diff options
Diffstat (limited to 'drivers/dma/edma.c')
| -rw-r--r-- | drivers/dma/edma.c | 1152 | 
1 files changed, 1152 insertions, 0 deletions
diff --git a/drivers/dma/edma.c b/drivers/dma/edma.c new file mode 100644 index 00000000000..d08c4dedef3 --- /dev/null +++ b/drivers/dma/edma.c @@ -0,0 +1,1152 @@ +/* + * TI EDMA DMA engine driver + * + * Copyright 2012 Texas Instruments + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation version 2. + * + * This program is distributed "as is" WITHOUT ANY WARRANTY of any + * kind, whether express or implied; without even the implied warranty + * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + */ + +#include <linux/dmaengine.h> +#include <linux/dma-mapping.h> +#include <linux/err.h> +#include <linux/init.h> +#include <linux/interrupt.h> +#include <linux/list.h> +#include <linux/module.h> +#include <linux/platform_device.h> +#include <linux/slab.h> +#include <linux/spinlock.h> + +#include <linux/platform_data/edma.h> + +#include "dmaengine.h" +#include "virt-dma.h" + +/* + * This will go away when the private EDMA API is folded + * into this driver and the platform device(s) are + * instantiated in the arch code. We can only get away + * with this simplification because DA8XX may not be built + * in the same kernel image with other DaVinci parts. This + * avoids having to sprinkle dmaengine driver platform devices + * and data throughout all the existing board files. + */ +#ifdef CONFIG_ARCH_DAVINCI_DA8XX +#define EDMA_CTLRS	2 +#define EDMA_CHANS	32 +#else +#define EDMA_CTLRS	1 +#define EDMA_CHANS	64 +#endif /* CONFIG_ARCH_DAVINCI_DA8XX */ + +/* + * Max of 20 segments per channel to conserve PaRAM slots + * Also note that MAX_NR_SG should be atleast the no.of periods + * that are required for ASoC, otherwise DMA prep calls will + * fail. Today davinci-pcm is the only user of this driver and + * requires atleast 17 slots, so we setup the default to 20. + */ +#define MAX_NR_SG		20 +#define EDMA_MAX_SLOTS		MAX_NR_SG +#define EDMA_DESCRIPTORS	16 + +struct edma_pset { +	u32				len; +	dma_addr_t			addr; +	struct edmacc_param		param; +}; + +struct edma_desc { +	struct virt_dma_desc		vdesc; +	struct list_head		node; +	enum dma_transfer_direction	direction; +	int				cyclic; +	int				absync; +	int				pset_nr; +	struct edma_chan		*echan; +	int				processed; + +	/* +	 * The following 4 elements are used for residue accounting. +	 * +	 * - processed_stat: the number of SG elements we have traversed +	 * so far to cover accounting. This is updated directly to processed +	 * during edma_callback and is always <= processed, because processed +	 * refers to the number of pending transfer (programmed to EDMA +	 * controller), where as processed_stat tracks number of transfers +	 * accounted for so far. +	 * +	 * - residue: The amount of bytes we have left to transfer for this desc +	 * +	 * - residue_stat: The residue in bytes of data we have covered +	 * so far for accounting. This is updated directly to residue +	 * during callbacks to keep it current. +	 * +	 * - sg_len: Tracks the length of the current intermediate transfer, +	 * this is required to update the residue during intermediate transfer +	 * completion callback. +	 */ +	int				processed_stat; +	u32				sg_len; +	u32				residue; +	u32				residue_stat; + +	struct edma_pset		pset[0]; +}; + +struct edma_cc; + +struct edma_chan { +	struct virt_dma_chan		vchan; +	struct list_head		node; +	struct edma_desc		*edesc; +	struct edma_cc			*ecc; +	int				ch_num; +	bool				alloced; +	int				slot[EDMA_MAX_SLOTS]; +	int				missed; +	struct dma_slave_config		cfg; +}; + +struct edma_cc { +	int				ctlr; +	struct dma_device		dma_slave; +	struct edma_chan		slave_chans[EDMA_CHANS]; +	int				num_slave_chans; +	int				dummy_slot; +}; + +static inline struct edma_cc *to_edma_cc(struct dma_device *d) +{ +	return container_of(d, struct edma_cc, dma_slave); +} + +static inline struct edma_chan *to_edma_chan(struct