aboutsummaryrefslogtreecommitdiff
path: root/drivers/lguest/page_tables.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/lguest/page_tables.c')
-rw-r--r--drivers/lguest/page_tables.c1095
1 files changed, 603 insertions, 492 deletions
diff --git a/drivers/lguest/page_tables.c b/drivers/lguest/page_tables.c
index a6fe1abda24..e8b55c3a617 100644
--- a/drivers/lguest/page_tables.c
+++ b/drivers/lguest/page_tables.c
@@ -1,34 +1,38 @@
-/*P:700 The pagetable code, on the other hand, still shows the scars of
+/*P:700
+ * The pagetable code, on the other hand, still shows the scars of
* previous encounters. It's functional, and as neat as it can be in the
* circumstances, but be wary, for these things are subtle and break easily.
* The Guest provides a virtual to physical mapping, but we can neither trust
* it nor use it: we verify and convert it here then point the CPU to the
- * converted Guest pages when running the Guest. :*/
+ * converted Guest pages when running the Guest.
+:*/
-/* Copyright (C) Rusty Russell IBM Corporation 2006.
+/* Copyright (C) Rusty Russell IBM Corporation 2013.
* GPL v2 and any later version */
#include <linux/mm.h>
+#include <linux/gfp.h>
#include <linux/types.h>
#include <linux/spinlock.h>
#include <linux/random.h>
#include <linux/percpu.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
-#include <asm/bootparam.h>
#include "lg.h"
-/*M:008 We hold reference to pages, which prevents them from being swapped.
+/*M:008
+ * We hold reference to pages, which prevents them from being swapped.
* It'd be nice to have a callback in the "struct mm_struct" when Linux wants
* to swap out. If we had this, and a shrinker callback to trim PTE pages, we
- * could probably consider launching Guests as non-root. :*/
+ * could probably consider launching Guests as non-root.
+:*/
/*H:300
* The Page Table Code
*
- * We use two-level page tables for the Guest. If you're not entirely
- * comfortable with virtual addresses, physical addresses and page tables then
- * I recommend you review arch/x86/lguest/boot.c's "Page Table Handling" (with
- * diagrams!).
+ * We use two-level page tables for the Guest, or three-level with PAE. If
+ * you're not entirely comfortable with virtual addresses, physical addresses
+ * and page tables then I recommend you review arch/x86/lguest/boot.c's "Page
+ * Table Handling" (with diagrams!).
*
* The Guest keeps page tables, but we maintain the actual ones here: these are
* called "shadow" page tables. Which is a very Guest-centric name: these are
@@ -45,33 +49,28 @@
* (v) Flushing (throwing away) page tables,
* (vi) Mapping the Switcher when the Guest is about to run,
* (vii) Setting up the page tables initially.
- :*/
+:*/
-
-/* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is
- * conveniently placed at the top 4MB, so it uses a separate, complete PTE
- * page. */
+/*
+ * The Switcher uses the complete top PTE page. That's 1024 PTE entries (4MB)
+ * or 512 PTE entries with PAE (2MB).
+ */
#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
-/* For PAE we need the PMD index as well. We use the last 2MB, so we
- * will need the last pmd entry of the last pmd page. */
+/*
+ * For PAE we need the PMD index as well. We use the last 2MB, so we
+ * will need the last pmd entry of the last pmd page.
+ */
#ifdef CONFIG_X86_PAE
-#define SWITCHER_PMD_INDEX (PTRS_PER_PMD - 1)
-#define RESERVE_MEM 2U
#define CHECK_GPGD_MASK _PAGE_PRESENT
#else
-#define RESERVE_MEM 4U
#define CHECK_GPGD_MASK _PAGE_TABLE
#endif
-/* We actually need a separate PTE page for each CPU. Remember that after the
- * Switcher code itself comes two pages for each CPU, and we don't want this
- * CPU's guest to see the pages of any other CPU. */
-static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
-#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
-
-/*H:320 The page table code is curly enough to need helper functions to keep it
- * clear and clean.
+/*H:320
+ * The page table code is curly enough to need helper functions to keep it
+ * clear and clean. The kernel itself provides many of them; one advantage
+ * of insisting that the Guest and Host use the same CONFIG_X86_PAE setting.
*
* There are two functions which return pointers to the shadow (aka "real")
* page tables.
@@ -79,38 +78,27 @@ static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
* spgd_addr() takes the virtual address and returns a pointer to the top-level
* page directory entry (PGD) for that address. Since we keep track of several
* page tables, the "i" argument tells us which one we're interested in (it's
- * usually the current one). */
+ * usually the current one).
+ */
static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
{
unsigned int index = pgd_index(vaddr);
-#ifndef CONFIG_X86_PAE
- /* We kill any Guest trying to touch the Switcher addresses. */
- if (index >= SWITCHER_PGD_INDEX) {
- kill_guest(cpu, "attempt to access switcher pages");
- index = 0;
- }
-#endif
/* Return a pointer index'th pgd entry for the i'th page table. */
return &cpu->lg->pgdirs[i].pgdir[index];
}
#ifdef CONFIG_X86_PAE
-/* This routine then takes the PGD entry given above, which contains the
+/*
+ * This routine then takes the PGD entry given above, which contains the
* address of the PMD page. It then returns a pointer to the PMD entry for the
- * given address. */
+ * given address.
+ */
static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
{
unsigned int index = pmd_index(vaddr);
pmd_t *page;
- /* We kill any Guest trying to touch the Switcher addresses. */
- if (pgd_index(vaddr) == SWITCHER_PGD_INDEX &&
- index >= SWITCHER_PMD_INDEX) {
- kill_guest(cpu, "attempt to access switcher pages");
- index = 0;
- }
-
/* You should never call this if the PGD entry wasn't valid */
BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
@@ -119,9 +107,11 @@ static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
}
#endif
-/* This routine then takes the page directory entry returned above, which
+/*
+ * This routine then takes the page directory entry returned above, which
* contains the address of the page table entry (PTE) page. It then returns a
- * pointer to the PTE entry for the given address. */
+ * pointer to the PTE entry for the given address.
+ */
static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
{
#ifdef CONFIG_X86_PAE
@@ -139,8 +129,10 @@ static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
return &page[pte_index(vaddr)];
}
-/* These two functions just like the above two, except they access the Guest
- * page tables. Hence they return a Guest address. */
+/*
+ * These functions are just like the above, except they access the Guest
+ * page tables. Hence they return a Guest address.
