diff options
Diffstat (limited to 'drivers/md/bcache/bset.c')
| -rw-r--r-- | drivers/md/bcache/bset.c | 1331 | 
1 files changed, 1331 insertions, 0 deletions
diff --git a/drivers/md/bcache/bset.c b/drivers/md/bcache/bset.c new file mode 100644 index 00000000000..54541641530 --- /dev/null +++ b/drivers/md/bcache/bset.c @@ -0,0 +1,1331 @@ +/* + * Code for working with individual keys, and sorted sets of keys with in a + * btree node + * + * Copyright 2012 Google, Inc. + */ + +#define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__ + +#include "util.h" +#include "bset.h" + +#include <linux/console.h> +#include <linux/random.h> +#include <linux/prefetch.h> + +#ifdef CONFIG_BCACHE_DEBUG + +void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned set) +{ +	struct bkey *k, *next; + +	for (k = i->start; k < bset_bkey_last(i); k = next) { +		next = bkey_next(k); + +		printk(KERN_ERR "block %u key %u/%u: ", set, +		       (unsigned) ((u64 *) k - i->d), i->keys); + +		if (b->ops->key_dump) +			b->ops->key_dump(b, k); +		else +			printk("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k)); + +		if (next < bset_bkey_last(i) && +		    bkey_cmp(k, b->ops->is_extents ? +			     &START_KEY(next) : next) > 0) +			printk(KERN_ERR "Key skipped backwards\n"); +	} +} + +void bch_dump_bucket(struct btree_keys *b) +{ +	unsigned i; + +	console_lock(); +	for (i = 0; i <= b->nsets; i++) +		bch_dump_bset(b, b->set[i].data, +			      bset_sector_offset(b, b->set[i].data)); +	console_unlock(); +} + +int __bch_count_data(struct btree_keys *b) +{ +	unsigned ret = 0; +	struct btree_iter iter; +	struct bkey *k; + +	if (b->ops->is_extents) +		for_each_key(b, k, &iter) +			ret += KEY_SIZE(k); +	return ret; +} + +void __bch_check_keys(struct btree_keys *b, const char *fmt, ...) +{ +	va_list args; +	struct bkey *k, *p = NULL; +	struct btree_iter iter; +	const char *err; + +	for_each_key(b, k, &iter) { +		if (b->ops->is_extents) { +			err = "Keys out of order"; +			if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0) +				goto bug; + +			if (bch_ptr_invalid(b, k)) +				continue; + +			err =  "Overlapping keys"; +			if (p && bkey_cmp(p, &START_KEY(k)) > 0) +				goto bug; +		} else { +			if (bch_ptr_bad(b, k)) +				continue; + +			err = "Duplicate keys"; +			if (p && !bkey_cmp(p, k)) +				goto bug; +		} +		p = k; +	} +#if 0 +	err = "Key larger than btree node key"; +	if (p && bkey_cmp(p, &b->key) > 0) +		goto bug; +#endif +	return; +bug: +	bch_dump_bucket(b); + +	va_start(args, fmt); +	vprintk(fmt, args); +	va_end(args); + +	panic("bch_check_keys error:  %s:\n", err); +} + +static void bch_btree_iter_next_check(struct btree_iter *iter) +{ +	struct bkey *k = iter->data->k, *next = bkey_next(k); + +	if (next < iter->data->end && +	    bkey_cmp(k, iter->b->ops->is_extents ? +		     &START_KEY(next) : next) > 0) { +		bch_dump_bucket(iter->b); +		panic("Key skipped backwards\n"); +	} +} + +#else + +static inline void bch_btree_iter_next_check(struct btree_iter *iter) {} + +#endif + +/* Keylists */ + +int __bch_keylist_realloc(struct keylist *l, unsigned u64s) +{ +	size_t oldsize = bch_keylist_nkeys(l); +	size_t newsize = oldsize + u64s; +	uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p; +	uint64_t *new_keys; + +	newsize = roundup_pow_of_two(newsize); + +	if (newsize <= KEYLIST_INLINE || +	    roundup_pow_of_two(oldsize) == newsize) +		return 0; + +	new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO); + +	if (!new_keys) +		return -ENOMEM; + +	if (!old_keys) +		memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize); + +	l->keys_p = new_keys; +	l->top_p = new_keys + oldsize; + +	return 0; +} + +struct bkey *bch_keylist_pop(struct keylist *l) +{ +	struct bkey *k = l->keys; + +	if (k == l->top) +		return NULL; + +	while (bkey_next(k) != l->top) +		k = bkey_next(k); + +	return l->top = k; +} + +void bch_keylist_pop_front(struct keylist *l) +{ +	l->top_p -= bkey_u64s(l->keys); + +	memmove(l->keys, +		bkey_next(l->keys), +		bch_keylist_bytes(l)); +} + +/* Key/pointer manipulation */ + +void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src, +			      unsigned i) +{ +	BUG_ON(i > KEY_PTRS(src)); + +	/* Only copy the header, key, and one pointer. */ +	memcpy(dest, src, 2 * sizeof(uint64_t)); +	dest->ptr[0] = src->ptr[i]; +	SET_KEY_PTRS(dest, 1); +	/* We didn't copy the checksum so clear that bit. */ +	SET_KEY_CSUM(dest, 0); +} + +bool __bch_cut_front(const struct bkey *where, struct bkey *k) +{ +	unsigned i, len = 0; + +	if (bkey_cmp(where, &START_KEY(k)) <= 0) +		return false; + +	if (bkey_cmp(where, k) < 0) +		len = KEY_OFFSET(k) - KEY_OFFSET(where); +	else +		bkey_copy_key(k, where); + +	for (i = 0; i < KEY_PTRS(k); i++) +		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len); + +	BUG_ON(len > KEY_SIZE(k)); +	SET_KEY_SIZE(k, len); +	return true; +} + +bool __bch_cut_back(const struct bkey *where, struct bkey *k) +{ +	unsigned len = 0; + +	if (bkey_cmp(where, k) >= 0) +		return false; + +	BUG_ON(KEY_INODE(where) != KEY_INODE(k)); + +	if (bkey_cmp(where, &START_KEY(k)) > 0) +		len = KEY_OFFSET(where) - KEY_START(k); + +	bkey_copy_key(k, where); + +	BUG_ON(len > KEY_SIZE(k)); +	SET_KEY_SIZE(k, len); +	return true; +} + +/* Auxiliary search trees */ + +/* 32 bits total: */ +#define BKEY_MID_BITS		3 +#define BKEY_EXPONENT_BITS	7 +#define BKEY_MANTISSA_BITS	(32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS) +#define BKEY_MANTISSA_MASK	((1 << BKEY_MANTISSA_BITS) - 1) + +struct bkey_float { +	unsigned	exponent:BKEY_EXPONENT_BITS; +	unsigned	m:BKEY_MID_BITS; +	unsigned	mantissa:BKEY_MANTISSA_BITS; +} __packed; + +/* + * BSET_CACHELINE was originally intended to match the hardware cacheline size - + * it used to be 64, but I realized the lookup code would touch slightly less + * memory if it was 128. + * + * It definites the number of bytes (in struct bset) per struct bkey_float in + * the auxiliar search tree - when we're done searching the bset_float tree we + * have this many bytes left that we do a linear search over. + * + * Since (after level 5) every level of the bset_tree is on a new cacheline, + * we're touching one fewer cacheline in the bset tree in exchange for one more + * cacheline in the linear search - but the linear search might stop before it + * gets to the second cacheline. + */ + +#define BSET_CACHELINE		128 + +/* Space required for the btree node keys */ +static inline size_t btree_keys_bytes(struct btree_keys *b) +{ +	return PAGE_SIZE << b->page_order; +} + +static inline size_t btree_keys_cachelines(struct btree_keys *b) +{ +	return btree_keys_bytes(b) / BSET_CACHELINE; +} + +/* Space required for the auxiliary search trees */ +static inline size_t bset_tree_bytes(struct btree_keys *b) +{ +	return btree_keys_cachelines(b) * sizeof(struct bkey_float); +} + +/* Space required for the prev pointers */ +static inline size_t bset_prev_bytes(struct btree_keys *b) +{ +	return btree_keys_cachelines(b) * sizeof(uint8_t); +} + +/* Memory allocation */ + +void bch_btree_keys_free(struct btree_keys *b) +{ +	struct bset_tree *t = b->set; + +	if (bset_prev_bytes(b) < PAGE_SIZE) +		kfree(t->prev); +	else +		free_pages((unsigned long) t->prev, +			   get_order(bset_prev_bytes(b))); + +	if (bset_tree_bytes(b) < PAGE_SIZE) +		kfree(t->tree); +	else +		free_pages((unsigned long) t->tree, +			   get_order(bset_tree_bytes(b))); + +	free_pages((unsigned long) t->data, b->page_order); + +	t->prev = NULL; +	t->tree = NULL; +	t->data = NULL; +} +EXPORT_SYMBOL(bch_btree_keys_free); + +int bch_btree_keys_alloc(struct btree_keys *b, unsigned page_order, gfp_t gfp) +{ +	struct bset_tree *t = b->set; + +	BUG_ON(t->data); + +	b->page_order = page_order; + +	t->data = (void *) __get_free_pages(gfp, b->page_order); +	if (!t->data) +		goto err; + +	t->tree = bset_tree_bytes(b) < PAGE_SIZE +		? kmalloc(bset_tree_bytes(b), gfp) +		: (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b))); +	if (!t->tree) +		goto err; + +	t->prev = bset_prev_bytes(b) < PAGE_SIZE +		? kmalloc(bset_prev_bytes(b), gfp) +		: (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b))); +	if (!t->prev) +		