ubi->peb_count); + + if (ubi->ro_mode) { + ubi_err("read-only mode"); + return -EROFS; + } retry: init_waitqueue_head(&wq); @@ -331,16 +352,16 @@ retry: ei.callback = erase_callback; ei.priv = (unsigned long)&wq; - err = ubi->mtd->erase(ubi->mtd, &ei); + err = mtd_erase(ubi->mtd, &ei); if (err) { if (retries++ < UBI_IO_RETRIES) { - dbg_io("error %d while erasing PEB %d, retry", - err, pnum); + ubi_warn("error %d while erasing PEB %d, retry", + err, pnum); yield(); goto retry; } ubi_err("cannot erase PEB %d, error %d", pnum, err); - ubi_dbg_dump_stack(); + dump_stack(); return err; } @@ -353,46 +374,27 @@ retry: if (ei.state == MTD_ERASE_FAILED) { if (retries++ < UBI_IO_RETRIES) { - dbg_io("error while erasing PEB %d, retry", pnum); + ubi_warn("error while erasing PEB %d, retry", pnum); yield(); goto retry; } ubi_err("cannot erase PEB %d", pnum); - ubi_dbg_dump_stack(); + dump_stack(); return -EIO; } - err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size); + err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size); if (err) return err; - if (ubi_dbg_is_erase_failure() && !err) { - dbg_err("cannot erase PEB %d (emulated)", pnum); + if (ubi_dbg_is_erase_failure(ubi)) { + ubi_err("cannot erase PEB %d (emulated)", pnum); return -EIO; } return 0; } -/** - * check_pattern - check if buffer contains only a certain byte pattern. - * @buf: buffer to check - * @patt: the pattern to check - * @size: buffer size in bytes - * - * This function returns %1 in there are only @patt bytes in @buf, and %0 if - * something else was also found. - */ -static int check_pattern(const void *buf, uint8_t patt, int size) -{ - int i; - - for (i = 0; i < size; i++) - if (((const uint8_t *)buf)[i] != patt) - return 0; - return 1; -} - /* Patterns to write to a physical eraseblock when torturing it */ static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; @@ -420,11 +422,11 @@ static int torture_peb(struct ubi_device *ubi, int pnum) goto out; /* Make sure the PEB contains only 0xFF bytes */ - err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); + err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); if (err) goto out; - err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size); + err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size); if (err == 0) { ubi_err("erased PEB %d, but a non-0xFF byte found", pnum); @@ -433,17 +435,18 @@ static int torture_peb(struct ubi_device *ubi, int pnum) } /* Write a pattern and check it */ - memset(ubi->peb_buf1, patterns[i], ubi->peb_size); - err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); + memset(ubi->peb_buf, patterns[i], ubi->peb_size); + err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); if (err) goto out; - memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size); - err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); + memset(ubi->peb_buf, ~patterns[i], ubi->peb_size); + err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); if (err) goto out; - err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size); + err = ubi_check_pattern(ubi->peb_buf, patterns[i], + ubi->peb_size); if (err == 0) { ubi_err("pattern %x checking failed for PEB %d", patterns[i], pnum); @@ -453,11 +456,11 @@ static int torture_peb(struct ubi_device *ubi, int pnum) } err = patt_count; - ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum); + ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum); out: mutex_unlock(&ubi->buf_mutex); - if (err == UBI_IO_BITFLIPS || err == -EBADMSG) { + if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { /* * If a bit-flip or data integrity error was detected, the test * has not passed because it happened on a freshly erased @@ -492,45 +495,55 @@ out: */ static int nor_erase_prepare(struct ubi_device *ubi, int pnum) { - int err, err1; + int err; size_t written; loff_t addr; uint32_t data = 0; - struct ubi_vid_hdr vid_hdr; + struct ubi_ec_hdr ec_hdr; - addr = (loff_t)pnum * ubi->peb_size + ubi->vid_hdr_aloffset; - err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data); - if (!err) { - addr -= ubi->vid_hdr_aloffset; - err = ubi->mtd->write(ubi->mtd, addr, 4, &written, - (void *)&data); - if (!err) - return 0; - } + /* + * Note, we cannot generally define VID header buffers on stack, + * because of the way we deal with these buffers (see the header + * comment in this file). But we know this is a NOR-specific piece of + * code, so we can do this. But yes, this is error-prone and we should + * (pre-)allocate VID header buffer instead. + */ + struct ubi_vid_hdr vid_hdr; /* - * We failed to write to the media. This was observed with Spansion - * S29GL512N NOR flash. Most probably the eraseblock erasure was - * interrupted at a very inappropriate moment, so it became unwritable. - * In this case we probably anyway have garbage in this PEB. + * If VID or EC is valid, we have to corrupt them before erasing. + * It is important to first invalidate the EC header, and then the VID + * header. Otherwise a power cut may lead to valid EC header and + * invalid VID header, in which case UBI will treat this PEB as + * corrupted and will try to preserve it, and print scary warnings. */ - err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); - if (err1 == UBI_IO_BAD_VID_HDR) - /* - * The VID header is corrupted, so we can safely erase this - * PEB and not afraid that it will be treated as a valid PEB in - * case of an unclean reboot. - */ - return 0; + addr = (loff_t)pnum * ubi->peb_size; + err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); + if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && + err != UBI_IO_FF){ + err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); + if(err) + goto error; + } + + err = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); + if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && + err != UBI_IO_FF){ + addr += ubi->vid_hdr_aloffset; + err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); + if (err) + goto error; + } + return 0; +error: /* - * The PEB contains a valid VID header, but we cannot invalidate it. - * Supposedly the flash media or the driver is screwed up, so return an - * error. + * The PEB contains a valid VID or EC header, but we cannot invalidate + * it. Supposedly the flash media or the driver is screwed up, so + * return an error. */ - ubi_err("cannot invalidate PEB %d, write returned %d read returned %d", - pnum, err, err1); - ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size); + ubi_err("cannot invalidate PEB %d, write returned %d", pnum, err); + ubi_dump_flash(ubi, pnum, 0, ubi->peb_size); return -EIO; } @@ -556,7 +569,7 @@ int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) ubi_assert(pnum >= 0 && pnum < ubi->peb_count); - err = paranoid_check_not_bad(ubi, pnum); + err = self_check_not_bad(ubi, pnum); if (err != 0) return err; @@ -601,7 +614,7 @@ int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) if (ubi->bad_allowed) { int ret; - ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size); + ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size); if (ret < 0) ubi_err("error %d while checking if PEB %d is bad", ret, pnum); @@ -636,7 +649,7 @@ int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) if (!ubi->bad_allowed) return 0; - err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size); + err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size); if (err) ubi_err("cannot mark PEB %d bad, error %d", pnum, err); return err; @@ -661,8 +674,7 @@ static int validate_ec_hdr(const struct ubi_device *ubi, leb_start = be32_to_cpu(ec_hdr->data_offset); if (ec_hdr->version != UBI_VERSION) { - ubi_err("node with incompatible UBI version found: " - "this UBI version is %d, image version is %d", + ubi_err("node with incompatible UBI version found: this UBI version is %d, image version is %d", UBI_VERSION, (int)ec_hdr->version); goto bad; } @@ -688,8 +700,8 @@ static int validate_ec_hdr(const struct ubi_device *ubi, bad: ubi_err("bad EC header"); - ubi_dbg_dump_ec_hdr(ec_hdr); - ubi_dbg_dump_stack(); + ubi_dump_ec_hdr(ec_hdr); + dump_stack(); return 1; } @@ -709,58 +721,58 @@ bad: * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected * and corrected by the flash driver; this is harmless but may indicate that * this eraseblock may become bad soon (but may be not); - * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error); - * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty; + * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); + * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was + * a data integrity error (uncorrectable ECC error in case of NAND); + * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) * o a negative error code in case of failure. */ int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, struct ubi_ec_hdr *ec_hdr, int verbose) { - int err, read_err = 0; + int err, read_err; uint32_t crc, magic, hdr_crc; dbg_io("read EC header from PEB %d", pnum); ubi_assert(pnum >= 0 && pnum < ubi->peb_count); - err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); - if (err) { - if (err != UBI_IO_BITFLIPS && err != -EBADMSG) - return err; + read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); + if (read_err) { + if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) + return read_err; /* * We read all the data, but either a correctable bit-flip - * occurred, or MTD reported about some data integrity error, - * like an ECC error in case of NAND. The former is harmless, - * the later may mean that the read data is corrupted. But we - * have a CRC check-sum and we will detect this. If the EC - * header is still OK, we just report this as there was a - * bit-flip. + * occurred, or MTD reported a data integrity error + * (uncorrectable ECC error in case of NAND). The former is + * harmless, the later may mean that the read data is + * corrupted. But we have a CRC check-sum and we will detect + * this. If the EC header is still OK, we just report this as + * there was a bit-flip, to force scrubbing. */ - read_err = err; } magic = be32_to_cpu(ec_hdr->magic); if (magic != UBI_EC_HDR_MAGIC) { + if (mtd_is_eccerr(read_err)) + return UBI_IO_BAD_HDR_EBADMSG; + /* * The magic field is wrong. Let's check if we have read all * 0xFF. If yes, this physical eraseblock is assumed to be * empty. - * - * But if there was a read error, we do not test it for all - * 0xFFs. Even if it does contain all 0xFFs, this error - * indicates that something is still wrong with this physical - * eraseblock and we anyway cannot treat it as empty. */ - if (read_err != -EBADMSG && - check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { + if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { /* The physical eraseblock is supposedly empty */ if (verbose) - ubi_warn("no EC header found at PEB %d, " - "only 0xFF bytes", pnum); - else if (UBI_IO_DEBUG) - dbg_msg("no EC header found at PEB %d, " - "only 0xFF bytes", pnum); - return UBI_IO_PEB_EMPTY; + ubi_warn("no EC header found at PEB %d, only 0xFF bytes", + pnum); + dbg_bld("no EC header found at PEB %d, only 0xFF bytes", + pnum); + if (!read_err) + return UBI_IO_FF; + else + return UBI_IO_FF_BITFLIPS; } /* @@ -768,13 +780,13 @@ int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, * 0xFF bytes. Report that the header is corrupted. */ if (verbose) { - ubi_warn("bad magic number at PEB %d: %08x instead of " - "%08x", pnum, magic, UBI_EC_HDR_MAGIC); - ubi_dbg_dump_ec_hdr(ec_hdr); - } else if (UBI_IO_DEBUG) - dbg_msg("bad magic number at PEB %d: %08x instead of " - "%08x", pnum, magic, UBI_EC_HDR_MAGIC); - return UBI_IO_BAD_EC_HDR; + ubi_warn("bad magic number at PEB %d: %08x instead of %08x", + pnum, magic, UBI_EC_HDR_MAGIC); + ubi_dump_ec_hdr(ec_hdr); + } + dbg_bld("bad magic number at PEB %d: %08x instead of %08x", + pnum, magic, UBI_EC_HDR_MAGIC); + return UBI_IO_BAD_HDR; } crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); @@ -782,13 +794,17 @@ int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, if (hdr_crc != crc) { if (verbose) { - ubi_warn("bad EC header CRC at PEB %d, calculated " - "%#08x, read %#08x", pnum, crc, hdr_crc); - ubi_dbg_dump_ec_hdr(ec_hdr); - } else if (UBI_IO_DEBUG) - dbg_msg("bad EC header CRC at PEB %d, calculated " - "%#08x, read %#08x", pnum, crc, hdr_crc); - return UBI_IO_BAD_EC_HDR; + ubi_warn("bad EC header CRC at PEB %d, calculated %#08x, read %#08x", + pnum, crc, hdr_crc); + ubi_dump_ec_hdr(ec_hdr); + } + dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x", + pnum, crc, hdr_crc); + + if (!read_err) + return UBI_IO_BAD_HDR; + else + return UBI_IO_BAD_HDR_EBADMSG; } /* And of course validate what has just been read from the media */ @@ -798,6 +814,10 @@ int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, return -EINVAL; } + /* + * If there was %-EBADMSG, but the header CRC is still OK, report about + * a bit-flip to force scrubbing on this PEB. + */ return read_err ? UBI_IO_BITFLIPS : 0; } @@ -833,7 +853,7 @@ int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); ec_hdr->hdr_crc = cpu_to_be32(crc); - err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); + err = self_check_ec_hdr(ubi, pnum, ec_hdr); if (err) return err; @@ -864,40 +884,40 @@ static int validate_vid_hdr(const struct ubi_device *ubi, int usable_leb_size = ubi->leb_size - data_pad; if (copy_flag != 0 && copy_flag != 1) { - dbg_err("bad copy_flag"); + ubi_err("bad copy_flag"); goto bad; } if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || data_pad < 0) { - dbg_err("negative values"); + ubi_err("negative values"); goto bad; } if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { - dbg_err("bad vol_id"); + ubi_err("bad vol_id"); goto bad; } if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { - dbg_err("bad compat"); + ubi_err("bad compat"); goto bad; } if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && compat != UBI_COMPAT_REJECT) { - dbg_err("bad compat"); + ubi_err("bad compat"); goto bad; } if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { - dbg_err("bad vol_type"); + ubi_err("bad vol_type"); goto bad; } if (data_pad >= ubi->leb_size / 2) { - dbg_err("bad data_pad"); + ubi_err("bad data_pad"); goto bad; } @@ -909,45 +929,45 @@ static int validate_vid_hdr(const struct ubi_device *ubi, * mapped logical eraseblocks. */ if (used_ebs == 0) { - dbg_err("zero used_ebs"); + ubi_err("zero used_ebs"); goto bad; } if (data_size == 0) { - dbg_err("zero data_size"); + ubi_err("zero data_size"); goto bad; } if (lnum < used_ebs - 1) { if (data_size != usable_leb_size) { - dbg_err("bad data_size"); + ubi_err("bad data_size"); goto bad; } } else if (lnum == used_ebs - 1) { if (data_size == 0) { - dbg_err("bad data_size at last LEB"); + ubi_err("bad data_size at last LEB"); goto bad; } } else { - dbg_err("too high lnum"); + ubi_err("too high lnum"); goto bad; } } else { if (copy_flag == 0) { if (data_crc != 0) { - dbg_err("non-zero data CRC"); + ubi_err("non-zero data CRC"); goto bad; } if (data_size != 0) { - dbg_err("non-zero data_size"); + ubi_err("non-zero data_size"); goto bad; } } else { if (data_size == 0) { - dbg_err("zero data_size of copy"); + ubi_err("zero data_size of copy"); goto bad; } } if (used_ebs != 0) { - dbg_err("bad used_ebs"); + ubi_err("bad used_ebs"); goto bad; } } @@ -956,8 +976,8 @@ static int validate_vid_hdr(const struct ubi_device *ubi, bad: ubi_err("bad VID header"); - ubi_dbg_dump_vid_hdr(vid_hdr); - ubi_dbg_dump_stack(); + ubi_dump_vid_hdr(vid_hdr); + dump_stack(); return 1; } @@ -971,22 +991,16 @@ bad: * * This function reads the volume identifier header from physical eraseblock * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read - * volume identifier header. The following codes may be returned: + * volume identifier header. The error codes are the same as in + * 'ubi_io_read_ec_hdr()'. * - * o %0 if the CRC checksum is correct and the header was successfully read; - * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected - * and corrected by the flash driver; this is harmless but may indicate that - * this eraseblock may become bad soon; - * o %UBI_IO_BAD_VID_HDR if the volume identifier header is corrupted (a CRC - * error detected); - * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID - * header there); - * o a negative error code in case of failure. + * Note, the implementation of this function is also very similar to + * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. */ int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, struct ubi_vid_hdr *vid_hdr, int verbose) { - int err, read_err = 0; + int err, read_err; uint32_t crc, magic, hdr_crc; void *p; @@ -994,58 +1008,36 @@ int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, ubi_assert(pnum >= 0 && pnum < ubi->peb_count); p = (char *)vid_hdr - ubi->vid_hdr_shift; - err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, + read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, ubi->vid_hdr_alsize); - if (err) { - if (err != UBI_IO_BITFLIPS && err != -EBADMSG) - return err; - - /* - * We read all the data, but either a correctable bit-flip - * occurred, or MTD reported about some data integrity error, - * like an ECC error in case of NAND. The former is harmless, - * the later may mean the read data is corrupted. But we have a - * CRC check-sum and we will identify this. If the VID header is - * still OK, we just report this as there was a bit-flip. - */ - read_err = err; - } + if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) + return read_err; magic = be32_to_cpu(vid_hdr->magic); if (magic != UBI_VID_HDR_MAGIC) { - /* - * If we have read all 0xFF bytes, the VID header probably does - * not exist and the physical eraseblock is assumed to be free. - * - * But if there was a read error, we do not test the data for - * 0xFFs. Even if it does contain all 0xFFs, this error - * indicates that something is still wrong with this physical - * eraseblock and it cannot be regarded as free. - */ - if (read_err != -EBADMSG && - check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { - /* The physical eraseblock is supposedly free */ + if (mtd_is_eccerr(read_err)) + return UBI_IO_BAD_HDR_EBADMSG; + + if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { if (verbose) - ubi_warn("no VID header found at PEB %d, " - "only 0xFF bytes", pnum); - else if (UBI_IO_DEBUG) - dbg_msg("no VID header found at PEB %d, " - "only 0xFF bytes", pnum); - return UBI_IO_PEB_FREE; + ubi_warn("no VID header found at PEB %d, only 0xFF bytes", + pnum); + dbg_bld("no VID header found at PEB %d, only 0xFF bytes", + pnum); + if (!read_err) + return UBI_IO_FF; + else + return UBI_IO_FF_BITFLIPS; } - /* - * This is not a valid VID header, and these are not 0xFF - * bytes. Report that the header is corrupted. - */ if (verbose) { - ubi_warn("bad magic number at PEB %d: %08x instead of " - "%08x", pnum, magic, UBI_VID_HDR_MAGIC); - ubi_dbg_dump_vid_hdr(vid_hdr); - } else if (UBI_IO_DEBUG) - dbg_msg("bad magic number at PEB %d: %08x instead of " - "%08x", pnum, magic, UBI_VID_HDR_MAGIC); - return UBI_IO_BAD_VID_HDR; + ubi_warn("bad magic number at PEB %d: %08x instead of %08x", + pnum, magic, UBI_VID_HDR_MAGIC); + ubi_dump_vid_hdr(vid_hdr); + } + dbg_bld("bad magic number at PEB %d: %08x instead of %08x", + pnum, magic, UBI_VID_HDR_MAGIC); + return UBI_IO_BAD_HDR; } crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); @@ -1053,16 +1045,18 @@ int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, if (hdr_crc != crc) { if (verbose) { - ubi_warn("bad CRC at PEB %d, calculated %#08x, " - "read %#08x", pnum, crc, hdr_crc); - ubi_dbg_dump_vid_hdr(vid_hdr); - } else if (UBI_IO_DEBUG) - dbg_msg("bad CRC at PEB %d, calculated %#08x, " - "read %#08x", pnum, crc, hdr_crc); - return UBI_IO_BAD_VID_HDR; + ubi_warn("bad CRC at PEB %d, calculated %#08x, read %#08x", + pnum, crc, hdr_crc); + ubi_dump_vid_hdr(vid_hdr); + } + dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x", + pnum, crc, hdr_crc); + if (!read_err) + return UBI_IO_BAD_HDR; + else + return UBI_IO_BAD_HDR_EBADMSG; } - /* Validate the VID header that we have just read */ err = validate_vid_hdr(ubi, vid_hdr); if (err) { ubi_err("validation failed for PEB %d", pnum); @@ -1097,7 +1091,7 @@ int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, dbg_io("write VID header to PEB %d", pnum); ubi_assert(pnum >= 0 && pnum < ubi->peb_count); - err = paranoid_check_peb_ec_hdr(ubi, pnum); + err = self_check_peb_ec_hdr(ubi, pnum); if (err) return err; @@ -1106,7 +1100,7 @@ int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); vid_hdr->hdr_crc = cpu_to_be32(crc); - err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); + err = self_check_vid_hdr(ubi, pnum, vid_hdr); if (err) return err; @@ -1116,31 +1110,32 @@ int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, return err; } -#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID - /** - * paranoid_check_not_bad - ensure that a physical eraseblock is not bad. + * self_check_not_bad - ensure that a physical eraseblock is not bad. * @ubi: UBI device description object * @pnum: physical eraseblock number to check * * This function returns zero if the physical eraseblock is good, %-EINVAL if * it is bad and a negative error code if an error occurred. */ -static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum) +static int self_check_not_bad(const struct ubi_device *ubi, int pnum) { int err; + if (!ubi_dbg_chk_io(ubi)) + return 0; + err = ubi_io_is_bad(ubi, pnum); if (!err) return err; - ubi_err("paranoid check failed for PEB %d", pnum); - ubi_dbg_dump_stack(); + ubi_err("self-check failed for PEB %d", pnum); + dump_stack(); return err > 0 ? -EINVAL : err; } /** - * paranoid_check_ec_hdr - check if an erase counter header is all right. + * self_check_ec_hdr - check if an erase counter header is all right. * @ubi: UBI device description object * @pnum: physical eraseblock number the erase counter header belongs to * @ec_hdr: the erase counter header to check @@ -1148,12 +1143,15 @@ static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum) * This function returns zero if the erase counter header contains valid * values, and %-EINVAL if not. */ -static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, - const struct ubi_ec_hdr *ec_hdr) +static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, + const struct ubi_ec_hdr *ec_hdr) { int err; uint32_t magic; + if (!ubi_dbg_chk_io(ubi)) + return 0; + magic = be32_to_cpu(ec_hdr->magic); if (magic != UBI_EC_HDR_MAGIC) { ubi_err("bad magic %#08x, must be %#08x", @@ -1163,52 +1161,55 @@ static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, err = validate_ec_hdr(ubi, ec_hdr); if (err) { - ubi_err("paranoid check failed for PEB %d", pnum); + ubi_err("self-check failed for PEB %d", pnum); goto fail; } return 0; fail: - ubi_dbg_dump_ec_hdr(ec_hdr); - ubi_dbg_dump_stack(); + ubi_dump_ec_hdr(ec_hdr); + dump_stack(); return -EINVAL; } /** - * paranoid_check_peb_ec_hdr - check erase counter header. + * self_check_peb_ec_hdr - check erase counter header. * @ubi: UBI device description object * @pnum: the physical eraseblock number to check * * This function returns zero if the erase counter header is all right and and * a negative error code if not or if an error occurred. */ -static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) +static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) { int err; uint32_t crc, hdr_crc; struct ubi_ec_hdr *ec_hdr; + if (!ubi_dbg_chk_io(ubi)) + return 0; + ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); if (!ec_hdr) return -ENOMEM; err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); - if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) + if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) goto exit; crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); if (hdr_crc != crc) { ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc); - ubi_err("paranoid check failed for PEB %d", pnum); - ubi_dbg_dump_ec_hdr(ec_hdr); - ubi_dbg_dump_stack(); + ubi_err("self-check failed for PEB %d", pnum); + ubi_dump_ec_hdr(ec_hdr); + dump_stack(); err = -EINVAL; goto exit; } - err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); + err = self_check_ec_hdr(ubi, pnum, ec_hdr); exit: kfree(ec_hdr); @@ -1216,7 +1217,7 @@ exit: } /** - * paranoid_check_vid_hdr - check that a volume identifier header is all right. + * self_check_vid_hdr - check that a volume identifier header is all right. * @ubi: UBI device description object * @pnum: physical eraseblock number the volume identifier header belongs to * @vid_hdr: the volume identifier header to check @@ -1224,12 +1225,15 @@ exit: * This function returns zero if the volume identifier header is all right, and * %-EINVAL if not. */ -static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, - const struct ubi_vid_hdr *vid_hdr) +static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, + const struct ubi_vid_hdr *vid_hdr) { int err; uint32_t magic; + if (!ubi_dbg_chk_io(ubi)) + return 0; + magic = be32_to_cpu(vid_hdr->magic); if (magic != UBI_VID_HDR_MAGIC) { ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x", @@ -1239,35 +1243,38 @@ static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, err = validate_vid_hdr(ubi, vid_hdr); if (err) { - ubi_err("paranoid check failed for PEB %d", pnum); + ubi_err("self-check failed for PEB %d", pnum); goto fail; } return err; fail: - ubi_err("paranoid check failed for PEB %d", pnum); - ubi_dbg_dump_vid_hdr(vid_hdr); - ubi_dbg_dump_stack(); + ubi_err("self-check failed for PEB %d", pnum); + ubi_dump_vid_hdr(vid_hdr); + dump_stack(); return -EINVAL; } /** - * paranoid_check_peb_vid_hdr - check volume identifier header. + * self_check_peb_vid_hdr - check volume identifier header. * @ubi: UBI device description object * @pnum: the physical eraseblock number to check * * This function returns zero if the volume identifier header is all right, * and a negative error code if not or if an error occurred. */ -static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) +static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) { int err; uint32_t crc, hdr_crc; struct ubi_vid_hdr *vid_hdr; void *p; + if (!ubi_dbg_chk_io(ubi)) + return 0; + vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); if (!vid_hdr) return -ENOMEM; @@ -1275,22 +1282,22 @@ static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) p = (char *)vid_hdr - ubi->vid_hdr_shift; err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, ubi->vid_hdr_alsize); - if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) + if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) goto exit; crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); if (hdr_crc != crc) { - ubi_err("bad VID header CRC at PEB %d, calculated %#08x, " - "read %#08x", pnum, crc, hdr_crc); - ubi_err("paranoid check failed for PEB %d", pnum); - ubi_dbg_dump_vid_hdr(vid_hdr); - ubi_dbg_dump_stack(); + ubi_err("bad VID header CRC at PEB %d, calculated %#08x, read %#08x", + pnum, crc, hdr_crc); + ubi_err("self-check failed for PEB %d", pnum); + ubi_dump_vid_hdr(vid_hdr); + dump_stack(); err = -EINVAL; goto exit; } - err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); + err = self_check_vid_hdr(ubi, pnum, vid_hdr); exit: ubi_free_vid_hdr(ubi, vid_hdr); @@ -1298,7 +1305,7 @@ exit: } /** - * ubi_dbg_check_write - make sure write succeeded. + * self_check_write - make sure write succeeded. * @ubi: UBI device description object * @buf: buffer with data which were written * @pnum: physical eraseblock number the data were written to @@ -1309,25 +1316,36 @@ exit: * the original data buffer - the data have to match. Returns zero if the data * match and a negative error code if not or in case of failure. */ -int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum, - int offset, int len) +static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, + int offset, int len) { int err, i; + size_t read; + void *buf1; + loff_t addr = (loff_t)pnum * ubi->peb_size + offset; - mutex_lock(&ubi->dbg_buf_mutex); - err = ubi_io_read(ubi, ubi->dbg_peb_buf, pnum, offset, len); - if (err) - goto out_unlock; + if (!ubi_dbg_chk_io(ubi)) + return 0; + + buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); + if (!buf1) { + ubi_err("cannot allocate memory to check writes"); + return 0; + } + + err = mtd_read(ubi->mtd, addr, len, &read, buf1); + if (err && !mtd_is_bitflip(err)) + goto out_free; for (i = 0; i < len; i++) { uint8_t c = ((uint8_t *)buf)[i]; - uint8_t c1 = ((uint8_t *)ubi->dbg_peb_buf)[i]; + uint8_t c1 = ((uint8_t *)buf1)[i]; int dump_len; if (c == c1) continue; - ubi_err("paranoid check failed for PEB %d:%d, len %d", + ubi_err("self-check failed for PEB %d:%d, len %d", pnum, offset, len); ubi_msg("data differ at position %d", i); dump_len = max_t(int, 128, len - i); @@ -1338,22 +1356,22 @@ int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum, ubi_msg("hex dump of the read buffer from %d to %d", i, i + dump_len); print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, - ubi->dbg_peb_buf + i, dump_len, 1); - ubi_dbg_dump_stack(); + buf1 + i, dump_len, 1); + dump_stack(); err = -EINVAL; - goto out_unlock; + goto out_free; } - mutex_unlock(&ubi->dbg_buf_mutex); + vfree(buf1); return 0; -out_unlock: - mutex_unlock(&ubi->dbg_buf_mutex); +out_free: + vfree(buf1); return err; } /** - * ubi_dbg_check_all_ff - check that a region of flash is empty. + * ubi_self_check_all_ff - check that a region of flash is empty. * @ubi: UBI device description object * @pnum: the physical eraseblock number to check * @offset: the starting offset within the physical eraseblock to check @@ -1363,40 +1381,46 @@ out_unlock: * @offset of the physical eraseblock @pnum, and a negative error code if not * or if an error occurred. */ -int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) +int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) { size_t read; int err; + void *buf; loff_t addr = (loff_t)pnum * ubi->peb_size + offset; - mutex_lock(&ubi->dbg_buf_mutex); - err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf); - if (err && err != -EUCLEAN) { - ubi_err("error %d while reading %d bytes from PEB %d:%d, " - "read %zd bytes", err, len, pnum, offset, read); + if (!ubi_dbg_chk_io(ubi)) + return 0; + + buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); + if (!buf) { + ubi_err("cannot allocate memory to check for 0xFFs"); + return 0; + } + + err = mtd_read(ubi->mtd, addr, len, &read, buf); + if (err && !mtd_is_bitflip(err)) { + ubi_err("error %d while reading %d bytes from PEB %d:%d, read %zd bytes", + err, len, pnum, offset, read); goto error; } - err = check_pattern(ubi->dbg_peb_buf, 0xFF, len); + err = ubi_check_pattern(buf, 0xFF, len); if (err == 0) { - ubi_err("flash region at PEB %d:%d, length %d does not " - "contain all 0xFF bytes", pnum, offset, len); + ubi_err("flash region at PEB %d:%d, length %d does not contain all 0xFF bytes", + pnum, offset, len); goto fail; } - mutex_unlock(&ubi->dbg_buf_mutex); + vfree(buf); return 0; fail: - ubi_err("paranoid check failed for PEB %d", pnum); + ubi_err("self-check failed for PEB %d", pnum); ubi_msg("hex dump of the %d-%d region", offset, offset + len); - print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, - ubi->dbg_peb_buf, len, 1); + print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); err = -EINVAL; error: - ubi_dbg_dump_stack(); - mutex_unlock(&ubi->dbg_buf_mutex); + dump_stack(); + vfree(buf); return err; } - -#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ diff --git a/drivers/mtd/ubi/kapi.c b/drivers/mtd/ubi/kapi.c index 69fa4ef03c5..3aac1acceeb 100644 --- a/drivers/mtd/ubi/kapi.c +++ b/drivers/mtd/ubi/kapi.c @@ -40,7 +40,9 @@ void ubi_do_get_device_info(struct ubi_device *ubi, struct ubi_device_info *di) { di->ubi_num = ubi->ubi_num; di->leb_size = ubi->leb_size; + di->leb_start = ubi->leb_start; di->min_io_size = ubi->min_io_size; + di->max_write_size = ubi->max_write_size; di->ro_mode = ubi->ro_mode; di->cdev = ubi->cdev.dev; } @@ -219,7 +221,7 @@ out_free: kfree(desc); out_put_ubi: ubi_put_device(ubi); - dbg_err("cannot open device %d, volume %d, error %d", + ubi_err("cannot open device %d, volume %d, error %d", ubi_num, vol_id, err); return ERR_PTR(err); } @@ -408,7 +410,7 @@ int ubi_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset, return 0; err = ubi_eba_read_leb(ubi, vol, lnum, buf, offset, len, check); - if (err && err == -EBADMSG && vol->vol_type == UBI_STATIC_VOLUME) { + if (err && mtd_is_eccerr(err) && vol->vol_type == UBI_STATIC_VOLUME) { ubi_warn("mark volume %d as corrupted", vol_id); vol->corrupted = 1; } @@ -424,11 +426,9 @@ EXPORT_SYMBOL_GPL(ubi_leb_read); * @buf: data to write * @offset: offset within the logical eraseblock where to write * @len: how many bytes to write - * @dtype: expected data type * * This function writes @len bytes of data from @buf to offset @offset of - * logical eraseblock @lnum. The @dtype argument describes expected lifetime of - * the data. + * logical eraseblock @lnum. * * This function takes care of physical eraseblock write failures. If write to * the physical eraseblock write operation fails, the logical eraseblock is @@ -445,7 +445,7 @@ EXPORT_SYMBOL_GPL(ubi_leb_read); * returns immediately with %-EBADF code. */ int ubi_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf, - int offset, int len, int dtype) + int offset, int len) { struct ubi_volume *vol = desc->vol; struct ubi_device *ubi = vol->ubi; @@ -464,17 +464,13 @@ int ubi_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf, offset & (ubi->min_io_size - 1) || len & (ubi->min_io_size - 1)) return -EINVAL; - if (dtype != UBI_LONGTERM && dtype != UBI_SHORTTERM && - dtype != UBI_UNKNOWN) - return -EINVAL; - if (vol->upd_marker) return -EBADF; if (len == 0) return 0; - return ubi_eba_write_leb(ubi, vol, lnum, buf, offset, len, dtype); + return ubi_eba_write_leb(ubi, vol, lnum, buf, offset, len); } EXPORT_SYMBOL_GPL(ubi_leb_write); @@ -484,7 +480,6 @@ EXPORT_SYMBOL_GPL(ubi_leb_write); * @lnum: logical eraseblock number to change * @buf: data to write * @len: how many bytes to write - * @dtype: expected data type * * This function changes the contents of a logical eraseblock atomically. @buf * has to contain new logical eraseblock data, and @len - the length of the @@ -495,7 +490,7 @@ EXPORT_SYMBOL_GPL(ubi_leb_write); * code in case of failure. */ int ubi_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf, - int len, int dtype) + int len) { struct ubi_volume *vol = desc->vol; struct ubi_device *ubi = vol->ubi; @@ -513,17 +508,13 @@ int ubi_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf, len > vol->usable_leb_size || len & (ubi->min_io_size - 1)) return -EINVAL; - if (dtype != UBI_LONGTERM && dtype != UBI_SHORTTERM && - dtype != UBI_UNKNOWN) - return -EINVAL; - if (vol->upd_marker) return -EBADF; if (len == 0) return 0; - return ubi_eba_atomic_leb_change(ubi, vol, lnum, buf, len, dtype); + return ubi_eba_atomic_leb_change(ubi, vol, lnum, buf, len); } EXPORT_SYMBOL_GPL(ubi_leb_change); @@ -560,7 +551,7 @@ int ubi_leb_erase(struct ubi_volume_desc *desc, int lnum) if (err) return err; - return ubi_wl_flush(ubi); + return ubi_wl_flush(ubi, vol->vol_id, lnum); } EXPORT_SYMBOL_GPL(ubi_leb_erase); @@ -624,7 +615,6 @@ EXPORT_SYMBOL_GPL(ubi_leb_unmap); * ubi_leb_map - map logical eraseblock to a physical eraseblock. * @desc: volume descriptor * @lnum: logical eraseblock number - * @dtype: expected data type * * This function maps an un-mapped logical eraseblock @lnum to a physical * eraseblock. This means, that after a successful invocation of this @@ -637,7 +627,7 @@ EXPORT_SYMBOL_GPL(ubi_leb_unmap); * eraseblock is already mapped, and other negative error codes in case of * other failures. */ -int ubi_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype) +int ubi_leb_map(struct ubi_volume_desc *desc, int lnum) { struct ubi_volume *vol = desc->vol; struct ubi_device *ubi = vol->ubi; @@ -650,17 +640,13 @@ int ubi_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype) if (lnum < 0 || lnum >= vol->reserved_pebs) return -EINVAL; - if (dtype != UBI_LONGTERM && dtype != UBI_SHORTTERM && - dtype != UBI_UNKNOWN) - return -EINVAL; - if (vol->upd_marker) return -EBADF; if (vol->eba_tbl[lnum] >= 0) return -EBADMSG; - return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype); + return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0); } EXPORT_SYMBOL_GPL(ubi_leb_map); @@ -712,14 +698,39 @@ int ubi_sync(int ubi_num) if (!ubi) return -ENODEV; - if (ubi->mtd->sync) - ubi->mtd->sync(ubi->mtd); - + mtd_sync(ubi->mtd); ubi_put_device(ubi); return 0; } EXPORT_SYMBOL_GPL(ubi_sync); +/** + * ubi_flush - flush UBI work queue. + * @ubi_num: UBI device to flush work queue + * @vol_id: volume id to flush for + * @lnum: logical eraseblock number to flush for + * + * This function executes all pending works for a particular volume id / logical + * eraseblock number pair. If either value is set to %UBI_ALL, then it acts as + * a wildcard for all of the corresponding volume numbers or logical + * eraseblock numbers. It returns zero in case of success and a negative error + * code in case of failure. + */ +int ubi_flush(int ubi_num, int vol_id, int lnum) +{ + struct ubi_device *ubi; + int err = 0; + + ubi = ubi_get_device(ubi_num); + if (!ubi) + return -ENODEV; + + err = ubi_wl_flush(ubi, vol_id, lnum); + ubi_put_device(ubi); + return err; +} +EXPORT_SYMBOL_GPL(ubi_flush); + BLOCKING_NOTIFIER_HEAD(ubi_notifiers); /** diff --git a/drivers/mtd/ubi/misc.c b/drivers/mtd/ubi/misc.c index 22ad3140294..f913d701a5b 100644 --- a/drivers/mtd/ubi/misc.c +++ b/drivers/mtd/ubi/misc.c @@ -81,7 +81,7 @@ int ubi_check_volume(struct ubi_device *ubi, int vol_id) err = ubi_eba_read_leb(ubi, vol, i, buf, 0, size, 1); if (err) { - if (err == -EBADMSG) + if (mtd_is_eccerr(err)) err = 1; break; } @@ -92,14 +92,62 @@ int ubi_check_volume(struct ubi_device *ubi, int vol_id) } /** - * ubi_calculate_rsvd_pool - calculate how many PEBs must be reserved for bad + * ubi_update_reserved - update bad eraseblock handling accounting data. + * @ubi: UBI device description object + * + * This function calculates the gap between current number of PEBs reserved for + * bad eraseblock handling and the required level of PEBs that must be + * reserved, and if necessary, reserves more PEBs to fill that gap, according + * to availability. Should be called with ubi->volumes_lock held. + */ +void ubi_update_reserved(struct ubi_device *ubi) +{ + int need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs; + + if (need <= 0 || ubi->avail_pebs == 0) + return; + + need = min_t(int, need, ubi->avail_pebs); + ubi->avail_pebs -= need; + ubi->rsvd_pebs += need; + ubi->beb_rsvd_pebs += need; + ubi_msg("reserved more %d PEBs for bad PEB handling", need); +} + +/** + * ubi_calculate_reserved - calculate how many PEBs must be reserved for bad * eraseblock handling. * @ubi: UBI device description object */ void ubi_calculate_reserved(struct ubi_device *ubi) { - ubi->beb_rsvd_level = ubi->good_peb_count/100; - ubi->beb_rsvd_level *= CONFIG_MTD_UBI_BEB_RESERVE; - if (ubi->beb_rsvd_level < MIN_RESEVED_PEBS) - ubi->beb_rsvd_level = MIN_RESEVED_PEBS; + /* + * Calculate the actual number of PEBs currently needed to be reserved + * for future bad eraseblock handling. + */ + ubi->beb_rsvd_level = ubi->bad_peb_limit - ubi->bad_peb_count; + if (ubi->beb_rsvd_level < 0) { + ubi->beb_rsvd_level = 0; + ubi_warn("number of bad PEBs (%d) is above the expected limit (%d), not reserving any PEBs for bad PEB handling, will use available PEBs (if any)", + ubi->bad_peb_count, ubi->bad_peb_limit); + } +} + +/** + * ubi_check_pattern - check if buffer contains only a certain byte pattern. + * @buf: buffer to check + * @patt: the pattern to check + * @size: buffer size in bytes + * + * This function returns %1 in there are only @patt bytes in @buf, and %0 if + * something else was also found. + */ +int ubi_check_pattern(const void *buf, uint8_t patt, int size) +{ + int i; + + for (i = 0; i < size; i++) + if (((const uint8_t *)buf)[i] != patt) + return 0; + return 1; } diff --git a/drivers/mtd/ubi/scan.c b/drivers/mtd/ubi/scan.c deleted file mode 100644 index aed19f33b8f..00000000000 --- a/drivers/mtd/ubi/scan.c +++ /dev/null @@ -1,1350 +0,0 @@ -/* - * Copyright (c) International Business Machines Corp., 2006 - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See - * the GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - * Author: Artem Bityutskiy (Битюцкий Артём) - */ - -/* - * UBI scanning sub-system. - * - * This sub-system is responsible for scanning the flash media, checking UBI - * headers and providing complete information about the UBI flash image. - * - * The scanning information is represented by a &struct ubi_scan_info' object. - * Information about found volumes is represented by &struct ubi_scan_volume - * objects which are kept in volume RB-tree with root at the @volumes field. - * The RB-tree is indexed by the volume ID. - * - * Found logical eraseblocks are represented by &struct ubi_scan_leb objects. - * These objects are kept in per-volume RB-trees with the root at the - * corresponding &struct ubi_scan_volume object. To put it differently, we keep - * an RB-tree of per-volume objects and each of these objects is the root of - * RB-tree of per-eraseblock objects. - * - * Corrupted physical eraseblocks are put to the @corr list, free physical - * eraseblocks are put to the @free list and the physical eraseblock to be - * erased are put to the @erase list. - */ - -#include <linux/err.h> -#include <linux/slab.h> -#include <linux/crc32.h> -#include <linux/math64.h> -#include "ubi.h" - -#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID -static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si); -#else -#define paranoid_check_si(ubi, si) 0 -#endif - -/* Temporary variables used during scanning */ -static struct ubi_ec_hdr *ech; -static struct ubi_vid_hdr *vidh; - -/** - * add_to_list - add physical eraseblock to a list. - * @si: scanning information - * @pnum: physical eraseblock number to add - * @ec: erase counter of the physical eraseblock - * @list: the list to add to - * - * This function adds physical eraseblock @pnum to free, erase, corrupted or - * alien lists. Returns zero in case of success and a negative error code in - * case of failure. - */ -static int add_to_list(struct ubi_scan_info *si, int pnum, int ec, - struct list_head *list) -{ - struct ubi_scan_leb *seb; - - if (list == &si->free) - dbg_bld("add to free: PEB %d, EC %d", pnum, ec); - else if (list == &si->erase) - dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); - else if (list == &si->corr) { - dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); - si->corr_count += 1; - } else if (list == &si->alien) - dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); - else - BUG(); - - seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL); - if (!seb) - return -ENOMEM; - - seb->pnum = pnum; - seb->ec = ec; - list_add_tail(&seb->u.list, list); - return 0; -} - -/** - * validate_vid_hdr - check volume identifier header. - * @vid_hdr: the volume identifier header to check - * @sv: information about the volume this logical eraseblock belongs to - * @pnum: physical eraseblock number the VID header came from - * - * This function checks that data stored in @vid_hdr is consistent. Returns - * non-zero if an inconsistency was found and zero if not. - * - * Note, UBI does sanity check of everything it reads from the flash media. - * Most of the checks are done in the I/O sub-system. Here we check that the - * information in the VID header is consistent to the information in other VID - * headers of the same volume. - */ -static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr, - const struct ubi_scan_volume *sv, int pnum) -{ - int vol_type = vid_hdr->vol_type; - int vol_id = be32_to_cpu(vid_hdr->vol_id); - int used_ebs = be32_to_cpu(vid_hdr->used_ebs); - int data_pad = be32_to_cpu(vid_hdr->data_pad); - - if (sv->leb_count != 0) { - int sv_vol_type; - - /* - * This is not the first logical eraseblock belonging to this - * volume. Ensure that the data in its VID header is consistent - * to the data in previous logical eraseblock headers. - */ - - if (vol_id != sv->vol_id) { - dbg_err("inconsistent vol_id"); - goto bad; - } - - if (sv->vol_type == UBI_STATIC_VOLUME) - sv_vol_type = UBI_VID_STATIC; - else - sv_vol_type = UBI_VID_DYNAMIC; - - if (vol_type != sv_vol_type) { - dbg_err("inconsistent vol_type"); - goto bad; - } - - if (used_ebs != sv->used_ebs) { - dbg_err("inconsistent used_ebs"); - goto bad; - } - - if (data_pad != sv->data_pad) { - dbg_err("inconsistent data_pad"); - goto bad; - } - } - - return 0; - -bad: - ubi_err("inconsistent VID header at PEB %d", pnum); - ubi_dbg_dump_vid_hdr(vid_hdr); - ubi_dbg_dump_sv(sv); - return -EINVAL; -} - -/** - * add_volume - add volume to the scanning information. - * @si: scanning information - * @vol_id: ID of the volume to add - * @pnum: physical eraseblock number - * @vid_hdr: volume identifier header - * - * If the volume corresponding to the @vid_hdr logical eraseblock is already - * present in the scanning information, this function does nothing. Otherwise - * it adds corresponding volume to the scanning information. Returns a pointer - * to the scanning volume object in case of success and a negative error code - * in case of failure. - */ -static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id, - int pnum, - const struct ubi_vid_hdr *vid_hdr) -{ - struct ubi_scan_volume *sv; - struct rb_node **p = &si->volumes.rb_node, *parent = NULL; - - ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); - - /* Walk the volume RB-tree to look if this volume is already present */ - while (*p) { - parent = *p; - sv = rb_entry(parent, struct ubi_scan_volume, rb); - - if (vol_id == sv->vol_id) - return sv; - - if (vol_id > sv->vol_id) - p = &(*p)->rb_left; - else - p = &(*p)->rb_right; - } - - /* The volume is absent - add it */ - sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL); - if (!sv) - return ERR_PTR(-ENOMEM); - - sv->highest_lnum = sv->leb_count = 0; - sv->vol_id = vol_id; - sv->root = RB_ROOT; - sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs); - sv->data_pad = be32_to_cpu(vid_hdr->data_pad); - sv->compat = vid_hdr->compat; - sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME - : UBI_STATIC_VOLUME; - if (vol_id > si->highest_vol_id) - si->highest_vol_id = vol_id; - - rb_link_node(&sv->rb, parent, p); - rb_insert_color(&sv->rb, &si->volumes); - si->vols_found += 1; - dbg_bld("added volume %d", vol_id); - return sv; -} - -/** - * compare_lebs - find out which logical eraseblock is newer. - * @ubi: UBI device description object - * @seb: first logical eraseblock to compare - * @pnum: physical eraseblock number of the second logical eraseblock to - * compare - * @vid_hdr: volume identifier header of the second logical eraseblock - * - * This function compares 2 copies of a LEB and informs which one is newer. In - * case of success this function returns a positive value, in case of failure, a - * negative error code is returned. The success return codes use the following - * bits: - * o bit 0 is cleared: the first PEB (described by @seb) is newer than the - * second PEB (described by @pnum and @vid_hdr); - * o bit 0 is set: the second PEB is newer; - * o bit 1 is cleared: no bit-flips were detected in the newer LEB; - * o bit 1 is set: bit-flips were detected in the newer LEB; - * o bit 2 is cleared: the older LEB is not corrupted; - * o bit 2 is set: the older LEB is corrupted. - */ -static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb, - int pnum, const struct ubi_vid_hdr *vid_hdr) -{ - void *buf; - int len, err, second_is_newer, bitflips = 0, corrupted = 0; - uint32_t data_crc, crc; - struct ubi_vid_hdr *vh = NULL; - unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); - - if (sqnum2 == seb->sqnum) { - /* - * This must be a really ancient UBI image which has been - * created before sequence numbers support has been added. At - * that times we used 32-bit LEB versions stored in logical - * eraseblocks. That was before UBI got into mainline. We do not - * support these images anymore. Well, those images will work - * still work, but only if no unclean reboots happened. - */ - ubi_err("unsupported on-flash UBI format\n"); - return -EINVAL; - } - - /* Obviously the LEB with lower sequence counter is older */ - second_is_newer = !!