+ */
static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
{
unsigned int index = vaddr >> (PGDIR_SHIFT);
@@ -148,6 +140,7 @@ static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
}
#ifdef CONFIG_X86_PAE
+/* Follow the PGD to the PMD. */
static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
{
unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
@@ -155,6 +148,7 @@ static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
return gpage + pmd_index(vaddr) * sizeof(pmd_t);
}
+/* Follow the PMD to the PTE. */
static unsigned long gpte_addr(struct lg_cpu *cpu,
pmd_t gpmd, unsigned long vaddr)
{
@@ -164,6 +158,7 @@ static unsigned long gpte_addr(struct lg_cpu *cpu,
return gpage + pte_index(vaddr) * sizeof(pte_t);
}
#else
+/* Follow the PGD to the PTE (no mid-level for !PAE). */
static unsigned long gpte_addr(struct lg_cpu *cpu,
pgd_t gpgd, unsigned long vaddr)
{
@@ -175,17 +170,21 @@ static unsigned long gpte_addr(struct lg_cpu *cpu,
#endif
/*:*/
-/*M:014 get_pfn is slow: we could probably try to grab batches of pages here as
- * an optimization (ie. pre-faulting). :*/
+/*M:007
+ * get_pfn is slow: we could probably try to grab batches of pages here as
+ * an optimization (ie. pre-faulting).
+:*/
-/*H:350 This routine takes a page number given by the Guest and converts it to
+/*H:350
+ * This routine takes a page number given by the Guest and converts it to
* an actual, physical page number. It can fail for several reasons: the
* virtual address might not be mapped by the Launcher, the write flag is set
* and the page is read-only, or the write flag was set and the page was
* shared so had to be copied, but we ran out of memory.
*
* This holds a reference to the page, so release_pte() is careful to put that
- * back. */
+ * back.
+ */
static unsigned long get_pfn(unsigned long virtpfn, int write)
{
struct page *page;
@@ -198,33 +197,41 @@ static unsigned long get_pfn(unsigned long virtpfn, int write)
return -1UL;
}
-/*H:340 Converting a Guest page table entry to a shadow (ie. real) page table
+/*H:340
+ * Converting a Guest page table entry to a shadow (ie. real) page table
* entry can be a little tricky. The flags are (almost) the same, but the
* Guest PTE contains a virtual page number: the CPU needs the real page
- * number. */
+ * number.
+ */
static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
{
unsigned long pfn, base, flags;
- /* The Guest sets the global flag, because it thinks that it is using
+ /*
+ * The Guest sets the global flag, because it thinks that it is using
* PGE. We only told it to use PGE so it would tell us whether it was
* flushing a kernel mapping or a userspace mapping. We don't actually
- * use the global bit, so throw it away. */
+ * use the global bit, so throw it away.
+ */
flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
/* The Guest's pages are offset inside the Launcher. */
base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
- /* We need a temporary "unsigned long" variable to hold the answer from
+ /*
+ * We need a temporary "unsigned long" variable to hold the answer from
* get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
* fit in spte.pfn. get_pfn() finds the real physical number of the
- * page, given the virtual number. */
+ * page, given the virtual number.
+ */
pfn = get_pfn(base + pte_pfn(gpte), write);
if (pfn == -1UL) {
kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
- /* When we destroy the Guest, we'll go through the shadow page
+ /*
+ * When we destroy the Guest, we'll go through the shadow page
* tables and release_pte() them. Make sure we don't think
- * this one is valid! */
+ * this one is valid!
+ */
flags = 0;
}
/* Now we assemble our shadow PTE from the page number and flags. */
@@ -234,127 +241,217 @@ static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
/*H:460 And to complete the chain, release_pte() looks like this: */
static void release_pte(pte_t pte)
{
- /* Remember that get_user_pages_fast() took a reference to the page, in
- * get_pfn()? We have to put it back now. */
+ /*
+ * Remember that get_user_pages_fast() took a reference to the page, in
+ * get_pfn()? We have to put it back now.
+ */
if (pte_flags(pte) & _PAGE_PRESENT)
put_page(pte_page(pte));
}
/*:*/
-static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
+static bool check_gpte(struct lg_cpu *cpu, pte_t gpte)
{
if ((pte_flags(gpte) & _PAGE_PSE) ||
- pte_pfn(gpte) >= cpu->lg->pfn_limit)
+ pte_pfn(gpte) >= cpu->lg->pfn_limit) {
kill_guest(cpu, "bad page table entry");
+ return false;
+ }
+ return true;
}
-static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
+static bool check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
{
if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
- (pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
+ (pgd_pfn(gpgd) >= cpu->lg->pfn_limit)) {
kill_guest(cpu, "bad page directory entry");
+ return false;
+ }
+ return true;
}
#ifdef CONFIG_X86_PAE
-static void check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
+static bool check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
{
if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
- (pmd_pfn(gpmd) >= cpu->lg->pfn_limit))
+ (pmd_pfn(gpmd) >= cpu->lg->pfn_limit)) {
kill_guest(cpu, "bad page middle directory entry");
+ return false;
+ }
+ return true;
}
#endif
-/*H:330
- * (i) Looking up a page table entry when the Guest faults.
+/*H:331
+ * This is the core routine to walk the shadow page tables and find the page
+ * table entry for a specific address.
*
- * We saw this call in run_guest(): when we see a page fault in the Guest, we
- * come here. That's because we only set up the shadow page tables lazily as
- * they're needed, so we get page faults all the time and quietly fix them up
- * and return to the Guest without it knowing.
- *
- * If we fixed up the fault (ie. we mapped the address), this routine returns
- * true. Otherwise, it was a real fault and we need to tell the Guest. */
-bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
+ * If allocate is set, then we allocate any missing levels, setting the flags
+ * on the new page directory and mid-level directories using the arguments
+ * (which are copied from the Guest's page table entries).
+ */
+static pte_t *find_spte(struct lg_cpu *cpu, unsigned long vaddr, bool allocate,
+ int pgd_flags, int pmd_flags)
{
- pgd_t gpgd;
pgd_t *spgd;
- unsigned long gpte_ptr;
- pte_t gpte;
- pte_t *spte;
-
+ /* Mid level for PAE. */
#ifdef CONFIG_X86_PAE
pmd_t *spmd;
- pmd_t gpmd;
#endif
- /* First step: get the top-level Guest page table entry. */
- gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
- /* Toplevel not present? We can't map it in. */
- if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
- return false;
-
- /* Now look at the matching shadow entry. */
+ /* Get top level entry. */
spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
/* No shadow entry: allocate a new shadow PTE page. */
- unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
- /* This is not really the Guest's fault, but killing it is
- * simple for this corner case. */
+ unsigned long ptepage;
+
+ /* If they didn't want us to allocate anything, stop. */
+ if (!allocate)
+ return NULL;
+
+ ptepage = get_zeroed_page(GFP_KERNEL);
+ /*
+ * This is not really the Guest's fault, but killing it is
+ * simple for this corner case.
+ */
if (!ptepage) {
kill_guest(cpu, "out of memory allocating pte page");
- return false;
+ return NULL;
}
- /* We check that the Guest pgd is OK. */
- check_gpgd(cpu, gpgd);
- /* And we copy the flags to the shadow PGD entry. The page
- * number in the shadow PGD is the page we just allocated. */
- set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags(gpgd)));
+ /*
+ * And we copy the flags to the shadow PGD entry. The page
+ * number in the shadow PGD is the page we just allocated.
+ */
+ set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags));
}
+ /*
+ * Intel's Physical Address Extension actually uses three levels of
+ * page tables, so we need to look in the mid-level.
