diff options
Diffstat (limited to 'drivers/media/dvb-frontends/tda18271c2dd.c')
| -rw-r--r-- | drivers/media/dvb-frontends/tda18271c2dd.c | 1257 | 
1 files changed, 1257 insertions, 0 deletions
diff --git a/drivers/media/dvb-frontends/tda18271c2dd.c b/drivers/media/dvb-frontends/tda18271c2dd.c new file mode 100644 index 00000000000..2c54586ac07 --- /dev/null +++ b/drivers/media/dvb-frontends/tda18271c2dd.c @@ -0,0 +1,1257 @@ +/* + * tda18271c2dd: Driver for the TDA18271C2 tuner + * + * Copyright (C) 2010 Digital Devices GmbH + * + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * version 2 only, as published by the Free Software Foundation. + * + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + * + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA + * 02110-1301, USA + * Or, point your browser to http://www.gnu.org/copyleft/gpl.html + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/init.h> +#include <linux/delay.h> +#include <linux/firmware.h> +#include <linux/i2c.h> +#include <asm/div64.h> + +#include "dvb_frontend.h" +#include "tda18271c2dd.h" + +/* Max transfer size done by I2C transfer functions */ +#define MAX_XFER_SIZE  64 + +struct SStandardParam { +	s32   m_IFFrequency; +	u32   m_BandWidth; +	u8    m_EP3_4_0; +	u8    m_EB22; +}; + +struct SMap { +	u32   m_Frequency; +	u8    m_Param; +}; + +struct SMapI { +	u32   m_Frequency; +	s32    m_Param; +}; + +struct SMap2 { +	u32   m_Frequency; +	u8    m_Param1; +	u8    m_Param2; +}; + +struct SRFBandMap { +	u32   m_RF_max; +	u32   m_RF1_Default; +	u32   m_RF2_Default; +	u32   m_RF3_Default; +}; + +enum ERegister { +	ID = 0, +	TM, +	PL, +	EP1, EP2, EP3, EP4, EP5, +	CPD, CD1, CD2, CD3, +	MPD, MD1, MD2, MD3, +	EB1, EB2, EB3, EB4, EB5, EB6, EB7, EB8, EB9, EB10, +	EB11, EB12, EB13, EB14, EB15, EB16, EB17, EB18, EB19, EB20, +	EB21, EB22, EB23, +	NUM_REGS +}; + +struct tda_state { +	struct i2c_adapter *i2c; +	u8 adr; + +	u32   m_Frequency; +	u32   IF; + +	u8    m_IFLevelAnalog; +	u8    m_IFLevelDigital; +	u8    m_IFLevelDVBC; +	u8    m_IFLevelDVBT; + +	u8    m_EP4; +	u8    m_EP3_Standby; + +	bool  m_bMaster; + +	s32   m_SettlingTime; + +	u8    m_Regs[NUM_REGS]; + +	/* Tracking filter settings for band 0..6 */ +	u32   m_RF1[7]; +	s32   m_RF_A1[7]; +	s32   m_RF_B1[7]; +	u32   m_RF2[7]; +	s32   m_RF_A2[7]; +	s32   m_RF_B2[7]; +	u32   m_RF3[7]; + +	u8    m_TMValue_RFCal;    /* Calibration temperatur */ + +	bool  m_bFMInput;         /* true to use Pin 8 for FM Radio */ + +}; + +static int PowerScan(struct tda_state *state, +		     u8 RFBand, u32 RF_in, +		     u32 *pRF_Out, bool *pbcal); + +static int i2c_readn(struct i2c_adapter *adapter, u8 adr, u8 *data, int len) +{ +	struct i2c_msg msgs[1] = {{.addr = adr,  .flags = I2C_M_RD, +				   .buf  = data, .len   = len} }; +	return (i2c_transfer(adapter, msgs, 1) == 1) ? 0 : -1; +} + +static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len) +{ +	struct i2c_msg msg = {.addr = adr, .flags = 0, +			      .buf = data, .len = len}; + +	if (i2c_transfer(adap, &msg, 1) != 1) { +		printk(KERN_ERR "tda18271c2dd: i2c write error at addr %i\n", adr); +		return -1; +	} +	return 0; +} + +static int WriteRegs(struct tda_state *state, +		     u8 SubAddr, u8 *Regs, u16 nRegs) +{ +	u8 data[MAX_XFER_SIZE]; + +	if (1 + nRegs > sizeof(data)) { +		printk(KERN_WARNING +		       "%s: i2c wr: len=%d is too big!