(sqnum2 > seb->sqnum); - - /* - * Now we know which copy is newer. If the copy flag of the PEB with - * newer version is not set, then we just return, otherwise we have to - * check data CRC. For the second PEB we already have the VID header, - * for the first one - we'll need to re-read it from flash. - * - * Note: this may be optimized so that we wouldn't read twice. - */ - - if (second_is_newer) { - if (!vid_hdr->copy_flag) { - /* It is not a copy, so it is newer */ - dbg_bld("second PEB %d is newer, copy_flag is unset", - pnum); - return 1; - } - } else { - pnum = seb->pnum; - - vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); - if (!vh) - return -ENOMEM; - - err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); - if (err) { - if (err == UBI_IO_BITFLIPS) - bitflips = 1; - else { - dbg_err("VID of PEB %d header is bad, but it " - "was OK earlier", pnum); - if (err > 0) - err = -EIO; - - goto out_free_vidh; - } - } - - if (!vh->copy_flag) { - /* It is not a copy, so it is newer */ - dbg_bld("first PEB %d is newer, copy_flag is unset", - pnum); - err = bitflips << 1; - goto out_free_vidh; - } - - vid_hdr = vh; - } - - /* Read the data of the copy and check the CRC */ - - len = be32_to_cpu(vid_hdr->data_size); - buf = vmalloc(len); - if (!buf) { - err = -ENOMEM; - goto out_free_vidh; - } - - err = ubi_io_read_data(ubi, buf, pnum, 0, len); - if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) - goto out_free_buf; - - data_crc = be32_to_cpu(vid_hdr->data_crc); - crc = crc32(UBI_CRC32_INIT, buf, len); - if (crc != data_crc) { - dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", - pnum, crc, data_crc); - corrupted = 1; - bitflips = 0; - second_is_newer = !second_is_newer; - } else { - dbg_bld("PEB %d CRC is OK", pnum); - bitflips = !!err; - } - - vfree(buf); - ubi_free_vid_hdr(ubi, vh); - - if (second_is_newer) - dbg_bld("second PEB %d is newer, copy_flag is set", pnum); - else - dbg_bld("first PEB %d is newer, copy_flag is set", pnum); - - return second_is_newer | (bitflips << 1) | (corrupted << 2); - -out_free_buf: - vfree(buf); -out_free_vidh: - ubi_free_vid_hdr(ubi, vh); - return err; -} - -/** - * ubi_scan_add_used - add physical eraseblock to the scanning information. - * @ubi: UBI device description object - * @si: scanning information - * @pnum: the physical eraseblock number - * @ec: erase counter - * @vid_hdr: the volume identifier header - * @bitflips: if bit-flips were detected when this physical eraseblock was read - * - * This function adds information about a used physical eraseblock to the - * 'used' tree of the corresponding volume. The function is rather complex - * because it has to handle cases when this is not the first physical - * eraseblock belonging to the same logical eraseblock, and the newer one has - * to be picked, while the older one has to be dropped. This function returns - * zero in case of success and a negative error code in case of failure. - */ -int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si, - int pnum, int ec, const struct ubi_vid_hdr *vid_hdr, - int bitflips) -{ - int err, vol_id, lnum; - unsigned long long sqnum; - struct ubi_scan_volume *sv; - struct ubi_scan_leb *seb; - struct rb_node **p, *parent = NULL; - - vol_id = be32_to_cpu(vid_hdr->vol_id); - lnum = be32_to_cpu(vid_hdr->lnum); - sqnum = be64_to_cpu(vid_hdr->sqnum); - - dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d", - pnum, vol_id, lnum, ec, sqnum, bitflips); - - sv = add_volume(si, vol_id, pnum, vid_hdr); - if (IS_ERR(sv)) - return PTR_ERR(sv); - - if (si->max_sqnum < sqnum) - si->max_sqnum = sqnum; - - /* - * Walk the RB-tree of logical eraseblocks of volume @vol_id to look - * if this is the first instance of this logical eraseblock or not. - */ - p = &sv->root.rb_node; - while (*p) { - int cmp_res; - - parent = *p; - seb = rb_entry(parent, struct ubi_scan_leb, u.rb); - if (lnum != seb->lnum) { - if (lnum < seb->lnum) - p = &(*p)->rb_left; - else - p = &(*p)->rb_right; - continue; - } - - /* - * There is already a physical eraseblock describing the same - * logical eraseblock present. - */ - - dbg_bld("this LEB already exists: PEB %d, sqnum %llu, " - "EC %d", seb->pnum, seb->sqnum, seb->ec); - - /* - * Make sure that the logical eraseblocks have different - * sequence numbers. Otherwise the image is bad. - * - * However, if the sequence number is zero, we assume it must - * be an ancient UBI image from the era when UBI did not have - * sequence numbers. We still can attach these images, unless - * there is a need to distinguish between old and new - * eraseblocks, in which case we'll refuse the image in - * 'compare_lebs()'. In other words, we attach old clean - * images, but refuse attaching old images with duplicated - * logical eraseblocks because there was an unclean reboot. - */ - if (seb->sqnum == sqnum && sqnum != 0) { - ubi_err("two LEBs with same sequence number %llu", - sqnum); - ubi_dbg_dump_seb(seb, 0); - ubi_dbg_dump_vid_hdr(vid_hdr); - return -EINVAL; - } - - /* - * Now we have to drop the older one and preserve the newer - * one. - */ - cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr); - if (cmp_res < 0) - return cmp_res; - - if (cmp_res & 1) { - /* - * This logical eraseblock is newer than the one - * found earlier. - */ - err = validate_vid_hdr(vid_hdr, sv, pnum); - if (err) - return err; - - if (cmp_res & 4) - err = add_to_list(si, seb->pnum, seb->ec, - &si->corr); - else - err = add_to_list(si, seb->pnum, seb->ec, - &si->erase); - if (err) - return err; - - seb->ec = ec; - seb->pnum = pnum; - seb->scrub = ((cmp_res & 2) || bitflips); - seb->sqnum = sqnum; - - if (sv->highest_lnum == lnum) - sv->last_data_size = - be32_to_cpu(vid_hdr->data_size); - - return 0; - } else { - /* - * This logical eraseblock is older than the one found - * previously. - */ - if (cmp_res & 4) - return add_to_list(si, pnum, ec, &si->corr); - else - return add_to_list(si, pnum, ec, &si->erase); - } - } - - /* - * We've met this logical eraseblock for the first time, add it to the - * scanning information. - */ - - err = validate_vid_hdr(vid_hdr, sv, pnum); - if (err) - return err; - - seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL); - if (!seb) - return -ENOMEM; - - seb->ec = ec; - seb->pnum = pnum; - seb->lnum = lnum; - seb->sqnum = sqnum; - seb->scrub = bitflips; - - if (sv->highest_lnum <= lnum) { - sv->highest_lnum = lnum; - sv->last_data_size = be32_to_cpu(vid_hdr->data_size); - } - - sv->leb_count += 1; - rb_link_node(&seb->u.rb, parent, p); - rb_insert_color(&seb->u.rb, &sv->root); - return 0; -} - -/** - * ubi_scan_find_sv - find volume in the scanning information. - * @si: scanning information - * @vol_id: the requested volume ID - * - * This function returns a pointer to the volume description or %NULL if there - * are no data about this volume in the scanning information. - */ -struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si, - int vol_id) -{ - struct ubi_scan_volume *sv; - struct rb_node *p = si->volumes.rb_node; - - while (p) { - sv = rb_entry(p, struct ubi_scan_volume, rb); - - if (vol_id == sv->vol_id) - return sv; - - if (vol_id > sv->vol_id) - p = p->rb_left; - else - p = p->rb_right; - } - - return NULL; -} - -/** - * ubi_scan_find_seb - find LEB in the volume scanning information. - * @sv: a pointer to the volume scanning information - * @lnum: the requested logical eraseblock - * - * This function returns a pointer to the scanning logical eraseblock or %NULL - * if there are no data about it in the scanning volume information. - */ -struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv, - int lnum) -{ - struct ubi_scan_leb *seb; - struct rb_node *p = sv->root.rb_node; - - while (p) { - seb = rb_entry(p, struct ubi_scan_leb, u.rb); - - if (lnum == seb->lnum) - return seb; - - if (lnum > seb->lnum) - p = p->rb_left; - else - p = p->rb_right; - } - - return NULL; -} - -/** - * ubi_scan_rm_volume - delete scanning information about a volume. - * @si: scanning information - * @sv: the volume scanning information to delete - */ -void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv) -{ - struct rb_node *rb; - struct ubi_scan_leb *seb; - - dbg_bld("remove scanning information about volume %d", sv->vol_id); - - while ((rb = rb_first(&sv->root))) { - seb = rb_entry(rb, struct ubi_scan_leb, u.rb); - rb_erase(&seb->u.rb, &sv->root); - list_add_tail(&seb->u.list, &si->erase); - } - - rb_erase(&sv->rb, &si->volumes); - kfree(sv); - si->vols_found -= 1; -} - -/** - * ubi_scan_erase_peb - erase a physical eraseblock. - * @ubi: UBI device description object - * @si: scanning information - * @pnum: physical eraseblock number to erase; - * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown) - * - * This function erases physical eraseblock 'pnum', and writes the erase - * counter header to it. This function should only be used on UBI device - * initialization stages, when the EBA sub-system had not been yet initialized. - * This function returns zero in case of success and a negative error code in - * case of failure. - */ -int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si, - int pnum, int ec) -{ - int err; - struct ubi_ec_hdr *ec_hdr; - - if ((long long)ec >= UBI_MAX_ERASECOUNTER) { - /* - * Erase counter overflow. Upgrade UBI and use 64-bit - * erase counters internally. - */ - ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec); - return -EINVAL; - } - - ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); - if (!ec_hdr) - return -ENOMEM; - - ec_hdr->ec = cpu_to_be64(ec); - - err = ubi_io_sync_erase(ubi, pnum, 0); - if (err < 0) - goto out_free; - - err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); - -out_free: - kfree(ec_hdr); - return err; -} - -/** - * ubi_scan_get_free_peb - get a free physical eraseblock. - * @ubi: UBI device description object - * @si: scanning information - * - * This function returns a free physical eraseblock. It is supposed to be - * called on the UBI initialization stages when the wear-leveling sub-system is - * not initialized yet. This function picks a physical eraseblocks from one of - * the lists, writes the EC header if it is needed, and removes it from the - * list. - * - * This function returns scanning physical eraseblock information in case of - * success and an error code in case of failure. - */ -struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi, - struct ubi_scan_info *si) -{ - int err = 0, i; - struct ubi_scan_leb *seb; - - if (!list_empty(&si->free)) { - seb = list_entry(si->free.next, struct ubi_scan_leb, u.list); - list_del(&seb->u.list); - dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec); - return seb; - } - - for (i = 0; i < 2; i++) { - struct list_head *head; - struct ubi_scan_leb *tmp_seb; - - if (i == 0) - head = &si->erase; - else - head = &si->corr; - - /* - * We try to erase the first physical eraseblock from the @head - * list and pick it if we succeed, or try to erase the - * next one if not. And so forth. We don't want to take care - * about bad eraseblocks here - they'll be handled later. - */ - list_for_each_entry_safe(seb, tmp_seb, head, u.list) { - if (seb->ec == UBI_SCAN_UNKNOWN_EC) - seb->ec = si->mean_ec; - - err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1); - if (err) - continue; - - seb->ec += 1; - list_del(&seb->u.list); - dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec); - return seb; - } - } - - ubi_err("no eraseblocks found"); - return ERR_PTR(-ENOSPC); -} - -/** - * process_eb - read, check UBI headers, and add them to scanning information. - * @ubi: UBI device description object - * @si: scanning information - * @pnum: the physical eraseblock number - * - * This function returns a zero if the physical eraseblock was successfully - * handled and a negative error code in case of failure. - */ -static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, - int pnum) -{ - long long uninitialized_var(ec); - int err, bitflips = 0, vol_id, ec_corr = 0; - - dbg_bld("scan PEB %d", pnum); - - /* Skip bad physical eraseblocks */ - err = ubi_io_is_bad(ubi, pnum); - if (err < 0) - return err; - else if (err) { - /* - * FIXME: this is actually duty of the I/O sub-system to - * initialize this, but MTD does not provide enough - * information. - */ - si->bad_peb_count += 1; - return 0; - } - - err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); - if (err < 0) - return err; - else if (err == UBI_IO_BITFLIPS) - bitflips = 1; - else if (err == UBI_IO_PEB_EMPTY) - return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase); - else if (err == UBI_IO_BAD_EC_HDR) { - /* - * We have to also look at the VID header, possibly it is not - * corrupted. Set %bitflips flag in order to make this PEB be - * moved and EC be re-created. - */ - ec_corr = 1; - ec = UBI_SCAN_UNKNOWN_EC; - bitflips = 1; - } - - si->is_empty = 0; - - if (!ec_corr) { - int image_seq; - - /* Make sure UBI version is OK */ - if (ech->version != UBI_VERSION) { - ubi_err("this UBI version is %d, image version is %d", - UBI_VERSION, (int)ech->version); - return -EINVAL; - } - - ec = be64_to_cpu(ech->ec); - if (ec > UBI_MAX_ERASECOUNTER) { - /* - * Erase counter overflow. The EC headers have 64 bits - * reserved, but we anyway make use of only 31 bit - * values, as this seems to be enough for any existing - * flash. Upgrade UBI and use 64-bit erase counters - * internally. - */ - ubi_err("erase counter overflow, max is %d", - UBI_MAX_ERASECOUNTER); - ubi_dbg_dump_ec_hdr(ech); - return -EINVAL; - } - - /* - * Make sure that all PEBs have the same image sequence number. - * This allows us to detect situations when users flash UBI - * images incorrectly, so that the flash has the new UBI image - * and leftovers from the old one. This feature was added - * relatively recently, and the sequence number was always - * zero, because old UBI implementations always set it to zero. - * For this reasons, we do not panic if some PEBs have zero - * sequence number, while other PEBs have non-zero sequence - * number. - */ - image_seq = be32_to_cpu(ech->image_seq); - if (!ubi->image_seq && image_seq) - ubi->image_seq = image_seq; - if (ubi->image_seq && image_seq && - ubi->image_seq != image_seq) { - ubi_err("bad image sequence number %d in PEB %d, " - "expected %d", image_seq, pnum, ubi->image_seq); - ubi_dbg_dump_ec_hdr(ech); - return -EINVAL; - } - } - - /* OK, we've done with the EC header, let's look at the VID header */ - - err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0); - if (err < 0) - return err; - else if (err == UBI_IO_BITFLIPS) - bitflips = 1; - else if (err == UBI_IO_BAD_VID_HDR || - (err == UBI_IO_PEB_FREE && ec_corr)) { - /* VID header is corrupted */ - err = add_to_list(si, pnum, ec, &si->corr); - if (err) - return err; - goto adjust_mean_ec; - } else if (err == UBI_IO_PEB_FREE) { - /* No VID header - the physical eraseblock is free */ - err = add_to_list(si, pnum, ec, &si->free); - if (err) - return err; - goto adjust_mean_ec; - } - - vol_id = be32_to_cpu(vidh->vol_id); - if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) { - int lnum = be32_to_cpu(vidh->lnum); - - /* Unsupported internal volume */ - switch (vidh->compat) { - case UBI_COMPAT_DELETE: - ubi_msg("\"delete\" compatible internal volume %d:%d" - " found, remove it", vol_id, lnum); - err = add_to_list(si, pnum, ec, &si->corr); - if (err) - return err; - break; - - case UBI_COMPAT_RO: - ubi_msg("read-only compatible internal volume %d:%d" - " found, switch to read-only mode", - vol_id, lnum); - ubi->ro_mode = 1; - break; - - case UBI_COMPAT_PRESERVE: - ubi_msg("\"preserve\" compatible internal volume %d:%d" - " found", vol_id, lnum); - err = add_to_list(si, pnum, ec, &si->alien); - if (err) - return err; - si->alien_peb_count += 1; - return 0; - - case UBI_COMPAT_REJECT: - ubi_err("incompatible internal volume %d:%d found", - vol_id, lnum); - return -EINVAL; - } - } - - if (ec_corr) - ubi_warn("valid VID header but corrupted EC header at PEB %d", - pnum); - err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips); - if (err) - return err; - -adjust_mean_ec: - if (!ec_corr) { - si->ec_sum += ec; - si->ec_count += 1; - if (ec > si->max_ec) - si->max_ec = ec; - if (ec < si->min_ec) - si->min_ec = ec; - } - - return 0; -} - -/** - * ubi_scan - scan an MTD device. - * @ubi: UBI device description object - * - * This function does full scanning of an MTD device and returns complete - * information about it. In case of failure, an error code is returned. - */ -struct ubi_scan_info *ubi_scan(struct ubi_device *ubi) -{ - int err, pnum; - struct rb_node *rb1, *rb2; - struct ubi_scan_volume *sv; - struct ubi_scan_leb *seb; - struct ubi_scan_info *si; - - si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL); - if (!si) - return ERR_PTR(-ENOMEM); - - INIT_LIST_HEAD(&si->corr); - INIT_LIST_HEAD(&si->free); - INIT_LIST_HEAD(&si->erase); - INIT_LIST_HEAD(&si->alien); - si->volumes = RB_ROOT; - si->is_empty = 1; - - err = -ENOMEM; - ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); - if (!ech) - goto out_si; - - vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); - if (!vidh) - goto out_ech; - - for (pnum = 0; pnum < ubi->peb_count; pnum++) { - cond_resched(); - - dbg_gen("process PEB %d", pnum); - err = process_eb(ubi, si, pnum); - if (err < 0) - goto out_vidh; - } - - dbg_msg("scanning is finished"); - - /* Calculate mean erase counter */ - if (si->ec_count) - si->mean_ec = div_u64(si->ec_sum, si->ec_count); - - if (si->is_empty) - ubi_msg("empty MTD device detected"); - - /* - * Few corrupted PEBs are not a problem and may be just a result of - * unclean reboots. However, many of them may indicate some problems - * with the flash HW or driver. Print a warning in this case. - */ - if (si->corr_count >= 8 || si->corr_count >= ubi->peb_count / 4) { - ubi_warn("%d PEBs are corrupted", si->corr_count); - printk(KERN_WARNING "corrupted PEBs are:"); - list_for_each_entry(seb, &si->corr, u.list) - printk(KERN_CONT " %d", seb->pnum); - printk(KERN_CONT "\n"); - } - - /* - * In case of unknown erase counter we use the mean erase counter - * value. - */ - ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { - ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) - if (seb->ec == UBI_SCAN_UNKNOWN_EC) - seb->ec = si->mean_ec; - } - - list_for_each_entry(seb, &si->free, u.list) { - if (seb->ec == UBI_SCAN_UNKNOWN_EC) - seb->ec = si->mean_ec; - } - - list_for_each_entry(seb, &si->corr, u.list) - if (seb->ec == UBI_SCAN_UNKNOWN_EC) - seb->ec = si->mean_ec; - - list_for_each_entry(seb, &si->erase, u.list) - if (seb->ec == UBI_SCAN_UNKNOWN_EC) - seb->ec = si->mean_ec; - - err = paranoid_check_si(ubi, si); - if (err) - goto out_vidh; - - ubi_free_vid_hdr(ubi, vidh); - kfree(ech); - - return si; - -out_vidh: - ubi_free_vid_hdr(ubi, vidh); -out_ech: - kfree(ech); -out_si: - ubi_scan_destroy_si(si); - return ERR_PTR(err); -} - -/** - * destroy_sv - free the scanning volume information - * @sv: scanning volume information - * - * This function destroys the volume RB-tree (@sv->root) and the scanning - * volume information. - */ -static void destroy_sv(struct ubi_scan_volume *sv) -{ - struct ubi_scan_leb *seb; - struct rb_node *this = sv->root.rb_node; - - while (this) { - if (this->rb_left) - this = this->rb_left; - else if (this->rb_right) - this = this->rb_right; - else { - seb = rb_entry(this, struct ubi_scan_leb, u.rb); - this = rb_parent(this); - if (this) { - if (this->rb_left == &seb->u.rb) - this->rb_left = NULL; - else - this->rb_right = NULL; - } - - kfree(seb); - } - } - kfree(sv); -} - -/** - * ubi_scan_destroy_si - destroy scanning information. - * @si: scanning information - */ -void ubi_scan_destroy_si(struct ubi_scan_info *si) -{ - struct ubi_scan_leb *seb, *seb_tmp; - struct ubi_scan_volume *sv; - struct rb_node *rb; - - list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) { - list_del(&seb->u.list); - kfree(seb); - } - list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) { - list_del(&seb->u.list); - kfree(seb); - } - list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) { - list_del(&seb->u.list); - kfree(seb); - } - list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) { - list_del(&seb->u.list); - kfree(seb); - } - - /* Destroy