diff options
Diffstat (limited to 'drivers/media/i2c/smiapp/smiapp-core.c')
| -rw-r--r-- | drivers/media/i2c/smiapp/smiapp-core.c | 2881 | 
1 files changed, 2881 insertions, 0 deletions
diff --git a/drivers/media/i2c/smiapp/smiapp-core.c b/drivers/media/i2c/smiapp/smiapp-core.c new file mode 100644 index 00000000000..06fb03291d5 --- /dev/null +++ b/drivers/media/i2c/smiapp/smiapp-core.c @@ -0,0 +1,2881 @@ +/* + * drivers/media/i2c/smiapp/smiapp-core.c + * + * Generic driver for SMIA/SMIA++ compliant camera modules + * + * Copyright (C) 2010--2012 Nokia Corporation + * Contact: Sakari Ailus <sakari.ailus@iki.fi> + * + * Based on smiapp driver by Vimarsh Zutshi + * Based on jt8ev1.c by Vimarsh Zutshi + * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com> + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * version 2 as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA + * 02110-1301 USA + * + */ + +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/device.h> +#include <linux/gpio.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/regulator/consumer.h> +#include <linux/v4l2-mediabus.h> +#include <media/v4l2-device.h> + +#include "smiapp.h" + +#define SMIAPP_ALIGN_DIM(dim, flags)	\ +	((flags) & V4L2_SEL_FLAG_GE	\ +	 ? ALIGN((dim), 2)		\ +	 : (dim) & ~1) + +/* + * smiapp_module_idents - supported camera modules + */ +static const struct smiapp_module_ident smiapp_module_idents[] = { +	SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"), +	SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"), +	SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"), +	SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"), +	SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"), +	SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk), +	SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"), +	SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"), +	SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk), +	SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk), +	SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk), +}; + +/* + * + * Dynamic Capability Identification + * + */ + +static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor) +{ +	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); +	u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc; +	unsigned int i; +	int rval; +	int line_count = 0; +	int embedded_start = -1, embedded_end = -1; +	int image_start = 0; + +	rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE, +			   &fmt_model_type); +	if (rval) +		return rval; + +	rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE, +			   &fmt_model_subtype); +	if (rval) +		return rval; + +	ncol_desc = (fmt_model_subtype +		     & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK) +		>> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT; +	nrow_desc = fmt_model_subtype +		& SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK; + +	dev_dbg(&client->dev, "format_model_type %s\n", +		fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE +		? "2 byte" : +		fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE +		? "4 byte" : "is simply bad"); + +	for (i = 0; i < ncol_desc + nrow_desc; i++) { +		u32 desc; +		u32 pixelcode; +		u32 pixels; +		char *which; +		char *what; + +		if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) { +			rval = smiapp_read( +				sensor, +				SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i), +				&desc); +			if (rval) +				return rval; + +			pixelcode = +				(desc +				 & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK) +				>> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT; +			pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK; +		} else if (fmt_model_type +			   == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) { +			rval = smiapp_read( +				sensor, +				SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i), +				&desc); +			if (rval) +				return rval; + +			pixelcode = +				(desc +				 & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK) +				>> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT; +			pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK; +		} else { +			dev_dbg(&client->dev, +				"invalid frame format model type %d\n", +				fmt_model_type); +			return -EINVAL; +		} + +		if (i < ncol_desc) +			which = "columns"; +		else +			which = "rows"; + +		switch (pixelcode) { +		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED: +			what = "embedded"; +			break; +		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY: +			what = "dummy"; +			break; +		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK: +			what = "black"; +			break; +		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK: +			what = "dark"; +			break; +		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE: +			what = "visible"; +			break; +		default: +			what = "invalid"; +			dev_dbg(&client->dev, "pixelcode %d\n", pixelcode); +			break; +		} + +		dev_dbg(&client->dev, "%s pixels: %d %s\n", +			what, pixels, which); + +		if (i < ncol_desc) +			continue; + +		/* Handle row descriptors */ +		if (pixelcode +		    == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED) { +			embedded_start = line_count; +		} else { +			if (pixelcode == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE +			    || pixels >= sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES] / 2) +				image_start = line_count; +			if (embedded_start != -1 && embedded_end == -1) +				embedded_end = line_count; +		} +		line_count += pixels; +	} + +	if (embedded_start == -1 || embedded_end == -1) { +		embedded_start = 0; +		embedded_end = 0; +	} + +	dev_dbg(&client->dev, "embedded data from lines %d to %d\n", +		embedded_start, embedded_end); +	dev_dbg(&client->dev, "image data starts at line %d\n", image_start); + +	return 0; +} + +static int smiapp_pll_configure(struct smiapp_sensor *sensor) +{ +	struct smiapp_pll *pll = &sensor->pll; +	int rval; + +	rval = smiapp_write( +		sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt_pix_clk_div); +	if (rval < 0) +		return rval; + +	rval = smiapp_write( +		sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt_sys_clk_div); +	if (rval < 0) +		return rval; + +	rval = smiapp_write( +		sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div); +	if (rval < 0) +		return rval; + +	rval = smiapp_write( +		sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier); +	if (rval < 0) +		return rval; + +	/* Lane op clock ratio does not apply here. */ +	rval = smiapp_write( +		sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS, +		DIV_ROUND_UP(pll->op_sys_clk_freq_hz, 1000000 / 256 / 256)); +	if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0) +		return rval; + +	rval = smiapp_write( +		sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op_pix_clk_div); +	if (rval < 0) +		return rval; + +	return smiapp_write( +		sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op_sys_clk_div); +} + +static int smiapp_pll_update(struct smiapp_sensor *sensor) +{ +	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); +	struct smiapp_pll_limits lim = { +		.min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV], +		.max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV], +		.min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ], +		.max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ], +		.min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER], +		.max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER], +		.min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ], +		.max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ], + +		.op.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV], +		.op.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV], +		.op.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV], +		.op.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV], +		.op.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ], +		.op.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ], +		.op.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ], +		.op.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ], + +		.vt.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV], +		.vt.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV], +		.vt.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV], +		.vt.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV], +		.vt.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ], +		.vt.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ], +		.vt.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ], +		.vt.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ], + +		.min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN], +		.min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK], +	}; +	struct smiapp_pll *pll = &sensor->pll; +	int rval; + +	if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0) { +		/* +		 * Fill in operational clock divisors limits from the +		 * video timing ones. On profile 0 sensors the +		 * requirements regarding them are essentially the +		 * same as on VT ones. +		 */ +		lim.op = lim.vt; +	} + +	pll->binning_horizontal = sensor->binning_horizontal; +	pll->binning_vertical = sensor->binning_vertical; +	pll->link_freq = +		sensor->link_freq->qmenu_int[sensor->link_freq->val]; +	pll->scale_m = sensor->scale_m; +	pll->bits_per_pixel = sensor->csi_format->compressed; + +	rval = smiapp_pll_calculate(&client->dev, &lim, pll); +	if (rval < 0) +		return rval; + +	sensor->pixel_rate_parray->cur.val64 = pll->vt_pix_clk_freq_hz; +	sensor->pixel_rate_csi->cur.val64 = pll->pixel_rate_csi; + +	return 0; +} + + +/* + * + * V4L2 Controls handling + * + */ + +static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor) +{ +	struct v4l2_ctrl *ctrl = sensor->exposure; +	int max; + +	max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height +		+ sensor->vblank->val +		- sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN]; + +	ctrl->maximum = max; +	if (ctrl->default_value > max) +		ctrl->default_value = max; +	if (ctrl->val > max) +		ctrl->val = max; +	if (ctrl->cur.val > max) +		ctrl->cur.val = max; +} + +/* + * Order matters. + * + * 1. Bits-per-pixel, descending. + * 