diff options
Diffstat (limited to 'drivers/md/bcache/alloc.c')
| -rw-r--r-- | drivers/md/bcache/alloc.c | 696 | 
1 files changed, 696 insertions, 0 deletions
diff --git a/drivers/md/bcache/alloc.c b/drivers/md/bcache/alloc.c new file mode 100644 index 00000000000..443d03fbac4 --- /dev/null +++ b/drivers/md/bcache/alloc.c @@ -0,0 +1,696 @@ +/* + * Primary bucket allocation code + * + * Copyright 2012 Google, Inc. + * + * Allocation in bcache is done in terms of buckets: + * + * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in + * btree pointers - they must match for the pointer to be considered valid. + * + * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a + * bucket simply by incrementing its gen. + * + * The gens (along with the priorities; it's really the gens are important but + * the code is named as if it's the priorities) are written in an arbitrary list + * of buckets on disk, with a pointer to them in the journal header. + * + * When we invalidate a bucket, we have to write its new gen to disk and wait + * for that write to complete before we use it - otherwise after a crash we + * could have pointers that appeared to be good but pointed to data that had + * been overwritten. + * + * Since the gens and priorities are all stored contiguously on disk, we can + * batch this up: We fill up the free_inc list with freshly invalidated buckets, + * call prio_write(), and when prio_write() finishes we pull buckets off the + * free_inc list and optionally discard them. + * + * free_inc isn't the only freelist - if it was, we'd often to sleep while + * priorities and gens were being written before we could allocate. c->free is a + * smaller freelist, and buckets on that list are always ready to be used. + * + * If we've got discards enabled, that happens when a bucket moves from the + * free_inc list to the free list. + * + * There is another freelist, because sometimes we have buckets that we know + * have nothing pointing into them - these we can reuse without waiting for + * priorities to be rewritten. These come from freed btree nodes and buckets + * that garbage collection discovered no longer had valid keys pointing into + * them (because they were overwritten). That's the unused list - buckets on the + * unused list move to the free list, optionally being discarded in the process. + * + * It's also important to ensure that gens don't wrap around - with respect to + * either the oldest gen in the btree or the gen on disk. This is quite + * difficult to do in practice, but we explicitly guard against it anyways - if + * a bucket is in danger of wrapping around we simply skip invalidating it that + * time around, and we garbage collect or rewrite the priorities sooner than we + * would have otherwise. + * + * bch_bucket_alloc() allocates a single bucket from a specific cache. + * + * bch_bucket_alloc_set() allocates one or more buckets from different caches + * out of a cache set. + * + * free_some_buckets() drives all the processes described above. It's called + * from bch_bucket_alloc() and a few other places that need to make sure free + * buckets are ready. + * + * invalidate_buckets_(lru|fifo)() find buckets that are available to be + * invalidated, and then invalidate them and stick them on the free_inc list - + * in either lru or fifo order. + */ + +#include "bcache.h" +#include "btree.h" + +#include <linux/blkdev.h> +#include <linux/freezer.h> +#include <linux/kthread.h> +#include <linux/random.h> +#include <trace/events/bcache.h> + +/* Bucket heap / gen */ + +uint8_t bch_inc_gen(struct cache *ca, struct bucket *b) +{ +	uint8_t ret = ++b->gen; + +	ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b)); +	WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX); + +	return ret; +} + +void bch_rescale_priorities(struct cache_set *c, int