diff options
Diffstat (limited to 'arch/x86/kvm/x86.c')
| -rw-r--r-- | arch/x86/kvm/x86.c | 6989 |
1 files changed, 4644 insertions, 2345 deletions
diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c index 6651dbf5867..ef432f891d3 100644 --- a/arch/x86/kvm/x86.c +++ b/arch/x86/kvm/x86.c @@ -6,6 +6,7 @@ * Copyright (C) 2006 Qumranet, Inc. * Copyright (C) 2008 Qumranet, Inc. * Copyright IBM Corporation, 2008 + * Copyright 2010 Red Hat, Inc. and/or its affiliates. * * Authors: * Avi Kivity <avi@qumranet.com> @@ -25,6 +26,7 @@ #include "tss.h" #include "kvm_cache_regs.h" #include "x86.h" +#include "cpuid.h" #include <linux/clocksource.h> #include <linux/interrupt.h> @@ -38,75 +40,92 @@ #include <linux/intel-iommu.h> #include <linux/cpufreq.h> #include <linux/user-return-notifier.h> +#include <linux/srcu.h> +#include <linux/slab.h> +#include <linux/perf_event.h> +#include <linux/uaccess.h> +#include <linux/hash.h> +#include <linux/pci.h> +#include <linux/timekeeper_internal.h> +#include <linux/pvclock_gtod.h> #include <trace/events/kvm.h> -#undef TRACE_INCLUDE_FILE + #define CREATE_TRACE_POINTS #include "trace.h" #include <asm/debugreg.h> -#include <asm/uaccess.h> #include <asm/msr.h> #include <asm/desc.h> #include <asm/mtrr.h> #include <asm/mce.h> +#include <asm/i387.h> +#include <asm/fpu-internal.h> /* Ugh! */ +#include <asm/xcr.h> +#include <asm/pvclock.h> +#include <asm/div64.h> #define MAX_IO_MSRS 256 -#define CR0_RESERVED_BITS \ - (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ - | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ - | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) -#define CR4_RESERVED_BITS \ - (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ - | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ - | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \ - | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE)) - -#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) - #define KVM_MAX_MCE_BANKS 32 -#define KVM_MCE_CAP_SUPPORTED MCG_CTL_P +#define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) + +#define emul_to_vcpu(ctxt) \ + container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) /* EFER defaults: * - enable syscall per default because its emulated by KVM * - enable LME and LMA per default on 64 bit KVM */ #ifdef CONFIG_X86_64 -static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL; +static +u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); #else -static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL; +static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); #endif #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU static void update_cr8_intercept(struct kvm_vcpu *vcpu); -static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid, - struct kvm_cpuid_entry2 __user *entries); +static void process_nmi(struct kvm_vcpu *vcpu); struct kvm_x86_ops *kvm_x86_ops; EXPORT_SYMBOL_GPL(kvm_x86_ops); -int ignore_msrs = 0; -module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR); +static bool ignore_msrs = 0; +module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); + +unsigned int min_timer_period_us = 500; +module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); + +bool kvm_has_tsc_control; +EXPORT_SYMBOL_GPL(kvm_has_tsc_control); +u32 kvm_max_guest_tsc_khz; +EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); + +/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ +static u32 tsc_tolerance_ppm = 250; +module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); + +static bool backwards_tsc_observed = false; #define KVM_NR_SHARED_MSRS 16 struct kvm_shared_msrs_global { int nr; - struct kvm_shared_msr { - u32 msr; - u64 value; - } msrs[KVM_NR_SHARED_MSRS]; + u32 msrs[KVM_NR_SHARED_MSRS]; }; struct kvm_shared_msrs { struct user_return_notifier urn; bool registered; - u64 current_value[KVM_NR_SHARED_MSRS]; + struct kvm_shared_msr_values { + u64 host; + u64 curr; + } values[KVM_NR_SHARED_MSRS]; }; static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; -static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs); +static struct kvm_shared_msrs __percpu *shared_msrs; struct kvm_stats_debugfs_item debugfs_entries[] = { { "pf_fixed", VCPU_STAT(pf_fixed) }, @@ -144,56 +163,79 @@ struct kvm_stats_debugfs_item debugfs_entries[] = { { NULL } }; +u64 __read_mostly host_xcr0; + +static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); + +static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) +{ + int i; + for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) + vcpu->arch.apf.gfns[i] = ~0; +} + static void kvm_on_user_return(struct user_return_notifier *urn) { unsigned slot; - struct kvm_shared_msr *global; struct kvm_shared_msrs *locals = container_of(urn, struct kvm_shared_msrs, urn); + struct kvm_shared_msr_values *values; for (slot = 0; slot < shared_msrs_global.nr; ++slot) { - global = &shared_msrs_global.msrs[slot]; - if (global->value != locals->current_value[slot]) { - wrmsrl(global->msr, global->value); - locals->current_value[slot] = global->value; + values = &locals->values[slot]; + if (values->host != values->curr) { + wrmsrl(shared_msrs_global.msrs[slot], values->host); + values->curr = values->host; } } locals->registered = false; user_return_notifier_unregister(urn); } -void kvm_define_shared_msr(unsigned slot, u32 msr) +static void shared_msr_update(unsigned slot, u32 msr) { - int cpu; u64 value; + unsigned int cpu = smp_processor_id(); + struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); + + /* only read, and nobody should modify it at this time, + * so don't need lock */ + if (slot >= shared_msrs_global.nr) { + printk(KERN_ERR "kvm: invalid MSR slot!"); + return; + } + rdmsrl_safe(msr, &value); + smsr->values[slot].host = value; + smsr->values[slot].curr = value; +} +void kvm_define_shared_msr(unsigned slot, u32 msr) +{ if (slot >= shared_msrs_global.nr) shared_msrs_global.nr = slot + 1; - shared_msrs_global.msrs[slot].msr = msr; - rdmsrl_safe(msr, &value); - shared_msrs_global.msrs[slot].value = value; - for_each_online_cpu(cpu) - per_cpu(shared_msrs, cpu).current_value[slot] = value; + shared_msrs_global.msrs[slot] = msr; + /* we need ensured the shared_msr_global have been updated */ + smp_wmb(); } EXPORT_SYMBOL_GPL(kvm_define_shared_msr); static void kvm_shared_msr_cpu_online(void) { unsigned i; - struct kvm_shared_msrs *locals = &__get_cpu_var(shared_msrs); for (i = 0; i < shared_msrs_global.nr; ++i) - locals->current_value[i] = shared_msrs_global.msrs[i].value; + shared_msr_update(i, shared_msrs_global.msrs[i]); } void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) { - struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); + unsigned int cpu = smp_processor_id(); + struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); - if (((value ^ smsr->current_value[slot]) & mask) == 0) + if (((value ^ smsr->values[slot].curr) & mask) == 0) return; - smsr->current_value[slot] = value; - wrmsrl(shared_msrs_global.msrs[slot].msr, value); + smsr->values[slot].curr = value; + wrmsrl(shared_msrs_global.msrs[slot], value); if (!smsr->registered) { smsr->urn.on_user_return = kvm_on_user_return; user_return_notifier_register(&smsr->urn); @@ -204,111 +246,168 @@ EXPORT_SYMBOL_GPL(kvm_set_shared_msr); static void drop_user_return_notifiers(void *ignore) { - struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); + unsigned int cpu = smp_processor_id(); + struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); if (smsr->registered) kvm_on_user_return(&smsr->urn); } -unsigned long segment_base(u16 selector) +u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) { - struct descriptor_table gdt; - struct desc_struct *d; - unsigned long table_base; - unsigned long v; - - if (selector == 0) - return 0; + return vcpu->arch.apic_base; +} +EXPORT_SYMBOL_GPL(kvm_get_apic_base); - kvm_get_gdt(&gdt); - table_base = gdt.base; +int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) +{ + u64 old_state = vcpu->arch.apic_base & + (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); + u64 new_state = msr_info->data & + (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); + u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | + 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE); + + if (!msr_info->host_initiated && + ((msr_info->data & reserved_bits) != 0 || + new_state == X2APIC_ENABLE || + (new_state == MSR_IA32_APICBASE_ENABLE && + old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) || + (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) && + old_state == 0))) + return 1; - if (selector & 4) { /* from ldt */ - u16 ldt_selector = kvm_read_ldt(); + kvm_lapic_set_base(vcpu, msr_info->data); + return 0; +} +EXPORT_SYMBOL_GPL(kvm_set_apic_base); - table_base = segment_base(ldt_selector); - } - d = (struct desc_struct *)(table_base + (selector & ~7)); - v = get_desc_base(d); -#ifdef CONFIG_X86_64 - if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11)) - v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32; -#endif - return v; +asmlinkage __visible void kvm_spurious_fault(void) +{ + /* Fault while not rebooting. We want the trace. */ + BUG(); } -EXPORT_SYMBOL_GPL(segment_base); +EXPORT_SYMBOL_GPL(kvm_spurious_fault); -u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) +#define EXCPT_BENIGN 0 +#define EXCPT_CONTRIBUTORY 1 +#define EXCPT_PF 2 + +static int exception_class(int vector) { - if (irqchip_in_kernel(vcpu->kvm)) - return vcpu->arch.apic_base; - else - return vcpu->arch.apic_base; + switch (vector) { + case PF_VECTOR: + return EXCPT_PF; + case DE_VECTOR: + case TS_VECTOR: + case NP_VECTOR: + case SS_VECTOR: + case GP_VECTOR: + return EXCPT_CONTRIBUTORY; + default: + break; + } + return EXCPT_BENIGN; } -EXPORT_SYMBOL_GPL(kvm_get_apic_base); -void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) +static void kvm_multiple_exception(struct kvm_vcpu *vcpu, + unsigned nr, bool has_error, u32 error_code, + bool reinject) { - /* TODO: reserve bits check */ - if (irqchip_in_kernel(vcpu->kvm)) - kvm_lapic_set_base(vcpu, data); - else - vcpu->arch.apic_base = data; + u32 prev_nr; + int class1, class2; + + kvm_make_request(KVM_REQ_EVENT, vcpu); + + if (!vcpu->arch.exception.pending) { + queue: + vcpu->arch.exception.pending = true; + vcpu->arch.exception.has_error_code = has_error; + vcpu->arch.exception.nr = nr; + vcpu->arch.exception.error_code = error_code; + vcpu->arch.exception.reinject = reinject; + return; + } + + /* to check exception */ + prev_nr = vcpu->arch.exception.nr; + if (prev_nr == DF_VECTOR) { + /* triple fault -> shutdown */ + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + return; + } + class1 = exception_class(prev_nr); + class2 = exception_class(nr); + if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) + || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { + /* generate double fault per SDM Table 5-5 */ + vcpu->arch.exception.pending = true; + vcpu->arch.exception.has_error_code = true; + vcpu->arch.exception.nr = DF_VECTOR; + vcpu->arch.exception.error_code = 0; + } else + /* replace previous exception with a new one in a hope + that instruction re-execution will regenerate lost + exception */ + goto queue; } -EXPORT_SYMBOL_GPL(kvm_set_apic_base); void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) { - WARN_ON(vcpu->arch.exception.pending); - vcpu->arch.exception.pending = true; - vcpu->arch.exception.has_error_code = false; - vcpu->arch.exception.nr = nr; + kvm_multiple_exception(vcpu, nr, false, 0, false); } EXPORT_SYMBOL_GPL(kvm_queue_exception); -void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr, - u32 error_code) +void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) +{ + kvm_multiple_exception(vcpu, nr, false, 0, true); +} +EXPORT_SYMBOL_GPL(kvm_requeue_exception); + +void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) +{ + if (err) + kvm_inject_gp(vcpu, 0); + else + kvm_x86_ops->skip_emulated_instruction(vcpu); +} +EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); + +void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) { ++vcpu->stat.pf_guest; + vcpu->arch.cr2 = fault->address; + kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); +} +EXPORT_SYMBOL_GPL(kvm_inject_page_fault); - if (vcpu->arch.exception.pending) { - switch(vcpu->arch.exception.nr) { - case DF_VECTOR: - /* triple fault -> shutdown */ - set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests); - return; - case PF_VECTOR: - vcpu->arch.exception.nr = DF_VECTOR; - vcpu->arch.exception.error_code = 0; - return; - default: - /* replace previous exception with a new one in a hope - that instruction re-execution will regenerate lost - exception */ - vcpu->arch.exception.pending = false; - break; - } - } - vcpu->arch.cr2 = addr; - kvm_queue_exception_e(vcpu, PF_VECTOR, error_code); +void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) +{ + if (mmu_is_nested(vcpu) && !fault->nested_page_fault) + vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); + else + vcpu->arch.mmu.inject_page_fault(vcpu, fault); } void kvm_inject_nmi(struct kvm_vcpu *vcpu) { - vcpu->arch.nmi_pending = 1; + atomic_inc(&vcpu->arch.nmi_queued); + kvm_make_request(KVM_REQ_NMI, vcpu); } EXPORT_SYMBOL_GPL(kvm_inject_nmi); void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) { - WARN_ON(vcpu->arch.exception.pending); - vcpu->arch.exception.pending = true; - vcpu->arch.exception.has_error_code = true; - vcpu->arch.exception.nr = nr; - vcpu->arch.exception.error_code = error_code; + kvm_multiple_exception(vcpu, nr, true, error_code, false); } EXPORT_SYMBOL_GPL(kvm_queue_exception_e); +void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) +{ + kvm_multiple_exception(vcpu, nr, true, error_code, true); +} +EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); + /* * Checks if cpl <= required_cpl; if true, return true. Otherwise queue * a #GP and return false. @@ -323,18 +422,49 @@ bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) EXPORT_SYMBOL_GPL(kvm_require_cpl); /* + * This function will be used to read from the physical memory of the currently + * running guest. The difference to kvm_read_guest_page is that this function + * can read from guest physical or from the guest's guest physical memory. + */ +int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, + gfn_t ngfn, void *data, int offset, int len, + u32 access) +{ + gfn_t real_gfn; + gpa_t ngpa; + + ngpa = gfn_to_gpa(ngfn); + real_gfn = mmu->translate_gpa(vcpu, ngpa, access); + if (real_gfn == UNMAPPED_GVA) + return -EFAULT; + + real_gfn = gpa_to_gfn(real_gfn); + + return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); +} +EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); + +int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, + void *data, int offset, int len, u32 access) +{ + return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, + data, offset, len, access); +} + +/* * Load the pae pdptrs. Return true is they are all valid. */ -int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) +int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) { gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; int i; int ret; - u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)]; + u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; - ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte, - offset * sizeof(u64), sizeof(pdpte)); + ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, + offset * sizeof(u64), sizeof(pdpte), + PFERR_USER_MASK|PFERR_WRITE_MASK); if (ret < 0) { ret = 0; goto out; @@ -348,7 +478,7 @@ int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) } ret = 1; - memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs)); + memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); __set_bit(VCPU_EXREG_PDPTR, (unsigned long *)&vcpu->arch.regs_avail); __set_bit(VCPU_EXREG_PDPTR, @@ -361,8 +491,10 @@ EXPORT_SYMBOL_GPL(load_pdptrs); static bool pdptrs_changed(struct kvm_vcpu *vcpu) { - u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)]; + u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; bool changed = true; + int offset; + gfn_t gfn; int r; if (is_long_mode(vcpu) || !is_pae(vcpu)) @@ -372,183 +504,228 @@ static bool pdptrs_changed(struct kvm_vcpu *vcpu) (unsigned long *)&vcpu->arch.regs_avail)) return true; - r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte)); + gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; + offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); + r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), + PFERR_USER_MASK | PFERR_WRITE_MASK); if (r < 0) goto out; - changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0; + changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; out: return changed; } -void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) +int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { - if (cr0 & CR0_RESERVED_BITS) { - printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n", - cr0, vcpu->arch.cr0); - kvm_inject_gp(vcpu, 0); - return; - } + unsigned long old_cr0 = kvm_read_cr0(vcpu); + unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | + X86_CR0_CD | X86_CR0_NW; - if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) { - printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n"); - kvm_inject_gp(vcpu, 0); - return; - } + cr0 |= X86_CR0_ET; - if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) { - printk(KERN_DEBUG "set_cr0: #GP, set PG flag " - "and a clear PE flag\n"); - kvm_inject_gp(vcpu, 0); - return; - } +#ifdef CONFIG_X86_64 + if (cr0 & 0xffffffff00000000UL) + return 1; +#endif + + cr0 &= ~CR0_RESERVED_BITS; + + if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) + return 1; + + if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) + return 1; if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { #ifdef CONFIG_X86_64 - if ((vcpu->arch.shadow_efer & EFER_LME)) { + if ((vcpu->arch.efer & EFER_LME)) { int cs_db, cs_l; - if (!is_pae(vcpu)) { - printk(KERN_DEBUG "set_cr0: #GP, start paging " - "in long mode while PAE is disabled\n"); - kvm_inject_gp(vcpu, 0); - return; - } + if (!is_pae(vcpu)) + return 1; kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); - if (cs_l) { - printk(KERN_DEBUG "set_cr0: #GP, start paging " - "in long mode while CS.L == 1\n"); - kvm_inject_gp(vcpu, 0); - return; - - } + if (cs_l) + return 1; } else #endif - if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) { - printk(KERN_DEBUG "set_cr0: #GP, pdptrs " - "reserved bits\n"); - kvm_inject_gp(vcpu, 0); - return; - } - + if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, + kvm_read_cr3(vcpu))) + return 1; } + if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) + return 1; + kvm_x86_ops->set_cr0(vcpu, cr0); - vcpu->arch.cr0 = cr0; - kvm_mmu_reset_context(vcpu); - return; + if ((cr0 ^ old_cr0) & X86_CR0_PG) { + kvm_clear_async_pf_completion_queue(vcpu); + kvm_async_pf_hash_reset(vcpu); + } + + if ((cr0 ^ old_cr0) & update_bits) + kvm_mmu_reset_context(vcpu); + return 0; } EXPORT_SYMBOL_GPL(kvm_set_cr0); void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) { - kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)); + (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); } EXPORT_SYMBOL_GPL(kvm_lmsw); -void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) +static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) { - unsigned long old_cr4 = vcpu->arch.cr4; - unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE; + if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && + !vcpu->guest_xcr0_loaded) { + /* kvm_set_xcr() also depends on this */ + xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); + vcpu->guest_xcr0_loaded = 1; + } +} + +static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) +{ + if (vcpu->guest_xcr0_loaded) { + if (vcpu->arch.xcr0 != host_xcr0) + xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); + vcpu->guest_xcr0_loaded = 0; + } +} + +int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) +{ + u64 xcr0 = xcr; + u64 old_xcr0 = vcpu->arch.xcr0; + u64 valid_bits; + + /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ + if (index != XCR_XFEATURE_ENABLED_MASK) + return 1; + if (!