goto err; + +	return 0; +err: +	bch_btree_keys_free(b); +	return -ENOMEM; +} +EXPORT_SYMBOL(bch_btree_keys_alloc); + +void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops, +			 bool *expensive_debug_checks) +{ +	unsigned i; + +	b->ops = ops; +	b->expensive_debug_checks = expensive_debug_checks; +	b->nsets = 0; +	b->last_set_unwritten = 0; + +	/* XXX: shouldn't be needed */ +	for (i = 0; i < MAX_BSETS; i++) +		b->set[i].size = 0; +	/* +	 * Second loop starts at 1 because b->keys[0]->data is the memory we +	 * allocated +	 */ +	for (i = 1; i < MAX_BSETS; i++) +		b->set[i].data = NULL; +} +EXPORT_SYMBOL(bch_btree_keys_init); + +/* Binary tree stuff for auxiliary search trees */ + +static unsigned inorder_next(unsigned j, unsigned size) +{ +	if (j * 2 + 1 < size) { +		j = j * 2 + 1; + +		while (j * 2 < size) +			j *= 2; +	} else +		j >>= ffz(j) + 1; + +	return j; +} + +static unsigned inorder_prev(unsigned j, unsigned size) +{ +	if (j * 2 < size) { +		j = j * 2; + +		while (j * 2 + 1 < size) +			j = j * 2 + 1; +	} else +		j >>= ffs(j); + +	return j; +} + +/* I have no idea why this code works... and I'm the one who wrote it + * + * However, I do know what it does: + * Given a binary tree constructed in an array (i.e. how you normally implement + * a heap), it converts a node in the tree - referenced by array index - to the + * index it would have if you did an inorder traversal. + * + * Also tested for every j, size up to size somewhere around 6 million. + * + * The binary tree starts at array index 1, not 0 + * extra is a function of size: + *   extra = (size - rounddown_pow_of_two(size - 1)) << 1; + */ +static unsigned __to_inorder(unsigned j, unsigned size, unsigned extra) +{ +	unsigned b = fls(j); +	unsigned shift = fls(size - 1) - b; + +	j  ^= 1U << (b - 1); +	j <<= 1; +	j  |= 1; +	j <<= shift; + +	if (j > extra) +		j -= (j - extra) >> 1; + +	return j; +} + +static unsigned to_inorder(unsigned j, struct bset_tree *t) +{ +	return __to_inorder(j, t->size, t->extra); +} + +static unsigned __inorder_to_tree(unsigned j, unsigned size, unsigned extra) +{ +	unsigned shift; + +	if (j > extra) +		j += j - extra; + +	shift = ffs(j); + +	j >>= shift; +	j  |= roundup_pow_of_two(size) >> shift; + +	return j; +} + +static unsigned inorder_to_tree(unsigned j, struct bset_tree *t) +{ +	return __inorder_to_tree(j, t->size, t->extra); +} + +#if 0 +void inorder_test(void) +{ +	unsigned long done = 0; +	ktime_t start = ktime_get(); + +	for (unsigned size = 2; +	     size < 65536000; +	     size++) { +		unsigned extra = (size - rounddown_pow_of_two(size - 1)) << 1; +		unsigned i = 1, j = rounddown_pow_of_two(size - 1); + +		if (!(size % 4096)) +			printk(KERN_NOTICE "loop %u, %llu per us\n", size, +			       done / ktime_us_delta(ktime_get(), start)); + +		while (1) { +			if (__inorder_to_tree(i, size, extra) != j) +				panic("size %10u j %10u i %10u", size, j, i); + +			if (__to_inorder(j, size, extra) != i) +				panic("size %10u j %10u i %10u", size, j, i); + +			if (j == rounddown_pow_of_two(size) - 1) +				break; + +			BUG_ON(inorder_prev(inorder_next(j, size), size) != j); + +			j = inorder_next(j, size); +			i++; +		} + +		done += size - 1; +	} +} +#endif + +/* + * Cacheline/offset <-> bkey pointer arithmetic: + * + * t->tree is a binary search tree in an array; each node corresponds to a key + * in one cacheline in t->set (BSET_CACHELINE bytes). + * + * This means we don't have to store the full index of the key that a node in + * the binary tree points to; to_inorder() gives us the cacheline, and then + * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes. + * + * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to + * make this work. + * + * To construct the bfloat for an arbitrary key we need to know what the key + * immediately preceding it is: we have to check if the two keys differ in the + * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size + * of the previous key so we can walk backwards to it from t->tree[j]'s key. + */ + +static struct bkey *cacheline_to_bkey(struct bset_tree *t, unsigned cacheline, +				      unsigned offset) +{ +	return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8; +} + +static unsigned bkey_to_cacheline(struct bset_tree *t, struct bkey *k) +{ +	return ((void *) k - (void *) t->data) / BSET_CACHELINE; +} + +static unsigned bkey_to_cacheline_offset(struct bset_tree *t, +					 unsigned cacheline, +					 struct bkey *k) +{ +	return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0); +} + +static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned j) +{ +	return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m); +} + +static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned j) +{ +	return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]); +} + +/* + * For the write set - the one we're currently inserting keys into - we don't + * maintain a full search tree, we just keep a simple lookup table in t->prev. + */ +static struct bkey *table_to_bkey(struct bset_tree *t, unsigned cacheline) +{ +	return cacheline_to_bkey(t, cacheline, t->prev[cacheline]); +} + +static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift) +{ +	low >>= shift; +	low  |= (high << 1) << (63U - shift); +	return low; +} + +static inline unsigned bfloat_mantissa(const struct bkey *k, +				       struct bkey_float *f) +{ +	const uint64_t *p = &k->low - (f->exponent >> 6); +	return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK; +} + +static void make_bfloat(struct bset_tree *t, unsigned j) +{ +	struct bkey_float *f = &t->tree[j]; +	struct bkey *m = tree_to_bkey(t, j); +	struct bkey *p = tree_to_prev_bkey(t, j); + +	struct bkey *l = is_power_of_2(j) +		? t->data->start +		: tree_to_prev_bkey(t, j >> ffs(j)); + +	struct bkey *r = is_power_of_2(j + 1) +		? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end)) +		: tree_to_bkey(t, j >> (ffz(j) + 1)); + +	BUG_ON(m < l || m > r); +	BUG_ON(bkey_next(p) != m); + +	if (KEY_INODE(l) != KEY_INODE(r)) +		f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64; +	else +		f->exponent = fls64(r->low ^ l->low); + +	f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0); + +	/* +	 * Setting f->exponent = 127 flags this node as failed, and causes the +	 * lookup code to fall back to comparing against the original key. +	 */ + +	if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f)) +		f->mantissa = bfloat_mantissa(m, f) - 1; +	else +		f->exponent = 127; +} + +static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t) +{ +	if (t != b->set) { +		unsigned j = roundup(t[-1].size, +				     64 / sizeof(struct bkey_float)); + +		t->tree = t[-1].tree + j; +		t->prev = t[-1].prev + j; +	} + +	while (t < b->set + MAX_BSETS) +		t++->size = 0; +} + +static void bch_bset_build_unwritten_tree(struct btree_keys *b) +{ +	struct bset_tree *t = bset_tree_last(b); + +	BUG_ON(b->last_set_unwritten); +	b->last_set_unwritten = 1; + +	bset_alloc_tree(b, t); + +	if (t->tree != b->set->tree + btree_keys_cachelines(b)) { +		t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start); +		t->size = 1; +	} +} + +void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic) +{ +	if (i != b->set->data) { +		b->set[++b->nsets].data = i; +		i->seq = b->set->data->seq; +	} else +		get_random_bytes(&i->seq, sizeof(uint64_t)); + +	i->magic	= magic; +	i->version	= 0; +	i->keys		= 0; + +	bch_bset_build_unwritten_tree(b); +} +EXPORT_SYMBOL(bch_bset_init_next); + +void bch_bset_build_written_tree(struct btree_keys *b) +{ +	struct bset_tree *t = bset_tree_last(b); +	struct bkey *prev = NULL, *k = t->data->start; +	unsigned j, cacheline = 1; + +	b->last_set_unwritten = 0; + +	bset_alloc_tree(b, t); + +	t->size = min_t(unsigned, +			bkey_to_cacheline(t, bset_bkey_last(t->data)), +			b->set->tree + btree_keys_cachelines(b) - t->tree); + +	if (t->size < 2) { +		t->size = 0; +		return; +	} + +	t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1; + +	/* First we figure out where the first key in each cacheline is */ +	for (j = inorder_next(0, t->size); +	     j; +	     j = inorder_next(j, t->size)) { +		while (bkey_to_cacheline(t, k) < cacheline) +			prev = k, k = bkey_next(k); + +		t->prev[j] = bkey_u64s(prev); +		t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k); +	} + +	while (bkey_next(k) != bset_bkey_last(t->data)) +		k = bkey_next(k); + +	t->end = *k; + +	/* Then we build the tree */ +	for (j = inorder_next(0, t->size); +	     j; +	     j = inorder_next(j, t->size)) +		make_bfloat(t, j); +} +EXPORT_SYMBOL(bch_bset_build_written_tree); + +/* Insert */ + +void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k) +{ +	struct bset_tree *t; +	unsigned inorder, j = 1; + +	for (t = b->set; t <= bset_tree_last(b); t++) +		if (k < bset_bkey_last(t->data)) +			goto found_set; + +	BUG(); +found_set: +	if (!t->size || !bset_written(b, t)) +		return; + +	inorder = bkey_to_cacheline(t, k); + +	if (k == t->data->start) +		goto fix_left; + +	if (bkey_next(k) == bset_bkey_last(t->data)) { +		t->end = *k; +		goto fix_right; +	} + +	j = inorder_to_tree(inorder, t); + +	if (j && +	    j < t->size && +	    k == tree_to_bkey(t, j)) +fix_left:	do { +			make_bfloat(t, j); +			j = j * 2; +		} while (j < t->size); + +	j = inorder_to_tree(inorder + 1, t); + +	if (j && +	    j < t->size && +	    k == tree_to_prev_bkey(t, j)) +fix_right:	do { +			make_bfloat(t, j); +			j = j * 2 + 1; +		} while (j < t->size); +} +EXPORT_SYMBOL(bch_bset_fix_invalidated_key); + +static void bch_bset_fix_lookup_table(struct btree_keys *b, +				      struct bset_tree *t, +				      struct bkey *k) +{ +	unsigned shift = bkey_u64s(k); +	unsigned j = bkey_to_cacheline(t, k); + +	/* We're getting called from btree_split() or btree_gc, just bail out */ +	if (!t->size) +		return; + +	/* k is the key we just inserted; we need to find the entry in the +	 * lookup table for the first key that is strictly greater than k: +	 * it's either k's cacheline or the next one +	 */ +	while (j < t->size && +	       table_to_bkey(t, j) <= k) +		j++; + +	/* Adjust all the lookup table entries, and find a new key for any that +	 * have gotten too big +	 */ +	for (; j < t->size; j++) { +		t->prev[j] += shift; + +		if (t->prev[j] > 7) { +			k = table_to_bkey(t, j - 1); + +			while (k < cacheline_to_bkey(t, j, 0)) +				k = bkey_next(k); + +			t->prev[j] = bkey_to_cacheline_offset(t, j, k); +		} +	} + +	if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree) +		return; + +	/* Possibly add a new entry to the end of the lookup table */ + +	for (k = table_to_bkey(t, t->size - 1); +	     k != bset_bkey_last(t->data); +	     k = bkey_next(k)) +		if (t->size == bkey_to_cacheline(t, k)) { +			t->prev[t->size] = bkey_to_cacheline_offset(t, t->size, k); +			t->size++; +		} +} + +/* + * Tries to merge l and r: l should be lower than r + * Returns true if we were able to merge. If we did merge, l will be the merged + * key, r will be untouched. + */ +bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r) +{ +	if (!b->ops->key_merge) +		return false; + +	/* +	 * Generic header checks +	 * Assumes left and right are in order +	 * Left and right must be exactly aligned +	 */ +	if (!bch_bkey_equal_header(l, r) || +	     bkey_cmp(l, &START_KEY(r))) +		return false; + +	return b->ops->key_merge(b, l, r); +} +EXPORT_SYMBOL(bch_bkey_try_merge); + +void bch_bset_insert(struct btree_keys *b, struct bkey *where, +		     struct bkey *insert) +{ +	struct bset_tree *t = bset_tree_last(b); + +	BUG_ON(!b->last_set_unwritten); +	BUG_ON(bset_byte_offset(b, t->data) + +	       __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) > +	       PAGE_SIZE << b->page_order); + +	memmove((uint64_t *) where + bkey_u64s(insert), +		where, +		(void *) bset_bkey_last(t->data) - (void *) where); + +	t->data->keys += bkey_u64s(insert); +	bkey_copy(where, insert); +	bch_bset_fix_lookup_table(b, t, where); +} +EXPORT_SYMBOL(bch_bset_insert); + +unsigned bch_btree_insert_key(struct btree_keys *b, struct bkey *k, +			      struct bkey *replace_key) +{ +	unsigned status = BTREE_INSERT_STATUS_NO_INSERT; +	struct bset *i = bset_tree_last(b)->data; +	struct bkey *m, *prev = NULL; +	struct btree_iter iter; + +	