+ */
#ifdef CONFIG_X86_PAE
- gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
- /* middle level not present? We can't map it in. */
- if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
- return false;
-
- /* Now look at the matching shadow entry. */
+ /* Now look at the mid-level shadow entry. */
spmd = spmd_addr(cpu, *spgd, vaddr);
if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
/* No shadow entry: allocate a new shadow PTE page. */
- unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
+ unsigned long ptepage;
+
+ /* If they didn't want us to allocate anything, stop. */
+ if (!allocate)
+ return NULL;
- /* This is not really the Guest's fault, but killing it is
- * simple for this corner case. */
+ ptepage = get_zeroed_page(GFP_KERNEL);
+
+ /*
+ * This is not really the Guest's fault, but killing it is
+ * simple for this corner case.
+ */
if (!ptepage) {
- kill_guest(cpu, "out of memory allocating pte page");
- return false;
+ kill_guest(cpu, "out of memory allocating pmd page");
+ return NULL;
}
- /* We check that the Guest pmd is OK. */
- check_gpmd(cpu, gpmd);
+ /*
+ * And we copy the flags to the shadow PMD entry. The page
+ * number in the shadow PMD is the page we just allocated.
+ */
+ set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags));
+ }
+#endif
+
+ /* Get the pointer to the shadow PTE entry we're going to set. */
+ return spte_addr(cpu, *spgd, vaddr);
+}
+
+/*H:330
+ * (i) Looking up a page table entry when the Guest faults.
+ *
+ * We saw this call in run_guest(): when we see a page fault in the Guest, we
+ * come here. That's because we only set up the shadow page tables lazily as
+ * they're needed, so we get page faults all the time and quietly fix them up
+ * and return to the Guest without it knowing.
+ *
+ * If we fixed up the fault (ie. we mapped the address), this routine returns
+ * true. Otherwise, it was a real fault and we need to tell the Guest.
+ */
+bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
+{
+ unsigned long gpte_ptr;
+ pte_t gpte;
+ pte_t *spte;
+ pmd_t gpmd;
+ pgd_t gpgd;
+
+ /* We never demand page the Switcher, so trying is a mistake. */
+ if (vaddr >= switcher_addr)
+ return false;
- /* And we copy the flags to the shadow PMD entry. The page
- * number in the shadow PMD is the page we just allocated. */
- native_set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags(gpmd)));
+ /* First step: get the top-level Guest page table entry. */
+ if (unlikely(cpu->linear_pages)) {
+ /* Faking up a linear mapping. */
+ gpgd = __pgd(CHECK_GPGD_MASK);
+ } else {
+ gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
+ /* Toplevel not present? We can't map it in. */
+ if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
+ return false;
+
+ /*
+ * This kills the Guest if it has weird flags or tries to
+ * refer to a "physical" address outside the bounds.
+ */
+ if (!check_gpgd(cpu, gpgd))
+ return false;
+ }
+
+ /* This "mid-level" entry is only used for non-linear, PAE mode. */
+ gpmd = __pmd(_PAGE_TABLE);
+
+#ifdef CONFIG_X86_PAE
+ if (likely(!cpu->linear_pages)) {
+ gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
+ /* Middle level not present? We can't map it in. */
+ if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
+ return false;
+
+ /*
+ * This kills the Guest if it has weird flags or tries to
+ * refer to a "physical" address outside the bounds.
+ */
+ if (!check_gpmd(cpu, gpmd))
+ return false;
}
- /* OK, now we look at the lower level in the Guest page table: keep its
- * address, because we might update it later. */
+ /*
+ * OK, now we look at the lower level in the Guest page table: keep its
+ * address, because we might update it later.
+ */
gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
#else
- /* OK, now we look at the lower level in the Guest page table: keep its
- * address, because we might update it later. */
+ /*
+ * OK, now we look at the lower level in the Guest page table: keep its
+ * address, because we might update it later.
+ */
gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
#endif
- gpte = lgread(cpu, gpte_ptr, pte_t);
+
+ if (unlikely(cpu->linear_pages)) {
+ /* Linear? Make up a PTE which points to same page. */
+ gpte = __pte((vaddr & PAGE_MASK) | _PAGE_RW | _PAGE_PRESENT);
+ } else {
+ /* Read the actual PTE value. */
+ gpte = lgread(cpu, gpte_ptr, pte_t);
+ }
/* If this page isn't in the Guest page tables, we can't page it in. */
if (!(pte_flags(gpte) & _PAGE_PRESENT))
return false;
- /* Check they're not trying to write to a page the Guest wants
- * read-only (bit 2 of errcode == write). */
+ /*
+ * Check they're not trying to write to a page the Guest wants
+ * read-only (bit 2 of errcode == write).
+ */
if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
return false;
@@ -362,9 +459,12 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
return false;
- /* Check that the Guest PTE flags are OK, and the page number is below
- * the pfn_limit (ie. not mapping the Launcher binary). */
- check_gpte(cpu, gpte);
+ /*
+ * Check that the Guest PTE flags are OK, and the page number is below
+ * the pfn_limit (ie. not mapping the Launcher binary).
+ */
+ if (!check_gpte(cpu, gpte))
+ return false;
/* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
gpte = pte_mkyoung(gpte);
@@ -372,30 +472,44 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
gpte = pte_mkdirty(gpte);
/* Get the pointer to the shadow PTE entry we're going to set. */
- spte = spte_addr(cpu, *spgd, vaddr);
- /* If there was a valid shadow PTE entry here before, we release it.
- * This can happen with a write to a previously read-only entry. */
+ spte = find_spte(cpu, vaddr, true, pgd_flags(gpgd), pmd_flags(gpmd));
+ if (!spte)
+ return false;
+
+ /*
+ * If there was a valid shadow PTE entry here before, we release it.
+ * This can happen with a write to a previously read-only entry.
+ */
release_pte(*spte);
- /* If this is a write, we insist that the Guest page is writable (the
- * final arg to gpte_to_spte()). */
+ /*
+ * If this is a write, we insist that the Guest page is writable (the
+ * final arg to gpte_to_spte()).
+ */
if (pte_dirty(gpte))
*spte = gpte_to_spte(cpu, gpte, 1);
else
- /* If this is a read, don't set the "writable" bit in the page
+ /*
+ * If this is a read, don't set the "writable" bit in the page
* table entry, even if the Guest says it's writable. That way
* we will come back here when a write does actually occur, so
- * we can update the Guest's _PAGE_DIRTY flag. */
- native_set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
-
- /* Finally, we write the Guest PTE entry back: we've set the
- * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
- lgwrite(cpu, gpte_ptr, pte_t, gpte);
-
- /* The fault is fixed, the page table is populated, the mapping
+ * we can update the Guest's _PAGE_DIRTY flag.
+ */
+ set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
+
+ /*
+ * Finally, we write the Guest PTE entry back: we've set the
+ * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags.
+ */
+ if (likely(!cpu->linear_pages))
+ lgwrite(cpu, gpte_ptr, pte_t, gpte);
+
+ /*
+ * The fault is fixed, the page table is populated, the mapping
* manipulated, the result returned and the code complete. A small
* delay and a trace of alliteration are the only indications the Guest
- * has that a page fault occurred at all. */
+ * has that a page fault occurred at all.