(xcr0 & XSTATE_FP)) + return 1; + if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) + return 1; + + /* + * Do not allow the guest to set bits that we do not support + * saving. However, xcr0 bit 0 is always set, even if the + * emulated CPU does not support XSAVE (see fx_init). + */ + valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP; + if (xcr0 & ~valid_bits) + return 1; + + if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR))) + return 1; + + kvm_put_guest_xcr0(vcpu); + vcpu->arch.xcr0 = xcr0; - if (cr4 & CR4_RESERVED_BITS) { - printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n"); + if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK) + kvm_update_cpuid(vcpu); + return 0; +} + +int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) +{ + if (kvm_x86_ops->get_cpl(vcpu) != 0 || + __kvm_set_xcr(vcpu, index, xcr)) { kvm_inject_gp(vcpu, 0); - return; + return 1; } + return 0; +} +EXPORT_SYMBOL_GPL(kvm_set_xcr); + +int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) +{ + unsigned long old_cr4 = kvm_read_cr4(vcpu); + unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | + X86_CR4_PAE | X86_CR4_SMEP; + if (cr4 & CR4_RESERVED_BITS) + return 1; + + if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) + return 1; + + if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) + return 1; + + if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP)) + return 1; + + if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE)) + return 1; if (is_long_mode(vcpu)) { - if (!(cr4 & X86_CR4_PAE)) { - printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while " - "in long mode\n"); - kvm_inject_gp(vcpu, 0); - return; - } + if (!(cr4 & X86_CR4_PAE)) + return 1; } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) && ((cr4 ^ old_cr4) & pdptr_bits) - && !load_pdptrs(vcpu, vcpu->arch.cr3)) { - printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n"); - kvm_inject_gp(vcpu, 0); - return; - } + && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, + kvm_read_cr3(vcpu))) + return 1; - if (cr4 & X86_CR4_VMXE) { - printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n"); - kvm_inject_gp(vcpu, 0); - return; + if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { + if (!guest_cpuid_has_pcid(vcpu)) + return 1; + + /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ + if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) + return 1; } - kvm_x86_ops->set_cr4(vcpu, cr4); - vcpu->arch.cr4 = cr4; - vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled; - kvm_mmu_reset_context(vcpu); + + if (kvm_x86_ops->set_cr4(vcpu, cr4)) + return 1; + + if (((cr4 ^ old_cr4) & pdptr_bits) || + (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) + kvm_mmu_reset_context(vcpu); + + if ((cr4 ^ old_cr4) & X86_CR4_SMAP) + update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false); + + if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) + kvm_update_cpuid(vcpu); + + return 0; } EXPORT_SYMBOL_GPL(kvm_set_cr4); -void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) +int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) { - if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) { + if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { kvm_mmu_sync_roots(vcpu); kvm_mmu_flush_tlb(vcpu); - return; + return 0; } if (is_long_mode(vcpu)) { - if (cr3 & CR3_L_MODE_RESERVED_BITS) { - printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n"); - kvm_inject_gp(vcpu, 0); - return; - } - } else { - if (is_pae(vcpu)) { - if (cr3 & CR3_PAE_RESERVED_BITS) { - printk(KERN_DEBUG - "set_cr3: #GP, reserved bits\n"); - kvm_inject_gp(vcpu, 0); - return; - } - if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) { - printk(KERN_DEBUG "set_cr3: #GP, pdptrs " - "reserved bits\n"); - kvm_inject_gp(vcpu, 0); - return; - } - } - /* - * We don't check reserved bits in nonpae mode, because - * this isn't enforced, and VMware depends on this. - */ - } + if (cr3 & CR3_L_MODE_RESERVED_BITS) + return 1; + } else if (is_pae(vcpu) && is_paging(vcpu) && + !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) + return 1; - /* - * Does the new cr3 value map to physical memory? (Note, we - * catch an invalid cr3 even in real-mode, because it would - * cause trouble later on when we turn on paging anyway.) - * - * A real CPU would silently accept an invalid cr3 and would - * attempt to use it - with largely undefined (and often hard - * to debug) behavior on the guest side. - */ - if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) - kvm_inject_gp(vcpu, 0); - else { - vcpu->arch.cr3 = cr3; - vcpu->arch.mmu.new_cr3(vcpu); - } + vcpu->arch.cr3 = cr3; + __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); + kvm_mmu_new_cr3(vcpu); + return 0; } EXPORT_SYMBOL_GPL(kvm_set_cr3); -void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) +int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) { - if (cr8 & CR8_RESERVED_BITS) { - printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8); - kvm_inject_gp(vcpu, 0); - return; - } + if (cr8 & CR8_RESERVED_BITS) + return 1; if (irqchip_in_kernel(vcpu->kvm)) kvm_lapic_set_tpr(vcpu, cr8); else vcpu->arch.cr8 = cr8; + return 0; } EXPORT_SYMBOL_GPL(kvm_set_cr8); @@ -561,10 +738,125 @@ unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) } EXPORT_SYMBOL_GPL(kvm_get_cr8); -static inline u32 bit(int bitno) +static void kvm_update_dr6(struct kvm_vcpu *vcpu) +{ + if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) + kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); +} + +static void kvm_update_dr7(struct kvm_vcpu *vcpu) +{ + unsigned long dr7; + + if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) + dr7 = vcpu->arch.guest_debug_dr7; + else + dr7 = vcpu->arch.dr7; + kvm_x86_ops->set_dr7(vcpu, dr7); + vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; + if (dr7 & DR7_BP_EN_MASK) + vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; +} + +static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) +{ + switch (dr) { + case 0 ... 3: + vcpu->arch.db[dr] = val; + if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) + vcpu->arch.eff_db[dr] = val; + break; + case 4: + if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) + return 1; /* #UD */ + /* fall through */ + case 6: + if (val & 0xffffffff00000000ULL) + return -1; /* #GP */ + vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; + kvm_update_dr6(vcpu); + break; + case 5: + if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) + return 1; /* #UD */ + /* fall through */ + default: /* 7 */ + if (val & 0xffffffff00000000ULL) + return -1; /* #GP */ + vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; + kvm_update_dr7(vcpu); + break; + } + + return 0; +} + +int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) +{ + int res; + + res = __kvm_set_dr(vcpu, dr, val); + if (res > 0) + kvm_queue_exception(vcpu, UD_VECTOR); + else if (res < 0) + kvm_inject_gp(vcpu, 0); + + return res; +} +EXPORT_SYMBOL_GPL(kvm_set_dr); + +static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) { - return 1 << (bitno & 31); + switch (dr) { + case 0 ... 3: + *val = vcpu->arch.db[dr]; + break; + case 4: + if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) + return 1; + /* fall through */ + case 6: + if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) + *val = vcpu->arch.dr6; + else + *val = kvm_x86_ops->get_dr6(vcpu); + break; + case 5: + if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) + return 1; + /* fall through */ + default: /* 7 */ + *val = vcpu->arch.dr7; + break; + } + + return 0; +} + +int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) +{ + if (_kvm_get_dr(vcpu, dr, val)) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + return 0; } +EXPORT_SYMBOL_GPL(kvm_get_dr); + +bool kvm_rdpmc(struct kvm_vcpu *vcpu) +{ + u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); + u64 data; + int err; + + err = kvm_pmu_read_pmc(vcpu, ecx, &data); + if (err) + return err; + kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); + kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); + return err; +} +EXPORT_SYMBOL_GPL(kvm_rdpmc); /* * List of msr numbers which we expose to userspace through KVM_GET_MSRS @@ -575,70 +867,79 @@ static inline u32 bit(int bitno) * kvm-specific. Those are put in the beginning of the list. */ -#define KVM_SAVE_MSRS_BEGIN 2 +#define KVM_SAVE_MSRS_BEGIN 12 static u32 msrs_to_save[] = { MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, + MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, + HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, + HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, + HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, + MSR_KVM_PV_EOI_EN, MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, - MSR_K6_STAR, + MSR_STAR, #ifdef CONFIG_X86_64 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, #endif - MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA + MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, + MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS }; static unsigned num_msrs_to_save; -static u32 emulated_msrs[] = { +static const u32 emulated_msrs[] = { + MSR_IA32_TSC_ADJUST, + MSR_IA32_TSCDEADLINE, MSR_IA32_MISC_ENABLE, + MSR_IA32_MCG_STATUS, + MSR_IA32_MCG_CTL, }; -static void set_efer(struct kvm_vcpu *vcpu, u64 efer) +bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) { - if (efer & efer_reserved_bits) { - printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n", - efer); - kvm_inject_gp(vcpu, 0); - return; - } - - if (is_paging(vcpu) - && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) { - printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n"); - kvm_inject_gp(vcpu, 0); - return; - } + if (efer & efer_reserved_bits) + return false; if (efer & EFER_FFXSR) { struct kvm_cpuid_entry2 *feat; feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); - if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) { - printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n"); - kvm_inject_gp(vcpu, 0); - return; - } + if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) + return false; } if (efer & EFER_SVME) { struct kvm_cpuid_entry2 *feat; feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); - if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) { - printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n"); - kvm_inject_gp(vcpu, 0); - return; - } + if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) + return false; } - kvm_x86_ops->set_efer(vcpu, efer); + return true; +} +EXPORT_SYMBOL_GPL(kvm_valid_efer); + +static int set_efer(struct kvm_vcpu *vcpu, u64 efer) +{ + u64 old_efer = vcpu->arch.efer; + + if (!kvm_valid_efer(vcpu, efer)) + return 1; + + if (is_paging(vcpu) + && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) + return 1; efer &= ~EFER_LMA; - efer |= vcpu->arch.shadow_efer & EFER_LMA; + efer |= vcpu->arch.efer & EFER_LMA; - vcpu->arch.shadow_efer = efer; + kvm_x86_ops->set_efer(vcpu, efer); - vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled; - kvm_mmu_reset_context(vcpu); + /* Update reserved bits */ + if ((efer ^ old_efer) & EFER_NX) + kvm_mmu_reset_context(vcpu); + + return 0; } void kvm_enable_efer_bits(u64 mask) @@ -653,9 +954,9 @@ EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ -int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) +int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) { - return kvm_x86_ops->set_msr(vcpu, msr_index, data); + return kvm_x86_ops->set_msr(vcpu, msr); } /* @@ -663,32 +964,96 @@ int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) */ static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) { - return kvm_set_msr(vcpu, index, *data); + struct msr_data msr; + + msr.data = *data; + msr.index = index; + msr.host_initiated = true; + return kvm_set_msr(vcpu, &msr); +} + +#ifdef CONFIG_X86_64 +struct pvclock_gtod_data { + seqcount_t seq; + + struct { /* extract of a clocksource struct */ + int vclock_mode; + cycle_t cycle_last; + cycle_t mask; + u32 mult; + u32 shift; + } clock; + + /* open coded 'struct timespec' */ + u64 monotonic_time_snsec; + time_t monotonic_time_sec; +}; + +static struct pvclock_gtod_data pvclock_gtod_data; + +static void update_pvclock_gtod(struct timekeeper *tk) +{ + struct pvclock_gtod_data *vdata = &pvclock_gtod_data; + + write_seqcount_begin(&vdata->seq); + + /* copy pvclock gtod data */ + vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode; + vdata->clock.cycle_last = tk->clock->cycle_last; + vdata->clock.mask = tk->clock->mask; + vdata->clock.mult = tk->mult; + vdata->clock.shift = tk->shift; + + vdata->monotonic_time_sec = tk->xtime_sec + + tk->wall_to_monotonic.tv_sec; + vdata->monotonic_time_snsec = tk->xtime_nsec + + (tk->wall_to_monotonic.tv_nsec + << tk->shift); + while (vdata->monotonic_time_snsec >= + (((u64)NSEC_PER_SEC) << tk->shift)) { + vdata->monotonic_time_snsec -= + ((u64)NSEC_PER_SEC) << tk->shift; + vdata->monotonic_time_sec++; + } + + write_seqcount_end(&vdata->seq); } +#endif + static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) { - static int version; + int version; + int r; struct pvclock_wall_clock wc; - struct timespec now, sys, boot; + struct timespec boot; if (!wall_clock) return; - version++; + r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); + if (r) + return; + + if (version & 1) + ++version; /* first time write, random junk */ + + ++version; kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); /* * The guest calculates current wall clock time by adding - * system time (updated by kvm_write_guest_time below) to the + * system time (updated by kvm_guest_time_update below) to the * wall clock specified here. guest system time equals host * system time for us, thus we must fill in host boot time here. */ - now = current_kernel_time(); - ktime_get_ts(&sys); - boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys)); + getboottime(&boot); + if (kvm->arch.kvmclock_offset) { + struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset); + boot = timespec_sub(boot, ts); + } wc.sec = boot.tv_sec; wc.nsec = boot.tv_nsec; wc.version = version; @@ -711,63 +1076,514 @@ static uint32_t div_frac(uint32_t dividend, uint32_t divisor) return quotient; } -static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock) +static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, + s8 *pshift, u32 *pmultiplier) { - uint64_t nsecs = 1000000000LL; + uint64_t scaled64; int32_t shift = 0; uint64_t tps64; uint32_t tps32; - tps64 = tsc_khz * 1000LL; - while (tps64 > nsecs*2) { + tps64 = base_khz * 1000LL; + scaled64 = scaled_khz * 1000LL; + while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { tps64 >>= 1; shift--; } tps32 = (uint32_t)tps64; - while (tps32 <= (uint32_t)nsecs) { - tps32 <<= 1; + while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { + if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) + scaled64 >>= 1; + else + tps32 <<= 1; shift++; } - hv_clock->tsc_shift = shift; - hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32); + *pshift = shift; + *pmultiplier = div_frac(scaled64, tps32); - pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n", - __func__, tsc_khz, hv_clock->tsc_shift, - hv_clock->tsc_to_system_mul); + pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", + __func__, base_khz, scaled_khz, shift, *pmultiplier); } +static inline u64 get_kernel_ns(void) +{ + struct timespec ts; + + ktime_get_ts(&ts); + monotonic_to_bootbased(&ts); + return timespec_to_ns(&ts); +} + +#ifdef CONFIG_X86_64 +static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); +#endif + static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); +unsigned long max_tsc_khz; -static void kvm_write_guest_time(struct kvm_vcpu *v) +static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) { - struct timespec ts; + return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, + vcpu->arch.virtual_tsc_shift); +} + +static u32 adjust_tsc_khz(u32 khz, s32 ppm) +{ + u64 v = (u64)khz * (1000000 + ppm); + do_div(v, 1000000); + return v; +} + +static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) +{ + u32 thresh_lo, thresh_hi; + int use_scaling = 0; + + /* tsc_khz can be zero if TSC calibration fails */ + if (this_tsc_khz == 0) + return; + + /* Compute a scale to convert nanoseconds in TSC cycles */ + kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, + &vcpu->arch.virtual_tsc_shift, + &vcpu->arch.virtual_tsc_mult); + vcpu->arch.virtual_tsc_khz = this_tsc_khz; + + /* + * Compute the variation in TSC rate which is acceptable + * within the range of tolerance and decide if the + * rate being applied is within that bounds of the hardware + * rate. If so, no scaling or compensation need be done. + */ + thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); + thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); + if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { + pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); + use_scaling = 1; + } + kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); +} + +static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) +{ + u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, + vcpu->arch.virtual_tsc_mult, + vcpu->arch.virtual_tsc_shift); + tsc += vcpu->arch.this_tsc_write; + return tsc; +} + +void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) +{ +#ifdef CONFIG_X86_64 + bool vcpus_matched; + bool do_request = false; + struct kvm_arch *ka = &vcpu->kvm->arch; + struct pvclock_gtod_data *gtod = &pvclock_gtod_data; + + vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == + atomic_read(&vcpu->kvm->online_vcpus)); + + if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC) + if (!ka->use_master_clock) + do_request = 1; + + if (!vcpus_matched && ka->use_master_clock) + do_request = 1; + + if (do_request) + kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); + + trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, + atomic_read(&vcpu->kvm->online_vcpus), + ka->use_master_clock, gtod->clock.vclock_mode); +#endif +} + +static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) +{ + u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu); + vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; +} + +void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) +{ + struct kvm *kvm = vcpu->kvm; + u64 offset, ns, elapsed; unsigned long flags; + s64 usdiff; + bool matched; + u64 data = msr->data; + + raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); + offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); + ns = get_kernel_ns(); + elapsed = ns - kvm->arch.last_tsc_nsec; + + if (vcpu->arch.virtual_tsc_khz) { + int faulted = 0; + + /* n.b - signed multiplication and division required */ + usdiff = data - kvm->arch.last_tsc_write; +#ifdef CONFIG_X86_64 + usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; +#else + /* do_div() only does unsigned */ + asm("1: idivl %[divisor]\n" + "2: xor %%edx, %%edx\n" + " movl $0, %[faulted]\n" + "3:\n" + ".section .fixup,\"ax\"\n" + "4: movl $1, %[faulted]\n" + " jmp 3b\n" + ".previous\n" + + _ASM_EXTABLE(1b, 4b) + + : "=A"(usdiff), [faulted] "=r" (faulted) + : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz)); + +#endif + do_div(elapsed, 1000); + usdiff -= elapsed; + if (usdiff < 0) + usdiff = -usdiff; + + /* idivl overflow => difference is larger than USEC_PER_SEC */ + if (faulted) + usdiff = USEC_PER_SEC; + } else + usdiff = USEC_PER_SEC; /* disable TSC match window below */ + + /* + * Special case: TSC write with a small delta (1 second) of virtual + * cycle time against real time is interpreted as an attempt to + * synchronize the CPU. + * + * For a reliable TSC, we can match TSC offsets, and for an unstable + * TSC, we add elapsed time in this computation. We could let the + * compensation code attempt to catch up if we fall behind, but + * it's better to try to match offsets from the beginning. + */ + if (usdiff < USEC_PER_SEC && + vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { + if (!check_tsc_unstable()) { + offset = kvm->arch.cur_tsc_offset; + pr_debug("kvm: matched tsc offset for %llu\n", data); + } else { + u64 delta = nsec_to_cycles(vcpu, elapsed); + data += delta; + offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); + pr_debug("kvm: adjusted tsc offset by %llu\n", delta); + } + matched = true; + } else { + /* + * We split periods of matched TSC writes into generations. + * For each generation, we track the original measured + * nanosecond time, offset, and write, so if TSCs are in + * sync, we can match exact offset, and if not, we can match + * exact software computation in compute_guest_tsc() + * + * These values are tracked in kvm->arch.cur_xxx variables. + */ + kvm->arch.cur_tsc_generation++; + kvm->arch.cur_tsc_nsec = ns; + kvm->arch.cur_tsc_write = data; + kvm->arch.cur_tsc_offset = offset; + matched = false; + pr_debug("kvm: new tsc generation %u, clock %llu\n", + kvm->arch.cur_tsc_generation, data); + } + + /* + * We also track th most recent recorded KHZ, write and time to + * allow the matching interval to be extended at each write. + */ + kvm->arch.last_tsc_nsec = ns; + kvm->arch.last_tsc_write = data; + kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; + + vcpu->arch.last_guest_tsc = data; + + /* Keep track of which generation this VCPU has synchronized to */ + vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; + vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; + vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; + + if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) + update_ia32_tsc_adjust_msr(vcpu, offset); + kvm_x86_ops->write_tsc_offset(vcpu, offset); + raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); + + spin_lock(&kvm->arch.pvclock_gtod_sync_lock); + if (matched) + kvm->arch.nr_vcpus_matched_tsc++; + else + kvm->arch.nr_vcpus_matched_tsc = 0; + + kvm_track_tsc_matching(vcpu); + spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); +} + +EXPORT_SYMBOL_GPL(kvm_write_tsc); + +#ifdef CONFIG_X86_64 + +static cycle_t read_tsc(void) +{ + cycle_t ret; + u64 last; + + /* + * Empirically, a fence (of type that depends on the CPU) + * before rdtsc is enough to ensure that rdtsc is ordered + * with respect to loads. The various CPU manuals are unclear + * as to whether rdtsc can be reordered with later loads, + * but no one has ever seen it happen. + */ + rdtsc_barrier(); + ret = (cycle_t)vget_cycles(); + + last = pvclock_gtod_data.clock.cycle_last; + + if (likely(ret >= last)) + return ret; + + /* + * GCC likes to generate cmov here, but this branch is extremely + * predictable (it's just a funciton of time and the likely is + * very likely) and there's a data dependence, so force GCC + * to generate a branch instead. I don't barrier() because + * we don't actually need a barrier, and if this function + * ever gets inlined it will generate worse code. + */ + asm volatile (""); + return last; +} + +static inline u64 vgettsc(cycle_t *cycle_now) +{ + long v; + struct pvclock_gtod_data *gtod = &pvclock_gtod_data; + + *cycle_now = read_tsc(); + + v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; + return v * gtod->clock.mult; +} + +static int do_monotonic(struct timespec *ts, cycle_t *cycle_now) +{ + unsigned long seq; + u64 ns; + int mode; + struct pvclock_gtod_data *gtod = &pvclock_gtod_data; + + ts->tv_nsec = 0; + do { + seq = read_seqcount_begin(>od->seq); + mode = gtod->clock.vclock_mode; + ts->tv_sec = gtod->monotonic_time_sec; + ns = gtod->monotonic_time_snsec; + ns += vgettsc(cycle_now); + ns >>= gtod->clock.shift; + } while (unlikely(read_seqcount_retry(>od->seq, seq))); + timespec_add_ns(ts, ns); + + return mode; +} + +/* returns true if host is using tsc clocksource */ +static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now) +{ + struct timespec ts; + + /* checked again under seqlock below */ + if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) + return false; + + if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC) + return false; + + monotonic_to_bootbased(&ts); + *kernel_ns = timespec_to_ns(&ts); + + return true; +} +#endif + +/* + * + * Assuming a stable TSC across physical CPUS, and a stable TSC + * across virtual CPUs, the following condition is possible. + * Each numbered line represents an event visible to both + * CPUs at the next numbered event. + * + * "timespecX" represents host monotonic time. "tscX" represents + * RDTSC value. + * + * VCPU0 on CPU0 | VCPU1 on CPU1 + * + * 1. read timespec0,tsc0 + * 2. | timespec1 = timespec0 + N + * | tsc1 = tsc0 + M + * 3. transition to guest | transition to guest + * 4. ret0 = timespec0 + (rdtsc - tsc0) | + * 5. | ret1 = timespec1 + (rdtsc - tsc1) + * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) + * + * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: + * + * - ret0 < ret1 + * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) + * ... + * - 0 < N - M => M < N + * + * That is, when timespec0 != timespec1, M < N. Unfortunately that is not + * always the case (the difference between two distinct xtime instances + * might be smaller then the difference between corresponding TSC reads, + * when updating guest vcpus pvclock areas). + * + * To avoid that problem, do not allow visibility of distinct + * system_timestamp/tsc_timestamp values simultaneously: use a master + * copy of host monotonic time values. Update that master copy + * in lockstep. + * + * Rely on synchronization of host TSCs and guest TSCs for monotonicity. + * + */ + +static void pvclock_update_vm_gtod_copy(struct kvm *kvm) +{ +#ifdef CONFIG_X86_64 + struct kvm_arch *ka = &kvm->arch; + int vclock_mode; + bool host_tsc_clocksource, vcpus_matched; + + vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == + atomic_read(&kvm->online_vcpus)); + + /* + * If the host uses TSC clock, then passthrough TSC as stable + * to the guest. + */ + host_tsc_clocksource = kvm_get_time_and_clockread( + &ka->master_kernel_ns, + &ka->master_cycle_now); + + ka->use_master_clock = host_tsc_clocksource && vcpus_matched + && !backwards_tsc_observed; + + if (ka->use_master_clock) + atomic_set(&kvm_guest_has_master_clock, 1); + + vclock_mode = pvclock_gtod_data.clock.vclock_mode; + trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, + vcpus_matched); +#endif +} + +static void kvm_gen_update_masterclock(struct kvm *kvm) +{ +#ifdef CONFIG_X86_64 + int i; + struct kvm_vcpu *vcpu; + struct kvm_arch *ka = &kvm->arch; + + spin_lock(&ka->pvclock_gtod_sync_lock); + kvm_make_mclock_inprogress_request(kvm); + /* no guest entries from this point */ + pvclock_update_vm_gtod_copy(kvm); + + kvm_for_each_vcpu(i, vcpu, kvm) + set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); + + /* guest entries allowed */ + kvm_for_each_vcpu(i, vcpu, kvm) + clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests); + + spin_unlock(&ka->pvclock_gtod_sync_lock); +#endif +} + +static int kvm_guest_time_update(struct kvm_vcpu *v) +{ + unsigned long flags, this_tsc_khz; struct kvm_vcpu_arch *vcpu = &v->arch; - void *shared_kaddr; - unsigned long this_tsc_khz; + struct kvm_arch *ka = &v->kvm->arch; + s64 kernel_ns; + u64 tsc_timestamp, host_tsc; + struct pvclock_vcpu_time_info guest_hv_clock; + u8 pvclock_flags; + bool use_master_clock; - if ((!vcpu->time_page)) - return; + kernel_ns = 0; + host_tsc = 0; - this_tsc_khz = get_cpu_var(cpu_tsc_khz); - if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) { - kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock); - vcpu->hv_clock_tsc_khz = this_tsc_khz; + /* + * If the host uses TSC clock, then passthrough TSC as stable + * to the guest. + */ + spin_lock(&ka->pvclock_gtod_sync_lock); + use_master_clock = ka->use_master_clock; + if (use_master_clock) { + host_tsc = ka->master_cycle_now; + kernel_ns = ka->master_kernel_ns; } - put_cpu_var(cpu_tsc_khz); + spin_unlock(&ka->pvclock_gtod_sync_lock); /* Keep irq disabled to prevent changes to the clock */ local_irq_save(flags); - kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp); - ktime_get_ts(&ts); + this_tsc_khz = __get_cpu_var(cpu_tsc_khz); + if (unlikely(this_tsc_khz == 0)) { + local_irq_restore(flags); + kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); + return 1; + } + if (!use_master_clock) { + host_tsc = native_read_tsc(); + kernel_ns = get_kernel_ns(); + } + + tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc); + + /* + * We may have to catch up the TSC to match elapsed wall clock + * time for two reasons, even if kvmclock is used. + * 1) CPU could have been running below the maximum TSC rate + * 2) Broken TSC compensation resets the base at each VCPU + * entry to avoid unknown leaps of TSC even when running + * again on the same CPU. This may cause apparent elapsed + * time to disappear, and the guest to stand still or run + * very slowly. + */ + if (vcpu->tsc_catchup) { + u64 tsc = compute_guest_tsc(v, kernel_ns); + if (tsc > tsc_timestamp) { + adjust_tsc_offset_guest(v, tsc - tsc_timestamp); + tsc_timestamp = tsc; + } + } + local_irq_restore(flags); - /* With all the info we got, fill in the values */ + if (!vcpu->pv_time_enabled) + return 0; - vcpu->hv_clock.system_time = ts.tv_nsec + - (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset; + if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { + kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, + &vcpu->hv_clock.tsc_shift, + &vcpu->hv_clock.tsc_to_system_mul); + vcpu->hw_tsc_khz = this_tsc_khz; + } + + /* With all the info we got, fill in the values */ + vcpu->hv_clock.tsc_timestamp = tsc_timestamp; + vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; + vcpu->last_guest_tsc = tsc_timestamp; /* * The interface expects us to write an even number signaling that the @@ -776,24 +1592,82 @@ static void kvm_write_guest_time(struct kvm_vcpu *v) */ vcpu->hv_clock.version += 2; - shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0); + if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, + &guest_hv_clock, sizeof(guest_hv_clock)))) + return 0; + + /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ + pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); + + if (vcpu->pvclock_set_guest_stopped_request) { + pvclock_flags |= PVCLOCK_GUEST_STOPPED; + vcpu->pvclock_set_guest_stopped_request = false; + } - memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock, - sizeof(vcpu->hv_clock)); + /* If the host uses TSC clocksource, then it is stable */ + if (use_master_clock) + pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; - kunmap_atomic(shared_kaddr, KM_USER0); + vcpu->hv_clock.flags = pvclock_flags; - mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); + kvm_write_guest_cached(v->kvm, &vcpu->pv_time, + &vcpu->hv_clock, + sizeof(vcpu->hv_clock)); + return 0; } -static int kvm_request_guest_time_update(struct kvm_vcpu *v) +/* + * kvmclock updates which are isolated to a given vcpu, such as + * vcpu->cpu migration, should not allow system_timestamp from + * the rest of the vcpus to remain static. Otherwise ntp frequency + * correction applies to one vcpu's system_timestamp but not + * the others. + * + * So in those cases, request a kvmclock update for all vcpus. + * We need to rate-limit these requests though, as they can + * considerably slow guests that have a large number of vcpus. + * The time for a remote vcpu to update its kvmclock is bound + * by the delay we use to rate-limit the updates. + */ + +#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) + +static void kvmclock_update_fn(struct work_struct *work) { - struct kvm_vcpu_arch *vcpu = &v->arch; + int i; + struct delayed_work *dwork = to_delayed_work(work); + struct kvm_arch *ka = container_of(dwork, struct kvm_arch, + kvmclock_update_work); + struct kvm *kvm = container_of(ka, struct kvm, arch); + struct kvm_vcpu *vcpu; - if (!vcpu->time_page) - return 0; - set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests); - return 1; + kvm_for_each_vcpu(i, vcpu, kvm) { + set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); + kvm_vcpu_kick(vcpu); + } +} + +static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) +{ + struct kvm *kvm = v->kvm; + + set_bit(KVM_REQ_CLOCK_UPDATE, &v->requests); + schedule_delayed_work(&kvm->arch.kvmclock_update_work, + KVMCLOCK_UPDATE_DELAY); +} + +#define KVMCLOCK_SYNC_PERIOD (300 * HZ) + +static void kvmclock_sync_fn(struct work_struct *work) +{ + struct delayed_work *dwork = to_delayed_work(work); + struct kvm_arch *ka = container_of(dwork, struct kvm_arch, + kvmclock_sync_work); + struct kvm *kvm = container_of(ka, struct kvm, arch); + + schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); + schedule_delayed_work(&kvm->arch.kvmclock_sync_work, + KVMCLOCK_SYNC_PERIOD); } static bool msr_mtrr_valid(unsigned msr) @@ -914,9 +1788,13 @@ static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) if (msr >= MSR_IA32_MC0_CTL && msr < MSR_IA32_MC0_CTL + 4 * bank_num) { u32 offset = msr - MSR_IA32_MC0_CTL; - /* only 0 or all 1s can be written to IA32_MCi_CTL */ + /* only 0 or all 1s can be written to IA32_MCi_CTL + * some Linux kernels though clear bit 10 in bank 4 to + * workaround a BIOS/GART TBL issue on AMD K8s, ignore + * this to avoid an uncatched #GP in the guest + */ if ((offset & 0x3) == 0 && - data != 0 && data != ~(u64)0) + data != 0 && (data | (1 << 10)) != ~(u64)0) return -1; vcpu->arch.mce_banks[offset] = data; break; @@ -943,12 +1821,11 @@ static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) if (page_num >= blob_size) goto out; r = -ENOMEM; - page = kzalloc(PAGE_SIZE, GFP_KERNEL); - if (!page) + page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); + if (IS_ERR(page)) { + r = PTR_ERR(page); goto out; - r = -EFAULT; - if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE)) - goto out_free; + } if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) goto out_free; r = 0; @@ -958,29 +1835,216 @@ out: return r; } -int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) +static bool kvm_hv_hypercall_enabled(struct kvm *kvm) { + return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; +} + +static bool kvm_hv_msr_partition_wide(u32 msr) +{ + bool r = false; switch (msr) { - case MSR_EFER: - set_efer(vcpu, data); + case HV_X64_MSR_GUEST_OS_ID: + case HV_X64_MSR_HYPERCALL: + case HV_X64_MSR_REFERENCE_TSC: + case HV_X64_MSR_TIME_REF_COUNT: + r = true; + break; + } + + return r; +} + +static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) +{ + struct kvm *kvm = vcpu->kvm; + + switch (msr) { + case HV_X64_MSR_GUEST_OS_ID: + kvm->arch.hv_guest_os_id = data; + /* setting guest os id to zero disables hypercall page */ + if (!kvm->arch.hv_guest_os_id) + kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; + break; + case HV_X64_MSR_HYPERCALL: { + u64 gfn; + unsigned long addr; + u8 instructions[4]; + + /* if guest os id is not set hypercall should remain disabled */ + if (!kvm->arch.hv_guest_os_id) + break; + if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { + kvm->arch.hv_hypercall = data; + break; + } + gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; + addr = gfn_to_hva(kvm, gfn); + if (kvm_is_error_hva(addr)) + return 1; + kvm_x86_ops->patch_hypercall(vcpu, instructions); + ((unsigned char *)instructions)[3] = 0xc3; /* ret */ + if (__copy_to_user((void __user *)addr, instructions, 4)) + return 1; + kvm->arch.hv_hypercall = data; + mark_page_dirty(kvm, gfn); + break; + } + case HV_X64_MSR_REFERENCE_TSC: { + u64 gfn; + HV_REFERENCE_TSC_PAGE tsc_ref; + memset(&tsc_ref, 0, sizeof(tsc_ref)); + kvm->arch.hv_tsc_page = data; + if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE)) + break; + gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT; + if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT, + &tsc_ref, sizeof(tsc_ref))) + return 1; + mark_page_dirty(kvm, gfn); break; + } + default: + vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " + "data 0x%llx\n", msr, data); + return 1; + } + return 0; +} + +static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) +{ + switch (msr) { + case HV_X64_MSR_APIC_ASSIST_PAGE: { + u64 gfn; + unsigned long addr; + + if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { + vcpu->arch.hv_vapic = data; + if (kvm_lapic_enable_pv_eoi(vcpu, 0)) + return 1; + break; + } + gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT; + addr = gfn_to_hva(vcpu->kvm, gfn); + if (kvm_is_error_hva(addr)) + return 1; + if (__clear_user((void __user *)addr, PAGE_SIZE)) + return 1; + vcpu->arch.hv_vapic = data; + mark_page_dirty(vcpu->kvm, gfn); + if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED)) + return 1; + break; + } + case HV_X64_MSR_EOI: + return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); + case HV_X64_MSR_ICR: + return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); + case HV_X64_MSR_TPR: + return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); + default: + vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " + "data 0x%llx\n", msr, data); + return 1; + } + + return 0; +} + +static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) +{ + gpa_t gpa = data & ~0x3f; + + /* Bits 2:5 are reserved, Should be zero */ + if (data & 0x3c) + return 1; + + vcpu->arch.apf.msr_val = data; + + if (!