dma_chan *c) +{ +	return container_of(c, struct edma_chan, vchan.chan); +} + +static inline struct edma_desc +*to_edma_desc(struct dma_async_tx_descriptor *tx) +{ +	return container_of(tx, struct edma_desc, vdesc.tx); +} + +static void edma_desc_free(struct virt_dma_desc *vdesc) +{ +	kfree(container_of(vdesc, struct edma_desc, vdesc)); +} + +/* Dispatch a queued descriptor to the controller (caller holds lock) */ +static void edma_execute(struct edma_chan *echan) +{ +	struct virt_dma_desc *vdesc; +	struct edma_desc *edesc; +	struct device *dev = echan->vchan.chan.device->dev; +	int i, j, left, nslots; + +	/* If either we processed all psets or we're still not started */ +	if (!echan->edesc || +	    echan->edesc->pset_nr == echan->edesc->processed) { +		/* Get next vdesc */ +		vdesc = vchan_next_desc(&echan->vchan); +		if (!vdesc) { +			echan->edesc = NULL; +			return; +		} +		list_del(&vdesc->node); +		echan->edesc = to_edma_desc(&vdesc->tx); +	} + +	edesc = echan->edesc; + +	/* Find out how many left */ +	left = edesc->pset_nr - edesc->processed; +	nslots = min(MAX_NR_SG, left); +	edesc->sg_len = 0; + +	/* Write descriptor PaRAM set(s) */ +	for (i = 0; i < nslots; i++) { +		j = i + edesc->processed; +		edma_write_slot(echan->slot[i], &edesc->pset[j].param); +		edesc->sg_len += edesc->pset[j].len; +		dev_vdbg(echan->vchan.chan.device->dev, +			"\n pset[%d]:\n" +			"  chnum\t%d\n" +			"  slot\t%d\n" +			"  opt\t%08x\n" +			"  src\t%08x\n" +			"  dst\t%08x\n" +			"  abcnt\t%08x\n" +			"  ccnt\t%08x\n" +			"  bidx\t%08x\n" +			"  cidx\t%08x\n" +			"  lkrld\t%08x\n", +			j, echan->ch_num, echan->slot[i], +			edesc->pset[j].param.opt, +			edesc->pset[j].param.src, +			edesc->pset[j].param.dst, +			edesc->pset[j].param.a_b_cnt, +			edesc->pset[j].param.ccnt, +			edesc->pset[j].param.src_dst_bidx, +			edesc->pset[j].param.src_dst_cidx, +			edesc->pset[j].param.link_bcntrld); +		/* Link to the previous slot if not the last set */ +		if (i != (nslots - 1)) +			edma_link(echan->slot[i], echan->slot[i+1]); +	} + +	edesc->processed += nslots; + +	/* +	 * If this is either the last set in a set of SG-list transactions +	 * then setup a link to the dummy slot, this results in all future +	 * events being absorbed and that's OK because we're done +	 */ +	if (edesc->processed == edesc->pset_nr) { +		if (edesc->cyclic) +			edma_link(echan->slot[nslots-1], echan->slot[1]); +		else +			edma_link(echan->slot[nslots-1], +				  echan->ecc->dummy_slot); +	} + +	if (edesc->processed <= MAX_NR_SG) { +		dev_dbg(dev, "first transfer starting on channel %d\n", +			echan->ch_num); +		edma_start(echan->ch_num); +	} else { +		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n", +			echan->ch_num, edesc->processed); +		edma_resume(echan->ch_num); +	} + +	/* +	 * This happens due to setup times between intermediate transfers +	 * in long SG lists which have to be broken up into transfers of +	 * MAX_NR_SG +	 */ +	if (echan->missed) { +		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num); +		edma_clean_channel(echan->ch_num); +		edma_stop(echan->ch_num); +		edma_start(echan->ch_num); +		edma_trigger_channel(echan->ch_num); +		echan->missed = 0; +	} +} + +static int edma_terminate_all(struct edma_chan *echan) +{ +	unsigned long flags; +	LIST_HEAD(head); + +	spin_lock_irqsave(&echan->vchan.lock, flags); + +	/* +	 * Stop DMA activity: we assume the callback will not be called +	 * after edma_dma() returns (even if it does, it will see +	 * echan->edesc is NULL and exit.) +	 */ +	if (echan->edesc) { +		echan->edesc = NULL; +		edma_stop(echan->ch_num); +	} + +	vchan_get_all_descriptors(&echan->vchan, &head); +	spin_unlock_irqrestore(&echan->vchan.lock, flags); +	vchan_dma_desc_free_list(&echan->vchan, &head); + +	return 0; +} + +static int edma_slave_config(struct edma_chan *echan, +	struct dma_slave_config *cfg) +{ +	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || +	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) +		return -EINVAL; + +	memcpy(&echan->cfg, cfg, sizeof(echan->cfg)); + +	return 0; +} + +static int edma_dma_pause(struct edma_chan *echan) +{ +	/* Pause/Resume only allowed with cyclic mode */ +	if (!echan->edesc->cyclic) +		return -EINVAL; + +	edma_pause(echan->ch_num); +	return 0; +} + +static int edma_dma_resume(struct edma_chan *echan) +{ +	/* Pause/Resume only allowed with cyclic mode */ +	if (!echan->edesc->cyclic) +		return -EINVAL; + +	edma_resume(echan->ch_num); +	return 0; +} + +static int edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, +			unsigned long arg) +{ +	int ret = 0; +	struct dma_slave_config *config; +	struct edma_chan *echan = to_edma_chan(chan); + +	switch (cmd) { +	case DMA_TERMINATE_ALL: +		edma_terminate_all(echan); +		break; +	case DMA_SLAVE_CONFIG: +		config = (struct dma_slave_config *)arg; +		ret = edma_slave_config(echan, config); +		break; +	case DMA_PAUSE: +		ret = edma_dma_pause(echan); +		break; + +	case DMA_RESUME: +		ret = edma_dma_resume(echan); +		break; + +	default: +		ret = -ENOSYS; +	} + +	return ret; +} + +/* + * A PaRAM set configuration abstraction used by other modes + * @chan: Channel who's PaRAM set we're configuring + * @pset: PaRAM set to initialize and setup. + * @src_addr: Source address of the DMA + * @dst_addr: Destination address of the DMA + * @burst: In units of dev_width, how much to send + * @dev_width: How much is the dev_width + * @dma_length: Total length of the DMA transfer + * @direction: Direction of the transfer + */ +static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset, +	dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst, +	enum dma_slave_buswidth dev_width, unsigned int dma_length, +	enum dma_transfer_direction direction) +{ +	struct edma_chan *echan = to_edma_chan(chan); +	struct device *dev = chan->device->dev; +	struct edmacc_param *param = &epset->param; +	int acnt, bcnt, ccnt, cidx; +	int src_bidx, dst_bidx, src_cidx, dst_cidx; +	int absync; + +	acnt = dev_width; + +	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */ +	if (!burst) +		burst = 1; +	/* +	 * If the maxburst is equal to the fifo width, use +	 * A-synced transfers. This allows for large contiguous +	 * buffer transfers using only one PaRAM set. +	 */ +	if (burst == 1) { +		/* +		 * For the A-sync case, bcnt and ccnt are the remainder +		 * and quotient respectively of the division of: +		 * (dma_length / acnt) by (SZ_64K -1). This is so +		 * that in case bcnt over flows, we have ccnt to use. +		 * Note: In A-sync tranfer only, bcntrld is used, but it +		 * only applies for sg_dma_len(sg) >= SZ_64K. +		 * In this case, the best way adopted is- bccnt for the +		 * first frame will be the remainder below. Then for +		 * every successive frame, bcnt will be SZ_64K-1. This +		 * is assured as bcntrld = 0xffff in end of function. +		 */ +		absync = false; +		ccnt = dma_length / acnt / (SZ_64K - 1); +		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1); +		/* +		 * If bcnt is non-zero, we have a remainder and hence an +		 * extra frame to transfer, so increment ccnt. +		 */ +		if (bcnt) +			ccnt++; +		else +			bcnt = SZ_64K - 1; +		cidx = acnt; +	} else { +		/* +		 * If maxburst is greater than the fifo address_width, +		 * use AB-synced transfers where A count is the fifo +		 * address_width and B count is the maxburst. In this +		 * case, we are limited to transfers of C count frames +		 * of (address_width * maxburst) where C count is limited +		 * to SZ_64K-1. This places an upper bound on the length +		 * of an SG segment that can be handled. +		 */ +		absync = true; +		bcnt = burst; +		ccnt = dma_length / (acnt * bcnt); +		if (ccnt > (SZ_64K - 1)) { +			dev_err(dev, "Exceeded max SG segment size\n"); +			return -EINVAL; +		} +		cidx = acnt * bcnt; +	} + +	epset->len = dma_length; + +	if (direction == DMA_MEM_TO_DEV) { +		src_bidx = acnt; +		src_cidx = cidx; +		dst_bidx = 0; +		