the volume RB-tree */ - rb = si->volumes.rb_node; - while (rb) { - if (rb->rb_left) - rb = rb->rb_left; - else if (rb->rb_right) - rb = rb->rb_right; - else { - sv = rb_entry(rb, struct ubi_scan_volume, rb); - - rb = rb_parent(rb); - if (rb) { - if (rb->rb_left == &sv->rb) - rb->rb_left = NULL; - else - rb->rb_right = NULL; - } - - destroy_sv(sv); - } - } - - kfree(si); -} - -#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID - -/** - * paranoid_check_si - check the scanning information. - * @ubi: UBI device description object - * @si: scanning information - * - * This function returns zero if the scanning information is all right, and a - * negative error code if not or if an error occurred. - */ -static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si) -{ - int pnum, err, vols_found = 0; - struct rb_node *rb1, *rb2; - struct ubi_scan_volume *sv; - struct ubi_scan_leb *seb, *last_seb; - uint8_t *buf; - - /* - * At first, check that scanning information is OK. - */ - ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { - int leb_count = 0; - - cond_resched(); - - vols_found += 1; - - if (si->is_empty) { - ubi_err("bad is_empty flag"); - goto bad_sv; - } - - if (sv->vol_id < 0 || sv->highest_lnum < 0 || - sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 || - sv->data_pad < 0 || sv->last_data_size < 0) { - ubi_err("negative values"); - goto bad_sv; - } - - if (sv->vol_id >= UBI_MAX_VOLUMES && - sv->vol_id < UBI_INTERNAL_VOL_START) { - ubi_err("bad vol_id"); - goto bad_sv; - } - - if (sv->vol_id > si->highest_vol_id) { - ubi_err("highest_vol_id is %d, but vol_id %d is there", - si->highest_vol_id, sv->vol_id); - goto out; - } - - if (sv->vol_type != UBI_DYNAMIC_VOLUME && - sv->vol_type != UBI_STATIC_VOLUME) { - ubi_err("bad vol_type"); - goto bad_sv; - } - - if (sv->data_pad > ubi->leb_size / 2) { - ubi_err("bad data_pad"); - goto bad_sv; - } - - last_seb = NULL; - ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { - cond_resched(); - - last_seb = seb; - leb_count += 1; - - if (seb->pnum < 0 || seb->ec < 0) { - ubi_err("negative values"); - goto bad_seb; - } - - if (seb->ec < si->min_ec) { - ubi_err("bad si->min_ec (%d), %d found", - si->min_ec, seb->ec); - goto bad_seb; - } - - if (seb->ec > si->max_ec) { - ubi_err("bad si->max_ec (%d), %d found", - si->max_ec, seb->ec); - goto bad_seb; - } - - if (seb->pnum >= ubi->peb_count) { - ubi_err("too high PEB number %d, total PEBs %d", - seb->pnum, ubi->peb_count); - goto bad_seb; - } - - if (sv->vol_type == UBI_STATIC_VOLUME) { - if (seb->lnum >= sv->used_ebs) { - ubi_err("bad lnum or used_ebs"); - goto bad_seb; - } - } else { - if (sv->used_ebs != 0) { - ubi_err("non-zero used_ebs"); - goto bad_seb; - } - } - - if (seb->lnum > sv->highest_lnum) { - ubi_err("incorrect highest_lnum or lnum"); - goto bad_seb; - } - } - - if (sv->leb_count != leb_count) { - ubi_err("bad leb_count, %d objects in the tree", - leb_count); - goto bad_sv; - } - - if (!last_seb) - continue; - - seb = last_seb; - - if (seb->lnum != sv->highest_lnum) { - ubi_err("bad highest_lnum"); - goto bad_seb; - } - } - - if (vols_found != si->vols_found) { - ubi_err("bad si->vols_found %d, should be %d", - si->vols_found, vols_found); - goto out; - } - - /* Check that scanning information is correct */ - ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { - last_seb = NULL; - ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { - int vol_type; - - cond_resched(); - - last_seb = seb; - - err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1); - if (err && err != UBI_IO_BITFLIPS) { - ubi_err("VID header is not OK (%d)", err); - if (err > 0) - err = -EIO; - return err; - } - - vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? - UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; - if (sv->vol_type != vol_type) { - ubi_err("bad vol_type"); - goto bad_vid_hdr; - } - - if (seb->sqnum != be64_to_cpu(vidh->sqnum)) { - ubi_err("bad sqnum %llu", seb->sqnum); - goto bad_vid_hdr; - } - - if (sv->vol_id != be32_to_cpu(vidh->vol_id)) { - ubi_err("bad vol_id %d", sv->vol_id); - goto bad_vid_hdr; - } - - if (sv->compat != vidh->compat) { - ubi_err("bad compat %d", vidh->compat); - goto bad_vid_hdr; - } - - if (seb->lnum != be32_to_cpu(vidh->lnum)) { - ubi_err("bad lnum %d", seb->lnum); - goto bad_vid_hdr; - } - - if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) { - ubi_err("bad used_ebs %d", sv->used_ebs); - goto bad_vid_hdr; - } - - if (sv->data_pad != be32_to_cpu(vidh->data_pad)) { - ubi_err("bad data_pad %d", sv->data_pad); - goto bad_vid_hdr; - } - } - - if (!last_seb) - continue; - - if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) { - ubi_err("bad highest_lnum %d", sv->highest_lnum); - goto bad_vid_hdr; - } - - if (sv->last_data_size != be32_to_cpu(vidh->data_size)) { - ubi_err("bad last_data_size %d", sv->last_data_size); - goto bad_vid_hdr; - } - } - - /* - * Make sure that all the physical eraseblocks are in one of the lists - * or trees. - */ - buf = kzalloc(ubi->peb_count, GFP_KERNEL); - if (!buf) - return -ENOMEM; - - for (pnum = 0; pnum < ubi->peb_count; pnum++) { - err = ubi_io_is_bad(ubi, pnum); - if (err < 0) { - kfree(buf); - return err; - } else if (err) - buf[pnum] = 1; - } - - ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) - ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) - buf[seb->pnum] = 1; - - list_for_each_entry(seb, &si->free, u.list) - buf[seb->pnum] = 1; - - list_for_each_entry(seb, &si->corr, u.list) - buf[seb->pnum] = 1; - - list_for_each_entry(seb, &si->erase, u.list) - buf[seb->pnum] = 1; - - list_for_each_entry(seb, &si->alien, u.list) - buf[seb->pnum] = 1; - - err = 0; - for (pnum = 0; pnum < ubi->peb_count; pnum++) - if (!buf[pnum]) { - ubi_err("PEB %d is not referred", pnum); - err = 1; - } - - kfree(buf); - if (err) - goto out; - return 0; - -bad_seb: - ubi_err("bad scanning information about LEB %d", seb->lnum); - ubi_dbg_dump_seb(seb, 0); - ubi_dbg_dump_sv(sv); - goto out; - -bad_sv: - ubi_err("bad scanning information about volume %d", sv->vol_id); - ubi_dbg_dump_sv(sv); - goto out; - -bad_vid_hdr: - ubi_err("bad scanning information about volume %d", sv->vol_id); - ubi_dbg_dump_sv(sv); - ubi_dbg_dump_vid_hdr(vidh); - -out: - ubi_dbg_dump_stack(); - return -EINVAL; -} - -#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ diff --git a/drivers/mtd/ubi/scan.h b/drivers/mtd/ubi/scan.h deleted file mode 100644 index ff179ad7ca5..00000000000 --- a/drivers/mtd/ubi/scan.h +++ /dev/null @@ -1,164 +0,0 @@ -/* - * Copyright (c) International Business Machines Corp., 2006 - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See - * the GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - * Author: Artem Bityutskiy (Битюцкий Артём) - */ - -#ifndef __UBI_SCAN_H__ -#define __UBI_SCAN_H__ - -/* The erase counter value for this physical eraseblock is unknown */ -#define UBI_SCAN_UNKNOWN_EC (-1) - -/** - * struct ubi_scan_leb - scanning information about a physical eraseblock. - * @ec: erase counter (%UBI_SCAN_UNKNOWN_EC if it is unknown) - * @pnum: physical eraseblock number - * @lnum: logical eraseblock number - * @scrub: if this physical eraseblock needs scrubbing - * @sqnum: sequence number - * @u: unions RB-tree or @list links - * @u.rb: link in the per-volume RB-tree of &struct ubi_scan_leb objects - * @u.list: link in one of the eraseblock lists - * - * One object of this type is allocated for each physical eraseblock during - * scanning. - */ -struct ubi_scan_leb { - int ec; - int pnum; - int lnum; - int scrub; - unsigned long long sqnum; - union { - struct rb_node rb; - struct list_head list; - } u; -}; - -/** - * struct ubi_scan_volume - scanning information about a volume. - * @vol_id: volume ID - * @highest_lnum: highest logical eraseblock number in this volume - * @leb_count: number of logical eraseblocks in this volume - * @vol_type: volume type - * @used_ebs: number of used logical eraseblocks in this volume (only for - * static volumes) - * @last_data_size: amount of data in the last logical eraseblock of this - * volume (always equivalent to the usable logical eraseblock - * size in case of dynamic volumes) - * @data_pad: how many bytes at the end of logical eraseblocks of this volume - * are not used (due to volume alignment) - * @compat: compatibility flags of this volume - * @rb: link in the volume RB-tree - * @root: root of the RB-tree containing all the eraseblock belonging to this - * volume (&struct ubi_scan_leb objects) - * - * One object of this type is allocated for each volume during scanning. - */ -struct ubi_scan_volume { - int vol_id; - int highest_lnum; - int leb_count; - int vol_type; - int used_ebs; - int last_data_size; - int data_pad; - int compat; - struct rb_node rb; - struct rb_root root; -}; - -/** - * struct ubi_scan_info - UBI scanning information. - * @volumes: root of the volume RB-tree - * @corr: list of corrupted physical eraseblocks - * @free: list of free physical eraseblocks - * @erase: list of physical eraseblocks which have to be erased - * @alien: list of physical eraseblocks which should not be used by UBI (e.g., - * those belonging to "preserve"-compatible internal volumes) - * @bad_peb_count: count of bad physical eraseblocks - * @vols_found: number of volumes found during scanning - * @highest_vol_id: highest volume ID - * @alien_peb_count: count of physical eraseblocks in the @alien list - * @is_empty: flag indicating whether the MTD device is empty or not - * @min_ec: lowest erase counter value - * @max_ec: highest erase counter value - * @max_sqnum: highest sequence number value - * @mean_ec: mean erase counter value - * @ec_sum: a temporary variable used when calculating @mean_ec - * @ec_count: a temporary variable used when calculating @mean_ec - * @corr_count: count of corrupted PEBs - * - * This data structure contains the result of scanning and may be used by other - * UBI sub-systems to build final UBI data structures, further error-recovery - * and so on. - */ -struct ubi_scan_info { - struct rb_root volumes; - struct list_head corr; - struct list_head free; - struct list_head erase; - struct list_head alien; - int bad_peb_count; - int vols_found; - int highest_vol_id; - int alien_peb_count; - int is_empty; - int min_ec; - int max_ec; - unsigned long long max_sqnum; - int mean_ec; - uint64_t ec_sum; - int ec_count; - int corr_count; -}; - -struct ubi_device; -struct ubi_vid_hdr; - -/* - * ubi_scan_move_to_list - move a PEB from the volume tree to a list. - * - * @sv: volume scanning information - * @seb: scanning eraseblock infprmation - * @list: the list to move to - */ -static inline void ubi_scan_move_to_list(struct ubi_scan_volume *sv, - struct ubi_scan_leb *seb, - struct list_head *list) -{ - rb_erase(&seb->u.rb, &sv->root); - list_add_tail(&seb->u.list, list); -} - -int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si, - int pnum, int ec, const struct ubi_vid_hdr *vid_hdr, - int bitflips); -struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si, - int vol_id); -struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv, - int lnum); -void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv); -struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi, - struct ubi_scan_info *si); -int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si, - int pnum, int ec); -struct ubi_scan_info *ubi_scan(struct ubi_device *ubi); -void ubi_scan_destroy_si(struct ubi_scan_info *si); - -#endif /* !__UBI_SCAN_H__ */ diff --git a/drivers/mtd/ubi/ubi-media.h b/drivers/mtd/ubi/ubi-media.h index 503ea9b2730..ac2b24d1783 100644 --- a/drivers/mtd/ubi/ubi-media.h +++ b/drivers/mtd/ubi/ubi-media.h @@ -149,10 +149,10 @@ enum { * The @image_seq field is used to validate a UBI image that has been prepared * for a UBI device. The @image_seq value can be any value, but it must be the * same on all eraseblocks. UBI will ensure that all new erase counter headers - * also contain this value, and will check the value when scanning at start-up. + * also contain this value, and will check the value when attaching the flash. * One way to make use of @image_seq is to increase its value by one every time * an image is flashed over an existing image, then, if the flashing does not - * complete, UBI will detect the error when scanning. + * complete, UBI will detect the error when attaching the media. */ struct ubi_ec_hdr { __be32 magic; @@ -164,7 +164,7 @@ struct ubi_ec_hdr { __be32 image_seq; __u8 padding2[32]; __be32 hdr_crc; -} __attribute__ ((packed)); +} __packed; /** * struct ubi_vid_hdr - on-flash UBI volume identifier header. @@ -292,14 +292,14 @@ struct ubi_vid_hdr { __be64 sqnum; __u8 padding3[12]; __be32 hdr_crc; -} __attribute__ ((packed)); +} __packed; /* Internal UBI volumes count */ #define UBI_INT_VOL_COUNT 1 /* - * Starting ID of internal volumes. There is reserved room for 4096 internal - * volumes. + * Starting ID of internal volumes: 0x7fffefff. + * There is reserved room for 4096 internal volumes. */ #define UBI_INTERNAL_VOL_START (0x7FFFFFFF - 4096) @@ -373,6 +373,143 @@ struct ubi_vtbl_record { __u8 flags; __u8 padding[23]; __be32 crc; -} __attribute__ ((packed)); +} __packed; +/* UBI fastmap on-flash data structures */ + +#define UBI_FM_SB_VOLUME_ID (UBI_LAYOUT_VOLUME_ID + 1) +#define UBI_FM_DATA_VOLUME_ID (UBI_LAYOUT_VOLUME_ID + 2) + +/* fastmap on-flash data structure format version */ +#define UBI_FM_FMT_VERSION 1 + +#define UBI_FM_SB_MAGIC 0x7B11D69F +#define UBI_FM_HDR_MAGIC 0xD4B82EF7 +#define UBI_FM_VHDR_MAGIC 0xFA370ED1 +#define UBI_FM_POOL_MAGIC 0x67AF4D08 +#define UBI_FM_EBA_MAGIC 0xf0c040a8 + +/* A fastmap supber block can be located between PEB 0 and + * UBI_FM_MAX_START */ +#define UBI_FM_MAX_START 64 + +/* A fastmap can use up to UBI_FM_MAX_BLOCKS PEBs */ +#define UBI_FM_MAX_BLOCKS 32 + +/* 5% of the total number of PEBs have to be scanned while attaching + * from a fastmap. + * But the size of this pool is limited to be between UBI_FM_MIN_POOL_SIZE and + * UBI_FM_MAX_POOL_SIZE */ +#define UBI_FM_MIN_POOL_SIZE 8 +#define UBI_FM_MAX_POOL_SIZE 256 + +#define UBI_FM_WL_POOL_SIZE 25 + +/** + * struct ubi_fm_sb - UBI fastmap super block + * @magic: fastmap super block magic number (%UBI_FM_SB_MAGIC) + * @version: format version of this fastmap + * @data_crc: CRC over the fastmap data + * @used_blocks: number of PEBs used by this fastmap + * @block_loc: an array containing the location of all PEBs of the fastmap + * @block_ec: the erase counter of each used PEB + * @sqnum: highest sequence number value at the time while taking the fastmap + * + */ +struct ubi_fm_sb { + __be32 magic; + __u8 version; + __u8 padding1[3]; + __be32 data_crc; + __be32 used_blocks; + __be32 block_loc[UBI_FM_MAX_BLOCKS]; + __be32 block_ec[UBI_FM_MAX_BLOCKS]; + __be64 sqnum; + __u8 padding2[32]; +} __packed; + +/** + * struct ubi_fm_hdr - header of the fastmap data set + * @magic: fastmap header magic number (%UBI_FM_HDR_MAGIC) + * @free_peb_count: number of free PEBs known by this fastmap + * @used_peb_count: number of used PEBs known by this fastmap + * @scrub_peb_count: number of to be scrubbed PEBs known by this fastmap + * @bad_peb_count: number of bad PEBs known by this fastmap + * @erase_peb_count: number of bad PEBs which have to be erased + * @vol_count: number of UBI volumes known by this fastmap + */ +struct ubi_fm_hdr { + __be32 magic; + __be32 free_peb_count; + __be32 used_peb_count; + __be32 scrub_peb_count; + __be32 bad_peb_count; + __be32 erase_peb_count; + __be32 vol_count; + __u8 padding[4]; +} __packed; + +/* struct ubi_fm_hdr is followed by two struct ubi_fm_scan_pool */ + +/** + * struct ubi_fm_scan_pool - Fastmap pool PEBs to be scanned while attaching + * @magic: pool magic numer (%UBI_FM_POOL_MAGIC) + * @size: current pool size + * @max_size: maximal pool size + * @pebs: an array containing the location of all PEBs in this pool + */ +struct ubi_fm_scan_pool { + __be32 magic; + __be16 size; + __be16 max_size; + __be32 pebs[UBI_FM_MAX_POOL_SIZE]; + __be32 padding[4]; +} __packed; + +/* ubi_fm_scan_pool is followed by nfree+nused struct ubi_fm_ec records */ + +/** + * struct ubi_fm_ec - stores the erase counter of a PEB + * @pnum: PEB number + * @ec: ec of this PEB + */ +struct ubi_fm_ec { + __be32 pnum; + __be32 ec; +} __packed; + +/** + * struct ubi_fm_volhdr - Fastmap volume header + * it identifies the start of an eba table + * @magic: Fastmap volume header magic number (%UBI_FM_VHDR_MAGIC) + * @vol_id: volume id of the fastmapped volume + * @vol_type: type of the fastmapped volume + * @data_pad: data_pad value of the fastmapped volume + * @used_ebs: number of used LEBs within this volume + * @last_eb_bytes: number of bytes used in the last LEB + */ +struct ubi_fm_volhdr { + __be32 magic; + __be32 vol_id; + __u8 vol_type; + __u8 padding1[3]; + __be32 data_pad; + __be32 used_ebs; + __be32 last_eb_bytes; + __u8 padding2[8]; +} __packed; + +/* struct ubi_fm_volhdr is followed by one struct ubi_fm_eba records */ + +/** + * struct ubi_fm_eba - denotes an association beween a PEB and LEB + * @magic: EBA table magic number + * @reserved_pebs: number of table entries + * @pnum: PEB number of LEB (LEB is the index) + */ +struct ubi_fm_eba { + __be32 magic; + __be32 reserved_pebs; + __be32 pnum[0]; +} __packed; #endif /* !__UBI_MEDIA_H__ */ diff --git a/drivers/mtd/ubi/ubi.h b/drivers/mtd/ubi/ubi.h index a637f0283ad..7bf416329c1 100644 --- a/drivers/mtd/ubi/ubi.h +++ b/drivers/mtd/ubi/ubi.h @@ -22,7 +22,6 @@ #ifndef __UBI_UBI_H__ #define __UBI_UBI_H__ -#include <linux/init.h> #include <linux/types.h> #include <linux/list.h> #include <linux/rbtree.h> @@ -40,10 +39,9 @@ #include <linux/notifier.h> #include <linux/mtd/mtd.h> #include <linux/mtd/ubi.h> +#include <asm/pgtable.h> #include "ubi-media.h" -#include "scan.h" -#include "debug.h" /* Maximum number of supported UBI devices */ #define UBI_MAX_DEVICES 32 @@ -52,21 +50,21 @@ #define UBI_NAME_STR "ubi" /* Normal UBI messages */ -#define ubi_msg(fmt, ...) printk(KERN_NOTICE "UBI: " fmt "\n", ##__VA_ARGS__) +#define ubi_msg(fmt, ...) pr_notice("UBI: " fmt "\n", ##__VA_ARGS__) /* UBI warning messages */ -#define ubi_warn(fmt, ...) printk(KERN_WARNING "UBI warning: %s: " fmt "\n", \ - __func__, ##__VA_ARGS__) +#define ubi_warn(fmt, ...) pr_warn("UBI warning: %s: " fmt "\n", \ + __func__, ##__VA_ARGS__) /* UBI error messages */ -#define ubi_err(fmt, ...) printk(KERN_ERR "UBI error: %s: " fmt "\n", \ +#define ubi_err(fmt, ...) pr_err("UBI error: %s: " fmt "\n", \ __func__, ##__VA_ARGS__) -/* Lowest number PEBs reserved for bad PEB handling */ -#define MIN_RESEVED_PEBS 2 - /* Background thread name pattern */ #define UBI_BGT_NAME_PATTERN "ubi_bgt%dd" -/* This marker in the EBA table means that the LEB is um-mapped */ +/* + * This marker in the EBA table means that the LEB is um-mapped. + * NOTE! It has to have the same value as %UBI_ALL. + */ #define UBI_LEB_UNMAPPED -1 /* @@ -82,24 +80,39 @@ */ #define UBI_PROT_QUEUE_LEN 10 +/* The volume ID/LEB number/erase counter is unknown */ +#define UBI_UNKNOWN -1 + +/* + * The UBI debugfs directory name pattern and maximum name length (3 for "ubi" + * + 2 for the number plus 1 for the trailing zero byte. + */ +#define UBI_DFS_DIR_NAME "ubi%d" +#define UBI_DFS_DIR_LEN (3 + 2 + 1) + /* * Error codes returned by the I/O sub-system. * - * UBI_IO_PEB_EMPTY: the physical eraseblock is empty, i.e. it contains only - * %0xFF bytes - * UBI_IO_PEB_FREE: the physical eraseblock is free, i.e. it contains only a - * valid erase counter header, and the rest are %0xFF bytes - * UBI_IO_BAD_EC_HDR: the erase counter header is corrupted (bad magic or CRC) - * UBI_IO_BAD_VID_HDR: the volume identifier header is corrupted (bad magic or - * CRC) + * UBI_IO_FF: the read region of flash contains only 0xFFs + * UBI_IO_FF_BITFLIPS: the same as %UBI_IO_FF, but also also there was a data + * integrity error reported by the MTD driver + * (uncorrectable ECC error in case of NAND) + * UBI_IO_BAD_HDR: the EC or VID header is corrupted (bad magic or CRC) + * UBI_IO_BAD_HDR_EBADMSG: the same as %UBI_IO_BAD_HDR, but also there was a + * data integrity error reported by the MTD driver + * (uncorrectable ECC error in case of NAND) * UBI_IO_BITFLIPS: bit-flips were detected and corrected + * + * Note, it is probably better to have bit-flip and ebadmsg as flags which can + * be or'ed with other error code. But this is a big change because there are + * may callers, so it does not worth the risk of introducing a bug */ enum { - UBI_IO_PEB_EMPTY = 1, - UBI_IO_PEB_FREE, - UBI_IO_BAD_EC_HDR, - UBI_IO_BAD_VID_HDR, - UBI_IO_BITFLIPS + UBI_IO_FF = 1, + UBI_IO_FF_BITFLIPS, + UBI_IO_BAD_HDR, + UBI_IO_BAD_HDR_EBADMSG, + UBI_IO_BITFLIPS, }; /* @@ -113,15 +126,28 @@ enum { * PEB * MOVE_TARGET_WR_ERR: canceled because there was a write error to the target * PEB - * MOVE_CANCEL_BITFLIPS: canceled because a bit-flip was detected in the + * MOVE_TARGET_BITFLIPS: canceled because a bit-flip was detected in the * target PEB + * MOVE_RETRY: retry scrubbing the PEB */ enum { MOVE_CANCEL_RACE = 1, MOVE_SOURCE_RD_ERR, MOVE_TARGET_RD_ERR, MOVE_TARGET_WR_ERR, - MOVE_CANCEL_BITFLIPS, + MOVE_TARGET_BITFLIPS, + MOVE_RETRY, +}; + +/* + * Return codes of the fastmap sub-system + * + * UBI_NO_FASTMAP: No fastmap super block was found + * UBI_BAD_FASTMAP: A fastmap was found but it's unusable + */ +enum { + UBI_NO_FASTMAP = 1, + UBI_BAD_FASTMAP, }; /** @@ -190,6 +216,41 @@ struct ubi_rename_entry { struct ubi_volume_desc; /** + * struct ubi_fastmap_layout - in-memory fastmap data structure. + * @e: PEBs used by the current fastmap + * @to_be_tortured: if non-zero tortured this PEB + * @used_blocks: number of used PEBs + * @max_pool_size: maximal size of the user pool + * @max_wl_pool_size: maximal size of the pool used by the WL sub-system + */ +struct ubi_fastmap_layout { + struct ubi_wl_entry *e[UBI_FM_MAX_BLOCKS]; + int to_be_tortured[UBI_FM_MAX_BLOCKS]; + int used_blocks; + int max_pool_size; + int max_wl_pool_size; +}; + +/** + * struct ubi_fm_pool - in-memory fastmap pool + * @pebs: PEBs in this pool + * @used: number of used PEBs + * @size: total number of PEBs in this pool + * @max_size: maximal size of the pool + * + * A pool gets filled with up to max_size. + * If all PEBs within the pool are used a new fastmap will be written + * to the flash and the pool gets refilled with empty PEBs. + * + */ +struct ubi_fm_pool { + int pebs[UBI_FM_MAX_POOL_SIZE]; + int used; + int size; + int max_size; +}; + +/** * struct ubi_volume - UBI volume description data structure. * @dev: device object to make use of the the Linux device model * @cdev: character device object to create character device @@ -215,8 +276,6 @@ struct ubi_volume_desc; * @upd_ebs: how many