diff options
Diffstat (limited to 'drivers/macintosh/windfarm_pm72.c')
| -rw-r--r-- | drivers/macintosh/windfarm_pm72.c | 847 | 
1 files changed, 847 insertions, 0 deletions
diff --git a/drivers/macintosh/windfarm_pm72.c b/drivers/macintosh/windfarm_pm72.c new file mode 100644 index 00000000000..2f506b9d5a5 --- /dev/null +++ b/drivers/macintosh/windfarm_pm72.c @@ -0,0 +1,847 @@ +/* + * Windfarm PowerMac thermal control. + * Control loops for PowerMac7,2 and 7,3 + * + * Copyright (C) 2012 Benjamin Herrenschmidt, IBM Corp. + * + * Use and redistribute under the terms of the GNU GPL v2. + */ +#include <linux/types.h> +#include <linux/errno.h> +#include <linux/kernel.h> +#include <linux/device.h> +#include <linux/platform_device.h> +#include <linux/reboot.h> +#include <asm/prom.h> +#include <asm/smu.h> + +#include "windfarm.h" +#include "windfarm_pid.h" +#include "windfarm_mpu.h" + +#define VERSION "1.0" + +#undef DEBUG +#undef LOTSA_DEBUG + +#ifdef DEBUG +#define DBG(args...)	printk(args) +#else +#define DBG(args...)	do { } while(0) +#endif + +#ifdef LOTSA_DEBUG +#define DBG_LOTS(args...)	printk(args) +#else +#define DBG_LOTS(args...)	do { } while(0) +#endif + +/* define this to force CPU overtemp to 60 degree, useful for testing + * the overtemp code + */ +#undef HACKED_OVERTEMP + +/* We currently only handle 2 chips */ +#define NR_CHIPS	2 +#define NR_CPU_FANS	3 * NR_CHIPS + +/* Controls and sensors */ +static struct wf_sensor *sens_cpu_temp[NR_CHIPS]; +static struct wf_sensor *sens_cpu_volts[NR_CHIPS]; +static struct wf_sensor *sens_cpu_amps[NR_CHIPS]; +static struct wf_sensor *backside_temp; +static struct wf_sensor *drives_temp; + +static struct wf_control *cpu_front_fans[NR_CHIPS]; +static struct wf_control *cpu_rear_fans[NR_CHIPS]; +static struct wf_control *cpu_pumps[NR_CHIPS]; +static struct wf_control *backside_fan; +static struct wf_control *drives_fan; +static struct wf_control *slots_fan; +static struct wf_control *cpufreq_clamp; + +/* We keep a temperature history for average calculation of 180s */ +#define CPU_TEMP_HIST_SIZE	180 + +/* Fixed speed for slot fan */ +#define	SLOTS_FAN_DEFAULT_PWM	40 + +/* Scale value for CPU intake fans */ +#define CPU_INTAKE_SCALE	0x0000f852 + +/* PID loop state */ +static const struct mpu_data *cpu_mpu_data[NR_CHIPS]; +static struct wf_cpu_pid_state cpu_pid[NR_CHIPS]; +static bool cpu_pid_combined; +static u32 cpu_thist[CPU_TEMP_HIST_SIZE]; +static int cpu_thist_pt; +static s64 cpu_thist_total; +static s32 cpu_all_tmax = 100 << 16; +static struct wf_pid_state backside_pid; +static int backside_tick; +static struct wf_pid_state drives_pid; +static int drives_tick; + +static int nr_chips; +static bool have_all_controls; +static bool have_all_sensors; +static bool started; + +static int failure_state; +#define FAILURE_SENSOR		1 +#define FAILURE_FAN		2 +#define FAILURE_PERM		4 +#define FAILURE_LOW_OVERTEMP	8 +#define FAILURE_HIGH_OVERTEMP	16 + +/* Overtemp values */ +#define LOW_OVER_AVERAGE	0 +#define LOW_OVER_IMMEDIATE	(10 << 16) +#define LOW_OVER_CLEAR		((-10) << 16) +#define HIGH_OVER_IMMEDIATE	(14 << 16) +#define HIGH_OVER_AVERAGE	(10 << 16) +#define HIGH_OVER_IMMEDIATE	(14 << 