dst_cidx = 0; +		epset->addr = src_addr; +	} else if (direction == DMA_DEV_TO_MEM)  { +		src_bidx = 0; +		src_cidx = 0; +		dst_bidx = acnt; +		dst_cidx = cidx; +		epset->addr = dst_addr; +	} else if (direction == DMA_MEM_TO_MEM)  { +		src_bidx = acnt; +		src_cidx = cidx; +		dst_bidx = acnt; +		dst_cidx = cidx; +	} else { +		dev_err(dev, "%s: direction not implemented yet\n", __func__); +		return -EINVAL; +	} + +	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); +	/* Configure A or AB synchronized transfers */ +	if (absync) +		param->opt |= SYNCDIM; + +	param->src = src_addr; +	param->dst = dst_addr; + +	param->src_dst_bidx = (dst_bidx << 16) | src_bidx; +	param->src_dst_cidx = (dst_cidx << 16) | src_cidx; + +	param->a_b_cnt = bcnt << 16 | acnt; +	param->ccnt = ccnt; +	/* +	 * Only time when (bcntrld) auto reload is required is for +	 * A-sync case, and in this case, a requirement of reload value +	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL +	 * and then later will be populated by edma_execute. +	 */ +	param->link_bcntrld = 0xffffffff; +	return absync; +} + +static struct dma_async_tx_descriptor *edma_prep_slave_sg( +	struct dma_chan *chan, struct scatterlist *sgl, +	unsigned int sg_len, enum dma_transfer_direction direction, +	unsigned long tx_flags, void *context) +{ +	struct edma_chan *echan = to_edma_chan(chan); +	struct device *dev = chan->device->dev; +	struct edma_desc *edesc; +	dma_addr_t src_addr = 0, dst_addr = 0; +	enum dma_slave_buswidth dev_width; +	u32 burst; +	struct scatterlist *sg; +	int i, nslots, ret; + +	if (unlikely(!echan || !sgl || !sg_len)) +		return NULL; + +	if (direction == DMA_DEV_TO_MEM) { +		src_addr = echan->cfg.src_addr; +		dev_width = echan->cfg.src_addr_width; +		burst = echan->cfg.src_maxburst; +	} else if (direction == DMA_MEM_TO_DEV) { +		dst_addr = echan->cfg.dst_addr; +		dev_width = echan->cfg.dst_addr_width; +		burst = echan->cfg.dst_maxburst; +	} else { +		dev_err(dev, "%s: bad direction: %d\n", __func__, direction); +		return NULL; +	} + +	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { +		dev_err(dev, "%s: Undefined slave buswidth\n", __func__); +		return NULL; +	} + +	edesc = kzalloc(sizeof(*edesc) + sg_len * +		sizeof(edesc->pset[0]), GFP_ATOMIC); +	if (!edesc) { +		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__); +		return NULL; +	} + +	edesc->pset_nr = sg_len; +	edesc->residue = 0; +	edesc->direction = direction; +	edesc->echan = echan; + +	/* Allocate a PaRAM slot, if needed */ +	nslots = min_t(unsigned, MAX_NR_SG, sg_len); + +	for (i = 0; i < nslots; i++) { +		if (echan->slot[i] < 0) { +			echan->slot[i] = +				edma_alloc_slot(EDMA_CTLR(echan->ch_num), +						EDMA_SLOT_ANY); +			if (echan->slot[i] < 0) { +				kfree(edesc); +				dev_err(dev, "%s: Failed to allocate slot\n", +					__func__); +				return NULL; +			} +		} +	} + +	/* Configure PaRAM sets for each SG */ +	for_each_sg(sgl, sg, sg_len, i) { +		/* Get address for each SG */ +		if (direction == DMA_DEV_TO_MEM) +			dst_addr = sg_dma_address(sg); +		else +			src_addr = sg_dma_address(sg); + +		ret = edma_config_pset(chan, &edesc->pset[i], src_addr, +				       dst_addr, burst, dev_width, +				       sg_dma_len(sg), direction); +		if (ret < 0) { +			kfree(edesc); +			return NULL; +		} + +		edesc->absync = ret; +		edesc->residue += sg_dma_len(sg); + +		/* If this is the last in a current SG set of transactions, +		   enable interrupts so that next set is processed */ +		if (!