sectors) +{ +	struct cache *ca; +	struct bucket *b; +	unsigned next = c->nbuckets * c->sb.bucket_size / 1024; +	unsigned i; +	int r; + +	atomic_sub(sectors, &c->rescale); + +	do { +		r = atomic_read(&c->rescale); + +		if (r >= 0) +			return; +	} while (atomic_cmpxchg(&c->rescale, r, r + next) != r); + +	mutex_lock(&c->bucket_lock); + +	c->min_prio = USHRT_MAX; + +	for_each_cache(ca, c, i) +		for_each_bucket(b, ca) +			if (b->prio && +			    b->prio != BTREE_PRIO && +			    !atomic_read(&b->pin)) { +				b->prio--; +				c->min_prio = min(c->min_prio, b->prio); +			} + +	mutex_unlock(&c->bucket_lock); +} + +/* + * Background allocation thread: scans for buckets to be invalidated, + * invalidates them, rewrites prios/gens (marking them as invalidated on disk), + * then optionally issues discard commands to the newly free buckets, then puts + * them on the various freelists. + */ + +static inline bool can_inc_bucket_gen(struct bucket *b) +{ +	return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX; +} + +bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b) +{ +	BUG_ON(!ca->set->gc_mark_valid); + +	return (!GC_MARK(b) || +		GC_MARK(b) == GC_MARK_RECLAIMABLE) && +		!atomic_read(&b->pin) && +		can_inc_bucket_gen(b); +} + +void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) +{ +	lockdep_assert_held(&ca->set->bucket_lock); +	BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE); + +	if (GC_SECTORS_USED(b)) +		trace_bcache_invalidate(ca, b - ca->buckets); + +	bch_inc_gen(ca, b); +	b->prio = INITIAL_PRIO; +	atomic_inc(&b->pin); +} + +static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) +{ +	__bch_invalidate_one_bucket(ca, b); + +	fifo_push(&ca->free_inc, b - ca->buckets); +} + +/* + * Determines what order we're going to reuse buckets, smallest bucket_prio() + * first: we also take into account the number of sectors of live data in that + * bucket, and in order for that multiply to make sense we have to scale bucket + * + * Thus, we scale the bucket priorities so that the bucket with the smallest + * prio is worth 1/8th of what INITIAL_PRIO is worth. + */ + +#define bucket_prio(b)							\ +({									\ +	unsigned min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8;	\ +									\ +	(b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b);	\ +}) + +#define bucket_max_cmp(l, r)	(bucket_prio(l) < bucket_prio(r)) +#define bucket_min_cmp(l, r)	(bucket_prio(l) > bucket_prio(r)) + +static void invalidate_buckets_lru(struct cache *ca) +{ +	struct bucket *b; +	ssize_t i; + +	ca->heap.used = 0; + +	for_each_bucket(b, ca) { +		if (!bch_can_invalidate_bucket(ca, b)) +			continue; + +		if (!heap_full(&ca->heap)) +			heap_add(&ca->heap, b, bucket_max_cmp); +		else if (bucket_max_cmp(b, heap_peek(&ca->heap))) { +			ca->heap.data[0] = b; +			heap_sift(&ca->heap, 0, bucket_max_cmp); +		} +	} + +	for (i = ca->heap.used / 2 - 1; i >= 0; --i) +		heap_sift(&ca->heap, i, bucket_min_cmp); + +	while (!fifo_full(&ca->free_inc)) { +		if (!heap_pop(&ca->heap, b, bucket_min_cmp)) { +			/* +			 * We don't want to be calling invalidate_buckets() +			 * multiple times when it can't do anything +			 */ +			ca->invalidate_needs_gc = 1; +			wake_up_gc(ca->set); +			return; +		} + +		bch_invalidate_one_bucket(ca, b); +	} +} + +static void invalidate_buckets_fifo(struct cache *ca) +{ +	struct bucket *b; +	size_t checked = 0; + +	while (!fifo_full(&ca->free_inc)) { +		if (ca->fifo_last_bucket <  ca->sb.first_bucket || +		    ca->fifo_last_bucket >= ca->sb.nbuckets) +			ca->fifo_last_bucket = ca->sb.first_bucket; + +		b = ca->buckets + ca->fifo_last_bucket++; + +		if (bch_can_invalidate_bucket(ca, b)) +			bch_invalidate_one_bucket(ca, b); + +		if (++checked >= ca->sb.nbuckets) { +			ca->invalidate_needs_gc = 1; +			wake_up_gc(ca->set); +			return; +		} +	} +} + +static void