16) + + +static void cpu_max_all_fans(void) +{ +	int i; + +	/* We max all CPU fans in case of a sensor error. We also do the +	 * cpufreq clamping now, even if it's supposedly done later by the +	 * generic code anyway, we do it earlier here to react faster +	 */ +	if (cpufreq_clamp) +		wf_control_set_max(cpufreq_clamp); +	for (i = 0; i < nr_chips; i++) { +		if (cpu_front_fans[i]) +			wf_control_set_max(cpu_front_fans[i]); +		if (cpu_rear_fans[i]) +			wf_control_set_max(cpu_rear_fans[i]); +		if (cpu_pumps[i]) +			wf_control_set_max(cpu_pumps[i]); +	} +} + +static int cpu_check_overtemp(s32 temp) +{ +	int new_state = 0; +	s32 t_avg, t_old; +	static bool first = true; + +	/* First check for immediate overtemps */ +	if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) { +		new_state |= FAILURE_LOW_OVERTEMP; +		if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) +			printk(KERN_ERR "windfarm: Overtemp due to immediate CPU" +			       " temperature !\n"); +	} +	if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) { +		new_state |= FAILURE_HIGH_OVERTEMP; +		if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) +			printk(KERN_ERR "windfarm: Critical overtemp due to" +			       " immediate CPU temperature !\n"); +	} + +	/* +	 * The first time around, initialize the array with the first +	 * temperature reading +	 */ +	if (first) { +		int i; + +		cpu_thist_total = 0; +		for (i = 0; i < CPU_TEMP_HIST_SIZE; i++) { +			cpu_thist[i] = temp; +			cpu_thist_total += temp; +		} +		first = false; +	} + +	/* +	 * We calculate a history of max temperatures and use that for the +	 * overtemp management +	 */ +	t_old = cpu_thist[cpu_thist_pt]; +	cpu_thist[cpu_thist_pt] = temp; +	cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE; +	cpu_thist_total -= t_old; +	cpu_thist_total += temp; +	t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE; + +	DBG_LOTS("  t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n", +		 FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp)); + +	/* Now check for average overtemps */ +	if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) { +		new_state |= FAILURE_LOW_OVERTEMP; +		if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) +			printk(KERN_ERR "windfarm: Overtemp due to average CPU" +			       " temperature !\n"); +	} +	if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) { +		new_state |= FAILURE_HIGH_OVERTEMP; +		if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) +			printk(KERN_ERR "windfarm: Critical overtemp due to" +			       " average CPU temperature !\n"); +	} + +	/* Now handle overtemp conditions. We don't currently use the windfarm +	 * overtemp handling core as it's not fully suited to the needs of those +	 * new machine. This will be fixed later. +	 */ +	if (new_state) { +		/* High overtemp -> immediate shutdown */ +		if (new_state & FAILURE_HIGH_OVERTEMP) +			machine_power_off(); +		if ((failure_state & new_state) != new_state) +			cpu_max_all_fans(); +		failure_state |= new_state; +	} else if ((failure_state & FAILURE_LOW_OVERTEMP) && +		   (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) { +		printk(KERN_ERR "windfarm: Overtemp condition cleared !