BUG_ON(b->ops->is_extents && !KEY_SIZE(k)); + +	m = bch_btree_iter_init(b, &iter, b->ops->is_extents +				? PRECEDING_KEY(&START_KEY(k)) +				: PRECEDING_KEY(k)); + +	if (b->ops->insert_fixup(b, k, &iter, replace_key)) +		return status; + +	status = BTREE_INSERT_STATUS_INSERT; + +	while (m != bset_bkey_last(i) && +	       bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0) +		prev = m, m = bkey_next(m); + +	/* prev is in the tree, if we merge we're done */ +	status = BTREE_INSERT_STATUS_BACK_MERGE; +	if (prev && +	    bch_bkey_try_merge(b, prev, k)) +		goto merged; +#if 0 +	status = BTREE_INSERT_STATUS_OVERWROTE; +	if (m != bset_bkey_last(i) && +	    KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m)) +		goto copy; +#endif +	status = BTREE_INSERT_STATUS_FRONT_MERGE; +	if (m != bset_bkey_last(i) && +	    bch_bkey_try_merge(b, k, m)) +		goto copy; + +	bch_bset_insert(b, m, k); +copy:	bkey_copy(m, k); +merged: +	return status; +} +EXPORT_SYMBOL(bch_btree_insert_key); + +/* Lookup */ + +struct bset_search_iter { +	struct bkey *l, *r; +}; + +static struct bset_search_iter bset_search_write_set(struct bset_tree *t, +						     const struct bkey *search) +{ +	unsigned li = 0, ri = t->size; + +	while (li + 1 != ri) { +		unsigned m = (li + ri) >> 1; + +		if (bkey_cmp(table_to_bkey(t, m), search) > 0) +			ri = m; +		else +			li = m; +	} + +	return (struct bset_search_iter) { +		table_to_bkey(t, li), +		ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data) +	}; +} + +static struct bset_search_iter bset_search_tree(struct bset_tree *t, +						const struct bkey *search) +{ +	struct bkey *l, *r; +	struct bkey_float *f; +	unsigned inorder, j, n = 1; + +	do { +		unsigned p = n << 4; +		p &= ((int) (p - t->size)) >> 31; + +		prefetch(&t->tree[p]); + +		j = n; +		f = &t->tree[j]; + +		/* +		 * n = (f->mantissa > bfloat_mantissa()) +		 *	? j * 2 +		 *	: j * 2 + 1; +		 * +		 * We need to subtract 1 from f->mantissa for the sign bit trick +		 * to work  - that's done in make_bfloat() +		 */ +		if (likely(f->exponent != 127)) +			n = j * 2 + (((unsigned) +				      (f->mantissa - +				       bfloat_mantissa(search, f))) >> 31); +		else +			n = (bkey_cmp(tree_to_bkey(t, j), search) > 0) +				? j * 2 +				: j * 2 + 1; +	} while (n < t->size); + +	inorder = to_inorder(j, t); + +	/* +	 * n would have been the node we recursed to - the low bit tells us if +	 * we recursed left or recursed right. +	 */ +	if (n & 1) { +		l = cacheline_to_bkey(t, inorder, f->m); + +		if (++inorder != t->size) { +			f = &t->tree[inorder_next(j, t->size)]; +			r = cacheline_to_bkey(t, inorder, f->m); +		} else +			r = bset_bkey_last(t->data); +	} else { +		r = cacheline_to_bkey(t, inorder, f->m); + +		if (--inorder) { +			f = &t->tree[inorder_prev(j, t->size)]; +			l = cacheline_to_bkey(t, inorder, f->m); +		} else +			l = t->data->start; +	} + +	return (struct bset_search_iter) {l, r}; +} + +struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t, +			       const struct bkey *search) +{ +	struct bset_search_iter i; + +	/* +	 * First, we search for a cacheline, then lastly we do a linear search +	 * within that cacheline. +	 * +	 * To search for the cacheline, there's three different possibilities: +	 *  * The set is too small to have a search tree, so we just do a linear +	 *    search over the whole set. +	 *  * The set is the one we're currently inserting into; keeping a full +	 *    auxiliary search tree up to date would be too expensive, so we +	 *    use a much simpler lookup table to do a binary search - +	 *    bset_search_write_set(). +	 *  * Or we use the auxiliary search tree we constructed earlier - +	 *    bset_search_tree() +	 */ + +	if (unlikely(!t->size)) { +		i.l = t->data->start; +		i.r = bset_bkey_last(t->data); +	} else if (bset_written(b, t)) { +		/* +		 * Each node in the auxiliary search tree covers a certain range +		 * of bits, and keys above and below the set it covers might +		 * differ outside those bits - so we have to special case the +		 * start and end - handle that here: +		 */ + +		if (unlikely(bkey_cmp(search, &t->end) >= 0)) +			return bset_bkey_last(t->data); + +		if (unlikely(bkey_cmp(search, t->data->start) < 0)) +			return t->data->start; + +		i = bset_search_tree(t, search); +	} else { +		BUG_ON(!b->nsets && +		       t->size < bkey_to_cacheline(t, bset_bkey_last(t->data))); + +		i = bset_search_write_set(t, search); +	} + +	if (btree_keys_expensive_checks(b)) { +		BUG_ON(bset_written(b, t) && +		       i.l != t->data->start && +		       bkey_cmp(tree_to_prev_bkey(t, +			  inorder_to_tree(bkey_to_cacheline(t, i.l), t)), +				search) > 0); + +		BUG_ON(i.r != bset_bkey_last(t->data) && +		       bkey_cmp(i.r, search) <= 0); +	} + +	while (likely(i.l != i.r) && +	       bkey_cmp(i.l, search) <= 0) +		i.l = bkey_next(i.l); + +	return i.l; +} +EXPORT_SYMBOL(__bch_bset_search); + +/* Btree iterator */ + +typedef bool (btree_iter_cmp_fn)(struct btree_iter_set, +				 struct btree_iter_set); + +static inline bool btree_iter_cmp(struct btree_iter_set l, +				  struct btree_iter_set r) +{ +	return bkey_cmp(l.k, r.k) > 0; +} + +static inline bool btree_iter_end(struct btree_iter *iter) +{ +	return !iter->used; +} + +void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k, +			 struct bkey *end) +{ +	if (k != end) +		BUG_ON(!heap_add(iter, +				 ((struct btree_iter_set) { k, end }), +				 btree_iter_cmp)); +} + +static struct bkey *__bch_btree_iter_init(struct btree_keys *b, +					  struct btree_iter *iter, +					  struct bkey *search, +					  struct bset_tree *start) +{ +	struct bkey *ret = NULL; +	iter->size = ARRAY_SIZE(iter->data); +	iter->used = 0; + +#ifdef CONFIG_BCACHE_DEBUG +	iter->b = b; +#endif + +	for (; start <= bset_tree_last(b); start++) { +		ret = bch_bset_search(b, start, search); +		bch_btree_iter_push(iter, ret, bset_bkey_last(start->data)); +	} + +	return ret; +} + +struct bkey *bch_btree_iter_init(struct btree_keys *b, +				 struct btree_iter *iter, +				 struct bkey *search) +{ +	return __bch_btree_iter_init(b, iter, search, b->set); +} +EXPORT_SYMBOL(bch_btree_iter_init); + +static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter, +						 btree_iter_cmp_fn *cmp) +{ +	struct btree_iter_set unused; +	struct bkey *ret = NULL; + +	if (!btree_iter_end(iter)) { +		bch_btree_iter_next_check(iter); + +		ret = iter->data->k; +		iter->data->k = bkey_next(iter->data->k); + +		if (iter->data->k > iter->data->end) { +			WARN_ONCE(1, "bset was corrupt!\n"); +			iter->data->k = iter->data->end; +		} + +		if (iter->data->k == iter->data->end) +			heap_pop(iter, unused, cmp); +		else +			heap_sift(iter, 0, cmp); +	} + +	return ret; +} + +struct bkey *bch_btree_iter_next(struct btree_iter *iter) +{ +	return __bch_btree_iter_next(iter, btree_iter_cmp); + +} +EXPORT_SYMBOL(bch_btree_iter_next); + +struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter, +					struct btree_keys *b, ptr_filter_fn fn) +{ +	struct bkey *ret; + +	do { +		ret = bch_btree_iter_next(iter); +	} while (ret && fn(b, ret)); + +	return ret; +} + +/* Mergesort */ + +void bch_bset_sort_state_free(struct bset_sort_state *state) +{ +	if (state->pool) +		mempool_destroy(state->pool); +} + +int bch_bset_sort_state_init(struct bset_sort_state *state, unsigned page_order) +{ +	spin_lock_init(&state->time.lock); + +	state->page_order = page_order; +	state->crit_factor = int_sqrt(1 << page_order); + +	state->pool = mempool_create_page_pool(1, page_order); +	if (!state->pool) +		return -ENOMEM; + +	return 0; +} +EXPORT_SYMBOL(bch_bset_sort_state_init); + +static void btree_mergesort(struct btree_keys *b, struct bset *out, +			    struct btree_iter *iter, +			    bool fixup, bool remove_stale) +{ +	int i; +	struct bkey *k, *last = NULL; +	BKEY_PADDED(k) tmp; +	bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale +		? bch_ptr_bad +		: bch_ptr_invalid; + +	/* Heapify the iterator, using our comparison function */ +	for (i = iter->used / 2 - 1; i >= 0; --i) +		heap_sift(iter, i, b->ops->sort_cmp); + +	while (!btree_iter_end(iter)) { +		if (b->ops->sort_fixup && fixup) +			k = b->ops->sort_fixup(iter, &tmp.k); +		