\n", +		       KBUILD_MODNAME, nRegs); +		return -EINVAL; +	} + +	data[0] = SubAddr; +	memcpy(data + 1, Regs, nRegs); +	return i2c_write(state->i2c, state->adr, data, nRegs + 1); +} + +static int WriteReg(struct tda_state *state, u8 SubAddr, u8 Reg) +{ +	u8 msg[2] = {SubAddr, Reg}; + +	return i2c_write(state->i2c, state->adr, msg, 2); +} + +static int Read(struct tda_state *state, u8 * Regs) +{ +	return i2c_readn(state->i2c, state->adr, Regs, 16); +} + +static int ReadExtented(struct tda_state *state, u8 * Regs) +{ +	return i2c_readn(state->i2c, state->adr, Regs, NUM_REGS); +} + +static int UpdateRegs(struct tda_state *state, u8 RegFrom, u8 RegTo) +{ +	return WriteRegs(state, RegFrom, +			 &state->m_Regs[RegFrom], RegTo-RegFrom+1); +} +static int UpdateReg(struct tda_state *state, u8 Reg) +{ +	return WriteReg(state, Reg, state->m_Regs[Reg]); +} + +#include "tda18271c2dd_maps.h" + +static void reset(struct tda_state *state) +{ +	u32   ulIFLevelAnalog = 0; +	u32   ulIFLevelDigital = 2; +	u32   ulIFLevelDVBC = 7; +	u32   ulIFLevelDVBT = 6; +	u32   ulXTOut = 0; +	u32   ulStandbyMode = 0x06;    /* Send in stdb, but leave osc on */ +	u32   ulSlave = 0; +	u32   ulFMInput = 0; +	u32   ulSettlingTime = 100; + +	state->m_Frequency         = 0; +	state->m_SettlingTime = 100; +	state->m_IFLevelAnalog = (ulIFLevelAnalog & 0x07) << 2; +	state->m_IFLevelDigital = (ulIFLevelDigital & 0x07) << 2; +	state->m_IFLevelDVBC = (ulIFLevelDVBC & 0x07) << 2; +	state->m_IFLevelDVBT = (ulIFLevelDVBT & 0x07) << 2; + +	state->m_EP4 = 0x20; +	if (ulXTOut != 0) +		state->m_EP4 |= 0x40; + +	state->m_EP3_Standby = ((ulStandbyMode & 0x07) << 5) | 0x0F; +	state->m_bMaster = (ulSlave == 0); + +	state->m_SettlingTime = ulSettlingTime; + +	state->m_bFMInput = (ulFMInput == 2); +} + +static bool SearchMap1(struct SMap Map[], +		       u32 Frequency, u8 *pParam) +{ +	int i = 0; + +	while ((Map[i].m_Frequency != 0) && (Frequency > Map[i].m_Frequency)) +		i += 1; +	if (Map[i].m_Frequency == 0) +		return false; +	*pParam = Map[i].m_Param; +	return true; +} + +static bool SearchMap2(struct SMapI Map[], +		       u32 Frequency, s32 *pParam) +{ +	int i = 0; + +	while ((Map[i].m_Frequency != 0) && +	       (Frequency > Map[i].m_Frequency)) +		i += 1; +	if (Map[i].m_Frequency == 0) +		return false; +	*pParam = Map[i].m_Param; +	return true; +} + +static bool SearchMap3(struct SMap2 Map[], u32 Frequency, +		       u8 *pParam1, u8 *pParam2) +{ +	int i = 0; + +	while ((Map[i].m_Frequency != 0) && +	       (Frequency > Map[i].m_Frequency)) +		i += 1; +	if (Map[i].m_Frequency == 0) +		return false; +	*pParam1 = Map[i].m_Param1; +	*pParam2 = Map[i].m_Param2; +	return true; +} + +static bool SearchMap4(struct SRFBandMap Map[], +		       u32 Frequency, u8 *pRFBand) +{ +	int i = 0; + +	while (i < 7 && (Frequency > Map[i].m_RF_max)) +		i += 1; +	if (i == 7) +		return false; +	*pRFBand = i; +	return true; +} + +static int ThermometerRead(struct tda_state *state, u8 *pTM_Value) +{ +	int status = 0; + +	do { +		u8 Regs[16]; +		state->m_Regs[TM] |= 0x10; +		status = UpdateReg(state, TM); +		if (status < 0) +			break; +		status = Read(state, Regs); +		if (status < 0) +			break; +		if (((Regs[TM] & 0x0F) == 0 && (Regs[TM] & 0x20) == 0x20) || +		    ((Regs[TM] & 0x0F) == 8 && (Regs[TM] & 0x20) == 0x00)) { +			state->m_Regs[TM] ^= 0x20; +			status = UpdateReg(state, TM); +			if (status < 0) +				break; +			msleep(10); +			status = Read(state, Regs); +			if (status < 0) +				break; +		} +		*pTM_Value = (Regs[TM] & 0x20) +				? m_Thermometer_Map_2[Regs[TM] & 0x0F] +				: m_Thermometer_Map_1[Regs[TM] & 0x0F] ; +		state->m_Regs[TM] &= ~0x10;        /* Thermometer off */ +		status = UpdateReg(state, TM); +		if (status < 0) +			break; +		state->m_Regs[EP4] &= ~0x03;       /* CAL_mode = 0 ????????? */ +		status = UpdateReg(state, EP4); +		if (status < 0) +			break; +	} while (0); + +	return status; +} + +static int StandBy(struct tda_state *state) +{ +	int status = 0; +	do { +		state->m_Regs[EB12] &= ~0x20;  /* PD_AGC1_Det = 0 */ +		status = UpdateReg(state, EB12); +		if (status < 0) +			break; +		state->m_Regs[EB18] &= ~0x83;  /* AGC1_loop_off = 0, AGC1_Gain = 6 dB */ +		status = UpdateReg(state, EB18); +		if (status < 0) +			break; +		state->m_Regs[EB21] |= 0x03; /* AGC2_Gain = -6 dB */ +		state->m_Regs[EP3] = state->m_EP3_Standby; +		status = UpdateReg(state, EP3); +		if (status < 0) +			break; +		state->m_Regs[EB23] &= ~0x06; /* ForceLP_Fc2_En = 0, LP_Fc[2] = 0 */ +		status = UpdateRegs(state, EB21, EB23); +		if (status < 0) +			break; +	} while (0); +	return status; +} + +static int CalcMainPLL(struct tda_state *state, u32 freq) +{ + +	u8  PostDiv; +	u8  Div; +	u64 OscFreq; +	u32 MainDiv; + +	if (!SearchMap3(m_Main_PLL_Map, freq, &PostDiv, &Div)) +		return -EINVAL; + +	OscFreq = (u64) freq * (u64) Div; +	OscFreq *= (u64) 16384; +	do_div(OscFreq, (u64)16000000); +	MainDiv = OscFreq; + +	state->m_Regs[MPD] = PostDiv & 0x77; +	state->m_Regs[MD1] = ((MainDiv >> 16) & 0x7F); +	state->m_Regs[MD2] = ((MainDiv >>  8) & 0xFF); +	state->m_Regs[MD3] = (MainDiv & 0xFF); + +	return UpdateRegs(state, MPD, MD3); +} + +static int CalcCalPLL(struct tda_state *state, u32 freq) +{ +	u8 PostDiv; +	u8 Div; +	u64 OscFreq; +	u32 CalDiv; + +	if (!SearchMap3(m_Cal_PLL_Map, freq, &PostDiv, &Div)) +		return -EINVAL; + +	OscFreq = (u64)freq * (u64)Div; +	/* CalDiv = u32( OscFreq * 16384 / 16000000 ); */ +	OscFreq *= (u64)16384; +	do_div(OscFreq, (u64)16000000); +	CalDiv = OscFreq; + +	state->m_Regs[CPD] = PostDiv; +	state->m_Regs[CD1] = ((CalDiv >> 16) & 0xFF); +	state->m_Regs[CD2] = ((CalDiv >>  8) & 0xFF); +	state->m_Regs[CD3] = (CalDiv & 0xFF); + +	return UpdateRegs(state, CPD, CD3); +} + +static int CalibrateRF(struct tda_state *state, +		       u8 RFBand, u32 freq, s32 *pCprog) +{ +	int status = 0; +	u8 Regs[NUM_REGS]; +	do { +		u8 BP_Filter = 0; +		u8 GainTaper = 0; +		u8 RFC_K = 0; +		u8 RFC_M = 0; + +		state->m_Regs[EP4] &= ~0x03; /* CAL_mode = 0 */ +		status = UpdateReg(state, EP4); +		if (status < 0) +			break; +		state->m_Regs[EB18] |= 0x03;  /* AGC1_Gain = 3 */ +		status = UpdateReg(state, EB18); +		if (status < 0) +			break; + +		/* Switching off LT (as datasheet says) causes calibration on C1 to fail */ +		/* (Readout of Cprog is allways 255) */ +		if (state->m_Regs[ID] != 0x83)    /* C1: ID == 83, C2: ID == 84 */ +			state->m_Regs[EP3] |= 0x40; /* SM_LT = 1 */ + +		if (!(SearchMap1(m_BP_Filter_Map, freq, &BP_Filter) && +			SearchMap1(m_GainTaper_Map, freq, &GainTaper) && +			SearchMap3(m_KM_Map, freq, &RFC_K, &RFC_M))) +			return -EINVAL; + +		state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | BP_Filter; +		state->m_Regs[EP2] = (RFBand << 5) | GainTaper; + +		state->m_Regs[EB13] = (state->m_Regs[EB13] & ~0x7C) | (RFC_K << 4) | (RFC_M << 2); + +		status = UpdateRegs(state, EP1, EP3); +		if (status < 0) +			break; +		status = UpdateReg(state, EB13); +		if (status < 0) +			break; + +		state->m_Regs[EB4] |= 0x20;    /* LO_ForceSrce = 1 */ +		status = UpdateReg(state, EB4); +		if (status < 0) +			break; + +		state->m_Regs[EB7] |= 0x20;    /* CAL_ForceSrce = 1 */ +		status = UpdateReg(state, EB7); +		if (status < 0) +			break; + +		state->m_Regs[EB14] = 0; /* RFC_Cprog = 0 */ +		status = UpdateReg(state, EB14); +		if (status < 0) +			break; + +		state->m_Regs[EB20] &= ~0x20;  /* ForceLock = 0; */ +		status = UpdateReg(state, EB20); +		if (status < 0) +			break; + +		state->m_Regs[EP4] |= 0x03;  /* CAL_Mode = 3 */ +		status = UpdateRegs(state, EP4, EP5); +		if (status < 0) +			break; + +		status = CalcCalPLL(state, freq); +		if (status < 0) +			break; +		status = CalcMainPLL(state, freq + 1000000); +		if (status < 0) +			break; + +		msleep(5); +		status = UpdateReg(state, EP2); +		if (status < 0) +			break; +		status = UpdateReg(state, EP1); +		if (status < 0) +			break; +		status = UpdateReg(state, EP2); +		if (status < 0) +			break; +		status = UpdateReg(state, EP1); +		if (status < 0) +			break; + +		state->m_Regs[EB4] &= ~0x20;    /* LO_ForceSrce = 0 */ +		status = UpdateReg(state, EB4); +		if (status < 0) +			break; + +		state->m_Regs[EB7] &= ~0x20;    /* CAL_ForceSrce = 0 */ +		status = UpdateReg(state, EB7); +		if (status < 0) +			break; +		msleep(10); + +		state->m_Regs[EB20] |= 0x20;  /* ForceLock = 1; */ +		status = UpdateReg(state, EB20); +		