\n"); +		failure_state &= ~FAILURE_LOW_OVERTEMP; +	} + +	return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP); +} + +static int read_one_cpu_vals(int cpu, s32 *temp, s32 *power) +{ +	s32 dtemp, volts, amps; +	int rc; + +	/* Get diode temperature */ +	rc = wf_sensor_get(sens_cpu_temp[cpu], &dtemp); +	if (rc) { +		DBG("  CPU%d: temp reading error !\n", cpu); +		return -EIO; +	} +	DBG_LOTS("  CPU%d: temp   = %d.%03d\n", cpu, FIX32TOPRINT((dtemp))); +	*temp = dtemp; + +	/* Get voltage */ +	rc = wf_sensor_get(sens_cpu_volts[cpu], &volts); +	if (rc) { +		DBG("  CPU%d, volts reading error !\n", cpu); +		return -EIO; +	} +	DBG_LOTS("  CPU%d: volts  = %d.%03d\n", cpu, FIX32TOPRINT((volts))); + +	/* Get current */ +	rc = wf_sensor_get(sens_cpu_amps[cpu], &s); +	if (rc) { +		DBG("  CPU%d, current reading error !\n", cpu); +		return -EIO; +	} +	DBG_LOTS("  CPU%d: amps   = %d.%03d\n", cpu, FIX32TOPRINT((amps))); + +	/* Calculate power */ + +	/* Scale voltage and current raw sensor values according to fixed scales +	 * obtained in Darwin and calculate power from I and V +	 */ +	*power = (((u64)volts) * ((u64)amps)) >> 16; + +	DBG_LOTS("  CPU%d: power  = %d.%03d\n", cpu, FIX32TOPRINT((*power))); + +	return 0; + +} + +static void cpu_fans_tick_split(void) +{ +	int err, cpu; +	s32 intake, temp, power, t_max = 0; + +	DBG_LOTS("* cpu fans_tick_split()\n"); + +	for (cpu = 0; cpu < nr_chips; ++cpu) { +		struct wf_cpu_pid_state *sp = &cpu_pid[cpu]; + +		/* Read current speed */ +		wf_control_get(cpu_rear_fans[cpu], &sp->target); + +		DBG_LOTS("  CPU%d: cur_target = %d RPM\n", cpu, sp->target); + +		err = read_one_cpu_vals(cpu, &temp, &power); +		if (err) { +			failure_state |= FAILURE_SENSOR; +			cpu_max_all_fans(); +			return; +		} + +		/* Keep track of highest temp */ +		t_max = max(t_max, temp); + +		/* Handle possible overtemps */ +		if (cpu_check_overtemp(t_max)) +			return; + +		/* Run PID */ +		wf_cpu_pid_run(sp, power, temp); + +		DBG_LOTS("  CPU%d: target = %d RPM\n", cpu, sp->target); + +		/* Apply result directly to exhaust fan */ +		err = wf_control_set(cpu_rear_fans[cpu], sp->target); +		if (err) { +			pr_warning("wf_pm72: Fan %s reports error %d\n", +			       cpu_rear_fans[cpu]->name, err); +			failure_state |= FAILURE_FAN; +			break; +		} + +		/* Scale result for intake fan */ +		intake = (sp->target * CPU_INTAKE_SCALE) >> 16; +		DBG_LOTS("  CPU%d: intake = %d RPM\n", cpu, intake); +		err = wf_control_set(cpu_front_fans[cpu], intake); +		if (err) { +			pr_warning("wf_pm72: Fan %s reports error %d\n", +			       cpu_front_fans[cpu]->name, err); +			failure_state |= FAILURE_FAN; +			break; +		} +	} +} + +static void cpu_fans_tick_combined(void) +{ +	s32 temp0, power0, temp1, power1, t_max = 0; +	s32 temp, power, intake, pump; +	struct wf_control *pump0, *pump1; +	struct wf_cpu_pid_state *sp = &cpu_pid[0]; +	int err, cpu; + +	DBG_LOTS("* cpu fans_tick_combined()\n"); + +	/* Read current speed from cpu 0 */ +	wf_control_get(cpu_rear_fans[0], &sp->target); + +	DBG_LOTS("  CPUs: cur_target = %d RPM\n", sp->target); + +	/* Read values for both CPUs */ +	err = read_one_cpu_vals(0, &temp0, &power0); +	if (err) { +		failure_state |= FAILURE_SENSOR; +		cpu_max_all_fans(); +		return; +	} +	err = read_one_cpu_vals(1, &temp1, &power1); +	if (err) { +		failure_state |= FAILURE_SENSOR; +		cpu_max_all_fans(); +		return; +	} + +	/* Keep track of highest temp */ +	t_max = max(t_max, max(temp0, temp1)); + +	/* Handle possible overtemps */ +	if (cpu_check_overtemp(t_max)) +		return; + +	/* Use the max temp & power of both */ +	temp = max(temp0, temp1); +	power = max(power0, power1); + +	/* Run PID */ +	wf_cpu_pid_run(sp, power, temp); + +	/* Scale result for intake fan */ +	intake = (sp->target * CPU_INTAKE_SCALE) >> 16; + +	/* Same deal with pump speed */ +	pump0 = cpu_pumps[0]; +	pump1 = cpu_pumps[1]; +	if (!pump0) { +		pump0 = pump1; +		pump1 = NULL; +	} +	pump = (sp->target * wf_control_get_max(pump0)) / +		cpu_mpu_data[0]->rmaxn_exhaust_fan; + +	DBG_LOTS("  CPUs: target = %d RPM\n", sp->target); +	DBG_LOTS("  CPUs: intake = %d RPM\n", intake); +	DBG_LOTS("  CPUs: pump   = %d RPM\n", pump); + +	for (cpu = 0; cpu < nr_chips; cpu++) { +		err = wf_control_set(cpu_rear_fans[cpu], sp->target); +		if (err) { +			pr_warning("wf_pm72: Fan %s reports error %d\n", +				   cpu_rear_fans[cpu]->name, err); +			failure_state |= FAILURE_FAN; +		} +		err = wf_control_set(cpu_front_fans[cpu], intake); +		if (err) { +			pr_warning("wf_pm72: Fan %s reports error %d\n", +				   cpu_front_fans[cpu]->name, err); +			failure_state |= FAILURE_FAN; +		} +		err = 0; +		if (cpu_pumps[cpu]) +			err = wf_control_set(cpu_pumps[cpu], pump); +		if (err) { +			pr_warning("wf_pm72: Pump %s reports error %d\n", +				   cpu_pumps[cpu]->name, err); +			failure_state |= FAILURE_FAN; +		} +	} +} + +/* Implementation... */ +static int cpu_setup_pid(int cpu) +{ +	struct wf_cpu_pid_param pid; +	const struct mpu_data *mpu = cpu_mpu_data[cpu]; +	s32 tmax, ttarget, ptarget; +	int fmin, fmax, hsize; + +	/* Get PID params from the appropriate MPU EEPROM */ +	tmax = mpu->tmax << 16; +	ttarget = mpu->ttarget << 16; +	ptarget = ((s32)(mpu->pmaxh - mpu->padjmax)) << 16; + +	DBG("wf_72: CPU%d ttarget = %d.%03d, tmax = %d.%03d\n", +	    cpu, FIX32TOPRINT(ttarget), FIX32TOPRINT(tmax)); + +	/* We keep a global tmax for overtemp calculations */ +	if (tmax < cpu_all_tmax) +		cpu_all_tmax = tmax; + +	/* Set PID min/max by using the rear fan min/max */ +	fmin = wf_control_get_min(cpu_rear_fans[cpu]); +	fmax = wf_control_get_max(cpu_rear_fans[cpu]); +	DBG("wf_72: CPU%d max RPM range = [%d..%d]\n", cpu, fmin, fmax); + +	/* History size */ +	hsize = min_t(int, mpu->tguardband, WF_PID_MAX_HISTORY); +	DBG("wf_72: CPU%d history size = %d\n", cpu, hsize); + +	/* Initialize PID loop */ +	pid.interval	= 1;	/* seconds */ +	pid.history_len = hsize; +	pid.gd		= mpu->pid_gd; +	pid.gp		= mpu->pid_gp; +	pid.gr		= mpu->pid_gr; +	pid.tmax	= tmax; +	pid.ttarget	= ttarget; +	pid.pmaxadj	= ptarget; +	pid.min		= fmin; +	pid.max		= fmax; + +	wf_cpu_pid_init(&cpu_pid[cpu], &pid); +	cpu_pid[cpu].target = 1000; + +	return 0; +} + +/* Backside/U3 fan */ +static struct wf_pid_param backside_u3_param = { +	.interval	= 5, +	.history_len	= 2, +	.gd		= 40 << 20, +	.gp		= 5 << 20, +	.gr		= 0, +	.itarget	= 65 << 16, +	.additive	= 1, +	.min		= 20, +	.max		