(data & KVM_ASYNC_PF_ENABLED)) { + kvm_clear_async_pf_completion_queue(vcpu); + kvm_async_pf_hash_reset(vcpu); + return 0; + } + + if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, + sizeof(u32))) + return 1; + + vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); + kvm_async_pf_wakeup_all(vcpu); + return 0; +} + +static void kvmclock_reset(struct kvm_vcpu *vcpu) +{ + vcpu->arch.pv_time_enabled = false; +} + +static void accumulate_steal_time(struct kvm_vcpu *vcpu) +{ + u64 delta; + + if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) + return; + + delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; + vcpu->arch.st.last_steal = current->sched_info.run_delay; + vcpu->arch.st.accum_steal = delta; +} + +static void record_steal_time(struct kvm_vcpu *vcpu) +{ + if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) + return; + + if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, + &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) + return; + + vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; + vcpu->arch.st.steal.version += 2; + vcpu->arch.st.accum_steal = 0; + + kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, + &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); +} + +int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) +{ + bool pr = false; + u32 msr = msr_info->index; + u64 data = msr_info->data; + + switch (msr) { + case MSR_AMD64_NB_CFG: + case MSR_IA32_UCODE_REV: + case MSR_IA32_UCODE_WRITE: + case MSR_VM_HSAVE_PA: + case MSR_AMD64_PATCH_LOADER: + case MSR_AMD64_BU_CFG2: + break; + + case MSR_EFER: + return set_efer(vcpu, data); case MSR_K7_HWCR: data &= ~(u64)0x40; /* ignore flush filter disable */ + data &= ~(u64)0x100; /* ignore ignne emulation enable */ + data &= ~(u64)0x8; /* ignore TLB cache disable */ if (data != 0) { - pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", - data); + vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", + data); return 1; } break; case MSR_FAM10H_MMIO_CONF_BASE: if (data != 0) { - pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " - "0x%llx\n", data); + vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " + "0x%llx\n", data); return 1; } break; - case MSR_AMD64_NB_CFG: - break; case MSR_IA32_DEBUGCTLMSR: if (!data) { /* We support the non-activated case already */ @@ -990,54 +2054,94 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) thus reserved and should throw a #GP */ return 1; } - pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", - __func__, data); - break; - case MSR_IA32_UCODE_REV: - case MSR_IA32_UCODE_WRITE: - case MSR_VM_HSAVE_PA: - case MSR_AMD64_PATCH_LOADER: + vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", + __func__, data); break; case 0x200 ... 0x2ff: return set_msr_mtrr(vcpu, msr, data); case MSR_IA32_APICBASE: - kvm_set_apic_base(vcpu, data); - break; + return kvm_set_apic_base(vcpu, msr_info); case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: return kvm_x2apic_msr_write(vcpu, msr, data); + case MSR_IA32_TSCDEADLINE: + kvm_set_lapic_tscdeadline_msr(vcpu, data); + break; + case MSR_IA32_TSC_ADJUST: + if (guest_cpuid_has_tsc_adjust(vcpu)) { + if (!msr_info->host_initiated) { + u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; + kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true); + } + vcpu->arch.ia32_tsc_adjust_msr = data; + } + break; case MSR_IA32_MISC_ENABLE: vcpu->arch.ia32_misc_enable_msr = data; break; + case MSR_KVM_WALL_CLOCK_NEW: case MSR_KVM_WALL_CLOCK: vcpu->kvm->arch.wall_clock = data; kvm_write_wall_clock(vcpu->kvm, data); break; + case MSR_KVM_SYSTEM_TIME_NEW: case MSR_KVM_SYSTEM_TIME: { - if (vcpu->arch.time_page) { - kvm_release_page_dirty(vcpu->arch.time_page); - vcpu->arch.time_page = NULL; - } + u64 gpa_offset; + kvmclock_reset(vcpu); vcpu->arch.time = data; + kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); /* we verify if the enable bit is set... */ if (!(data & 1)) break; - /* ...but clean it before doing the actual write */ - vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); - - vcpu->arch.time_page = - gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); + gpa_offset = data & ~(PAGE_MASK | 1); - if (is_error_page(vcpu->arch.time_page)) { - kvm_release_page_clean(vcpu->arch.time_page); - vcpu->arch.time_page = NULL; - } + if (kvm_gfn_to_hva_cache_init(vcpu->kvm, + &vcpu->arch.pv_time, data & ~1ULL, + sizeof(struct pvclock_vcpu_time_info))) + vcpu->arch.pv_time_enabled = false; + else + vcpu->arch.pv_time_enabled = true; - kvm_request_guest_time_update(vcpu); break; } + case MSR_KVM_ASYNC_PF_EN: + if (kvm_pv_enable_async_pf(vcpu, data)) + return 1; + break; + case MSR_KVM_STEAL_TIME: + + if (unlikely(!sched_info_on())) + return 1; + + if (data & KVM_STEAL_RESERVED_MASK) + return 1; + + if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, + data & KVM_STEAL_VALID_BITS, + sizeof(struct kvm_steal_time))) + return 1; + + vcpu->arch.st.msr_val = data; + + if (!(data & KVM_MSR_ENABLED)) + break; + + vcpu->arch.st.last_steal = current->sched_info.run_delay; + + preempt_disable(); + accumulate_steal_time(vcpu); + preempt_enable(); + + kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); + + break; + case MSR_KVM_PV_EOI_EN: + if (kvm_lapic_enable_pv_eoi(vcpu, data)) + return 1; + break; + case MSR_IA32_MCG_CTL: case MSR_IA32_MCG_STATUS: case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: @@ -1050,38 +2154,84 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) * which we perfectly emulate ;-). Any other value should be at least * reported, some guests depend on them. */ - case MSR_P6_EVNTSEL0: - case MSR_P6_EVNTSEL1: case MSR_K7_EVNTSEL0: case MSR_K7_EVNTSEL1: case MSR_K7_EVNTSEL2: case MSR_K7_EVNTSEL3: if (data != 0) - pr_unimpl(vcpu, "unimplemented perfctr wrmsr: " - "0x%x data 0x%llx\n", msr, data); + vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " + "0x%x data 0x%llx\n", msr, data); break; /* at least RHEL 4 unconditionally writes to the perfctr registers, * so we ignore writes to make it happy. */ - case MSR_P6_PERFCTR0: - case MSR_P6_PERFCTR1: case MSR_K7_PERFCTR0: case MSR_K7_PERFCTR1: case MSR_K7_PERFCTR2: case MSR_K7_PERFCTR3: - pr_unimpl(vcpu, "unimplemented perfctr wrmsr: " - "0x%x data 0x%llx\n", msr, data); + vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " + "0x%x data 0x%llx\n", msr, data); + break; + case MSR_P6_PERFCTR0: + case MSR_P6_PERFCTR1: + pr = true; + case MSR_P6_EVNTSEL0: + case MSR_P6_EVNTSEL1: + if (kvm_pmu_msr(vcpu, msr)) + return kvm_pmu_set_msr(vcpu, msr_info); + + if (pr || data != 0) + vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " + "0x%x data 0x%llx\n", msr, data); + break; + case MSR_K7_CLK_CTL: + /* + * Ignore all writes to this no longer documented MSR. + * Writes are only relevant for old K7 processors, + * all pre-dating SVM, but a recommended workaround from + * AMD for these chips. It is possible to specify the + * affected processor models on the command line, hence + * the need to ignore the workaround. + */ + break; + case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: + if (kvm_hv_msr_partition_wide(msr)) { + int r; + mutex_lock(&vcpu->kvm->lock); + r = set_msr_hyperv_pw(vcpu, msr, data); + mutex_unlock(&vcpu->kvm->lock); + return r; + } else + return set_msr_hyperv(vcpu, msr, data); + break; + case MSR_IA32_BBL_CR_CTL3: + /* Drop writes to this legacy MSR -- see rdmsr + * counterpart for further detail. + */ + vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); + break; + case MSR_AMD64_OSVW_ID_LENGTH: + if (!guest_cpuid_has_osvw(vcpu)) + return 1; + vcpu->arch.osvw.length = data; + break; + case MSR_AMD64_OSVW_STATUS: + if (!guest_cpuid_has_osvw(vcpu)) + return 1; + vcpu->arch.osvw.status = data; break; default: if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) return xen_hvm_config(vcpu, data); + if (kvm_pmu_msr(vcpu, msr)) + return kvm_pmu_set_msr(vcpu, msr_info); if (!ignore_msrs) { - pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", - msr, data); + vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", + msr, data); return 1; } else { - pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", - msr, data); + vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", + msr, data); break; } } @@ -1171,13 +2321,74 @@ static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) return 0; } +static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) +{ + u64 data = 0; + struct kvm *kvm = vcpu->kvm; + + switch (msr) { + case HV_X64_MSR_GUEST_OS_ID: + data = kvm->arch.hv_guest_os_id; + break; + case HV_X64_MSR_HYPERCALL: + data = kvm->arch.hv_hypercall; + break; + case HV_X64_MSR_TIME_REF_COUNT: { + data = + div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100); + break; + } + case HV_X64_MSR_REFERENCE_TSC: + data = kvm->arch.hv_tsc_page; + break; + default: + vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); + return 1; + } + + *pdata = data; + return 0; +} + +static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) +{ + u64 data = 0; + + switch (msr) { + case HV_X64_MSR_VP_INDEX: { + int r; + struct kvm_vcpu *v; + kvm_for_each_vcpu(r, v, vcpu->kvm) { + if (v == vcpu) { + data = r; + break; + } + } + break; + } + case HV_X64_MSR_EOI: + return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); + case HV_X64_MSR_ICR: + return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); + case HV_X64_MSR_TPR: + return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); + case HV_X64_MSR_APIC_ASSIST_PAGE: + data = vcpu->arch.hv_vapic; + break; + default: + vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); + return 1; + } + *pdata = data; + return 0; +} + int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) { u64 data; switch (msr) { case MSR_IA32_PLATFORM_ID: - case MSR_IA32_UCODE_REV: case MSR_IA32_EBL_CR_POWERON: case MSR_IA32_DEBUGCTLMSR: case MSR_IA32_LASTBRANCHFROMIP: @@ -1187,17 +2398,25 @@ int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) case MSR_K8_SYSCFG: case MSR_K7_HWCR: case MSR_VM_HSAVE_PA: - case MSR_P6_PERFCTR0: - case MSR_P6_PERFCTR1: - case MSR_P6_EVNTSEL0: - case MSR_P6_EVNTSEL1: case MSR_K7_EVNTSEL0: case MSR_K7_PERFCTR0: case MSR_K8_INT_PENDING_MSG: case MSR_AMD64_NB_CFG: case MSR_FAM10H_MMIO_CONF_BASE: + case MSR_AMD64_BU_CFG2: data = 0; break; + case MSR_P6_PERFCTR0: + case MSR_P6_PERFCTR1: + case MSR_P6_EVNTSEL0: + case MSR_P6_EVNTSEL1: + if (kvm_pmu_msr(vcpu, msr)) + return kvm_pmu_get_msr(vcpu, msr, pdata); + data = 0; + break; + case MSR_IA32_UCODE_REV: + data = 0x100000000ULL; + break; case MSR_MTRRcap: data = 0x500 | KVM_NR_VAR_MTRR; break; @@ -1206,12 +2425,32 @@ int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) case 0xcd: /* fsb frequency */ data = 3; break; + /* + * MSR_EBC_FREQUENCY_ID + * Conservative value valid for even the basic CPU models. + * Models 0,1: 000 in bits 23:21 indicating a bus speed of + * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, + * and 266MHz for model 3, or 4. Set Core Clock + * Frequency to System Bus Frequency Ratio to 1 (bits + * 31:24) even though these are only valid for CPU + * models > 2, however guests may end up dividing or + * multiplying by zero otherwise. + */ + case MSR_EBC_FREQUENCY_ID: + data = 1 << 24; + break; case MSR_IA32_APICBASE: data = kvm_get_apic_base(vcpu); break; case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: return kvm_x2apic_msr_read(vcpu, msr, pdata); break; + case MSR_IA32_TSCDEADLINE: + data = kvm_get_lapic_tscdeadline_msr(vcpu); + break; + case MSR_IA32_TSC_ADJUST: + data = (u64)vcpu->arch.ia32_tsc_adjust_msr; + break; case MSR_IA32_MISC_ENABLE: data = vcpu->arch.ia32_misc_enable_msr; break; @@ -1222,14 +2461,25 @@ int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) data |= (((uint64_t)4ULL) << 40); break; case MSR_EFER: - data = vcpu->arch.shadow_efer; + data = vcpu->arch.efer; break; case MSR_KVM_WALL_CLOCK: + case MSR_KVM_WALL_CLOCK_NEW: data = vcpu->kvm->arch.wall_clock; break; case MSR_KVM_SYSTEM_TIME: + case MSR_KVM_SYSTEM_TIME_NEW: data = vcpu->arch.time; break; + case MSR_KVM_ASYNC_PF_EN: + data = vcpu->arch.apf.msr_val; + break; + case MSR_KVM_STEAL_TIME: + data = vcpu->arch.st.msr_val; + break; + case MSR_KVM_PV_EOI_EN: + data = vcpu->arch.pv_eoi.msr_val; + break; case MSR_IA32_P5_MC_ADDR: case MSR_IA32_P5_MC_TYPE: case MSR_IA32_MCG_CAP: @@ -1237,12 +2487,59 @@ int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) case MSR_IA32_MCG_STATUS: case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: return get_msr_mce(vcpu, msr, pdata); + case MSR_K7_CLK_CTL: + /* + * Provide expected ramp-up count for K7. All other + * are set to zero, indicating minimum divisors for + * every field. + * + * This prevents guest kernels on AMD host with CPU + * type 6, model 8 and higher from exploding due to + * the rdmsr failing. + */ + data = 0x20000000; + break; + case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: + if (kvm_hv_msr_partition_wide(msr)) { + int r; + mutex_lock(&vcpu->kvm->lock); + r = get_msr_hyperv_pw(vcpu, msr, pdata); + mutex_unlock(&vcpu->kvm->lock); + return r; + } else + return get_msr_hyperv(vcpu, msr, pdata); + break; + case MSR_IA32_BBL_CR_CTL3: + /* This legacy MSR exists but isn't fully documented in current + * silicon. It is however accessed by winxp in very narrow + * scenarios where it sets bit #19, itself documented as + * a "reserved" bit. Best effort attempt to source coherent + * read data here should the balance of the register be + * interpreted by the guest: + * + * L2 cache control register 3: 64GB range, 256KB size, + * enabled, latency 0x1, configured + */ + data = 0xbe702111; + break; + case MSR_AMD64_OSVW_ID_LENGTH: + if (!guest_cpuid_has_osvw(vcpu)) + return 1; + data = vcpu->arch.osvw.length; + break; + case MSR_AMD64_OSVW_STATUS: + if (!guest_cpuid_has_osvw(vcpu)) + return 1; + data = vcpu->arch.osvw.status; + break; default: + if (kvm_pmu_msr(vcpu, msr)) + return kvm_pmu_get_msr(vcpu, msr, pdata); if (!ignore_msrs) { - pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); + vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); return 1; } else { - pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); + vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); data = 0; } break; @@ -1262,17 +2559,13 @@ static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, int (*do_msr)(struct kvm_vcpu *vcpu, unsigned index, u64 *data)) { - int i; - - vcpu_load(vcpu); + int i, idx; - down_read(&vcpu->kvm->slots_lock); + idx = srcu_read_lock(&vcpu->kvm->srcu); for (i = 0; i < msrs->nmsrs; ++i) if (do_msr(vcpu, entries[i].index, &entries[i].data)) break; - up_read(&vcpu->kvm->slots_lock); - - vcpu_put(vcpu); + srcu_read_unlock(&vcpu->kvm->srcu, idx); return i; } @@ -1300,15 +2593,12 @@ static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, if (msrs.nmsrs >= MAX_IO_MSRS) goto out; - r = -ENOMEM; size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; - entries = vmalloc(size); - if (!entries) + entries = memdup_user(user_msrs->entries, size); + if (IS_ERR(entries)) { + r = PTR_ERR(entries); goto out; - - r = -EFAULT; - if (copy_from_user(entries, user_msrs->entries, size)) - goto out_free; + } r = n = __msr_io(vcpu, &msrs, entries, do_msr); if (r < 0) @@ -1321,7 +2611,7 @@ static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, r = n; out_free: - vfree(entries); + kfree(entries); out: return r; } @@ -1336,22 +2626,41 @@ int kvm_dev_ioctl_check_extension(long ext) case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: case KVM_CAP_SET_TSS_ADDR: case KVM_CAP_EXT_CPUID: + case KVM_CAP_EXT_EMUL_CPUID: case KVM_CAP_CLOCKSOURCE: case KVM_CAP_PIT: case KVM_CAP_NOP_IO_DELAY: case KVM_CAP_MP_STATE: case KVM_CAP_SYNC_MMU: + case KVM_CAP_USER_NMI: case KVM_CAP_REINJECT_CONTROL: case KVM_CAP_IRQ_INJECT_STATUS: - case KVM_CAP_ASSIGN_DEV_IRQ: case KVM_CAP_IRQFD: case KVM_CAP_IOEVENTFD: + case KVM_CAP_IOEVENTFD_NO_LENGTH: case KVM_CAP_PIT2: case KVM_CAP_PIT_STATE2: case KVM_CAP_SET_IDENTITY_MAP_ADDR: case KVM_CAP_XEN_HVM: case KVM_CAP_ADJUST_CLOCK: case KVM_CAP_VCPU_EVENTS: + case KVM_CAP_HYPERV: + case KVM_CAP_HYPERV_VAPIC: + case KVM_CAP_HYPERV_SPIN: + case KVM_CAP_PCI_SEGMENT: + case KVM_CAP_DEBUGREGS: + case KVM_CAP_X86_ROBUST_SINGLESTEP: + case KVM_CAP_XSAVE: + case KVM_CAP_ASYNC_PF: + case KVM_CAP_GET_TSC_KHZ: + case KVM_CAP_KVMCLOCK_CTRL: + case KVM_CAP_READONLY_MEM: + case KVM_CAP_HYPERV_TIME: + case KVM_CAP_IOAPIC_POLARITY_IGNORED: +#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT + case KVM_CAP_ASSIGN_DEV_IRQ: + case KVM_CAP_PCI_2_3: +#endif r = 1; break; case KVM_CAP_COALESCED_MMIO: @@ -1361,20 +2670,34 @@ int kvm_dev_ioctl_check_extension(long ext) r = !kvm_x86_ops->cpu_has_accelerated_tpr(); break; case KVM_CAP_NR_VCPUS: + r = KVM_SOFT_MAX_VCPUS; + break; + case KVM_CAP_MAX_VCPUS: r = KVM_MAX_VCPUS; break; case KVM_CAP_NR_MEMSLOTS: - r = KVM_MEMORY_SLOTS; + r = KVM_USER_MEM_SLOTS; break; case KVM_CAP_PV_MMU: /* obsolete */ r = 0; break; +#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT case KVM_CAP_IOMMU: - r = iommu_found(); + r = iommu_present(&pci_bus_type); break; +#endif case KVM_CAP_MCE: r = KVM_MAX_MCE_BANKS; break; + case KVM_CAP_XCRS: + r = cpu_has_xsave; + break; + case KVM_CAP_TSC_CONTROL: + r = kvm_has_tsc_control; + break; + case KVM_CAP_TSC_DEADLINE_TIMER: + r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); + break; default: r = 0; break; @@ -1416,15 +2739,17 @@ long kvm_arch_dev_ioctl(struct file *filp, r = 0; break; } - case KVM_GET_SUPPORTED_CPUID: { + case KVM_GET_SUPPORTED_CPUID: + case KVM_GET_EMULATED_CPUID: { struct kvm_cpuid2 __user *cpuid_arg = argp; struct kvm_cpuid2 cpuid; r = -EFAULT; if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) goto out; - r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, - cpuid_arg->entries); + + r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, + ioctl); if (r) goto out; @@ -1451,324 +2776,74 @@ out: return r; } -void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) +static void wbinvd_ipi(void *garbage) { - kvm_x86_ops->vcpu_load(vcpu, cpu); - if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) { - unsigned long khz = cpufreq_quick_get(cpu); - if (!khz) - khz = tsc_khz; - per_cpu(cpu_tsc_khz, cpu) = khz; - } - kvm_request_guest_time_update(vcpu); + wbinvd(); } -void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) +static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) { - kvm_x86_ops->vcpu_put(vcpu); - kvm_put_guest_fpu(vcpu); + return kvm_arch_has_noncoherent_dma(vcpu->kvm); } -static int is_efer_nx(void) -{ - unsigned long long efer = 0; - - rdmsrl_safe(MSR_EFER, &efer); - return efer & EFER_NX; -} - -static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu) +void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { - int i; - struct kvm_cpuid_entry2 *e, *entry; - - entry = NULL; - for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { - e = &vcpu->arch.cpuid_entries[i]; - if (e->function == 0x80000001) { - entry = e; - break; - } + /* Address WBINVD may be executed by guest */ + if (need_emulate_wbinvd(vcpu)) { + if (kvm_x86_ops->has_wbinvd_exit()) + cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); + else if (vcpu->cpu != -1 && vcpu->cpu != cpu) + smp_call_function_single(vcpu->cpu, + wbinvd_ipi, NULL, 1); } - if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) { - entry->edx &= ~(1 << 20); - printk(KERN_INFO "kvm: guest NX capability removed\n"); - } -} -/* when an old userspace process fills a new kernel module */ -static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, - struct kvm_cpuid *cpuid, - struct kvm_cpuid_entry __user *entries) -{ - int r, i; - struct kvm_cpuid_entry *cpuid_entries; - - r = -E2BIG; - if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) - goto out; - r = -ENOMEM; - cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent); - if (!cpuid_entries) - goto out; - r = -EFAULT; - if (copy_from_user(cpuid_entries, entries, - cpuid->nent * sizeof(struct kvm_cpuid_entry))) - goto out_free; - for (i = 0; i < cpuid->nent; i++) { - vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function; - vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax; - vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx; - vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx; - vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx; - vcpu->arch.cpuid_entries[i].index = 0; - vcpu->arch.cpuid_entries[i].flags = 0; - vcpu->arch.cpuid_entries[i].padding[0] = 0; - vcpu->arch.cpuid_entries[i].padding[1] = 0; - vcpu->arch.cpuid_entries[i].padding[2] = 0; - } - vcpu->arch.cpuid_nent = cpuid->nent; - cpuid_fix_nx_cap(vcpu); - r = 0; - kvm_apic_set_version(vcpu); - -out_free: - vfree(cpuid_entries); -out: - return r; -} - -static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, - struct kvm_cpuid2 *cpuid, - struct kvm_cpuid_entry2 __user *entries) -{ - int r; - - r = -E2BIG; - if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) - goto out; - r = -EFAULT; - if (copy_from_user(&vcpu->arch.cpuid_entries, entries, - cpuid->nent * sizeof(struct kvm_cpuid_entry2))) - goto out; - vcpu->arch.cpuid_nent = cpuid->nent; - kvm_apic_set_version(vcpu); - return 0; - -out: - return r; -} - -static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, - struct kvm_cpuid2 *cpuid, - struct kvm_cpuid_entry2 __user *entries) -{ - int r; - - r = -E2BIG; - if (cpuid->nent < vcpu->arch.cpuid_nent) - goto out; - r = -EFAULT; - if (copy_to_user(entries, &vcpu->arch.cpuid_entries, - vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2))) - goto out; - return 0; - -out: - cpuid->nent = vcpu->arch.cpuid_nent; - return r; -} - -static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function, - u32 index) -{ - entry->function = function; - entry->index = index; - cpuid_count(entry->function, entry->index, - &entry->eax, &entry->ebx, &entry->ecx, &entry->edx); - entry->flags = 0; -} - -#define F(x) bit(X86_FEATURE_##x) - -static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, - u32 index, int *nent, int maxnent) -{ - unsigned f_nx = is_efer_nx() ? F(NX) : 0; - unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0; -#ifdef CONFIG_X86_64 - unsigned f_lm = F(LM); -#else - unsigned f_lm = 0; -#endif - - /* cpuid 1.edx */ - const u32 kvm_supported_word0_x86_features = - F(FPU) | F(VME) | F(DE) | F(PSE) | - F(TSC) | F(MSR) | F(PAE) | F(MCE) | - F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) | - F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | - F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) | - 0 /* Reserved, DS, ACPI */ | F(MMX) | - F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) | - 0 /* HTT, TM, Reserved, PBE */; - /* cpuid 0x80000001.edx */ - const u32 kvm_supported_word1_x86_features = - F(FPU) | F(VME) | F(DE) | F(PSE) | - F(TSC) | F(MSR) | F(PAE) | F(MCE) | - F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) | - F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | - F(PAT) | F(PSE36) | 0 /* Reserved */ | - f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) | - F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ | - 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW); - /* cpuid 1.ecx */ - const u32 kvm_supported_word4_x86_features = - F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ | - 0 /* DS-CPL, VMX, SMX, EST */ | - 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ | - 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ | - 0 /* Reserved, DCA */ | F(XMM4_1) | - F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) | - 0 /* Reserved, XSAVE, OSXSAVE */; - /* cpuid 0x80000001.ecx */ - const u32 kvm_supported_word6_x86_features = - F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ | - F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) | - F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) | - 0 /* SKINIT */ | 0 /* WDT */; - - /* all calls to cpuid_count() should be made on the same cpu */ - get_cpu(); - do_cpuid_1_ent(entry, function, index); - ++*nent; - - switch (function) { - case 0: - entry->eax = min(entry->eax, (u32)0xb); - break; - case 1: - entry->edx &= kvm_supported_word0_x86_features; - entry->ecx &= kvm_supported_word4_x86_features; - /* we support x2apic emulation even if host does not support - * it since we emulate x2apic in software */ - entry->ecx |= F(X2APIC); - break; - /* function 2 entries are STATEFUL. That is, repeated cpuid commands - * may return different values. This forces us to get_cpu() before - * issuing the first command, and also to emulate this annoying behavior - * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */ - case 2: { - int t, times = entry->eax & 0xff; - - entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; - entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; - for (t = 1; t < times && *nent < maxnent; ++t) { - do_cpuid_1_ent(&entry[t], function, 0); - entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; - ++*nent; - } - break; - } - /* function 4 and 0xb have additional index. */ - case 4: { - int i, cache_type; + kvm_x86_ops->vcpu_load(vcpu, cpu); - entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; - /* read more entries until cache_type is zero */ - for (i = 1; *nent < maxnent; ++i) { - cache_type = entry[i - 1].eax & 0x1f; - if (!cache_type) - break; - do_cpuid_1_ent(&entry[i], function, i); - entry[i].flags |= - KVM_CPUID_FLAG_SIGNIFCANT_INDEX; - ++*nent; + /* Apply any externally detected TSC adjustments (due to suspend) */ + if (unlikely(vcpu->arch.tsc_offset_adjustment)) { + adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); + vcpu->arch.tsc_offset_adjustment = 0; + set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); + } + + if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { + s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : + native_read_tsc() - vcpu->arch.last_host_tsc; + if (tsc_delta < 0) + mark_tsc_unstable("KVM discovered backwards TSC"); + if (check_tsc_unstable()) { + u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, + vcpu->arch.last_guest_tsc); + kvm_x86_ops->write_tsc_offset(vcpu, offset); + vcpu->arch.tsc_catchup = 1; } - break; + /* + * On a host with synchronized TSC, there is no need to update + * kvmclock on vcpu->cpu migration + */ + if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) + kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); + if (vcpu->cpu != cpu) + kvm_migrate_timers(vcpu); + vcpu->cpu = cpu; } - case 0xb: { - int i, level_type; - entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; - /* read more entries until level_type is zero */ - for (i = 1; *nent < maxnent; ++i) { - level_type = entry[i - 1].ecx & 0xff00; - if (!level_type) - break; - do_cpuid_1_ent(&entry[i], function, i); - entry[i].flags |= - KVM_CPUID_FLAG_SIGNIFCANT_INDEX; - ++*nent; - } - break; - } - case 0x80000000: - entry->eax = min(entry->eax, 0x8000001a); - break; - case 0x80000001: - entry->edx &= kvm_supported_word1_x86_features; - entry->ecx &= kvm_supported_word6_x86_features; - break; - } - put_cpu(); + accumulate_steal_time(vcpu); + kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); } -#undef F - -static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid, - struct kvm_cpuid_entry2 __user *entries) +void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) { - struct kvm_cpuid_entry2 *cpuid_entries; - int limit, nent = 0, r = -E2BIG; - u32 func; - - if (cpuid->nent < 1) - goto out; - if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) - cpuid->nent = KVM_MAX_CPUID_ENTRIES; - r = -ENOMEM; - cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent); - if (!cpuid_entries) - goto out; - - do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent); - limit = cpuid_entries[0].eax; - for (func = 1; func <= limit && nent < cpuid->nent; ++func) - do_cpuid_ent(&cpuid_entries[nent], func, 0, - &nent, cpuid->nent); - r = -E2BIG; - if (nent >= cpuid->nent) - goto out_free; - - do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent); - limit = cpuid_entries[nent - 1].eax; - for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func) - do_cpuid_ent(&cpuid_entries[nent], func, 0, - &nent, cpuid->nent); - r = -E2BIG; - if (nent >= cpuid->nent) - goto out_free; - - r = -EFAULT; - if (copy_to_user(entries, cpuid_entries, - nent * sizeof(struct kvm_cpuid_entry2))) - goto out_free; - cpuid->nent = nent; - r = 0; - -out_free: - vfree(cpuid_entries); -out: - return r; + kvm_x86_ops->vcpu_put(vcpu); + kvm_put_guest_fpu(vcpu); + vcpu->arch.last_host_tsc = native_read_tsc(); } static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) { - vcpu_load(vcpu); + kvm_x86_ops->sync_pir_to_irr(vcpu); memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); - vcpu_put(vcpu); return 0; } @@ -1776,11 +2851,8 @@ static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) { - vcpu_load(vcpu); - memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s); - kvm_apic_post_state_restore(vcpu); + kvm_apic_post_state_restore(vcpu, s); update_cr8_intercept(vcpu); - vcpu_put(vcpu); return 0; } @@ -1788,24 +2860,20 @@ static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) { - if (irq->irq < 0 || irq->irq >= 256) + if (irq->irq >= KVM_NR_INTERRUPTS) return -EINVAL; if (irqchip_in_kernel(vcpu->kvm)) return -ENXIO; - vcpu_load(vcpu); kvm_queue_interrupt(vcpu, irq->irq, false); - - vcpu_put(vcpu); + kvm_make_request(KVM_REQ_EVENT, vcpu); return 0; } static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) { - vcpu_load(vcpu); kvm_inject_nmi(vcpu); - vcpu_put(vcpu); return 0; } @@ -1867,11 +2935,8 @@ static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, return 0; if (mce->status & MCI_STATUS_UC) { if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || - !(vcpu->arch.cr4 & X86_CR4_MCE)) { - printk(KERN_DEBUG "kvm: set_mce: " - "injects mce exception while " - "previous one is in progress!\n"); - set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests); + !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); return 0; } if (banks[1] & MCI_STATUS_VAL) @@ -1896,38 +2961,44 @@ static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events) { - vcpu_load(vcpu); - - events->exception.injected = vcpu->arch.exception.pending; + process_nmi(vcpu); + events->exception.injected = + vcpu->arch.exception.pending && + !kvm_exception_is_soft(vcpu->arch.exception.nr); events->exception.nr = vcpu->arch.exception.nr; events->exception.has_error_code = vcpu->arch.exception.has_error_code; + events->exception.pad = 0; events->exception.error_code = vcpu->arch.exception.error_code; - events->interrupt.injected = vcpu->arch.interrupt.pending; + events->interrupt.injected = + vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; events->interrupt.nr = vcpu->arch.interrupt.nr; - events->interrupt.soft = vcpu->arch.interrupt.soft; + events->interrupt.soft = 0; + events->interrupt.shadow = + kvm_x86_ops->get_interrupt_shadow(vcpu, + KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); events->nmi.injected = vcpu->arch.nmi_injected; - events->nmi.pending = vcpu->arch.nmi_pending; + events->nmi.pending = vcpu->arch.nmi_pending != 0; events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); + events->nmi.pad = 0; - events->sipi_vector = vcpu->arch.sipi_vector; + events->sipi_vector = 0; /* never valid when reporting to user space */ events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING - | KVM_VCPUEVENT_VALID_SIPI_VECTOR); - - vcpu_put(vcpu); + | KVM_VCPUEVENT_VALID_SHADOW); + memset(&events->reserved, 0, sizeof(events->reserved)); } static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events) { if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING - | KVM_VCPUEVENT_VALID_SIPI_VECTOR)) + | KVM_VCPUEVENT_VALID_SIPI_VECTOR + | KVM_VCPUEVENT_VALID_SHADOW)) return -EINVAL; - vcpu_load(vcpu); - + process_nmi(vcpu); vcpu->arch.exception.pending = events->exception.injected; vcpu->arch.exception.nr = events->exception.nr; vcpu->arch.exception.has_error_code = events->exception.has_error_code; @@ -1936,19 +3007,144 @@ static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, vcpu->arch.interrupt.pending = events->interrupt.injected; vcpu->arch.interrupt.nr = events->interrupt.nr; vcpu->arch.interrupt.soft = events->interrupt.soft; - if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm)) - kvm_pic_clear_isr_ack(vcpu->kvm); + if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) + kvm_x86_ops->set_interrupt_shadow(vcpu, + events->interrupt.shadow); vcpu->arch.nmi_injected = events->nmi.injected; if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) vcpu->arch.nmi_pending = events->nmi.pending; kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); - if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR) - vcpu->arch.sipi_vector = events->sipi_vector; + if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && + kvm_vcpu_has_lapic(vcpu)) + vcpu->arch.apic->sipi_vector = events->sipi_vector; - vcpu_put(vcpu); + kvm_make_request(KVM_REQ_EVENT, vcpu); + + return 0; +} + +static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, + struct kvm_debugregs *dbgregs) +{ + unsigned long val; + + memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); + _kvm_get_dr(vcpu, 6, &val); + dbgregs->dr6 = val; + dbgregs->dr7 = vcpu->arch.dr7; + dbgregs->flags = 0; + memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); +} + +static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, + struct kvm_debugregs *dbgregs) +{ + if (dbgregs->flags) + return -EINVAL; + + memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); + vcpu->arch.dr6 = dbgregs->dr6; + kvm_update_dr6(vcpu); + vcpu->arch.dr7 = dbgregs->dr7; + kvm_update_dr7(vcpu); + + return 0; +} + +static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, + struct kvm_xsave *guest_xsave) +{ + if (cpu_has_xsave) { + memcpy(guest_xsave->region, + &vcpu->arch.guest_fpu.state->xsave, + vcpu->arch.guest_xstate_size); + *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &= + vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE; + } else { + memcpy(guest_xsave->region, + &vcpu->arch.guest_fpu.state->fxsave, + sizeof(struct i387_fxsave_struct)); + *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = + XSTATE_FPSSE; + } +} + +static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, + struct kvm_xsave *guest_xsave) +{ + u64 xstate_bv = + *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; + + if (cpu_has_xsave) { + /* + * Here we allow setting states that are not present in + * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility + * with old userspace. + */ + if (xstate_bv & ~kvm_supported_xcr0()) + return -EINVAL; + memcpy(&vcpu->arch.guest_fpu.state->xsave, + guest_xsave->region, vcpu->arch.guest_xstate_size); + } else { + if (xstate_bv & ~XSTATE_FPSSE) + return -EINVAL; + memcpy(&vcpu->arch.guest_fpu.state->fxsave, + guest_xsave->region, sizeof(struct i387_fxsave_struct)); + } + return 0; +} + +static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, + struct kvm_xcrs *guest_xcrs) +{ + if (!cpu_has_xsave) { + guest_xcrs->nr_xcrs = 0; + return; + } + + guest_xcrs->nr_xcrs = 1; + guest_xcrs->flags = 0; + guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; + guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; +} + +static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, + struct kvm_xcrs *guest_xcrs) +{ + int i, r = 0; + + if (!cpu_has_xsave) + return -EINVAL; + + if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) + return -EINVAL; + for (i = 0; i < guest_xcrs->nr_xcrs; i++) + /* Only support XCR0 currently */ + if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { + r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, + guest_xcrs->xcrs[i].value); + break; + } + if (r) + r = -EINVAL; + return r; +} + +/* + * kvm_set_guest_paused() indicates to the guest kernel that it has been + * stopped by the hypervisor. This function will be called from the host only. + * EINVAL is returned when the host attempts to set the flag for a guest that + * does not support pv clocks. + */ +static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) +{ + if (!vcpu->arch.pv_time_enabled) + return -EINVAL; + vcpu->arch.pvclock_set_guest_stopped_request = true; + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); return 0; } @@ -1958,23 +3154,29 @@ long kvm_arch_vcpu_ioctl(struct file *filp, struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; int r; - struct kvm_lapic_state *lapic = NULL; + union { + struct kvm_lapic_state *lapic; + struct kvm_xsave *xsave; + struct kvm_xcrs *xcrs; + void *buffer; + } u; + u.buffer = NULL; switch (ioctl) { case KVM_GET_LAPIC: { r = -EINVAL; if (!vcpu->arch.apic) goto out; - lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); + u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); r = -ENOMEM; - if (!lapic) + if (!u.lapic) goto out; - r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic); + r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); if (r) goto out; r = -EFAULT; - if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state))) + if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) goto out; r = 0; break; @@ -1983,17 +3185,11 @@ long kvm_arch_vcpu_ioctl(struct file *filp, r = -EINVAL; if (!vcpu->arch.apic) goto out; - lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); - r = -ENOMEM; - if (!lapic) - goto out; - r = -EFAULT; - if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state))) - goto out; - r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic); - if (r) - goto out; - r = 0; + u.lapic = memdup_user(argp, sizeof(*u.lapic)); + if (IS_ERR(u.lapic)) + return PTR_ERR(u.lapic); + + r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); break; } case KVM_INTERRUPT: { @@ -2003,16 +3199,10 @@ long kvm_arch_vcpu_ioctl(struct file *filp, if (copy_from_user(&irq, argp, sizeof irq)) goto out; r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); - if (r) - goto out; - r = 0; break; } case KVM_NMI: { r = kvm_vcpu_ioctl_nmi(vcpu); - if (r) - goto out; - r = 0; break; } case KVM_SET_CPUID: { @@ -2023,8 +3213,6 @@ long kvm_arch_vcpu_ioctl(struct file *filp, if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) goto out; r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); - if (r) - goto out; break; } case KVM_SET_CPUID2: { @@ -2036,8 +3224,6 @@ long kvm_arch_vcpu_ioctl(struct file *filp, goto out; r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, cpuid_arg->entries); - if (r) - goto out; break; } case KVM_GET_CPUID2: { @@ -2087,8 +3273,7 @@ long kvm_arch_vcpu_ioctl(struct file *filp, r = -EFAULT; if (copy_from_user(&va, argp, sizeof va)) goto out; - r = 0; - kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); + r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); break; } case KVM_X86_SETUP_MCE: { @@ -2130,20 +3315,118 @@ long kvm_arch_vcpu_ioctl(struct file *filp, r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); break; } + case KVM_GET_DEBUGREGS: { + struct kvm_debugregs dbgregs; + + kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); + + r = -EFAULT; + if (copy_to_user(argp, &dbgregs, + sizeof(struct kvm_debugregs))) + break; + r = 0; + break; + } + case KVM_SET_DEBUGREGS: { + struct kvm_debugregs dbgregs; + + r = -EFAULT; + if (copy_from_user(&dbgregs, argp, + sizeof(struct kvm_debugregs))) + break; + + r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); + break; + } + case KVM_GET_XSAVE: { + u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); + r = -ENOMEM; + if (!u.xsave) + break; + + kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); + + r = -EFAULT; + if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) + break; + r = 0; + break; + } + case KVM_SET_XSAVE: { + u.xsave = memdup_user(argp, sizeof(*u.xsave)); + if (IS_ERR(u.xsave)) + return PTR_ERR(u.xsave); + + r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); + break; + } + case KVM_GET_XCRS: { + u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); + r = -ENOMEM; + if (!u.xcrs) + break; + + kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); + + r = -EFAULT; + if (copy_to_user(argp, u.xcrs, + sizeof(struct kvm_xcrs))) + break; + r = 0; + break; + } + case KVM_SET_XCRS: { + u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); + if (IS_ERR(u.xcrs)) + return PTR_ERR(u.xcrs); + + r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); + break; + } + case KVM_SET_TSC_KHZ: { + u32 user_tsc_khz; + + r = -EINVAL; + user_tsc_khz = (u32)arg; + + if (user_tsc_khz >= kvm_max_guest_tsc_khz) + goto out; + + if (user_tsc_khz == 0) + user_tsc_khz = tsc_khz; + + kvm_set_tsc_khz(vcpu, user_tsc_khz); + + r = 0; + goto out; + } + case KVM_GET_TSC_KHZ: { + r = vcpu->arch.virtual_tsc_khz; + goto out; + } + case KVM_KVMCLOCK_CTRL: { + r = kvm_set_guest_paused(vcpu); + goto out; + } default: r = -EINVAL; } out: - kfree(lapic); + kfree(u.buffer); return r; } +int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) +{ + return VM_FAULT_SIGBUS; +} + static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) { int ret; if (addr > (unsigned int)(-3 * PAGE_SIZE)) - return -1; + return -EINVAL; ret = kvm_x86_ops->set_tss_addr(kvm, addr); return ret; } @@ -2161,84 +3444,18 @@ static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) return -EINVAL; - down_write(&kvm->slots_lock); - spin_lock(&kvm->mmu_lock); + mutex_lock(&kvm->slots_lock); kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; - spin_unlock(&kvm->mmu_lock); - up_write(&kvm->slots_lock); + mutex_unlock(&kvm->slots_lock); return 0; } static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) { - return kvm->arch.n_alloc_mmu_pages; -} - -gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn) -{ - int i; - struct kvm_mem_alias *alias; - - for (i = 0; i < kvm->arch.naliases; ++i) { - alias = &kvm->arch.aliases[i]; - if (gfn >= alias->base_gfn - && gfn < alias->base_gfn + alias->npages) - return alias->target_gfn + gfn - alias->base_gfn; - } - return gfn; -} - -/* - * Set a new alias region. Aliases map a portion of physical memory into - * another portion. This is useful for memory windows, for example the PC - * VGA region. - */ -static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm, - struct kvm_memory_alias *alias) -{ - int r, n; - struct kvm_mem_alias *p; - - r = -EINVAL; - /* General sanity checks */ - if (alias->memory_size & (PAGE_SIZE - 1)) - goto out; - if (alias->guest_phys_addr & (PAGE_SIZE - 1)) - goto out; - if (alias->slot >= KVM_ALIAS_SLOTS) - goto out; - if (alias->guest_phys_addr + alias->memory_size - < alias->guest_phys_addr) - goto out; - if (alias->target_phys_addr + alias->memory_size - < alias->target_phys_addr) - goto out; - - down_write(&kvm->slots_lock); - spin_lock(&kvm->mmu_lock); - - p = &kvm->arch.aliases[alias->slot]; - p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT; - p->npages = alias->memory_size >> PAGE_SHIFT; - p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT; - - for (n = KVM_ALIAS_SLOTS; n > 0; --n) - if (kvm->arch.aliases[n - 1].npages) - break; - kvm->arch.naliases = n; - - spin_unlock(&kvm->mmu_lock); - kvm_mmu_zap_all(kvm); - - up_write(&kvm->slots_lock); - - return 0; - -out: - return r; + return kvm->arch.n_max_mmu_pages; } static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) @@ -2328,6 +3545,7 @@ static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) sizeof(ps->channels)); ps->flags = kvm->arch.vpit->pit_state.flags; mutex_unlock(&kvm->arch.vpit->pit_state.lock); + memset(&ps->reserved, 0, sizeof(ps->reserved)); return r; } @@ -2354,43 +3572,109 @@ static int kvm_vm_ioctl_reinject(struct kvm *kvm, if (!kvm->arch.vpit) return -ENXIO; mutex_lock(&kvm->arch.vpit->pit_state.lock); - kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject; + kvm->arch.vpit->pit_state.reinject = control->pit_reinject; mutex_unlock(&kvm->arch.vpit->pit_state.lock); return 0; } -/* - * Get (and clear) the dirty memory log for a memory slot. +/** + * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot + * @kvm: kvm instance + * @log: slot id and address to which we copy the log + * + * We need to keep it in mind that VCPU threads can write to the bitmap + * concurrently. So, to avoid losing data, we keep the following order for + * each bit: + * + * 1. Take a snapshot of the bit and clear it if needed. + * 2. Write protect the corresponding page. + * 3. Flush TLB's if needed. + * 4. Copy the snapshot to the userspace. + * + * Between 2 and 3, the guest may write to the page using the remaining TLB + * entry. This is not a problem because the page will be reported dirty at + * step 4 using the snapshot taken before and step 3 ensures that successive + * writes will be logged for the next call. */ -int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, - struct kvm_dirty_log *log) +int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { int r; - int n; struct kvm_memory_slot *memslot; - int is_dirty = 0; + unsigned long n, i; + unsigned long *dirty_bitmap; + unsigned long *dirty_bitmap_buffer; + bool is_dirty = false; - down_write(&kvm->slots_lock); + mutex_lock(&kvm->slots_lock); - r = kvm_get_dirty_log(kvm, log, &is_dirty); - if (r) + r = -EINVAL; + if (log->slot >= KVM_USER_MEM_SLOTS) + goto out; + + memslot = id_to_memslot(kvm->memslots, log->slot); + + dirty_bitmap = memslot->dirty_bitmap; + r = -ENOENT; + if (!dirty_bitmap) goto out; - /* If nothing is dirty, don't bother messing with page tables. */ - if (is_dirty) { - spin_lock(&kvm->mmu_lock); - kvm_mmu_slot_remove_write_access(kvm, log->slot); - spin_unlock(&kvm->mmu_lock); - memslot = &kvm->memslots[log->slot]; - n = ALIGN(memslot->npages, BITS_PER_LONG) / 8; - memset(memslot->dirty_bitmap, 0, n); + n = kvm_dirty_bitmap_bytes(memslot); + + dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); + memset(dirty_bitmap_buffer, 0, n); + + spin_lock(&kvm->mmu_lock); + + for (i = 0; i < n / sizeof(long); i++) { + unsigned long mask; + gfn_t offset; + + if (!dirty_bitmap[i]) + continue; + + is_dirty = true; + + mask = xchg(&dirty_bitmap[i], 0); + dirty_bitmap_buffer[i] = mask; + + offset = i * BITS_PER_LONG; + kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); } + + spin_unlock(&kvm->mmu_lock); + + /* See the comments in kvm_mmu_slot_remove_write_access(). */ + lockdep_assert_held(&kvm->slots_lock); + + /* + * All the TLBs can be flushed out of mmu lock, see the comments in + * kvm_mmu_slot_remove_write_access(). + */ + if (is_dirty) + kvm_flush_remote_tlbs(kvm); + + r = -EFAULT; + if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) + goto out; + r = 0; out: - up_write(&kvm->slots_lock); + mutex_unlock(&kvm->slots_lock); return r; } +int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, + bool line_status) +{ + if (!irqchip_in_kernel(kvm)) + return -ENXIO; + + irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, + irq_event->irq, irq_event->level, + line_status); + return 0; +} + long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { @@ -2405,15 +3689,12 @@ long kvm_arch_vm_ioctl(struct file *filp, union { struct kvm_pit_state ps; struct kvm_pit_state2 ps2; - struct kvm_memory_alias alias; struct kvm_pit_config pit_config; } u; switch (ioctl) { case KVM_SET_TSS_ADDR: r = kvm_vm_ioctl_set_tss_addr(kvm, arg); - if (r < 0) - goto out; break; case KVM_SET_IDENTITY_MAP_ADDR: { u64 ident_addr; @@ -2422,42 +3703,14 @@ long kvm_arch_vm_ioctl(struct file *filp, if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) goto out; r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); - if (r < 0) - goto out; - break; - } - case KVM_SET_MEMORY_REGION: { - struct kvm_memory_region kvm_mem; - struct kvm_userspace_memory_region kvm_userspace_mem; - - r = -EFAULT; - if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem)) - goto out; - kvm_userspace_mem.slot = kvm_mem.slot; - kvm_userspace_mem.flags = kvm_mem.flags; - kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr; - kvm_userspace_mem.memory_size = kvm_mem.memory_size; - r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0); - if (r) - goto out; break; } case KVM_SET_NR_MMU_PAGES: r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); - if (r) - goto out; break; case KVM_GET_NR_MMU_PAGES: r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); break; - case KVM_SET_MEMORY_ALIAS: - r = -EFAULT; - if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias))) - goto out; - r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias); - if (r) - goto out; - break; case KVM_CREATE_IRQCHIP: { struct kvm_pic *vpic; @@ -2465,11 +3718,22 @@ long kvm_arch_vm_ioctl(struct file *filp, r = -EEXIST; if (kvm->arch.vpic) goto create_irqchip_unlock; + r = -EINVAL; + if (atomic_read(&kvm->online_vcpus)) + goto create_irqchip_unlock; r = -ENOMEM; vpic = kvm_create_pic(kvm); if (vpic) { r = kvm_ioapic_init(kvm); if (r) { + mutex_lock(&kvm->slots_lock); + kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, + &vpic->dev_master); + kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, + &vpic->dev_slave); + kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, + &vpic->dev_eclr); + mutex_unlock(&kvm->slots_lock); kfree(vpic); goto create_irqchip_unlock; } @@ -2480,12 +3744,12 @@ long kvm_arch_vm_ioctl(struct file *filp, smp_wmb(); r = kvm_setup_default_irq_routing(kvm); if (r) { + mutex_lock(&kvm->slots_lock); mutex_lock(&kvm->irq_lock); - kfree(kvm->arch.vpic); - kfree(kvm->arch.vioapic); - kvm->arch.vpic = NULL; - kvm->arch.vioapic = NULL; + kvm_ioapic_destroy(kvm); + kvm_destroy_pic(kvm); mutex_unlock(&kvm->irq_lock); + mutex_unlock(&kvm->slots_lock); } create_irqchip_unlock: mutex_unlock(&kvm->lock); @@ -2500,7 +3764,7 @@ long kvm_arch_vm_ioctl(struct file *filp, sizeof(struct kvm_pit_config))) goto out; create_pit: - down_write(&kvm->slots_lock); + mutex_lock(&kvm->slots_lock); r = -EEXIST; if (kvm->arch.vpit) goto create_pit_unlock; @@ -2509,39 +3773,18 @@ long kvm_arch_vm_ioctl(struct file *filp, if (kvm->arch.vpit) r = 0; create_pit_unlock: - up_write(&kvm->slots_lock); - break; - case KVM_IRQ_LINE_STATUS: - case KVM_IRQ_LINE: { - struct kvm_irq_level irq_event; - - r = -EFAULT; - if (copy_from_user(&irq_event, argp, sizeof irq_event)) - goto out; - if (irqchip_in_kernel(kvm)) { - __s32 status; - status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, - irq_event.irq, irq_event.level); - if (ioctl == KVM_IRQ_LINE_STATUS) { - irq_event.status = status; - if (copy_to_user(argp, &irq_event, - sizeof irq_event)) - goto out; - } - r = 0; - } + mutex_unlock(&kvm->slots_lock); break; - } case KVM_GET_IRQCHIP: { /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ - struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL); + struct kvm_irqchip *chip; - r = -ENOMEM; - if (!chip) + chip = memdup_user(argp, sizeof(*chip)); + if (IS_ERR(chip)) { + r = PTR_ERR(chip); goto out; - r = -EFAULT; - if (copy_from_user(chip, argp, sizeof *chip)) - goto get_irqchip_out; + } + r = -ENXIO; if (!irqchip_in_kernel(kvm)) goto get_irqchip_out; @@ -2554,20 +3797,18 @@ long kvm_arch_vm_ioctl(struct file *filp, r = 0; get_irqchip_out: kfree(chip); - if (r) - goto out; break; } case KVM_SET_IRQCHIP: { /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ - struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL); + struct kvm_irqchip *chip; - r = -ENOMEM; - if (!chip) + chip = memdup_user(argp, sizeof(*chip)); + if (IS_ERR(chip)) { + r = PTR_ERR(chip); goto out; - r = -EFAULT; - if (copy_from_user(chip, argp, sizeof *chip)) - goto set_irqchip_out; + } + r = -ENXIO; if (!irqchip_in_kernel(kvm)) goto set_irqchip_out; @@ -2577,8 +3818,6 @@ long kvm_arch_vm_ioctl(struct file *filp, r = 0; set_irqchip_out: kfree(chip); - if (r) - goto out; break; } case KVM_GET_PIT: { @@ -2605,9 +3844,6 @@ long kvm_arch_vm_ioctl(struct file *filp, if (!kvm->arch.vpit) goto out; r = kvm_vm_ioctl_set_pit(kvm, &u.ps); - if (r) - goto out; - r = 0; break; } case KVM_GET_PIT2: { @@ -2631,9 +3867,6 @@ long kvm_arch_vm_ioctl(struct file *filp, if (!kvm->arch.vpit) goto out; r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); - if (r) - goto out; - r = 0; break; } case KVM_REINJECT_CONTROL: { @@ -2642,9 +3875,6 @@ long kvm_arch_vm_ioctl(struct file *filp, if (copy_from_user(&control, argp, sizeof(control))) goto out; r = kvm_vm_ioctl_reinject(kvm, &control); - if (r) - goto out; - r = 0; break; } case KVM_XEN_HVM_CONFIG: { @@ -2659,7 +3889,6 @@ long kvm_arch_vm_ioctl(struct file *filp, break; } case KVM_SET_CLOCK: { - struct timespec now; struct kvm_clock_data user_ns; u64 now_ns; s64 delta; @@ -2673,21 +3902,24 @@ long kvm_arch_vm_ioctl(struct file *filp, goto out; r = 0; - ktime_get_ts(&now); - now_ns = timespec_to_ns(&now); + local_irq_disable(); + now_ns = get_kernel_ns(); delta = user_ns.clock - now_ns; + local_irq_enable(); kvm->arch.kvmclock_offset = delta; + kvm_gen_update_masterclock(kvm); break; } case KVM_GET_CLOCK: { - struct timespec now; struct kvm_clock_data user_ns; u64 now_ns; - ktime_get_ts(&now); - now_ns = timespec_to_ns(&now); + local_irq_disable(); + now_ns = get_kernel_ns(); user_ns.clock = kvm->arch.kvmclock_offset + now_ns; + local_irq_enable(); user_ns.flags = 0; + memset(&user_ns.pad, 0, sizeof(user_ns.pad)); r = -EFAULT; if (copy_to_user(argp, &user_ns, sizeof(user_ns))) @@ -2712,6 +3944,23 @@ static void kvm_init_msr_list(void) for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) continue; + + /* + * Even MSRs that are valid in the host may not be exposed + * to the guests in some cases. We could work around this + * in VMX with the generic MSR save/load machinery, but it + * is not really worthwhile since it will really only + * happen with nested virtualization. + */ + switch (msrs_to_save[i]) { + case MSR_IA32_BNDCFGS: + if (!kvm_x86_ops->mpx_supported()) + continue; + break; + default: + break; + } + if (j < i) msrs_to_save[j] = msrs_to_save[i]; j++; @@ -2722,41 +3971,120 @@ static void kvm_init_msr_list(void) static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, const void *v) { - if (vcpu->arch.apic && - !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v)) - return 0; + int handled = 0; + int n; + + do { + n = min(len, 8); + if (!(vcpu->arch.apic && + !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) + && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) + break; + handled += n; + addr += n; + len -= n; + v += n; + } while (len); - return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v); + return handled; } static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) { - if (vcpu->arch.apic && - !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v)) - return 0; + int handled = 0; + int n; + + do { + n = min(len, 8); + if (!(vcpu->arch.apic && + !