+ */
return true;
}
@@ -408,41 +522,41 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
* mapped, so it's overkill.
*
* This is a quick version which answers the question: is this virtual address
- * mapped by the shadow page tables, and is it writable? */
+ * mapped by the shadow page tables, and is it writable?
+ */
static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
{
- pgd_t *spgd;
+ pte_t *spte;
unsigned long flags;
-#ifdef CONFIG_X86_PAE
- pmd_t *spmd;
-#endif
- /* Look at the current top level entry: is it present? */
- spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
- if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
+ /* You can't put your stack in the Switcher! */
+ if (vaddr >= switcher_addr)
return false;
-#ifdef CONFIG_X86_PAE
- spmd = spmd_addr(cpu, *spgd, vaddr);
- if (!(pmd_flags(*spmd) & _PAGE_PRESENT))
+ /* If there's no shadow PTE, it's not writable. */
+ spte = find_spte(cpu, vaddr, false, 0, 0);
+ if (!spte)
return false;
-#endif
-
- /* Check the flags on the pte entry itself: it must be present and
- * writable. */
- flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr)));
+ /*
+ * Check the flags on the pte entry itself: it must be present and
+ * writable.
+ */
+ flags = pte_flags(*spte);
return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
}
-/* So, when pin_stack_pages() asks us to pin a page, we check if it's already
+/*
+ * So, when pin_stack_pages() asks us to pin a page, we check if it's already
* in the page tables, and if not, we call demand_page() with error code 2
- * (meaning "write"). */
+ * (meaning "write").
+ */
void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
{
if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
kill_guest(cpu, "bad stack page %#lx", vaddr);
}
+/*:*/
#ifdef CONFIG_X86_PAE
static void release_pmd(pmd_t *spmd)
@@ -457,7 +571,7 @@ static void release_pmd(pmd_t *spmd)
/* Now we can free the page of PTEs */
free_page((long)ptepage);
/* And zero out the PMD entry so we never release it twice. */
- native_set_pmd(spmd, __pmd(0));
+ set_pmd(spmd, __pmd(0));
}
}
@@ -479,15 +593,21 @@ static void release_pgd(pgd_t *spgd)
}
#else /* !CONFIG_X86_PAE */
-/*H:450 If we chase down the release_pgd() code, it looks like this: */
+/*H:450
+ * If we chase down the release_pgd() code, the non-PAE version looks like
+ * this. The PAE version is almost identical, but instead of calling
+ * release_pte it calls release_pmd(), which looks much like this.
+ */
static void release_pgd(pgd_t *spgd)
{
/* If the entry's not present, there's nothing to release. */
if (pgd_flags(*spgd) & _PAGE_PRESENT) {
unsigned int i;
- /* Converting the pfn to find the actual PTE page is easy: turn
+ /*
+ * Converting the pfn to find the actual PTE page is easy: turn
* the page number into a physical address, then convert to a
- * virtual address (easy for kernel pages like this one). */
+ * virtual address (easy for kernel pages like this one).
+ */
pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
/* For each entry in the page, we might need to release it. */
for (i = 0; i < PTRS_PER_PTE; i++)
@@ -499,9 +619,12 @@ static void release_pgd(pgd_t *spgd)
}
}
#endif
-/*H:445 We saw flush_user_mappings() twice: once from the flush_user_mappings()
+
+/*H:445
+ * We saw flush_user_mappings() twice: once from the flush_user_mappings()
* hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
- * It simply releases every PTE page from 0 up to the Guest's kernel address. */
+ * It simply releases every PTE page from 0 up to the Guest's kernel address.
+ */
static void flush_user_mappings(struct lguest *lg, int idx)
{
unsigned int i;
@@ -510,10 +633,12 @@ static void flush_user_mappings(struct lguest *lg, int idx)
release_pgd(lg->pgdirs[idx].pgdir + i);
}
-/*H:440 (v) Flushing (throwing away) page tables,
+/*H:440
+ * (v) Flushing (throwing away) page tables,
*
* The Guest has a hypercall to throw away the page tables: it's used when a
- * large number of mappings have been changed. */
+ * large number of mappings have been changed.
+ */
void guest_pagetable_flush_user(struct lg_cpu *cpu)
{
/* Drop the userspace part of the current page table. */
@@ -529,6 +654,11 @@ unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
#ifdef CONFIG_X86_PAE
pmd_t gpmd;
#endif
+
+ /* Still not set up? Just map 1:1. */
+ if (unlikely(cpu->linear_pages))
+ return vaddr;
+
/* First step: get the top-level Guest page table entry. */
gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
/* Toplevel not present? We can't map it in. */
@@ -539,8 +669,10 @@ unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
#ifdef CONFIG_X86_PAE
gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
- if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
+ if (!(pmd_flags(gpmd) & _PAGE_PRESENT)) {
kill_guest(cpu, "Bad address %#lx", vaddr);
+ return -1UL;
+ }
gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t);
#else
gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
@@ -551,9 +683,11 @@ unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
}
-/* We keep several page tables. This is a simple routine to find the page
+/*
+ * We keep several page tables. This is a simple routine to find the page
* table (if any) corresponding to this top-level address the Guest has given
- * us. */
+ * us.
+ */
static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
{
unsigned int i;
@@ -563,21 +697,22 @@ static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
return i;
}
-/*H:435 And this is us, creating the new page directory. If we really do
+/*H:435
+ * And this is us, creating the new page directory. If we really do
* allocate a new one (and so the kernel parts are not there), we set
- * blank_pgdir. */
+ * blank_pgdir.
+ */
static unsigned int new_pgdir(struct lg_cpu *cpu,
unsigned long gpgdir,
int *blank_pgdir)
{
unsigned int next;
-#ifdef CONFIG_X86_PAE
- pmd_t *pmd_table;
-#endif
- /* We pick one entry at random to throw out. Choosing the Least
- * Recently Used might be better, but this is easy. */
- next = random32() % ARRAY_SIZE(cpu->lg->pgdirs);
+ /*
+ * We pick one entry at random to throw out. Choosing the Least
+ * Recently Used might be better, but this is easy.
+ */
+ next = prandom_u32() % ARRAY_SIZE(cpu->lg->pgdirs);
/* If it's never been allocated at all before, try now. */
if (!cpu->lg->pgdirs[next].pgdir) {
cpu->lg->pgdirs[next].pgdir =
@@ -586,25 +721,11 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
if (!cpu->lg->pgdirs[next].pgdir)
next = cpu->cpu_pgd;
else {
-#ifdef CONFIG_X86_PAE
- /* In PAE mode, allocate a pmd page and populate the
- * last pgd entry. */
- pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL);
- if (!pmd_table) {
- free_page((long)cpu->lg->pgdirs[next].pgdir);
- set_pgd(cpu->lg->pgdirs[next].pgdir, __pgd(0));
- next = cpu->cpu_pgd;
- } else {
- set_pgd(cpu->lg->pgdirs[next].pgdir +
- SWITCHER_PGD_INDEX,
- __pgd(__pa(pmd_table) | _PAGE_PRESENT));
- /* This is a blank page, so there are no kernel
- * mappings: caller must map the stack! */
- *blank_pgdir = 1;
- }
-#else
+ /*
+ * This is a blank page, so there are no kernel
+ * mappings: caller must map the stack!