2. Bits-per-pixel compressed, descending. + * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel + *    orders must be defined. + */ +static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = { +	{ V4L2_MBUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, }, +	{ V4L2_MBUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, }, +	{ V4L2_MBUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, }, +	{ V4L2_MBUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, }, +	{ V4L2_MBUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, }, +	{ V4L2_MBUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, }, +	{ V4L2_MBUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, }, +	{ V4L2_MBUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, }, +	{ V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, }, +	{ V4L2_MBUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, }, +	{ V4L2_MBUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, }, +	{ V4L2_MBUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, }, +	{ V4L2_MBUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, }, +	{ V4L2_MBUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, }, +	{ V4L2_MBUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, }, +	{ V4L2_MBUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, }, +}; + +const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" }; + +#define to_csi_format_idx(fmt) (((unsigned long)(fmt)			\ +				 - (unsigned long)smiapp_csi_data_formats) \ +				/ sizeof(*smiapp_csi_data_formats)) + +static u32 smiapp_pixel_order(struct smiapp_sensor *sensor) +{ +	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); +	int flip = 0; + +	if (sensor->hflip) { +		if (sensor->hflip->val) +			flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP; + +		if (sensor->vflip->val) +			flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP; +	} + +	flip ^= sensor->hvflip_inv_mask; + +	dev_dbg(&client->dev, "flip %d\n", flip); +	return sensor->default_pixel_order ^ flip; +} + +static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor) +{ +	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); +	unsigned int csi_format_idx = +		to_csi_format_idx(sensor->csi_format) & ~3; +	unsigned int internal_csi_format_idx = +		to_csi_format_idx(sensor->internal_csi_format) & ~3; +	unsigned int pixel_order = smiapp_pixel_order(sensor); + +	sensor->mbus_frame_fmts = +		sensor->default_mbus_frame_fmts << pixel_order; +	sensor->csi_format = +		&smiapp_csi_data_formats[csi_format_idx + pixel_order]; +	sensor->internal_csi_format = +		&smiapp_csi_data_formats[internal_csi_format_idx +					 + pixel_order]; + +	BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order +	       >= ARRAY_SIZE(smiapp_csi_data_formats)); + +	dev_dbg(&client->dev, "new pixel order %s\n", +		pixel_order_str[pixel_order]); +} + +static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl) +{ +	struct smiapp_sensor *sensor = +		container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler) +			->sensor; +	u32 orient = 0; +	int exposure; +	int rval; + +	switch (ctrl->id) { +	case V4L2_CID_ANALOGUE_GAIN: +		return smiapp_write( +			sensor, +			SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val); + +	case V4L2_CID_EXPOSURE: +		return smiapp_write( +			sensor, +			SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val); + +	case V4L2_CID_HFLIP: +	case V4L2_CID_VFLIP: +		if (sensor->streaming) +			return -EBUSY; + +		if (sensor->hflip->val) +			orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP; + +		if (sensor->vflip->val) +			orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP; + +		orient ^= sensor->hvflip_inv_mask; +		rval = smiapp_write(sensor, +				    SMIAPP_REG_U8_IMAGE_ORIENTATION, +				    orient); +		if (rval < 0) +			return rval; + +		smiapp_update_mbus_formats(sensor); + +		return 0; + +	case V4L2_CID_VBLANK: +		exposure = sensor->exposure->val; + +		__smiapp_update_exposure_limits(sensor); + +		if (exposure > sensor->exposure->maximum) { +			sensor->exposure->val = +				sensor->exposure->maximum; +			rval = smiapp_set_ctrl( +				sensor->exposure); +			if (rval < 0) +				return rval; +		} + +		return smiapp_write( +			sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES, +			sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height +			+ ctrl->val); + +	case V4L2_CID_HBLANK: +		return smiapp_write( +			sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK, +			sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width +			+ ctrl->val); + +	case V4L2_CID_LINK_FREQ: +		if (sensor->streaming) +			return -EBUSY; + +		return smiapp_pll_update(sensor); + +	default: +		return -EINVAL; +	} +} + +static const struct v4l2_ctrl_ops smiapp_ctrl_ops = { +	.s_ctrl = smiapp_set_ctrl, +}; + +static int smiapp_init_controls(struct smiapp_sensor *sensor) +{ +	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); +	unsigned int max; +	int rval; + +	rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 7); +	if (rval) +		return rval; +	sensor->pixel_array->ctrl_handler.lock = &sensor->mutex; + +	sensor->analog_gain = v4l2_ctrl_new_std( +		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops, +		V4L2_CID_ANALOGUE_GAIN, +		sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN], +		sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX], +		max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U), +		sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]); + +	/* Exposure limits will be updated soon, use just something here. */ +	sensor->exposure = v4l2_ctrl_new_std( +		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops, +		V4L2_CID_EXPOSURE, 0, 0, 1, 0); + +	sensor->hflip = v4l2_ctrl_new_std( +		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops, +		V4L2_CID_HFLIP, 0, 1, 1, 0); +	sensor->vflip = v4l2_ctrl_new_std( +		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops, +		V4L2_CID_VFLIP, 0, 1, 1, 0); + +	sensor->vblank = v4l2_ctrl_new_std( +		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops, +		V4L2_CID_VBLANK, 0, 1, 1, 0); + +	if (sensor->vblank) +		sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE; + +	sensor->hblank = v4l2_ctrl_new_std( +		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops, +		V4L2_CID_HBLANK, 0, 1, 1, 0); + +	if (sensor->hblank) +		sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE; + +	sensor->pixel_rate_parray = v4l2_ctrl_new_std( +		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops, +		V4L2_CID_PIXEL_RATE, 0, 0, 1, 0); + +	if (sensor->pixel_array->ctrl_handler.error) { +		dev_err(&client->dev, +			"pixel array controls initialization failed (%d)\n", +			sensor->pixel_array->ctrl_handler.error); +		rval = sensor->pixel_array->ctrl_handler.error; +		goto error; +	} + +	sensor->pixel_array->sd.ctrl_handler = +		&sensor->pixel_array->ctrl_handler; + +	v4l2_ctrl_cluster(2, &sensor->hflip); + +	rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0); +	if (rval) +		goto error; +	sensor->src->ctrl_handler.lock = &sensor->mutex; + +	for (max = 0; sensor->platform_data->op_sys_clock[max + 1]; max++); + +	sensor->link_freq = v4l2_ctrl_new_int_menu( +		&sensor->src->ctrl_handler, &smiapp_ctrl_ops, +		V4L2_CID_LINK_FREQ, max, 0, +		sensor->platform_data->op_sys_clock); + +	sensor->pixel_rate_csi = v4l2_ctrl_new_std( +		&sensor->src->ctrl_handler, &smiapp_ctrl_ops, +		V4L2_CID_PIXEL_RATE, 0, 0, 1, 0); + +	if (sensor->src->ctrl_handler.error) { +		dev_err(&client->dev, +			"src controls initialization failed (%d)\n", +			sensor->src->ctrl_handler.error); +		rval = sensor->src->ctrl_handler.error; +		goto error; +	} + +	sensor->src->sd.ctrl_handler = +		&sensor->src->ctrl_handler; + +	return 0; + +error: +	v4l2_ctrl_handler_free(&sensor->pixel_array->ctrl_handler); +	v4l2_ctrl_handler_free(&sensor->src->ctrl_handler); + +	return rval; +} + +static void smiapp_free_controls(struct smiapp_sensor *sensor) +{ +	unsigned int i; + +	for (i = 0; i < sensor->ssds_used; i++) +		v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler); +} + +static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit, +			     unsigned int n) +{ +	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); +	unsigned int i; +	u32 val; +	int rval; + +	for (i = 0; i < n; i++) { +		rval = smiapp_read( +			sensor, smiapp_reg_limits[limit[i]].addr, &val); +		if (rval) +			return rval; +		sensor->limits[limit[i]] = val; +		dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n", +			smiapp_reg_limits[limit[i]].addr, +			smiapp_reg_limits[limit[i]].what, val, val); +	} + +	return 0; +} + +static int smiapp_get_all_limits(struct smiapp_sensor *sensor) +{ +	unsigned int i; +	int rval; + +	for (i = 0; i < SMIAPP_LIMIT_LAST; i++) { +		rval = smiapp_get_limits(sensor, &i, 1); +		if (rval < 0) +			return rval; +	} + +	if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0) +		smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16); + +	return 0; +} + +static int smiapp_get_limits_binning(struct smiapp_sensor *sensor) +{ +	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); +	static u32 const limits[] = { +		SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN, +		SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN, +		SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN, +		SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN, +		SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN, +		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN, +		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN, +	}; +	static u32 const limits_replace[] = { +		SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES, +		SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES, +		SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK, +		SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK, +		SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK, +		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN, +		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN, +	}; +	unsigned int i; +	int rval; + +	if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] == +	    SMIAPP_BINNING_CAPABILITY_NO) { +		for (i = 0; i < ARRAY_SIZE(limits); i++) +			