diff options
Diffstat (limited to 'drivers/cpuidle/governors/menu.c')
| -rw-r--r-- | drivers/cpuidle/governors/menu.c | 298 |
1 files changed, 119 insertions, 179 deletions
diff --git a/drivers/cpuidle/governors/menu.c b/drivers/cpuidle/governors/menu.c index fe343a06b7d..c4f80c15a48 100644 --- a/drivers/cpuidle/governors/menu.c +++ b/drivers/cpuidle/governors/menu.c @@ -21,6 +21,15 @@ #include <linux/math64.h> #include <linux/module.h> +/* + * Please note when changing the tuning values: + * If (MAX_INTERESTING-1) * RESOLUTION > UINT_MAX, the result of + * a scaling operation multiplication may overflow on 32 bit platforms. + * In that case, #define RESOLUTION as ULL to get 64 bit result: + * #define RESOLUTION 1024ULL + * + * The default values do not overflow. + */ #define BUCKETS 12 #define INTERVALS 8 #define RESOLUTION 1024 @@ -28,13 +37,6 @@ #define MAX_INTERESTING 50000 #define STDDEV_THRESH 400 -/* 60 * 60 > STDDEV_THRESH * INTERVALS = 400 * 8 */ -#define MAX_DEVIATION 60 - -static DEFINE_PER_CPU(struct hrtimer, menu_hrtimer); -static DEFINE_PER_CPU(int, hrtimer_status); -/* menu hrtimer mode */ -enum {MENU_HRTIMER_STOP, MENU_HRTIMER_REPEAT, MENU_HRTIMER_GENERAL}; /* * Concepts and ideas behind the menu governor @@ -116,23 +118,15 @@ enum {MENU_HRTIMER_STOP, MENU_HRTIMER_REPEAT, MENU_HRTIMER_GENERAL}; * */ -/* - * The C-state residency is so long that is is worthwhile to exit - * from the shallow C-state and re-enter into a deeper C-state. - */ -static unsigned int perfect_cstate_ms __read_mostly = 30; -module_param(perfect_cstate_ms, uint, 0000); - struct menu_device { int last_state_idx; int needs_update; - unsigned int expected_us; - u64 predicted_us; - unsigned int exit_us; + unsigned int next_timer_us; + unsigned int predicted_us; unsigned int bucket; - u64 correction_factor[BUCKETS]; - u32 intervals[INTERVALS]; + unsigned int correction_factor[BUCKETS]; + unsigned int intervals[INTERVALS]; int interval_ptr; }; @@ -205,59 +199,28 @@ static u64 div_round64(u64 dividend, u32 divisor) return div_u64(dividend + (divisor / 2), divisor); } -/* Cancel the hrtimer if it is not triggered yet */ -void menu_hrtimer_cancel(void) -{ - int cpu = smp_processor_id(); - struct hrtimer *hrtmr = &per_cpu(menu_hrtimer, cpu); - - /* The timer is still not time out*/ - if (per_cpu(hrtimer_status, cpu)) { - hrtimer_cancel(hrtmr); - per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_STOP; - } -} -EXPORT_SYMBOL_GPL(menu_hrtimer_cancel); - -/* Call back for hrtimer is triggered */ -static enum hrtimer_restart menu_hrtimer_notify(struct hrtimer *hrtimer) -{ - int cpu = smp_processor_id(); - struct menu_device *data = &per_cpu(menu_devices, cpu); - - /* In general case, the expected residency is much larger than - * deepest C-state target residency, but prediction logic still - * predicts a small predicted residency, so the prediction - * history is totally broken if the timer is triggered. - * So reset the correction factor. - */ - if (per_cpu(hrtimer_status, cpu) == MENU_HRTIMER_GENERAL) - data->correction_factor[data->bucket] = RESOLUTION * DECAY; - - per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_STOP; - - return HRTIMER_NORESTART; -} - /* * Try detecting repeating patterns by keeping track of the last 8 * intervals, and checking if the standard deviation of that set * of points is below a threshold. If it is... then use the * average of these 8 points as the estimated value. */ -static u32 get_typical_interval(struct menu_device *data) +static void get_typical_interval(struct menu_device *data) { - int i = 0, divisor = 0; - uint64_t max = 0, avg = 0, stddev = 0; - int64_t thresh = LLONG_MAX; /* Discard outliers above this value. */ - unsigned int ret = 0; + int i, divisor; + unsigned int max, thresh; + uint64_t avg, stddev; + + thresh = UINT_MAX; /* Discard outliers above this value */ again: - /* first calculate average and standard deviation of the past */ - max = avg = divisor = stddev = 0; + /* First calculate the average of past intervals */ + max = 0; + avg = 0; + divisor = 0; for (i = 0; i < INTERVALS; i++) { - int64_t value = data->intervals[i]; + unsigned int value = data->intervals[i]; if (value <= thresh) { avg += value; divisor++; @@ -267,15 +230,38 @@ again: } do_div(avg, divisor); + /* Then try to determine standard deviation */ + stddev = 0; for (i = 0; i < INTERVALS; i++) { - int64_t value = data->intervals[i]; + unsigned int value = data->intervals[i]; if (value <= thresh) { int64_t diff = value - avg; stddev += diff * diff; } } do_div(stddev, divisor); - stddev = int_sqrt(stddev); + /* + * The typical interval is obtained when standard deviation is small + * or standard deviation is small compared to the average interval. + * + * int_sqrt() formal parameter type is unsigned long. When the + * greatest difference to an outlier exceeds ~65 ms * sqrt(divisor) + * the resulting squared standard deviation exceeds the input domain + * of int_sqrt on platforms where unsigned long is 32 bits in size. + * In such case reject the candidate average. + * + * Use this result only if there is no timer to wake us up sooner. + */ + if (likely(stddev <= ULONG_MAX)) { + stddev = int_sqrt(stddev); + if (((avg > stddev * 6) && (divisor * 4 >= INTERVALS * 3)) + || stddev <= 20) { + if (data->next_timer_us > avg) + data->predicted_us = avg; + return; + } + } + /* * If we have outliers to the upside in our distribution, discard * those by setting the threshold to exclude these outliers, then @@ -284,23 +270,12 @@ again: * * This can deal with workloads that have long pauses interspersed * with sporadic activity with a bunch of short pauses. - * - * The typical interval is obtained when standard deviation is small - * or standard deviation is small compared to the average interval. */ - if (((avg > stddev * 6) && (divisor * 4 >= INTERVALS * 3)) - || stddev <= 20) { - data->predicted_us = avg; - ret = 1; - return ret; - - } else if ((divisor * 4) > INTERVALS * 3) { - /* Exclude the max interval */ - thresh = max - 1; - goto again; - } + if ((divisor * 4) <= INTERVALS * 3) + return; - return ret; + thresh = max - 1; + goto again; } /** @@ -313,19 +288,15 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev) struct menu_device *data = &__get_cpu_var(menu_devices); int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY); int i; - int multiplier; + unsigned int interactivity_req; struct timespec t; - int repeat = 0, low_predicted = 0; - int cpu = smp_processor_id(); - struct hrtimer *hrtmr = &per_cpu(menu_hrtimer, cpu); if (data->needs_update) { menu_update(drv, dev); data->needs_update = 0; } - data->last_state_idx = 0; - data->exit_us = 0; + data->last_state_idx = CPUIDLE_DRIVER_STATE_START - 1; /* Special case when user has set very strict latency requirement */ if (unlikely(latency_req == 0)) @@ -333,32 +304,37 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev) /* determine the expected residency time, round up */ t = ktime_to_timespec(tick_nohz_get_sleep_length()); - data->expected_us = + data->next_timer_us = t.tv_sec * USEC_PER_SEC + t.tv_nsec / NSEC_PER_USEC; - data->bucket = which_bucket(data->expected_us); - - multiplier = performance_multiplier(); + data->bucket = which_bucket(data->next_timer_us); /* - * if the correction factor is 0 (eg first time init or cpu hotplug - * etc), we actually want to start out with a unity factor. + * Force the result of multiplication to be 64 bits even if both + * operands are 32 bits. + * Make sure to round up for half microseconds. */ - if (data->correction_factor[data->bucket] == 0) - data->correction_factor[data->bucket] = RESOLUTION * DECAY; - - /* Make sure to round up for half microseconds */ - data->predicted_us = div_round64(data->expected_us * data->correction_factor[data->bucket], + data->predicted_us = div_round64((uint64_t)data->next_timer_us * + data->correction_factor[data->bucket], RESOLUTION * DECAY); - repeat = get_typical_interval(data); + get_typical_interval(data); + + /* + * Performance multiplier defines a minimum predicted idle + * duration / latency ratio. Adjust the latency limit if + * necessary. + */ + interactivity_req = data->predicted_us / performance_multiplier(); + if (latency_req > interactivity_req) + latency_req = interactivity_req; /* * We want to default to C1 (hlt), not to busy polling * unless the timer is happening really really soon. */ - if (data->expected_us > 5 && + if (data->next_timer_us > 5 && !drv->states[CPUIDLE_DRIVER_STATE_START].disabled && dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable == 0) data->last_state_idx = CPUIDLE_DRIVER_STATE_START; @@ -373,55 +349,12 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev) if (s->disabled || su->disable) continue; - if (s->target_residency > data->predicted_us) { - low_predicted = 1; + if (s->target_residency > data->predicted_us) continue; - } if (s->exit_latency > latency_req) continue; - if (s->exit_latency * multiplier > data->predicted_us) - continue; data->last_state_idx = i; - data->exit_us = s->exit_latency; - } - - /* not deepest C-state chosen for low predicted residency */ - if (low_predicted) { - unsigned int timer_us = 0; - unsigned int perfect_us = 0; - - /* - * Set a timer to detect whether this sleep is much - * longer than repeat mode predicted. If the timer - * triggers, the code will evaluate whether to put - * the CPU into a deeper C-state. - * The timer is cancelled on CPU wakeup. - */ - timer_us = 2 * (data->predicted_us + MAX_DEVIATION); - - perfect_us = perfect_cstate_ms * 1000; - - if (repeat && (4 * timer_us < data->expected_us)) { - RCU_NONIDLE(hrtimer_start(hrtmr, - ns_to_ktime(1000 * timer_us), - HRTIMER_MODE_REL_PINNED)); - /* In