invalidate_buckets_random(struct cache *ca) +{ +	struct bucket *b; +	size_t checked = 0; + +	while (!fifo_full(&ca->free_inc)) { +		size_t n; +		get_random_bytes(&n, sizeof(n)); + +		n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket); +		n += ca->sb.first_bucket; + +		b = ca->buckets + n; + +		if (bch_can_invalidate_bucket(ca, b)) +			bch_invalidate_one_bucket(ca, b); + +		if (++checked >= ca->sb.nbuckets / 2) { +			ca->invalidate_needs_gc = 1; +			wake_up_gc(ca->set); +			return; +		} +	} +} + +static void invalidate_buckets(struct cache *ca) +{ +	BUG_ON(ca->invalidate_needs_gc); + +	switch (CACHE_REPLACEMENT(&ca->sb)) { +	case CACHE_REPLACEMENT_LRU: +		invalidate_buckets_lru(ca); +		break; +	case CACHE_REPLACEMENT_FIFO: +		invalidate_buckets_fifo(ca); +		break; +	case CACHE_REPLACEMENT_RANDOM: +		invalidate_buckets_random(ca); +		break; +	} +} + +#define allocator_wait(ca, cond)					\ +do {									\ +	while (1) {							\ +		set_current_state(TASK_INTERRUPTIBLE);			\ +		if (cond)						\ +			break;						\ +									\ +		mutex_unlock(&(ca)->set->bucket_lock);			\ +		if (kthread_should_stop())				\ +			return 0;					\ +									\ +		try_to_freeze();					\ +		schedule();						\ +		mutex_lock(&(ca)->set->bucket_lock);			\ +	}								\ +	__set_current_state(TASK_RUNNING);				\ +} while (0) + +static int bch_allocator_push(struct cache *ca, long bucket) +{ +	unsigned i; + +	/* Prios/gens are actually the most important reserve */ +	if (fifo_push(&ca->free[RESERVE_PRIO], bucket)) +		return true; + +	for (i = 0; i < RESERVE_NR; i++) +		if (fifo_push(&ca->free[i], bucket)) +			return true; + +	return false; +} + +static int bch_allocator_thread(void *arg) +{ +	struct cache *ca = arg; + +	mutex_lock(&ca->set->bucket_lock); + +	while (1) { +		/* +		 * First, we pull buckets off of the unused and free_inc lists, +		 * possibly issue discards to them, then we add the bucket to +		 * the free list: +		 */ +		while (!fifo_empty(&ca->free_inc)) { +			long bucket; + +			fifo_pop(&ca->free_inc, bucket); + +			if (ca->discard) { +				mutex_unlock(&ca->set->bucket_lock); +				blkdev_issue_discard(ca->bdev, +					bucket_to_sector(ca->set, bucket), +					ca->sb.block_size, GFP_KERNEL, 0); +				mutex_lock(&ca->set->bucket_lock); +			} + +			allocator_wait(ca, bch_allocator_push(ca, bucket)); +			wake_up(&ca->set->btree_cache_wait); +			wake_up(&ca->set->bucket_wait); +		} + +		/* +		 * We've run out of free buckets, we need to find some buckets +		 * we can invalidate. First, invalidate them in memory and add +		 * them to the free_inc list: +		 */ + +retry_invalidate: +		allocator_wait(ca, ca->set->gc_mark_valid && +			       !ca->invalidate_needs_gc); +		invalidate_buckets(ca); + +		/* +		 * Now, we write their new gens to disk so we can start writing +		 * new stuff to them: +		 */ +		allocator_wait(ca, !atomic_read(&ca->set->prio_blocked)); +		if (CACHE_SYNC(&ca->set->sb)) { +			/* +			 * This could deadlock if an allocation with a btree +			 * node locked ever blocked - having the btree node +			 * locked would block garbage collection, but here we're +			 * waiting on garbage collection before we invalidate +			 * and free anything. +			 * +			 * But this should be safe since the btree code always +			 * uses btree_check_reserve() before allocating now, and +			 * if it fails it blocks without btree nodes locked. +			 */ +			if (!fifo_full(&ca->free_inc)) +				goto retry_invalidate; + +			bch_prio_write(ca); +		} +	} +} + +/* Allocation */ + +long bch_bucket_alloc(struct cache *ca, unsigned reserve, bool wait) +{ +	DEFINE_WAIT(w); +	struct bucket *b; +	long r; + +	/* fastpath */ +	if (fifo_pop(&ca->free[RESERVE_NONE], r) || +	    fifo_pop(&ca->free[reserve], r)) +		goto out; + +	if (!wait) { +		trace_bcache_alloc_fail(ca, reserve); +		return -1; +	} + +	do { +		