sensor->limits[limits[i]] = +				sensor->limits[limits_replace[i]]; + +		return 0; +	} + +	rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits)); +	if (rval < 0) +		return rval; + +	/* +	 * Sanity check whether the binning limits are valid. If not, +	 * use the non-binning ones. +	 */ +	if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] +	    && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] +	    && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]) +		return 0; + +	for (i = 0; i < ARRAY_SIZE(limits); i++) { +		dev_dbg(&client->dev, +			"replace limit 0x%8.8x \"%s\" = %d, 0x%x\n", +			smiapp_reg_limits[limits[i]].addr, +			smiapp_reg_limits[limits[i]].what, +			sensor->limits[limits_replace[i]], +			sensor->limits[limits_replace[i]]); +		sensor->limits[limits[i]] = +			sensor->limits[limits_replace[i]]; +	} + +	return 0; +} + +static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor) +{ +	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); +	unsigned int type, n; +	unsigned int i, pixel_order; +	int rval; + +	rval = smiapp_read( +		sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type); +	if (rval) +		return rval; + +	dev_dbg(&client->dev, "data_format_model_type %d\n", type); + +	rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER, +			   &pixel_order); +	if (rval) +		return rval; + +	if (pixel_order >= ARRAY_SIZE(pixel_order_str)) { +		dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order); +		return -EINVAL; +	} + +	dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order, +		pixel_order_str[pixel_order]); + +	switch (type) { +	case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL: +		n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N; +		break; +	case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED: +		n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N; +		break; +	default: +		return -EINVAL; +	} + +	sensor->default_pixel_order = pixel_order; +	sensor->mbus_frame_fmts = 0; + +	for (i = 0; i < n; i++) { +		unsigned int fmt, j; + +		rval = smiapp_read( +			sensor, +			SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt); +		if (rval) +			return rval; + +		dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n", +			i, fmt >> 8, (u8)fmt); + +		for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) { +			const struct smiapp_csi_data_format *f = +				&smiapp_csi_data_formats[j]; + +			if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG) +				continue; + +			if (f->width != fmt >> 8 || f->compressed != (u8)fmt) +				continue; + +			dev_dbg(&client->dev, "jolly good! %d\n", j); + +			sensor->default_mbus_frame_fmts |= 1 << j; +			if (!sensor->csi_format +			    || f->width > sensor->csi_format->width +			    || (f->width == sensor->csi_format->width +				&& f->compressed +				> sensor->csi_format->compressed)) { +				sensor->csi_format = f; +				sensor->internal_csi_format = f; +			} +		} +	} + +	if (!sensor->csi_format) { +		dev_err(&client->dev, "no supported mbus code found\n"); +		return -EINVAL; +	} + +	smiapp_update_mbus_formats(sensor); + +	return 0; +} + +static void smiapp_update_blanking(struct smiapp_sensor *sensor) +{ +	struct v4l2_ctrl *vblank = sensor->vblank; +	struct v4l2_ctrl *hblank = sensor->hblank; + +	vblank->minimum = +		max_t(int, +		      sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES], +		      sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] - +		      sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height); +	vblank->maximum = +		sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] - +		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height; + +	vblank->val = clamp_t(int, vblank->val, +			      vblank->minimum, vblank->maximum); +	vblank->default_value = vblank->minimum; +	vblank->val = vblank->val; +	vblank->cur.val = vblank->val; + +	hblank->minimum = +		max_t(int, +		      sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] - +		      sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width, +		      sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]); +	hblank->maximum = +		sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] - +		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width; + +	hblank->val = clamp_t(int, hblank->val, +			      hblank->minimum, hblank->maximum); +	hblank->default_value = hblank->minimum; +	hblank->val = hblank->val; +	hblank->cur.val = hblank->val; + +	__smiapp_update_exposure_limits(sensor); +} + +static int smiapp_update_mode(struct smiapp_sensor *sensor) +{ +	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); +	unsigned int binning_mode; +	int rval; + +	dev_dbg(&client->dev, "frame size: %dx%d\n", +		sensor->src->crop[SMIAPP_PAD_SRC].width, +		sensor->src->crop[SMIAPP_PAD_SRC].height); +	dev_dbg(&client->dev, "csi format width: %d\n", +		sensor->csi_format->width); + +	/* Binning has to be set up here; it affects limits */ +	if (sensor->binning_horizontal == 1 && +	    sensor->binning_vertical == 1) { +		binning_mode = 0; +	} else { +		u8 binning_type = +			(sensor->binning_horizontal << 4) +			| sensor->binning_vertical; + +		rval = smiapp_write( +			sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type); +		if (rval < 0) +			return rval; + +		binning_mode = 1; +	} +	rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode); +	if (rval < 0) +		return rval; + +	/* Get updated limits due to binning */ +	rval = smiapp_get_limits_binning(sensor); +	if (rval < 0) +		return rval; + +	rval = smiapp_pll_update(sensor); +	if (rval < 0) +		return rval; + +	/* Output from pixel array, including blanking */ +	smiapp_update_blanking(sensor); + +	dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val); +	dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val); + +	dev_dbg(&client->dev, "real timeperframe\t100/%d\n", +		sensor->pll.vt_pix_clk_freq_hz / +		((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width +		  + sensor->hblank->val) * +		 (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height +		  + sensor->vblank->val) / 100)); + +	return 0; +} + +/* + * + * SMIA++ NVM handling + * + */ +static int smiapp_read_nvm(struct smiapp_sensor *sensor, +			   unsigned char *nvm) +{ +	u32 i, s, p, np, v; +	int rval = 0, rval2; + +	np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE; +	for (p = 0; p < np; p++) { +		rval = smiapp_write( +			sensor, +			SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p); +		if (rval) +			goto out; + +		rval = smiapp_write(sensor, +				    SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, +				    SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN | +				    SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN); +		if (rval) +			goto out; + +		for (i = 0; i < 1000; i++) { +			rval = smiapp_read( +				sensor, +				SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s); + +			if (rval) +				goto out; + +			if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY) +				break; + +			if (--i == 0) { +				rval = -ETIMEDOUT; +				goto out; +			} + +		} + +		for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) { +			rval = smiapp_read( +				sensor, +				SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i, +				&v); +			if (rval) +				goto out; + +			*nvm++ = v; +		} +	} + +out: +	rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0); +	if (rval < 0) +		return rval; +	else +		return rval2; +} + +/* + * + * SMIA++ CCI address control + * + */ +static int smiapp_change_cci_addr(struct smiapp_sensor *sensor) +{ +	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); +	int rval; +	u32 val; + +	client->addr = sensor->platform_data->i2c_addr_dfl; + +	rval = smiapp_write(sensor, +			    SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, +			    sensor->platform_data->i2c_addr_alt << 1); +	if (rval) +		return rval; + +	client->addr = sensor->platform_data->i2c_addr_alt; + +	/* verify addr change went ok */ +	rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val); +	if (rval) +		return rval; + +	if (val != sensor->platform_data->i2c_addr_alt << 1) +		return -ENODEV; + +	return 0; +} + +/* + * + * SMIA++ Mode Control + * + */ +static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor) +{ +	struct smiapp_flash_strobe_parms *strobe_setup; +	unsigned int ext_freq = sensor->platform_data->ext_clk; +	u32 tmp; +	u32 strobe_adjustment; +	u32 strobe_width_high_rs; +	int rval; + +	strobe_setup = sensor->platform_data->strobe_setup; + +	/* +	 * How to calculate registers related to strobe length. Please +	 * do not change, or if you do at least know what you're +	 * doing. :-) +	 * +	 * Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25 +	 * +	 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl +	 *	/ EXTCLK freq [Hz]) * flash_strobe_adjustment +	 * +	 * tFlash_strobe_width_ctrl E N, [1 - 0xffff] +	 * flash_strobe_adjustment E N, [1 - 0xff] +	 * +	 * The formula above is written as below to keep it on one +	 * line: +	 * +	 * l / 10^6 = w / e * a +	 * +	 * Let's mark w * a by x: +	 * +	 * x = w * a +	 * +	 * Thus, we get: +	 * +	 * x = l * e / 10^6 +	 * +	 * The strobe width must be at least as long as requested, +	 * thus rounding upwards is needed. +	 * +	 * x = (l * e + 10^6 - 1) / 10^6 +	 * ----------------------------- +	 * +	 * Maximum possible accuracy is wanted at all times. Thus keep +	 * a as small as possible. +	 * +	 * Calculate a, assuming maximum w, with rounding upwards: +	 * +	 * a = (x + (2^16 - 1) - 1) / (2^16 - 1) +	 * ------------------------------------- +	 * +	 * Thus, we also get w, with that a, with rounding upwards: +	 * +	 * w = (x + a - 1) / a +	 * ------------------- +	 * +	 * To get limits: +	 * +	 * x E [1, (2^16 - 1) * (2^8 - 1)] +	 * +	 * Substituting maximum x to the original formula (with rounding), +	 * the maximum l is thus +	 * +	 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1 +	 * +	 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e +	 * -------------------------------------------------- +	 * +	 * flash_strobe_length must be clamped between 1 and +	 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq. +	 * +	 * Then, +	 * +	 * flash_strobe_adjustment = ((flash_strobe_length * +	 *	EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1) +	 * +	 * tFlash_strobe_width_ctrl = ((flash_strobe_length * +	 *	EXTCLK freq + 10^6 - 1) / 10^6 + +	 *	flash_strobe_adjustment - 1) / flash_strobe_adjustment +	 */ +	tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) - +		      1000000 + 1, ext_freq); +	strobe_setup->strobe_width_high_us = +		clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp); + +	tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq + +			1000000 - 1), 1000000ULL); +	strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1); +	strobe_width_high_rs = (tmp + strobe_adjustment - 1) / +				strobe_adjustment; + +	rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS, +			    strobe_setup->mode); +	if (rval < 0) +		goto out; + +	rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT, +			    strobe_adjustment); +	if (rval < 0) +		goto out; + +	rval = smiapp_write( +		sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL, +		strobe_width_high_rs); +	if (rval < 0) +		goto out; + +	rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL, +			    strobe_setup->strobe_delay); +	if (rval < 0) +		goto out; + +	rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT, +			    strobe_setup->stobe_start_point); +	if (rval < 0) +		goto out; + +	rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS, +			    strobe_setup->trigger); + +out: +	sensor->platform_data->strobe_setup->trigger = 0; + +	return rval; +} + +/* ----------------------------------------------------------------------------- + * Power management + */ + +static int smiapp_power_on(struct smiapp_sensor *sensor) +{ +	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); +	unsigned int sleep; +	int rval; + +	rval = regulator_enable(sensor->vana); +	if (rval) { +		dev_err(&client->dev, "failed to enable vana regulator\n"); +		return rval; +	} +	usleep_range(1000, 1000); + +	if (sensor->platform_data->set_xclk) +		rval = sensor->platform_data->set_xclk( +			&sensor->src->sd, sensor->platform_data->ext_clk); +	else +		rval = clk_prepare_enable(sensor->ext_clk); +	if (rval < 0) { +		dev_dbg(&client->dev, "failed to enable xclk\n"); +		goto out_xclk_fail; +	} +	usleep_range(1000, 1000); + +	if (gpio_is_valid(sensor->platform_data->xshutdown)) +		gpio_set_value(sensor->platform_data->xshutdown, 1); + +	sleep = SMIAPP_RESET_DELAY(sensor->platform_data->ext_clk); +	usleep_range(sleep, sleep); + +	/* +	 * Failures to respond to the address change command have been noticed. +	 * Those failures seem to be caused by the sensor requiring a longer +	 * boot time than advertised. An additional 10ms delay seems to work +	 * around the issue, but the SMIA++ I2C write retry hack makes the delay +	 * unnecessary. The failures need to be investigated to find a proper +	 * fix, and a delay will likely need to be added here if the I2C write +	 * retry hack is reverted before the root cause of the boot time issue +	 * is found. +	 */ + +	if (sensor->platform_data->i2c_addr_alt) { +		rval = smiapp_change_cci_addr(sensor); +		if (rval) { +			dev_err(&client->dev, "cci address change error\n"); +			goto out_cci_addr_fail; +		} +	} + +	rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET, +			    SMIAPP_SOFTWARE_RESET); +	if (rval < 0) { +		dev_err(&client->dev, "software reset failed\n"); +		goto out_cci_addr_fail; +	} + +	if (sensor->platform_data->i2c_addr_alt) { +		rval = smiapp_change_cci_addr(sensor); +		if (rval) { +			dev_err(&client->dev, "cci address change error\n"); +			goto out_cci_addr_fail; +		} +	} + +	rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE, +			    SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR); +	if (rval) { +		dev_err(&client->dev, "compression mode set failed\n"); +		goto out_cci_addr_fail; +	} + +	rval = smiapp_write( +		sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ, +		sensor->platform_data->ext_clk / (1000000 / (1 << 8))); +	if (rval) { +		dev_err(&client->dev, "extclk frequency set failed\n"); +		goto out_cci_addr_fail; +	} + +	rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE, +			    sensor->platform_data->lanes - 1); +	if (rval) { +		dev_err(&client->dev, "csi lane mode set failed\n"); +		goto out_cci_addr_fail; +	} + +	rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL, +			    SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE); +	if (rval) { +		dev_err(&client->dev, "fast standby set failed\n"); +		goto out_cci_addr_fail; +	} + +	rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE, +			    sensor->platform_data->csi_signalling_mode); +	if (rval) { +		dev_err(&client->dev, "csi signalling mode set failed\n"); +		goto out_cci_addr_fail; +	} + +	/* DPHY control done by sensor based on requested link rate */ +	rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL, +			    SMIAPP_DPHY_CTRL_UI); +	if (rval < 0) +		return rval; + +	rval = smiapp_call_quirk(sensor, post_poweron); +	if (rval) { +		dev_err(&client->dev, "post_poweron quirks failed\n"); +		goto out_cci_addr_fail; +	} + +	/* Are we still initialising...? If yes, return here. */ +	if (!sensor->pixel_array) +		return 0; + +	rval = v4l2_ctrl_handler_setup( +		&sensor->pixel_array->ctrl_handler); +	if (rval) +		goto out_cci_addr_fail; + +	rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler); +	if (rval) +		goto out_cci_addr_fail; + +	mutex_lock(&sensor->mutex); +	rval = smiapp_update_mode(sensor); +	mutex_unlock(&sensor->mutex); +	if (rval < 0) +		goto out_cci_addr_fail; + +	return 0; + +out_cci_addr_fail: +	if (gpio_is_valid(sensor->platform_data->xshutdown)) +		gpio_set_value(sensor->platform_data->xshutdown, 0); +	if (sensor->platform_data->set_xclk) +		sensor->platform_data->set_xclk(&sensor->src->sd, 0); +	else +		clk_disable_unprepare(sensor->ext_clk); + +out_xclk_fail: +	regulator_disable(sensor->vana); +	return rval; +} + +static void smiapp_power_off(struct smiapp_sensor *sensor) +{ +	/* +	 * Currently power/clock to lens are enable/disabled separately +	 * but they are essentially the same signals. So if the sensor is +	 * powered off while the lens is powered on the sensor does not +	 * really see a power off and next time the cci address change +	 * will fail. So do a soft reset explicitly here. +	 */ +	if (sensor->platform_data->i2c_addr_alt) +		smiapp_write(sensor, +			     SMIAPP_REG_U8_SOFTWARE_RESET, +			     SMIAPP_SOFTWARE_RESET); + +	if (gpio_is_valid(sensor->platform_data->xshutdown)) +		gpio_set_value(sensor->platform_data->xshutdown, 0); +	if (sensor->platform_data->set_xclk) +		sensor->platform_data->set_xclk(&sensor->src->sd, 0); +	else +		clk_disable_unprepare(sensor->ext_clk); +	usleep_range(5000, 5000); +	regulator_disable(sensor->vana); +	sensor->streaming = 0; +} + +static int smiapp_set_power(struct v4l2_subdev *subdev, int on) +{ +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	int ret = 0; + +	mutex_lock(&sensor->power_mutex); + +	/* +	 * If the power count is modified from 0 to != 0 or from != 0 +	 * to 0, update the power state. +	 */ +	if (!sensor->power_count == !on) +		goto out; + +	if (on) { +		/* Power on and perform initialisation. */ +		ret = smiapp_power_on(sensor); +		if (ret < 0) +			goto out; +	} else { +		smiapp_power_off(sensor); +	} + +	/* Update the power count. */ +	sensor->power_count += on ? 1 : -1; +	WARN_ON(sensor->power_count < 0); + +out: +	mutex_unlock(&sensor->power_mutex); +	return ret; +} + +/* ----------------------------------------------------------------------------- + * Video stream management + */ + +static int smiapp_start_streaming(struct smiapp_sensor *sensor) +{ +	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); +	int rval; + +	mutex_lock(&sensor->mutex); + +	rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT, +			    (sensor->csi_format->width << 8) | +			    sensor->csi_format->compressed); +	if (rval) +		goto out; + +	rval = smiapp_pll_configure(sensor); +	if (rval) +		goto out; + +	/* Analog crop start coordinates */ +	rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START, +			    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left); +	if (rval < 0) +		goto out; + +	rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START, +			    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top); +	if (rval < 0) +		goto out; + +	/* Analog crop end coordinates */ +	rval = smiapp_write( +		sensor, SMIAPP_REG_U16_X_ADDR_END, +		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left +		+ sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1); +	if (rval < 0) +		goto out; + +	rval = smiapp_write( +		sensor, SMIAPP_REG_U16_Y_ADDR_END, +		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top +		+ sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1); +	if (rval < 0) +		goto out; + +	/* +	 * Output from pixel array, including blanking, is set using +	 * controls below. No need to set here. +	 */ + +	/* Digital crop */ +	if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY] +	    == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) { +		rval = smiapp_write( +			sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET, +			sensor->scaler->crop[SMIAPP_PAD_SINK].left); +		if (rval < 0) +			goto out; + +		rval = smiapp_write( +			sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET, +			sensor->scaler->crop[SMIAPP_PAD_SINK].top); +		if (rval < 0) +			goto out; + +		rval = smiapp_write( +			sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH, +			sensor->scaler->crop[SMIAPP_PAD_SINK].width); +		if (rval < 0) +			goto out; + +		rval = smiapp_write( +			sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT, +			sensor->scaler->crop[SMIAPP_PAD_SINK].height); +		if (rval < 0) +			goto out; +	} + +	/* Scaling */ +	if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY] +	    != SMIAPP_SCALING_CAPABILITY_NONE) { +		rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE, +				    sensor->scaling_mode); +		if (rval < 0) +			goto out; + +		rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M, +				    sensor->scale_m); +		if (rval < 0) +			goto out; +	} + +	/* Output size from sensor */ +	rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE, +			    sensor->src->crop[SMIAPP_PAD_SRC].width); +	if (rval < 0) +		goto out; +	rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE, +			    sensor->src->crop[SMIAPP_PAD_SRC].height); +	if (rval < 0) +		goto out; + +	if ((sensor->flash_capability & +	     (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE | +	      SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) && +	    sensor->platform_data->strobe_setup != NULL && +	    sensor->platform_data->strobe_setup->trigger != 0) { +		rval = smiapp_setup_flash_strobe(sensor); +		if (rval) +			goto out; +	} + +	rval = smiapp_call_quirk(sensor, pre_streamon); +	if (rval) { +		dev_err(&client->dev, "pre_streamon quirks failed\n"); +		goto out; +	} + +	rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT, +			    SMIAPP_MODE_SELECT_STREAMING); + +out: +	mutex_unlock(&sensor->mutex); + +	return rval; +} + +static int smiapp_stop_streaming(struct smiapp_sensor *sensor) +{ +	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); +	int rval; + +	mutex_lock(&sensor->mutex); +	rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT, +			    SMIAPP_MODE_SELECT_SOFTWARE_STANDBY); +	if (rval) +		goto out; + +	rval = smiapp_call_quirk(sensor, post_streamoff); +	if (rval) +		dev_err(&client->dev, "post_streamoff quirks failed\n"); + +out: +	mutex_unlock(&sensor->mutex); +	return rval; +} + +/* ----------------------------------------------------------------------------- + * V4L2 subdev video operations + */ + +static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable) +{ +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	int rval; + +	if (sensor->streaming == enable) +		return 0; + +	if (enable) { +		sensor->streaming = 1; +		rval = smiapp_start_streaming(sensor); +		if (rval < 0) +			sensor->streaming = 0; +	} else { +		rval = smiapp_stop_streaming(sensor); +		sensor->streaming = 0; +	} + +	return rval; +} + +static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev, +				 struct v4l2_subdev_fh *fh, +				 struct v4l2_subdev_mbus_code_enum *code) +{ +	struct i2c_client *client = v4l2_get_subdevdata(subdev); +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	unsigned int i; +	int idx = -1; +	int rval = -EINVAL; + +	mutex_lock(&sensor->mutex); + +	dev_err(&client->dev, "subdev %s, pad %d, index %d\n", +		subdev->name, code->pad, code->index); + +	if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) { +		if (code->index) +			goto out; + +		code->code = sensor->internal_csi_format->code; +		rval = 0; +		goto out; +	} + +	for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) { +		if (sensor->mbus_frame_fmts & (1 << i)) +			idx++; + +		if (idx == code->index) { +			code->code = smiapp_csi_data_formats[i].code; +			dev_err(&client->dev, "found index %d, i %d, code %x\n", +				code->index, i, code->code); +			rval = 0; +			break; +		} +	} + +out: +	mutex_unlock(&sensor->mutex); + +	return rval; +} + +static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev, +				  unsigned int pad) +{ +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); + +	if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC) +		return sensor->csi_format->code; +	else +		return sensor->internal_csi_format->code; +} + +static int __smiapp_get_format(struct v4l2_subdev *subdev, +			       struct v4l2_subdev_fh *fh, +			       struct v4l2_subdev_format *fmt) +{ +	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); + +	if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { +		fmt->format = *v4l2_subdev_get_try_format(fh, fmt->pad); +	} else { +		struct v4l2_rect *r; + +		if (fmt->pad == ssd->source_pad) +			r = &ssd->crop[ssd->source_pad]; +		else +			r = &ssd->sink_fmt; + +		fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad); +		fmt->format.width = r->width; +		fmt->format.height = r->height; +	} + +	return 0; +} + +static int smiapp_get_format(struct v4l2_subdev *subdev, +			     struct v4l2_subdev_fh *fh, +			     struct v4l2_subdev_format *fmt) +{ +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	int rval; + +	mutex_lock(&sensor->mutex); +	rval = __smiapp_get_format(subdev, fh, fmt); +	mutex_unlock(&sensor->mutex); + +	return rval; +} + +static void smiapp_get_crop_compose(struct v4l2_subdev *subdev, +				    struct v4l2_subdev_fh *fh, +				    struct v4l2_rect **crops, +				    struct v4l2_rect **comps, int which) +{ +	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); +	unsigned int i; + +	if (which == V4L2_SUBDEV_FORMAT_ACTIVE) { +		if (crops) +			for (i = 0; i < subdev->entity.num_pads; i++) +				crops[i] = &ssd->crop[i]; +		if (comps) +			*comps = &ssd->compose; +	} else { +		if (crops) { +			for (i = 0; i < subdev->entity.num_pads; i++) { +				crops[i] = v4l2_subdev_get_try_crop(fh, i); +				BUG_ON(!crops[i]); +			} +		} +		if (comps) { +			*comps = v4l2_subdev_get_try_compose(fh, +							     SMIAPP_PAD_SINK); +			BUG_ON(!*comps); +		} +	} +} + +/* Changes require propagation only on sink pad. */ +static void smiapp_propagate(struct v4l2_subdev *subdev, +			     struct v4l2_subdev_fh *fh, int which, +			     int target) +{ +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); +	struct v4l2_rect *comp, *crops[SMIAPP_PADS]; + +	smiapp_get_crop_compose(subdev, fh, crops, &comp, which); + +	switch (target) { +	case V4L2_SEL_TGT_CROP: +		comp->width = crops[SMIAPP_PAD_SINK]->width; +		comp->height = crops[SMIAPP_PAD_SINK]->height; +		if (which == V4L2_SUBDEV_FORMAT_ACTIVE) { +			if (ssd == sensor->scaler) { +				sensor->scale_m = +					sensor->limits[ +						SMIAPP_LIMIT_SCALER_N_MIN]; +				sensor->scaling_mode = +					SMIAPP_SCALING_MODE_NONE; +			} else if (ssd == sensor->binner) { +				sensor->binning_horizontal = 1; +				sensor->binning_vertical = 1; +			} +		} +		/* Fall through */ +	case V4L2_SEL_TGT_COMPOSE: +		*crops[SMIAPP_PAD_SRC] = *comp; +		break; +	default: +		BUG(); +	} +} + +static const struct smiapp_csi_data_format +*smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code) +{ +	const struct smiapp_csi_data_format *csi_format = sensor->csi_format; +	unsigned int i; + +	for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) { +		if (sensor->mbus_frame_fmts & (1 << i) +		    && smiapp_csi_data_formats[i].code == code) +			return &smiapp_csi_data_formats[i]; +	} + +	return csi_format; +} + +static int smiapp_set_format(struct v4l2_subdev *subdev, +			     struct v4l2_subdev_fh *fh, +			     struct v4l2_subdev_format *fmt) +{ +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); +	struct v4l2_rect *crops[SMIAPP_PADS]; + +	mutex_lock(&sensor->mutex); + +	/* +	 * Media bus code is changeable on src subdev's source pad. On +	 * other source pads we just get format here. +	 */ +	if (fmt->pad == ssd->source_pad) { +		u32 code = fmt->format.code; +		int rval = __smiapp_get_format(subdev, fh, fmt); + +		if (!rval && subdev == &sensor->src->sd) { +			const struct smiapp_csi_data_format *csi_format = +				smiapp_validate_csi_data_format(sensor, code); +			if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) +				sensor->csi_format = csi_format; +			fmt->format.code = csi_format->code; +		} + +		mutex_unlock(&sensor->mutex); +		return rval; +	} + +	/* Sink pad. Width and height are changeable here. */ +	fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad); +	fmt->format.width &= ~1; +	fmt->format.height &= ~1; + +	fmt->format.width = +		clamp(fmt->format.width, +		      sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE], +		      sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]); +	fmt->format.height = +		clamp(fmt->format.height, +		      sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE], +		      sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]); + +	smiapp_get_crop_compose(subdev, fh, crops, NULL, fmt->which); + +	crops[ssd->sink_pad]->left = 0; +	crops[ssd->sink_pad]->top = 0; +	crops[ssd->sink_pad]->width = fmt->format.width; +	crops[ssd->sink_pad]->height = fmt->format.height; +	if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) +		ssd->sink_fmt = *crops[ssd->sink_pad]; +	smiapp_propagate(subdev, fh, fmt->which, +			 V4L2_SEL_TGT_CROP); + +	mutex_unlock(&sensor->mutex); + +	return 0; +} + +/* + * Calculate goodness of scaled image size compared to expected image + * size and flags provided. + */ +#define SCALING_GOODNESS		100000 +#define SCALING_GOODNESS_EXTREME	100000000 +static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w, +			    int h, int ask_h, u32 flags) +{ +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	struct i2c_client *client = v4l2_get_subdevdata(subdev); +	int val = 0; + +	w &= ~1; +	ask_w &= ~1; +	h &= ~1; +	ask_h &= ~1; + +	if (flags & V4L2_SEL_FLAG_GE) { +		if (w < ask_w) +			val -= SCALING_GOODNESS; +		if (h < ask_h) +			val -= SCALING_GOODNESS; +	} + +	if (flags & V4L2_SEL_FLAG_LE) { +		if (w > ask_w) +			val -= SCALING_GOODNESS; +		if (h > ask_h) +			val -= SCALING_GOODNESS; +	} + +	val -= abs(w - ask_w); +	val -= abs(h - ask_h); + +	if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE]) +		val -= SCALING_GOODNESS_EXTREME; + +	dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n", +		w, ask_h, h, ask_h, val); + +	return val; +} + +static void smiapp_set_compose_binner(struct v4l2_subdev *subdev, +				      struct v4l2_subdev_fh *fh, +				      struct v4l2_subdev_selection *sel, +				      struct v4l2_rect **crops, +				      struct v4l2_rect *comp) +{ +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	unsigned int i; +	unsigned int binh = 1, binv = 1; +	int best = scaling_goodness( +		subdev, +		crops[SMIAPP_PAD_SINK]->width, sel->r.width, +		crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags); + +	for (i = 0; i < sensor->nbinning_subtypes; i++) { +		int this = scaling_goodness( +			subdev, +			crops[SMIAPP_PAD_SINK]->width +			/ sensor->binning_subtypes[i].horizontal, +			sel->r.width, +			crops[SMIAPP_PAD_SINK]->height +			/ sensor->binning_subtypes[i].vertical, +			sel->r.height, sel->flags); + +		if (this > best) { +			binh = sensor->binning_subtypes[i].horizontal; +			binv = sensor->binning_subtypes[i].vertical; +			best = this; +		} +	} +	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { +		sensor->binning_vertical = binv; +		sensor->binning_horizontal = binh; +	} + +	sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1; +	sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1; +} + +/* + * Calculate best scaling ratio and mode for given output resolution. + * + * Try all of these: horizontal ratio, vertical ratio and smallest + * size possible (horizontally). + * + * Also try whether horizontal scaler or full scaler gives a better + * result. + */ +static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev, +				      struct v4l2_subdev_fh *fh, +				      struct v4l2_subdev_selection *sel, +				      struct v4l2_rect **crops, +				      struct v4l2_rect *comp) +{ +	struct i2c_client *client = v4l2_get_subdevdata(subdev); +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	u32 min, max, a, b, max_m; +	u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]; +	int mode = SMIAPP_SCALING_MODE_HORIZONTAL; +	u32 try[4]; +	u32 ntry = 0; +	unsigned int i; +	int best = INT_MIN; + +	sel->r.width = min_t(unsigned int, sel->r.width, +			     crops[SMIAPP_PAD_SINK]->width); +	sel->r.height = min_t(unsigned int, sel->r.height, +			      crops[SMIAPP_PAD_SINK]->height); + +	a = crops[SMIAPP_PAD_SINK]->width +		* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width; +	b = crops[SMIAPP_PAD_SINK]->height +		* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height; +	max_m = crops[SMIAPP_PAD_SINK]->width +		* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] +		/ sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE]; + +	a = clamp(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN], +		  sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]); +	b = clamp(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN], +		  sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]); +	max_m = clamp(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN], +		      sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]); + +	dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m); + +	min = min(max_m, min(a, b)); +	max = min(max_m, max(a, b)); + +	try[ntry] = min; +	ntry++; +	if (min != max) { +		try[ntry] = max; +		ntry++; +	} +	if (max != max_m) { +		try[ntry] = min + 1; +		ntry++; +		if (min != max) { +			try[ntry] = max + 1; +			ntry++; +		} +	} + +	for (i = 0; i < ntry; i++) { +		int this = scaling_goodness( +			subdev, +			crops[SMIAPP_PAD_SINK]->width +			/ try[i] +			* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN], +			sel->r.width, +			crops[SMIAPP_PAD_SINK]->height, +			sel->r.height, +			sel->flags); + +		dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i); + +		if (this > best) { +			scale_m = try[i]; +			mode = SMIAPP_SCALING_MODE_HORIZONTAL; +			best = this; +		} + +		if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY] +		    == SMIAPP_SCALING_CAPABILITY_HORIZONTAL) +			continue; + +		this = scaling_goodness( +			subdev, crops[SMIAPP_PAD_SINK]->width +			/ try[i] +			* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN], +			sel->r.width, +			crops[SMIAPP_PAD_SINK]->height +			/ try[i] +			* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN], +			sel->r.height, +			sel->flags); + +		if (this > best) { +			scale_m = try[i]; +			mode = SMIAPP_SCALING_MODE_BOTH; +			best = this; +		} +	} + +	sel->r.width = +		(crops[SMIAPP_PAD_SINK]->width +		 / scale_m +		 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1; +	if (mode == SMIAPP_SCALING_MODE_BOTH) +		sel->r.height = +			(crops[SMIAPP_PAD_SINK]->height +			 / scale_m +			 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) +			& ~1; +	else +		sel->r.height = crops[SMIAPP_PAD_SINK]->height; + +	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { +		sensor->scale_m = scale_m; +		sensor->scaling_mode = mode; +	} +} +/* We're only called on source pads. This function sets scaling. */ +static int smiapp_set_compose(struct v4l2_subdev *subdev, +			      struct v4l2_subdev_fh *fh, +			      struct v4l2_subdev_selection *sel) +{ +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); +	struct v4l2_rect *comp, *crops[SMIAPP_PADS]; + +	smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which); + +	sel->r.top = 0; +	sel->r.left = 0; + +	if (ssd == sensor->binner) +		smiapp_set_compose_binner(subdev, fh, sel, crops, comp); +	else +		smiapp_set_compose_scaler(subdev, fh, sel, crops, comp); + +	*comp = sel->r; +	smiapp_propagate(subdev, fh, sel->which, +			 V4L2_SEL_TGT_COMPOSE); + +	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) +		return smiapp_update_mode(sensor); + +	return 0; +} + +static int __smiapp_sel_supported(struct v4l2_subdev *subdev, +				  struct v4l2_subdev_selection *sel) +{ +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); + +	/* We only implement crop in three places. */ +	switch (sel->target) { +	case V4L2_SEL_TGT_CROP: +	case V4L2_SEL_TGT_CROP_BOUNDS: +		if (ssd == sensor->pixel_array +		    && sel->pad == SMIAPP_PA_PAD_SRC) +			return 0; +		if (ssd == sensor->src +		    && sel->pad == SMIAPP_PAD_SRC) +			return 0; +		if (ssd == sensor->scaler +		    && sel->pad == SMIAPP_PAD_SINK +		    && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY] +		    == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) +			return 0; +		return -EINVAL; +	case V4L2_SEL_TGT_COMPOSE: +	case V4L2_SEL_TGT_COMPOSE_BOUNDS: +		if (sel->pad == ssd->source_pad) +			return -EINVAL; +		if (ssd == sensor->binner) +			return 0; +		if (ssd == sensor->scaler +		    && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY] +		    != SMIAPP_SCALING_CAPABILITY_NONE) +			return 0; +		/* Fall through */ +	default: +		return -EINVAL; +	} +} + +static int smiapp_set_crop(struct v4l2_subdev *subdev, +			   struct v4l2_subdev_fh *fh, +			   struct v4l2_subdev_selection *sel) +{ +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); +	struct v4l2_rect *src_size, *crops[SMIAPP_PADS]; +	struct v4l2_rect _r; + +	smiapp_get_crop_compose(subdev, fh, crops, NULL, sel->which); + +	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { +		if (sel->pad == ssd->sink_pad) +			src_size = &ssd->sink_fmt; +		else +			src_size = &ssd->compose; +	} else { +		if (sel->pad == ssd->sink_pad) { +			_r.left = 0; +			_r.top = 0; +			_r.width = v4l2_subdev_get_try_format(fh, sel->pad) +				->width; +			_r.height = v4l2_subdev_get_try_format(fh, sel->pad) +				->height; +			src_size = &_r; +		} else { +			src_size = +				v4l2_subdev_get_try_compose( +					fh, ssd->sink_pad); +		} +	} + +	if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) { +		sel->r.left = 0; +		sel->r.top = 0; +	} + +	sel->r.width = min(sel->r.width, src_size->width); +	sel->r.height = min(sel->r.height, src_size->height); + +	sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width); +	sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height); + +	*crops[sel->pad] = sel->r; + +	if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK) +		smiapp_propagate(subdev, fh, sel->which, +				 V4L2_SEL_TGT_CROP); + +	return 0; +} + +static int __smiapp_get_selection(struct v4l2_subdev *subdev, +				  struct v4l2_subdev_fh *fh, +				  struct v4l2_subdev_selection *sel) +{ +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); +	struct v4l2_rect *comp, *crops[SMIAPP_PADS]; +	struct v4l2_rect sink_fmt; +	int ret; + +	ret = __smiapp_sel_supported(subdev, sel); +	if (ret) +		return ret; + +	smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which); + +	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { +		sink_fmt = ssd->sink_fmt; +	} else { +		struct v4l2_mbus_framefmt *fmt = +			v4l2_subdev_get_try_format(fh, ssd->sink_pad); + +		sink_fmt.left = 0; +		sink_fmt.top = 0; +		sink_fmt.width = fmt->width; +		sink_fmt.height = fmt->height; +	} + +	switch (sel->target) { +	case V4L2_SEL_TGT_CROP_BOUNDS: +		if (ssd == sensor->pixel_array) { +			sel->r.width = +				sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1; +			sel->r.height = +				sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1; +		} else if (sel->pad == ssd->sink_pad) { +			sel->r = sink_fmt; +		} else { +			sel->r = *comp; +		} +		break; +	case V4L2_SEL_TGT_CROP: +	case V4L2_SEL_TGT_COMPOSE_BOUNDS: +		sel->r = *crops[sel->pad]; +		break; +	case V4L2_SEL_TGT_COMPOSE: +		sel->r = *comp; +		break; +	} + +	return 0; +} + +static int smiapp_get_selection(struct v4l2_subdev *subdev, +				struct v4l2_subdev_fh *fh, +				struct v4l2_subdev_selection *sel) +{ +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	int rval; + +	mutex_lock(&sensor->mutex); +	rval = __smiapp_get_selection(subdev, fh, sel); +	mutex_unlock(&sensor->mutex); + +	return rval; +} +static int smiapp_set_selection(struct v4l2_subdev *subdev, +				struct v4l2_subdev_fh *fh, +				struct v4l2_subdev_selection *sel) +{ +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	int ret; + +	ret = __smiapp_sel_supported(subdev, sel); +	if (ret) +		return ret; + +	mutex_lock(&sensor->mutex); + +	sel->r.left = max(0, sel->r.left & ~1); +	sel->r.top = max(0, sel->r.top & ~1); +	sel->r.width = SMIAPP_ALIGN_DIM(sel->r.width, sel->flags); +	sel->r.height =	SMIAPP_ALIGN_DIM(sel->r.height, sel->flags); + +	sel->r.width = max_t(unsigned int, +			     sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE], +			     sel->r.width); +	sel->r.height = max_t(unsigned int, +			      sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE], +			      sel->r.height); + +	switch (sel->target) { +	case V4L2_SEL_TGT_CROP: +		ret = smiapp_set_crop(subdev, fh, sel); +		break; +	case V4L2_SEL_TGT_COMPOSE: +		ret = smiapp_set_compose(subdev, fh, sel); +		break; +	default: +		BUG(); +	} + +	mutex_unlock(&sensor->mutex); +	return ret; +} + +static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames) +{ +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); + +	*frames = sensor->frame_skip; +	return 0; +} + +/* ----------------------------------------------------------------------------- + * sysfs attributes + */ + +static ssize_t +smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr, +		      char *buf) +{ +	struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev)); +	struct i2c_client *client = v4l2_get_subdevdata(subdev); +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	unsigned int nbytes; + +	if (!sensor->dev_init_done) +		return -EBUSY; + +	if (!sensor->nvm_size) { +		/* NVM not read yet - read it now */ +		sensor->nvm_size = sensor->platform_data->nvm_size; +		if (smiapp_set_power(subdev, 1) < 0) +			return -ENODEV; +		if (smiapp_read_nvm(sensor, sensor->nvm)) { +			dev_err(&client->dev, "nvm read failed\n"); +			return -ENODEV; +		} +		smiapp_set_power(subdev, 0); +	} +	/* +	 * NVM is still way below a PAGE_SIZE, so we can safely +	 * assume this for now. +	 */ +	nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE); +	memcpy(buf, sensor->nvm, nbytes); + +	return nbytes; +} +static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL); + +static ssize_t +smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr, +			char *buf) +{ +	struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev)); +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	struct smiapp_module_info *minfo = &sensor->minfo; + +	return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n", +			minfo->manufacturer_id, minfo->model_id, +			minfo->revision_number_major) + 1; +} + +static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL); + +/* ----------------------------------------------------------------------------- + * V4L2 subdev core operations + */ + +static int smiapp_identify_module(struct v4l2_subdev *subdev) +{ +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	struct i2c_client *client = v4l2_get_subdevdata(subdev); +	struct smiapp_module_info *minfo = &sensor->minfo; +	unsigned int i; +	int rval = 0; + +	minfo->name = SMIAPP_NAME; + +	/* Module info */ +	rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID, +				 &minfo->manufacturer_id); +	if (!rval) +		rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID, +					 &minfo->model_id); +	if (!rval) +		rval = smiapp_read_8only(sensor, +					 SMIAPP_REG_U8_REVISION_NUMBER_MAJOR, +					 &minfo->revision_number_major); +	if (!rval) +		rval = smiapp_read_8only(sensor, +					 SMIAPP_REG_U8_REVISION_NUMBER_MINOR, +					 &minfo->revision_number_minor); +	if (!rval) +		rval = smiapp_read_8only(sensor, +					 SMIAPP_REG_U8_MODULE_DATE_YEAR, +					 &minfo->module_year); +	if (!rval) +		rval = smiapp_read_8only(sensor, +					 SMIAPP_REG_U8_MODULE_DATE_MONTH, +					 &minfo->module_month); +	if (!rval) +		rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY, +					 &minfo->module_day); + +	/* Sensor info */ +	if (!rval) +		rval = smiapp_read_8only(sensor, +					 SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID, +					 &minfo->sensor_manufacturer_id); +	if (!rval) +		rval = smiapp_read_8only(sensor, +					 SMIAPP_REG_U16_SENSOR_MODEL_ID, +					 &minfo->sensor_model_id); +	if (!rval) +		rval = smiapp_read_8only(sensor, +					 SMIAPP_REG_U8_SENSOR_REVISION_NUMBER, +					 &minfo->sensor_revision_number); +	if (!rval) +		rval = smiapp_read_8only(sensor, +					 SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION, +					 &minfo->sensor_firmware_version); + +	/* SMIA */ +	if (!rval) +		rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION, +					 &minfo->smia_version); +	if (!rval) +		rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION, +					 &minfo->smiapp_version); + +	if (rval) { +		dev_err(&client->dev, "sensor detection failed\n"); +		return -ENODEV; +	} + +	dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n", +		minfo->manufacturer_id, minfo->model_id); + +	dev_dbg(&client->dev, +		"module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n", +		minfo->revision_number_major, minfo->revision_number_minor, +		minfo->module_year, minfo->module_month, minfo->module_day); + +	dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n", +		minfo->sensor_manufacturer_id, minfo->sensor_model_id); + +	dev_dbg(&client->dev, +		"sensor revision 0x%2.2x firmware version 0x%2.2x\n", +		minfo->sensor_revision_number, minfo->sensor_firmware_version); + +	dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n", +		minfo->smia_version, minfo->smiapp_version); + +	/* +	 * Some modules have bad data in the lvalues below. Hope the +	 * rvalues have better stuff. The lvalues are module +	 * parameters whereas the rvalues are sensor parameters. +	 */ +	if (!minfo->manufacturer_id && !minfo->model_id) { +		minfo->manufacturer_id = minfo->sensor_manufacturer_id; +		minfo->model_id = minfo->sensor_model_id; +		minfo->revision_number_major = minfo->sensor_revision_number; +	} + +	for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) { +		if (smiapp_module_idents[i].manufacturer_id +		    != minfo->manufacturer_id) +			continue; +		if (smiapp_module_idents[i].model_id != minfo->model_id) +			continue; +		if (smiapp_module_idents[i].flags +		    & SMIAPP_MODULE_IDENT_FLAG_REV_LE) { +			if (smiapp_module_idents[i].revision_number_major +			    < minfo->revision_number_major) +				continue; +		} else { +			if (smiapp_module_idents[i].revision_number_major +			    != minfo->revision_number_major) +				continue; +		} + +		minfo->name = smiapp_module_idents[i].name; +		minfo->quirk = smiapp_module_idents[i].quirk; +		break; +	} + +	if (i >= ARRAY_SIZE(smiapp_module_idents)) +		dev_warn(&client->dev, +			 "no quirks for this module; let's hope it's fully compliant\n"); + +	dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n", +		minfo->name, minfo->manufacturer_id, minfo->model_id, +		minfo->revision_number_major); + +	strlcpy(subdev->name, sensor->minfo.name, sizeof(subdev->name)); + +	return 0; +} + +static const struct v4l2_subdev_ops smiapp_ops; +static const struct v4l2_subdev_internal_ops smiapp_internal_ops; +static const struct media_entity_operations smiapp_entity_ops; + +static int smiapp_registered(struct v4l2_subdev *subdev) +{ +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	struct i2c_client *client = v4l2_get_subdevdata(subdev); +	struct smiapp_pll *pll = &sensor->pll; +	struct smiapp_subdev *last = NULL; +	u32 tmp; +	unsigned int i; +	int rval; + +	sensor->vana = devm_regulator_get(&client->dev, "vana"); +	if (IS_ERR(sensor->vana)) { +		dev_err(&client->dev, "could not get regulator for vana\n"); +		return PTR_ERR(sensor->vana); +	} + +	if (!sensor->platform_data->set_xclk) { +		sensor->ext_clk = devm_clk_get(&client->dev, "ext_clk"); +		if (IS_ERR(sensor->ext_clk)) { +			dev_err(&client->dev, "could not get clock\n"); +			return PTR_ERR(sensor->ext_clk); +		} + +		rval = clk_set_rate(sensor->ext_clk, +				    sensor->platform_data->ext_clk); +		if (rval < 0) { +			dev_err(&client->dev, +				"unable to set clock freq to %u\n", +				sensor->platform_data->ext_clk); +			return rval; +		} +	} + +	if (gpio_is_valid(sensor->platform_data->xshutdown)) { +		rval = devm_gpio_request_one( +			&client->dev, sensor->platform_data->xshutdown, 0, +			"SMIA++ xshutdown"); +		if (rval < 0) { +			dev_err(&client->dev, +				"unable to acquire reset gpio %d\n", +				sensor->platform_data->xshutdown); +			return rval; +		} +	} + +	rval = smiapp_power_on(sensor); +	if (rval) +		return -ENODEV; + +	rval = smiapp_identify_module(subdev); +	if (rval) { +		rval = -ENODEV; +		goto out_power_off; +	} + +	rval = smiapp_get_all_limits(sensor); +	if (rval) { +		rval = -ENODEV; +		goto out_power_off; +	} + +	/* +	 * Handle Sensor Module orientation on the board. +	 * +	 * The application of H-FLIP and V-FLIP on the sensor is modified by +	 * the sensor orientation on the board. +	 * +	 * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set +	 * both H-FLIP and V-FLIP for normal operation which also implies +	 * that a set/unset operation for user space HFLIP and VFLIP v4l2 +	 * controls will need to be internally inverted. +	 * +	 * Rotation also changes the bayer pattern. +	 */ +	if (sensor->platform_data->module_board_orient == +	    SMIAPP_MODULE_BOARD_ORIENT_180) +		sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP | +					  SMIAPP_IMAGE_ORIENTATION_VFLIP; + +	rval = smiapp_call_quirk(sensor, limits); +	if (rval) { +		dev_err(&client->dev, "limits quirks failed\n"); +		goto out_power_off; +	} + +	rval = smiapp_get_mbus_formats(sensor); +	if (rval) { +		rval = -ENODEV; +		goto out_power_off; +	} + +	if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) { +		u32 val; + +		rval = smiapp_read(sensor, +				   SMIAPP_REG_U8_BINNING_SUBTYPES, &val); +		if (rval < 0) { +			rval = -ENODEV; +			goto out_power_off; +		} +		sensor->nbinning_subtypes = min_t(u8, val, +						  SMIAPP_BINNING_SUBTYPES); + +		for (i = 0; i < sensor->nbinning_subtypes; i++) { +			rval = smiapp_read( +				sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val); +			if (rval < 0) { +				rval = -ENODEV; +				goto out_power_off; +			} +			sensor->binning_subtypes[i] = +				*(struct smiapp_binning_subtype *)&val; + +			dev_dbg(&client->dev, "binning %xx%x\n", +				sensor->binning_subtypes[i].horizontal, +				sensor->binning_subtypes[i].vertical); +		} +	} +	sensor->binning_horizontal = 1; +	sensor->binning_vertical = 1; + +	if (device_create_file(&client->dev, &dev_attr_ident) != 0) { +		dev_err(&client->dev, "sysfs ident entry creation failed\n"); +		rval = -ENOENT; +		goto out_power_off; +	} +	/* SMIA++ NVM initialization - it will be read from the sensor +	 * when it is first requested by userspace. +	 */ +	if (sensor->minfo.smiapp_version && sensor->platform_data->nvm_size) { +		sensor->nvm = devm_kzalloc(&client->dev, +				sensor->platform_data->nvm_size, GFP_KERNEL); +		if (sensor->nvm == NULL) { +			dev_err(&client->dev, "nvm buf allocation failed\n"); +			rval = -ENOMEM; +			goto out_ident_release; +		} + +		if (device_create_file(&client->dev, &dev_attr_nvm) != 0) { +			dev_err(&client->dev, "sysfs nvm entry failed\n"); +			rval = -EBUSY; +			goto out_ident_release; +		} +	} + +	/* We consider this as profile 0 sensor if any of these are zero. */ +	if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] || +	    !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] || +	    !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] || +	    !