= 100, +}; + +static struct wf_pid_param backside_u3h_param = { +	.interval	= 5, +	.history_len	= 2, +	.gd		= 20 << 20, +	.gp		= 5 << 20, +	.gr		= 0, +	.itarget	= 75 << 16, +	.additive	= 1, +	.min		= 20, +	.max		= 100, +}; + +static void backside_fan_tick(void) +{ +	s32 temp; +	int speed; +	int err; + +	if (!backside_fan || !backside_temp || !backside_tick) +		return; +	if (--backside_tick > 0) +		return; +	backside_tick = backside_pid.param.interval; + +	DBG_LOTS("* backside fans tick\n"); + +	/* Update fan speed from actual fans */ +	err = wf_control_get(backside_fan, &speed); +	if (!err) +		backside_pid.target = speed; + +	err = wf_sensor_get(backside_temp, &temp); +	if (err) { +		printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n", +		       err); +		failure_state |= FAILURE_SENSOR; +		wf_control_set_max(backside_fan); +		return; +	} +	speed = wf_pid_run(&backside_pid, temp); + +	DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n", +		 FIX32TOPRINT(temp), speed); + +	err = wf_control_set(backside_fan, speed); +	if (err) { +		printk(KERN_WARNING "windfarm: backside fan error %d\n", err); +		failure_state |= FAILURE_FAN; +	} +} + +static void backside_setup_pid(void) +{ +	/* first time initialize things */ +	s32 fmin = wf_control_get_min(backside_fan); +	s32 fmax = wf_control_get_max(backside_fan); +	struct wf_pid_param param; +	struct device_node *u3; +	int u3h = 1; /* conservative by default */ + +	u3 = of_find_node_by_path("/u3@0,f8000000"); +	if (u3 != NULL) { +		const u32 *vers = of_get_property(u3, "device-rev", NULL); +		if (vers) +			if (((*vers) & 0x3f) < 0x34) +				u3h = 0; +		of_node_put(u3); +	} + +	param = u3h ? backside_u3h_param : backside_u3_param; + +	param.min = max(param.min, fmin); +	param.max = min(param.max, fmax); +	wf_pid_init(&backside_pid, ¶m); +	backside_tick = 1; + +	pr_info("wf_pm72: Backside control loop started.\n"); +} + +/* Drive bay fan */ +static const struct wf_pid_param drives_param = { +	.interval	= 5, +	.history_len	= 2, +	.gd		= 30 << 20, +	.gp		= 5 << 20, +	.gr		= 0, +	.itarget	= 40 << 16, +	.additive	= 1, +	.min		= 300, +	.max		= 4000, +}; + +static void drives_fan_tick(void) +{ +	s32 temp; +	int speed; +	int err; + +	if (!drives_fan || !drives_temp || !drives_tick) +		return; +	if (--drives_tick > 0) +		return; +	drives_tick = drives_pid.param.interval; + +	DBG_LOTS("* drives fans tick\n"); + +	/* Update fan speed from actual fans */ +	err = wf_control_get(drives_fan, &speed); +	if (!err) +		drives_pid.target = speed; + +	err = wf_sensor_get(drives_temp, &temp); +	if (err) { +		pr_warning("wf_pm72: drive bay temp sensor error %d\n", err); +		failure_state |= FAILURE_SENSOR; +		wf_control_set_max(drives_fan); +		return; +	} +	speed = wf_pid_run(&drives_pid, temp); + +	DBG_LOTS("drives PID temp=%d.%.3d speed=%d\n", +		 FIX32TOPRINT(temp), speed); + +	err = wf_control_set(drives_fan, speed); +	if (err) { +		printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err); +		failure_state |= FAILURE_FAN; +	} +} + +static void drives_setup_pid(void) +{ +	/* first time initialize things */ +	s32 fmin = wf_control_get_min(drives_fan); +	s32 fmax = wf_control_get_max(drives_fan); +	struct wf_pid_param param = drives_param; + +	param.min = max(param.min, fmin); +	param.max = min(param.max, fmax); +	wf_pid_init(&drives_pid, ¶m); +	drives_tick = 1; + +	pr_info("wf_pm72: Drive bay control loop started.