+ */
*blank_pgdir = 1;
-#endif
}
}
/* Record which Guest toplevel this shadows. */
@@ -612,81 +733,147 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
/* Release all the non-kernel mappings. */
flush_user_mappings(cpu->lg, next);
+ /* This hasn't run on any CPU at all. */
+ cpu->lg->pgdirs[next].last_host_cpu = -1;
+
return next;
}
-/*H:430 (iv) Switching page tables
+/*H:501
+ * We do need the Switcher code mapped at all times, so we allocate that
+ * part of the Guest page table here. We map the Switcher code immediately,
+ * but defer mapping of the guest register page and IDT/LDT etc page until
+ * just before we run the guest in map_switcher_in_guest().
*
- * Now we've seen all the page table setting and manipulation, let's see
- * what happens when the Guest changes page tables (ie. changes the top-level
- * pgdir). This occurs on almost every context switch. */
-void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
+ * We *could* do this setup in map_switcher_in_guest(), but at that point
+ * we've interrupts disabled, and allocating pages like that is fraught: we
+ * can't sleep if we need to free up some memory.
+ */
+static bool allocate_switcher_mapping(struct lg_cpu *cpu)
{
- int newpgdir, repin = 0;
+ int i;
- /* Look to see if we have this one already. */
- newpgdir = find_pgdir(cpu->lg, pgtable);
- /* If not, we allocate or mug an existing one: if it's a fresh one,
- * repin gets set to 1. */
- if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
- newpgdir = new_pgdir(cpu, pgtable, &repin);
- /* Change the current pgd index to the new one. */
- cpu->cpu_pgd = newpgdir;
- /* If it was completely blank, we map in the Guest kernel stack */
- if (repin)
- pin_stack_pages(cpu);
+ for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
+ pte_t *pte = find_spte(cpu, switcher_addr + i * PAGE_SIZE, true,
+ CHECK_GPGD_MASK, _PAGE_TABLE);
+ if (!pte)
+ return false;
+
+ /*
+ * Map the switcher page if not already there. It might
+ * already be there because we call allocate_switcher_mapping()
+ * in guest_set_pgd() just in case it did discard our Switcher
+ * mapping, but it probably didn't.
+ */
+ if (i == 0 && !(pte_flags(*pte) & _PAGE_PRESENT)) {
+ /* Get a reference to the Switcher page. */
+ get_page(lg_switcher_pages[0]);
+ /* Create a read-only, exectuable, kernel-style PTE */
+ set_pte(pte,
+ mk_pte(lg_switcher_pages[0], PAGE_KERNEL_RX));
+ }
+ }
+ cpu->lg->pgdirs[cpu->cpu_pgd].switcher_mapped = true;
+ return true;
}
-/*H:470 Finally, a routine which throws away everything: all PGD entries in all
+/*H:470
+ * Finally, a routine which throws away everything: all PGD entries in all
* the shadow page tables, including the Guest's kernel mappings. This is used
- * when we destroy the Guest. */
+ * when we destroy the Guest.
+ */
static void release_all_pagetables(struct lguest *lg)
{
unsigned int i, j;
/* Every shadow pagetable this Guest has */
- for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
- if (lg->pgdirs[i].pgdir) {
-#ifdef CONFIG_X86_PAE
- pgd_t *spgd;
- pmd_t *pmdpage;
- unsigned int k;
-
- /* Get the last pmd page. */
- spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX;
- pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
-
- /* And release the pmd entries of that pmd page,
- * except for the switcher pmd. */
- for (k = 0; k < SWITCHER_PMD_INDEX; k++)
- release_pmd(&pmdpage[k]);
-#endif
- /* Every PGD entry except the Switcher at the top */
- for (j = 0; j < SWITCHER_PGD_INDEX; j++)
- release_pgd(lg->pgdirs[i].pgdir + j);
- }
+ for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) {
+ if (!lg->pgdirs[i].pgdir)
+ continue;
+
+ /* Every PGD entry. */
+ for (j = 0; j < PTRS_PER_PGD; j++)
+ release_pgd(lg->pgdirs[i].pgdir + j);
+ lg->pgdirs[i].switcher_mapped = false;
+ lg->pgdirs[i].last_host_cpu = -1;
+ }
}
-/* We also throw away everything when a Guest tells us it's changed a kernel
+/*
+ * We also throw away everything when a Guest tells us it's changed a kernel
* mapping. Since kernel mappings are in every page table, it's easiest to
* throw them all away. This traps the Guest in amber for a while as
- * everything faults back in, but it's rare. */
+ * everything faults back in, but it's rare.
+ */
void guest_pagetable_clear_all(struct lg_cpu *cpu)
{
release_all_pagetables(cpu->lg);
/* We need the Guest kernel stack mapped again. */
pin_stack_pages(cpu);
+ /* And we need Switcher allocated. */
+ if (!allocate_switcher_mapping(cpu))
+ kill_guest(cpu, "Cannot populate switcher mapping");
+}
+
+/*H:430
+ * (iv) Switching page tables
+ *
+ * Now we've seen all the page table setting and manipulation, let's see
+ * what happens when the Guest changes page tables (ie. changes the top-level
+ * pgdir). This occurs on almost every context switch.
+ */
+void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
+{
+ int newpgdir, repin = 0;
+
+ /*
+ * The very first time they call this, we're actually running without
+ * any page tables; we've been making it up. Throw them away now.
+ */
+ if (unlikely(cpu->linear_pages)) {
+ release_all_pagetables(cpu->lg);
+ cpu->linear_pages = false;
+ /* Force allocation of a new pgdir. */
+ newpgdir = ARRAY_SIZE(cpu->lg->pgdirs);
+ } else {
+ /* Look to see if we have this one already. */
+ newpgdir = find_pgdir(cpu->lg, pgtable);
+ }
+
+ /*
+ * If not, we allocate or mug an existing one: if it's a fresh one,
+ * repin gets set to 1.
+ */
+ if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
+ newpgdir = new_pgdir(cpu, pgtable, &repin);
+ /* Change the current pgd index to the new one. */
+ cpu->cpu_pgd = newpgdir;
+ /*
+ * If it was completely blank, we map in the Guest kernel stack and
+ * the Switcher.
+ */
+ if (repin)
+ pin_stack_pages(cpu);
+
+ if (!cpu->lg->pgdirs[cpu->cpu_pgd].switcher_mapped) {
+ if (!allocate_switcher_mapping(cpu))
+ kill_guest(cpu, "Cannot populate switcher mapping");
+ }
}
/*:*/
-/*M:009 Since we throw away all mappings when a kernel mapping changes, our
+
+/*M:009
+ * Since we throw away all mappings when a kernel mapping changes, our
* performance sucks for guests using highmem. In fact, a guest with
* PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
* usually slower than a Guest with less memory.