prepare_to_wait(&ca->set->bucket_wait, &w, +				TASK_UNINTERRUPTIBLE); + +		mutex_unlock(&ca->set->bucket_lock); +		schedule(); +		mutex_lock(&ca->set->bucket_lock); +	} while (!fifo_pop(&ca->free[RESERVE_NONE], r) && +		 !fifo_pop(&ca->free[reserve], r)); + +	finish_wait(&ca->set->bucket_wait, &w); +out: +	wake_up_process(ca->alloc_thread); + +	trace_bcache_alloc(ca, reserve); + +	if (expensive_debug_checks(ca->set)) { +		size_t iter; +		long i; +		unsigned j; + +		for (iter = 0; iter < prio_buckets(ca) * 2; iter++) +			BUG_ON(ca->prio_buckets[iter] == (uint64_t) r); + +		for (j = 0; j < RESERVE_NR; j++) +			fifo_for_each(i, &ca->free[j], iter) +				BUG_ON(i == r); +		fifo_for_each(i, &ca->free_inc, iter) +			BUG_ON(i == r); +	} + +	b = ca->buckets + r; + +	BUG_ON(atomic_read(&b->pin) != 1); + +	SET_GC_SECTORS_USED(b, ca->sb.bucket_size); + +	if (reserve <= RESERVE_PRIO) { +		SET_GC_MARK(b, GC_MARK_METADATA); +		SET_GC_MOVE(b, 0); +		b->prio = BTREE_PRIO; +	} else { +		SET_GC_MARK(b, GC_MARK_RECLAIMABLE); +		SET_GC_MOVE(b, 0); +		b->prio = INITIAL_PRIO; +	} + +	return r; +} + +void __bch_bucket_free(struct cache *ca, struct bucket *b) +{ +	SET_GC_MARK(b, 0); +	SET_GC_SECTORS_USED(b, 0); +} + +void bch_bucket_free(struct cache_set *c, struct bkey *k) +{ +	unsigned i; + +	for (i = 0; i < KEY_PTRS(k); i++) +		__bch_bucket_free(PTR_CACHE(c, k, i), +				  PTR_BUCKET(c, k, i)); +} + +int __bch_bucket_alloc_set(struct cache_set *c, unsigned reserve, +			   struct bkey *k, int n, bool wait) +{ +	int i; + +	lockdep_assert_held(&c->bucket_lock); +	BUG_ON(!n || n > c->caches_loaded || n > 8); + +	bkey_init(k); + +	/* sort by free space/prio of oldest data in caches */ + +	for (i = 0; i < n; i++) { +		struct cache *ca = c->cache_by_alloc[i]; +		long b = bch_bucket_alloc(ca, reserve, wait); + +		if (b == -1) +			goto err; + +		k->ptr[i] = PTR(ca->buckets[b].gen, +				bucket_to_sector(c, b), +				ca->sb.nr_this_dev); + +		SET_KEY_PTRS(k, i + 1); +	} + +	return 0; +err: +	bch_bucket_free(c, k); +	bkey_put(c, k); +	return -1; +} + +int bch_bucket_alloc_set(struct cache_set *c, unsigned reserve, +			 struct bkey *k, int n, bool wait) +{ +	int ret; +	mutex_lock(&c->bucket_lock); +	ret = __bch_bucket_alloc_set(c, reserve, k, n, wait); +	mutex_unlock(&c->bucket_lock); +	return ret; +} + +/* Sector allocator */ + +struct open_bucket { +	struct list_head	list; +	unsigned		last_write_point; +	unsigned		sectors_free; +	BKEY_PADDED(key); +}; + +/* + * We keep multiple buckets open for writes, and try to segregate different + * write streams for better cache utilization: first we look for a bucket where + * the last write to it was sequential with the current write, and failing that + * we look for a bucket that was last used by the same task. + * + * The ideas is if you've got multiple tasks pulling data into the cache at the + * same time, you'll get better cache utilization if you try to segregate their + * data and preserve locality. + * + * For example, say you've starting Firefox at the same time you're copying a + * bunch of files. Firefox will likely end up being fairly hot and stay in the + * cache awhile, but the data you copied might not be; if you wrote all that + * data to the same buckets it'd get invalidated at the same time. + * + * Both of those tasks will be doing fairly random IO so we can't rely on + * detecting sequential IO to segregate their data, but going off of the task + * should be a sane heuristic. + */ +static struct open_bucket *pick_data_bucket(struct cache_set *c, +					    const struct bkey *search, +					    unsigned write_point, +					    struct bkey *alloc) +{ +	struct open_bucket *ret, *ret_task = NULL; + +	list_for_each_entry_reverse(ret, &c->data_buckets, list) +		if (!bkey_cmp(&ret->key, search)) +			goto found; +		else if (ret->last_write_point == write_point) +			