diff options
Diffstat (limited to 'drivers/mtd/nand/omap2.c')
| -rw-r--r-- | drivers/mtd/nand/omap2.c | 1454 |
1 files changed, 1190 insertions, 264 deletions
diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c index b3a883e2a22..f0ed92e210a 100644 --- a/drivers/mtd/nand/omap2.c +++ b/drivers/mtd/nand/omap2.c @@ -9,6 +9,7 @@ */ #include <linux/platform_device.h> +#include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/delay.h> #include <linux/module.h> @@ -18,12 +19,16 @@ #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> +#include <linux/omap-dma.h> #include <linux/io.h> #include <linux/slab.h> +#include <linux/of.h> +#include <linux/of_device.h> -#include <plat/dma.h> -#include <plat/gpmc.h> -#include <plat/nand.h> +#include <linux/mtd/nand_bch.h> +#include <linux/platform_data/elm.h> + +#include <linux/platform_data/mtd-nand-omap2.h> #define DRIVER_NAME "omap2-nand" #define OMAP_NAND_TIMEOUT_MS 5000 @@ -95,19 +100,54 @@ #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0) #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1) +#define PREFETCH_CONFIG1_CS_SHIFT 24 +#define ECC_CONFIG_CS_SHIFT 1 +#define CS_MASK 0x7 +#define ENABLE_PREFETCH (0x1 << 7) +#define DMA_MPU_MODE_SHIFT 2 +#define ECCSIZE0_SHIFT 12 +#define ECCSIZE1_SHIFT 22 +#define ECC1RESULTSIZE 0x1 +#define ECCCLEAR 0x100 +#define ECC1 0x1 +#define PREFETCH_FIFOTHRESHOLD_MAX 0x40 +#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8) +#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff) +#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F) +#define STATUS_BUFF_EMPTY 0x00000001 + +#define OMAP24XX_DMA_GPMC 4 + +#define SECTOR_BYTES 512 +/* 4 bit padding to make byte aligned, 56 = 52 + 4 */ +#define BCH4_BIT_PAD 4 + +/* GPMC ecc engine settings for read */ +#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */ +#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */ +#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */ +#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */ +#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */ + +/* GPMC ecc engine settings for write */ +#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */ +#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */ +#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */ + +#define BADBLOCK_MARKER_LENGTH 2 + +#ifdef CONFIG_MTD_NAND_OMAP_BCH +static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55, + 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78, + 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93, + 0x07, 0x0e}; +static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc, + 0xac, 0x6b, 0xff, 0x99, 0x7b}; +static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10}; +#endif + /* oob info generated runtime depending on ecc algorithm and layout selected */ static struct nand_ecclayout omap_oobinfo; -/* Define some generic bad / good block scan pattern which are used - * while scanning a device for factory marked good / bad blocks - */ -static uint8_t scan_ff_pattern[] = { 0xff }; -static struct nand_bbt_descr bb_descrip_flashbased = { - .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, - .offs = 0, - .len = 1, - .pattern = scan_ff_pattern, -}; - struct omap_nand_info { struct nand_hw_control controller; @@ -118,18 +158,81 @@ struct omap_nand_info { int gpmc_cs; unsigned long phys_base; + enum omap_ecc ecc_opt; struct completion comp; - int dma_ch; - int gpmc_irq; + struct dma_chan *dma; + int gpmc_irq_fifo; + int gpmc_irq_count; enum { OMAP_NAND_IO_READ = 0, /* read */ OMAP_NAND_IO_WRITE, /* write */ } iomode; u_char *buf; int buf_len; + struct gpmc_nand_regs reg; + /* fields specific for BCHx_HW ECC scheme */ + struct device *elm_dev; + struct device_node *of_node; }; /** + * omap_prefetch_enable - configures and starts prefetch transfer + * @cs: cs (chip select) number + * @fifo_th: fifo threshold to be used for read/ write + * @dma_mode: dma mode enable (1) or disable (0) + * @u32_count: number of bytes to be transferred + * @is_write: prefetch read(0) or write post(1) mode + */ +static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode, + unsigned int u32_count, int is_write, struct omap_nand_info *info) +{ + u32 val; + + if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX) + return -1; + + if (readl(info->reg.gpmc_prefetch_control)) + return -EBUSY; + + /* Set the amount of bytes to be prefetched */ + writel(u32_count, info->reg.gpmc_prefetch_config2); + + /* Set dma/mpu mode, the prefetch read / post write and + * enable the engine. Set which cs is has requested for. + */ + val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) | + PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH | + (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write)); + writel(val, info->reg.gpmc_prefetch_config1); + + /* Start the prefetch engine */ + writel(0x1, info->reg.gpmc_prefetch_control); + + return 0; +} + +/** + * omap_prefetch_reset - disables and stops the prefetch engine + */ +static int omap_prefetch_reset(int cs, struct omap_nand_info *info) +{ + u32 config1; + + /* check if the same module/cs is trying to reset */ + config1 = readl(info->reg.gpmc_prefetch_config1); + if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs) + return -EINVAL; + + /* Stop the PFPW engine */ + writel(0x0, info->reg.gpmc_prefetch_control); + + /* Reset/disable the PFPW engine */ + writel(0x0, info->reg.gpmc_prefetch_config1); + + return 0; +} + +/** * omap_hwcontrol - hardware specific access to control-lines * @mtd: MTD device structure * @cmd: command to device @@ -147,13 +250,13 @@ static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) if (cmd != NAND_CMD_NONE) { if (ctrl & NAND_CLE) - gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd); + writeb(cmd, info->reg.gpmc_nand_command); else if (ctrl & NAND_ALE) - gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd); + writeb(cmd, info->reg.gpmc_nand_address); else /* NAND_NCE */ - gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd); + writeb(cmd, info->reg.gpmc_nand_data); } } @@ -187,7 +290,8 @@ static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len) iowrite8(*p++, info->nand.IO_ADDR_W); /* wait until buffer is available for write */ do { - status = gpmc_read_status(GPMC_STATUS_BUFFER); + status = readl(info->reg.gpmc_status) & + STATUS_BUFF_EMPTY; } while (!status); } } @@ -224,7 +328,8 @@ static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len) iowrite16(*p++, info->nand.IO_ADDR_W); /* wait until buffer is available for write */ do { - status = gpmc_read_status(GPMC_STATUS_BUFFER); + status = readl(info->reg.gpmc_status) & + STATUS_BUFF_EMPTY; } while (!status); } } @@ -254,8 +359,8 @@ static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len) } /* configure and start prefetch transfer */ - ret = gpmc_prefetch_enable(info->gpmc_cs, - PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0); + ret = omap_prefetch_enable(info->gpmc_cs, + PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info); if (ret) { /* PFPW engine is busy, use cpu copy method */ if (info->nand.options & NAND_BUSWIDTH_16) @@ -264,14 +369,15 @@ static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len) omap_read_buf8(mtd, (u_char *)p, len); } else { do { - r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT); + r_count = readl(info->reg.gpmc_prefetch_status); + r_count = PREFETCH_STATUS_FIFO_CNT(r_count); r_count = r_count >> 2; ioread32_rep(info->nand.IO_ADDR_R, p, r_count); p += r_count; len -= r_count << 2; } while (len); /* disable and stop the PFPW engine */ - gpmc_prefetch_reset(info->gpmc_cs); + omap_prefetch_reset(info->gpmc_cs, info); } } @@ -290,6 +396,7 @@ static void omap_write_buf_pref(struct mtd_info *mtd, int i = 0, ret = 0; u16 *p = (u16 *)buf; unsigned long tim, limit; + u32 val; /* take care of subpage writes */ if (len % 2 != 0) { @@ -299,8 +406,8 @@ static void omap_write_buf_pref(struct mtd_info *mtd, } /* configure and start prefetch transfer */ - ret = gpmc_prefetch_enable(info->gpmc_cs, - PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1); + ret = omap_prefetch_enable(info->gpmc_cs, + PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info); if (ret) { /* PFPW engine is busy, use cpu copy method */ if (info->nand.options & NAND_BUSWIDTH_16) @@ -309,7 +416,8 @@ static void omap_write_buf_pref(struct mtd_info *mtd, omap_write_buf8(mtd, (u_char *)p, len); } else { while (len) { - w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT); + w_count = readl(info->reg.gpmc_prefetch_status); + w_count = PREFETCH_STATUS_FIFO_CNT(w_count); w_count = w_count >> 1; for (i = 0; (i < w_count) && len; i++, len -= 2) iowrite16(*p++, info->nand.IO_ADDR_W); @@ -318,27 +426,28 @@ static void omap_write_buf_pref(struct mtd_info *mtd, tim = 0; limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); - while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit)) + do { cpu_relax(); + val = readl(info->reg.gpmc_prefetch_status); + val = PREFETCH_STATUS_COUNT(val); + } while (val && (tim++ < limit)); /* disable and stop the PFPW engine */ - gpmc_prefetch_reset(info->gpmc_cs); + omap_prefetch_reset(info->gpmc_cs, info); } } /* - * omap_nand_dma_cb: callback on the completion of dma transfer - * @lch: logical channel - * @ch_satuts: channel status + * omap_nand_dma_callback: callback on the completion of dma transfer * @data: pointer to completion data structure */ -static void omap_nand_dma_cb(int lch, u16 ch_status, void *data) +static void omap_nand_dma_callback(void *data) { complete((struct completion *) data); } /* - * omap_nand_dma_transfer: configer and start dma transfer + * omap_nand_dma_transfer: configure and start dma transfer * @mtd: MTD device structure * @addr: virtual address in RAM of source/destination * @len: number of data bytes to be transferred @@ -349,17 +458,14 @@ static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); + struct dma_async_tx_descriptor *tx; enum dma_data_direction dir = is_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE; - dma_addr_t dma_addr; - int ret; + struct scatterlist sg; unsigned long tim, limit; - - /* The fifo depth is 64 bytes max. - * But configure the FIFO-threahold to 32 to get a sync at each frame - * and frame length is 32 bytes. - */ - int buf_len = len >> 6; + unsigned n; + int ret; + u32 val; if (addr >= high_memory) { struct page *p1; @@ -373,54 +479,53 @@ static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK); } - dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir); - if (dma_mapping_error(&info->pdev->dev, dma_addr)) { + sg_init_one(&sg, addr, len); + n = dma_map_sg(info->dma->device->dev, &sg, 1, dir); + if (n == 0) { dev_err(&info->pdev->dev, "Couldn't DMA map a %d byte buffer\n", len); goto out_copy; } - if (is_write) { - omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT, - info->phys_base, 0, 0); - omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC, - dma_addr, 0, 0); - omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32, - 0x10, buf_len, OMAP_DMA_SYNC_FRAME, - OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC); - } else { - omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT, - info->phys_base, 0, 0); - omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC, - dma_addr, 0, 0); - omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32, - 0x10, buf_len, OMAP_DMA_SYNC_FRAME, - OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC); - } + tx = dmaengine_prep_slave_sg(info->dma, &sg, n, + is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, + DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + if (!tx) + goto out_copy_unmap; + + tx->callback = omap_nand_dma_callback; + tx->callback_param = &info->comp; + dmaengine_submit(tx); + /* configure and start prefetch transfer */ - ret = gpmc_prefetch_enable(info->gpmc_cs, - PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write); + ret = omap_prefetch_enable(info->gpmc_cs, + PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info); if (ret) /* PFPW engine is busy, use cpu copy method */ - goto out_copy; + goto out_copy_unmap; init_completion(&info->comp); - - omap_start_dma(info->dma_ch); + dma_async_issue_pending(info->dma); /* setup and start DMA using dma_addr */ wait_for_completion(&info->comp); tim = 0; limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); - while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit)) + + do { cpu_relax(); + val = readl(info->reg.gpmc_prefetch_status); + val = PREFETCH_STATUS_COUNT(val); + } while (val && (tim++ < limit)); /* disable and stop the PFPW engine */ - gpmc_prefetch_reset(info->gpmc_cs); + omap_prefetch_reset(info->gpmc_cs, info); - dma_unmap_single(&info->pdev->dev, dma_addr, len, dir); + dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); return 0; +out_copy_unmap: + dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); out_copy: if (info->nand.options & NAND_BUSWIDTH_16) is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len) @@ -463,7 +568,7 @@ static void omap_write_buf_dma_pref(struct mtd_info *mtd, } /* - * omap_nand_irq - GMPC irq handler + * omap_nand_irq - GPMC irq handler * @this_irq: gpmc irq number * @dev: omap_nand_info structure pointer is passed here */ @@ -471,13 +576,12 @@ static irqreturn_t omap_nand_irq(int this_irq, void *dev) { struct omap_nand_info *info = (struct omap_nand_info *) dev; u32 bytes; - u32 irq_stat; - irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS); - bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT); + bytes = readl(info->reg.gpmc_prefetch_status); + bytes = PREFETCH_STATUS_FIFO_CNT(bytes); bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */ if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */ - if (irq_stat & 0x2) + if (this_irq == info->gpmc_irq_count) goto done; if (info->buf_len && (info->buf_len < bytes)) @@ -494,20 +598,17 @@ static irqreturn_t omap_nand_irq(int this_irq, void *dev) (u32 *)info->buf, bytes >> 2); info->buf = info->buf + bytes; - if (irq_stat & 0x2) + if (this_irq == info->gpmc_irq_count) goto done; } - gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat); return IRQ_HANDLED; done: complete(&info->comp); - /* disable irq */ - gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0); - /* clear status */ - gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat); + disable_irq_nosync(info->gpmc_irq_fifo); + disable_irq_nosync(info->gpmc_irq_count); return IRQ_HANDLED; } @@ -534,22 +635,22 @@ static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len) init_completion(&info->comp); /* configure and start prefetch transfer */ - ret = gpmc_prefetch_enable(info->gpmc_cs, - PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0); + ret = omap_prefetch_enable(info->gpmc_cs, + PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info); if (ret) /* PFPW engine is busy, use cpu copy method */ goto out_copy; info->buf_len = len; - /* enable irq */ - gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, - (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT)); + + enable_irq(info->gpmc_irq_count); + enable_irq(info->gpmc_irq_fifo); /* waiting for read to complete */ wait_for_completion(&info->comp); /* disable and stop the PFPW engine */ - gpmc_prefetch_reset(info->gpmc_cs); + omap_prefetch_reset(info->gpmc_cs, info); return; out_copy: @@ -572,6 +673,7 @@ static void omap_write_buf_irq_pref(struct mtd_info *mtd, struct omap_nand_info, mtd); int ret = 0; unsigned long tim, limit; + u32 val; if (len <= mtd->oobsize) { omap_write_buf_pref(mtd, buf, len); @@ -583,27 +685,31 @@ static void omap_write_buf_irq_pref(struct mtd_info *mtd, init_completion(&info->comp); /* configure and start prefetch transfer : size=24 */ - ret = gpmc_prefetch_enable(info->gpmc_cs, - (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1); + ret = omap_prefetch_enable(info->gpmc_cs, + (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info); if (ret) /* PFPW engine is busy, use cpu copy method */ goto out_copy; info->buf_len = len; - /* enable irq */ - gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, - (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT)); + + enable_irq(info->gpmc_irq_count); + enable_irq(info->gpmc_irq_fifo); /* waiting for write to complete */ wait_for_completion(&info->comp); + /* wait for data to flushed-out before reset the prefetch */ tim = 0; limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); - while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit)) + do { + val = readl(info->reg.gpmc_prefetch_status); + val = PREFETCH_STATUS_COUNT(val); cpu_relax(); + } while (val && (tim++ < limit)); /* disable and stop the PFPW engine */ - gpmc_prefetch_reset(info->gpmc_cs); + omap_prefetch_reset(info->gpmc_cs, info); return; out_copy: @@ -614,27 +720,6 @@ out_copy: } /** - * omap_verify_buf - Verify chip data against buffer - * @mtd: MTD device structure - * @buf: buffer containing the data to compare - * @len: number of bytes to compare - */ -static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len) -{ - struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, - mtd); - u16 *p = (u16 *) buf; - - len >>= 1; - while (len--) { - if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R))) - return -EFAULT; - } - - return 0; -} - -/** * gen_true_ecc - This function will generate true ECC value * @ecc_buf: buffer to store ecc code * @@ -843,7 +928,20 @@ static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat, { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); - return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code); + u32 val; + + val = readl(info->reg.gpmc_ecc_config); + if (((val >> ECC_CONFIG_CS_SHIFT) & ~CS_MASK) != info->gpmc_cs) + return -EINVAL; + + /* read ecc result */ + val = readl(info->reg.gpmc_ecc1_result); + *ecc_code++ = val; /* P128e, ..., P1e */ + *ecc_code++ = val >> 16; /* P128o, ..., P1o */ + /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */ + *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0); + + return 0; } /** @@ -857,8 +955,34 @@ static void omap_enable_hwecc(struct mtd_info *mtd, int mode) mtd); struct nand_chip *chip = mtd->priv; unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; + u32 val; + + /* clear ecc and enable bits */ + val = ECCCLEAR | ECC1; + writel(val, info->reg.gpmc_ecc_control); - gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size); + /* program ecc and result sizes */ + val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) | + ECC1RESULTSIZE); + writel(val, info->reg.gpmc_ecc_size_config); + + switch (mode) { + case NAND_ECC_READ: + case NAND_ECC_WRITE: + writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); + break; + case NAND_ECC_READSYN: + writel(ECCCLEAR, info->reg.gpmc_ecc_control); + break; + default: + dev_info(&info->pdev->dev, + "error: unrecognized Mode[%d]!\n", mode); + break; + } + + /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ + val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); + writel(val, info->reg.gpmc_ecc_config); } /** @@ -879,21 +1003,22 @@ static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip) struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); unsigned long timeo = jiffies; - int status = NAND_STATUS_FAIL, state = this->state; + int status, state = this->state; if (state == FL_ERASING) - timeo += (HZ * 400) / 1000; + timeo += msecs_to_jiffies(400); else - timeo += (HZ * 20) / 1000; + timeo += msecs_to_jiffies(20); - gpmc_nand_write(info->gpmc_cs, - GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF)); + writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command); while (time_before(jiffies, timeo)) { - status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA); + status = readb(info->reg.gpmc_nand_data); if (status & NAND_STATUS_READY) break; cond_resched(); } + + status = readb(info->reg.gpmc_nand_data); return status; } @@ -907,38 +1032,618 @@ static int omap_dev_ready(struct mtd_info *mtd) struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); - val = gpmc_read_status(GPMC_GET_IRQ_STATUS); + val = readl(info->reg.gpmc_status); + if ((val & 0x100) == 0x100) { - /* Clear IRQ Interrupt */ - val |= 0x100; - val &= ~(0x0); - gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val); + return 1; } else { - unsigned int cnt = 0; - while (cnt++ < 0x1FF) { - if ((val & 0x100) == 0x100) - return 0; - val = gpmc_read_status(GPMC_GET_IRQ_STATUS); + return 0; + } +} + +/** + * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation + * @mtd: MTD device structure + * @mode: Read/Write mode + * + * When using BCH, sector size is hardcoded to 512 bytes. + * Using wrapping mode 6 both for reading and writing if ELM module not uses + * for error correction. + * On writing, + * eccsize0 = 0 (no additional protected byte in spare area) + * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area) + */ +static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode) +{ + unsigned int bch_type; + unsigned int dev_width, nsectors; + struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, + mtd); + enum omap_ecc ecc_opt = info->ecc_opt; + struct nand_chip *chip = mtd->priv; + u32 val, wr_mode; + unsigned int ecc_size1, ecc_size0; + + /* GPMC configurations for calculating ECC */ + switch (ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: + bch_type = 0; + nsectors = 1; + if (mode == NAND_ECC_READ) { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + } else { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; } + break; + case OMAP_ECC_BCH4_CODE_HW: + bch_type = 0; + nsectors = chip->ecc.steps; + if (mode == NAND_ECC_READ) { + wr_mode = BCH_WRAPMODE_1; + ecc_size0 = BCH4R_ECC_SIZE0; + ecc_size1 = BCH4R_ECC_SIZE1; + } else { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + } + break; + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: + bch_type = 1; + nsectors = 1; + if (mode == NAND_ECC_READ) { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + } else { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + } + break; + case OMAP_ECC_BCH8_CODE_HW: + bch_type = 1; + nsectors = chip->ecc.steps; + if (mode == NAND_ECC_READ) { + wr_mode = BCH_WRAPMODE_1; + ecc_size0 = BCH8R_ECC_SIZE0; + ecc_size1 = BCH8R_ECC_SIZE1; + } else { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + } + break; + case OMAP_ECC_BCH16_CODE_HW: + bch_type = 0x2; + nsectors = chip->ecc.steps; + if (mode == NAND_ECC_READ) { + wr_mode = 0x01; + ecc_size0 = 52; /* ECC bits in nibbles per sector */ + ecc_size1 = 0; /* non-ECC bits in nibbles per sector */ + } else { + wr_mode = 0x01; + ecc_size0 = 0; /* extra bits in nibbles per sector */ + ecc_size1 = 52; /* OOB bits in nibbles per sector */ + } + break; + default: + return; } - return 1; + writel(ECC1, info->reg.gpmc_ecc_control); + + /* Configure ecc size for BCH */ + val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT); + writel(val, info->reg.gpmc_ecc_size_config); + + dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; + + /* BCH configuration */ + val = ((1 << 16) | /* enable BCH */ + (bch_type << 12) | /* BCH4/BCH8/BCH16 */ + (wr_mode << 8) | /* wrap mode */ + (dev_width << 7) | /* bus width */ + (((nsectors-1) & 0x7) << 4) | /* number of sectors */ + (info->gpmc_cs << 1) | /* ECC CS */ + (0x1)); /* enable ECC */ + + writel(val, info->reg.gpmc_ecc_config); + + /* Clear ecc and enable bits */ + writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); +} + +static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f}; +static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2, + 0x97, 0x79, 0xe5, 0x24, 0xb5}; + +/** + * omap_calculate_ecc_bch - Generate bytes of ECC bytes + * @mtd: MTD device structure + * @dat: The pointer to data on which ecc is computed + * @ecc_code: The ecc_code buffer + * + * Support calculating of BCH4/8 ecc vectors for the page + */ +static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd, + const u_char *dat, u_char *ecc_calc) +{ + struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, + mtd); + int eccbytes = info->nand.ecc.bytes; + struct gpmc_nand_regs *gpmc_regs = &info->reg; + u8 *ecc_code; + unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4; + u32 val; + int i, j; + + nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1; + for (i = 0; i < nsectors; i++) { + ecc_code = ecc_calc; + switch (info->ecc_opt) { + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: + case OMAP_ECC_BCH8_CODE_HW: + bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); + bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); + bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]); + bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]); + *ecc_code++ = (bch_val4 & 0xFF); + *ecc_code++ = ((bch_val3 >> 24) & 0xFF); + *ecc_code++ = ((bch_val3 >> 16) & 0xFF); + *ecc_code++ = ((bch_val3 >> 8) & 0xFF); + *ecc_code++ = (bch_val3 & 0xFF); + *ecc_code++ = ((bch_val2 >> 24) & 0xFF); + *ecc_code++ = ((bch_val2 >> 16) & 0xFF); + *ecc_code++ = ((bch_val2 >> 8) & 0xFF); + *ecc_code++ = (bch_val2 & 0xFF); + *ecc_code++ = ((bch_val1 >> 24) & 0xFF); + *ecc_code++ = ((bch_val1 >> 16) & 0xFF); + *ecc_code++ = ((bch_val1 >> 8) & 0xFF); + *ecc_code++ = (bch_val1 & 0xFF); + break; + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: + case OMAP_ECC_BCH4_CODE_HW: + bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); + bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); + *ecc_code++ = ((bch_val2 >> 12) & 0xFF); + *ecc_code++ = ((bch_val2 >> 4) & 0xFF); + *ecc_code++ = ((bch_val2 & 0xF) << 4) | + ((bch_val1 >> 28) & 0xF); + *ecc_code++ = ((bch_val1 >> 20) & 0xFF); + *ecc_code++ = ((bch_val1 >> 12) & 0xFF); + *ecc_code++ = ((bch_val1 >> 4) & 0xFF); + *ecc_code++ = ((bch_val1 & 0xF) << 4); + break; + case OMAP_ECC_BCH16_CODE_HW: + val = readl(gpmc_regs->gpmc_bch_result6[i]); + ecc_code[0] = ((val >> 8) & 0xFF); + ecc_code[1] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result5[i]); + ecc_code[2] = ((val >> 24) & 0xFF); + ecc_code[3] = ((val >> 16) & 0xFF); + ecc_code[4] = ((val >> 8) & 0xFF); + ecc_code[5] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result4[i]); + ecc_code[6] = ((val >> 24) & 0xFF); + ecc_code[7] = ((val >> 16) & 0xFF); + ecc_code[8] = ((val >> 8) & 0xFF); + ecc_code[9] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result3[i]); + ecc_code[10] = ((val >> 24) & 0xFF); + ecc_code[11] = ((val >> 16) & 0xFF); + ecc_code[12] = ((val >> 8) & 0xFF); + ecc_code[13] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result2[i]); + ecc_code[14] = ((val >> 24) & 0xFF); + ecc_code[15] = ((val >> 16) & 0xFF); + ecc_code[16] = ((val >> 8) & 0xFF); + ecc_code[17] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result1[i]); + ecc_code[18] = ((val >> 24) & 0xFF); + ecc_code[19] = ((val >> 16) & 0xFF); + ecc_code[20] = ((val >> 8) & 0xFF); + ecc_code[21] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result0[i]); + ecc_code[22] = ((val >> 24) & 0xFF); + ecc_code[23] = ((val >> 16) & 0xFF); + ecc_code[24] = ((val >> 8) & 0xFF); + ecc_code[25] = ((val >> 0) & 0xFF); + break; + default: + return -EINVAL; + } + + /* ECC scheme specific syndrome customizations */ + switch (info->ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: + /* Add constant polynomial to remainder, so that + * ECC of blank pages results in 0x0 on reading back */ + for (j = 0; j < eccbytes; j++) + ecc_calc[j] ^= bch4_polynomial[j]; + break; + case OMAP_ECC_BCH4_CODE_HW: + /* Set 8th ECC byte as 0x0 for ROM compatibility */ + ecc_calc[eccbytes - 1] = 0x0; + break; + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: + /* Add constant polynomial to remainder, so that + * ECC of blank pages results in 0x0 on reading back */ + for (j = 0; j < eccbytes; j++) + ecc_calc[j] ^= bch8_polynomial[j]; + break; + case OMAP_ECC_BCH8_CODE_HW: + /* Set 14th ECC byte as 0x0 for ROM compatibility */ + ecc_calc[eccbytes - 1] = 0x0; + break; + case OMAP_ECC_BCH16_CODE_HW: + break; + default: + return -EINVAL; + } + + ecc_calc += eccbytes; + } + + return 0; } -static int __devinit omap_nand_probe(struct platform_device *pdev) +#ifdef CONFIG_MTD_NAND_OMAP_BCH +/** + * erased_sector_bitflips - count bit flips + * @data: data sector buffer + * @oob: oob buffer + * @info: omap_nand_info + * + * Check the bit flips in erased page falls below correctable level. + * If falls below, report the page as erased with correctable bit + * flip, else report as uncorrectable page. + */ +static int erased_sector_bitflips(u_char *data, u_char *oob, + struct omap_nand_info *info) +{ + int flip_bits = 0, i; + + for (i = 0; i < info->nand.ecc.size; i++) { + flip_bits += hweight8(~data[i]); + if (flip_bits > info->nand.ecc.strength) + return 0; + } + + for (i = 0; i < info->nand.ecc.bytes - 1; i++) { + flip_bits += hweight8(~oob[i]); + if (flip_bits > info->nand.ecc.strength) + return 0; + } + + /* + * Bit flips falls in correctable level. + * Fill data area with 0xFF + */ + if (flip_bits) { + memset(data, 0xFF, info->nand.ecc.size); + memset(oob, 0xFF, info->nand.ecc.bytes); + } + + return flip_bits; +} + +/** + * omap_elm_correct_data - corrects page data area in case error reported + * @mtd: MTD device structure + * @data: page data + * @read_ecc: ecc read from nand flash + * @calc_ecc: ecc read from HW ECC registers + * + * Calculated ecc vector reported as zero in case of non-error pages. + * In case of non-zero ecc vector, first filter out erased-pages, and + * then process data via ELM to detect bit-flips. + */ +static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data, + u_char *read_ecc, u_char *calc_ecc) +{ + struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, + mtd); + struct nand_ecc_ctrl *ecc = &info->nand.ecc; + int eccsteps = info->nand.ecc.steps; + int i , j, stat = 0; + int eccflag, actual_eccbytes; + struct elm_errorvec err_vec[ERROR_VECTOR_MAX]; + u_char *ecc_vec = calc_ecc; + u_char *spare_ecc = read_ecc; + u_char *erased_ecc_vec; + u_char *buf; + int bitflip_count; + bool is_error_reported = false; + u32 bit_pos, byte_pos, error_max, pos; + int err; + + switch (info->ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW: + /* omit 7th ECC byte reserved for ROM code compatibility */ + actual_eccbytes = ecc->bytes - 1; + erased_ecc_vec = bch4_vector; + break; + case OMAP_ECC_BCH8_CODE_HW: + /* omit 14th ECC byte reserved for ROM code compatibility */ + actual_eccbytes = ecc->bytes - 1; + erased_ecc_vec = bch8_vector; + break; + case OMAP_ECC_BCH16_CODE_HW: + actual_eccbytes = ecc->bytes; + erased_ecc_vec = bch16_vector; + break; + default: + pr_err("invalid driver configuration\n"); + return -EINVAL; + } + + /* Initialize elm error vector to zero */ + memset(err_vec, 0, sizeof(err_vec)); + + for (i = 0; i < eccsteps ; i++) { + eccflag = 0; /* initialize eccflag */ + + /* + * Check any error reported, + * In case of error, non zero ecc reported. + */ + for (j = 0; j < actual_eccbytes; j++) { + if (calc_ecc[j] != 0) { + eccflag = 1; /* non zero ecc, error present */ + break; + } + } + + if (eccflag == 1) { + if (memcmp(calc_ecc, erased_ecc_vec, + actual_eccbytes) == 0) { + /* + * calc_ecc[] matches pattern for ECC(all 0xff) + * so this is definitely an erased-page + */ + } else { + buf = &data[info->nand.ecc.size * i]; + /* + * count number of 0-bits in read_buf. + * This check can be removed once a similar + * check is introduced in generic NAND driver + */ + bitflip_count = erased_sector_bitflips( + buf, read_ecc, info); + if (bitflip_count) { + /* + * number of 0-bits within ECC limits + * So this may be an erased-page + */ + stat += bitflip_count; + } else { + /* + * Too many 0-bits. It may be a + * - programmed-page, OR + * - erased-page with many bit-flips + * So this page requires check by ELM + */ + err_vec[i].error_reported = true; + is_error_reported = true; + } + } + } + + /* Update the ecc vector */ + calc_ecc += ecc->bytes; + read_ecc += ecc->bytes; + } + + /* Check if any error reported */ + if (!is_error_reported) + return stat; + + /* Decode BCH error using ELM module */ + elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec); + + err = 0; + for (i = 0; i < eccsteps; i++) { + if (err_vec[i].error_uncorrectable) { + pr_err("nand: uncorrectable bit-flips found\n"); + err = -EBADMSG; + } else if (err_vec[i].error_reported) { + for (j = 0; j < err_vec[i].error_count; j++) { + switch (info->ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW: + /* Add 4 bits to take care of padding */ + pos = err_vec[i].error_loc[j] + + BCH4_BIT_PAD; + break; + case OMAP_ECC_BCH8_CODE_HW: + case OMAP_ECC_BCH16_CODE_HW: + pos = err_vec[i].error_loc[j]; + break; + default: + return -EINVAL; + } + error_max = (ecc->size + actual_eccbytes) * 8; + /* Calculate bit position of error */ + bit_pos = pos % 8; + + /* Calculate byte position of error */ + byte_pos = (error_max - pos - 1) / 8; + + if (pos < error_max) { + if (byte_pos < 512) { + pr_debug("bitflip@dat[%d]=%x\n", + byte_pos, data[byte_pos]); + data[byte_pos] ^= 1 << bit_pos; + } else { + pr_debug("bitflip@oob[%d]=%x\n", + (byte_pos - 512), + spare_ecc[byte_pos - 512]); + spare_ecc[byte_pos - 512] ^= + 1 << bit_pos; + } + } else { + pr_err("invalid bit-flip @ %d:%d\n", + byte_pos, bit_pos); + err = -EBADMSG; + } + } + } + + /* Update number of correctable errors */ + stat += err_vec[i].error_count; + + /* Update page data with sector size */ + data += ecc->size; + spare_ecc += ecc->bytes; + } + + return (err) ? err : stat; +} + +/** + * omap_write_page_bch - BCH ecc based write page function for entire page + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * + * Custom write page method evolved to support multi sector writing in one shot + */ +static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required) +{ + int i; + uint8_t *ecc_calc = chip->buffers->ecccalc; + uint32_t *eccpos = chip->ecc.layout->eccpos; + + /* Enable GPMC ecc engine */ + chip->ecc.hwctl(mtd, NAND_ECC_WRITE); + + /* Write data */ + chip->write_buf(mtd, buf, mtd->writesize); + + /* Update ecc vector from GPMC result registers */ + chip->ecc.calculate(mtd, buf, &ecc_calc[0]); + + for (i = 0; i < chip->ecc.total; i++) + chip->oob_poi[eccpos[i]] = ecc_calc[i]; + + /* Write ecc vector to OOB area */ + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + return 0; +} + +/** + * omap_read_page_bch - BCH ecc based page read function for entire page + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module + * used for error correction. + * Custom method evolved to support ELM error correction & multi sector + * reading. On reading page data area is read along with OOB data with + * ecc engine enabled. ecc vector updated after read of OOB data. + * For non error pages ecc vector reported as zero. + */ +static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + uint8_t *ecc_calc = chip->buffers->ecccalc; + uint8_t *ecc_code = chip->buffers->ecccode; + uint32_t *eccpos = chip->ecc.layout->eccpos; + uint8_t *oob = &chip->oob_poi[eccpos[0]]; + uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0]; + int stat; + unsigned int max_bitflips = 0; + + /* Enable GPMC ecc engine */ + chip->ecc.hwctl(mtd, NAND_ECC_READ); + + /* Read data */ + chip->read_buf(mtd, buf, mtd->writesize); + + /* Read oob bytes */ + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1); + chip->read_buf(mtd, oob, chip->ecc.total); + + /* Calculate ecc bytes */ + chip->ecc.calculate(mtd, buf, ecc_calc); + + memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total); + + stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc); + + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + + return max_bitflips; +} + +/** + * is_elm_present - checks for presence of ELM module by scanning DT nodes + * @omap_nand_info: NAND device structure containing platform data + * @bch_type: 0x0=BCH4, 0x1=BCH8, 0x2=BCH16 + */ +static int is_elm_present(struct omap_nand_info *info, + struct device_node *elm_node, enum bch_ecc bch_type) +{ + struct platform_device *pdev; + struct nand_ecc_ctrl *ecc = &info->nand.ecc; + int err; + /* check whether elm-id is passed via DT */ + if (!elm_node) { + pr_err("nand: error: ELM DT node not found\n"); + return -ENODEV; + } + pdev = of_find_device_by_node(elm_node); + /* check whether ELM device is registered */ + if (!pdev) { + pr_err("nand: error: ELM device not found\n"); + return -ENODEV; + } + /* ELM module available, now configure it */ + info->elm_dev = &pdev->dev; + err = elm_config(info->elm_dev, bch_type, + (info->mtd.writesize / ecc->size), ecc->size, ecc->bytes); + + return err; +} +#endif /* CONFIG_MTD_NAND_ECC_BCH */ + +static int omap_nand_probe(struct platform_device *pdev) { struct omap_nand_info *info; struct omap_nand_platform_data *pdata; + struct mtd_info *mtd; + struct nand_chip *nand_chip; + struct nand_ecclayout *ecclayout; int err; - int i, offset; - - pdata = pdev->dev.platform_data; + int i; + dma_cap_mask_t mask; + unsigned sig; + unsigned oob_index; + struct resource *res; + struct mtd_part_parser_data ppdata = {}; + + pdata = dev_get_platdata(&pdev->dev); if (pdata == NULL) { dev_err(&pdev->dev, "platform data missing\n"); return -ENODEV; } - info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL); + info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info), + GFP_KERNEL); if (!info) return -ENOMEM; @@ -947,192 +1652,413 @@ static int __devinit omap_nand_probe(struct platform_device *pdev) spin_lock_init(&info->controller.lock); init_waitqueue_head(&info->controller.wq); - info->pdev = pdev; - + info->pdev = pdev; info->gpmc_cs = pdata->cs; - info->phys_base = pdata->phys_base; - - info->mtd.priv = &info->nand; - info->mtd.name = dev_name(&pdev->dev); - info->mtd.owner = THIS_MODULE; - - info->nand.options = pdata->devsize; - info->nand.options |= NAND_SKIP_BBTSCAN; + info->reg = pdata->reg; + info->of_node = pdata->of_node; + info->ecc_opt = pdata->ecc_opt; + mtd = &info->mtd; + mtd->priv = &info->nand; + mtd->name = dev_name(&pdev->dev); + mtd->owner = THIS_MODULE; + nand_chip = &info->nand; + nand_chip->ecc.priv = NULL; + nand_chip->options |= NAND_SKIP_BBTSCAN; - /* NAND write protect off */ - gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0); + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(nand_chip->IO_ADDR_R)) + return PTR_ERR(nand_chip->IO_ADDR_R); - if (!request_mem_region(info->phys_base, NAND_IO_SIZE, - pdev->dev.driver->name)) { - err = -EBUSY; - goto out_free_info; - } - - info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE); - if (!info->nand.IO_ADDR_R) { - err = -ENOMEM; - goto out_release_mem_region; - } + info->phys_base = res->start; - info->nand.controller = &info->controller; + nand_chip->controller = &info->controller; - info->nand.IO_ADDR_W = info->nand.IO_ADDR_R; - info->nand.cmd_ctrl = omap_hwcontrol; + nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R; + nand_chip->cmd_ctrl = omap_hwcontrol; /* * If RDY/BSY line is connected to OMAP then use the omap ready - * funcrtion and the generic nand_wait function which reads the status - * register after monitoring the RDY/BSY line.Otherwise use a standard + * function and the generic nand_wait function which reads the status + * register after monitoring the RDY/BSY line. Otherwise use a standard * chip delay which is slightly more than tR (AC Timing) of the NAND * device and read status register until you get a failure or success */ if (pdata->dev_ready) { - info->nand.dev_ready = omap_dev_ready; - info->nand.chip_delay = 0; + nand_chip->dev_ready = omap_dev_ready; + nand_chip->chip_delay = 0; } else { - info->nand.waitfunc = omap_wait; - info->nand.chip_delay = 50; + nand_chip->waitfunc = omap_wait; + nand_chip->chip_delay = 50; + } + + /* scan NAND device connected to chip controller */ + nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16; + if (nand_scan_ident(mtd, 1, NULL)) { + pr_err("nand device scan failed, may be bus-width mismatch\n"); + err = -ENXIO; + goto return_error; + } + + /* check for small page devices */ + if ((mtd->oobsize < 64) && (pdata->ecc_opt != OMAP_ECC_HAM1_CODE_HW)) { + pr_err("small page devices are not supported\n"); + err = -EINVAL; + goto return_error; } + /* re-populate low-level callbacks based on xfer modes */ switch (pdata->xfer_type) { case NAND_OMAP_PREFETCH_POLLED: - info->nand.read_buf = omap_read_buf_pref; - info->nand.write_buf = omap_write_buf_pref; + nand_chip->read_buf = omap_read_buf_pref; + nand_chip->write_buf = omap_write_buf_pref; break; case NAND_OMAP_POLLED: - if (info->nand.options & NAND_BUSWIDTH_16) { - info->nand.read_buf = omap_read_buf16; - info->nand.write_buf = omap_write_buf16; - } else { - info->nand.read_buf = omap_read_buf8; - info->nand.write_buf = omap_write_buf8; - } + /* Use nand_base defaults for {read,write}_buf */ break; case NAND_OMAP_PREFETCH_DMA: - err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND", - omap_nand_dma_cb, &info->comp, &info->dma_ch); - if (err < 0) { - info->dma_ch = -1; - dev_err(&pdev->dev, "DMA request failed!\n"); - goto out_release_mem_region; + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + sig = OMAP24XX_DMA_GPMC; + info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig); + if (!info->dma) { + dev_err(&pdev->dev, "DMA engine request failed\n"); + err = -ENXIO; + goto return_error; } else { - omap_set_dma_dest_burst_mode(info->dma_ch, - OMAP_DMA_DATA_BURST_16); - omap_set_dma_src_burst_mode(info->dma_ch, - OMAP_DMA_DATA_BURST_16); - - info->nand.read_buf = omap_read_buf_dma_pref; - info->nand.write_buf = omap_write_buf_dma_pref; + struct dma_slave_config cfg; + + memset(&cfg, 0, sizeof(cfg)); + cfg.src_addr = info->phys_base; + cfg.dst_addr = info->phys_base; + cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + cfg.src_maxburst = 16; + cfg.dst_maxburst = 16; + err = dmaengine_slave_config(info->dma, &cfg); + if (err) { + dev_err(&pdev->dev, "DMA engine slave config failed: %d\n", + err); + goto return_error; + } + nand_chip->read_buf = omap_read_buf_dma_pref; + nand_chip->write_buf = omap_write_buf_dma_pref; } break; case NAND_OMAP_PREFETCH_IRQ: - err = request_irq(pdata->gpmc_irq, - omap_nand_irq, IRQF_SHARED, "gpmc-nand", info); + info->gpmc_irq_fifo = platform_get_irq(pdev, 0); + if (info->gpmc_irq_fifo <= 0) { + dev_err(&pdev->dev, "error getting fifo irq\n"); + err = -ENODEV; + goto return_error; + } + err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo, + omap_nand_irq, IRQF_SHARED, + "gpmc-nand-fifo", info); if (err) { dev_err(&pdev->dev, "requesting irq(%d) error:%d", - pdata->gpmc_irq, err); - goto out_release_mem_region; - } else { - info->gpmc_irq = pdata->gpmc_irq; - info->nand.read_buf = omap_read_buf_irq_pref; - info->nand.write_buf = omap_write_buf_irq_pref; + info->gpmc_irq_fifo, err); + info->gpmc_irq_fifo = 0; + goto return_error; + } + + info->gpmc_irq_count = platform_get_irq(pdev, 1); + if (info->gpmc_irq_count <= 0) { + dev_err(&pdev->dev, "error getting count irq\n"); + err = -ENODEV; + goto return_error; } + err = devm_request_irq(&pdev->dev, info->gpmc_irq_count, + omap_nand_irq, IRQF_SHARED, + "gpmc-nand-count", info); + if (err) { + dev_err(&pdev->dev, "requesting irq(%d) error:%d", + info->gpmc_irq_count, err); + info->gpmc_irq_count = 0; + goto return_error; + } + + nand_chip->read_buf = omap_read_buf_irq_pref; + nand_chip->write_buf = omap_write_buf_irq_pref; + break; default: dev_err(&pdev->dev, "xfer_type(%d) not supported!\n", pdata->xfer_type); err = -EINVAL; - goto out_release_mem_region; + goto return_error; } - info->nand.verify_buf = omap_verify_buf; - - /* selsect the ecc type */ - if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT) - info->nand.ecc.mode = NAND_ECC_SOFT; - else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) || - (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) { - info->nand.ecc.bytes = 3; - info->nand.ecc.size = 512; - info->nand.ecc.calculate = omap_calculate_ecc; - info->nand.ecc.hwctl = omap_enable_hwecc; - info->nand.ecc.correct = omap_correct_data; - info->nand.ecc.mode = NAND_ECC_HW; - } + /* populate MTD interface based on ECC scheme */ + nand_chip->ecc.layout = &omap_oobinfo; + ecclayout = &omap_oobinfo; + switch (info->ecc_opt) { + case OMAP_ECC_HAM1_CODE_HW: + pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.bytes = 3; + nand_chip->ecc.size = 512; + nand_chip->ecc.strength = 1; + nand_chip->ecc.calculate = omap_calculate_ecc; + nand_chip->ecc.hwctl = omap_enable_hwecc; + nand_chip->ecc.correct = omap_correct_data; + /* define ECC layout */ + ecclayout->eccbytes = nand_chip->ecc.bytes * + (mtd->writesize / + nand_chip->ecc.size); + if (nand_chip->options & NAND_BUSWIDTH_16) + oob_index = BADBLOCK_MARKER_LENGTH; + else + oob_index = 1; + for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) + ecclayout->eccpos[i] = oob_index; + /* no reserved-marker in ecclayout for this ecc-scheme */ + ecclayout->oobfree->offset = + ecclayout->eccpos[ecclayout->eccbytes - 1] + 1; + break; - /* DIP switches on some boards change between 8 and 16 bit - * bus widths for flash. Try the other width if the first try fails. - */ - if (nand_scan_ident(&info->mtd, 1, NULL)) { - info->nand.options ^= NAND_BUSWIDTH_16; - if (nand_scan_ident(&info->mtd, 1, NULL)) { - err = -ENXIO; - goto out_release_mem_region; + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: +#ifdef CONFIG_MTD_NAND_ECC_BCH + pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + nand_chip->ecc.bytes = 7; + nand_chip->ecc.strength = 4; + nand_chip->ecc.hwctl = omap_enable_hwecc_bch; + nand_chip->ecc.correct = nand_bch_correct_data; + nand_chip->ecc.calculate = omap_calculate_ecc_bch; + /* define ECC layout */ + ecclayout->eccbytes = nand_chip->ecc.bytes * + (mtd->writesize / + nand_chip->ecc.size); + oob_index = BADBLOCK_MARKER_LENGTH; + for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) { + ecclayout->eccpos[i] = oob_index; + if (((i + 1) % nand_chip->ecc.bytes) == 0) + oob_index++; } - } - - /* rom code layout */ - if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) { - - if (info->nand.options & NAND_BUSWIDTH_16) - offset = 2; - else { - offset = 1; - info->nand.badblock_pattern = &bb_descrip_flashbased; + /* include reserved-marker in ecclayout->oobfree calculation */ + ecclayout->oobfree->offset = 1 + + ecclayout->eccpos[ecclayout->eccbytes - 1] + 1; + /* software bch library is used for locating errors */ + nand_chip->ecc.priv = nand_bch_init(mtd, + nand_chip->ecc.size, + nand_chip->ecc.bytes, + &nand_chip->ecc.layout); + if (!nand_chip->ecc.priv) { + pr_err("nand: error: unable to use s/w BCH library\n"); + err = -EINVAL; } - omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16); - for (i = 0; i < omap_oobinfo.eccbytes; i++) - omap_oobinfo.eccpos[i] = i+offset; - - omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes; - omap_oobinfo.oobfree->length = info->mtd.oobsize - - (offset + omap_oobinfo.eccbytes); + break; +#else + pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n"); + err = -EINVAL; + goto return_error; +#endif + + case OMAP_ECC_BCH4_CODE_HW: +#ifdef CONFIG_MTD_NAND_OMAP_BCH + pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + /* 14th bit is kept reserved for ROM-code compatibility */ + nand_chip->ecc.bytes = 7 + 1; + nand_chip->ecc.strength = 4; + nand_chip->ecc.hwctl = omap_enable_hwecc_bch; + nand_chip->ecc.correct = omap_elm_correct_data; + nand_chip->ecc.calculate = omap_calculate_ecc_bch; + nand_chip->ecc.read_page = omap_read_page_bch; + nand_chip->ecc.write_page = omap_write_page_bch; + /* define ECC layout */ + ecclayout->eccbytes = nand_chip->ecc.bytes * + (mtd->writesize / + nand_chip->ecc.size); + oob_index = BADBLOCK_MARKER_LENGTH; + for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) + ecclayout->eccpos[i] = oob_index; + /* reserved marker already included in ecclayout->eccbytes */ + ecclayout->oobfree->offset = + ecclayout->eccpos[ecclayout->eccbytes - 1] + 1; + /* This ECC scheme requires ELM H/W block */ + if (is_elm_present(info, pdata->elm_of_node, BCH4_ECC) < 0) { + pr_err("nand: error: could not initialize ELM\n"); + err = -ENODEV; + goto return_error; + } + break; +#else + pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n"); + err = -EINVAL; + goto return_error; +#endif + + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: +#ifdef CONFIG_MTD_NAND_ECC_BCH + pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + nand_chip->ecc.bytes = 13; + nand_chip->ecc.strength = 8; + nand_chip->ecc.hwctl = omap_enable_hwecc_bch; + nand_chip->ecc.correct = nand_bch_correct_data; + nand_chip->ecc.calculate = omap_calculate_ecc_bch; + /* define ECC layout */ + ecclayout->eccbytes = nand_chip->ecc.bytes * + (mtd->writesize / + nand_chip->ecc.size); + oob_index = BADBLOCK_MARKER_LENGTH; + for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) { + ecclayout->eccpos[i] = oob_index; + if (((i + 1) % nand_chip->ecc.bytes) == 0) + oob_index++; + } + /* include reserved-marker in ecclayout->oobfree calculation */ + ecclayout->oobfree->offset = 1 + + ecclayout->eccpos[ecclayout->eccbytes - 1] + 1; + /* software bch library is used for locating errors */ + nand_chip->ecc.priv = nand_bch_init(mtd, + nand_chip->ecc.size, + nand_chip->ecc.bytes, + &nand_chip->ecc.layout); + if (!nand_chip->ecc.priv) { + pr_err("nand: error: unable to use s/w BCH library\n"); + err = -EINVAL; + goto return_error; + } + break; +#else + pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n"); + err = -EINVAL; + goto return_error; +#endif + + case OMAP_ECC_BCH8_CODE_HW: +#ifdef CONFIG_MTD_NAND_OMAP_BCH + pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + /* 14th bit is kept reserved for ROM-code compatibility */ + nand_chip->ecc.bytes = 13 + 1; + nand_chip->ecc.strength = 8; + nand_chip->ecc.hwctl = omap_enable_hwecc_bch; + nand_chip->ecc.correct = omap_elm_correct_data; + nand_chip->ecc.calculate = omap_calculate_ecc_bch; + nand_chip->ecc.read_page = omap_read_page_bch; + nand_chip->ecc.write_page = omap_write_page_bch; + /* This ECC scheme requires ELM H/W block */ + err = is_elm_present(info, pdata->elm_of_node, BCH8_ECC); + if (err < 0) { + pr_err("nand: error: could not initialize ELM\n"); + goto return_error; + } + /* define ECC layout */ + ecclayout->eccbytes = nand_chip->ecc.bytes * + (mtd->writesize / + nand_chip->ecc.size); + oob_index = BADBLOCK_MARKER_LENGTH; + for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) + ecclayout->eccpos[i] = oob_index; + /* reserved marker already included in ecclayout->eccbytes */ + ecclayout->oobfree->offset = + ecclayout->eccpos[ecclayout->eccbytes - 1] + 1; + break; +#else + pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n"); + err = -EINVAL; + goto return_error; +#endif + + case OMAP_ECC_BCH16_CODE_HW: +#ifdef CONFIG_MTD_NAND_OMAP_BCH + pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + nand_chip->ecc.bytes = 26; + nand_chip->ecc.strength = 16; + nand_chip->ecc.hwctl = omap_enable_hwecc_bch; + nand_chip->ecc.correct = omap_elm_correct_data; + nand_chip->ecc.calculate = omap_calculate_ecc_bch; + nand_chip->ecc.read_page = omap_read_page_bch; + nand_chip->ecc.write_page = omap_write_page_bch; + /* This ECC scheme requires ELM H/W block */ + err = is_elm_present(info, pdata->elm_of_node, BCH16_ECC); + if (err < 0) { + pr_err("ELM is required for this ECC scheme\n"); + goto return_error; + } + /* define ECC layout */ + ecclayout->eccbytes = nand_chip->ecc.bytes * + (mtd->writesize / + nand_chip->ecc.size); + oob_index = BADBLOCK_MARKER_LENGTH; + for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) + ecclayout->eccpos[i] = oob_index; + /* reserved marker already included in ecclayout->eccbytes */ + ecclayout->oobfree->offset = + ecclayout->eccpos[ecclayout->eccbytes - 1] + 1; + break; +#else + pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n"); + err = -EINVAL; + goto return_error; +#endif + default: + pr_err("nand: error: invalid or unsupported ECC scheme\n"); + err = -EINVAL; + goto return_error; + } - info->nand.ecc.layout = &omap_oobinfo; + /* all OOB bytes from oobfree->offset till end off OOB are free */ + ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset; + /* check if NAND device's OOB is enough to store ECC signatures */ + if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) { + pr_err("not enough OOB bytes required = %d, available=%d\n", + ecclayout->eccbytes, mtd->oobsize); + err = -EINVAL; + goto return_error; } /* second phase scan */ - if (nand_scan_tail(&info->mtd)) { + if (nand_scan_tail(mtd)) { err = -ENXIO; - goto out_release_mem_region; + goto return_error; } - mtd_device_parse_register(&info->mtd, NULL, 0, - pdata->parts, pdata->nr_parts); + ppdata.of_node = pdata->of_node; + mtd_device_parse_register(mtd, NULL, &ppdata, pdata->parts, + pdata->nr_parts); - platform_set_drvdata(pdev, &info->mtd); + platform_set_drvdata(pdev, mtd); return 0; -out_release_mem_region: - release_mem_region(info->phys_base, NAND_IO_SIZE); -out_free_info: - kfree(info); - +return_error: + if (info->dma) + dma_release_channel(info->dma); + if (nand_chip->ecc.priv) { + nand_bch_free(nand_chip->ecc.priv); + nand_chip->ecc.priv = NULL; + } return err; } static int omap_nand_remove(struct platform_device *pdev) { struct mtd_info *mtd = platform_get_drvdata(pdev); + struct nand_chip *nand_chip = mtd->priv; struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); - - platform_set_drvdata(pdev, NULL); - if (info->dma_ch != -1) - omap_free_dma(info->dma_ch); - - if (info->gpmc_irq) - free_irq(info->gpmc_irq, info); - - /* Release NAND device, its internal structures and partitions */ - nand_release(&info->mtd); - iounmap(info->nand.IO_ADDR_R); - kfree(&info->mtd); + if (nand_chip->ecc.priv) { + nand_bch_free(nand_chip->ecc.priv); + nand_chip->ecc.priv = NULL; + } + if (info->dma) + dma_release_channel(info->dma); + nand_release(mtd); return 0; } |