*
* This, of course, cannot be fixed. It would take some kind of... well, I
- * don't know, but the term "puissant code-fu" comes to mind. :*/
+ * don't know, but the term "puissant code-fu" comes to mind.
+:*/
-/*H:420 This is the routine which actually sets the page table entry for then
+/*H:420
+ * This is the routine which actually sets the page table entry for then
* "idx"'th shadow page table.
*
* Normally, we can just throw out the old entry and replace it with 0: if they
@@ -700,7 +887,7 @@ void guest_pagetable_clear_all(struct lg_cpu *cpu)
* _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
* they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
*/
-static void do_set_pte(struct lg_cpu *cpu, int idx,
+static void __guest_set_pte(struct lg_cpu *cpu, int idx,
unsigned long vaddr, pte_t gpte)
{
/* Look up the matching shadow page directory entry. */
@@ -715,31 +902,37 @@ static void do_set_pte(struct lg_cpu *cpu, int idx,
spmd = spmd_addr(cpu, *spgd, vaddr);
if (pmd_flags(*spmd) & _PAGE_PRESENT) {
#endif
- /* Otherwise, we start by releasing
- * the existing entry. */
+ /* Otherwise, start by releasing the existing entry. */
pte_t *spte = spte_addr(cpu, *spgd, vaddr);
release_pte(*spte);
- /* If they're setting this entry as dirty or accessed,
- * we might as well put that entry they've given us
- * in now. This shaves 10% off a
- * copy-on-write micro-benchmark. */
+ /*
+ * If they're setting this entry as dirty or accessed,
+ * we might as well put that entry they've given us in
+ * now. This shaves 10% off a copy-on-write
+ * micro-benchmark.
+ */
if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
- check_gpte(cpu, gpte);
- native_set_pte(spte,
- gpte_to_spte(cpu, gpte,
+ if (!check_gpte(cpu, gpte))
+ return;
+ set_pte(spte,
+ gpte_to_spte(cpu, gpte,
pte_flags(gpte) & _PAGE_DIRTY));
- } else
- /* Otherwise kill it and we can demand_page()
- * it in later. */
- native_set_pte(spte, __pte(0));
+ } else {
+ /*
+ * Otherwise kill it and we can demand_page()
+ * it in later.
+ */
+ set_pte(spte, __pte(0));
+ }
#ifdef CONFIG_X86_PAE
}
#endif
}
}
-/*H:410 Updating a PTE entry is a little trickier.
+/*H:410
+ * Updating a PTE entry is a little trickier.
*
* We keep track of several different page tables (the Guest uses one for each
* process, so it makes sense to cache at least a few). Each of these have
@@ -748,23 +941,32 @@ static void do_set_pte(struct lg_cpu *cpu, int idx,
* all the page tables, not just the current one. This is rare.
*
* The benefit is that when we have to track a new page table, we can keep all
- * the kernel mappings. This speeds up context switch immensely. */
+ * the kernel mappings. This speeds up context switch immensely.
+ */
void guest_set_pte(struct lg_cpu *cpu,
unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
{
- /* Kernel mappings must be changed on all top levels. Slow, but doesn't
- * happen often. */
+ /* We don't let you remap the Switcher; we need it to get back! */
+ if (vaddr >= switcher_addr) {
+ kill_guest(cpu, "attempt to set pte into Switcher pages");
+ return;
+ }
+
+ /*
+ * Kernel mappings must be changed on all top levels. Slow, but doesn't
+ * happen often.
+ */
if (vaddr >= cpu->lg->kernel_address) {
unsigned int i;
for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
if (cpu->lg->pgdirs[i].pgdir)
- do_set_pte(cpu, i, vaddr, gpte);
+ __guest_set_pte(cpu, i, vaddr, gpte);
} else {
/* Is this page table one we have a shadow for? */
int pgdir = find_pgdir(cpu->lg, gpgdir);
if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
/* If so, do the update. */
- do_set_pte(cpu, pgdir, vaddr, gpte);
+ __guest_set_pte(cpu, pgdir, vaddr, gpte);
}
}
@@ -780,174 +982,101 @@ void guest_set_pte(struct lg_cpu *cpu,
* tells us they've changed. When the Guest tries to use the new entry it will
* fault and demand_page() will fix it up.
*
- * So with that in mind here's our code to to update a (top-level) PGD entry:
+ * So with that in mind here's our code to update a (top-level) PGD entry:
*/
void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
{
int pgdir;
- if (idx >= SWITCHER_PGD_INDEX)
+ if (idx > PTRS_PER_PGD) {
+ kill_guest(&lg->cpus[0], "Attempt to set pgd %u/%u",
+ idx, PTRS_PER_PGD);
return;
+ }
/* If they're talking about a page table we have a shadow for... */
pgdir = find_pgdir(lg, gpgdir);
- if (pgdir < ARRAY_SIZE(lg->pgdirs))
+ if (pgdir < ARRAY_SIZE(lg->pgdirs)) {
/* ... throw it away. */
release_pgd(lg->pgdirs[pgdir].pgdir + idx);
+ /* That might have been the Switcher mapping, remap it. */
+ if (!allocate_switcher_mapping(&lg->cpus[0])) {
+ kill_guest(&lg->cpus[0],
+ "Cannot populate switcher mapping");
+ }
+ lg->pgdirs[pgdir].last_host_cpu = -1;
+ }
}
+
#ifdef CONFIG_X86_PAE
+/* For setting a mid-level, we just throw everything away. It's easy. */
void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
{
guest_pagetable_clear_all(&lg->cpus[0]);
}
#endif
-/* Once we know how much memory we have we can construct simple identity
- * (which set virtual == physical) and linear mappings
- * which will get the Guest far enough into the boot to create its own.
+/*H:500
+ * (vii) Setting up the page tables initially.
*
- * We lay them out of the way, just below the initrd (which is why we need to
- * know its size here). */
-static unsigned long setup_pagetables(struct lguest *lg,
- unsigned long mem,
- unsigned long initrd_size)
-{
- pgd_t __user *pgdir;
- pte_t __user *linear;
- unsigned long mem_base = (unsigned long)lg->mem_base;
- unsigned int mapped_pages, i, linear_pages;
-#ifdef CONFIG_X86_PAE
- pmd_t __user *pmds;
- unsigned int j;
- pgd_t pgd;
- pmd_t pmd;
-#else
- unsigned int phys_linear;
-#endif
-
- /* We have mapped_pages frames to map, so we need
- * linear_pages page tables to map them. */
- mapped_pages = mem / PAGE_SIZE;
- linear_pages = (mapped_pages + PTRS_PER_PTE - 1) / PTRS_PER_PTE;
-
- /* We put the toplevel page directory page at the top of memory. */
- pgdir = (pgd_t *)(mem + mem_base - initrd_size - PAGE_SIZE);
-
- /* Now we use the next linear_pages pages as pte pages */
- linear = (void *)pgdir - linear_pages * PAGE_SIZE;
-
-#ifdef CONFIG_X86_PAE
- pmds = (void *)linear - PAGE_SIZE;
-#endif
- /* Linear mapping is easy: put every page's address into the
- * mapping in order. */
- for (i = 0; i < mapped_pages; i++) {
- pte_t pte;
- pte = pfn_pte(i, __pgprot(_PAGE_PRESENT|_PAGE_RW|_PAGE_USER));
- if (copy_to_user(&linear[i], &pte, sizeof(pte)) != 0)
- return -EFAULT;
- }
-
- /* The top level points to the linear page table pages above.