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) { +		sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0; +	} else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY] +		   != SMIAPP_SCALING_CAPABILITY_NONE) { +		if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY] +		    == SMIAPP_SCALING_CAPABILITY_HORIZONTAL) +			sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1; +		else +			sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2; +		sensor->scaler = &sensor->ssds[sensor->ssds_used]; +		sensor->ssds_used++; +	} else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY] +		   == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) { +		sensor->scaler = &sensor->ssds[sensor->ssds_used]; +		sensor->ssds_used++; +	} +	sensor->binner = &sensor->ssds[sensor->ssds_used]; +	sensor->ssds_used++; +	sensor->pixel_array = &sensor->ssds[sensor->ssds_used]; +	sensor->ssds_used++; + +	sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]; + +	for (i = 0; i < SMIAPP_SUBDEVS; i++) { +		struct { +			struct smiapp_subdev *ssd; +			char *name; +		} const __this[] = { +			{ sensor->scaler, "scaler", }, +			{ sensor->binner, "binner", }, +			{ sensor->pixel_array, "pixel array", }, +		}, *_this = &__this[i]; +		struct smiapp_subdev *this = _this->ssd; + +		if (!this) +			continue; + +		if (this != sensor->src) +			v4l2_subdev_init(&this->sd, &smiapp_ops); + +		this->sensor = sensor; + +		if (this == sensor->pixel_array) { +			this->npads = 1; +		} else { +			this->npads = 2; +			this->source_pad = 1; +		} + +		snprintf(this->sd.name, +			 sizeof(this->sd.name), "%s %d-%4.4x %s", +			 sensor->minfo.name, i2c_adapter_id(client->adapter), +			 client->addr, _this->name); + +		this->sink_fmt.width = +			sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1; +		this->sink_fmt.height = +			sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1; +		this->compose.width = this->sink_fmt.width; +		this->compose.height = this->sink_fmt.height; +		this->crop[this->source_pad] = this->compose; +		this->pads[this->source_pad].flags = MEDIA_PAD_FL_SOURCE; +		if (this != sensor->pixel_array) { +			this->crop[this->sink_pad] = this->compose; +			this->pads[this->sink_pad].flags = MEDIA_PAD_FL_SINK; +		} + +		this->sd.entity.ops = &smiapp_entity_ops; + +		if (last == NULL) { +			last = this; +			continue; +		} + +		this->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; +		this->sd.internal_ops = &smiapp_internal_ops; +		this->sd.owner = NULL; +		v4l2_set_subdevdata(&this->sd, client); + +		rval = media_entity_init(&this->sd.entity, +					 this->npads, this->pads, 0); +		if (rval) { +			dev_err(&client->dev, +				"media_entity_init failed\n"); +			goto out_nvm_release; +		} + +		rval = media_entity_create_link(&this->sd.entity, +						this->source_pad, +						&last->sd.entity, +						last->sink_pad, +						MEDIA_LNK_FL_ENABLED | +						MEDIA_LNK_FL_IMMUTABLE); +		if (rval) { +			dev_err(&client->dev, +				"media_entity_create_link failed\n"); +			goto out_nvm_release; +		} + +		rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev, +						   &this->sd); +		if (rval) { +			dev_err(&client->dev, +				"v4l2_device_register_subdev failed\n"); +			goto out_nvm_release; +		} + +		last = this; +	} + +	dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile); + +	sensor->pixel_array->sd.entity.type = MEDIA_ENT_T_V4L2_SUBDEV_SENSOR; + +	/* final steps */ +	smiapp_read_frame_fmt(sensor); +	rval = smiapp_init_controls(sensor); +	if (rval < 0) +		goto out_nvm_release; + +	/* prepare PLL configuration input values */ +	pll->bus_type = SMIAPP_PLL_BUS_TYPE_CSI2; +	pll->csi2.lanes = sensor->platform_data->lanes; +	pll->ext_clk_freq_hz = sensor->platform_data->ext_clk; +	pll->flags = smiapp_call_quirk(sensor, pll_flags); + +	/* Profile 0 sensors have no separate OP clock branch. */ +	if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0) +		pll->flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS; +	pll->scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]; + +	rval = smiapp_update_mode(sensor); +	if (rval) { +		dev_err(&client->dev, "update mode failed\n"); +		goto out_nvm_release; +	} + +	sensor->streaming = false; +	sensor->dev_init_done = true; + +	/* check flash capability */ +	rval = smiapp_read(sensor, SMIAPP_REG_U8_FLASH_MODE_CAPABILITY, &tmp); +	sensor->flash_capability = tmp; +	if (rval) +		goto out_nvm_release; + +	smiapp_power_off(sensor); + +	return 0; + +out_nvm_release: +	device_remove_file(&client->dev, &dev_attr_nvm); + +out_ident_release: +	device_remove_file(&client->dev, &dev_attr_ident); + +out_power_off: +	smiapp_power_off(sensor); +	return rval; +} + +static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) +{ +	struct smiapp_subdev *ssd = to_smiapp_subdev(sd); +	struct smiapp_sensor *sensor = ssd->sensor; +	u32 mbus_code = +		smiapp_csi_data_formats[smiapp_pixel_order(sensor)].code; +	unsigned int i; + +	mutex_lock(&sensor->mutex); + +	for (i = 0; i < ssd->npads; i++) { +		struct v4l2_mbus_framefmt *try_fmt = +			v4l2_subdev_get_try_format(fh, i); +		struct v4l2_rect *try_crop = v4l2_subdev_get_try_crop(fh, i); +		struct v4l2_rect *try_comp; + +		try_fmt->width = sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1; +		try_fmt->height = sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1; +		try_fmt->code = mbus_code; + +		try_crop->top = 0; +		try_crop->left = 0; +		try_crop->width = try_fmt->width; +		try_crop->height = try_fmt->height; + +		if (ssd != sensor->pixel_array) +			continue; + +		try_comp = v4l2_subdev_get_try_compose(fh, i); +		*try_comp = *try_crop; +	} + +	mutex_unlock(&sensor->mutex); + +	return smiapp_set_power(sd, 1); +} + +static int smiapp_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) +{ +	return smiapp_set_power(sd, 0); +} + +static const struct v4l2_subdev_video_ops smiapp_video_ops = { +	.s_stream = smiapp_set_stream, +}; + +static const struct v4l2_subdev_core_ops smiapp_core_ops = { +	.s_power = smiapp_set_power, +}; + +static const struct v4l2_subdev_pad_ops smiapp_pad_ops = { +	.enum_mbus_code = smiapp_enum_mbus_code, +	.get_fmt = smiapp_get_format, +	.set_fmt = smiapp_set_format, +	.get_selection = smiapp_get_selection, +	.set_selection = smiapp_set_selection, +}; + +static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = { +	.g_skip_frames = smiapp_get_skip_frames, +}; + +static const struct v4l2_subdev_ops smiapp_ops = { +	.core = &smiapp_core_ops, +	.video = &smiapp_video_ops, +	.pad = &smiapp_pad_ops, +	.sensor = &smiapp_sensor_ops, +}; + +static const struct media_entity_operations smiapp_entity_ops = { +	.link_validate = v4l2_subdev_link_validate, +}; + +static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = { +	.registered = smiapp_registered, +	.open = smiapp_open, +	.close = smiapp_close, +}; + +static const struct v4l2_subdev_internal_ops smiapp_internal_ops = { +	.open = smiapp_open, +	.close = smiapp_close, +}; + +/* ----------------------------------------------------------------------------- + * I2C Driver + */ + +#ifdef CONFIG_PM + +static int smiapp_suspend(struct device *dev) +{ +	struct i2c_client *client = to_i2c_client(dev); +	struct v4l2_subdev *subdev = i2c_get_clientdata(client); +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	bool streaming; + +	BUG_ON(mutex_is_locked(&sensor->mutex)); + +	if (sensor->power_count == 0) +		return 0; + +	if (sensor->streaming) +		smiapp_stop_streaming(sensor); + +	streaming = sensor->streaming; + +	smiapp_power_off(sensor); + +	/* save state for resume */ +	sensor->streaming = streaming; + +	return 0; +} + +static int smiapp_resume(struct device *dev) +{ +	struct i2c_client *client = to_i2c_client(dev); +	struct v4l2_subdev *subdev = i2c_get_clientdata(client); +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	int rval; + +	if (sensor->power_count == 0) +		return 0; + +	rval = smiapp_power_on(sensor); +	if (rval) +		return rval; + +	if (sensor->streaming) +		rval = smiapp_start_streaming(sensor); + +	return rval; +} + +#else + +#define smiapp_suspend	NULL +#define smiapp_resume	NULL + +#endif /* CONFIG_PM */ + +static int smiapp_probe(struct i2c_client *client, +			const struct i2c_device_id *devid) +{ +	struct smiapp_sensor *sensor; + +	if (client->dev.platform_data == NULL) +		return -ENODEV; + +	sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL); +	if (sensor == NULL) +		return -ENOMEM; + +	sensor->platform_data = client->dev.platform_data; +	mutex_init(&sensor->mutex); +	mutex_init(&sensor->power_mutex); +	sensor->src = &sensor->ssds[sensor->ssds_used]; + +	v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops); +	sensor->src->sd.internal_ops = &smiapp_internal_src_ops; +	sensor->src->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; +	sensor->src->sensor = sensor; + +	sensor->src->pads[0].flags = MEDIA_PAD_FL_SOURCE; +	return media_entity_init(&sensor->src->sd.entity, 2, +				 sensor->src->pads, 0); +} + +static int smiapp_remove(struct i2c_client *client) +{ +	struct v4l2_subdev *subdev = i2c_get_clientdata(client); +	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); +	unsigned int i; + +	if (sensor->power_count) { +		if (gpio_is_valid(sensor->platform_data->xshutdown)) +			gpio_set_value(sensor->platform_data->xshutdown, 0); +		if (sensor->platform_data->set_xclk) +			sensor->platform_data->set_xclk(&sensor->src->sd, 0); +		else +			clk_disable_unprepare(sensor->ext_clk); +		sensor->power_count = 0; +	} + +	device_remove_file(&client->dev, &dev_attr_ident); +	if (sensor->nvm) +		device_remove_file(&client->dev, &dev_attr_nvm); + +	for (i = 0; i < sensor->ssds_used; i++) { +		v4l2_device_unregister_subdev(&sensor->ssds[i].sd); +		media_entity_cleanup(&sensor->ssds[i].sd.entity); +	} +	smiapp_free_controls(sensor); + +	return 0; +} + +static const struct i2c_device_id smiapp_id_table[] = { +	{ SMIAPP_NAME, 0 }, +	{ }, +}; +MODULE_DEVICE_TABLE(i2c, smiapp_id_table); + +static const struct dev_pm_ops smiapp_pm_ops = { +	.suspend	= smiapp_suspend, +	.resume		= smiapp_resume, +}; + +static struct i2c_driver smiapp_i2c_driver = { +	.driver	= { +		.name = SMIAPP_NAME, +		.pm = &smiapp_pm_ops, +	}, +	.probe	= smiapp_probe, +	.remove	= smiapp_remove, +	.id_table = smiapp_id_table, +}; + +module_i2c_driver(smiapp_i2c_driver); + +MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>"); +MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver"); +MODULE_LICENSE("GPL");  | 