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) + && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) + break; + trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); + handled += n; + addr += n; + len -= n; + v += n; + } while (len); + + return handled; +} + +static void kvm_set_segment(struct kvm_vcpu *vcpu, + struct kvm_segment *var, int seg) +{ + kvm_x86_ops->set_segment(vcpu, var, seg); +} + +void kvm_get_segment(struct kvm_vcpu *vcpu, + struct kvm_segment *var, int seg) +{ + kvm_x86_ops->get_segment(vcpu, var, seg); +} + +gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) +{ + gpa_t t_gpa; + struct x86_exception exception; + + BUG_ON(!mmu_is_nested(vcpu)); + + /* NPT walks are always user-walks */ + access |= PFERR_USER_MASK; + t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); + + return t_gpa; +} - return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v); +gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, + struct x86_exception *exception) +{ + u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; + return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); } -static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes, - struct kvm_vcpu *vcpu) + gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, + struct x86_exception *exception) +{ + u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; + access |= PFERR_FETCH_MASK; + return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); +} + +gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, + struct x86_exception *exception) +{ + u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; + access |= PFERR_WRITE_MASK; + return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); +} + +/* uses this to access any guest's mapped memory without checking CPL */ +gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, + struct x86_exception *exception) +{ + return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); +} + +static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, + struct kvm_vcpu *vcpu, u32 access, + struct x86_exception *exception) { void *data = val; int r = X86EMUL_CONTINUE; while (bytes) { - gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); + gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, + exception); unsigned offset = addr & (PAGE_SIZE-1); unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); int ret; - if (gpa == UNMAPPED_GVA) { - r = X86EMUL_PROPAGATE_FAULT; - goto out; - } + if (gpa == UNMAPPED_GVA) + return X86EMUL_PROPAGATE_FAULT; ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); if (ret < 0) { - r = X86EMUL_UNHANDLEABLE; + r = X86EMUL_IO_NEEDED; goto out; } @@ -2768,25 +4096,61 @@ out: return r; } -static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes, - struct kvm_vcpu *vcpu) +/* used for instruction fetching */ +static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, + gva_t addr, void *val, unsigned int bytes, + struct x86_exception *exception) { + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; + + return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, + access | PFERR_FETCH_MASK, + exception); +} + +int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, + gva_t addr, void *val, unsigned int bytes, + struct x86_exception *exception) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; + + return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, + exception); +} +EXPORT_SYMBOL_GPL(kvm_read_guest_virt); + +static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, + gva_t addr, void *val, unsigned int bytes, + struct x86_exception *exception) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); +} + +int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, + gva_t addr, void *val, + unsigned int bytes, + struct x86_exception *exception) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); void *data = val; int r = X86EMUL_CONTINUE; while (bytes) { - gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); + gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, + PFERR_WRITE_MASK, + exception); unsigned offset = addr & (PAGE_SIZE-1); unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); int ret; - if (gpa == UNMAPPED_GVA) { - r = X86EMUL_PROPAGATE_FAULT; - goto out; - } + if (gpa == UNMAPPED_GVA) + return X86EMUL_PROPAGATE_FAULT; ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); if (ret < 0) { - r = X86EMUL_UNHANDLEABLE; + r = X86EMUL_IO_NEEDED; goto out; } @@ -2797,162 +4161,384 @@ static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes, out: return r; } +EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); - -static int emulator_read_emulated(unsigned long addr, - void *val, - unsigned int bytes, - struct kvm_vcpu *vcpu) +static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, + gpa_t *gpa, struct x86_exception *exception, + bool write) { - gpa_t gpa; + u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) + | (write ? PFERR_WRITE_MASK : 0); - if (vcpu->mmio_read_completed) { - memcpy(val, vcpu->mmio_data, bytes); - trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, - vcpu->mmio_phys_addr, *(u64 *)val); - vcpu->mmio_read_completed = 0; - return X86EMUL_CONTINUE; + if (vcpu_match_mmio_gva(vcpu, gva) + && !permission_fault(vcpu, vcpu->arch.walk_mmu, + vcpu->arch.access, access)) { + *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | + (gva & (PAGE_SIZE - 1)); + trace_vcpu_match_mmio(gva, *gpa, write, false); + return 1; } - gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); + *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); - /* For APIC access vmexit */ - if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) - goto mmio; + if (*gpa == UNMAPPED_GVA) + return -1; - if (kvm_read_guest_virt(addr, val, bytes, vcpu) - == X86EMUL_CONTINUE) - return X86EMUL_CONTINUE; - if (gpa == UNMAPPED_GVA) - return X86EMUL_PROPAGATE_FAULT; + /* For APIC access vmexit */ + if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) + return 1; -mmio: - /* - * Is this MMIO handled locally? - */ - if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) { - trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val); - return X86EMUL_CONTINUE; + if (vcpu_match_mmio_gpa(vcpu, *gpa)) { + trace_vcpu_match_mmio(gva, *gpa, write, true); + return 1; } - trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); - - vcpu->mmio_needed = 1; - vcpu->mmio_phys_addr = gpa; - vcpu->mmio_size = bytes; - vcpu->mmio_is_write = 0; - - return X86EMUL_UNHANDLEABLE; + return 0; } int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, - const void *val, int bytes) + const void *val, int bytes) { int ret; ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); if (ret < 0) return 0; - kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1); + kvm_mmu_pte_write(vcpu, gpa, val, bytes); return 1; } -static int emulator_write_emulated_onepage(unsigned long addr, - const void *val, - unsigned int bytes, - struct kvm_vcpu *vcpu) +struct read_write_emulator_ops { + int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, + int bytes); + int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, + void *val, int bytes); + int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, + int bytes, void *val); + int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, + void *val, int bytes); + bool write; +}; + +static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) +{ + if (vcpu->mmio_read_completed) { + trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, + vcpu->mmio_fragments[0].gpa, *(u64 *)val); + vcpu->mmio_read_completed = 0; + return 1; + } + + return 0; +} + +static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, + void *val, int bytes) +{ + return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); +} + +static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, + void *val, int bytes) +{ + return emulator_write_phys(vcpu, gpa, val, bytes); +} + +static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) +{ + trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); + return vcpu_mmio_write(vcpu, gpa, bytes, val); +} + +static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, + void *val, int bytes) +{ + trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); + return X86EMUL_IO_NEEDED; +} + +static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, + void *val, int bytes) { - gpa_t gpa; + struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; - gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); + memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); + return X86EMUL_CONTINUE; +} + +static const struct read_write_emulator_ops read_emultor = { + .read_write_prepare = read_prepare, + .read_write_emulate = read_emulate, + .read_write_mmio = vcpu_mmio_read, + .read_write_exit_mmio = read_exit_mmio, +}; - if (gpa == UNMAPPED_GVA) { - kvm_inject_page_fault(vcpu, addr, 2); +static const struct read_write_emulator_ops write_emultor = { + .read_write_emulate = write_emulate, + .read_write_mmio = write_mmio, + .read_write_exit_mmio = write_exit_mmio, + .write = true, +}; + +static int emulator_read_write_onepage(unsigned long addr, void *val, + unsigned int bytes, + struct x86_exception *exception, + struct kvm_vcpu *vcpu, + const struct read_write_emulator_ops *ops) +{ + gpa_t gpa; + int handled, ret; + bool write = ops->write; + struct kvm_mmio_fragment *frag; + + ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); + + if (ret < 0) return X86EMUL_PROPAGATE_FAULT; - } /* For APIC access vmexit */ - if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) + if (ret) goto mmio; - if (emulator_write_phys(vcpu, gpa, val, bytes)) + if (ops->read_write_emulate(vcpu, gpa, val, bytes)) return X86EMUL_CONTINUE; mmio: - trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); /* * Is this MMIO handled locally? */ - if (!vcpu_mmio_write(vcpu, gpa, bytes, val)) + handled = ops->read_write_mmio(vcpu, gpa, bytes, val); + if (handled == bytes) return X86EMUL_CONTINUE; - vcpu->mmio_needed = 1; - vcpu->mmio_phys_addr = gpa; - vcpu->mmio_size = bytes; - vcpu->mmio_is_write = 1; - memcpy(vcpu->mmio_data, val, bytes); + gpa += handled; + bytes -= handled; + val += handled; + WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); + frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; + frag->gpa = gpa; + frag->data = val; + frag->len = bytes; return X86EMUL_CONTINUE; } -int emulator_write_emulated(unsigned long addr, - const void *val, - unsigned int bytes, - struct kvm_vcpu *vcpu) +int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, + void *val, unsigned int bytes, + struct x86_exception *exception, + const struct read_write_emulator_ops *ops) { + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + gpa_t gpa; + int rc; + + if (ops->read_write_prepare && + ops->read_write_prepare(vcpu, val, bytes)) + return X86EMUL_CONTINUE; + + vcpu->mmio_nr_fragments = 0; + /* Crossing a page boundary? */ if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { - int rc, now; + int now; now = -addr & ~PAGE_MASK; - rc = emulator_write_emulated_onepage(addr, val, now, vcpu); + rc = emulator_read_write_onepage(addr, val, now, exception, + vcpu, ops); + if (rc != X86EMUL_CONTINUE) return rc; addr += now; val += now; bytes -= now; } - return emulator_write_emulated_onepage(addr, val, bytes, vcpu); + + rc = emulator_read_write_onepage(addr, val, bytes, exception, + vcpu, ops); + if (rc != X86EMUL_CONTINUE) + return rc; + + if (!vcpu->mmio_nr_fragments) + return rc; + + gpa = vcpu->mmio_fragments[0].gpa; + + vcpu->mmio_needed = 1; + vcpu->mmio_cur_fragment = 0; + + vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); + vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; + vcpu->run->exit_reason = KVM_EXIT_MMIO; + vcpu->run->mmio.phys_addr = gpa; + + return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); +} + +static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, + unsigned long addr, + void *val, + unsigned int bytes, + struct x86_exception *exception) +{ + return emulator_read_write(ctxt, addr, val, bytes, + exception, &read_emultor); } -EXPORT_SYMBOL_GPL(emulator_write_emulated); -static int emulator_cmpxchg_emulated(unsigned long addr, +int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, + unsigned long addr, + const void *val, + unsigned int bytes, + struct x86_exception *exception) +{ + return emulator_read_write(ctxt, addr, (void *)val, bytes, + exception, &write_emultor); +} + +#define CMPXCHG_TYPE(t, ptr, old, new) \ + (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) + +#ifdef CONFIG_X86_64 +# define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) +#else +# define CMPXCHG64(ptr, old, new) \ + (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) +#endif + +static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, + unsigned long addr, const void *old, const void *new, unsigned int bytes, - struct kvm_vcpu *vcpu) + struct x86_exception *exception) { - printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); -#ifndef CONFIG_X86_64 - /* guests cmpxchg8b have to be emulated atomically */ - if (bytes == 8) { - gpa_t gpa; - struct page *page; - char *kaddr; - u64 val; + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + gpa_t gpa; + struct page *page; + char *kaddr; + bool exchanged; - gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); + /* guests cmpxchg8b have to be emulated atomically */ + if (bytes > 8 || (bytes & (bytes - 1))) + goto emul_write; - if (gpa == UNMAPPED_GVA || - (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) - goto emul_write; + gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); - if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) - goto emul_write; + if (gpa == UNMAPPED_GVA || + (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) + goto emul_write; - val = *(u64 *)new; + if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) + goto emul_write; - page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); + page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); + if (is_error_page(page)) + goto emul_write; - kaddr = kmap_atomic(page, KM_USER0); - set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val); - kunmap_atomic(kaddr, KM_USER0); - kvm_release_page_dirty(page); + kaddr = kmap_atomic(page); + kaddr += offset_in_page(gpa); + switch (bytes) { + case 1: + exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); + break; + case 2: + exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); + break; + case 4: + exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); + break; + case 8: + exchanged = CMPXCHG64(kaddr, old, new); + break; + default: + BUG(); } + kunmap_atomic(kaddr); + kvm_release_page_dirty(page); + + if (!exchanged) + return X86EMUL_CMPXCHG_FAILED; + + mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT); + kvm_mmu_pte_write(vcpu, gpa, new, bytes); + + return X86EMUL_CONTINUE; + emul_write: -#endif + printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); + + return emulator_write_emulated(ctxt, addr, new, bytes, exception); +} + +static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) +{ + /* TODO: String I/O for in kernel device */ + int r; + + if (vcpu->arch.pio.in) + r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, + vcpu->arch.pio.size, pd); + else + r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, + vcpu->arch.pio.port, vcpu->arch.pio.size, + pd); + return r; +} + +static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, + unsigned short port, void *val, + unsigned int count, bool in) +{ + vcpu->arch.pio.port = port; + vcpu->arch.pio.in = in; + vcpu->arch.pio.count = count; + vcpu->arch.pio.size = size; + + if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { + vcpu->arch.pio.count = 0; + return 1; + } + + vcpu->run->exit_reason = KVM_EXIT_IO; + vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; + vcpu->run->io.size = size; + vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; + vcpu->run->io.count = count; + vcpu->run->io.port = port; + + return 0; +} + +static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, + int size, unsigned short port, void *val, + unsigned int count) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + int ret; + + if (vcpu->arch.pio.count) + goto data_avail; + + ret = emulator_pio_in_out(vcpu, size, port, val, count, true); + if (ret) { +data_avail: + memcpy(val, vcpu->arch.pio_data, size * count); + trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); + vcpu->arch.pio.count = 0; + return 1; + } + + return 0; +} + +static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, + int size, unsigned short port, + const void *val, unsigned int count) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); - return emulator_write_emulated(addr, new, bytes, vcpu); + memcpy(vcpu->arch.pio_data, val, size * count); + trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); + return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); } static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) @@ -2960,391 +4546,767 @@ static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) return kvm_x86_ops->get_segment_base(vcpu, seg); } -int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address) +static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) { - kvm_mmu_invlpg(vcpu, address); - return X86EMUL_CONTINUE; + kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); } -int emulate_clts(struct kvm_vcpu *vcpu) +int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) { - kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS); + if (!need_emulate_wbinvd(vcpu)) + return X86EMUL_CONTINUE; + + if (kvm_x86_ops->has_wbinvd_exit()) { + int cpu = get_cpu(); + + cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); + smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, + wbinvd_ipi, NULL, 1); + put_cpu(); + cpumask_clear(vcpu->arch.wbinvd_dirty_mask); + } else + wbinvd(); return X86EMUL_CONTINUE; } +EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); + +static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) +{ + kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); +} int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) { - struct kvm_vcpu *vcpu = ctxt->vcpu; + return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); +} - switch (dr) { - case 0 ... 3: - *dest = kvm_x86_ops->get_dr(vcpu, dr); - return X86EMUL_CONTINUE; +int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) +{ + + return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); +} + +static u64 mk_cr_64(u64 curr_cr, u32 new_val) +{ + return (curr_cr & ~((1ULL << 32) - 1)) | new_val; +} + +static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + unsigned long value; + + switch (cr) { + case 0: + value = kvm_read_cr0(vcpu); + break; + case 2: + value = vcpu->arch.cr2; + break; + case 3: + value = kvm_read_cr3(vcpu); + break; + case 4: + value = kvm_read_cr4(vcpu); + break; + case 8: + value = kvm_get_cr8(vcpu); + break; default: - pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr); - return X86EMUL_UNHANDLEABLE; + kvm_err("%s: unexpected cr %u\n", __func__, cr); + return 0; } + + return value; } -int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) +static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) { - unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U; - int exception; + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + int res = 0; - kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception); - if (exception) { - /* FIXME: better handling */ - return X86EMUL_UNHANDLEABLE; + switch (cr) { + case 0: + res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); + break; + case 2: + vcpu->arch.cr2 = val; + break; + case 3: + res = kvm_set_cr3(vcpu, val); + break; + case 4: + res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); + break; + case 8: + res = kvm_set_cr8(vcpu, val); + break; + default: + kvm_err("%s: unexpected cr %u\n", __func__, cr); + res = -1; } - return X86EMUL_CONTINUE; + + return res; } -void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context) +static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) { - u8 opcodes[4]; - unsigned long rip = kvm_rip_read(vcpu); - unsigned long rip_linear; - - if (!printk_ratelimit()) - return; + return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); +} - rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS); +static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) +{ + kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); +} - kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu); +static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) +{ + kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); +} - printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n", - context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]); +static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) +{ + kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); } -EXPORT_SYMBOL_GPL(kvm_report_emulation_failure); -static struct x86_emulate_ops emulate_ops = { - .read_std = kvm_read_guest_virt, - .read_emulated = emulator_read_emulated, - .write_emulated = emulator_write_emulated, - .cmpxchg_emulated = emulator_cmpxchg_emulated, -}; +static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) +{ + kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); +} -static void cache_all_regs(struct kvm_vcpu *vcpu) +static unsigned long emulator_get_cached_segment_base( + struct x86_emulate_ctxt *ctxt, int seg) { - kvm_register_read(vcpu, VCPU_REGS_RAX); - kvm_register_read(vcpu, VCPU_REGS_RSP); - kvm_register_read(vcpu, VCPU_REGS_RIP); - vcpu->arch.regs_dirty = ~0; + return get_segment_base(emul_to_vcpu(ctxt), seg); } -int emulate_instruction(struct kvm_vcpu *vcpu, - unsigned long cr2, - u16 error_code, - int emulation_type) +static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, + struct desc_struct *desc, u32 *base3, + int seg) { - int r, shadow_mask; - struct decode_cache *c; - struct kvm_run *run = vcpu->run; + struct kvm_segment var; - kvm_clear_exception_queue(vcpu); - vcpu->arch.mmio_fault_cr2 = cr2; - /* - * TODO: fix emulate.c to use guest_read/write_register - * instead of direct ->regs accesses, can save hundred cycles - * on Intel for instructions that don't read/change RSP, for - * for example. - */ - cache_all_regs(vcpu); + kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); + *selector = var.selector; - vcpu->mmio_is_write = 0; - vcpu->arch.pio.string = 0; + if (var.unusable) { + memset(desc, 0, sizeof(*desc)); + return false; + } - if (!