- * We setup the identity and linear mappings here. */
-#ifdef CONFIG_X86_PAE
- for (i = j = 0; i < mapped_pages && j < PTRS_PER_PMD;
- i += PTRS_PER_PTE, j++) {
- native_set_pmd(&pmd, __pmd(((unsigned long)(linear + i)
- - mem_base) | _PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
-
- if (copy_to_user(&pmds[j], &pmd, sizeof(pmd)) != 0)
- return -EFAULT;
- }
-
- set_pgd(&pgd, __pgd(((u32)pmds - mem_base) | _PAGE_PRESENT));
- if (copy_to_user(&pgdir[0], &pgd, sizeof(pgd)) != 0)
- return -EFAULT;
- if (copy_to_user(&pgdir[3], &pgd, sizeof(pgd)) != 0)
- return -EFAULT;
-#else
- phys_linear = (unsigned long)linear - mem_base;
- for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) {
- pgd_t pgd;
- pgd = __pgd((phys_linear + i * sizeof(pte_t)) |
- (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
-
- if (copy_to_user(&pgdir[i / PTRS_PER_PTE], &pgd, sizeof(pgd))
- || copy_to_user(&pgdir[pgd_index(PAGE_OFFSET)
- + i / PTRS_PER_PTE],
- &pgd, sizeof(pgd)))
- return -EFAULT;
- }
-#endif
-
- /* We return the top level (guest-physical) address: remember where
- * this is. */
- return (unsigned long)pgdir - mem_base;
-}
-
-/*H:500 (vii) Setting up the page tables initially.
+ * When a Guest is first created, set initialize a shadow page table which
+ * we will populate on future faults. The Guest doesn't have any actual
+ * pagetables yet, so we set linear_pages to tell demand_page() to fake it
+ * for the moment.
*
- * When a Guest is first created, the Launcher tells us where the toplevel of
- * its first page table is. We set some things up here: */
+ * We do need the Switcher to be mapped at all times, so we allocate that
+ * part of the Guest page table here.
+ */
int init_guest_pagetable(struct lguest *lg)
{
- u64 mem;
- u32 initrd_size;
- struct boot_params __user *boot = (struct boot_params *)lg->mem_base;
-#ifdef CONFIG_X86_PAE
- pgd_t *pgd;
- pmd_t *pmd_table;
-#endif
- /* Get the Guest memory size and the ramdisk size from the boot header
- * located at lg->mem_base (Guest address 0). */
- if (copy_from_user(&mem, &boot->e820_map[0].size, sizeof(mem))
- || get_user(initrd_size, &boot->hdr.ramdisk_size))
- return -EFAULT;
-
- /* We start on the first shadow page table, and give it a blank PGD
- * page. */
- lg->pgdirs[0].gpgdir = setup_pagetables(lg, mem, initrd_size);
- if (IS_ERR_VALUE(lg->pgdirs[0].gpgdir))
- return lg->pgdirs[0].gpgdir;
- lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
- if (!lg->pgdirs[0].pgdir)
+ struct lg_cpu *cpu = &lg->cpus[0];
+ int allocated = 0;
+
+ /* lg (and lg->cpus[]) starts zeroed: this allocates a new pgdir */
+ cpu->cpu_pgd = new_pgdir(cpu, 0, &allocated);
+ if (!allocated)
return -ENOMEM;
-#ifdef CONFIG_X86_PAE
- pgd = lg->pgdirs[0].pgdir;
- pmd_table = (pmd_t *) get_zeroed_page(GFP_KERNEL);
- if (!pmd_table)
+
+ /* We start with a linear mapping until the initialize. */
+ cpu->linear_pages = true;
+
+ /* Allocate the page tables for the Switcher. */
+ if (!allocate_switcher_mapping(cpu)) {
+ release_all_pagetables(lg);
return -ENOMEM;
+ }
- set_pgd(pgd + SWITCHER_PGD_INDEX,
- __pgd(__pa(pmd_table) | _PAGE_PRESENT));
-#endif
- lg->cpus[0].cpu_pgd = 0;
return 0;
}
-/* When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
+/*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
void page_table_guest_data_init(struct lg_cpu *cpu)
{
+ /*
+ * We tell the Guest that it can't use the virtual addresses
+ * used by the Switcher. This trick is equivalent to 4GB -
+ * switcher_addr.
+ */
+ u32 top = ~switcher_addr + 1;
+
/* We get the kernel address: above this is all kernel memory. */
if (get_user(cpu->lg->kernel_address,
- &cpu->lg->lguest_data->kernel_address)
- /* We tell the Guest that it can't use the top 2 or 4 MB
- * of virtual addresses used by the Switcher. */
- || put_user(RESERVE_MEM * 1024 * 1024,
- &cpu->lg->lguest_data->reserve_mem)
- || put_user(cpu->lg->pgdirs[0].gpgdir,
- &cpu->lg->lguest_data->pgdir))
+ &cpu->lg->lguest_data->kernel_address)
+ /*
+ * We tell the Guest that it can't use the top virtual
+ * addresses (used by the Switcher).
+ */
+ || put_user(top, &cpu->lg->lguest_data->reserve_mem)) {
kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
+ return;
+ }
- /* In flush_user_mappings() we loop from 0 to
+ /*
+ * In flush_user_mappings() we loop from 0 to
* "pgd_index(lg->kernel_address)". This assumes it won't hit the
- * Switcher mappings, so check that now. */
-#ifdef CONFIG_X86_PAE
- if (pgd_index(cpu->lg->kernel_address) == SWITCHER_PGD_INDEX &&
- pmd_index(cpu->lg->kernel_address) == SWITCHER_PMD_INDEX)
-#else
- if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
-#endif
+ * Switcher mappings, so check that now.
+ */
+ if (cpu->lg->kernel_address >= switcher_addr)
kill_guest(cpu, "bad kernel address %#lx",
cpu->lg->kernel_address);
}
@@ -964,92 +1093,97 @@ void free_guest_pagetable(struct lguest *lg)
free_page((long)lg->pgdirs[i].pgdir);
}
-/*H:480 (vi) Mapping the Switcher when the Guest is about to run.
- *
- * The Switcher and the two pages for this CPU need to be visible in the
- * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
- * for each CPU already set up, we just need to hook them in now we know which
- * Guest is about to run on this CPU. */
-void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
+/*H:481
+ * This clears the Switcher mappings for cpu #i.