((i+1) % MAX_NR_SG)) +			edesc->pset[i].param.opt |= TCINTEN; + +		/* If this is the last set, enable completion interrupt flag */ +		if (i == sg_len - 1) +			edesc->pset[i].param.opt |= TCINTEN; +	} +	edesc->residue_stat = edesc->residue; + +	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); +} + +struct dma_async_tx_descriptor *edma_prep_dma_memcpy( +	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, +	size_t len, unsigned long tx_flags) +{ +	int ret; +	struct edma_desc *edesc; +	struct device *dev = chan->device->dev; +	struct edma_chan *echan = to_edma_chan(chan); + +	if (unlikely(!echan || !len)) +		return NULL; + +	edesc = kzalloc(sizeof(*edesc) + sizeof(edesc->pset[0]), GFP_ATOMIC); +	if (!edesc) { +		dev_dbg(dev, "Failed to allocate a descriptor\n"); +		return NULL; +	} + +	edesc->pset_nr = 1; + +	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1, +			       DMA_SLAVE_BUSWIDTH_4_BYTES, len, DMA_MEM_TO_MEM); +	if (ret < 0) +		return NULL; + +	edesc->absync = ret; + +	/* +	 * Enable intermediate transfer chaining to re-trigger channel +	 * on completion of every TR, and enable transfer-completion +	 * interrupt on completion of the whole transfer. +	 */ +	edesc->pset[0].param.opt |= ITCCHEN; +	edesc->pset[0].param.opt |= TCINTEN; + +	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); +} + +static struct dma_async_tx_descriptor *edma_prep_dma_cyclic( +	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, +	size_t period_len, enum dma_transfer_direction direction, +	unsigned long tx_flags, void *context) +{ +	struct edma_chan *echan = to_edma_chan(chan); +	struct device *dev = chan->device->dev; +	struct edma_desc *edesc; +	dma_addr_t src_addr, dst_addr; +	enum dma_slave_buswidth dev_width; +	u32 burst; +	int i, ret, nslots; + +	if (unlikely(!echan || !buf_len || !period_len)) +		return NULL; + +	if (direction == DMA_DEV_TO_MEM) { +		src_addr = echan->cfg.src_addr; +		dst_addr = buf_addr; +		dev_width = echan->cfg.src_addr_width; +		burst = echan->cfg.src_maxburst; +	} else if (direction == DMA_MEM_TO_DEV) { +		src_addr = buf_addr; +		dst_addr = echan->cfg.dst_addr; +		dev_width = echan->cfg.dst_addr_width; +		burst = echan->cfg.dst_maxburst; +	} else { +		dev_err(dev, "%s: bad direction: %d\n", __func__, direction); +		return NULL; +	} + +	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { +		dev_err(dev, "%s: Undefined slave buswidth\n", __func__); +		return NULL; +	} + +	if (unlikely(buf_len % period_len)) { +		dev_err(dev, "Period should be multiple of Buffer length\n"); +		return NULL; +	} + +	nslots = (buf_len / period_len) + 1; + +	/* +	 * Cyclic DMA users such as audio cannot tolerate delays introduced +	 * by cases where the number of periods is more than the maximum +	 * number of SGs the EDMA driver can handle at a time. For DMA types +	 * such as Slave SGs, such delays are tolerable and synchronized, +	 * but the synchronization is difficult to achieve with Cyclic and +	 * cannot be guaranteed, so we error out early. +	 */ +	if (nslots > MAX_NR_SG) +		return NULL; + +	edesc = kzalloc(sizeof(*edesc) + nslots * +		sizeof(edesc->pset[0]), GFP_ATOMIC); +	if (!edesc) { +		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__); +		return NULL; +	} + +	edesc->cyclic = 1; +	edesc->pset_nr = nslots; +	edesc->residue = edesc->residue_stat = buf_len; +	edesc->direction = direction; +	edesc->echan = echan; + +	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n", +		__func__, echan->ch_num, nslots, period_len, buf_len); + +	for (i = 0; i < nslots; i++) { +		/* Allocate a PaRAM slot, if needed */ +		if (echan->slot[i] < 0) { +			echan->slot[i] = +				edma_alloc_slot(EDMA_CTLR(echan->ch_num), +						EDMA_SLOT_ANY); +			if (echan->slot[i] < 0) { +				kfree(edesc); +				dev_err(dev, "%s: Failed to allocate slot\n", +					__func__); +				return NULL; +			} +		} + +		if (i == nslots - 1) { +			memcpy(&edesc->pset[i], &edesc->pset[0], +			       sizeof(edesc->pset[0])); +			break; +		} + +		ret = edma_config_pset(chan, &edesc->pset[i], src_addr, +				       dst_addr, burst, dev_width, period_len, +				       direction); +		if (ret < 0) { +			kfree(edesc); +			return NULL; +		} + +		if (direction == DMA_DEV_TO_MEM) +			dst_addr += period_len; +		else +			src_addr += period_len; + +		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i); +		dev_vdbg(dev, +			"\n pset[%d]:\n" +			"  chnum\t%d\n" +			"  slot\t%d\n" +			"  opt\t%08x\n" +			"  src\t%08x\n" +			"  dst\t%08x\n" +			"  abcnt\t%08x\n" +			"  ccnt\t%08x\n" +			"  bidx\t%08x\n" +			"  cidx\t%08x\n" +			"  lkrld\t%08x\n", +			i, echan->ch_num, echan->slot[i], +			edesc->pset[i].param.opt, +			edesc->pset[i].param.src, +			edesc->pset[i].param.dst, +			edesc->pset[i].param.a_b_cnt, +			edesc->pset[i].param.ccnt, +			edesc->pset[i].param.src_dst_bidx, +			edesc->pset[i].param.src_dst_cidx, +			edesc->pset[i].param.link_bcntrld); + +		edesc->absync = ret; + +		/* +		 * Enable interrupts for every period because callback +		 * has to be called for every period. +		 */ +		edesc->pset[i].param.opt |= TCINTEN; +	} + +	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); +} + +static void edma_callback(unsigned ch_num, u16 ch_status, void *data) +{ +	struct edma_chan *echan = data; +	struct device *dev = echan->vchan.chan.device->dev; +	struct edma_desc *edesc; +	struct edmacc_param p; + +	edesc = echan->edesc; + +	/* Pause the channel for non-cyclic */ +	if (!edesc || (edesc && !edesc->cyclic)) +		edma_pause(echan->ch_num); + +	switch (ch_status) { +	case EDMA_DMA_COMPLETE: +		spin_lock(&echan->vchan.lock); + +		if (edesc) { +			if (edesc->cyclic) { +				vchan_cyclic_callback(&edesc->vdesc); +			} else if (edesc->processed == edesc->pset_nr) { +				dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num); +				edesc->residue = 0; +				edma_stop(echan->ch_num); +				vchan_cookie_complete(&edesc->vdesc); +				edma_execute(echan); +			} else { +				dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num); + +				/* Update statistics for tx_status */ +				edesc->residue -= edesc->sg_len; +				edesc->residue_stat = edesc->residue; +				edesc->processed_stat = edesc->processed; + +				edma_execute(echan); +			} +		} + +		spin_unlock(&echan->vchan.lock); + +		break; +	case EDMA_DMA_CC_ERROR: +		spin_lock(&echan->vchan.lock); + +		edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p); + +		/* +		 * Issue later based on missed flag which will be sure +		 * to happen as: +		 * (1) we finished transmitting an intermediate slot and +		 *     edma_execute is coming up. +		 * (2) or we finished current transfer and issue will +		 *     call edma_execute. +		 * +		 * Important note: issuing can be dangerous here and +		 * lead to some nasty recursion when we are in a NULL +		 * slot. So we avoid doing so and set the missed flag. +		 */ +		if (p.a_b_cnt == 0 && p.ccnt == 0) { +			dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n"); +			echan->missed = 1; +		} else { +			/* +			 * The slot is already programmed but the event got +			 * missed, so its safe to issue it here. +			 */ +			dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n"); +			edma_clean_channel(echan->ch_num); +			edma_stop(echan->ch_num); +			edma_start(echan->ch_num); +			edma_trigger_channel(echan->ch_num); +		} + +		spin_unlock(&echan->vchan.lock); + +		break; +	default: +		break; +	} +} + +/* Alloc channel resources */ +static int edma_alloc_chan_resources(struct dma_chan *chan) +{ +	struct edma_chan *echan = to_edma_chan(chan); +	struct device *dev = chan->device->dev; +	int ret; +	int a_ch_num; +	LIST_HEAD(descs); + +	a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback, +					chan, EVENTQ_DEFAULT); + +	if (a_ch_num < 0) { +		ret = -ENODEV; +		goto err_no_chan; +	} + +	if (a_ch_num != echan->ch_num) { +		dev_err(dev, "failed to allocate requested channel %u:%u\n", +			EDMA_CTLR(echan->ch_num), +			EDMA_CHAN_SLOT(echan->ch_num)); +		ret = -ENODEV; +		goto err_wrong_chan; +	} + +	echan->alloced = true; +	echan->slot[0] = echan->ch_num; + +	dev_dbg(dev, "allocated channel %d for %u:%u\n", echan->ch_num, +		EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num)); + +	return 0; + +err_wrong_chan: +	edma_free_channel(a_ch_num); +err_no_chan: +	return ret; +} + +/* Free channel resources */ +static void edma_free_chan_resources(struct dma_chan *chan) +{ +	struct edma_chan *echan = to_edma_chan(chan); +	struct device *dev = chan->device->dev; +	int i; + +	/* Terminate transfers */ +	edma_stop(echan->ch_num); + +	vchan_free_chan_resources(&echan->vchan); + +	/* Free EDMA PaRAM slots */ +	for (i = 1; i < EDMA_MAX_SLOTS; i++) { +		if (echan->slot[i] >= 0) { +			edma_free_slot(echan->slot[i]); +			echan->slot[i] = -1; +		} +	} + +	/* Free EDMA channel */ +	if (echan->alloced) { +		edma_free_channel(echan->ch_num); +		echan->alloced = false; +	} + +	dev_dbg(dev, "freeing channel for %u\n", echan->ch_num); +} + +/* Send pending descriptor to hardware */ +static void edma_issue_pending(struct dma_chan *chan) +{ +	struct edma_chan *echan = to_edma_chan(chan); +	unsigned long flags; + +	spin_lock_irqsave(&echan->vchan.lock, flags); +	if (vchan_issue_pending(&echan->vchan) && !echan->edesc) +		edma_execute(echan); +	spin_unlock_irqrestore(&echan->vchan.lock, flags); +} + +static u32 edma_residue(struct edma_desc *edesc) +{ +	bool dst = edesc->direction == DMA_DEV_TO_MEM; +	struct edma_pset *pset = edesc->pset; +	dma_addr_t done, pos; +	int i; + +	/* +	 * We always read the dst/src position from the first RamPar +	 * pset. That's the one which is active now. +	 */ +	pos = edma_get_position(edesc->echan->slot[0], dst); + +	/* +	 * Cyclic is simple. Just subtract pset[0].addr from pos. +	 * +	 * We never update edesc->residue in the cyclic case, so we +	 * can tell the remaining room to the end of the circular +	 * buffer. +	 */ +	if (edesc->cyclic) { +		done = pos - pset->addr; +		edesc->residue_stat = edesc->residue - done; +		return edesc->residue_stat; +	} + +	/* +	 * For SG operation we catch up with the last processed +	 * status. +	 */ +	pset += edesc->processed_stat; + +	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) { +		/* +		 * If we are inside this pset address range, we know +		 * this is the active one. Get the current delta and +		 * stop walking the psets. +		 */ +		if (pos >= pset->addr && pos < pset->addr + pset->len) +			return edesc->residue_stat - (pos - pset->addr); + +		/* Otherwise mark it done and update residue_stat. */ +		edesc->processed_stat++; +		edesc->residue_stat -= pset->len; +	} +	return edesc->residue_stat; +} + +/* Check request completion status */ +static enum dma_status edma_tx_status(struct dma_chan *chan, +				      dma_cookie_t cookie, +				      struct dma_tx_state *txstate) +{ +	struct edma_chan *echan = to_edma_chan(chan); +	struct virt_dma_desc *vdesc; +	enum dma_status ret; +	unsigned long flags; + +	ret = dma_cookie_status(chan, cookie, txstate); +	if (ret == DMA_COMPLETE || !txstate) +		return ret; + +	spin_lock_irqsave(&echan->vchan.lock, flags); +	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) +		txstate->residue = edma_residue(echan->edesc); +	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie))) +		txstate->residue = to_edma_desc(&vdesc->tx)->residue; +	spin_unlock_irqrestore(&echan->vchan.lock, flags); + +	return ret; +} + +static void __init edma_chan_init(struct edma_cc *ecc, +				  struct dma_device *dma, +				  struct edma_chan *echans) +{ +	int i, j; + +	for (i = 0; i < EDMA_CHANS; i++) { +		struct edma_chan *echan = &echans[i]; +		echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i); +		echan->ecc = ecc; +		echan->vchan.desc_free = edma_desc_free; + +		vchan_init(&echan->vchan, dma); + +		INIT_LIST_HEAD(&echan->node); +		for (j = 0; j < EDMA_MAX_SLOTS; j++) +			echan->slot[j] = -1; +	} +} + +#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ +				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ +				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) + +static int edma_dma_device_slave_caps(struct dma_chan *dchan, +				      struct dma_slave_caps *caps) +{ +	caps->src_addr_widths = EDMA_DMA_BUSWIDTHS; +	caps->dstn_addr_widths = EDMA_DMA_BUSWIDTHS; +	caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); +	caps->cmd_pause = true; +	caps->cmd_terminate = true; +	caps->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; + +	return 0; +} + +static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma, +			  struct device *dev) +{ +	dma->device_prep_slave_sg = edma_prep_slave_sg; +	dma->device_prep_dma_cyclic = edma_prep_dma_cyclic; +	dma->device_prep_dma_memcpy = edma_prep_dma_memcpy; +	dma->device_alloc_chan_resources = edma_alloc_chan_resources; +	dma->device_free_chan_resources = edma_free_chan_resources; +	dma->device_issue_pending = edma_issue_pending; +	dma->device_tx_status = edma_tx_status; +	dma->device_control = edma_control; +	dma->device_slave_caps = edma_dma_device_slave_caps; +	dma->dev = dev; + +	/* +	 * code using dma memcpy must make sure alignment of +	 * length is at dma->copy_align boundary. +	 */ +	dma->copy_align = DMA_SLAVE_BUSWIDTH_4_BYTES; + +	INIT_LIST_HEAD(&dma->channels); +} + +static int edma_probe(struct platform_device *pdev) +{ +	struct edma_cc *ecc; +	int ret; + +	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); +	if (ret) +		return ret; + +	ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL); +	if (!ecc) { +		dev_err(&pdev->dev, "Can't allocate controller\n"); +		return -ENOMEM; +	} + +	ecc->ctlr = pdev->id; +	ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY); +	if (ecc->dummy_slot < 0) { +		dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n"); +		return -EIO; +	} + +	dma_cap_zero(ecc->dma_slave.cap_mask); +	dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask); +	dma_cap_set(DMA_CYCLIC, ecc->dma_slave.cap_mask); +	dma_cap_set(DMA_MEMCPY, ecc->dma_slave.cap_mask); + +	edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev); + +	edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans); + +	ret = dma_async_device_register(&ecc->dma_slave); +	if (ret) +		goto err_reg1; + +	platform_set_drvdata(pdev, ecc); + +	dev_info(&pdev->dev, "TI EDMA DMA engine driver\n"); + +	return 0; + +err_reg1: +	edma_free_slot(ecc->dummy_slot); +	return ret; +} + +static int edma_remove(struct platform_device *pdev) +{ +	struct device *dev = &pdev->dev; +	struct edma_cc *ecc = dev_get_drvdata(dev); + +	dma_async_device_unregister(&ecc->dma_slave); +	edma_free_slot(ecc->dummy_slot); + +	return 0; +} + +static struct platform_driver edma_driver = { +	.probe		= edma_probe, +	.remove		= edma_remove, +	.driver = { +		.name = "edma-dma-engine", +		.owner = THIS_MODULE, +	}, +}; + +bool edma_filter_fn(struct dma_chan *chan, void *param) +{ +	if (chan->device->dev->driver == &edma_driver.driver) { +		struct edma_chan *echan = to_edma_chan(chan); +		unsigned ch_req = *(unsigned *)param; +		return ch_req == echan->ch_num; +	} +	return false; +} +EXPORT_SYMBOL(edma_filter_fn); + +static struct platform_device *pdev0, *pdev1; + +static const struct platform_device_info edma_dev_info0 = { +	.name = "edma-dma-engine", +	.id = 0, +	.dma_mask = DMA_BIT_MASK(32), +}; + +static const struct platform_device_info edma_dev_info1 = { +	.name = "edma-dma-engine", +	.id = 1, +	.dma_mask = DMA_BIT_MASK(32), +}; + +static int edma_init(void) +{ +	int ret = platform_driver_register(&edma_driver); + +	if (ret == 0) { +		pdev0 = platform_device_register_full(&edma_dev_info0); +		if (IS_ERR(pdev0)) { +			platform_driver_unregister(&edma_driver); +			ret = PTR_ERR(pdev0); +			goto out; +		} +	} + +	if (EDMA_CTLRS == 2) { +		pdev1 = platform_device_register_full(&edma_dev_info1); +		if (IS_ERR(pdev1)) { +			platform_driver_unregister(&edma_driver); +			platform_device_unregister(pdev0); +			ret = PTR_ERR(pdev1); +		} +	} + +out: +	return ret; +} +subsys_initcall(edma_init); + +static void __exit edma_exit(void) +{ +	platform_device_unregister(pdev0); +	if (pdev1) +		platform_device_unregister(pdev1); +	platform_driver_unregister(&edma_driver); +} +module_exit(edma_exit); + +MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>"); +MODULE_DESCRIPTION("TI EDMA DMA engine driver"); +MODULE_LICENSE("GPL v2");  | 