\n"); +} + +static void set_fail_state(void) +{ +	cpu_max_all_fans(); + +	if (backside_fan) +		wf_control_set_max(backside_fan); +	if (slots_fan) +		wf_control_set_max(slots_fan); +	if (drives_fan) +		wf_control_set_max(drives_fan); +} + +static void pm72_tick(void) +{ +	int i, last_failure; + +	if (!started) { +		started = 1; +		printk(KERN_INFO "windfarm: CPUs control loops started.\n"); +		for (i = 0; i < nr_chips; ++i) { +			if (cpu_setup_pid(i) < 0) { +				failure_state = FAILURE_PERM; +				set_fail_state(); +				break; +			} +		} +		DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax)); + +		backside_setup_pid(); +		drives_setup_pid(); + +		/* +		 * We don't have the right stuff to drive the PCI fan +		 * so we fix it to a default value +		 */ +		wf_control_set(slots_fan, SLOTS_FAN_DEFAULT_PWM); + +#ifdef HACKED_OVERTEMP +		cpu_all_tmax = 60 << 16; +#endif +	} + +	/* Permanent failure, bail out */ +	if (failure_state & FAILURE_PERM) +		return; + +	/* +	 * Clear all failure bits except low overtemp which will be eventually +	 * cleared by the control loop itself +	 */ +	last_failure = failure_state; +	failure_state &= FAILURE_LOW_OVERTEMP; +	if (cpu_pid_combined) +		cpu_fans_tick_combined(); +	else +		cpu_fans_tick_split(); +	backside_fan_tick(); +	drives_fan_tick(); + +	DBG_LOTS("  last_failure: 0x%x, failure_state: %x\n", +		 last_failure, failure_state); + +	/* Check for failures. Any failure causes cpufreq clamping */ +	if (failure_state && last_failure == 0 && cpufreq_clamp) +		wf_control_set_max(cpufreq_clamp); +	if (failure_state == 0 && last_failure && cpufreq_clamp) +		wf_control_set_min(cpufreq_clamp); + +	/* That's it for now, we might want to deal with other failures +	 * differently in the future though +	 */ +} + +static void pm72_new_control(struct wf_control *ct) +{ +	bool all_controls; +	bool had_pump = cpu_pumps[0] || cpu_pumps[1]; + +	if (!strcmp(ct->name, "cpu-front-fan-0")) +		cpu_front_fans[0] = ct; +	else if (!strcmp(ct->name, "cpu-front-fan-1")) +		cpu_front_fans[1] = ct; +	else if (!strcmp(ct->name, "cpu-rear-fan-0")) +		cpu_rear_fans[0] = ct; +	else if (!strcmp(ct->name, "cpu-rear-fan-1")) +		cpu_rear_fans[1] = ct; +	else if (!strcmp(ct->name, "cpu-pump-0")) +		cpu_pumps[0] = ct; +	else if (!strcmp(ct->name, "cpu-pump-1")) +		cpu_pumps[1] = ct; +	else if (!strcmp(ct->name, "backside-fan")) +		backside_fan = ct; +	else if (!strcmp(ct->name, "slots-fan")) +		slots_fan = ct; +	else if (!strcmp(ct->name, "drive-bay-fan")) +		drives_fan = ct; +	else if (!strcmp(ct->name, "cpufreq-clamp")) +		cpufreq_clamp = ct; + +	all_controls = +		cpu_front_fans[0] && +		cpu_rear_fans[0] && +		backside_fan && +		slots_fan && +		drives_fan; +	if (nr_chips > 1) +		all_controls &= +			cpu_front_fans[1] && +			cpu_rear_fans[1]; +	have_all_controls = all_controls; + +	if ((cpu_pumps[0] || cpu_pumps[1]) && !had_pump) { +		pr_info("wf_pm72: Liquid cooling pump(s) detected," +			" using new algorithm !