repeat case, menu hrtimer is started */ - per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_REPEAT; - } else if (perfect_us < data->expected_us) { - /* - * The next timer is long. This could be because - * we did not make a useful prediction. - * In that case, it makes sense to re-enter - * into a deeper C-state after some time. - */ - RCU_NONIDLE(hrtimer_start(hrtmr, - ns_to_ktime(1000 * timer_us), - HRTIMER_MODE_REL_PINNED)); - /* In general case, menu hrtimer is started */ - per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_GENERAL; - } - } return data->last_state_idx; @@ -452,37 +385,47 @@ static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev) { struct menu_device *data = &__get_cpu_var(menu_devices); int last_idx = data->last_state_idx; - unsigned int last_idle_us = cpuidle_get_last_residency(dev); struct cpuidle_state *target = &drv->states[last_idx]; unsigned int measured_us; - u64 new_factor; + unsigned int new_factor; /* - * Ugh, this idle state doesn't support residency measurements, so we - * are basically lost in the dark. As a compromise, assume we slept - * for the whole expected time. + * Try to figure out how much time passed between entry to low + * power state and occurrence of the wakeup event. + * + * If the entered idle state didn't support residency measurements, + * we are basically lost in the dark how much time passed. + * As a compromise, assume we slept for the whole expected time. + * + * Any measured amount of time will include the exit latency. + * Since we are interested in when the wakeup begun, not when it + * was completed, we must substract the exit latency. However, if + * the measured amount of time is less than the exit latency, + * assume the state was never reached and the exit latency is 0. */ - if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID))) - last_idle_us = data->expected_us; - - - measured_us = last_idle_us; + if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID))) { + /* Use timer value as is */ + measured_us = data->next_timer_us; - /* - * We correct for the exit latency; we are assuming here that the - * exit latency happens after the event that we're interested in. - */ - if (measured_us > data->exit_us) - measured_us -= data->exit_us; + } else { + /* Use measured value */ + measured_us = cpuidle_get_last_residency(dev); + /* Deduct exit latency */ + if (measured_us > target->exit_latency) + measured_us -= target->exit_latency; - /* update our correction ratio */ + /* Make sure our coefficients do not exceed unity */ + if (measured_us > data->next_timer_us) + measured_us = data->next_timer_us; + } - new_factor = data->correction_factor[data->bucket] - * (DECAY - 1) / DECAY; + /* Update our correction ratio */ + new_factor = data->correction_factor[data->bucket]; + new_factor -= new_factor / DECAY; - if (data->expected_us > 0 && measured_us < MAX_INTERESTING) - new_factor += RESOLUTION * measured_us / data->expected_us; + if (data->next_timer_us > 0 && measured_us < MAX_INTERESTING) + new_factor += RESOLUTION * measured_us / data->next_timer_us; else /* * we were idle so long that we count it as a perfect @@ -492,15 +435,17 @@ static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev) /* * We don't want 0 as factor; we always want at least - * a tiny bit of estimated time. + * a tiny bit of estimated time. Fortunately, due to rounding, + * new_factor will stay nonzero regardless of measured_us values + * and the compiler can eliminate this test as long as DECAY > 1. */ - if (new_factor == 0) + if (DECAY == 1 && unlikely(new_factor == 0)) new_factor = 1; data->correction_factor[data->bucket] = new_factor; /* update the repeating-pattern data */ - data->intervals[data->interval_ptr++] = last_idle_us; + data->intervals[data->interval_ptr++] = measured_us; if (data->interval_ptr >= INTERVALS) data->interval_ptr = 0; } @@ -514,12 +459,17 @@ static int menu_enable_device(struct cpuidle_driver *drv, struct cpuidle_device *dev) { struct menu_device *data = &per_cpu(menu_devices, dev->cpu); - struct hrtimer *t = &per_cpu(menu_hrtimer, dev->cpu); - hrtimer_init(t, CLOCK_MONOTONIC, HRTIMER_MODE_REL); - t->function = menu_hrtimer_notify; + int i; memset(data, 0, sizeof(struct menu_device)); + /* + * if the correction factor is 0 (eg first time init or cpu hotplug + * etc), we actually want to start out with a unity factor. + */ + for(i = 0; i < BUCKETS; i++) + data->correction_factor[i] = RESOLUTION * DECAY; + return 0; } @@ -540,14 +490,4 @@ static int __init init_menu(void) return cpuidle_register_governor(&menu_governor); } -/** - * exit_menu - exits the governor - */ -static void __exit exit_menu(void) -{ - cpuidle_unregister_governor(&menu_governor); -} - -MODULE_LICENSE("GPL"); -module_init(init_menu); -module_exit(exit_menu); +postcore_initcall(init_menu); |