eraseblocks are expected to be updated * @ch_lnum: LEB number which is being changing by the atomic LEB change * operation - * @ch_dtype: data persistency type which is being changing by the atomic LEB - * change operation * @upd_bytes: how many bytes are expected to be received for volume update or * atomic LEB change * @upd_received: how many bytes were already received for volume update or @@ -263,7 +322,6 @@ struct ubi_volume { int upd_ebs; int ch_lnum; - int ch_dtype; long long upd_bytes; long long upd_received; void *upd_buf; @@ -290,6 +348,37 @@ struct ubi_volume_desc { struct ubi_wl_entry; /** + * struct ubi_debug_info - debugging information for an UBI device. + * + * @chk_gen: if UBI general extra checks are enabled + * @chk_io: if UBI I/O extra checks are enabled + * @disable_bgt: disable the background task for testing purposes + * @emulate_bitflips: emulate bit-flips for testing purposes + * @emulate_io_failures: emulate write/erase failures for testing purposes + * @dfs_dir_name: name of debugfs directory containing files of this UBI device + * @dfs_dir: direntry object of the UBI device debugfs directory + * @dfs_chk_gen: debugfs knob to enable UBI general extra checks + * @dfs_chk_io: debugfs knob to enable UBI I/O extra checks + * @dfs_disable_bgt: debugfs knob to disable the background task + * @dfs_emulate_bitflips: debugfs knob to emulate bit-flips + * @dfs_emulate_io_failures: debugfs knob to emulate write/erase failures + */ +struct ubi_debug_info { + unsigned int chk_gen:1; + unsigned int chk_io:1; + unsigned int disable_bgt:1; + unsigned int emulate_bitflips:1; + unsigned int emulate_io_failures:1; + char dfs_dir_name[UBI_DFS_DIR_LEN + 1]; + struct dentry *dfs_dir; + struct dentry *dfs_chk_gen; + struct dentry *dfs_chk_io; + struct dentry *dfs_disable_bgt; + struct dentry *dfs_emulate_bitflips; + struct dentry *dfs_emulate_io_failures; +}; + +/** * struct ubi_device - UBI device description structure * @dev: UBI device object to use the the Linux device model * @cdev: character device object to create character device @@ -327,16 +416,28 @@ struct ubi_wl_entry; * @ltree: the lock tree * @alc_mutex: serializes "atomic LEB change" operations * + * @fm_disabled: non-zero if fastmap is disabled (default) + * @fm: in-memory data structure of the currently used fastmap + * @fm_pool: in-memory data structure of the fastmap pool + * @fm_wl_pool: in-memory data structure of the fastmap pool used by the WL + * sub-system + * @fm_mutex: serializes ubi_update_fastmap() and protects @fm_buf + * @fm_buf: vmalloc()'d buffer which holds the raw fastmap + * @fm_size: fastmap size in bytes + * @fm_sem: allows ubi_update_fastmap() to block EBA table changes + * @fm_work: fastmap work queue + * * @used: RB-tree of used physical eraseblocks * @erroneous: RB-tree of erroneous used physical eraseblocks * @free: RB-tree of free physical eraseblocks + * @free_count: Contains the number of elements in @free * @scrub: RB-tree of physical eraseblocks which need scrubbing * @pq: protection queue (contain physical eraseblocks which are temporarily * protected from the wear-leveling worker) * @pq_head: protection queue head * @wl_lock: protects the @used, @free, @pq, @pq_head, @lookuptbl, @move_from, - * @move_to, @move_to_put @erase_pending, @wl_scheduled, @works, - * @erroneous, and @erroneous_peb_count fields + * @move_to, @move_to_put @erase_pending, @wl_scheduled, @works, + * @erroneous, and @erroneous_peb_count fields * @move_mutex: serializes eraseblock moves * @work_sem: synchronizes the WL worker with use tasks * @wl_scheduled: non-zero if the wear-leveling was scheduled @@ -354,8 +455,11 @@ struct ubi_wl_entry; * @flash_size: underlying MTD device size (in bytes) * @peb_count: count of physical eraseblocks on the MTD device * @peb_size: physical eraseblock size + * @bad_peb_limit: top limit of expected bad physical eraseblocks * @bad_peb_count: count of bad physical eraseblocks * @good_peb_count: count of good physical eraseblocks + * @corr_peb_count: count of corrupted physical eraseblocks (preserved and not + * used by UBI) * @erroneous_peb_count: count of erroneous physical eraseblocks in @erroneous * @max_erroneous: maximum allowed amount of erroneous physical eraseblocks * @min_io_size: minimal input/output unit size of the underlying MTD device @@ -374,14 +478,15 @@ struct ubi_wl_entry; * @bad_allowed: whether the MTD device admits of bad physical eraseblocks or * not * @nor_flash: non-zero if working on top of NOR flash + * @max_write_size: maximum amount of bytes the underlying flash can write at a + * time (MTD write buffer size) * @mtd: MTD device descriptor * - * @peb_buf1: a buffer of PEB size used for different purposes - * @peb_buf2: another buffer of PEB size used for different purposes - * @buf_mutex: protects @peb_buf1 and @peb_buf2 + * @peb_buf: a buffer of PEB size used for different purposes + * @buf_mutex: protects @peb_buf * @ckvol_mutex: serializes static volume checking when opening - * @dbg_peb_buf: buffer of PEB size used for debugging - * @dbg_buf_mutex: protects @dbg_peb_buf + * + * @dbg: debugging information for this UBI device */ struct ubi_device { struct cdev cdev; @@ -398,6 +503,7 @@ struct ubi_device { int avail_pebs; int beb_rsvd_pebs; int beb_rsvd_level; + int bad_peb_limit; int autoresize_vol_id; int vtbl_slots; @@ -415,10 +521,22 @@ struct ubi_device { struct rb_root ltree; struct mutex alc_mutex; + /* Fastmap stuff */ + int fm_disabled; + struct ubi_fastmap_layout *fm; + struct ubi_fm_pool fm_pool; + struct ubi_fm_pool fm_wl_pool; + struct rw_semaphore fm_sem; + struct mutex fm_mutex; + void *fm_buf; + size_t fm_size; + struct work_struct fm_work; + /* Wear-leveling sub-system's stuff */ struct rb_root used; struct rb_root erroneous; struct rb_root free; + int free_count; struct rb_root scrub; struct list_head pq[UBI_PROT_QUEUE_LEN]; int pq_head; @@ -442,6 +560,7 @@ struct ubi_device { int peb_size; int bad_peb_count; int good_peb_count; + int corr_peb_count; int erroneous_peb_count; int max_erroneous; int min_io_size; @@ -456,18 +575,162 @@ struct ubi_device { int vid_hdr_shift; unsigned int bad_allowed:1; unsigned int nor_flash:1; + int max_write_size; struct mtd_info *mtd; - void *peb_buf1; - void *peb_buf2; + void *peb_buf; struct mutex buf_mutex; struct mutex ckvol_mutex; -#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID - void *dbg_peb_buf; - struct mutex dbg_buf_mutex; -#endif + + struct ubi_debug_info dbg; +}; + +/** + * struct ubi_ainf_peb - attach information about a physical eraseblock. + * @ec: erase counter (%UBI_UNKNOWN if it is unknown) + * @pnum: physical eraseblock number + * @vol_id: ID of the volume this LEB belongs to + * @lnum: logical eraseblock number + * @scrub: if this physical eraseblock needs scrubbing + * @copy_flag: this LEB is a copy (@copy_flag is set in VID header of this LEB) + * @sqnum: sequence number + * @u: unions RB-tree or @list links + * @u.rb: link in the per-volume RB-tree of &struct ubi_ainf_peb objects + * @u.list: link in one of the eraseblock lists + * + * One object of this type is allocated for each physical eraseblock when + * attaching an MTD device. Note, if this PEB does not belong to any LEB / + * volume, the @vol_id and @lnum fields are initialized to %UBI_UNKNOWN. + */ +struct ubi_ainf_peb { + int ec; + int pnum; + int vol_id; + int lnum; + unsigned int scrub:1; + unsigned int copy_flag:1; + unsigned long long sqnum; + union { + struct rb_node rb; + struct list_head list; + } u; +}; + +/** + * struct ubi_ainf_volume - attaching information about a volume. + * @vol_id: volume ID + * @highest_lnum: highest logical eraseblock number in this volume + * @leb_count: number of logical eraseblocks in this volume + * @vol_type: volume type + * @used_ebs: number of used logical eraseblocks in this volume (only for + * static volumes) + * @last_data_size: amount of data in the last logical eraseblock of this + * volume (always equivalent to the usable logical eraseblock + * size in case of dynamic volumes) + * @data_pad: how many bytes at the end of logical eraseblocks of this volume + * are not used (due to volume alignment) + * @compat: compatibility flags of this volume + * @rb: link in the volume RB-tree + * @root: root of the RB-tree containing all the eraseblock belonging to this + * volume (&struct ubi_ainf_peb objects) + * + * One object of this type is allocated for each volume when attaching an MTD + * device. + */ +struct ubi_ainf_volume { + int vol_id; + int highest_lnum; + int leb_count; + int vol_type; + int used_ebs; + int last_data_size; + int data_pad; + int compat; + struct rb_node rb; + struct rb_root root; +}; + +/** + * struct ubi_attach_info - MTD device attaching information. + * @volumes: root of the volume RB-tree + * @corr: list of corrupted physical eraseblocks + * @free: list of free physical eraseblocks + * @erase: list of physical eraseblocks which have to be erased + * @alien: list of physical eraseblocks which should not be used by UBI (e.g., + * those belonging to "preserve"-compatible internal volumes) + * @corr_peb_count: count of PEBs in the @corr list + * @empty_peb_count: count of PEBs which are presumably empty (contain only + * 0xFF bytes) + * @alien_peb_count: count of PEBs in the @alien list + * @bad_peb_count: count of bad physical eraseblocks + * @maybe_bad_peb_count: count of bad physical eraseblocks which are not marked + * as bad yet, but which look like bad + * @vols_found: number of volumes found + * @highest_vol_id: highest volume ID + * @is_empty: flag indicating whether the MTD device is empty or not + * @min_ec: lowest erase counter value + * @max_ec: highest erase counter value + * @max_sqnum: highest sequence number value + * @mean_ec: mean erase counter value + * @ec_sum: a temporary variable used when calculating @mean_ec + * @ec_count: a temporary variable used when calculating @mean_ec + * @aeb_slab_cache: slab cache for &struct ubi_ainf_peb objects + * + * This data structure contains the result of attaching an MTD device and may + * be used by other UBI sub-systems to build final UBI data structures, further + * error-recovery and so on. + */ +struct ubi_attach_info { + struct rb_root volumes; + struct list_head corr; + struct list_head free; + struct list_head erase; + struct list_head alien; + int corr_peb_count; + int empty_peb_count; + int alien_peb_count; + int bad_peb_count; + int maybe_bad_peb_count; + int vols_found; + int highest_vol_id; + int is_empty; + int min_ec; + int max_ec; + unsigned long long max_sqnum; + int mean_ec; + uint64_t ec_sum; + int ec_count; + struct kmem_cache *aeb_slab_cache; }; +/** + * struct ubi_work - UBI work description data structure. + * @list: a link in the list of pending works + * @func: worker function + * @e: physical eraseblock to erase + * @vol_id: the volume ID on which this erasure is being performed + * @lnum: the logical eraseblock number + * @torture: if the physical eraseblock has to be tortured + * @anchor: produce a anchor PEB to by used by fastmap + * + * The @func pointer points to the worker function. If the @cancel argument is + * not zero, the worker has to free the resources and exit immediately. The + * worker has to return zero in case of success and a negative error code in + * case of failure. + */ +struct ubi_work { + struct list_head list; + int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel); + /* The below fields are only relevant to erasure works */ + struct ubi_wl_entry *e; + int vol_id; + int lnum; + int torture; + int anchor; +}; + +#include "debug.h" + extern struct kmem_cache *ubi_wl_entry_slab; extern const struct file_operations ubi_ctrl_cdev_operations; extern const struct file_operations ubi_cdev_operations; @@ -476,12 +739,23 @@ extern struct class *ubi_class; extern struct mutex ubi_devices_mutex; extern struct blocking_notifier_head ubi_notifiers; +/* attach.c */ +int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum, + int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips); +struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai, + int vol_id); +void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av); +struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi, + struct ubi_attach_info *ai); +int ubi_attach(struct ubi_device *ubi, int force_scan); +void ubi_destroy_ai(struct ubi_attach_info *ai); + /* vtbl.c */ int ubi_change_vtbl_record(struct ubi_device *ubi, int idx, struct ubi_vtbl_record *vtbl_rec); int ubi_vtbl_rename_volumes(struct ubi_device *ubi, struct list_head *rename_list); -int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si); +int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai); /* vmt.c */ int ubi_create_volume(struct ubi_device *ubi, struct ubi_mkvol_req *req); @@ -505,7 +779,9 @@ int ubi_more_leb_change_data(struct ubi_device *ubi, struct ubi_volume *vol, int ubi_calc_data_len(const struct ubi_device *ubi, const void *buf, int length); int ubi_check_volume(struct ubi_device *ubi, int vol_id); +void ubi_update_reserved(struct ubi_device *ubi); void ubi_calculate_reserved(struct ubi_device *ubi); +int ubi_check_pattern(const void *buf, uint8_t patt, int size); /* eba.c */ int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol, @@ -513,24 +789,33 @@ int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol, int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, void *buf, int offset, int len, int check); int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, - const void *buf, int offset, int len, int dtype); + const void *buf, int offset, int len); int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, - int lnum, const void *buf, int len, int dtype, - int used_ebs); + int lnum, const void *buf, int len, int used_ebs); int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, - int lnum, const void *buf, int len, int dtype); + int lnum, const void *buf, int len); int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, struct ubi_vid_hdr *vid_hdr); -int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si); +int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai); +unsigned long long ubi_next_sqnum(struct ubi_device *ubi); +int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap, + struct ubi_attach_info *ai_scan); /* wl.c */ -int ubi_wl_get_peb(struct ubi_device *ubi, int dtype); -int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture); -int ubi_wl_flush(struct ubi_device *ubi); +int ubi_wl_get_peb(struct ubi_device *ubi); +int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, + int pnum, int torture); +int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum); int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum); -int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si); +int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai); void ubi_wl_close(struct ubi_device *ubi); int ubi_thread(void *u); +struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor); +int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *used_e, + int lnum, int torture); +int ubi_is_erase_work(struct ubi_work *wrk); +void ubi_refill_pools(struct ubi_device *ubi); +int ubi_ensure_anchor_pebs(struct ubi_device *ubi); /* io.c */ int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, @@ -550,7 +835,8 @@ int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, struct ubi_vid_hdr *vid_hdr); /* build.c */ -int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset); +int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, + int vid_hdr_offset, int max_beb_per1024); int ubi_detach_mtd_dev(int ubi_num, int anyway); struct ubi_device *ubi_get_device(int ubi_num); void ubi_put_device(struct ubi_device *ubi); @@ -561,11 +847,41 @@ int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb); int ubi_enumerate_volumes(struct notifier_block *nb); +void ubi_free_internal_volumes(struct ubi_device *ubi); /* kapi.c */ void ubi_do_get_device_info(struct ubi_device *ubi, struct ubi_device_info *di); void ubi_do_get_volume_info(struct ubi_device *ubi, struct ubi_volume *vol, struct ubi_volume_info *vi); +/* scan.c */ +int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb, + int pnum, const struct ubi_vid_hdr *vid_hdr); + +/* fastmap.c */ +size_t ubi_calc_fm_size(struct ubi_device *ubi); +int ubi_update_fastmap(struct ubi_device *ubi); +int ubi_scan_fastmap(struct ubi_device *ubi, struct ubi_attach_info *ai, + int fm_anchor); + +/* block.c */ +#ifdef CONFIG_MTD_UBI_BLOCK +int ubiblock_init(void); +void ubiblock_exit(void); +int ubiblock_create(struct ubi_volume_info *vi); +int ubiblock_remove(struct ubi_volume_info *vi); +#else +static inline int ubiblock_init(void) { return 0; } +static inline void ubiblock_exit(void) {} +static inline int ubiblock_create(struct ubi_volume_info *vi) +{ + return -ENOSYS; +} +static inline int ubiblock_remove(struct ubi_volume_info *vi) +{ + return -ENOSYS; +} +#endif + /* * ubi_rb_for_each_entry - walk an RB-tree. @@ -581,6 +897,21 @@ void ubi_do_get_volume_info(struct ubi_device *ubi, struct ubi_volume *vol, rb = rb_next(rb), \ pos = (rb ? container_of(rb, typeof(*pos), member) : NULL)) +/* + * ubi_move_aeb_to_list - move a PEB from the volume tree to a list. + * + * @av: volume attaching information + * @aeb: attaching eraseblock information + * @list: the list to move to + */ +static inline void ubi_move_aeb_to_list(struct ubi_ainf_volume *av, + struct ubi_ainf_peb *aeb, + struct list_head *list) +{ + rb_erase(&aeb->u.rb, &av->root); + list_add_tail(&aeb->u.list, list); +} + /** * ubi_zalloc_vid_hdr - allocate a volume identifier header object. * @ubi: UBI device description object @@ -655,6 +986,7 @@ static inline void ubi_ro_mode(struct ubi_device *ubi) if (!ubi->ro_mode) { ubi->ro_mode = 1; ubi_warn("switch to read-only mode"); + dump_stack(); } } diff --git a/drivers/mtd/ubi/upd.c b/drivers/mtd/ubi/upd.c index 425bf5a3edd..ec2c2dc1c1c 100644 --- a/drivers/mtd/ubi/upd.c +++ b/drivers/mtd/ubi/upd.c @@ -64,8 +64,7 @@ static int set_update_marker(struct ubi_device *ubi, struct ubi_volume *vol) return 0; } - memcpy(&vtbl_rec, &ubi->vtbl[vol->vol_id], - sizeof(struct ubi_vtbl_record)); + vtbl_rec = ubi->vtbl[vol->vol_id]; vtbl_rec.upd_marker = 1; mutex_lock(&ubi->device_mutex); @@ -93,8 +92,7 @@ static int clear_update_marker(struct ubi_device *ubi, struct ubi_volume *vol, dbg_gen("clear update marker for volume %d", vol->vol_id); - memcpy(&vtbl_rec, &ubi->vtbl[vol->vol_id], - sizeof(struct ubi_vtbl_record)); + vtbl_rec = ubi->vtbl[vol->vol_id]; ubi_assert(vol->upd_marker && vtbl_rec.upd_marker); vtbl_rec.upd_marker = 0; @@ -147,7 +145,7 @@ int ubi_start_update(struct ubi_device *ubi, struct ubi_volume *vol, } if (bytes == 0) { - err = ubi_wl_flush(ubi); + err = ubi_wl_flush(ubi, UBI_ALL, UBI_ALL); if (err) return err; @@ -186,14 +184,12 @@ int ubi_start_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, dbg_gen("start changing LEB %d:%d, %u bytes", vol->vol_id, req->lnum, req->bytes); if (req->bytes == 0) - return ubi_eba_atomic_leb_change(ubi, vol, req->lnum, NULL, 0, - req->dtype); + return ubi_eba_atomic_leb_change(ubi, vol, req->lnum, NULL, 0); vol->upd_bytes = req->bytes; vol->upd_received = 0; vol->changing_leb = 1; vol->ch_lnum = req->lnum; - vol->ch_dtype = req->dtype; vol->upd_buf = vmalloc(req->bytes); if (!vol->upd_buf) @@ -246,8 +242,7 @@ static int write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, return 0; } - err = ubi_eba_write_leb(ubi, vol, lnum, buf, 0, len, - UBI_UNKNOWN); + err = ubi_eba_write_leb(ubi, vol, lnum, buf, 0, len); } else { /* * When writing static volume, and this is the last logical @@ -259,8 +254,7 @@ static int write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, * contain zeros, not random trash. */ memset(buf + len, 0, vol->usable_leb_size - len); - err = ubi_eba_write_leb_st(ubi, vol, lnum, buf, len, - UBI_UNKNOWN, used_ebs); + err = ubi_eba_write_leb_st(ubi, vol, lnum, buf, len, used_ebs); } return err; @@ -365,7 +359,7 @@ int ubi_more_update_data(struct ubi_device *ubi, struct ubi_volume *vol, ubi_assert(vol->upd_received <= vol->upd_bytes); if (vol->upd_received == vol->upd_bytes) { - err = ubi_wl_flush(ubi); + err = ubi_wl_flush(ubi, UBI_ALL, UBI_ALL); if (err) return err; /* The update is finished, clear the update marker */ @@ -421,7 +415,7 @@ int ubi_more_leb_change_data(struct ubi_device *ubi, struct ubi_volume *vol, len - vol->upd_bytes); len = ubi_calc_data_len(ubi, vol->upd_buf, len); err = ubi_eba_atomic_leb_change(ubi, vol, vol->ch_lnum, - vol->upd_buf, len, UBI_UNKNOWN); + vol->upd_buf, len); if (err) return err; } diff --git a/drivers/mtd/ubi/vmt.c b/drivers/mtd/ubi/vmt.c index e42afab9a9f..8330703c098 100644 --- a/drivers/mtd/ubi/vmt.c +++ b/drivers/mtd/ubi/vmt.c @@ -26,13 +26,10 @@ #include <linux/err.h> #include <linux/math64.h> #include <linux/slab.h> +#include <linux/export.h> #include "ubi.h" -#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID -static int paranoid_check_volumes(struct ubi_device *ubi); -#else -#define paranoid_check_volumes(ubi) 0 -#endif +static int self_check_volumes(struct ubi_device *ubi); static ssize_t vol_attribute_show(struct device *dev, struct device_attribute *attr, char *buf); @@ -226,7 +223,7 @@ int ubi_create_volume(struct ubi_device *ubi, struct ubi_mkvol_req *req) } if (vol_id == UBI_VOL_NUM_AUTO) { - dbg_err("out of volume IDs"); + ubi_err("out of volume IDs"); err = -ENFILE; goto out_unlock; } @@ -240,7 +237,7 @@ int ubi_create_volume(struct ubi_device *ubi, struct ubi_mkvol_req *req) /* Ensure that this volume does not exist */ err = -EEXIST; if (ubi->volumes[vol_id]) { - dbg_err("volume %d already exists", vol_id); + ubi_err("volume %d already exists", vol_id); goto out_unlock; } @@ -249,7 +246,7 @@ int ubi_create_volume(struct ubi_device *ubi, struct ubi_mkvol_req *req) if (ubi->volumes[i] && ubi->volumes[i]->name_len == req->name_len && !strcmp(ubi->volumes[i]->name, req->name)) { - dbg_err("volume \"%s\" exists (ID %d)", req->name, i); + ubi_err("volume \"%s\" exists (ID %d)", req->name, i); goto out_unlock; } @@ -260,7 +257,10 @@ int ubi_create_volume(struct ubi_device *ubi, struct ubi_mkvol_req *req) /* Reserve physical eraseblocks */ if (vol->reserved_pebs > ubi->avail_pebs) { - dbg_err("not enough PEBs, only %d available", ubi->avail_pebs); + ubi_err("not enough PEBs, only %d available", ubi->avail_pebs); + if (ubi->corr_peb_count) + ubi_err("%d PEBs are corrupted and not used", + ubi->corr_peb_count); err = -ENOSPC; goto out_unlock; } @@ -280,7 +280,7 @@ int ubi_create_volume(struct ubi_device *ubi, struct ubi_mkvol_req *req) * Finish all pending erases because there may be some LEBs belonging * to the same volume ID. */ - err = ubi_wl_flush(ubi); + err = ubi_wl_flush(ubi, vol_id, UBI_ALL); if (err) goto out_acc; @@ -356,8 +356,7 @@ int ubi_create_volume(struct ubi_device *ubi, struct ubi_mkvol_req *req) spin_unlock(&ubi->volumes_lock); ubi_volume_notify(ubi, vol, UBI_VOLUME_ADDED); - if (paranoid_check_volumes(ubi)) - dbg_err("check failed while creating volume %d", vol_id); + self_check_volumes(ubi); return err; out_sysfs: @@ -444,21 +443,13 @@ int ubi_remove_volume(struct ubi_volume_desc *desc, int no_vtbl) spin_lock(&ubi->volumes_lock); ubi->rsvd_pebs -= reserved_pebs; ubi->avail_pebs += reserved_pebs; - i = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs; - if (i > 0) { - i = ubi->avail_pebs >= i ? i : ubi->avail_pebs; - ubi->avail_pebs -= i; - ubi->rsvd_pebs += i; - ubi->beb_rsvd_pebs += i; - if (i > 0) - ubi_msg("reserve more %d PEBs", i); - } + ubi_update_reserved(ubi); ubi->vol_count -= 1; spin_unlock(&ubi->volumes_lock); ubi_volume_notify(ubi, vol, UBI_VOLUME_REMOVED); - if (!no_vtbl && paranoid_check_volumes(ubi)) - dbg_err("check failed while removing volume %d", vol_id); + if (!no_vtbl) + self_check_volumes(ubi); return err; @@ -496,7 +487,7 @@ int ubi_resize_volume(struct ubi_volume_desc *desc, int reserved_pebs) if (vol->vol_type == UBI_STATIC_VOLUME && reserved_pebs < vol->used_ebs) { - dbg_err("too small size %d, %d LEBs contain data", + ubi_err("too small size %d, %d LEBs contain data", reserved_pebs, vol->used_ebs); return -EINVAL; } @@ -525,8 +516,11 @@ int ubi_resize_volume(struct ubi_volume_desc *desc, int reserved_pebs) if (pebs > 0) { spin_lock(&ubi->volumes_lock); if (pebs > ubi->avail_pebs) { - dbg_err("not enough PEBs: requested %d, available %d", + ubi_err("not enough PEBs: requested %d, available %d", pebs, ubi->avail_pebs); + if (ubi->corr_peb_count) + ubi_err("%d PEBs are corrupted and not used", + ubi->corr_peb_count); spin_unlock(&ubi->volumes_lock); err = -ENOSPC; goto out_free; @@ -541,7 +535,7 @@ int ubi_resize_volume(struct ubi_volume_desc *desc, int reserved_pebs) } /* Change volume table record */ - memcpy(&vtbl_rec, &ubi->vtbl[vol_id], sizeof(struct ubi_vtbl_record)); + vtbl_rec = ubi->vtbl[vol_id]; vtbl_rec.reserved_pebs = cpu_to_be32(reserved_pebs); err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); if (err) @@ -556,15 +550,7 @@ int ubi_resize_volume(struct ubi_volume_desc *desc, int reserved_pebs) spin_lock(&ubi->volumes_lock); ubi->rsvd_pebs += pebs; ubi->avail_pebs -= pebs; - pebs = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs; - if (pebs > 0) { - pebs = ubi->avail_pebs >= pebs ? pebs : ubi->avail_pebs; - ubi->avail_pebs -= pebs; - ubi->rsvd_pebs += pebs; - ubi->beb_rsvd_pebs += pebs; - if (pebs > 0) - ubi_msg("reserve more %d PEBs", pebs); - } + ubi_update_reserved(ubi); for (i = 0; i < reserved_pebs; i++) new_mapping[i] = vol->eba_tbl[i]; kfree(vol->eba_tbl); @@ -581,8 +567,7 @@ int ubi_resize_volume(struct ubi_volume_desc *desc, int reserved_pebs) } ubi_volume_notify(ubi, vol, UBI_VOLUME_RESIZED); - if (paranoid_check_volumes(ubi)) - dbg_err("check failed while re-sizing volume %d", vol_id); + self_check_volumes(ubi); return err; out_acc: @@ -631,8 +616,8 @@ int ubi_rename_volumes(struct ubi_device *ubi, struct list_head *rename_list) } } - if (!err && paranoid_check_volumes(ubi)) - ; + if (!err) + self_check_volumes(ubi); return err; } @@ -679,8 +664,7 @@ int ubi_add_volume(struct ubi_device *ubi, struct ubi_volume *vol) return err; } - if (paranoid_check_volumes(ubi)) - dbg_err("check failed while adding volume %d", vol_id); + self_check_volumes(ubi); return err; out_cdev: @@ -705,16 +689,14 @@ void ubi_free_volume(struct ubi_device *ubi, struct ubi_volume *vol) volume_sysfs_close(vol); } -#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID - /** - * paranoid_check_volume - check volume information. + * self_check_volume - check volume information. * @ubi: UBI device description object * @vol_id: volume ID * * Returns zero if volume is all right and a a negative error code if not. */ -static int paranoid_check_volume(struct ubi_device *ubi, int vol_id) +static int self_check_volume(struct ubi_device *ubi, int vol_id) { int idx = vol_id2idx(ubi, vol_id); int reserved_pebs, alignment, data_pad, vol_type, name_len, upd_marker; @@ -764,7 +746,7 @@ static int paranoid_check_volume(struct ubi_device *ubi, int vol_id) } if (vol->upd_marker && vol->corrupted) { - dbg_err("update marker and corrupted simultaneously"); + ubi_err("update marker and corrupted simultaneously"); goto fail; } @@ -784,11 +766,6 @@ static int paranoid_check_volume(struct ubi_device *ubi, int vol_id) goto fail; } - if (!vol->name) { - ubi_err("NULL volume name"); - goto fail; - } - n = strnlen(vol->name, vol->name_len + 1); if (n != vol->name_len) { ubi_err("bad name_len %lld", n); @@ -851,31 +828,33 @@ static int paranoid_check_volume(struct ubi_device *ubi, int vol_id) return 0; fail: - ubi_err("paranoid check failed for volume %d", vol_id); + ubi_err("self-check failed for volume %d", vol_id); if (vol) - ubi_dbg_dump_vol_info(vol); - ubi_dbg_dump_vtbl_record(&ubi->vtbl[vol_id], vol_id); + ubi_dump_vol_info(vol); + ubi_dump_vtbl_record(&ubi->vtbl[vol_id], vol_id); dump_stack(); spin_unlock(&ubi->volumes_lock); return -EINVAL; } /** - * paranoid_check_volumes - check information about all volumes. + * self_check_volumes - check information about all volumes. * @ubi: UBI device description object * * Returns zero if volumes are all right and a a negative error code if not. */ -static int paranoid_check_volumes(struct ubi_device *ubi) +static int self_check_volumes(struct ubi_device *ubi) { int i, err = 0; + if (!ubi_dbg_chk_gen(ubi)) + return 0; + for (i = 0; i < ubi->vtbl_slots; i++) { - err = paranoid_check_volume(ubi, i); + err = self_check_volume(ubi, i); if (err) break; } return err; } -#endif diff --git a/drivers/mtd/ubi/vtbl.c b/drivers/mtd/ubi/vtbl.c index 14c10bed94e..d77b1c1d7c7 100644 --- a/drivers/mtd/ubi/vtbl.c +++ b/drivers/mtd/ubi/vtbl.c @@ -37,16 +37,15 @@ * LEB 1. This scheme guarantees recoverability from unclean reboots. * * In this UBI implementation the on-flash volume table does not contain any - * information about how many data static volumes contain. This information may - * be found from the scanning data. + * information about how much data static volumes contain. * * But it would still be beneficial to store this information in the volume * table. For example, suppose we have a static volume X, and all its physical * eraseblocks became bad for some reasons. Suppose we are attaching the - * corresponding MTD device, the scanning has found no logical eraseblocks + * corresponding MTD device, for some reason we find no logical eraseblocks * corresponding to the volume X. According to the volume table volume X does * exist. So we don't know whether it is just empty or all its physical - * eraseblocks went bad. So we cannot alarm the user about this corruption. + * eraseblocks went bad. So we cannot alarm the user properly. * * The volume table also stores so-called "update marker", which is used for * volume updates. Before updating the volume, the update marker is set, and @@ -62,11 +61,7 @@ #include <asm/div64.h> #include "ubi.h" -#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID -static void paranoid_vtbl_check(const struct ubi_device *ubi); -#else -#define paranoid_vtbl_check(ubi) -#endif +static void self_vtbl_check(const struct ubi_device *ubi); /* Empty volume table record */ static struct ubi_vtbl_record empty_vtbl_record; @@ -106,12 +101,12 @@ int ubi_change_vtbl_record(struct ubi_device *ubi, int idx, return err; err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0, - ubi->vtbl_size, UBI_LONGTERM); + ubi->vtbl_size); if (err) return err; } - paranoid_vtbl_check(ubi); + self_vtbl_check(ubi); return 0; } @@ -158,7 +153,7 @@ int ubi_vtbl_rename_volumes(struct ubi_device *ubi, return err; err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0, - ubi->vtbl_size, UBI_LONGTERM); + ubi->vtbl_size); if (err) return err; } @@ -197,7 +192,7 @@ static int vtbl_check(const struct ubi_device *ubi, if (be32_to_cpu(vtbl[i].crc) != crc) { ubi_err("bad CRC at record %u: %#08x, not %#08x", i, crc, be32_to_cpu(vtbl[i].crc)); - ubi_dbg_dump_vtbl_record(&vtbl[i], i); + ubi_dump_vtbl_record(&vtbl[i], i); return 1; } @@ -229,7 +224,7 @@ static int vtbl_check(const struct ubi_device *ubi, n = ubi->leb_size % alignment; if (data_pad != n) { - dbg_err("bad data_pad, has to be %d", n); + ubi_err("bad data_pad, has to be %d", n); err = 6; goto bad; } @@ -245,7 +240,7 @@ static int vtbl_check(const struct ubi_device *ubi, } if (reserved_pebs > ubi->good_peb_count) { - dbg_err("too large reserved_pebs %d, good PEBs %d", + ubi_err("too large reserved_pebs %d, good PEBs %d", reserved_pebs, ubi->good_peb_count); err = 9; goto bad; @@ -275,10 +270,10 @@ static int vtbl_check(const struct ubi_device *ubi, if (len1 > 0 && len1 == len2 && !strncmp(vtbl[i].name, vtbl[n].name, len1)) { - ubi_err("volumes %d and %d have the same name" - " \"%s\"", i, n, vtbl[i].name); - ubi_dbg_dump_vtbl_record(&vtbl[i], i); - ubi_dbg_dump_vtbl_record(&vtbl[n], n); + ubi_err("volumes %d and %d have the same name \"%s\"", + i, n, vtbl[i].name); + ubi_dump_vtbl_record(&vtbl[i], i); + ubi_dump_vtbl_record(&vtbl[n], n); return -EINVAL; } } @@ -288,75 +283,64 @@ static int vtbl_check(const struct ubi_device *ubi, bad: ubi_err("volume table check failed: record %d, error %d", i, err); - ubi_dbg_dump_vtbl_record(&vtbl[i], i); + ubi_dump_vtbl_record(&vtbl[i], i); return -EINVAL; } /** * create_vtbl - create a copy of volume table. * @ubi: UBI device description object - * @si: scanning information + * @ai: attaching information * @copy: number of the volume table copy * @vtbl: contents of the volume table * * This function returns zero in case of success and a negative error code in * case of failure. */ -static int create_vtbl(struct ubi_device *ubi, struct ubi_scan_info *si, +static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai, int copy, void *vtbl) { int err, tries = 0; - static struct ubi_vid_hdr *vid_hdr; - struct ubi_scan_volume *sv; - struct ubi_scan_leb *new_seb, *old_seb = NULL; + struct ubi_vid_hdr *vid_hdr; + struct ubi_ainf_peb *new_aeb; - ubi_msg("create volume table (copy #%d)", copy + 1); + dbg_gen("create volume table (copy #%d)", copy + 1); vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); if (!vid_hdr) return -ENOMEM; - /* - * Check if there is a logical eraseblock which would have to contain - * this volume table copy was found during scanning. It has to be wiped - * out. - */ - sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID); - if (sv) - old_seb = ubi_scan_find_seb(sv, copy); - retry: - new_seb = ubi_scan_get_free_peb(ubi, si); - if (IS_ERR(new_seb)) { - err = PTR_ERR(new_seb); + new_aeb = ubi_early_get_peb(ubi, ai); + if (IS_ERR(new_aeb)) { + err = PTR_ERR(new_aeb); goto out_free; } - vid_hdr->vol_type = UBI_VID_DYNAMIC; + vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE; vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID); vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT; vid_hdr->data_size = vid_hdr->used_ebs = vid_hdr->data_pad = cpu_to_be32(0); vid_hdr->lnum = cpu_to_be32(copy); - vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum); + vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum); /* The EC header is already there, write the VID header */ - err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr); + err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vid_hdr); if (err) goto write_error; /* Write the layout volume contents */ - err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size); + err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size); if (err) goto write_error; /* - * And add it to the scanning information. Don't delete the old - * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'. + * And add it to the attaching information. Don't delete the old version + * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'. */ - err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec, - vid_hdr, 0); - kfree(new_seb); + err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0); + kmem_cache_free(ai->aeb_slab_cache, new_aeb); ubi_free_vid_hdr(ubi, vid_hdr); return err; @@ -366,10 +350,10 @@ write_error: * Probably this physical eraseblock went bad, try to pick * another one. */ - list_add_tail(&new_seb->u.list, &si->corr); + list_add(&new_aeb->u.list, &ai->erase); goto retry; } - kfree(new_seb); + kmem_cache_free(ai->aeb_slab_cache, new_aeb); out_free: ubi_free_vid_hdr(ubi, vid_hdr); return err; @@ -379,20 +363,20 @@ out_free: /** * process_lvol - process the layout volume. * @ubi: UBI device description object - * @si: scanning information - * @sv: layout volume scanning information + * @ai: attaching information + * @av: layout volume attaching information * * This function is responsible for reading the layout volume, ensuring it is * not corrupted, and recovering from corruptions if needed. Returns volume * table in case of success and a negative error code in case of failure. */ static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi, - struct ubi_scan_info *si, - struct ubi_scan_volume *sv) + struct ubi_attach_info *ai, + struct ubi_ainf_volume *av) { int err; struct rb_node *rb; - struct ubi_scan_leb *seb; + struct ubi_ainf_peb *aeb; struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL }; int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1}; @@ -424,28 +408,27 @@ static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi, dbg_gen("check layout volume"); /* Read both LEB 0 and LEB 1 into memory */ - ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) { - leb[seb->lnum] = vmalloc(ubi->vtbl_size); - if (!leb[seb->lnum]) { + ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { + leb[aeb->lnum] = vzalloc(ubi->vtbl_size); + if (!leb[aeb->lnum]) { err = -ENOMEM; goto out_free; } - memset(leb[seb->lnum], 0, ubi->vtbl_size); - err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0, + err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0, ubi->vtbl_size); - if (err == UBI_IO_BITFLIPS || err == -EBADMSG) + if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) /* * Scrub the PEB later. Note, -EBADMSG indicates an * uncorrectable ECC error, but we have our own CRC and * the data will be checked later. If the data is OK, * the PEB will be scrubbed (because we set - * seb->scrub). If the data is not OK, the contents of + * aeb->scrub). If the data is not OK, the contents of * the PEB will be recovered from the second copy, and - * seb->scrub will be cleared in - * 'ubi_scan_add_used()'. + * aeb->scrub will be cleared in + * 'ubi_add_to_av()'. */ - seb->scrub = 1; + aeb->scrub = 1; else if (err) goto out_free; } @@ -464,7 +447,7 @@ static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi, ubi->vtbl_size); if (leb_corrupted[1]) { ubi_warn("volume table copy #2 is corrupted"); - err = create_vtbl(ubi, si, 1, leb[0]); + err = create_vtbl(ubi, ai, 1, leb[0]); if (err) goto out_free; ubi_msg("volume table was restored"); @@ -487,7 +470,7 @@ static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi, } ubi_warn("volume table copy #1 is corrupted"); - err = create_vtbl(ubi, si, 0, leb[1]); + err = create_vtbl(ubi, ai, 0, leb[1]); if (err) goto out_free; ubi_msg("volume table was restored"); @@ -505,21 +488,20 @@ out_free: /** * create_empty_lvol - create empty layout volume. * @ubi: UBI device description object - * @si: scanning information + * @ai: attaching information * * This function returns volume table contents in case of success and a * negative error code in case of failure. */ static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi, - struct ubi_scan_info *si) + struct ubi_attach_info *ai) { int i; struct ubi_vtbl_record *vtbl; - vtbl = vmalloc(ubi->vtbl_size); + vtbl = vzalloc(ubi->vtbl_size); if (!vtbl) return ERR_PTR(-ENOMEM); - memset(vtbl, 0, ubi->vtbl_size); for (i = 0; i < ubi->vtbl_slots; i++) memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE); @@ -527,7 +509,7 @@ static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi, for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { int err; - err = create_vtbl(ubi, si, i, vtbl); + err = create_vtbl(ubi, ai, i, vtbl); if (err) { vfree(vtbl); return ERR_PTR(err); @@ -540,18 +522,19 @@ static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi, /** * init_volumes - initialize volume information for existing volumes. * @ubi: UBI device description object - * @si: scanning information + * @ai: scanning information * @vtbl: volume table * * This function allocates volume description objects for existing volumes. * Returns zero in case of success and a negative error code in case of * failure. */ -static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si, +static int init_volumes(struct ubi_device *ubi, + const struct ubi_attach_info *ai, const struct ubi_vtbl_record *vtbl) { int i, reserved_pebs = 0; - struct ubi_scan_volume *sv; + struct ubi_ainf_volume *av; struct ubi_volume *vol; for (i = 0; i < ubi->vtbl_slots; i++) { @@ -579,8 +562,8 @@ static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si, if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) { /* Auto re-size flag may be set only for one volume */ if (ubi->autoresize_vol_id != -1) { - ubi_err("more than one auto-resize volume (%d " - "and %d)", ubi->autoresize_vol_id, i); + ubi_err("more than one auto-resize volume (%d and %d)", + ubi->autoresize_vol_id, i); kfree(vol); return -EINVAL; } @@ -607,8 +590,8 @@ static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si, } /* Static volumes only */ - sv = ubi_scan_find_sv(si, i); - if (!sv) { + av = ubi_find_av(ai, i); + if (!av) { /* * No eraseblocks belonging to this volume found. We * don't actually know whether this static volume is @@ -620,22 +603,22 @@ static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si, continue; } - if (sv->leb_count != sv->used_ebs) { + if (av->leb_count != av->used_ebs) { /* * We found a static volume which misses several * eraseblocks. Treat it as corrupted. */ ubi_warn("static volume %d misses %d LEBs - corrupted", - sv->vol_id, sv->used_ebs - sv->leb_count); + av->vol_id, av->used_ebs - av->leb_count); vol->corrupted = 1; continue; } - vol->used_ebs = sv->used_ebs; + vol->used_ebs = av->used_ebs; vol->used_bytes = (long long)(vol->used_ebs - 1) * vol->usable_leb_size; - vol->used_bytes += sv->last_data_size; - vol->last_eb_bytes = sv->last_data_size; + vol->used_bytes += av->last_data_size; + vol->last_eb_bytes = av->last_data_size; } /* And add the layout volume */ @@ -644,7 +627,7 @@ static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si, return -ENOMEM; vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS; - vol->alignment = 1; + vol->alignment = UBI_LAYOUT_VOLUME_ALIGN; vol->vol_type = UBI_DYNAMIC_VOLUME; vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1; memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1); @@ -662,9 +645,13 @@ static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si, ubi->vol_count += 1; vol->ubi = ubi; - if (reserved_pebs > ubi->avail_pebs) + if (reserved_pebs > ubi->avail_pebs) { ubi_err("not enough PEBs, required %d, available %d", reserved_pebs, ubi->avail_pebs); + if (ubi->corr_peb_count) + ubi_err("%d PEBs are corrupted and not used", + ubi->corr_peb_count); + } ubi->rsvd_pebs += reserved_pebs; ubi->avail_pebs -= reserved_pebs; @@ -672,105 +659,104 @@ static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si, } /** - * check_sv - check volume scanning information. + * check_av - check volume attaching information. * @vol: UBI volume description object - * @sv: volume scanning information + * @av: volume attaching information * - * This function returns zero if the volume scanning information is consistent + * This function returns zero if the volume attaching information is consistent * to the data read from the volume tabla, and %-EINVAL if not. */ -static int check_sv(const struct ubi_volume *vol, - const struct ubi_scan_volume *sv) +static int check_av(const struct ubi_volume *vol, + const struct ubi_ainf_volume *av) { int err; - if (sv->highest_lnum >= vol->reserved_pebs) { + if (av->highest_lnum >= vol->reserved_pebs) { err = 1; goto bad; } - if (sv->leb_count > vol->reserved_pebs) { + if (av->leb_count > vol->reserved_pebs) { err = 2; goto bad; } - if (sv->vol_type != vol->vol_type) { + if (av->vol_type != vol->vol_type) { err = 3; goto bad; } - if (sv->used_ebs > vol->reserved_pebs) { + if (av->used_ebs > vol->reserved_pebs) { err = 4; goto bad; } - if (sv->data_pad != vol->data_pad) { + if (av->data_pad != vol->data_pad) { err = 5; goto bad; } return 0; bad: - ubi_err("bad scanning information, error %d", err); - ubi_dbg_dump_sv(sv); - ubi_dbg_dump_vol_info(vol); + ubi_err("bad attaching information, error %d", err); + ubi_dump_av(av); + ubi_dump_vol_info(vol); return -EINVAL; } /** - * check_scanning_info - check that scanning information. + * check_attaching_info - check that attaching information. * @ubi: UBI device description object - * @si: scanning information + * @ai: attaching information * * Even though we protect on-flash data by CRC checksums, we still don't trust - * the media. This function ensures that scanning information is consistent to - * the information read from the volume table. Returns zero if the scanning + * the media. This function ensures that attaching information is consistent to + * the information read from the volume table. Returns zero if the attaching * information is OK and %-EINVAL if it is not. */ -static int check_scanning_info(const struct ubi_device *ubi, - struct ubi_scan_info *si) +static int check_attaching_info(const struct ubi_device *ubi, + struct ubi_attach_info *ai) { int err, i; - struct ubi_scan_volume *sv; + struct ubi_ainf_volume *av; struct ubi_volume *vol; - if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) { - ubi_err("scanning found %d volumes, maximum is %d + %d", - si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots); + if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) { + ubi_err("found %d volumes while attaching, maximum is %d + %d", + ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots); return -EINVAL; } - if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT && - si->highest_vol_id < UBI_INTERNAL_VOL_START) { - ubi_err("too large volume ID %d found by scanning", - si->highest_vol_id); + if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT && + ai->highest_vol_id < UBI_INTERNAL_VOL_START) { + ubi_err("too large volume ID %d found", ai->highest_vol_id); return -EINVAL; } for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { cond_resched(); - sv = ubi_scan_find_sv(si, i); + av = ubi_find_av(ai, i); vol = ubi->volumes[i]; if (!vol) { - if (sv) - ubi_scan_rm_volume(si, sv); + if (av) + ubi_remove_av(ai, av); continue; } if (vol->reserved_pebs == 0) { ubi_assert(i < ubi->vtbl_slots); - if (!sv) + if (!av) continue; /* - * During scanning we found a volume which does not + * During attaching we found a volume which does not * exist according to the information in the volume * table. This must have happened due to an unclean * reboot while the volume was being removed. Discard * these eraseblocks. */ - ubi_msg("finish volume %d removal", sv->vol_id); - ubi_scan_rm_volume(si, sv); - } else if (sv) { - err = check_sv(vol, sv); + ubi_msg("finish volume %d removal", av->vol_id); + ubi_remove_av(ai, av); + } else if (av) { + err = check_av(vol, av); if (err) return err; } @@ -782,16 +768,16 @@ static int check_scanning_info(const struct ubi_device *ubi, /** * ubi_read_volume_table - read the volume table. * @ubi: UBI device description object - * @si: scanning information + * @ai: attaching information * * This function reads volume table, checks it, recover from errors if needed, * or creates it if needed. Returns zero in case of success and a negative * error code in case of failure. */ -int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si) +int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai) { int i, err; - struct ubi_scan_volume *sv; + struct ubi_ainf_volume *av; empty_vtbl_record.crc = cpu_to_be32(0xf116c36b); @@ -806,8 +792,8 @@ int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si) ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE; ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size); - sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID); - if (!sv) { + av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID); + if (!av) { /* * No logical eraseblocks belonging to the layout volume were * found. This could mean that the flash is just empty. In @@ -816,8 +802,8 @@ int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si) * But if flash is not empty this must be a corruption or the * MTD device just contains garbage. */ - if (si->is_empty) { - ubi->vtbl = create_empty_lvol(ubi, si); + if (ai->is_empty) { + ubi->vtbl = create_empty_lvol(ubi, ai); if (IS_ERR(ubi->vtbl)) return PTR_ERR(ubi->vtbl); } else { @@ -825,33 +811,33 @@ int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si) return -EINVAL; } } else { - if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) { + if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) { /* This must not happen with proper UBI images */ - dbg_err("too many LEBs (%d) in layout volume", - sv->leb_count); + ubi_err("too many LEBs (%d) in layout volume", + av->leb_count); return -EINVAL; } - ubi->vtbl = process_lvol(ubi, si, sv); + ubi->vtbl = process_lvol(ubi, ai, av); if (IS_ERR(ubi->vtbl)) return PTR_ERR(ubi->vtbl); } - ubi->avail_pebs = ubi->good_peb_count; + ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count; /* * The layout volume is OK, initialize the corresponding in-RAM data * structures. */ - err = init_volumes(ubi, si, ubi->vtbl); + err = init_volumes(ubi, ai, ubi->vtbl); if (err) goto out_free; /* - * Make sure that the scanning information is consistent to the + * Make sure that the attaching information is consistent to the * information stored in the volume table. */ - err = check_scanning_info(ubi, si); + err = check_attaching_info(ubi, ai); if (err) goto out_free; @@ -866,18 +852,17 @@ out_free: return err; } -#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID - /** - * paranoid_vtbl_check - check volume table. + * self_vtbl_check - check volume table. * @ubi: UBI device description object */ -static void paranoid_vtbl_check(const struct ubi_device *ubi) +static void self_vtbl_check(const struct ubi_device *ubi) { + if (!ubi_dbg_chk_gen(ubi)) + return; + if (vtbl_check(ubi, ubi->vtbl)) { - ubi_err("paranoid check failed"); + ubi_err("self-check failed"); BUG(); } } - -#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ diff --git a/drivers/mtd/ubi/wl.c b/drivers/mtd/ubi/wl.c index ee7b1d8fbb9..0f3425dac91 100644 --- a/drivers/mtd/ubi/wl.c +++ b/drivers/mtd/ubi/wl.c @@ -40,12 +40,6 @@ * physical eraseblocks with low erase counter to free physical eraseblocks * with high erase counter. * - * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick - * an "optimal" physical eraseblock. For example, when it is known that the - * physical eraseblock will be "put" soon because it contains short-term data, - * the WL sub-system may pick a free physical eraseblock with low erase - * counter, and so forth. - * * If the WL sub-system fails to erase a physical eraseblock, it marks it as * bad. * @@ -69,8 +63,7 @@ * to the user; instead, we first want to let users fill them up with data; * * o there is a chance that the user will put the physical eraseblock very - * soon, so it makes sense not to move it for some time, but wait; this is - * especially important in case of "short term" physical eraseblocks. + * soon, so it makes sense not to move it for some time, but wait. * * Physical eraseblocks stay protected only for limited time. But the "time" is * measured in erase cycles in this case. This is implemented with help of the @@ -141,35 +134,46 @@ */ #define WL_MAX_FAILURES 32 +static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); +static int self_check_in_wl_tree(const struct ubi_device *ubi, + struct ubi_wl_entry *e, struct rb_root *root); +static int self_check_in_pq(const struct ubi_device *ubi, + struct ubi_wl_entry *e); + +#ifdef CONFIG_MTD_UBI_FASTMAP /** - * struct ubi_work - UBI work description data structure. - * @list: a link in the list of pending works - * @func: worker function - * @e: physical eraseblock to erase - * @torture: if the physical eraseblock has to be tortured - * - * The @func pointer points to the worker function. If the @cancel argument is - * not zero, the worker has to free the resources and exit immediately. The - * worker has to return zero in case of success and a negative error code in - * case of failure. + * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue + * @wrk: the work description object */ -struct ubi_work { - struct list_head list; - int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel); - /* The below fields are only relevant to erasure works */ - struct ubi_wl_entry *e; - int torture; -}; - -#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID -static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec); -static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, - struct rb_root *root); -static int paranoid_check_in_pq(struct ubi_device *ubi, struct ubi_wl_entry *e); +static void update_fastmap_work_fn(struct work_struct *wrk) +{ + struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work); + ubi_update_fastmap(ubi); +} + +/** + * ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap. + * @ubi: UBI device description object + * @pnum: the to be checked PEB + */ +static int ubi_is_fm_block(struct ubi_device *ubi, int pnum) +{ + int i; + + if (!ubi->fm) + return 0; + + for (i = 0; i < ubi->fm->used_blocks; i++) + if (ubi->fm->e[i]->pnum == pnum) + return 1; + + return 0; +} #else -#define paranoid_check_ec(ubi, pnum, ec) 0 -#define paranoid_check_in_wl_tree(e, root) -#define paranoid_check_in_pq(ubi, e) 0 +static int ubi_is_fm_block(struct ubi_device *ubi, int pnum) +{ + return 0; +} #endif /** @@ -268,18 +272,16 @@ static int produce_free_peb(struct ubi_device *ubi) { int err; - spin_lock(&ubi->wl_lock); while (!ubi->free.rb_node) { spin_unlock(&ubi->wl_lock); dbg_wl("do one work synchronously"); err = do_work(ubi); - if (err) - return err; spin_lock(&ubi->wl_lock); + if (err) + return err; } - spin_unlock(&ubi->wl_lock); return 0; } @@ -346,19 +348,22 @@ static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) /** * find_wl_entry - find wear-leveling entry closest to certain erase counter. + * @ubi: UBI device description object * @root: the RB-tree where to look for - * @max: highest possible erase counter + * @diff: maximum possible difference from the smallest erase counter * * This function looks for a wear leveling entry with erase counter closest to - * @max and less than @max. + * min + @diff, where min is the smallest erase counter. */ -static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max) +static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, + struct rb_root *root, int diff) { struct rb_node *p; - struct ubi_wl_entry *e; + struct ubi_wl_entry *e, *prev_e = NULL; + int max; e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); - max += e->ec; + max = e->ec + diff; p = root->rb_node; while (p) { @@ -369,39 +374,143 @@ static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max) p = p->rb_left; else { p = p->rb_right; + prev_e = e; e = e1; } } + /* If no fastmap has been written and this WL entry can be used + * as anchor PEB, hold it back and return the second best WL entry + * such that fastmap can use the anchor PEB later. */ + if (prev_e && !ubi->fm_disabled && + !ubi->fm && e->pnum < UBI_FM_MAX_START) + return prev_e; + return e; } /** - * ubi_wl_get_peb - get a physical eraseblock. + * find_mean_wl_entry - find wear-leveling entry with medium erase counter. * @ubi: UBI device description object - * @dtype: type of data which will be stored in this physical eraseblock + * @root: the RB-tree where to look for * - * This function returns a physical eraseblock in case of success and a - * negative error code in case of failure. Might sleep. + * This function looks for a wear leveling entry with medium erase counter, + * but not greater or equivalent than the lowest erase counter plus + * %WL_FREE_MAX_DIFF/2. */ -int ubi_wl_get_peb(struct ubi_device *ubi, int dtype) +static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, + struct rb_root *root) { - int err, medium_ec; struct ubi_wl_entry *e, *first, *last; - ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM || - dtype == UBI_UNKNOWN); + first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); + last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); + + if (last->ec - first->ec < WL_FREE_MAX_DIFF) { + e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); + +#ifdef CONFIG_MTD_UBI_FASTMAP + /* If no fastmap has been written and this WL entry can be used + * as anchor PEB, hold it back and return the second best + * WL entry such that fastmap can use the anchor PEB later. */ + if (e && !ubi->fm_disabled && !ubi->fm && + e->pnum < UBI_FM_MAX_START) + e = rb_entry(rb_next(root->rb_node), + struct ubi_wl_entry, u.rb); +#endif + } else + e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); + + return e; +} + +#ifdef CONFIG_MTD_UBI_FASTMAP +/** + * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB. + * @root: the RB-tree where to look for + */ +static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root) +{ + struct rb_node *p; + struct ubi_wl_entry *e, *victim = NULL; + int max_ec = UBI_MAX_ERASECOUNTER; + + ubi_rb_for_each_entry(p, e, root, u.rb) { + if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) { + victim = e; + max_ec = e->ec; + } + } + + return victim; +} + +static int anchor_pebs_avalible(struct rb_root *root) +{ + struct rb_node *p; + struct ubi_wl_entry *e; + + ubi_rb_for_each_entry(p, e, root, u.rb) + if (e->pnum < UBI_FM_MAX_START) + return 1; + + return 0; +} + +/** + * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number. + * @ubi: UBI device description object + * @anchor: This PEB will be used as anchor PEB by fastmap + * + * The function returns a physical erase block with a given maximal number + * and removes it from the wl subsystem. + * Must be called with wl_lock held! + */ +struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor) +{ + struct ubi_wl_entry *e = NULL; + + if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1)) + goto out; + + if (anchor) + e = find_anchor_wl_entry(&ubi->free); + else + e = find_mean_wl_entry(ubi, &ubi->free); + + if (!e) + goto out; + + self_check_in_wl_tree(ubi, e, &ubi->free); + + /* remove it from the free list, + * the wl subsystem does no longer know this erase block */ + rb_erase(&e->u.rb, &ubi->free); + ubi->free_count--; +out: + return e; +} +#endif + +/** + * __wl_get_peb - get a physical eraseblock. + * @ubi: UBI device description object + * + * This function returns a physical eraseblock in case of success and a + * negative error code in case of failure. + */ +static int __wl_get_peb(struct ubi_device *ubi) +{ + int err; + struct ubi_wl_entry *e; retry: - spin_lock(&ubi->wl_lock); if (!ubi->free.rb_node) { if (ubi->works_count == 0) { - ubi_assert(list_empty(&ubi->works)); ubi_err("no free eraseblocks"); - spin_unlock(&ubi->wl_lock); + ubi_assert(list_empty(&ubi->works)); return -ENOSPC; } - spin_unlock(&ubi->wl_lock); err = produce_free_peb(ubi); if (err < 0) @@ -409,66 +518,187 @@ retry: goto retry; } - switch (dtype) { - case UBI_LONGTERM: - /* - * For long term data we pick a physical eraseblock with high - * erase counter. But the highest erase counter we can pick is - * bounded by the the lowest erase counter plus - * %WL_FREE_MAX_DIFF. - */ - e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); - break; - case UBI_UNKNOWN: - /* - * For unknown data we pick a physical eraseblock with medium - * erase counter. But we by no means can pick a physical - * eraseblock with erase counter greater or equivalent than the - * lowest erase counter plus %WL_FREE_MAX_DIFF. - */ - first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, - u.rb); - last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb); - - if (last->ec - first->ec < WL_FREE_MAX_DIFF) - e = rb_entry(ubi->free.rb_node, - struct ubi_wl_entry, u.rb); - else { - medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2; - e = find_wl_entry(&ubi->free, medium_ec); - } - break; - case UBI_SHORTTERM: - /* - * For short term data we pick a physical eraseblock with the - * lowest erase counter as we expect it will be erased soon. - */ - e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb); - break; - default: - BUG(); + e = find_mean_wl_entry(ubi, &ubi->free); + if (!e) { + ubi_err("no free eraseblocks"); + return -ENOSPC; } - paranoid_check_in_wl_tree(e, &ubi->free); + self_check_in_wl_tree(ubi, e, &ubi->free); /* * Move the physical eraseblock to the protection queue where it will * be protected from being moved for some time. */ rb_erase(&e->u.rb, &ubi->free); + ubi->free_count--; dbg_wl("PEB %d EC %d", e->pnum, e->ec); +#ifndef CONFIG_MTD_UBI_FASTMAP + /* We have to enqueue e only if fastmap is disabled, + * is fastmap enabled prot_queue_add() will be called by + * ubi_wl_get_peb() after removing e from the pool. */ prot_queue_add(ubi, e); +#endif + return e->pnum; +} + +#ifdef CONFIG_MTD_UBI_FASTMAP +/** + * return_unused_pool_pebs - returns unused PEB to the free tree. + * @ubi: UBI device description object + * @pool: fastmap pool description object + */ +static void return_unused_pool_pebs(struct ubi_device *ubi, + struct ubi_fm_pool *pool) +{ + int i; + struct ubi_wl_entry *e; + + for (i = pool->used; i < pool->size; i++) { + e = ubi->lookuptbl[pool->pebs[i]]; + wl_tree_add(e, &ubi->free); + ubi->free_count++; + } +} + +/** + * refill_wl_pool - refills all the fastmap pool used by the + * WL sub-system. + * @ubi: UBI device description object + */ +static void refill_wl_pool(struct ubi_device *ubi) +{ + struct ubi_wl_entry *e; + struct ubi_fm_pool *pool = &ubi->fm_wl_pool; + + return_unused_pool_pebs(ubi, pool); + + for (pool->size = 0; pool->size < pool->max_size; pool->size++) { + if (!ubi->free.rb_node || + (ubi->free_count - ubi->beb_rsvd_pebs < 5)) + break; + + e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); + self_check_in_wl_tree(ubi, e, &ubi->free); + rb_erase(&e->u.rb, &ubi->free); + ubi->free_count--; + + pool->pebs[pool->size] = e->pnum; + } + pool->used = 0; +} + +/** + * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb. + * @ubi: UBI device description object + */ +static void refill_wl_user_pool(struct ubi_device *ubi) +{ + struct ubi_fm_pool *pool = &ubi->fm_pool; + + return_unused_pool_pebs(ubi, pool); + + for (pool->size = 0; pool->size < pool->max_size; pool->size++) { + pool->pebs[pool->size] = __wl_get_peb(ubi); + if (pool->pebs[pool->size] < 0) + break; + } + pool->used = 0; +} + +/** + * ubi_refill_pools - refills all fastmap PEB pools. + * @ubi: UBI device description object + */ +void ubi_refill_pools(struct ubi_device *ubi) +{ + spin_lock(&ubi->wl_lock); + refill_wl_pool(ubi); + refill_wl_user_pool(ubi); + spin_unlock(&ubi->wl_lock); +} + +/* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of + * the fastmap pool. + */ +int ubi_wl_get_peb(struct ubi_device *ubi) +{ + int ret; + struct ubi_fm_pool *pool = &ubi->fm_pool; + struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool; + + if (!pool->size || !wl_pool->size || pool->used == pool->size || + wl_pool->used == wl_pool->size) + ubi_update_fastmap(ubi); + + /* we got not a single free PEB */ + if (!pool->size) + ret = -ENOSPC; + else { + spin_lock(&ubi->wl_lock); + ret = pool->pebs[pool->used++]; + prot_queue_add(ubi, ubi->lookuptbl[ret]); + spin_unlock(&ubi->wl_lock); + } + + return ret; +} + +/* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system. + * + * @ubi: UBI device description object + */ +static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) +{ + struct ubi_fm_pool *pool = &ubi->fm_wl_pool; + int pnum; + + if (pool->used == pool->size || !pool->size) { + /* We cannot update the fastmap here because this + * function is called in atomic context. + * Let's fail here and refill/update it as soon as possible. */ + schedule_work(&ubi->fm_work); + return NULL; + } else { + pnum = pool->pebs[pool->used++]; + return ubi->lookuptbl[pnum]; + } +} +#else +static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) +{ + struct ubi_wl_entry *e; + + e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); + self_check_in_wl_tree(ubi, e, &ubi->free); + ubi->free_count--; + ubi_assert(ubi->free_count >= 0); + rb_erase(&e->u.rb, &ubi->free); + + return e; +} + +int ubi_wl_get_peb(struct ubi_device *ubi) +{ + int peb, err; + + spin_lock(&ubi->wl_lock); + peb = __wl_get_peb(ubi); spin_unlock(&ubi->wl_lock); - err = ubi_dbg_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, - ubi->peb_size - ubi->vid_hdr_aloffset); + if (peb < 0) + return peb; + + err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset, + ubi->peb_size - ubi->vid_hdr_aloffset); if (err) { - ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum); + ubi_err("new PEB %d does not contain all 0xFF bytes", peb); return err; } - return e->pnum; + return peb; } +#endif /** * prot_queue_del - remove a physical eraseblock from the protection queue. @@ -486,7 +716,7 @@ static int prot_queue_del(struct ubi_device *ubi, int pnum) if (!e) return -ENODEV; - if (paranoid_check_in_pq(ubi, e)) + if (self_check_in_pq(ubi, e)) return -ENODEV; list_del(&e->u.list); @@ -512,7 +742,7 @@ static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); - err = paranoid_check_ec(ubi, e->pnum, e->ec); + err = self_check_ec(ubi, e->pnum, e->ec); if (err) return -EINVAL; @@ -600,41 +830,72 @@ repeat: } /** - * schedule_ubi_work - schedule a work. + * __schedule_ubi_work - schedule a work. * @ubi: UBI device description object * @wrk: the work to schedule * * This function adds a work defined by @wrk to the tail of the pending works - * list. + * list. Can only be used of ubi->work_sem is already held in read mode! */ -static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) +static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) { spin_lock(&ubi->wl_lock); list_add_tail(&wrk->list, &ubi->works); ubi_assert(ubi->works_count >= 0); ubi->works_count += 1; - if (ubi->thread_enabled) + if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) wake_up_process(ubi->bgt_thread); spin_unlock(&ubi->wl_lock); } +/** + * schedule_ubi_work - schedule a work. + * @ubi: UBI device description object + * @wrk: the work to schedule + * + * This function adds a work defined by @wrk to the tail of the pending works + * list. + */ +static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) +{ + down_read(&ubi->work_sem); + __schedule_ubi_work(ubi, wrk); + up_read(&ubi->work_sem); +} + static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, int cancel); +#ifdef CONFIG_MTD_UBI_FASTMAP +/** + * ubi_is_erase_work - checks whether a work is erase work. + * @wrk: The work object to be checked + */ +int ubi_is_erase_work(struct ubi_work *wrk) +{ + return wrk->func == erase_worker; +} +#endif + /** * schedule_erase - schedule an erase work. * @ubi: UBI device description object * @e: the WL entry of the physical eraseblock to erase + * @vol_id: the volume ID that last used this PEB + * @lnum: the last used logical eraseblock number for the PEB * @torture: if the physical eraseblock has to be tortured * * This function returns zero in case of success and a %-ENOMEM in case of * failure. */ static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, - int torture) + int vol_id, int lnum, int torture) { struct ubi_work *wl_wrk; + ubi_assert(e); + ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); + dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", e->pnum, e->ec, torture); @@ -644,6 +905,8 @@ static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, wl_wrk->func = &erase_worker; wl_wrk->e = e; + wl_wrk->vol_id = vol_id; + wl_wrk->lnum = lnum; wl_wrk->torture = torture; schedule_ubi_work(ubi, wl_wrk); @@ -651,6 +914,79 @@ static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, } /** + * do_sync_erase - run the erase worker synchronously. + * @ubi: UBI device description object + * @e: the WL entry of the physical eraseblock to erase + * @vol_id: the volume ID that last used this PEB + * @lnum: the last used logical eraseblock number for the PEB + * @torture: if the physical eraseblock has to be tortured + * + */ +static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, + int vol_id, int lnum, int torture) +{ + struct ubi_work *wl_wrk; + + dbg_wl("sync erase of PEB %i", e->pnum); + + wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); + if (!wl_wrk) + return -ENOMEM; + + wl_wrk->e = e; + wl_wrk->vol_id = vol_id; + wl_wrk->lnum = lnum; + wl_wrk->torture = torture; + + return erase_worker(ubi, wl_wrk, 0); +} + +#ifdef CONFIG_MTD_UBI_FASTMAP +/** + * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling + * sub-system. + * see: ubi_wl_put_peb() + * + * @ubi: UBI device description object + * @fm_e: physical eraseblock to return + * @lnum: the last used logical eraseblock number for the PEB + * @torture: if this physical eraseblock has to be tortured + */ +int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e, + int lnum, int torture) +{ + struct ubi_wl_entry *e; + int vol_id, pnum = fm_e->pnum; + + dbg_wl("PEB %d", pnum); + + ubi_assert(pnum >= 0); + ubi_assert(pnum < ubi->peb_count); + + spin_lock(&ubi->wl_lock); + e = ubi->lookuptbl[pnum]; + + /* This can