if (status < 0) +			break; +		msleep(60); + +		state->m_Regs[EP4] &= ~0x03;  /* CAL_Mode = 0 */ +		state->m_Regs[EP3] &= ~0x40; /* SM_LT = 0 */ +		state->m_Regs[EB18] &= ~0x03;  /* AGC1_Gain = 0 */ +		status = UpdateReg(state, EB18); +		if (status < 0) +			break; +		status = UpdateRegs(state, EP3, EP4); +		if (status < 0) +			break; +		status = UpdateReg(state, EP1); +		if (status < 0) +			break; + +		status = ReadExtented(state, Regs); +		if (status < 0) +			break; + +		*pCprog = Regs[EB14]; + +	} while (0); +	return status; +} + +static int RFTrackingFiltersInit(struct tda_state *state, +				 u8 RFBand) +{ +	int status = 0; + +	u32   RF1 = m_RF_Band_Map[RFBand].m_RF1_Default; +	u32   RF2 = m_RF_Band_Map[RFBand].m_RF2_Default; +	u32   RF3 = m_RF_Band_Map[RFBand].m_RF3_Default; +	bool    bcal = false; + +	s32    Cprog_cal1 = 0; +	s32    Cprog_table1 = 0; +	s32    Cprog_cal2 = 0; +	s32    Cprog_table2 = 0; +	s32    Cprog_cal3 = 0; +	s32    Cprog_table3 = 0; + +	state->m_RF_A1[RFBand] = 0; +	state->m_RF_B1[RFBand] = 0; +	state->m_RF_A2[RFBand] = 0; +	state->m_RF_B2[RFBand] = 0; + +	do { +		status = PowerScan(state, RFBand, RF1, &RF1, &bcal); +		if (status < 0) +			break; +		if (bcal) { +			status = CalibrateRF(state, RFBand, RF1, &Cprog_cal1); +			if (status < 0) +				break; +		} +		SearchMap2(m_RF_Cal_Map, RF1, &Cprog_table1); +		if (!bcal) +			Cprog_cal1 = Cprog_table1; +		state->m_RF_B1[RFBand] = Cprog_cal1 - Cprog_table1; +		/* state->m_RF_A1[RF_Band] = ???? */ + +		if (RF2 == 0) +			break; + +		status = PowerScan(state, RFBand, RF2, &RF2, &bcal); +		if (status < 0) +			break; +		if (bcal) { +			status = CalibrateRF(state, RFBand, RF2, &Cprog_cal2); +			if (status < 0) +				break; +		} +		SearchMap2(m_RF_Cal_Map, RF2, &Cprog_table2); +		if (!bcal) +			Cprog_cal2 = Cprog_table2; + +		state->m_RF_A1[RFBand] = +			(Cprog_cal2 - Cprog_table2 - Cprog_cal1 + Cprog_table1) / +			((s32)(RF2) - (s32)(RF1)); + +		if (RF3 == 0) +			break; + +		status = PowerScan(state, RFBand, RF3, &RF3, &bcal); +		if (status < 0) +			break; +		if (bcal) { +			status = CalibrateRF(state, RFBand, RF3, &Cprog_cal3); +			if (status < 0) +				break; +		} +		SearchMap2(m_RF_Cal_Map, RF3, &Cprog_table3); +		if (!bcal) +			Cprog_cal3 = Cprog_table3; +		state->m_RF_A2[RFBand] = (Cprog_cal3 - Cprog_table3 - Cprog_cal2 + Cprog_table2) / ((s32)(RF3) - (s32)(RF2)); +		state->m_RF_B2[RFBand] = Cprog_cal2 - Cprog_table2; + +	} while (0); + +	state->m_RF1[RFBand] = RF1; +	state->m_RF2[RFBand] = RF2; +	state->m_RF3[RFBand] = RF3; + +#if 0 +	printk(KERN_ERR "tda18271c2dd: %s %d RF1 = %d A1 = %d B1 = %d RF2 = %d A2 = %d B2 = %d RF3 = %d\n", __func__, +	       RFBand, RF1, state->m_RF_A1[RFBand], state->m_RF_B1[RFBand], RF2, +	       state->m_RF_A2[RFBand], state->m_RF_B2[RFBand], RF3); +#endif + +	return status; +} + +static int PowerScan(struct tda_state *state, +		     u8 RFBand, u32 RF_in, u32 *pRF_Out, bool *pbcal) +{ +	int status = 0; +	do { +		u8   Gain_Taper = 0; +		s32  RFC_Cprog = 0; +		u8   CID_Target = 0; +		u8   CountLimit = 0; +		u32  freq_MainPLL; +		u8   Regs[NUM_REGS]; +		u8   CID_Gain; +		s32  Count = 0; +		int  sign  = 1; +		bool wait = false; + +		if (!(SearchMap2(m_RF_Cal_Map, RF_in, &RFC_Cprog) && +		      SearchMap1(m_GainTaper_Map, RF_in, &Gain_Taper) && +		      SearchMap3(m_CID_Target_Map, RF_in, &CID_Target, &CountLimit))) { + +			printk(KERN_ERR "tda18271c2dd: %s Search map failed\n", __func__); +			return -EINVAL; +		} + +		state->m_Regs[EP2] = (RFBand << 5) | Gain_Taper; +		state->m_Regs[EB14] = (RFC_Cprog); +		status = UpdateReg(state, EP2); +		if (status < 0) +			break; +		status = UpdateReg(state, EB14); +		if (status < 0) +			break; + +		freq_MainPLL = RF_in + 1000000; +		status = CalcMainPLL(state, freq_MainPLL); +		if (status < 0) +			break; +		msleep(5); +		state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x03) | 1;    /* CAL_mode = 1 */ +		status = UpdateReg(state, EP4); +		if (status < 0) +			break; +		status = UpdateReg(state, EP2);  /* Launch power measurement */ +		if (status < 0) +			break; +		status = ReadExtented(state, Regs); +		if (status < 0) +			break; +		CID_Gain = Regs[EB10] & 0x3F; +		state->m_Regs[ID] = Regs[ID];  /* Chip version, (needed for C1 workarround in CalibrateRF) */ + +		*pRF_Out = RF_in; + +		while (CID_Gain < CID_Target) { +			freq_MainPLL = RF_in + sign * Count + 1000000; +			status = CalcMainPLL(state, freq_MainPLL); +			if (status < 0) +				break; +			msleep(wait ? 5 : 1); +			wait = false; +			status = UpdateReg(state, EP2);  /* Launch power measurement */ +			if (status < 0) +				break; +			status = ReadExtented(state, Regs); +			if (status < 0) +				break; +			CID_Gain = Regs[EB10] & 0x3F; +			Count += 200000; + +			if (Count < CountLimit * 100000) +				continue; +			if (sign < 0) +				break; + +			sign = -sign; +			Count = 200000; +			wait = true; +		} +		status = status; +		if (status < 0) +			break; +		if (CID_Gain >= CID_Target) { +			*pbcal = true; +			*pRF_Out = freq_MainPLL - 1000000; +		} else +			*pbcal = false; +	} while (0); + +	return status; +} + +static int PowerScanInit(struct tda_state *state) +{ +	int status = 0; +	do { +		state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | 0x12; +		state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x1F); /* If level = 0, Cal mode = 0 */ +		status = UpdateRegs(state, EP3, EP4); +		if (status < 0) +			break; +		state->m_Regs[EB18] = (state->m_Regs[EB18] & ~0x03); /* AGC 1 Gain = 0 */ +		status = UpdateReg(state, EB18); +		if (status < 0) +			break; +		state->m_Regs[EB21] = (state->m_Regs[EB21] & ~0x03); /* AGC 2 Gain = 0 (Datasheet = 3) */ +		state->m_Regs[EB23] = (state->m_Regs[EB23] | 0x06); /* ForceLP_Fc2_En = 1, LPFc[2] = 1 */ +		status = UpdateRegs(state, EB21, EB23); +		if (status < 0) +			break; +	} while (0); +	return status; +} + +static int CalcRFFilterCurve(struct tda_state *state) +{ +	int status = 0; +	do { +		msleep(200);      /* Temperature stabilisation */ +		status = PowerScanInit(state); +		if (status < 0) +			break; +		status = RFTrackingFiltersInit(state, 0); +		if (status < 0) +			break; +		status = RFTrackingFiltersInit(state, 1); +		if (status < 0) +			break; +		status = RFTrackingFiltersInit(state, 2); +		if (status < 0) +			break; +		status = RFTrackingFiltersInit(state, 3); +		if (status < 0) +			break; +		status = RFTrackingFiltersInit(state, 4); +		if (status < 0) +			break; +		status = RFTrackingFiltersInit(state, 5); +		if (status < 0) +			break; +		status = RFTrackingFiltersInit(state, 6); +		if (status < 0) +			break; +		status = ThermometerRead(state, &state->m_TMValue_RFCal); /* also switches off Cal mode !!! */ +		if (status < 0) +			break; +	} while (0); + +	return status; +} + +static int FixedContentsI2CUpdate(struct tda_state *state) +{ +	static u8 InitRegs[] = { +		0x08, 0x80, 0xC6, +		0xDF, 0x16, 0x60, 0x80, +		0x80, 0x00, 0x00, 0x00, +		0x00, 0x00, 0x00, 0x00, +		0xFC, 0x01, 0x84, 0x41, +		0x01, 0x84, 0x40, 0x07, +		0x00, 0x00, 0x96, 0x3F, +		0xC1, 0x00, 0x8F, 0x00, +		0x00, 0x8C, 0x00, 0x20, +		0xB3, 0x48, 0xB0, +	}; +	int status = 0; +	memcpy(&state->m_Regs[TM], InitRegs, EB23 - TM + 1); +	do { +		status = UpdateRegs(state, TM, EB23); +		if (status < 0) +			break; + +		/* AGC1 gain setup */ +		state->m_Regs[EB17] = 0x00; +		status = UpdateReg(state, EB17); +		if (status < 0) +			break; +		state->m_Regs[EB17] = 0x03; +		status = UpdateReg(state, EB17); +		if (status < 0) +			break; +		state->m_Regs[EB17] = 0x43; +		status = UpdateReg(state, EB17); +		if (status < 0) +			break; +		state->m_Regs[EB17] = 0x4C; +		status = UpdateReg(state, EB17); +		if (status < 0) +			break; + +		/* IRC Cal Low band */ +		state->m_Regs[EP3] = 0x1F; +		state->m_Regs[EP4] = 0x66; +		state->m_Regs[EP5] = 0x81; +		