else +			k = NULL; + +		if (!k) +			k = __bch_btree_iter_next(iter, b->ops->sort_cmp); + +		if (bad(b, k)) +			continue; + +		if (!last) { +			last = out->start; +			bkey_copy(last, k); +		} else if (!bch_bkey_try_merge(b, last, k)) { +			last = bkey_next(last); +			bkey_copy(last, k); +		} +	} + +	out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0; + +	pr_debug("sorted %i keys", out->keys); +} + +static void __btree_sort(struct btree_keys *b, struct btree_iter *iter, +			 unsigned start, unsigned order, bool fixup, +			 struct bset_sort_state *state) +{ +	uint64_t start_time; +	bool used_mempool = false; +	struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOIO, +						     order); +	if (!out) { +		struct page *outp; + +		BUG_ON(order > state->page_order); + +		outp = mempool_alloc(state->pool, GFP_NOIO); +		out = page_address(outp); +		used_mempool = true; +		order = state->page_order; +	} + +	start_time = local_clock(); + +	btree_mergesort(b, out, iter, fixup, false); +	b->nsets = start; + +	if (!start && order == b->page_order) { +		/* +		 * Our temporary buffer is the same size as the btree node's +		 * buffer, we can just swap buffers instead of doing a big +		 * memcpy() +		 */ + +		out->magic	= b->set->data->magic; +		out->seq	= b->set->data->seq; +		out->version	= b->set->data->version; +		swap(out, b->set->data); +	} else { +		b->set[start].data->keys = out->keys; +		memcpy(b->set[start].data->start, out->start, +		       (void *) bset_bkey_last(out) - (void *) out->start); +	} + +	if (used_mempool) +		mempool_free(virt_to_page(out), state->pool); +	else +		free_pages((unsigned long) out, order); + +	bch_bset_build_written_tree(b); + +	if (!start) +		bch_time_stats_update(&state->time, start_time); +} + +void bch_btree_sort_partial(struct btree_keys *b, unsigned start, +			    struct bset_sort_state *state) +{ +	size_t order = b->page_order, keys = 0; +	struct btree_iter iter; +	int oldsize = bch_count_data(b); + +	__bch_btree_iter_init(b, &iter, NULL, &b->set[start]); + +	if (start) { +		unsigned i; + +		for (i = start; i <= b->nsets; i++) +			keys += b->set[i].data->keys; + +		order = get_order(__set_bytes(b->set->data, keys)); +	} + +	__btree_sort(b, &iter, start, order, false, state); + +	EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize); +} +EXPORT_SYMBOL(bch_btree_sort_partial); + +void bch_btree_sort_and_fix_extents(struct btree_keys *b, +				    struct btree_iter *iter, +				    struct bset_sort_state *state) +{ +	__btree_sort(b, iter, 0, b->page_order, true, state); +} + +void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new, +			 struct bset_sort_state *state) +{ +	uint64_t start_time = local_clock(); + +	struct btree_iter iter; +	bch_btree_iter_init(b, &iter, NULL); + +	btree_mergesort(b, new->set->data, &iter, false, true); + +	bch_time_stats_update(&state->time, start_time); + +	new->set->size = 0; // XXX: why? +} + +#define SORT_CRIT	(4096 / sizeof(uint64_t)) + +void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state) +{ +	unsigned crit = SORT_CRIT; +	int i; + +	/* Don't sort if nothing to do */ +	if (!b->nsets) +		goto out; + +	for (i = b->nsets - 1; i >= 0; --i) { +		crit *= state->crit_factor; + +		if (b->set[i].data->keys < crit) { +			bch_btree_sort_partial(b, i, state); +			return; +		} +	} + +	/* Sort if we'd overflow */ +	if (b->nsets + 1 == MAX_BSETS) { +		bch_btree_sort(b, state); +		return; +	} + +out: +	bch_bset_build_written_tree(b); +} +EXPORT_SYMBOL(bch_btree_sort_lazy); + +void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats) +{ +	unsigned i; + +	for (i = 0; i <= b->nsets; i++) { +		struct bset_tree *t = &b->set[i]; +		size_t bytes = t->data->keys * sizeof(uint64_t); +		size_t j; + +		if (bset_written(b, t)) { +			stats->sets_written++; +			stats->bytes_written += bytes; + +			stats->floats += t->size - 1; + +			for (j = 1; j < t->size; j++) +				if (t->tree[j].exponent == 127) +					stats->failed++; +		} else { +			stats->sets_unwritten++; +			stats->bytes_unwritten += bytes; +		} +	} +}  | 