happen if we recovered from a fastmap the very + * first time and writing now a new one. In this case the wl system + * has never seen any PEB used by the original fastmap. + */ + if (!e) { + e = fm_e; + ubi_assert(e->ec >= 0); + ubi->lookuptbl[pnum] = e; + } else { + e->ec = fm_e->ec; + kfree(fm_e); + } + + spin_unlock(&ubi->wl_lock); + + vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID; + return schedule_erase(ubi, e, vol_id, lnum, torture); +} +#endif + +/** * wear_leveling_worker - wear-leveling worker function. * @ubi: UBI device description object * @wrk: the work object @@ -665,6 +1001,9 @@ static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, { int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; int vol_id = -1, uninitialized_var(lnum); +#ifdef CONFIG_MTD_UBI_FASTMAP + int anchor = wrk->anchor; +#endif struct ubi_wl_entry *e1, *e2; struct ubi_vid_hdr *vid_hdr; @@ -698,21 +1037,46 @@ static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, goto out_cancel; } +#ifdef CONFIG_MTD_UBI_FASTMAP + /* Check whether we need to produce an anchor PEB */ + if (!anchor) + anchor = !anchor_pebs_avalible(&ubi->free); + + if (anchor) { + e1 = find_anchor_wl_entry(&ubi->used); + if (!e1) + goto out_cancel; + e2 = get_peb_for_wl(ubi); + if (!e2) + goto out_cancel; + + self_check_in_wl_tree(ubi, e1, &ubi->used); + rb_erase(&e1->u.rb, &ubi->used); + dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); + } else if (!ubi->scrub.rb_node) { +#else if (!ubi->scrub.rb_node) { +#endif /* * Now pick the least worn-out used physical eraseblock and a * highly worn-out free physical eraseblock. If the erase * counters differ much enough, start wear-leveling. */ e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); - e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); + e2 = get_peb_for_wl(ubi); + if (!e2) + goto out_cancel; if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { dbg_wl("no WL needed: min used EC %d, max free EC %d", e1->ec, e2->ec); + + /* Give the unused PEB back */ + wl_tree_add(e2, &ubi->free); + ubi->free_count++; goto out_cancel; } - paranoid_check_in_wl_tree(e1, &ubi->used); + self_check_in_wl_tree(ubi, e1, &ubi->used); rb_erase(&e1->u.rb, &ubi->used); dbg_wl("move PEB %d EC %d to PEB %d EC %d", e1->pnum, e1->ec, e2->pnum, e2->ec); @@ -720,14 +1084,15 @@ static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, /* Perform scrubbing */ scrubbing = 1; e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); - e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); - paranoid_check_in_wl_tree(e1, &ubi->scrub); + e2 = get_peb_for_wl(ubi); + if (!e2) + goto out_cancel; + + self_check_in_wl_tree(ubi, e1, &ubi->scrub); rb_erase(&e1->u.rb, &ubi->scrub); dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); } - paranoid_check_in_wl_tree(e2, &ubi->free); - rb_erase(&e2->u.rb, &ubi->free); ubi->move_from = e1; ubi->move_to = e2; spin_unlock(&ubi->wl_lock); @@ -745,7 +1110,7 @@ static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); if (err && err != UBI_IO_BITFLIPS) { - if (err == UBI_IO_PEB_FREE) { + if (err == UBI_IO_FF) { /* * We are trying to move PEB without a VID header. UBI * always write VID headers shortly after the PEB was @@ -759,6 +1124,16 @@ static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, dbg_wl("PEB %d has no VID header", e1->pnum); protect = 1; goto out_not_moved; + } else if (err == UBI_IO_FF_BITFLIPS) { + /* + * The same situation as %UBI_IO_FF, but bit-flips were + * detected. It is better to schedule this PEB for + * scrubbing. + */ + dbg_wl("PEB %d has no VID header but has bit-flips", + e1->pnum); + scrubbing = 1; + goto out_not_moved; } ubi_err("error %d while reading VID header from PEB %d", @@ -782,8 +1157,11 @@ static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, protect = 1; goto out_not_moved; } - - if (err == MOVE_CANCEL_BITFLIPS || err == MOVE_TARGET_WR_ERR || + if (err == MOVE_RETRY) { + scrubbing = 1; + goto out_not_moved; + } + if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || err == MOVE_TARGET_RD_ERR) { /* * Target PEB had bit-flips or write error - torture it. @@ -831,7 +1209,7 @@ static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, ubi->move_to_put = ubi->wl_scheduled = 0; spin_unlock(&ubi->wl_lock); - err = schedule_erase(ubi, e1, 0); + err = do_sync_erase(ubi, e1, vol_id, lnum, 0); if (err) { kmem_cache_free(ubi_wl_entry_slab, e1); if (e2) @@ -846,7 +1224,7 @@ static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, */ dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", e2->pnum, vol_id, lnum); - err = schedule_erase(ubi, e2, 0); + err = do_sync_erase(ubi, e2, vol_id, lnum, 0); if (err) { kmem_cache_free(ubi_wl_entry_slab, e2); goto out_ro; @@ -885,7 +1263,7 @@ out_not_moved: spin_unlock(&ubi->wl_lock); ubi_free_vid_hdr(ubi, vid_hdr); - err = schedule_erase(ubi, e2, torture); + err = do_sync_erase(ubi, e2, vol_id, lnum, torture); if (err) { kmem_cache_free(ubi_wl_entry_slab, e2); goto out_ro; @@ -926,12 +1304,13 @@ out_cancel: /** * ensure_wear_leveling - schedule wear-leveling if it is needed. * @ubi: UBI device description object + * @nested: set to non-zero if this function is called from UBI worker * * This function checks if it is time to start wear-leveling and schedules it * if yes. This function returns zero in case of success and a negative error * code in case of failure. */ -static int ensure_wear_leveling(struct ubi_device *ubi) +static int ensure_wear_leveling(struct ubi_device *ubi, int nested) { int err = 0; struct ubi_wl_entry *e1; @@ -959,7 +1338,7 @@ static int ensure_wear_leveling(struct ubi_device *ubi) * %UBI_WL_THRESHOLD. */ e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); - e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); + e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) goto out_unlock; @@ -976,8 +1355,12 @@ static int ensure_wear_leveling(struct ubi_device *ubi) goto out_cancel; } + wrk->anchor = 0; wrk->func = &wear_leveling_worker; - schedule_ubi_work(ubi, wrk); + if (nested) + __schedule_ubi_work(ubi, wrk); + else + schedule_ubi_work(ubi, wrk); return err; out_cancel: @@ -988,6 +1371,38 @@ out_unlock: return err; } +#ifdef CONFIG_MTD_UBI_FASTMAP +/** + * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB. + * @ubi: UBI device description object + */ +int ubi_ensure_anchor_pebs(struct ubi_device *ubi) +{ + struct ubi_work *wrk; + + spin_lock(&ubi->wl_lock); + if (ubi->wl_scheduled) { + spin_unlock(&ubi->wl_lock); + return 0; + } + ubi->wl_scheduled = 1; + spin_unlock(&ubi->wl_lock); + + wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); + if (!wrk) { + spin_lock(&ubi->wl_lock); + ubi->wl_scheduled = 0; + spin_unlock(&ubi->wl_lock); + return -ENOMEM; + } + + wrk->anchor = 1; + wrk->func = &wear_leveling_worker; + schedule_ubi_work(ubi, wrk); + return 0; +} +#endif + /** * erase_worker - physical eraseblock erase worker function. * @ubi: UBI device description object @@ -1003,7 +1418,10 @@ static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, int cancel) { struct ubi_wl_entry *e = wl_wrk->e; - int pnum = e->pnum, err, need; + int pnum = e->pnum; + int vol_id = wl_wrk->vol_id; + int lnum = wl_wrk->lnum; + int err, available_consumed = 0; if (cancel) { dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); @@ -1012,7 +1430,10 @@ static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, return 0; } - dbg_wl("erase PEB %d EC %d", pnum, e->ec); + dbg_wl("erase PEB %d EC %d LEB %d:%d", + pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); + + ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); err = sync_erase(ubi, e, wl_wrk->torture); if (!err) { @@ -1021,6 +1442,7 @@ static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, spin_lock(&ubi->wl_lock); wl_tree_add(e, &ubi->free); + ubi->free_count++; spin_unlock(&ubi->wl_lock); /* @@ -1030,33 +1452,34 @@ static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, serve_prot_queue(ubi); /* And take care about wear-leveling */ - err = ensure_wear_leveling(ubi); + err = ensure_wear_leveling(ubi, 1); return err; } ubi_err("failed to erase PEB %d, error %d", pnum, err); kfree(wl_wrk); - kmem_cache_free(ubi_wl_entry_slab, e); if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || err == -EBUSY) { int err1; /* Re-schedule the LEB for erasure */ - err1 = schedule_erase(ubi, e, 0); + err1 = schedule_erase(ubi, e, vol_id, lnum, 0); if (err1) { err = err1; goto out_ro; } return err; - } else if (err != -EIO) { + } + + kmem_cache_free(ubi_wl_entry_slab, e); + if (err != -EIO) /* * If this is not %-EIO, we have no idea what to do. Scheduling * this physical eraseblock for erasure again would cause * errors again and again. Well, lets switch to R/O mode. */ goto out_ro; - } /* It is %-EIO, the PEB went bad */ @@ -1066,20 +1489,14 @@ static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, } spin_lock(&ubi->volumes_lock); - need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1; - if (need > 0) { - need = ubi->avail_pebs >= need ? need : ubi->avail_pebs; - ubi->avail_pebs -= need; - ubi->rsvd_pebs += need; - ubi->beb_rsvd_pebs += need; - if (need > 0) - ubi_msg("reserve more %d PEBs", need); - } - if (ubi->beb_rsvd_pebs == 0) { - spin_unlock(&ubi->volumes_lock); - ubi_err("no reserved physical eraseblocks"); - goto out_ro; + if (ubi->avail_pebs == 0) { + spin_unlock(&ubi->volumes_lock); + ubi_err("no reserved/available physical eraseblocks"); + goto out_ro; + } + ubi->avail_pebs -= 1; + available_consumed = 1; } spin_unlock(&ubi->volumes_lock); @@ -1089,19 +1506,36 @@ static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, goto out_ro; spin_lock(&ubi->volumes_lock); - ubi->beb_rsvd_pebs -= 1; + if (ubi->beb_rsvd_pebs > 0) { + if (available_consumed) { + /* + * The amount of reserved PEBs increased since we last + * checked. + */ + ubi->avail_pebs += 1; + available_consumed = 0; + } + ubi->beb_rsvd_pebs -= 1; + } ubi->bad_peb_count += 1; ubi->good_peb_count -= 1; ubi_calculate_reserved(ubi); - if (ubi->beb_rsvd_pebs) + if (available_consumed) + ubi_warn("no PEBs in the reserved pool, used an available PEB"); + else if (ubi->beb_rsvd_pebs) ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs); else - ubi_warn("last PEB from the reserved pool was used"); + ubi_warn("last PEB from the reserve was used"); spin_unlock(&ubi->volumes_lock); return err; out_ro: + if (available_consumed) { + spin_lock(&ubi->volumes_lock); + ubi->avail_pebs += 1; + spin_unlock(&ubi->volumes_lock); + } ubi_ro_mode(ubi); return err; } @@ -1109,6 +1543,8 @@ out_ro: /** * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. * @ubi: UBI device description object + * @vol_id: the volume ID that last used this PEB + * @lnum: the last used logical eraseblock number for the PEB * @pnum: physical eraseblock to return * @torture: if this physical eraseblock has to be tortured * @@ -1117,7 +1553,8 @@ out_ro: * occurred to this @pnum and it has to be tested. This function returns zero * in case of success, and a negative error code in case of failure. */ -int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture) +int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, + int pnum, int torture) { int err; struct ubi_wl_entry *e; @@ -1159,13 +1596,13 @@ retry: return 0; } else { if (in_wl_tree(e, &ubi->used)) { - paranoid_check_in_wl_tree(e, &ubi->used); + self_check_in_wl_tree(ubi, e, &ubi->used); rb_erase(&e->u.rb, &ubi->used); } else if (in_wl_tree(e, &ubi->scrub)) { - paranoid_check_in_wl_tree(e, &ubi->scrub); + self_check_in_wl_tree(ubi, e, &ubi->scrub); rb_erase(&e->u.rb, &ubi->scrub); } else if (in_wl_tree(e, &ubi->erroneous)) { - paranoid_check_in_wl_tree(e, &ubi->erroneous); + self_check_in_wl_tree(ubi, e, &ubi->erroneous); rb_erase(&e->u.rb, &ubi->erroneous); ubi->erroneous_peb_count -= 1; ubi_assert(ubi->erroneous_peb_count >= 0); @@ -1183,7 +1620,7 @@ retry: } spin_unlock(&ubi->wl_lock); - err = schedule_erase(ubi, e, torture); + err = schedule_erase(ubi, e, vol_id, lnum, torture); if (err) { spin_lock(&ubi->wl_lock); wl_tree_add(e, &ubi->used); @@ -1207,12 +1644,13 @@ int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) { struct ubi_wl_entry *e; - dbg_msg("schedule PEB %d for scrubbing", pnum); + ubi_msg("schedule PEB %d for scrubbing", pnum); retry: spin_lock(&ubi->wl_lock); e = ubi->lookuptbl[pnum]; - if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) { + if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || + in_wl_tree(e, &ubi->erroneous)) { spin_unlock(&ubi->wl_lock); return 0; } @@ -1231,7 +1669,7 @@ retry: } if (in_wl_tree(e, &ubi->used)) { - paranoid_check_in_wl_tree(e, &ubi->used); + self_check_in_wl_tree(ubi, e, &ubi->used); rb_erase(&e->u.rb, &ubi->used); } else { int err; @@ -1252,29 +1690,60 @@ retry: * Technically scrubbing is the same as wear-leveling, so it is done * by the WL worker. */ - return ensure_wear_leveling(ubi); + return ensure_wear_leveling(ubi, 0); } /** * ubi_wl_flush - flush all pending works. * @ubi: UBI device description object + * @vol_id: the volume id to flush for + * @lnum: the logical eraseblock number to flush for * - * This function returns zero in case of success and a negative error code in - * case of failure. + * This function executes all pending works for a particular volume id / + * logical eraseblock number pair. If either value is set to %UBI_ALL, then it + * acts as a wildcard for all of the corresponding volume numbers or logical + * eraseblock numbers. It returns zero in case of success and a negative error + * code in case of failure. */ -int ubi_wl_flush(struct ubi_device *ubi) +int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) { - int err; + int err = 0; + int found = 1; /* * Erase while the pending works queue is not empty, but not more than * the number of currently pending works. */ - dbg_wl("flush (%d pending works)", ubi->works_count); - while (ubi->works_count) { - err = do_work(ubi); - if (err) - return err; + dbg_wl("flush pending work for LEB %d:%d (%d pending works)", + vol_id, lnum, ubi->works_count); + + while (found) { + struct ubi_work *wrk; + found = 0; + + down_read(&ubi->work_sem); + spin_lock(&ubi->wl_lock); + list_for_each_entry(wrk, &ubi->works, list) { + if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && + (lnum == UBI_ALL || wrk->lnum == lnum)) { + list_del(&wrk->list); + ubi->works_count -= 1; + ubi_assert(ubi->works_count >= 0); + spin_unlock(&ubi->wl_lock); + + err = wrk->func(ubi, wrk, 0); + if (err) { + up_read(&ubi->work_sem); + return err; + } + + spin_lock(&ubi->wl_lock); + found = 1; + break; + } + } + spin_unlock(&ubi->wl_lock); + up_read(&ubi->work_sem); } /* @@ -1284,18 +1753,7 @@ int ubi_wl_flush(struct ubi_device *ubi) down_write(&ubi->work_sem); up_write(&ubi->work_sem); - /* - * And in case last was the WL worker and it canceled the LEB - * movement, flush again. - */ - while (ubi->works_count) { - dbg_wl("flush more (%d pending works)", ubi->works_count); - err = do_work(ubi); - if (err) - return err; - } - - return 0; + return err; } /** @@ -1353,7 +1811,7 @@ int ubi_thread(void *u) spin_lock(&ubi->wl_lock); if (list_empty(&ubi->works) || ubi->ro_mode || - !ubi->thread_enabled) { + !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { set_current_state(TASK_INTERRUPTIBLE); spin_unlock(&ubi->wl_lock); schedule(); @@ -1404,27 +1862,30 @@ static void cancel_pending(struct ubi_device *ubi) } /** - * ubi_wl_init_scan - initialize the WL sub-system using scanning information. + * ubi_wl_init - initialize the WL sub-system using attaching information. * @ubi: UBI device description object - * @si: scanning information + * @ai: attaching information * * This function returns zero in case of success, and a negative error code in * case of failure. */ -int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) +int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) { - int err, i; + int err, i, reserved_pebs, found_pebs = 0; struct rb_node *rb1, *rb2; - struct ubi_scan_volume *sv; - struct ubi_scan_leb *seb, *tmp; + struct ubi_ainf_volume *av; + struct ubi_ainf_peb *aeb, *tmp; struct ubi_wl_entry *e; ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; spin_lock_init(&ubi->wl_lock); mutex_init(&ubi->move_mutex); init_rwsem(&ubi->work_sem); - ubi->max_ec = si->max_ec; + ubi->max_ec = ai->max_ec; INIT_LIST_HEAD(&ubi->works); +#ifdef CONFIG_MTD_UBI_FASTMAP + INIT_WORK(&ubi->fm_work, update_fastmap_work_fn); +#endif sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); @@ -1437,64 +1898,59 @@ int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) INIT_LIST_HEAD(&ubi->pq[i]); ubi->pq_head = 0; - list_for_each_entry_safe(seb, tmp, &si->erase, u.list) { + list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { cond_resched(); e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); if (!e) goto out_free; - e->pnum = seb->pnum; - e->ec = seb->ec; + e->pnum = aeb->pnum; + e->ec = aeb->ec; + ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); ubi->lookuptbl[e->pnum] = e; - if (schedule_erase(ubi, e, 0)) { + if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) { kmem_cache_free(ubi_wl_entry_slab, e); goto out_free; } + + found_pebs++; } - list_for_each_entry(seb, &si->free, u.list) { + ubi->free_count = 0; + list_for_each_entry(aeb, &ai->free, u.list) { cond_resched(); e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); if (!e) goto out_free; - e->pnum = seb->pnum; - e->ec = seb->ec; + e->pnum = aeb->pnum; + e->ec = aeb->ec; ubi_assert(e->ec >= 0); - wl_tree_add(e, &ubi->free); - ubi->lookuptbl[e->pnum] = e; - } - - list_for_each_entry(seb, &si->corr, u.list) { - cond_resched(); + ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); - e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); - if (!e) - goto out_free; + wl_tree_add(e, &ubi->free); + ubi->free_count++; - e->pnum = seb->pnum; - e->ec = seb->ec; ubi->lookuptbl[e->pnum] = e; - if (schedule_erase(ubi, e, 0)) { - kmem_cache_free(ubi_wl_entry_slab, e); - goto out_free; - } + + found_pebs++; } - ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { - ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { + ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { + ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { cond_resched(); e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); if (!e) goto out_free; - e->pnum = seb->pnum; - e->ec = seb->ec; + e->pnum = aeb->pnum; + e->ec = aeb->ec; ubi->lookuptbl[e->pnum] = e; - if (!seb->scrub) { + + if (!aeb->scrub) { dbg_wl("add PEB %d EC %d to the used tree", e->pnum, e->ec); wl_tree_add(e, &ubi->used); @@ -1503,19 +1959,38 @@ int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) e->pnum, e->ec); wl_tree_add(e, &ubi->scrub); } + + found_pebs++; } } - if (ubi->avail_pebs < WL_RESERVED_PEBS) { + dbg_wl("found %i PEBs", found_pebs); + + if (ubi->fm) + ubi_assert(ubi->good_peb_count == \ + found_pebs + ubi->fm->used_blocks); + else + ubi_assert(ubi->good_peb_count == found_pebs); + + reserved_pebs = WL_RESERVED_PEBS; +#ifdef CONFIG_MTD_UBI_FASTMAP + /* Reserve enough LEBs to store two fastmaps. */ + reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2; +#endif + + if (ubi->avail_pebs < reserved_pebs) { ubi_err("no enough physical eraseblocks (%d, need %d)", - ubi->avail_pebs, WL_RESERVED_PEBS); + ubi->avail_pebs, reserved_pebs); + if (ubi->corr_peb_count) + ubi_err("%d PEBs are corrupted and not used", + ubi->corr_peb_count); goto out_free; } - ubi->avail_pebs -= WL_RESERVED_PEBS; - ubi->rsvd_pebs += WL_RESERVED_PEBS; + ubi->avail_pebs -= reserved_pebs; + ubi->rsvd_pebs += reserved_pebs; /* Schedule wear-leveling if needed */ - err = ensure_wear_leveling(ubi); + err = ensure_wear_leveling(ubi, 0); if (err) goto out_free; @@ -1563,23 +2038,25 @@ void ubi_wl_close(struct ubi_device *ubi) kfree(ubi->lookuptbl); } -#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID - /** - * paranoid_check_ec - make sure that the erase counter of a PEB is correct. + * self_check_ec - make sure that the erase counter of a PEB is correct. * @ubi: UBI device description object * @pnum: the physical eraseblock number to check * @ec: the erase counter to check * * This function returns zero if the erase counter of physical eraseblock @pnum - * is equivalent to @ec, and a negative error code if not or if an error occurred. + * is equivalent to @ec, and a negative error code if not or if an error + * occurred. */ -static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec) +static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) { int err; long long read_ec; struct ubi_ec_hdr *ec_hdr; + if (!ubi_dbg_chk_gen(ubi)) + return 0; + ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); if (!ec_hdr) return -ENOMEM; @@ -1592,10 +2069,10 @@ static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec) } read_ec = be64_to_cpu(ec_hdr->ec); - if (ec != read_ec) { - ubi_err("paranoid check failed for PEB %d", pnum); + if (ec != read_ec && read_ec - ec > 1) { + ubi_err("self-check failed for PEB %d", pnum); ubi_err("read EC is %lld, should be %d", read_ec, ec); - ubi_dbg_dump_stack(); + dump_stack(); err = 1; } else err = 0; @@ -1606,46 +2083,53 @@ out_free: } /** - * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. + * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. + * @ubi: UBI device description object * @e: the wear-leveling entry to check * @root: the root of the tree * * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it * is not. */ -static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, - struct rb_root *root) +static int self_check_in_wl_tree(const struct ubi_device *ubi, + struct ubi_wl_entry *e, struct rb_root *root) { + if (!ubi_dbg_chk_gen(ubi)) + return 0; + if (in_wl_tree(e, root)) return 0; - ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ", + ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ", e->pnum, e->ec, root); - ubi_dbg_dump_stack(); + dump_stack(); return -EINVAL; } /** - * paranoid_check_in_pq - check if wear-leveling entry is in the protection + * self_check_in_pq - check if wear-leveling entry is in the protection * queue. * @ubi: UBI device description object * @e: the wear-leveling entry to check * * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. */ -static int paranoid_check_in_pq(struct ubi_device *ubi, struct ubi_wl_entry *e) +static int self_check_in_pq(const struct ubi_device *ubi, + struct ubi_wl_entry *e) { struct ubi_wl_entry *p; int i; + if (!ubi_dbg_chk_gen(ubi)) + return 0; + for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) list_for_each_entry(p, &ubi->pq[i], u.list) if (p == e) return 0; - ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue", + ubi_err("self-check failed for PEB %d, EC %d, Protect queue", e->pnum, e->ec); - ubi_dbg_dump_stack(); + dump_stack(); return -EINVAL; } -#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ |
