diff options
Diffstat (limited to 'drivers/memory/emif.c')
| -rw-r--r-- | drivers/memory/emif.c | 1940 | 
1 files changed, 1940 insertions, 0 deletions
diff --git a/drivers/memory/emif.c b/drivers/memory/emif.c new file mode 100644 index 00000000000..04644e7b42b --- /dev/null +++ b/drivers/memory/emif.c @@ -0,0 +1,1940 @@ +/* + * EMIF driver + * + * Copyright (C) 2012 Texas Instruments, Inc. + * + * Aneesh V <aneesh@ti.com> + * Santosh Shilimkar <santosh.shilimkar@ti.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ +#include <linux/err.h> +#include <linux/kernel.h> +#include <linux/reboot.h> +#include <linux/platform_data/emif_plat.h> +#include <linux/io.h> +#include <linux/device.h> +#include <linux/platform_device.h> +#include <linux/interrupt.h> +#include <linux/slab.h> +#include <linux/of.h> +#include <linux/debugfs.h> +#include <linux/seq_file.h> +#include <linux/module.h> +#include <linux/list.h> +#include <linux/spinlock.h> +#include <linux/pm.h> +#include <memory/jedec_ddr.h> +#include "emif.h" +#include "of_memory.h" + +/** + * struct emif_data - Per device static data for driver's use + * @duplicate:			Whether the DDR devices attached to this EMIF + *				instance are exactly same as that on EMIF1. In + *				this case we can save some memory and processing + * @temperature_level:		Maximum temperature of LPDDR2 devices attached + *				to this EMIF - read from MR4 register. If there + *				are two devices attached to this EMIF, this + *				value is the maximum of the two temperature + *				levels. + * @node:			node in the device list + * @base:			base address of memory-mapped IO registers. + * @dev:			device pointer. + * @addressing			table with addressing information from the spec + * @regs_cache:			An array of 'struct emif_regs' that stores + *				calculated register values for different + *				frequencies, to avoid re-calculating them on + *				each DVFS transition. + * @curr_regs:			The set of register values used in the last + *				frequency change (i.e. corresponding to the + *				frequency in effect at the moment) + * @plat_data:			Pointer to saved platform data. + * @debugfs_root:		dentry to the root folder for EMIF in debugfs + * @np_ddr:			Pointer to ddr device tree node + */ +struct emif_data { +	u8				duplicate; +	u8				temperature_level; +	u8				lpmode; +	struct list_head		node; +	unsigned long			irq_state; +	void __iomem			*base; +	struct device			*dev; +	const struct lpddr2_addressing	*addressing; +	struct emif_regs		*regs_cache[EMIF_MAX_NUM_FREQUENCIES]; +	struct emif_regs		*curr_regs; +	struct emif_platform_data	*plat_data; +	struct dentry			*debugfs_root; +	struct device_node		*np_ddr; +}; + +static struct emif_data *emif1; +static spinlock_t	emif_lock; +static unsigned long	irq_state; +static u32		t_ck; /* DDR clock period in ps */ +static LIST_HEAD(device_list); + +#ifdef CONFIG_DEBUG_FS +static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif, +	struct emif_regs *regs) +{ +	u32 type = emif->plat_data->device_info->type; +	u32 ip_rev = emif->plat_data->ip_rev; + +	seq_printf(s, "EMIF register cache dump for %dMHz\n", +		regs->freq/1000000); + +	seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw); +	seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw); +	seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw); +	seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw); + +	if (ip_rev == EMIF_4D) { +		seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n", +			regs->read_idle_ctrl_shdw_normal); +		seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n", +			regs->read_idle_ctrl_shdw_volt_ramp); +	} else if (ip_rev == EMIF_4D5) { +		seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n", +			regs->dll_calib_ctrl_shdw_normal); +		seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n", +			regs->dll_calib_ctrl_shdw_volt_ramp); +	} + +	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { +		seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n", +			regs->ref_ctrl_shdw_derated); +		seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n", +			regs->sdram_tim1_shdw_derated); +		seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n", +			regs->sdram_tim3_shdw_derated); +	} +} + +static int emif_regdump_show(struct seq_file *s, void *unused) +{ +	struct emif_data	*emif	= s->private; +	struct emif_regs	**regs_cache; +	int			i; + +	if (emif->duplicate) +		regs_cache = emif1->regs_cache; +	else +		regs_cache = emif->regs_cache; + +	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { +		do_emif_regdump_show(s, emif, regs_cache[i]); +		seq_printf(s, "\n"); +	} + +	return 0; +} + +static int emif_regdump_open(struct inode *inode, struct file *file) +{ +	return single_open(file, emif_regdump_show, inode->i_private); +} + +static const struct file_operations emif_regdump_fops = { +	.open			= emif_regdump_open, +	.read			= seq_read, +	.release		= single_release, +}; + +static int emif_mr4_show(struct seq_file *s, void *unused) +{ +	struct emif_data *emif = s->private; + +	seq_printf(s, "MR4=%d\n", emif->temperature_level); +	return 0; +} + +static int emif_mr4_open(struct inode *inode, struct file *file) +{ +	return single_open(file, emif_mr4_show, inode->i_private); +} + +static const struct file_operations emif_mr4_fops = { +	.open			= emif_mr4_open, +	.read			= seq_read, +	.release		= single_release, +}; + +static int __init_or_module emif_debugfs_init(struct emif_data *emif) +{ +	struct dentry	*dentry; +	int		ret; + +	dentry = debugfs_create_dir(dev_name(emif->dev), NULL); +	if (!dentry) { +		ret = -ENOMEM; +		goto err0; +	} +	emif->debugfs_root = dentry; + +	dentry = debugfs_create_file("regcache_dump", S_IRUGO, +			emif->debugfs_root, emif, &emif_regdump_fops); +	if (!dentry) { +		ret = -ENOMEM; +		goto err1; +	} + +	dentry = debugfs_create_file("mr4", S_IRUGO, +			emif->debugfs_root, emif, &emif_mr4_fops); +	if (!dentry) { +		ret = -ENOMEM; +		goto err1; +	} + +	return 0; +err1: +	debugfs_remove_recursive(emif->debugfs_root); +err0: +	return ret; +} + +static void __exit emif_debugfs_exit(struct emif_data *emif) +{ +	debugfs_remove_recursive(emif->debugfs_root); +	emif->debugfs_root = NULL; +} +#else +static inline int __init_or_module emif_debugfs_init(struct emif_data *emif) +{ +	return 0; +} + +static inline void __exit emif_debugfs_exit(struct emif_data *emif) +{ +} +#endif + +/* + * Calculate the period of DDR clock from frequency value + */ +static void set_ddr_clk_period(u32 freq) +{ +	/* Divide 10^12 by frequency to get period in ps */ +	t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq); +} + +/* + * Get bus width used by EMIF. Note that this may be different from the + * bus width of the DDR devices used. For instance two 16-bit DDR devices + * may be connected to a given CS of EMIF. In this case bus width as far + * as EMIF is concerned is 32, where as the DDR bus width is 16 bits. + */ +static u32 get_emif_bus_width(struct emif_data *emif) +{ +	u32		width; +	void __iomem	*base = emif->base; + +	width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK) +			>> NARROW_MODE_SHIFT; +	width = width == 0 ? 32 : 16; + +	return width; +} + +/* + * Get the CL from SDRAM_CONFIG register + */ +static u32 get_cl(struct emif_data *emif) +{ +	u32		cl; +	void __iomem	*base = emif->base; + +	cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT; + +	return cl; +} + +static void set_lpmode(struct emif_data *emif, u8 lpmode) +{ +	u32 temp; +	void __iomem *base = emif->base; + +	/* +	 * Workaround for errata i743 - LPDDR2 Power-Down State is Not +	 * Efficient +	 * +	 * i743 DESCRIPTION: +	 * The EMIF supports power-down state for low power. The EMIF +	 * automatically puts the SDRAM into power-down after the memory is +	 * not accessed for a defined number of cycles and the +	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4. +	 * As the EMIF supports automatic output impedance calibration, a ZQ +	 * calibration long command is issued every time it exits active +	 * power-down and precharge power-down modes. The EMIF waits and +	 * blocks any other command during this calibration. +	 * The EMIF does not allow selective disabling of ZQ calibration upon +	 * exit of power-down mode. Due to very short periods of power-down +	 * cycles, ZQ calibration overhead creates bandwidth issues and +	 * increases overall system power consumption. On the other hand, +	 * issuing ZQ calibration long commands when exiting self-refresh is +	 * still required. +	 * +	 * WORKAROUND +	 * Because there is no power consumption benefit of the power-down due +	 * to the calibration and there is a performance risk, the guideline +	 * is to not allow power-down state and, therefore, to not have set +	 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4. +	 */ +	if ((emif->plat_data->ip_rev == EMIF_4D) && +	    (EMIF_LP_MODE_PWR_DN == lpmode)) { +		WARN_ONCE(1, +			  "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by" +			  "erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n"); +		/* rollback LP_MODE to Self-refresh mode */ +		lpmode = EMIF_LP_MODE_SELF_REFRESH; +	} + +	temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL); +	temp &= ~LP_MODE_MASK; +	temp |= (lpmode << LP_MODE_SHIFT); +	writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL); +} + +static void do_freq_update(void) +{ +	struct emif_data *emif; + +	/* +	 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE +	 * +	 * i728 DESCRIPTION: +	 * The EMIF automatically puts the SDRAM into self-refresh mode +	 * after the EMIF has not performed accesses during +	 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles +	 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set +	 * to 0x2. If during a small window the following three events +	 * occur: +	 * - The SR_TIMING counter expires +	 * - And frequency change is requested +	 * - And OCP access is requested +	 * Then it causes instable clock on the DDR interface. +	 * +	 * WORKAROUND +	 * To avoid the occurrence of the three events, the workaround +	 * is to disable the self-refresh when requesting a frequency +	 * change. Before requesting a frequency change the software must +	 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the +	 * frequency change has been done, the software can reprogram +	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2 +	 */ +	list_for_each_entry(emif, &device_list, node) { +		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) +			set_lpmode(emif, EMIF_LP_MODE_DISABLE); +	} + +	/* +	 * TODO: Do FREQ_UPDATE here when an API +	 * is available for this as part of the new +	 * clock framework +	 */ + +	list_for_each_entry(emif, &device_list, node) { +		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) +			set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); +	} +} + +/* Find addressing table entry based on the device's type and density */ +static const struct lpddr2_addressing *get_addressing_table( +	const struct ddr_device_info *device_info) +{ +	u32		index, type, density; + +	type = device_info->type; +	density = device_info->density; + +	switch (type) { +	case DDR_TYPE_LPDDR2_S4: +		index = density - 1; +		break; +	case DDR_TYPE_LPDDR2_S2: +		switch (density) { +		case DDR_DENSITY_1Gb: +		case DDR_DENSITY_2Gb: +			index = density + 3; +			break; +		default: +			index = density - 1; +		} +		break; +	default: +		return NULL; +	} + +	return &lpddr2_jedec_addressing_table[index]; +} + +/* + * Find the the right timing table from the array of timing + * tables of the device using DDR clock frequency + */ +static const struct lpddr2_timings *get_timings_table(struct emif_data *emif, +		u32 freq) +{ +	u32				i, min, max, freq_nearest; +	const struct lpddr2_timings	*timings = NULL; +	const struct lpddr2_timings	*timings_arr = emif->plat_data->timings; +	struct				device *dev = emif->dev; + +	/* Start with a very high frequency - 1GHz */ +	freq_nearest = 1000000000; + +	/* +	 * Find the timings table such that: +	 *  1. the frequency range covers the required frequency(safe) AND +	 *  2. the max_freq is closest to the required frequency(optimal) +	 */ +	for (i = 0; i < emif->plat_data->timings_arr_size; i++) { +		max = timings_arr[i].max_freq; +		min = timings_arr[i].min_freq; +		if ((freq >= min) && (freq <= max) && (max < freq_nearest)) { +			freq_nearest = max; +			timings = &timings_arr[i]; +		} +	} + +	if (!timings) +		dev_err(dev, "%s: couldn't find timings for - %dHz\n", +			__func__, freq); + +	dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n", +		__func__, freq, freq_nearest); + +	return timings; +} + +static u32 get_sdram_ref_ctrl_shdw(u32 freq, +		const struct lpddr2_addressing *addressing) +{ +	u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi; + +	/* Scale down frequency and t_refi to avoid overflow */ +	freq_khz = freq / 1000; +	t_refi = addressing->tREFI_ns / 100; + +	/* +	 * refresh rate to be set is 'tREFI(in us) * freq in MHz +	 * division by 10000 to account for change in units +	 */ +	val = t_refi * freq_khz / 10000; +	ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT; + +	return ref_ctrl_shdw; +} + +static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings, +		const struct lpddr2_min_tck *min_tck, +		const struct lpddr2_addressing *addressing) +{ +	u32 tim1 = 0, val = 0; + +	val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; +	tim1 |= val << T_WTR_SHIFT; + +	if (addressing->num_banks == B8) +		val = DIV_ROUND_UP(timings->tFAW, t_ck*4); +	else +		val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck)); +	tim1 |= (val - 1) << T_RRD_SHIFT; + +	val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1; +	tim1 |= val << T_RC_SHIFT; + +	val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck)); +	tim1 |= (val - 1) << T_RAS_SHIFT; + +	val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; +	tim1 |= val << T_WR_SHIFT; + +	val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1; +	tim1 |= val << T_RCD_SHIFT; + +	val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1; +	tim1 |= val << T_RP_SHIFT; + +	return tim1; +} + +static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings, +		const struct lpddr2_min_tck *min_tck, +		const struct lpddr2_addressing *addressing) +{ +	u32 tim1 = 0, val = 0; + +	val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; +	tim1 = val << T_WTR_SHIFT; + +	/* +	 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps +	 * to tFAW for de-rating +	 */ +	if (addressing->num_banks == B8) { +		val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1; +	} else { +		val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck); +		val = max(min_tck->tRRD, val) - 1; +	} +	tim1 |= val << T_RRD_SHIFT; + +	val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck); +	tim1 |= (val - 1) << T_RC_SHIFT; + +	val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck); +	val = max(min_tck->tRASmin, val) - 1; +	tim1 |= val << T_RAS_SHIFT; + +	val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; +	tim1 |= val << T_WR_SHIFT; + +	val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck)); +	tim1 |= (val - 1) << T_RCD_SHIFT; + +	val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck)); +	tim1 |= (val - 1) << T_RP_SHIFT; + +	return tim1; +} + +static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings, +		const struct lpddr2_min_tck *min_tck, +		const struct lpddr2_addressing *addressing, +		u32 type) +{ +	u32 tim2 = 0, val = 0; + +	val = min_tck->tCKE - 1; +	tim2 |= val << T_CKE_SHIFT; + +	val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1; +	tim2 |= val << T_RTP_SHIFT; + +	/* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */ +	val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1; +	tim2 |= val << T_XSNR_SHIFT; + +	/* XSRD same as XSNR for LPDDR2 */ +	tim2 |= val << T_XSRD_SHIFT; + +	val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1; +	tim2 |= val << T_XP_SHIFT; + +	return tim2; +} + +static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings, +		const struct lpddr2_min_tck *min_tck, +		const struct lpddr2_addressing *addressing, +		u32 type, u32 ip_rev, u32 derated) +{ +	u32 tim3 = 0, val = 0, t_dqsck; + +	val = timings->tRAS_max_ns / addressing->tREFI_ns - 1; +	val = val > 0xF ? 0xF : val; +	tim3 |= val << T_RAS_MAX_SHIFT; + +	val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1; +	tim3 |= val << T_RFC_SHIFT; + +	t_dqsck = (derated == EMIF_DERATED_TIMINGS) ? +		timings->tDQSCK_max_derated : timings->tDQSCK_max; +	if (ip_rev == EMIF_4D5) +		val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1; +	else +		val = DIV_ROUND_UP(t_dqsck, t_ck) - 1; + +	tim3 |= val << T_TDQSCKMAX_SHIFT; + +	val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1; +	tim3 |= val << ZQ_ZQCS_SHIFT; + +	val = DIV_ROUND_UP(timings->tCKESR, t_ck); +	val = max(min_tck->tCKESR, val) - 1; +	tim3 |= val << T_CKESR_SHIFT; + +	if (ip_rev == EMIF_4D5) { +		tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT; + +		val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1; +		tim3 |= val << T_PDLL_UL_SHIFT; +	} + +	return tim3; +} + +static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing, +		bool cs1_used, bool cal_resistors_per_cs) +{ +	u32 zq = 0, val = 0; + +	val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns; +	zq |= val << ZQ_REFINTERVAL_SHIFT; + +	val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1; +	zq |= val << ZQ_ZQCL_MULT_SHIFT; + +	val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1; +	zq |= val << ZQ_ZQINIT_MULT_SHIFT; + +	zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT; + +	if (cal_resistors_per_cs) +		zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT; +	else +		zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT; + +	zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */ + +	val = cs1_used ? 1 : 0; +	zq |= val << ZQ_CS1EN_SHIFT; + +	return zq; +} + +static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing, +		const struct emif_custom_configs *custom_configs, bool cs1_used, +		u32 sdram_io_width, u32 emif_bus_width) +{ +	u32 alert = 0, interval, devcnt; + +	if (custom_configs && (custom_configs->mask & +				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)) +		interval = custom_configs->temp_alert_poll_interval_ms; +	else +		interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS; + +	interval *= 1000000;			/* Convert to ns */ +	interval /= addressing->tREFI_ns;	/* Convert to refresh cycles */ +	alert |= (interval << TA_REFINTERVAL_SHIFT); + +	/* +	 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width +	 * also to this form and subtract to get TA_DEVCNT, which is +	 * in log2(x) form. +	 */ +	emif_bus_width = __fls(emif_bus_width) - 1; +	devcnt = emif_bus_width - sdram_io_width; +	alert |= devcnt << TA_DEVCNT_SHIFT; + +	/* DEVWDT is in 'log2(x) - 3' form */ +	alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT; + +	alert |= 1 << TA_SFEXITEN_SHIFT; +	alert |= 1 << TA_CS0EN_SHIFT; +	alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT; + +	return alert; +} + +static u32 get_read_idle_ctrl_shdw(u8 volt_ramp) +{ +	u32 idle = 0, val = 0; + +	/* +	 * Maximum value in normal conditions and increased frequency +	 * when voltage is ramping +	 */ +	if (volt_ramp) +		val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1; +	else +		val = 0x1FF; + +	/* +	 * READ_IDLE_CTRL register in EMIF4D has same offset and fields +	 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts +	 */ +	idle |= val << DLL_CALIB_INTERVAL_SHIFT; +	idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT; + +	return idle; +} + +static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp) +{ +	u32 calib = 0, val = 0; + +	if (volt_ramp == DDR_VOLTAGE_RAMPING) +		val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1; +	else +		val = 0; /* Disabled when voltage is stable */ + +	calib |= val << DLL_CALIB_INTERVAL_SHIFT; +	calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT; + +	return calib; +} + +static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings, +	u32 freq, u8 RL) +{ +	u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0; + +	val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1; +	phy |= val << READ_LATENCY_SHIFT_4D; + +	if (freq <= 100000000) +		val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY; +	else if (freq <= 200000000) +		val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY; +	else +		val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY; + +	phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D; + +	return phy; +} + +static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl) +{ +	u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay; + +	/* +	 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz, +	 * half-delay is not needed else set half-delay +	 */ +	if (freq >= 265000000 && freq < 267000000) +		half_delay = 0; +	else +		half_delay = 1; + +	phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5; +	phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS, +			t_ck) - 1) << READ_LATENCY_SHIFT_4D5); + +	return phy; +} + +static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void) +{ +	u32 fifo_we_slave_ratio; + +	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST( +		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); + +	return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 | +		fifo_we_slave_ratio << 22; +} + +static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void) +{ +	u32 fifo_we_slave_ratio; + +	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST( +		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); + +	return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 | +		fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23; +} + +static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void) +{ +	u32 fifo_we_slave_ratio; + +	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST( +		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); + +	return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 | +		fifo_we_slave_ratio << 13; +} + +static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev) +{ +	u32 pwr_mgmt_ctrl	= 0, timeout; +	u32 lpmode		= EMIF_LP_MODE_SELF_REFRESH; +	u32 timeout_perf	= EMIF_LP_MODE_TIMEOUT_PERFORMANCE; +	u32 timeout_pwr		= EMIF_LP_MODE_TIMEOUT_POWER; +	u32 freq_threshold	= EMIF_LP_MODE_FREQ_THRESHOLD; +	u32 mask; +	u8 shift; + +	struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs; + +	if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) { +		lpmode		= cust_cfgs->lpmode; +		timeout_perf	= cust_cfgs->lpmode_timeout_performance; +		timeout_pwr	= cust_cfgs->lpmode_timeout_power; +		freq_threshold  = cust_cfgs->lpmode_freq_threshold; +	} + +	/* Timeout based on DDR frequency */ +	timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr; + +	/* +	 * The value to be set in register is "log2(timeout) - 3" +	 * if timeout < 16 load 0 in register +	 * if timeout is not a power of 2, round to next highest power of 2 +	 */ +	if (timeout < 16) { +		timeout = 0; +	} else { +		if (timeout & (timeout - 1)) +			timeout <<= 1; +		timeout = __fls(timeout) - 3; +	} + +	switch (lpmode) { +	case EMIF_LP_MODE_CLOCK_STOP: +		shift = CS_TIM_SHIFT; +		mask = CS_TIM_MASK; +		break; +	case EMIF_LP_MODE_SELF_REFRESH: +		/* Workaround for errata i735 */ +		if (timeout < 6) +			timeout = 6; + +		shift = SR_TIM_SHIFT; +		mask = SR_TIM_MASK; +		break; +	case EMIF_LP_MODE_PWR_DN: +		shift = PD_TIM_SHIFT; +		mask = PD_TIM_MASK; +		break; +	case EMIF_LP_MODE_DISABLE: +	default: +		mask = 0; +		shift = 0; +		break; +	} +	/* Round to maximum in case of overflow, BUT warn! */ +	if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) { +		pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n", +		       lpmode, +		       timeout_perf, +		       timeout_pwr, +		       freq_threshold); +		WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n", +		     timeout, mask >> shift); +		timeout = mask >> shift; +	} + +	/* Setup required timing */ +	pwr_mgmt_ctrl = (timeout << shift) & mask; +	/* setup a default mask for rest of the modes */ +	pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) & +			  ~mask; + +	/* No CS_TIM in EMIF_4D5 */ +	if (ip_rev == EMIF_4D5) +		pwr_mgmt_ctrl &= ~CS_TIM_MASK; + +	pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT; + +	return pwr_mgmt_ctrl; +} + +/* + * Get the temperature level of the EMIF instance: + * Reads the MR4 register of attached SDRAM parts to find out the temperature + * level. If there are two parts attached(one on each CS), then the temperature + * level for the EMIF instance is the higher of the two temperatures. + */ +static void get_temperature_level(struct emif_data *emif) +{ +	u32		temp, temperature_level; +	void __iomem	*base; + +	base = emif->base; + +	/* Read mode register 4 */ +	writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG); +	temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA); +	temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >> +				MR4_SDRAM_REF_RATE_SHIFT; + +	if (emif->plat_data->device_info->cs1_used) { +		writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG); +		temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA); +		temp = (temp & MR4_SDRAM_REF_RATE_MASK) +				>> MR4_SDRAM_REF_RATE_SHIFT; +		temperature_level = max(temp, temperature_level); +	} + +	/* treat everything less than nominal(3) in MR4 as nominal */ +	if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL)) +		temperature_level = SDRAM_TEMP_NOMINAL; + +	/* if we get reserved value in MR4 persist with the existing value */ +	if (likely(temperature_level != SDRAM_TEMP_RESERVED_4)) +		emif->temperature_level = temperature_level; +} + +/* + * Program EMIF shadow registers that are not dependent on temperature + * or voltage + */ +static void setup_registers(struct emif_data *emif, struct emif_regs *regs) +{ +	void __iomem	*base = emif->base; + +	writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW); +	writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW); +	writel(regs->pwr_mgmt_ctrl_shdw, +	       base + EMIF_POWER_MANAGEMENT_CTRL_SHDW); + +	/* Settings specific for EMIF4D5 */ +	if (emif->plat_data->ip_rev != EMIF_4D5) +		return; +	writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW); +	writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW); +	writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW); +} + +/* + * When voltage ramps dll calibration and forced read idle should + * happen more often + */ +static void setup_volt_sensitive_regs(struct emif_data *emif, +		struct emif_regs *regs, u32 volt_state) +{ +	u32		calib_ctrl; +	void __iomem	*base = emif->base; + +	/* +	 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as +	 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_* +	 * is an alias of the respective read_idle_ctrl_shdw_* (members of +	 * a union). So, the below code takes care of both cases +	 */ +	if (volt_state == DDR_VOLTAGE_RAMPING) +		calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp; +	else +		calib_ctrl = regs->dll_calib_ctrl_shdw_normal; + +	writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW); +} + +/* + * setup_temperature_sensitive_regs() - set the timings for temperature + * sensitive registers. This happens once at initialisation time based + * on the temperature at boot time and subsequently based on the temperature + * alert interrupt. Temperature alert can happen when the temperature + * increases or drops. So this function can have the effect of either + * derating the timings or going back to nominal values. + */ +static void setup_temperature_sensitive_regs(struct emif_data *emif, +		struct emif_regs *regs) +{ +	u32		tim1, tim3, ref_ctrl, type; +	void __iomem	*base = emif->base; +	u32		temperature; + +	type = emif->plat_data->device_info->type; + +	tim1 = regs->sdram_tim1_shdw; +	tim3 = regs->sdram_tim3_shdw; +	ref_ctrl = regs->ref_ctrl_shdw; + +	/* No de-rating for non-lpddr2 devices */ +	if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4) +		goto out; + +	temperature = emif->temperature_level; +	if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) { +		ref_ctrl = regs->ref_ctrl_shdw_derated; +	} else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) { +		tim1 = regs->sdram_tim1_shdw_derated; +		tim3 = regs->sdram_tim3_shdw_derated; +		ref_ctrl = regs->ref_ctrl_shdw_derated; +	} + +out: +	writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW); +	writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW); +	writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW); +} + +static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif) +{ +	u32		old_temp_level; +	irqreturn_t	ret = IRQ_HANDLED; +	struct emif_custom_configs *custom_configs; + +	spin_lock_irqsave(&emif_lock, irq_state); +	old_temp_level = emif->temperature_level; +	get_temperature_level(emif); + +	if (unlikely(emif->temperature_level == old_temp_level)) { +		goto out; +	} else if (!emif->curr_regs) { +		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); +		goto out; +	} + +	custom_configs = emif->plat_data->custom_configs; + +	/* +	 * IF we detect higher than "nominal rating" from DDR sensor +	 * on an unsupported DDR part, shutdown system +	 */ +	if (custom_configs && !(custom_configs->mask & +				EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) { +		if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) { +			dev_err(emif->dev, +				"%s:NOT Extended temperature capable memory." +				"Converting MR4=0x%02x as shutdown event\n", +				__func__, emif->temperature_level); +			/* +			 * Temperature far too high - do kernel_power_off() +			 * from thread context +			 */ +			emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN; +			ret = IRQ_WAKE_THREAD; +			goto out; +		} +	} + +	if (emif->temperature_level < old_temp_level || +		emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { +		/* +		 * Temperature coming down - defer handling to thread OR +		 * Temperature far too high - do kernel_power_off() from +		 * thread context +		 */ +		ret = IRQ_WAKE_THREAD; +	} else { +		/* Temperature is going up - handle immediately */ +		setup_temperature_sensitive_regs(emif, emif->curr_regs); +		do_freq_update(); +	} + +out: +	spin_unlock_irqrestore(&emif_lock, irq_state); +	return ret; +} + +static irqreturn_t emif_interrupt_handler(int irq, void *dev_id) +{ +	u32			interrupts; +	struct emif_data	*emif = dev_id; +	void __iomem		*base = emif->base; +	struct device		*dev = emif->dev; +	irqreturn_t		ret = IRQ_HANDLED; + +	/* Save the status and clear it */ +	interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); +	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); + +	/* +	 * Handle temperature alert +	 * Temperature alert should be same for all ports +	 * So, it's enough to process it only for one of the ports +	 */ +	if (interrupts & TA_SYS_MASK) +		ret = handle_temp_alert(base, emif); + +	if (interrupts & ERR_SYS_MASK) +		dev_err(dev, "Access error from SYS port - %x\n", interrupts); + +	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { +		/* Save the status and clear it */ +		interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS); +		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS); + +		if (interrupts & ERR_LL_MASK) +			dev_err(dev, "Access error from LL port - %x\n", +				interrupts); +	} + +	return ret; +} + +static irqreturn_t emif_threaded_isr(int irq, void *dev_id) +{ +	struct emif_data	*emif = dev_id; + +	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { +		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); + +		/* If we have Power OFF ability, use it, else try restarting */ +		if (pm_power_off) { +			kernel_power_off(); +		} else { +			WARN(1, "FIXME: NO pm_power_off!!! trying restart\n"); +			kernel_restart("SDRAM Over-temp Emergency restart"); +		} +		return IRQ_HANDLED; +	} + +	spin_lock_irqsave(&emif_lock, irq_state); + +	if (emif->curr_regs) { +		setup_temperature_sensitive_regs(emif, emif->curr_regs); +		do_freq_update(); +	} else { +		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); +	} + +	spin_unlock_irqrestore(&emif_lock, irq_state); + +	return IRQ_HANDLED; +} + +static void clear_all_interrupts(struct emif_data *emif) +{ +	void __iomem	*base = emif->base; + +	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS), +		base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); +	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) +		writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS), +			base + EMIF_LL_OCP_INTERRUPT_STATUS); +} + +static void disable_and_clear_all_interrupts(struct emif_data *emif) +{ +	void __iomem		*base = emif->base; + +	/* Disable all interrupts */ +	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET), +		base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR); +	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) +		writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET), +			base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR); + +	/* Clear all interrupts */ +	clear_all_interrupts(emif); +} + +static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq) +{ +	u32		interrupts, type; +	void __iomem	*base = emif->base; + +	type = emif->plat_data->device_info->type; + +	clear_all_interrupts(emif); + +	/* Enable interrupts for SYS interface */ +	interrupts = EN_ERR_SYS_MASK; +	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) +		interrupts |= EN_TA_SYS_MASK; +	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET); + +	/* Enable interrupts for LL interface */ +	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { +		/* TA need not be enabled for LL */ +		interrupts = EN_ERR_LL_MASK; +		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET); +	} + +	/* setup IRQ handlers */ +	return devm_request_threaded_irq(emif->dev, irq, +				    emif_interrupt_handler, +				    emif_threaded_isr, +				    0, dev_name(emif->dev), +				    emif); + +} + +static void __init_or_module emif_onetime_settings(struct emif_data *emif) +{ +	u32				pwr_mgmt_ctrl, zq, temp_alert_cfg; +	void __iomem			*base = emif->base; +	const struct lpddr2_addressing	*addressing; +	const struct ddr_device_info	*device_info; + +	device_info = emif->plat_data->device_info; +	addressing = get_addressing_table(device_info); + +	/* +	 * Init power management settings +	 * We don't know the frequency yet. Use a high frequency +	 * value for a conservative timeout setting +	 */ +	pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif, +			emif->plat_data->ip_rev); +	emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT; +	writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL); + +	/* Init ZQ calibration settings */ +	zq = get_zq_config_reg(addressing, device_info->cs1_used, +		device_info->cal_resistors_per_cs); +	writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG); + +	/* Check temperature level temperature level*/ +	get_temperature_level(emif); +	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) +		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); + +	/* Init temperature polling */ +	temp_alert_cfg = get_temp_alert_config(addressing, +		emif->plat_data->custom_configs, device_info->cs1_used, +		device_info->io_width, get_emif_bus_width(emif)); +	writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG); + +	/* +	 * Program external PHY control registers that are not frequency +	 * dependent +	 */ +	if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY) +		return; +	writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW); +	writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW); +	writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW); +	writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW); +	writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW); +	writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW); +	writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW); +	writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW); +	writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW); +	writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW); +	writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW); +	writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW); +	writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW); +	writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW); +	writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW); +	writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW); +	writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW); +	writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW); +	writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW); +	writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW); +	writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW); +} + +static void get_default_timings(struct emif_data *emif) +{ +	struct emif_platform_data *pd = emif->plat_data; + +	pd->timings		= lpddr2_jedec_timings; +	pd->timings_arr_size	= ARRAY_SIZE(lpddr2_jedec_timings); + +	dev_warn(emif->dev, "%s: using default timings\n", __func__); +} + +static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type, +		u32 ip_rev, struct device *dev) +{ +	int valid; + +	valid = (type == DDR_TYPE_LPDDR2_S4 || +			type == DDR_TYPE_LPDDR2_S2) +		&& (density >= DDR_DENSITY_64Mb +			&& density <= DDR_DENSITY_8Gb) +		&& (io_width >= DDR_IO_WIDTH_8 +			&& io_width <= DDR_IO_WIDTH_32); + +	/* Combinations of EMIF and PHY revisions that we support today */ +	switch (ip_rev) { +	case EMIF_4D: +		valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY); +		break; +	case EMIF_4D5: +		valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY); +		break; +	default: +		valid = 0; +	} + +	if (!valid) +		dev_err(dev, "%s: invalid DDR details\n", __func__); +	return valid; +} + +static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs, +		struct device *dev) +{ +	int valid = 1; + +	if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) && +		(cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE)) +		valid = cust_cfgs->lpmode_freq_threshold && +			cust_cfgs->lpmode_timeout_performance && +			cust_cfgs->lpmode_timeout_power; + +	if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL) +		valid = valid && cust_cfgs->temp_alert_poll_interval_ms; + +	if (!valid) +		dev_warn(dev, "%s: invalid custom configs\n", __func__); + +	return valid; +} + +#if defined(CONFIG_OF) +static void __init_or_module of_get_custom_configs(struct device_node *np_emif, +		struct emif_data *emif) +{ +	struct emif_custom_configs	*cust_cfgs = NULL; +	int				len; +	const __be32			*lpmode, *poll_intvl; + +	lpmode = of_get_property(np_emif, "low-power-mode", &len); +	poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len); + +	if (lpmode || poll_intvl) +		cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs), +			GFP_KERNEL); + +	if (!cust_cfgs) +		return; + +	if (lpmode) { +		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE; +		cust_cfgs->lpmode = be32_to_cpup(lpmode); +		of_property_read_u32(np_emif, +				"low-power-mode-timeout-performance", +				&cust_cfgs->lpmode_timeout_performance); +		of_property_read_u32(np_emif, +				"low-power-mode-timeout-power", +				&cust_cfgs->lpmode_timeout_power); +		of_property_read_u32(np_emif, +				"low-power-mode-freq-threshold", +				&cust_cfgs->lpmode_freq_threshold); +	} + +	if (poll_intvl) { +		cust_cfgs->mask |= +				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL; +		cust_cfgs->temp_alert_poll_interval_ms = +						be32_to_cpup(poll_intvl); +	} + +	if (of_find_property(np_emif, "extended-temp-part", &len)) +		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART; + +	if (!is_custom_config_valid(cust_cfgs, emif->dev)) { +		devm_kfree(emif->dev, cust_cfgs); +		return; +	} + +	emif->plat_data->custom_configs = cust_cfgs; +} + +static void __init_or_module of_get_ddr_info(struct device_node *np_emif, +		struct device_node *np_ddr, +		struct ddr_device_info *dev_info) +{ +	u32 density = 0, io_width = 0; +	int len; + +	if (of_find_property(np_emif, "cs1-used", &len)) +		dev_info->cs1_used = true; + +	if (of_find_property(np_emif, "cal-resistor-per-cs", &len)) +		dev_info->cal_resistors_per_cs = true; + +	if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4")) +		dev_info->type = DDR_TYPE_LPDDR2_S4; +	else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2")) +		dev_info->type = DDR_TYPE_LPDDR2_S2; + +	of_property_read_u32(np_ddr, "density", &density); +	of_property_read_u32(np_ddr, "io-width", &io_width); + +	/* Convert from density in Mb to the density encoding in jedc_ddr.h */ +	if (density & (density - 1)) +		dev_info->density = 0; +	else +		dev_info->density = __fls(density) - 5; + +	/* Convert from io_width in bits to io_width encoding in jedc_ddr.h */ +	if (io_width & (io_width - 1)) +		dev_info->io_width = 0; +	else +		dev_info->io_width = __fls(io_width) - 1; +} + +static struct emif_data * __init_or_module of_get_memory_device_details( +		struct device_node *np_emif, struct device *dev) +{ +	struct emif_data		*emif = NULL; +	struct ddr_device_info		*dev_info = NULL; +	struct emif_platform_data	*pd = NULL; +	struct device_node		*np_ddr; +	int				len; + +	np_ddr = of_parse_phandle(np_emif, "device-handle", 0); +	if (!np_ddr) +		goto error; +	emif	= devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL); +	pd	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); +	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); + +	if (!emif || !pd || !dev_info) { +		dev_err(dev, "%s: Out of memory!!\n", +			__func__); +		goto error; +	} + +	emif->plat_data		= pd; +	pd->device_info		= dev_info; +	emif->dev		= dev; +	emif->np_ddr		= np_ddr; +	emif->temperature_level	= SDRAM_TEMP_NOMINAL; + +	if (of_device_is_compatible(np_emif, "ti,emif-4d")) +		emif->plat_data->ip_rev = EMIF_4D; +	else if (of_device_is_compatible(np_emif, "ti,emif-4d5")) +		emif->plat_data->ip_rev = EMIF_4D5; + +	of_property_read_u32(np_emif, "phy-type", &pd->phy_type); + +	if (of_find_property(np_emif, "hw-caps-ll-interface", &len)) +		pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE; + +	of_get_ddr_info(np_emif, np_ddr, dev_info); +	if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density, +			pd->device_info->io_width, pd->phy_type, pd->ip_rev, +			emif->dev)) { +		dev_err(dev, "%s: invalid device data!!\n", __func__); +		goto error; +	} +	/* +	 * For EMIF instances other than EMIF1 see if the devices connected +	 * are exactly same as on EMIF1(which is typically the case). If so, +	 * mark it as a duplicate of EMIF1. This will save some memory and +	 * computation. +	 */ +	if (emif1 && emif1->np_ddr == np_ddr) { +		emif->duplicate = true; +		goto out; +	} else if (emif1) { +		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", +			__func__); +	} + +	of_get_custom_configs(np_emif, emif); +	emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev, +					emif->plat_data->device_info->type, +					&emif->plat_data->timings_arr_size); + +	emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev); +	goto out; + +error: +	return NULL; +out: +	return emif; +} + +#else + +static struct emif_data * __init_or_module of_get_memory_device_details( +		struct device_node *np_emif, struct device *dev) +{ +	return NULL; +} +#endif + +static struct emif_data *__init_or_module get_device_details( +		struct platform_device *pdev) +{ +	u32				size; +	struct emif_data		*emif = NULL; +	struct ddr_device_info		*dev_info; +	struct