+ */
+static void remove_switcher_percpu_map(struct lg_cpu *cpu, unsigned int i)
{
- pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
- pte_t regs_pte;
- unsigned long pfn;
-
-#ifdef CONFIG_X86_PAE
- pmd_t switcher_pmd;
- pmd_t *pmd_table;
+ unsigned long base = switcher_addr + PAGE_SIZE + i * PAGE_SIZE*2;
+ pte_t *pte;
- native_set_pmd(&switcher_pmd, pfn_pmd(__pa(switcher_pte_page) >>
- PAGE_SHIFT, PAGE_KERNEL_EXEC));
+ /* Clear the mappings for both pages. */
+ pte = find_spte(cpu, base, false, 0, 0);
+ release_pte(*pte);
+ set_pte(pte, __pte(0));
- pmd_table = __va(pgd_pfn(cpu->lg->
- pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX])
- << PAGE_SHIFT);
- native_set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd);
-#else
- pgd_t switcher_pgd;
-
- /* Make the last PGD entry for this Guest point to the Switcher's PTE
- * page for this CPU (with appropriate flags). */
- switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC);
-
- cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
-
-#endif
- /* We also change the Switcher PTE page. When we're running the Guest,
- * we want the Guest's "regs" page to appear where the first Switcher
- * page for this CPU is. This is an optimization: when the Switcher
- * saves the Guest registers, it saves them into the first page of this
- * CPU's "struct lguest_pages": if we make sure the Guest's register
- * page is already mapped there, we don't have to copy them out
- * again. */
- pfn = __pa(cpu->regs_page) >> PAGE_SHIFT;
- native_set_pte(&regs_pte, pfn_pte(pfn, PAGE_KERNEL));
- native_set_pte(&switcher_pte_page[pte_index((unsigned long)pages)],
- regs_pte);
-}
-/*:*/
-
-static void free_switcher_pte_pages(void)
-{
- unsigned int i;
-
- for_each_possible_cpu(i)
- free_page((long)switcher_pte_page(i));
+ pte = find_spte(cpu, base + PAGE_SIZE, false, 0, 0);
+ release_pte(*pte);
+ set_pte(pte, __pte(0));
}
-/*H:520 Setting up the Switcher PTE page for given CPU is fairly easy, given
- * the CPU number and the "struct page"s for the Switcher code itself.
+/*H:480
+ * (vi) Mapping the Switcher when the Guest is about to run.
*
- * Currently the Switcher is less than a page long, so "pages" is always 1. */
-static __init void populate_switcher_pte_page(unsigned int cpu,
- struct page *switcher_page[],
- unsigned int pages)
+ * The Switcher and the two pages for this CPU need to be visible in the Guest
+ * (and not the pages for other CPUs).
+ *
+ * The pages for the pagetables have all been allocated before: we just need
+ * to make sure the actual PTEs are up-to-date for the CPU we're about to run
+ * on.
+ */
+void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
{
- unsigned int i;
- pte_t *pte = switcher_pte_page(cpu);
+ unsigned long base;
+ struct page *percpu_switcher_page, *regs_page;
+ pte_t *pte;
+ struct pgdir *pgdir = &cpu->lg->pgdirs[cpu->cpu_pgd];
+
+ /* Switcher page should always be mapped by now! */
+ BUG_ON(!pgdir->switcher_mapped);
+
+ /*
+ * Remember that we have two pages for each Host CPU, so we can run a
+ * Guest on each CPU without them interfering. We need to make sure
+ * those pages are mapped correctly in the Guest, but since we usually
+ * run on the same CPU, we cache that, and only update the mappings
+ * when we move.
+ */
+ if (pgdir->last_host_cpu == raw_smp_processor_id())
+ return;
- /* The first entries are easy: they map the Switcher code. */
- for (i = 0; i < pages; i++) {
- native_set_pte(&pte[i], mk_pte(switcher_page[i],
- __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
+ /* -1 means unknown so we remove everything. */
+ if (pgdir->last_host_cpu == -1) {
+ unsigned int i;
+ for_each_possible_cpu(i)
+ remove_switcher_percpu_map(cpu, i);
+ } else {
+ /* We know exactly what CPU mapping to remove. */
+ remove_switcher_percpu_map(cpu, pgdir->last_host_cpu);
}
- /* The only other thing we map is this CPU's pair of pages. */
- i = pages + cpu*2;
-
- /* First page (Guest registers) is writable from the Guest */
- native_set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]),
- __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)));
-
- /* The second page contains the "struct lguest_ro_state", and is
- * read-only. */
- native_set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_page[i+1]),
- __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
+ /*
+ * When we're running the Guest, we want the Guest's "regs" page to
+ * appear where the first Switcher page for this CPU is. This is an
+ * optimization: when the Switcher saves the Guest registers, it saves
+ * them into the first page of this CPU's "struct lguest_pages": if we
+ * make sure the Guest's register page is already mapped there, we
+ * don't have to copy them out again.
+ */
+ /* Find the shadow PTE for this regs page. */
+ base = switcher_addr + PAGE_SIZE
+ + raw_smp_processor_id() * sizeof(struct lguest_pages);
+ pte = find_spte(cpu, base, false, 0, 0);
+ regs_page = pfn_to_page(__pa(cpu->regs_page) >> PAGE_SHIFT);
+ get_page(regs_page);
+ set_pte(pte, mk_pte(regs_page, __pgprot(__PAGE_KERNEL & ~_PAGE_GLOBAL)));
+
+ /*
+ * We map the second page of the struct lguest_pages read-only in
+ * the Guest: the IDT, GDT and other things it's not supposed to
+ * change.
+ */
+ pte = find_spte(cpu, base + PAGE_SIZE, false, 0, 0);
+ percpu_switcher_page
+ = lg_switcher_pages[1 + raw_smp_processor_id()*2 + 1];
+ get_page(percpu_switcher_page);
+ set_pte(pte, mk_pte(percpu_switcher_page,
+ __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL)));
+
+ pgdir->last_host_cpu = raw_smp_processor_id();
}
-/* We've made it through the page table code. Perhaps our tired brains are
+/*H:490
+ * We've made it through the page table code. Perhaps our tired brains are
* still processing the details, or perhaps we're simply glad it's over.
*
* If nothing else, note that all this complexity in juggling shadow page tables
@@ -1058,28 +1192,5 @@ static __init void populate_switcher_pte_page(unsigned int cpu,
* uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
* have implemented shadow page table support directly into hardware.
*
- * There is just one file remaining in the Host. */
-
-/*H:510 At boot or module load time, init_pagetables() allocates and populates
- * the Switcher PTE page for each CPU. */
-__init int init_pagetables(struct page **switcher_page, unsigned int pages)
-{
- unsigned int i;
-
- for_each_possible_cpu(i) {
- switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
- if (!switcher_pte_page(i)) {
- free_switcher_pte_pages();
- return -ENOMEM;
- }
- populate_switcher_pte_page(i, switcher_page, pages);
- }
- return 0;
-}
-/*:*/
-
-/* Cleaning up simply involves freeing the PTE page for each CPU. */
-void free_pagetables(void)
-{
- free_switcher_pte_pages();
-}
+ * There is just one file remaining in the Host.
+ */