diff options
Diffstat (limited to 'drivers/md/persistent-data/dm-btree.c')
| -rw-r--r-- | drivers/md/persistent-data/dm-btree.c | 896 | 
1 files changed, 896 insertions, 0 deletions
diff --git a/drivers/md/persistent-data/dm-btree.c b/drivers/md/persistent-data/dm-btree.c new file mode 100644 index 00000000000..416060c2570 --- /dev/null +++ b/drivers/md/persistent-data/dm-btree.c @@ -0,0 +1,896 @@ +/* + * Copyright (C) 2011 Red Hat, Inc. + * + * This file is released under the GPL. + */ + +#include "dm-btree-internal.h" +#include "dm-space-map.h" +#include "dm-transaction-manager.h" + +#include <linux/export.h> +#include <linux/device-mapper.h> + +#define DM_MSG_PREFIX "btree" + +/*---------------------------------------------------------------- + * Array manipulation + *--------------------------------------------------------------*/ +static void memcpy_disk(void *dest, const void *src, size_t len) +	__dm_written_to_disk(src) +{ +	memcpy(dest, src, len); +	__dm_unbless_for_disk(src); +} + +static void array_insert(void *base, size_t elt_size, unsigned nr_elts, +			 unsigned index, void *elt) +	__dm_written_to_disk(elt) +{ +	if (index < nr_elts) +		memmove(base + (elt_size * (index + 1)), +			base + (elt_size * index), +			(nr_elts - index) * elt_size); + +	memcpy_disk(base + (elt_size * index), elt, elt_size); +} + +/*----------------------------------------------------------------*/ + +/* makes the assumption that no two keys are the same. */ +static int bsearch(struct btree_node *n, uint64_t key, int want_hi) +{ +	int lo = -1, hi = le32_to_cpu(n->header.nr_entries); + +	while (hi - lo > 1) { +		int mid = lo + ((hi - lo) / 2); +		uint64_t mid_key = le64_to_cpu(n->keys[mid]); + +		if (mid_key == key) +			return mid; + +		if (mid_key < key) +			lo = mid; +		else +			hi = mid; +	} + +	return want_hi ? hi : lo; +} + +int lower_bound(struct btree_node *n, uint64_t key) +{ +	return bsearch(n, key, 0); +} + +void inc_children(struct dm_transaction_manager *tm, struct btree_node *n, +		  struct dm_btree_value_type *vt) +{ +	unsigned i; +	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries); + +	if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) +		for (i = 0; i < nr_entries; i++) +			dm_tm_inc(tm, value64(n, i)); +	else if (vt->inc) +		for (i = 0; i < nr_entries; i++) +			vt->inc(vt->context, value_ptr(n, i)); +} + +static int insert_at(size_t value_size, struct btree_node *node, unsigned index, +		      uint64_t key, void *value) +		      __dm_written_to_disk(value) +{ +	uint32_t nr_entries = le32_to_cpu(node->header.nr_entries); +	__le64 key_le = cpu_to_le64(key); + +	if (index > nr_entries || +	    index >= le32_to_cpu(node->header.max_entries)) { +		DMERR("too many entries in btree node for insert"); +		__dm_unbless_for_disk(value); +		return -ENOMEM; +	} + +	__dm_bless_for_disk(&key_le); + +	array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le); +	array_insert(value_base(node), value_size, nr_entries, index, value); +	node->header.nr_entries = cpu_to_le32(nr_entries + 1); + +	return 0; +} + +/*----------------------------------------------------------------*/ + +/* + * We want 3n entries (for some n).  