emif_custom_configs	*cust_cfgs; +	struct emif_platform_data	*pd; +	struct device			*dev; +	void				*temp; + +	pd = pdev->dev.platform_data; +	dev = &pdev->dev; + +	if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type, +			pd->device_info->density, pd->device_info->io_width, +			pd->phy_type, pd->ip_rev, dev))) { +		dev_err(dev, "%s: invalid device data\n", __func__); +		goto error; +	} + +	emif	= devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL); +	temp	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); +	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); + +	if (!emif || !pd || !dev_info) { +		dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__); +		goto error; +	} + +	memcpy(temp, pd, sizeof(*pd)); +	pd = temp; +	memcpy(dev_info, pd->device_info, sizeof(*dev_info)); + +	pd->device_info		= dev_info; +	emif->plat_data		= pd; +	emif->dev		= dev; +	emif->temperature_level	= SDRAM_TEMP_NOMINAL; + +	/* +	 * For EMIF instances other than EMIF1 see if the devices connected +	 * are exactly same as on EMIF1(which is typically the case). If so, +	 * mark it as a duplicate of EMIF1 and skip copying timings data. +	 * This will save some memory and some computation later. +	 */ +	emif->duplicate = emif1 && (memcmp(dev_info, +		emif1->plat_data->device_info, +		sizeof(struct ddr_device_info)) == 0); + +	if (emif->duplicate) { +		pd->timings = NULL; +		pd->min_tck = NULL; +		goto out; +	} else if (emif1) { +		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", +			__func__); +	} + +	/* +	 * Copy custom configs - ignore allocation error, if any, as +	 * custom_configs is not very critical +	 */ +	cust_cfgs = pd->custom_configs; +	if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) { +		temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL); +		if (temp) +			memcpy(temp, cust_cfgs, sizeof(*cust_cfgs)); +		else +			dev_warn(dev, "%s:%d: allocation error\n", __func__, +				__LINE__); +		pd->custom_configs = temp; +	} + +	/* +	 * Copy timings and min-tck values from platform data. If it is not +	 * available or if memory allocation fails, use JEDEC defaults +	 */ +	size = sizeof(struct lpddr2_timings) * pd->timings_arr_size; +	if (pd->timings) { +		temp = devm_kzalloc(dev, size, GFP_KERNEL); +		if (temp) { +			memcpy(temp, pd->timings, size); +			pd->timings = temp; +		} else { +			dev_warn(dev, "%s:%d: allocation error\n", __func__, +				__LINE__); +			get_default_timings(emif); +		} +	} else { +		get_default_timings(emif); +	} + +	if (pd->min_tck) { +		temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL); +		if (temp) { +			memcpy(temp, pd->min_tck, sizeof(*pd->min_tck)); +			pd->min_tck = temp; +		} else { +			dev_warn(dev, "%s:%d: allocation error\n", __func__, +				__LINE__); +			pd->min_tck = &lpddr2_jedec_min_tck; +		} +	} else { +		pd->min_tck = &lpddr2_jedec_min_tck; +	} + +out: +	return emif; + +error: +	return NULL; +} + +static int __init_or_module emif_probe(struct platform_device *pdev) +{ +	struct emif_data	*emif; +	struct resource		*res; +	int			irq; + +	if (pdev->dev.of_node) +		emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev); +	else +		emif = get_device_details(pdev); + +	if (!emif) { +		pr_err("%s: error getting device data\n", __func__); +		goto error; +	} + +	list_add(&emif->node, &device_list); +	emif->addressing = get_addressing_table(emif->plat_data->device_info); + +	/* Save pointers to each other in emif and device structures */ +	emif->dev = &pdev->dev; +	platform_set_drvdata(pdev, emif); + +	res = platform_get_resource(pdev, IORESOURCE_MEM, 0); +	emif->base = devm_ioremap_resource(emif->dev, res); +	if (IS_ERR(emif->base)) +		goto error; + +	irq = platform_get_irq(pdev, 0); +	if (irq < 0) { +		dev_err(emif->dev, "%s: error getting IRQ resource - %d\n", +			__func__, irq); +		goto error; +	} + +	emif_onetime_settings(emif); +	emif_debugfs_init(emif); +	disable_and_clear_all_interrupts(emif); +	setup_interrupts(emif, irq); + +	/* One-time actions taken on probing the first device */ +	if (!emif1) { +		emif1 = emif; +		spin_lock_init(&emif_lock); + +		/* +		 * TODO: register notifiers for frequency and voltage +		 * change here once the respective frameworks are +		 * available +		 */ +	} + +	dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n", +		__func__, emif->base, irq); + +	return 0; +error: +	return -ENODEV; +} + +static int __exit emif_remove(struct platform_device *pdev) +{ +	struct emif_data *emif = platform_get_drvdata(pdev); + +	emif_debugfs_exit(emif); + +	return 0; +} + +static void emif_shutdown(struct platform_device *pdev) +{ +	struct emif_data	*emif = platform_get_drvdata(pdev); + +	disable_and_clear_all_interrupts(emif); +} + +static int get_emif_reg_values(struct emif_data *emif, u32 freq, +		struct emif_regs *regs) +{ +	u32				cs1_used, ip_rev, phy_type; +	u32				cl, type; +	const struct lpddr2_timings	*timings; +	const struct lpddr2_min_tck	*min_tck; +	const struct ddr_device_info	*device_info; +	const struct lpddr2_addressing	*addressing; +	struct emif_data		*emif_for_calc; +	struct device			*dev; +	const struct emif_custom_configs *custom_configs; + +	dev = emif->dev; +	/* +	 * If the devices on this EMIF instance is duplicate of EMIF1, +	 * use EMIF1 details for the calculation +	 */ +	emif_for_calc	= emif->duplicate ? emif1 : emif; +	timings		= get_timings_table(emif_for_calc, freq); +	addressing	= emif_for_calc->addressing; +	if (!timings || !addressing) { +		dev_err(dev, "%s: not enough data available for %dHz", +			__func__, freq); +		return -1; +	} + +	device_info	= emif_for_calc->plat_data->device_info; +	type		= device_info->type; +	cs1_used	= device_info->cs1_used; +	ip_rev		= emif_for_calc->plat_data->ip_rev; +	phy_type	= emif_for_calc->plat_data->phy_type; + +	min_tck		= emif_for_calc->plat_data->min_tck; +	custom_configs	= emif_for_calc->plat_data->custom_configs; + +	set_ddr_clk_period(freq); + +	regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing); +	regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck, +			addressing); +	regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck, +			addressing, type); +	regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck, +		addressing, type, ip_rev, EMIF_NORMAL_TIMINGS); + +	cl = get_cl(emif); + +	if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) { +		regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d( +			timings, freq, cl); +	} else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) { +		regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl); +		regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5(); +		regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5(); +		regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5(); +	} else { +		return -1; +	} + +	/* Only timeout values in pwr_mgmt_ctrl_shdw register */ +	regs->pwr_mgmt_ctrl_shdw = +		get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) & +		(CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK); + +	if (ip_rev & EMIF_4D) { +		regs->read_idle_ctrl_shdw_normal = +			get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE); + +		regs->read_idle_ctrl_shdw_volt_ramp = +			get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING); +	} else if (ip_rev & EMIF_4D5) { +		regs->dll_calib_ctrl_shdw_normal = +			get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE); + +		regs->dll_calib_ctrl_shdw_volt_ramp = +			get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING); +	} + +	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { +		regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4, +			addressing); + +		regs->sdram_tim1_shdw_derated = +			get_sdram_tim_1_shdw_derated(timings, min_tck, +				addressing); + +		regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings, +			min_tck, addressing, type, ip_rev, +			EMIF_DERATED_TIMINGS); +	} + +	regs->freq = freq; + +	return 0; +} + +/* + * get_regs() - gets the cached emif_regs structure for a given EMIF instance + * given frequency(freq): + * + * As an optimisation, every EMIF instance other than EMIF1 shares the + * register cache with EMIF1 if the devices connected on this instance + * are same as that on EMIF1(indicated by the duplicate flag) + * + * If we do not have an entry corresponding to the frequency given, we + * allocate a new entry and calculate the values + * + * Upon finding the right reg dump, save it in curr_regs. It can be + * directly used for thermal de-rating and voltage ramping changes. + */ +static struct emif_regs *get_regs(struct emif_data *emif, u32 freq) +{ +	int			i; +	struct emif_regs	**regs_cache; +	struct emif_regs	*regs = NULL; +	struct device		*dev; + +	dev = emif->dev; +	if (emif->curr_regs && emif->curr_regs->freq == freq) { +		dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq); +		return emif->curr_regs; +	} + +	if (emif->duplicate) +		regs_cache = emif1->regs_cache; +	else +		regs_cache = emif->regs_cache; + +	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { +		if (regs_cache[i]->freq == freq) { +			regs = regs_cache[i]; +			dev_dbg(dev, +				"%s: reg dump found in reg cache for %u Hz\n", +				__func__, freq); +			break; +		} +	} + +	/* +	 * If we don't have an entry for this frequency in the cache create one +	 * and calculate the values +	 */ +	if (!regs) { +		regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC); +		if (!regs) +			return NULL; + +		if (get_emif_reg_values(emif, freq, regs)) { +			devm_kfree(emif->dev, regs); +			return NULL; +		} + +		/* +		 * Now look for an un-used entry in the cache and save the +		 * newly created struct. If there are no free entries +		 * over-write the last entry +		 */ +		for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) +			; + +		if (i >= EMIF_MAX_NUM_FREQUENCIES) { +			dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n", +				__func__); +			i = EMIF_MAX_NUM_FREQUENCIES - 1; +			devm_kfree(emif->dev, regs_cache[i]); +		} +		regs_cache[i] = regs; +	} + +	return regs; +} + +static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state) +{ +	dev_dbg(emif->dev, "%s: voltage notification : %d", __func__, +		volt_state); + +	if (!emif->curr_regs) { +		dev_err(emif->dev, +			"%s: volt-notify before registers are ready: %d\n", +			__func__, volt_state); +		return; +	} + +	setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state); +} + +/* + * TODO: voltage notify handling should be hooked up to + * regulator framework as soon as the necessary support + * is available in mainline kernel. This function is un-used + * right now. + */ +static void __attribute__((unused)) volt_notify_handling(u32 volt_state) +{ +	struct emif_data *emif; + +	spin_lock_irqsave(&emif_lock, irq_state); + +	list_for_each_entry(emif, &device_list, node) +		do_volt_notify_handling(emif, volt_state); +	do_freq_update(); + +	spin_unlock_irqrestore(&emif_lock, irq_state); +} + +static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq) +{ +	struct emif_regs *regs; + +	regs = get_regs(emif, new_freq); +	if (!regs) +		return; + +	emif->curr_regs = regs; + +	/* +	 * Update the shadow registers: +	 * Temperature and voltage-ramp sensitive settings are also configured +	 * in terms of DDR cycles. So, we need to update them too when there +	 * is a freq change +	 */ +	dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz", +		__func__, new_freq); +	setup_registers(emif, regs); +	setup_temperature_sensitive_regs(emif, regs); +	setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE); + +	/* +	 * Part of workaround for errata i728. See do_freq_update() +	 * for more details +	 */ +	if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) +		set_lpmode(emif, EMIF_LP_MODE_DISABLE); +} + +/* + * TODO: frequency notify handling should be hooked up to + * clock framework as soon as the necessary support is + * available in mainline kernel. This function is un-used + * right now. + */ +static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq) +{ +	struct emif_data *emif; + +	/* +	 * NOTE: we are taking the spin-lock here and releases it +	 * only in post-notifier. This doesn't look good and +	 * Sparse complains about it, but this seems to be +	 * un-avoidable. We need to lock a sequence of events +	 * that is split between EMIF and clock framework. +	 * +	 * 1. EMIF driver updates EMIF timings in shadow registers in the +	 *    frequency pre-notify callback from clock framework +	 * 2. clock framework sets up the registers for the new frequency +	 * 3. clock framework initiates a hw-sequence that updates +	 *    the frequency EMIF timings synchronously. +	 * +	 * All these 3 steps should be performed as an atomic operation +	 * vis-a-vis similar sequence in the EMIF interrupt handler +	 * for temperature events. Otherwise, there could be race +	 * conditions that could result in incorrect EMIF timings for +	 * a given frequency +	 */ +	spin_lock_irqsave(&emif_lock, irq_state); + +	list_for_each_entry(emif, &device_list, node) +		do_freq_pre_notify_handling(emif, new_freq); +} + +static void do_freq_post_notify_handling(struct emif_data *emif) +{ +	/* +	 * Part of workaround for errata i728. See do_freq_update() +	 * for more details +	 */ +	if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) +		set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); +} + +/* + * TODO: frequency notify handling should be hooked up to + * clock framework as soon as the necessary support is + * available in mainline kernel. This function is un-used + * right now. + */ +static void __attribute__((unused)) freq_post_notify_handling(void) +{ +	struct emif_data *emif; + +	list_for_each_entry(emif, &device_list, node) +		do_freq_post_notify_handling(emif); + +	/* +	 * Lock is done in pre-notify handler. See freq_pre_notify_handling() +	 * for more details +	 */ +	spin_unlock_irqrestore(&emif_lock, irq_state); +} + +#if defined(CONFIG_OF) +static const struct of_device_id emif_of_match[] = { +		{ .compatible = "ti,emif-4d" }, +		{ .compatible = "ti,emif-4d5" }, +		{}, +}; +MODULE_DEVICE_TABLE(of, emif_of_match); +#endif + +static struct platform_driver emif_driver = { +	.remove		= __exit_p(emif_remove), +	.shutdown	= emif_shutdown, +	.driver = { +		.name = "emif", +		.of_match_table = of_match_ptr(emif_of_match), +	}, +}; + +module_platform_driver_probe(emif_driver, emif_probe); + +MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver"); +MODULE_LICENSE("GPL"); +MODULE_ALIAS("platform:emif"); +MODULE_AUTHOR("Texas Instruments Inc");  | 