state->m_Regs[CPD] = 0xCC; +		state->m_Regs[CD1] = 0x6C; +		state->m_Regs[CD2] = 0x00; +		state->m_Regs[CD3] = 0x00; +		state->m_Regs[MPD] = 0xC5; +		state->m_Regs[MD1] = 0x77; +		state->m_Regs[MD2] = 0x08; +		state->m_Regs[MD3] = 0x00; +		status = UpdateRegs(state, EP2, MD3); /* diff between sw and datasheet (ep3-md3) */ +		if (status < 0) +			break; + +#if 0 +		state->m_Regs[EB4] = 0x61;          /* missing in sw */ +		status = UpdateReg(state, EB4); +		if (status < 0) +			break; +		msleep(1); +		state->m_Regs[EB4] = 0x41; +		status = UpdateReg(state, EB4); +		if (status < 0) +			break; +#endif + +		msleep(5); +		status = UpdateReg(state, EP1); +		if (status < 0) +			break; +		msleep(5); + +		state->m_Regs[EP5] = 0x85; +		state->m_Regs[CPD] = 0xCB; +		state->m_Regs[CD1] = 0x66; +		state->m_Regs[CD2] = 0x70; +		status = UpdateRegs(state, EP3, CD3); +		if (status < 0) +			break; +		msleep(5); +		status = UpdateReg(state, EP2); +		if (status < 0) +			break; +		msleep(30); + +		/* IRC Cal mid band */ +		state->m_Regs[EP5] = 0x82; +		state->m_Regs[CPD] = 0xA8; +		state->m_Regs[CD2] = 0x00; +		state->m_Regs[MPD] = 0xA1; /* Datasheet = 0xA9 */ +		state->m_Regs[MD1] = 0x73; +		state->m_Regs[MD2] = 0x1A; +		status = UpdateRegs(state, EP3, MD3); +		if (status < 0) +			break; + +		msleep(5); +		status = UpdateReg(state, EP1); +		if (status < 0) +			break; +		msleep(5); + +		state->m_Regs[EP5] = 0x86; +		state->m_Regs[CPD] = 0xA8; +		state->m_Regs[CD1] = 0x66; +		state->m_Regs[CD2] = 0xA0; +		status = UpdateRegs(state, EP3, CD3); +		if (status < 0) +			break; +		msleep(5); +		status = UpdateReg(state, EP2); +		if (status < 0) +			break; +		msleep(30); + +		/* IRC Cal high band */ +		state->m_Regs[EP5] = 0x83; +		state->m_Regs[CPD] = 0x98; +		state->m_Regs[CD1] = 0x65; +		state->m_Regs[CD2] = 0x00; +		state->m_Regs[MPD] = 0x91;  /* Datasheet = 0x91 */ +		state->m_Regs[MD1] = 0x71; +		state->m_Regs[MD2] = 0xCD; +		status = UpdateRegs(state, EP3, MD3); +		if (status < 0) +			break; +		msleep(5); +		status = UpdateReg(state, EP1); +		if (status < 0) +			break; +		msleep(5); +		state->m_Regs[EP5] = 0x87; +		state->m_Regs[CD1] = 0x65; +		state->m_Regs[CD2] = 0x50; +		status = UpdateRegs(state, EP3, CD3); +		if (status < 0) +			break; +		msleep(5); +		status = UpdateReg(state, EP2); +		if (status < 0) +			break; +		msleep(30); + +		/* Back to normal */ +		state->m_Regs[EP4] = 0x64; +		status = UpdateReg(state, EP4); +		if (status < 0) +			break; +		status = UpdateReg(state, EP1); +		if (status < 0) +			break; + +	} while (0); +	return status; +} + +static int InitCal(struct tda_state *state) +{ +	int status = 0; + +	do { +		status = FixedContentsI2CUpdate(state); +		if (status < 0) +			break; +		status = CalcRFFilterCurve(state); +		if (status < 0) +			break; +		status = StandBy(state); +		if (status < 0) +			break; +		/* m_bInitDone = true; */ +	} while (0); +	return status; +}; + +static int RFTrackingFiltersCorrection(struct tda_state *state, +				       u32 Frequency) +{ +	int status = 0; +	s32 Cprog_table; +	u8 RFBand; +	u8 dCoverdT; + +	if (!SearchMap2(m_RF_Cal_Map, Frequency, &Cprog_table) || +	    !SearchMap4(m_RF_Band_Map, Frequency, &RFBand) || +	    !SearchMap1(m_RF_Cal_DC_Over_DT_Map, Frequency, &dCoverdT)) + +		return -EINVAL; + +	do { +		u8 TMValue_Current; +		u32   RF1 = state->m_RF1[RFBand]; +		u32   RF2 = state->m_RF1[RFBand]; +		u32   RF3 = state->m_RF1[RFBand]; +		s32    RF_A1 = state->m_RF_A1[RFBand]; +		s32    RF_B1 = state->m_RF_B1[RFBand]; +		s32    RF_A2 = state->m_RF_A2[RFBand]; +		s32    RF_B2 = state->m_RF_B2[RFBand]; +		s32 Capprox = 0; +		int TComp; + +		state->m_Regs[EP3] &= ~0xE0;  /* Power up */ +		status = UpdateReg(state, EP3); +		if (status < 0) +			break; + +		status = ThermometerRead(state, &TMValue_Current); +		if (status < 0) +			break; + +		if (RF3 == 0 || Frequency < RF2) +			Capprox = RF_A1 * ((s32)(Frequency) - (s32)(RF1)) + RF_B1 + Cprog_table; +		else +			Capprox = RF_A2 * ((s32)(Frequency) - (s32)(RF2)) + RF_B2 + Cprog_table; + +		TComp = (int)(dCoverdT) * ((int)(TMValue_Current) - (int)(state->m_TMValue_RFCal))/1000; + +		Capprox += TComp; + +		if (Capprox < 0) +			Capprox = 0; +		else if (Capprox > 255) +			Capprox = 255; + + +		/* TODO Temperature compensation. There is defenitely a scale factor */ +		/*      missing in the datasheet, so leave it out for now.           */ +		state->m_Regs[EB14] = Capprox; + +		status = UpdateReg(state, EB14); +		if (status < 0) +			break; + +	} while (0); +	return status; +} + +static int ChannelConfiguration(struct tda_state *state, +				u32 Frequency, int Standard) +{ + +	s32 IntermediateFrequency = m_StandardTable[Standard].m_IFFrequency; +	int status = 0; + +	u8 BP_Filter = 0; +	u8 RF_Band = 0; +	u8 GainTaper = 0; +	u8 IR_Meas = 0; + +	state->IF = IntermediateFrequency; +	/* printk("tda18271c2dd: %s Freq = %d Standard = %d IF = %d\n", __func__, Frequency, Standard, IntermediateFrequency); */ +	/* get values from tables */ + +	if (!(SearchMap1(m_BP_Filter_Map, Frequency, &BP_Filter) && +	       SearchMap1(m_GainTaper_Map, Frequency, &GainTaper) && +	       SearchMap1(m_IR_Meas_Map, Frequency, &IR_Meas) && +	       SearchMap4(m_RF_Band_Map, Frequency, &RF_Band))) { + +		printk(KERN_ERR "tda18271c2dd: %s SearchMap failed\n", __func__); +		return -EINVAL; +	} + +	do { +		state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | m_StandardTable[Standard].m_EP3_4_0; +		state->m_Regs[EP3] &= ~0x04;   /* switch RFAGC to high speed mode */ + +		/* m_EP4 default for XToutOn, CAL_Mode (0) */ +		state->m_Regs[EP4] = state->m_EP4 | ((Standard > HF_AnalogMax) ? state->m_IFLevelDigital : state->m_IFLevelAnalog); +		/* state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital; */ +		if (Standard <= HF_AnalogMax) +			state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelAnalog; +		else if (Standard <= HF_ATSC) +			state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBT; +		else if (Standard <= HF_DVBC) +			state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBC; +		else +			state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital; + +		if ((Standard == HF_FM_Radio) && state->m_bFMInput) +			state->m_Regs[EP4] |= 80; + +		state->m_Regs[MPD] &= ~0x80; +		if (Standard > HF_AnalogMax) +			state->m_Regs[MPD] |= 0x80; /* Add IF_notch for digital */ + +		state->m_Regs[EB22] = m_StandardTable[Standard].m_EB22; + +		/* Note: This is missing from flowchart in TDA18271 specification ( 1.5 MHz cutoff for FM ) */ +		if (Standard == HF_FM_Radio) +			state->m_Regs[EB23] |=  0x06; /* ForceLP_Fc2_En = 1, LPFc[2] = 1 */ +		else +			state->m_Regs[EB23] &= ~0x06; /* ForceLP_Fc2_En = 0, LPFc[2] = 0 */ + +		status = UpdateRegs(state, EB22, EB23); +		if (status < 0) +			break; + +		state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | 0x40 | BP_Filter;   /* Dis_Power_level = 1, Filter */ +		state->m_Regs[EP5] = (state->m_Regs[EP5] & ~0x07) | IR_Meas; +		state->m_Regs[EP2] = (RF_Band << 5) | GainTaper; + +		state->m_Regs[EB1] = (state->m_Regs[EB1] & ~0x07) | +			(state->m_bMaster ? 0x04 : 0x00); /* CALVCO_FortLOn = MS */ +		/* AGC1_always_master = 0 */ +		/* AGC_firstn = 0 */ +		status = UpdateReg(state, EB1); +		if (status < 0) +			break; + +		if (state->m_bMaster) { +			status = CalcMainPLL(state, Frequency + IntermediateFrequency); +			if (status < 0) +				break; +			status = UpdateRegs(state, TM, EP5); +			if (status < 0) +				break; +			state->m_Regs[EB4] |= 0x20;    /* LO_forceSrce = 1 */ +			status = UpdateReg(state, EB4); +			if (status < 0) +				break; +			msleep(1); +			state->m_Regs[EB4] &= ~0x20;   /* LO_forceSrce = 0 */ +			status = UpdateReg(state, EB4); +			if (status < 0) +				break; +		} else { +			u8 PostDiv = 0; +			u8 Div; +			status = CalcCalPLL(state, Frequency + IntermediateFrequency); +			if (status < 0) +				break; + +			SearchMap3(m_Cal_PLL_Map, Frequency + IntermediateFrequency, &PostDiv, &Div); +			state->m_Regs[MPD] = (state->m_Regs[MPD] & ~0x7F) | (PostDiv & 0x77); +			status = UpdateReg(state, MPD); +			if (status < 0) +				break; +			status = UpdateRegs(state, TM, EP5); +			if (status < 0) +				break; + +			state->m_Regs[EB7] |= 0x20;    /* CAL_forceSrce = 1 */ +			status = UpdateReg(state, EB7); +			if (status < 0) +				break; +			msleep(1); +			state->m_Regs[EB7] &= ~0x20;   /* CAL_forceSrce = 0 */ +			status = UpdateReg(state, EB7); +			if (status < 0) +				break; +		} +		msleep(20); +		if (Standard != HF_FM_Radio) +			state->m_Regs[EP3] |= 0x04;    /* RFAGC to normal mode */ +		status = UpdateReg(state, EP3); +		if (status < 0) +			break; + +	} while (0); +	return status; +} + +static int sleep(struct dvb_frontend *fe) +{ +	struct tda_state *state = fe->tuner_priv; + +	StandBy(state); +	return 0; +} + +static int init(struct dvb_frontend *fe) +{ +	return 0; +} + +static int release(struct dvb_frontend *fe) +{ +	kfree(fe->tuner_priv); +	fe->tuner_priv = NULL; +	return 0; +} + + +static int set_params(struct dvb_frontend *fe) +{ +	struct tda_state *state = fe->tuner_priv; +	int status = 0; +	int Standard; +	u32 bw = fe->dtv_property_cache.bandwidth_hz; +	u32 delsys  = fe->dtv_property_cache.delivery_system; + +	state->m_Frequency = fe->dtv_property_cache.frequency; + +	switch (delsys) { +	case  SYS_DVBT: +	case  SYS_DVBT2: +		switch (bw) { +		case 6000000: +			Standard = HF_DVBT_6MHZ; +			break; +		case 7000000: +			Standard = HF_DVBT_7MHZ; +			break; +		case 8000000: +			Standard = HF_DVBT_8MHZ; +			break; +		default: +			return -EINVAL; +		} +	case SYS_DVBC_ANNEX_A: +	case SYS_DVBC_ANNEX_C: +		if (bw <= 6000000) +			Standard = HF_DVBC_6MHZ; +		else if (bw <= 7000000) +			Standard = HF_DVBC_7MHZ; +		else +			Standard = HF_DVBC_8MHZ; +		break; +	default: +		return -EINVAL; +	} +	do { +		status = RFTrackingFiltersCorrection(state, state->m_Frequency); +		if (status < 0) +			break; +		status = ChannelConfiguration(state, state->m_Frequency, +					      Standard); +		if (status < 0) +			break; + +		msleep(state->m_SettlingTime);  /* Allow AGC's to settle down */ +	} while (0); +	return status; +} + +#if 0 +static int GetSignalStrength(s32 *pSignalStrength, u32 RFAgc, u32 IFAgc) +{ +	if (IFAgc < 500) { +		/* Scale this from 0 to 50000 */ +		*pSignalStrength = IFAgc * 100; +	} else { +		/* Scale range 500-1500 to 50000-80000 */ +		*pSignalStrength = 50000 + (IFAgc - 500) * 30; +	} + +	return 0; +} +#endif + +static int get_if_frequency(struct dvb_frontend *fe, u32 *frequency) +{ +	struct tda_state *state = fe->tuner_priv; + +	*frequency = state->IF; +	return 0; +} + +static int get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth) +{ +	/* struct tda_state *state = fe->tuner_priv; */ +	/* *bandwidth = priv->bandwidth; */ +	return 0; +} + + +static struct dvb_tuner_ops tuner_ops = { +	.info = { +		.name = "NXP TDA18271C2D", +		.frequency_min  =  47125000, +		.frequency_max  = 865000000, +		.frequency_step =     62500 +	}, +	.init              = init, +	.sleep             = sleep, +	.set_params        = set_params, +	.release           = release, +	.get_if_frequency  = get_if_frequency, +	.get_bandwidth     = get_bandwidth, +}; + +struct dvb_frontend *tda18271c2dd_attach(struct dvb_frontend *fe, +					 struct i2c_adapter *i2c, u8 adr) +{ +	struct tda_state *state; + +	state = kzalloc(sizeof(struct tda_state), GFP_KERNEL); +	if (!state) +		return NULL; + +	fe->tuner_priv = state; +	state->adr = adr; +	state->i2c = i2c; +	memcpy(&fe->ops.tuner_ops, &tuner_ops, sizeof(struct dvb_tuner_ops)); +	reset(state); +	InitCal(state); + +	return fe; +} +EXPORT_SYMBOL_GPL(tda18271c2dd_attach); + +MODULE_DESCRIPTION("TDA18271C2 driver"); +MODULE_AUTHOR("DD"); +MODULE_LICENSE("GPL");  | 