ret_task = ret; + +	ret = ret_task ?: list_first_entry(&c->data_buckets, +					   struct open_bucket, list); +found: +	if (!ret->sectors_free && KEY_PTRS(alloc)) { +		ret->sectors_free = c->sb.bucket_size; +		bkey_copy(&ret->key, alloc); +		bkey_init(alloc); +	} + +	if (!ret->sectors_free) +		ret = NULL; + +	return ret; +} + +/* + * Allocates some space in the cache to write to, and k to point to the newly + * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the + * end of the newly allocated space). + * + * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many + * sectors were actually allocated. + * + * If s->writeback is true, will not fail. + */ +bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors, +		       unsigned write_point, unsigned write_prio, bool wait) +{ +	struct open_bucket *b; +	BKEY_PADDED(key) alloc; +	unsigned i; + +	/* +	 * We might have to allocate a new bucket, which we can't do with a +	 * spinlock held. So if we have to allocate, we drop the lock, allocate +	 * and then retry. KEY_PTRS() indicates whether alloc points to +	 * allocated bucket(s). +	 */ + +	bkey_init(&alloc.key); +	spin_lock(&c->data_bucket_lock); + +	while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) { +		unsigned watermark = write_prio +			? RESERVE_MOVINGGC +			: RESERVE_NONE; + +		spin_unlock(&c->data_bucket_lock); + +		if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait)) +			return false; + +		spin_lock(&c->data_bucket_lock); +	} + +	/* +	 * If we had to allocate, we might race and not need to allocate the +	 * second time we call find_data_bucket(). If we allocated a bucket but +	 * didn't use it, drop the refcount bch_bucket_alloc_set() took: +	 */ +	if (KEY_PTRS(&alloc.key)) +		bkey_put(c, &alloc.key); + +	for (i = 0; i < KEY_PTRS(&b->key); i++) +		EBUG_ON(ptr_stale(c, &b->key, i)); + +	/* Set up the pointer to the space we're allocating: */ + +	for (i = 0; i < KEY_PTRS(&b->key); i++) +		k->ptr[i] = b->key.ptr[i]; + +	sectors = min(sectors, b->sectors_free); + +	SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors); +	SET_KEY_SIZE(k, sectors); +	SET_KEY_PTRS(k, KEY_PTRS(&b->key)); + +	/* +	 * Move b to the end of the lru, and keep track of what this bucket was +	 * last used for: +	 */ +	list_move_tail(&b->list, &c->data_buckets); +	bkey_copy_key(&b->key, k); +	b->last_write_point = write_point; + +	b->sectors_free	-= sectors; + +	for (i = 0; i < KEY_PTRS(&b->key); i++) { +		SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors); + +		atomic_long_add(sectors, +				&PTR_CACHE(c, &b->key, i)->sectors_written); +	} + +	if (b->sectors_free < c->sb.block_size) +		b->sectors_free = 0; + +	/* +	 * k takes refcounts on the buckets it points to until it's inserted +	 * into the btree, but if we're done with this bucket we just transfer +	 * get_data_bucket()'s refcount. +	 */ +	if (b->sectors_free) +		for (i = 0; i < KEY_PTRS(&b->key); i++) +			atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin); + +	spin_unlock(&c->data_bucket_lock); +	return true; +} + +/* Init */ + +void bch_open_buckets_free(struct cache_set *c) +{ +	struct open_bucket *b; + +	while (!list_empty(&c->data_buckets)) { +		b = list_first_entry(&c->data_buckets, +				     struct open_bucket, list); +		list_del(&b->list); +		kfree(b); +	} +} + +int bch_open_buckets_alloc(struct cache_set *c) +{ +	int i; + +	spin_lock_init(&c->data_bucket_lock); + +	for (i = 0; i < 6; i++) { +		struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL); +		if (!b) +			return -ENOMEM; + +		list_add(&b->list, &c->data_buckets); +	} + +	return 0; +} + +int bch_cache_allocator_start(struct cache *ca) +{ +	struct task_struct *k = kthread_run(bch_allocator_thread, +					    ca, "bcache_allocator"); +	if (IS_ERR(k)) +		return PTR_ERR(k); + +	ca->alloc_thread = k; +	return 0; +}  | 