\n"); +		cpu_pid_combined = true; +	} +} + + +static void pm72_new_sensor(struct wf_sensor *sr) +{ +	bool all_sensors; + +	if (!strcmp(sr->name, "cpu-diode-temp-0")) +		sens_cpu_temp[0] = sr; +	else if (!strcmp(sr->name, "cpu-diode-temp-1")) +		sens_cpu_temp[1] = sr; +	else if (!strcmp(sr->name, "cpu-voltage-0")) +		sens_cpu_volts[0] = sr; +	else if (!strcmp(sr->name, "cpu-voltage-1")) +		sens_cpu_volts[1] = sr; +	else if (!strcmp(sr->name, "cpu-current-0")) +		sens_cpu_amps[0] = sr; +	else if (!strcmp(sr->name, "cpu-current-1")) +		sens_cpu_amps[1] = sr; +	else if (!strcmp(sr->name, "backside-temp")) +		backside_temp = sr; +	else if (!strcmp(sr->name, "hd-temp")) +		drives_temp = sr; + +	all_sensors = +		sens_cpu_temp[0] && +		sens_cpu_volts[0] && +		sens_cpu_amps[0] && +		backside_temp && +		drives_temp; +	if (nr_chips > 1) +		all_sensors &= +			sens_cpu_temp[1] && +			sens_cpu_volts[1] && +			sens_cpu_amps[1]; + +	have_all_sensors = all_sensors; +} + +static int pm72_wf_notify(struct notifier_block *self, +			  unsigned long event, void *data) +{ +	switch (event) { +	case WF_EVENT_NEW_SENSOR: +		pm72_new_sensor(data); +		break; +	case WF_EVENT_NEW_CONTROL: +		pm72_new_control(data); +		break; +	case WF_EVENT_TICK: +		if (have_all_controls && have_all_sensors) +			pm72_tick(); +	} +	return 0; +} + +static struct notifier_block pm72_events = { +	.notifier_call = pm72_wf_notify, +}; + +static int wf_pm72_probe(struct platform_device *dev) +{ +	wf_register_client(&pm72_events); +	return 0; +} + +static int wf_pm72_remove(struct platform_device *dev) +{ +	wf_unregister_client(&pm72_events); + +	/* should release all sensors and controls */ +	return 0; +} + +static struct platform_driver wf_pm72_driver = { +	.probe	= wf_pm72_probe, +	.remove	= wf_pm72_remove, +	.driver	= { +		.name = "windfarm", +		.owner	= THIS_MODULE, +	}, +}; + +static int __init wf_pm72_init(void) +{ +	struct device_node *cpu; +	int i; + +	if (!of_machine_is_compatible("PowerMac7,2") && +	    !of_machine_is_compatible("PowerMac7,3")) +		return -ENODEV; + +	/* Count the number of CPU cores */ +	nr_chips = 0; +	for_each_node_by_type(cpu, "cpu") +		++nr_chips; +	if (nr_chips > NR_CHIPS) +		nr_chips = NR_CHIPS; + +	pr_info("windfarm: Initializing for desktop G5 with %d chips\n", +		nr_chips); + +	/* Get MPU data for each CPU */ +	for (i = 0; i < nr_chips; i++) { +		cpu_mpu_data[i] = wf_get_mpu(i); +		if (!cpu_mpu_data[i]) { +			pr_err("wf_pm72: Failed to find MPU data for CPU %d\n", i); +			return -ENXIO; +		} +	} + +#ifdef MODULE +	request_module("windfarm_fcu_controls"); +	request_module("windfarm_lm75_sensor"); +	request_module("windfarm_ad7417_sensor"); +	request_module("windfarm_max6690_sensor"); +	request_module("windfarm_cpufreq_clamp"); +#endif /* MODULE */ + +	platform_driver_register(&wf_pm72_driver); +	return 0; +} + +static void __exit wf_pm72_exit(void) +{ +	platform_driver_unregister(&wf_pm72_driver); +} + +module_init(wf_pm72_init); +module_exit(wf_pm72_exit); + +MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>"); +MODULE_DESCRIPTION("Thermal control for AGP PowerMac G5s"); +MODULE_LICENSE("GPL"); +MODULE_ALIAS("platform:windfarm");  | 