This works more nicely for repeated + * insert remove loops than (2n + 1). + */ +static uint32_t calc_max_entries(size_t value_size, size_t block_size) +{ +	uint32_t total, n; +	size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */ + +	block_size -= sizeof(struct node_header); +	total = block_size / elt_size; +	n = total / 3;		/* rounds down */ + +	return 3 * n; +} + +int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root) +{ +	int r; +	struct dm_block *b; +	struct btree_node *n; +	size_t block_size; +	uint32_t max_entries; + +	r = new_block(info, &b); +	if (r < 0) +		return r; + +	block_size = dm_bm_block_size(dm_tm_get_bm(info->tm)); +	max_entries = calc_max_entries(info->value_type.size, block_size); + +	n = dm_block_data(b); +	memset(n, 0, block_size); +	n->header.flags = cpu_to_le32(LEAF_NODE); +	n->header.nr_entries = cpu_to_le32(0); +	n->header.max_entries = cpu_to_le32(max_entries); +	n->header.value_size = cpu_to_le32(info->value_type.size); + +	*root = dm_block_location(b); +	return unlock_block(info, b); +} +EXPORT_SYMBOL_GPL(dm_btree_empty); + +/*----------------------------------------------------------------*/ + +/* + * Deletion uses a recursive algorithm, since we have limited stack space + * we explicitly manage our own stack on the heap. + */ +#define MAX_SPINE_DEPTH 64 +struct frame { +	struct dm_block *b; +	struct btree_node *n; +	unsigned level; +	unsigned nr_children; +	unsigned current_child; +}; + +struct del_stack { +	struct dm_btree_info *info; +	struct dm_transaction_manager *tm; +	int top; +	struct frame spine[MAX_SPINE_DEPTH]; +}; + +static int top_frame(struct del_stack *s, struct frame **f) +{ +	if (s->top < 0) { +		DMERR("btree deletion stack empty"); +		return -EINVAL; +	} + +	*f = s->spine + s->top; + +	return 0; +} + +static int unprocessed_frames(struct del_stack *s) +{ +	return s->top >= 0; +} + +static void prefetch_children(struct del_stack *s, struct frame *f) +{ +	unsigned i; +	struct dm_block_manager *bm = dm_tm_get_bm(s->tm); + +	for (i = 0; i < f->nr_children; i++) +		dm_bm_prefetch(bm, value64(f->n, i)); +} + +static bool is_internal_level(struct dm_btree_info *info, struct frame *f) +{ +	return f->level < (info->levels - 1); +} + +static int push_frame(struct del_stack *s, dm_block_t b, unsigned level) +{ +	int r; +	uint32_t ref_count; + +	if (s->top >= MAX_SPINE_DEPTH - 1) { +		DMERR("btree deletion stack out of memory"); +		return -ENOMEM; +	} + +	r = dm_tm_ref(s->tm, b, &ref_count); +	if (r) +		return r; + +	if (ref_count > 1) +		/* +		 * This is a shared node, so we can just decrement it's +		 * reference counter and leave the children. +		 */ +		dm_tm_dec(s->tm, b); + +	else { +		uint32_t flags; +		struct frame *f = s->spine + ++s->top; + +		r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b); +		if (r) { +			s->top--; +			return r; +		} + +		f->n = dm_block_data(f->b); +		f->level = level; +		f->nr_children = le32_to_cpu(f->n->header.nr_entries); +		f->current_child = 0; + +		flags = le32_to_cpu(f->n->header.flags); +		if (flags & INTERNAL_NODE || is_internal_level(s->info, f)) +			prefetch_children(s, f); +	} + +	return 0; +} + +static void pop_frame(struct del_stack *s) +{ +	struct frame *f = s->spine + s->top--; + +	dm_tm_dec(s->tm, dm_block_location(f->b)); +	dm_tm_unlock(s->tm, f->b); +} + +int dm_btree_del(struct dm_btree_info *info, dm_block_t root) +{ +	int r; +	struct del_stack *s; + +	s = kmalloc(sizeof(*s), GFP_KERNEL); +	if (!s) +		return -ENOMEM; +	s->info = info; +	s->tm = info->tm; +	s->top = -1; + +	r = push_frame(s, root, 0); +	if (r) +		goto out; + +	while (unprocessed_frames(s)) { +		uint32_t flags; +		struct frame *f; +		dm_block_t b; + +		r = top_frame(s, &f); +		if (r) +			goto out; + +		if (f->current_child >= f->nr_children) { +			pop_frame(s); +			continue; +		} + +		flags = le32_to_cpu(f->n->header.flags); +		if (flags & INTERNAL_NODE) { +			b = value64(f->n, f->current_child); +			f->current_child++; +			r = push_frame(s, b, f->level); +			if (r) +				goto out; + +		} else if (is_internal_level(info, f)) { +			b = value64(f->n, f->current_child); +			f->current_child++; +			r = push_frame(s, b, f->level + 1); +			if (r) +				goto out; + +		} else { +			if (info->value_type.dec) { +				unsigned i; + +				for (i = 0; i < f->nr_children; i++) +					info->value_type.dec(info->value_type.context, +							     value_ptr(f->n, i)); +			} +			pop_frame(s); +		} +	} + +out: +	kfree(s); +	return r; +} +EXPORT_SYMBOL_GPL(dm_btree_del); + +/*----------------------------------------------------------------*/ + +static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key, +			    int (*search_fn)(struct btree_node *, uint64_t), +			    uint64_t *result_key, void *v, size_t value_size) +{ +	int i, r; +	uint32_t flags, nr_entries; + +	do { +		r = ro_step(s, block); +		if (r < 0) +			return r; + +		i = search_fn(ro_node(s), key); + +		flags = le32_to_cpu(ro_node(s)->header.flags); +		nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries); +		if (i < 0 || i >= nr_entries) +			return -ENODATA; + +		if (flags & INTERNAL_NODE) +			block = value64(ro_node(s), i); + +	} while (!(flags & LEAF_NODE)); + +	*result_key = le64_to_cpu(ro_node(s)->keys[i]); +	memcpy(v, value_ptr(ro_node(s), i), value_size); + +	return 0; +} + +int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root, +		    uint64_t *keys, void *value_le) +{ +	unsigned level, last_level = info->levels - 1; +	int r = -ENODATA; +	uint64_t rkey; +	__le64 internal_value_le; +	struct ro_spine spine; + +	init_ro_spine(&spine, info); +	for (level = 0; level < info->levels; level++) { +		size_t size; +		void *value_p; + +		if (level == last_level) { +			value_p = value_le; +			size = info->value_type.size; + +		} else { +			value_p = &internal_value_le; +			size = sizeof(uint64_t); +		} + +		r = btree_lookup_raw(&spine, root, keys[level], +				     lower_bound, &rkey, +				     value_p, size); + +		if (!r) { +			if (rkey != keys[level]) { +				exit_ro_spine(&spine); +				return -ENODATA; +			} +		} else { +			exit_ro_spine(&spine); +			return r; +		} + +		root = le64_to_cpu(internal_value_le); +	} +	exit_ro_spine(&spine); + +	return r; +} +EXPORT_SYMBOL_GPL(dm_btree_lookup); + +/* + * Splits a node by creating a sibling node and shifting half the nodes + * contents across.  Assumes there is a parent node, and it has room for + * another child. + * + * Before: + *	  +--------+ + *	  | Parent | + *	  +--------+ + *	     | + *	     v + *	+----------+ + *	| A ++++++ | + *	+----------+ + * + * + * After: + *		+--------+ + *		| Parent | + *		+--------+ + *		  |	| + *		  v	+------+ + *	    +---------+	       | + *	    | A* +++  |	       v + *	    +---------+	  +-------+ + *			  | B +++ | + *			  +-------+ + * + * Where A* is a shadow of A. + */ +static int btree_split_sibling(struct shadow_spine *s, dm_block_t root, +			       unsigned parent_index, uint64_t key) +{ +	int r; +	size_t size; +	unsigned nr_left, nr_right; +	struct dm_block *left, *right, *parent; +	struct btree_node *ln, *rn, *pn; +	__le64 location; + +	left = shadow_current(s); + +	r = new_block(s->info, &right); +	if (r < 0) +		return r; + +	ln = dm_block_data(left); +	rn = dm_block_data(right); + +	nr_left = le32_to_cpu(ln->header.nr_entries) / 2; +	nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left; + +	ln->header.nr_entries = cpu_to_le32(nr_left); + +	rn->header.flags = ln->header.flags; +	rn->header.nr_entries = cpu_to_le32(nr_right); +	rn->header.max_entries = ln->header.max_entries; +	rn->header.value_size = ln->header.value_size; +	memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0])); + +	size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ? +		sizeof(uint64_t) : s->info->value_type.size; +	memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left), +	       size * nr_right); + +	/* +	 * Patch up the parent +	 */ +	parent = shadow_parent(s); + +	pn = dm_block_data(parent); +	location = cpu_to_le64(dm_block_location(left)); +	__dm_bless_for_disk(&location); +	memcpy_disk(value_ptr(pn, parent_index), +		    &location, sizeof(__le64)); + +	location = cpu_to_le64(dm_block_location(right)); +	__dm_bless_for_disk(&location); + +	r = insert_at(sizeof(__le64), pn, parent_index + 1, +		      le64_to_cpu(rn->keys[0]), &location); +	if (r) +		return r; + +	if (key < le64_to_cpu(rn->keys[0])) { +		unlock_block(s->info, right); +		s->nodes[1] = left; +	} else { +		unlock_block(s->info, left); +		s->nodes[1] = right; +	} + +	return 0; +} + +/* + * Splits a node by creating two new children beneath the given node. + * + * Before: + *	  +----------+ + *	  | A ++++++ | + *	  +----------+ + * + * + * After: + *	+------------+ + *	| A (shadow) | + *	+------------+ + *	    |	| + *   +------+	+----+ + *   |		     | + *   v		     v + * +-------+	 +-------+ + * | B +++ |	 | C +++ | + * +-------+	 +-------+ + */ +static int btree_split_beneath(struct shadow_spine *s, uint64_t key) +{ +	int r; +	size_t size; +	unsigned nr_left, nr_right; +	struct dm_block *left, *right, *new_parent; +	struct btree_node *pn, *ln, *rn; +	__le64 val; + +	new_parent = shadow_current(s); + +	r = new_block(s->info, &left); +	if (r < 0) +		return r; + +	r = new_block(s->info, &right); +	if (r < 0) { +		/* FIXME: put left */ +		return r; +	} + +	pn = dm_block_data(new_parent); +	ln = dm_block_data(left); +	rn = dm_block_data(right); + +	nr_left = le32_to_cpu(pn->header.nr_entries) / 2; +	nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left; + +	ln->header.flags = pn->header.flags; +	ln->header.nr_entries = cpu_to_le32(nr_left); +	ln->header.max_entries = pn->header.max_entries; +	ln->header.value_size = pn->header.value_size; + +	rn->header.flags = pn->header.flags; +	rn->header.nr_entries = cpu_to_le32(nr_right); +	rn->header.max_entries = pn->header.max_entries; +	rn->header.value_size = pn->header.value_size; + +	memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0])); +	memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0])); + +	size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ? +		sizeof(__le64) : s->info->value_type.size; +	memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size); +	memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left), +	       nr_right * size); + +	/* new_parent should just point to l and r now */ +	pn->header.flags = cpu_to_le32(INTERNAL_NODE); +	pn->header.nr_entries = cpu_to_le32(2); +	pn->header.max_entries = cpu_to_le32( +		calc_max_entries(sizeof(__le64), +				 dm_bm_block_size( +					 dm_tm_get_bm(s->info->tm)))); +	pn->header.value_size = cpu_to_le32(sizeof(__le64)); + +	val = cpu_to_le64(dm_block_location(left)); +	__dm_bless_for_disk(&val); +	pn->keys[0] = ln->keys[0]; +	memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64)); + +	val = cpu_to_le64(dm_block_location(right)); +	__dm_bless_for_disk(&val); +	pn->keys[1] = rn->keys[0]; +	memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64)); + +	/* +	 * rejig the spine.  This is ugly, since it knows too +	 * much about the spine +	 */ +	if (s->nodes[0] != new_parent) { +		unlock_block(s->info, s->nodes[0]); +		s->nodes[0] = new_parent; +	} +	if (key < le64_to_cpu(rn->keys[0])) { +		unlock_block(s->info, right); +		s->nodes[1] = left; +	} else { +		unlock_block(s->info, left); +		s->nodes[1] = right; +	} +	s->count = 2; + +	return 0; +} + +static int btree_insert_raw(struct shadow_spine *s, dm_block_t root, +			    struct dm_btree_value_type *vt, +			    uint64_t key, unsigned *index) +{ +	int r, i = *index, top = 1; +	struct btree_node *node; + +	for (;;) { +		r = shadow_step(s, root, vt); +		if (r < 0) +			return r; + +		node = dm_block_data(shadow_current(s)); + +		/* +		 * We have to patch up the parent node, ugly, but I don't +		 * see a way to do this automatically as part of the spine +		 * op. +		 */ +		if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */ +			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s))); + +			__dm_bless_for_disk(&location); +			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i), +				    &location, sizeof(__le64)); +		} + +		node = dm_block_data(shadow_current(s)); + +		if (node->header.nr_entries == node->header.max_entries) { +			if (top) +				r = btree_split_beneath(s, key); +			else +				r = btree_split_sibling(s, root, i, key); + +			if (r < 0) +				return r; +		} + +		node = dm_block_data(shadow_current(s)); + +		i = lower_bound(node, key); + +		if (le32_to_cpu(node->header.flags) & LEAF_NODE) +			break; + +		if (i < 0) { +			/* change the bounds on the lowest key */ +			node->keys[0] = cpu_to_le64(key); +			i = 0; +		} + +		root = value64(node, i); +		top = 0; +	} + +	if (i < 0 || le64_to_cpu(node->keys[i]) != key) +		i++; + +	*index = i; +	return 0; +} + +static int insert(struct dm_btree_info *info, dm_block_t root, +		  uint64_t *keys, void *value, dm_block_t *new_root, +		  int *inserted) +		  __dm_written_to_disk(value) +{ +	int r, need_insert; +	unsigned level, index = -1, last_level = info->levels - 1; +	dm_block_t block = root; +	struct shadow_spine spine; +	struct btree_node *n; +	struct dm_btree_value_type le64_type; + +	le64_type.context = NULL; +	le64_type.size = sizeof(__le64); +	le64_type.inc = NULL; +	le64_type.dec = NULL; +	le64_type.equal = NULL; + +	init_shadow_spine(&spine, info); + +	for (level = 0; level < (info->levels - 1); level++) { +		r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index); +		if (r < 0) +			goto bad; + +		n = dm_block_data(shadow_current(&spine)); +		need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) || +			       (le64_to_cpu(n->keys[index]) != keys[level])); + +		if (need_insert) { +			dm_block_t new_tree; +			__le64 new_le; + +			r = dm_btree_empty(info, &new_tree); +			if (r < 0) +				goto bad; + +			new_le = cpu_to_le64(new_tree); +			__dm_bless_for_disk(&new_le); + +			r = insert_at(sizeof(uint64_t), n, index, +				      keys[level], &new_le); +			if (r) +				goto bad; +		} + +		if (level < last_level) +			block = value64(n, index); +	} + +	r = btree_insert_raw(&spine, block, &info->value_type, +			     keys[level], &index); +	if (r < 0) +		goto bad; + +	n = dm_block_data(shadow_current(&spine)); +	need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) || +		       (le64_to_cpu(n->keys[index]) != keys[level])); + +	if (need_insert) { +		if (inserted) +			*inserted = 1; + +		r = insert_at(info->value_type.size, n, index, +			      keys[level], value); +		if (r) +			goto bad_unblessed; +	} else { +		if (inserted) +			*inserted = 0; + +		if (info->value_type.dec && +		    (!info->value_type.equal || +		     !info->value_type.equal( +			     info->value_type.context, +			     value_ptr(n, index), +			     value))) { +			info->value_type.dec(info->value_type.context, +					     value_ptr(n, index)); +		} +		memcpy_disk(value_ptr(n, index), +			    value, info->value_type.size); +	} + +	*new_root = shadow_root(&spine); +	exit_shadow_spine(&spine); + +	return 0; + +bad: +	__dm_unbless_for_disk(value); +bad_unblessed: +	exit_shadow_spine(&spine); +	return r; +} + +int dm_btree_insert(struct dm_btree_info *info, dm_block_t root, +		    uint64_t *keys, void *value, dm_block_t *new_root) +		    __dm_written_to_disk(value) +{ +	return insert(info, root, keys, value, new_root, NULL); +} +EXPORT_SYMBOL_GPL(dm_btree_insert); + +int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root, +			   uint64_t *keys, void *value, dm_block_t *new_root, +			   int *inserted) +			   __dm_written_to_disk(value) +{ +	return insert(info, root, keys, value, new_root, inserted); +} +EXPORT_SYMBOL_GPL(dm_btree_insert_notify); + +/*----------------------------------------------------------------*/ + +static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest, +		    uint64_t *result_key, dm_block_t *next_block) +{ +	int i, r; +	uint32_t flags; + +	do { +		r = ro_step(s, block); +		if (r < 0) +			return r; + +		flags = le32_to_cpu(ro_node(s)->header.flags); +		i = le32_to_cpu(ro_node(s)->header.nr_entries); +		if (!i) +			return -ENODATA; +		else +			i--; + +		if (find_highest) +			*result_key = le64_to_cpu(ro_node(s)->keys[i]); +		else +			*result_key = le64_to_cpu(ro_node(s)->keys[0]); + +		if (next_block || flags & INTERNAL_NODE) +			block = value64(ro_node(s), i); + +	} while (flags & INTERNAL_NODE); + +	if (next_block) +		*next_block = block; +	return 0; +} + +static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root, +			     bool find_highest, uint64_t *result_keys) +{ +	int r = 0, count = 0, level; +	struct ro_spine spine; + +	init_ro_spine(&spine, info); +	for (level = 0; level < info->levels; level++) { +		r = find_key(&spine, root, find_highest, result_keys + level, +			     level == info->levels - 1 ? NULL : &root); +		if (r == -ENODATA) { +			r = 0; +			break; + +		} else if (r) +			break; + +		count++; +	} +	exit_ro_spine(&spine); + +	return r ? r : count; +} + +int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root, +			      uint64_t *result_keys) +{ +	return dm_btree_find_key(info, root, true, result_keys); +} +EXPORT_SYMBOL_GPL(dm_btree_find_highest_key); + +int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root, +			     uint64_t *result_keys) +{ +	return dm_btree_find_key(info, root, false, result_keys); +} +EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key); + +/*----------------------------------------------------------------*/ + +/* + * FIXME: We shouldn't use a recursive algorithm when we have limited stack + * space.  Also this only works for single level trees. + */ +static int walk_node(struct ro_spine *s, dm_block_t block, +		     int (*fn)(void *context, uint64_t *keys, void *leaf), +		     void *context) +{ +	int r; +	unsigned i, nr; +	struct btree_node *n; +	uint64_t keys; + +	r = ro_step(s, block); +	n = ro_node(s); + +	nr = le32_to_cpu(n->header.nr_entries); +	for (i = 0; i < nr; i++) { +		if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) { +			r = walk_node(s, value64(n, i), fn, context); +			if (r) +				goto out; +		} else { +			keys = le64_to_cpu(*key_ptr(n, i)); +			r = fn(context, &keys, value_ptr(n, i)); +			if (r) +				goto out; +		} +	} + +out: +	ro_pop(s); +	return r; +} + +int dm_btree_walk(struct dm_btree_info *info, dm_block_t root, +		  int (*fn)(void *context, uint64_t *keys, void *leaf), +		  void *context) +{ +	int r; +	struct ro_spine spine; + +	BUG_ON(info->levels > 1); + +	init_ro_spine(&spine, info); +	r = walk_node(&spine, root, fn, context); +	exit_ro_spine(&spine); + +	return r; +} +EXPORT_SYMBOL_GPL(dm_btree_walk);  | 