(emulation_type & EMULTYPE_NO_DECODE)) { - int cs_db, cs_l; - kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); - - vcpu->arch.emulate_ctxt.vcpu = vcpu; - vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu); - vcpu->arch.emulate_ctxt.mode = - (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM) - ? X86EMUL_MODE_REAL : cs_l - ? X86EMUL_MODE_PROT64 : cs_db - ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; - - r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops); - - /* Only allow emulation of specific instructions on #UD - * (namely VMMCALL, sysenter, sysexit, syscall)*/ - c = &vcpu->arch.emulate_ctxt.decode; - if (emulation_type & EMULTYPE_TRAP_UD) { - if (!c->twobyte) - return EMULATE_FAIL; - switch (c->b) { - case 0x01: /* VMMCALL */ - if (c->modrm_mod != 3 || c->modrm_rm != 1) - return EMULATE_FAIL; - break; - case 0x34: /* sysenter */ - case 0x35: /* sysexit */ - if (c->modrm_mod != 0 || c->modrm_rm != 0) - return EMULATE_FAIL; - break; - case 0x05: /* syscall */ - if (c->modrm_mod != 0 || c->modrm_rm != 0) - return EMULATE_FAIL; - break; - default: - return EMULATE_FAIL; - } + if (var.g) + var.limit >>= 12; + set_desc_limit(desc, var.limit); + set_desc_base(desc, (unsigned long)var.base); +#ifdef CONFIG_X86_64 + if (base3) + *base3 = var.base >> 32; +#endif + desc->type = var.type; + desc->s = var.s; + desc->dpl = var.dpl; + desc->p = var.present; + desc->avl = var.avl; + desc->l = var.l; + desc->d = var.db; + desc->g = var.g; - if (!(c->modrm_reg == 0 || c->modrm_reg == 3)) - return EMULATE_FAIL; - } + return true; +} - ++vcpu->stat.insn_emulation; - if (r) { - ++vcpu->stat.insn_emulation_fail; - if (kvm_mmu_unprotect_page_virt(vcpu, cr2)) - return EMULATE_DONE; - return EMULATE_FAIL; - } - } +static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, + struct desc_struct *desc, u32 base3, + int seg) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + struct kvm_segment var; - if (emulation_type & EMULTYPE_SKIP) { - kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip); - return EMULATE_DONE; - } + var.selector = selector; + var.base = get_desc_base(desc); +#ifdef CONFIG_X86_64 + var.base |= ((u64)base3) << 32; +#endif + var.limit = get_desc_limit(desc); + if (desc->g) + var.limit = (var.limit << 12) | 0xfff; + var.type = desc->type; + var.present = desc->p; + var.dpl = desc->dpl; + var.db = desc->d; + var.s = desc->s; + var.l = desc->l; + var.g = desc->g; + var.avl = desc->avl; + var.present = desc->p; + var.unusable = !var.present; + var.padding = 0; + + kvm_set_segment(vcpu, &var, seg); + return; +} - r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops); - shadow_mask = vcpu->arch.emulate_ctxt.interruptibility; +static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, + u32 msr_index, u64 *pdata) +{ + return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); +} - if (r == 0) - kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask); +static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, + u32 msr_index, u64 data) +{ + struct msr_data msr; - if (vcpu->arch.pio.string) - return EMULATE_DO_MMIO; + msr.data = data; + msr.index = msr_index; + msr.host_initiated = false; + return kvm_set_msr(emul_to_vcpu(ctxt), &msr); +} - if ((r || vcpu->mmio_is_write) && run) { - run->exit_reason = KVM_EXIT_MMIO; - run->mmio.phys_addr = vcpu->mmio_phys_addr; - memcpy(run->mmio.data, vcpu->mmio_data, 8); - run->mmio.len = vcpu->mmio_size; - run->mmio.is_write = vcpu->mmio_is_write; - } +static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, + u32 pmc, u64 *pdata) +{ + return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); +} - if (r) { - if (kvm_mmu_unprotect_page_virt(vcpu, cr2)) - return EMULATE_DONE; - if (!vcpu->mmio_needed) { - kvm_report_emulation_failure(vcpu, "mmio"); - return EMULATE_FAIL; - } - return EMULATE_DO_MMIO; - } +static void emulator_halt(struct x86_emulate_ctxt *ctxt) +{ + emul_to_vcpu(ctxt)->arch.halt_request = 1; +} - kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags); +static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) +{ + preempt_disable(); + kvm_load_guest_fpu(emul_to_vcpu(ctxt)); + /* + * CR0.TS may reference the host fpu state, not the guest fpu state, + * so it may be clear at this point. + */ + clts(); +} - if (vcpu->mmio_is_write) { - vcpu->mmio_needed = 0; - return EMULATE_DO_MMIO; - } +static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) +{ + preempt_enable(); +} - return EMULATE_DONE; +static int emulator_intercept(struct x86_emulate_ctxt *ctxt, + struct x86_instruction_info *info, + enum x86_intercept_stage stage) +{ + return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); } -EXPORT_SYMBOL_GPL(emulate_instruction); -static int pio_copy_data(struct kvm_vcpu *vcpu) +static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, + u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) { - void *p = vcpu->arch.pio_data; - gva_t q = vcpu->arch.pio.guest_gva; - unsigned bytes; - int ret; + kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); +} - bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count; - if (vcpu->arch.pio.in) - ret = kvm_write_guest_virt(q, p, bytes, vcpu); +static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) +{ + return kvm_register_read(emul_to_vcpu(ctxt), reg); +} + +static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) +{ + kvm_register_write(emul_to_vcpu(ctxt), reg, val); +} + +static const struct x86_emulate_ops emulate_ops = { + .read_gpr = emulator_read_gpr, + .write_gpr = emulator_write_gpr, + .read_std = kvm_read_guest_virt_system, + .write_std = kvm_write_guest_virt_system, + .fetch = kvm_fetch_guest_virt, + .read_emulated = emulator_read_emulated, + .write_emulated = emulator_write_emulated, + .cmpxchg_emulated = emulator_cmpxchg_emulated, + .invlpg = emulator_invlpg, + .pio_in_emulated = emulator_pio_in_emulated, + .pio_out_emulated = emulator_pio_out_emulated, + .get_segment = emulator_get_segment, + .set_segment = emulator_set_segment, + .get_cached_segment_base = emulator_get_cached_segment_base, + .get_gdt = emulator_get_gdt, + .get_idt = emulator_get_idt, + .set_gdt = emulator_set_gdt, + .set_idt = emulator_set_idt, + .get_cr = emulator_get_cr, + .set_cr = emulator_set_cr, + .cpl = emulator_get_cpl, + .get_dr = emulator_get_dr, + .set_dr = emulator_set_dr, + .set_msr = emulator_set_msr, + .get_msr = emulator_get_msr, + .read_pmc = emulator_read_pmc, + .halt = emulator_halt, + .wbinvd = emulator_wbinvd, + .fix_hypercall = emulator_fix_hypercall, + .get_fpu = emulator_get_fpu, + .put_fpu = emulator_put_fpu, + .intercept = emulator_intercept, + .get_cpuid = emulator_get_cpuid, +}; + +static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) +{ + u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); + /* + * an sti; sti; sequence only disable interrupts for the first + * instruction. So, if the last instruction, be it emulated or + * not, left the system with the INT_STI flag enabled, it + * means that the last instruction is an sti. We should not + * leave the flag on in this case. The same goes for mov ss + */ + if (!(int_shadow & mask)) + kvm_x86_ops->set_interrupt_shadow(vcpu, mask); +} + +static void inject_emulated_exception(struct kvm_vcpu *vcpu) +{ + struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; + if (ctxt->exception.vector == PF_VECTOR) + kvm_propagate_fault(vcpu, &ctxt->exception); + else if (ctxt->exception.error_code_valid) + kvm_queue_exception_e(vcpu, ctxt->exception.vector, + ctxt->exception.error_code); else - ret = kvm_read_guest_virt(q, p, bytes, vcpu); - return ret; + kvm_queue_exception(vcpu, ctxt->exception.vector); } -int complete_pio(struct kvm_vcpu *vcpu) +static void init_decode_cache(struct x86_emulate_ctxt *ctxt) { - struct kvm_pio_request *io = &vcpu->arch.pio; - long delta; - int r; - unsigned long val; + memset(&ctxt->opcode_len, 0, + (void *)&ctxt->_regs - (void *)&ctxt->opcode_len); - if (!io->string) { - if (io->in) { - val = kvm_register_read(vcpu, VCPU_REGS_RAX); - memcpy(&val, vcpu->arch.pio_data, io->size); - kvm_register_write(vcpu, VCPU_REGS_RAX, val); - } - } else { - if (io->in) { - r = pio_copy_data(vcpu); - if (r) - return r; - } + ctxt->fetch.start = 0; + ctxt->fetch.end = 0; + ctxt->io_read.pos = 0; + ctxt->io_read.end = 0; + ctxt->mem_read.pos = 0; + ctxt->mem_read.end = 0; +} - delta = 1; - if (io->rep) { - delta *= io->cur_count; - /* - * The size of the register should really depend on - * current address size. - */ - val = kvm_register_read(vcpu, VCPU_REGS_RCX); - val -= delta; - kvm_register_write(vcpu, VCPU_REGS_RCX, val); - } - if (io->down) - delta = -delta; - delta *= io->size; - if (io->in) { - val = kvm_register_read(vcpu, VCPU_REGS_RDI); - val += delta; - kvm_register_write(vcpu, VCPU_REGS_RDI, val); - } else { - val = kvm_register_read(vcpu, VCPU_REGS_RSI); - val += delta; - kvm_register_write(vcpu, VCPU_REGS_RSI, val); - } - } +static void init_emulate_ctxt(struct kvm_vcpu *vcpu) +{ + struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; + int cs_db, cs_l; - io->count -= io->cur_count; - io->cur_count = 0; + kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); - return 0; + ctxt->eflags = kvm_get_rflags(vcpu); + ctxt->eip = kvm_rip_read(vcpu); + ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : + (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : + (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : + cs_db ? X86EMUL_MODE_PROT32 : + X86EMUL_MODE_PROT16; + ctxt->guest_mode = is_guest_mode(vcpu); + + init_decode_cache(ctxt); + vcpu->arch.emulate_regs_need_sync_from_vcpu = false; } -static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) +int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) { - /* TODO: String I/O for in kernel device */ - int r; + struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; + int ret; - if (vcpu->arch.pio.in) - r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port, - vcpu->arch.pio.size, pd); + init_emulate_ctxt(vcpu); + + ctxt->op_bytes = 2; + ctxt->ad_bytes = 2; + ctxt->_eip = ctxt->eip + inc_eip; + ret = emulate_int_real(ctxt, irq); + + if (ret != X86EMUL_CONTINUE) + return EMULATE_FAIL; + + ctxt->eip = ctxt->_eip; + kvm_rip_write(vcpu, ctxt->eip); + kvm_set_rflags(vcpu, ctxt->eflags); + + if (irq == NMI_VECTOR) + vcpu->arch.nmi_pending = 0; else - r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port, - vcpu->arch.pio.size, pd); - return r; + vcpu->arch.interrupt.pending = false; + + return EMULATE_DONE; } +EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); -static int pio_string_write(struct kvm_vcpu *vcpu) +static int handle_emulation_failure(struct kvm_vcpu *vcpu) { - struct kvm_pio_request *io = &vcpu->arch.pio; - void *pd = vcpu->arch.pio_data; - int i, r = 0; + int r = EMULATE_DONE; - for (i = 0; i < io->cur_count; i++) { - if (kvm_io_bus_write(&vcpu->kvm->pio_bus, - io->port, io->size, pd)) { - r = -EOPNOTSUPP; - break; - } - pd += io->size; + ++vcpu->stat.insn_emulation_fail; + trace_kvm_emulate_insn_failed(vcpu); + if (!is_guest_mode(vcpu)) { + vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; + vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; + vcpu->run->internal.ndata = 0; + r = EMULATE_FAIL; } + kvm_queue_exception(vcpu, UD_VECTOR); + return r; } -int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port) +static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, + bool write_fault_to_shadow_pgtable, + int emulation_type) { - unsigned long val; + gpa_t gpa = cr2; + pfn_t pfn; - vcpu->run->exit_reason = KVM_EXIT_IO; - vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; - vcpu->run->io.size = vcpu->arch.pio.size = size; - vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; - vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1; - vcpu->run->io.port = vcpu->arch.pio.port = port; - vcpu->arch.pio.in = in; - vcpu->arch.pio.string = 0; - vcpu->arch.pio.down = 0; - vcpu->arch.pio.rep = 0; + if (emulation_type & EMULTYPE_NO_REEXECUTE) + return false; - trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port, - size, 1); + if (!vcpu->arch.mmu.direct_map) { + /* + * Write permission should be allowed since only + * write access need to be emulated. + */ + gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); - val = kvm_register_read(vcpu, VCPU_REGS_RAX); - memcpy(vcpu->arch.pio_data, &val, 4); + /* + * If the mapping is invalid in guest, let cpu retry + * it to generate fault. + */ + if (gpa == UNMAPPED_GVA) + return true; + } - if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { - complete_pio(vcpu); - return 1; + /* + * Do not retry the unhandleable instruction if it faults on the + * readonly host memory, otherwise it will goto a infinite loop: + * retry instruction -> write #PF -> emulation fail -> retry + * instruction -> ... + */ + pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); + + /* + * If the instruction failed on the error pfn, it can not be fixed, + * report the error to userspace. + */ + if (is_error_noslot_pfn(pfn)) + return false; + + kvm_release_pfn_clean(pfn); + + /* The instructions are well-emulated on direct mmu. */ + if (vcpu->arch.mmu.direct_map) { + unsigned int indirect_shadow_pages; + + spin_lock(&vcpu->kvm->mmu_lock); + indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; + spin_unlock(&vcpu->kvm->mmu_lock); + + if (indirect_shadow_pages) + kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); + + return true; } - return 0; + + /* + * if emulation was due to access to shadowed page table + * and it failed try to unshadow page and re-enter the + * guest to let CPU execute the instruction. + */ + kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); + + /* + * If the access faults on its page table, it can not + * be fixed by unprotecting shadow page and it should + * be reported to userspace. + */ + return !write_fault_to_shadow_pgtable; } -EXPORT_SYMBOL_GPL(kvm_emulate_pio); -int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in, - int size, unsigned long count, int down, - gva_t address, int rep, unsigned port) +static bool retry_instruction(struct x86_emulate_ctxt *ctxt, + unsigned long cr2, int emulation_type) { - unsigned now, in_page; - int ret = 0; + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + unsigned long last_retry_eip, last_retry_addr, gpa = cr2; - vcpu->run->exit_reason = KVM_EXIT_IO; - vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; - vcpu->run->io.size = vcpu->arch.pio.size = size; - vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; - vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count; - vcpu->run->io.port = vcpu->arch.pio.port = port; - vcpu->arch.pio.in = in; - vcpu->arch.pio.string = 1; - vcpu->arch.pio.down = down; - vcpu->arch.pio.rep = rep; + last_retry_eip = vcpu->arch.last_retry_eip; + last_retry_addr = vcpu->arch.last_retry_addr; - trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port, - size, count); + /* + * If the emulation is caused by #PF and it is non-page_table + * writing instruction, it means the VM-EXIT is caused by shadow + * page protected, we can zap the shadow page and retry this + * instruction directly. + * + * Note: if the guest uses a non-page-table modifying instruction + * on the PDE that points to the instruction, then we will unmap + * the instruction and go to an infinite loop. So, we cache the + * last retried eip and the last fault address, if we meet the eip + * and the address again, we can break out of the potential infinite + * loop. + */ + vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; - if (!count) { - kvm_x86_ops->skip_emulated_instruction(vcpu); - return 1; + if (!(emulation_type & EMULTYPE_RETRY)) + return false; + + if (x86_page_table_writing_insn(ctxt)) + return false; + + if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) + return false; + + vcpu->arch.last_retry_eip = ctxt->eip; + vcpu->arch.last_retry_addr = cr2; + + if (!vcpu->arch.mmu.direct_map) + gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); + + kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); + + return true; +} + +static int complete_emulated_mmio(struct kvm_vcpu *vcpu); +static int complete_emulated_pio(struct kvm_vcpu *vcpu); + +static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, + unsigned long *db) +{ + u32 dr6 = 0; + int i; + u32 enable, rwlen; + + enable = dr7; + rwlen = dr7 >> 16; + for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) + if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) + dr6 |= (1 << i); + return dr6; +} + +static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r) +{ + struct kvm_run *kvm_run = vcpu->run; + + /* + * Use the "raw" value to see if TF was passed to the processor. + * Note that the new value of the flags has not been saved yet. + * + * This is correct even for TF set by the guest, because "the + * processor will not generate this exception after the instruction + * that sets the TF flag". + */ + unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); + + if (unlikely(rflags & X86_EFLAGS_TF)) { + if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { + kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1; + kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; + kvm_run->debug.arch.exception = DB_VECTOR; + kvm_run->exit_reason = KVM_EXIT_DEBUG; + *r = EMULATE_USER_EXIT; + } else { + vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF; + /* + * "Certain debug exceptions may clear bit 0-3. The + * remaining contents of the DR6 register are never + * cleared by the processor". + */ + vcpu->arch.dr6 &= ~15; + vcpu->arch.dr6 |= DR6_BS; + kvm_queue_exception(vcpu, DB_VECTOR); + } } +} + +static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) +{ + struct kvm_run *kvm_run = vcpu->run; + unsigned long eip = vcpu->arch.emulate_ctxt.eip; + u32 dr6 = 0; + + if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && + (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { + dr6 = kvm_vcpu_check_hw_bp(eip, 0, + vcpu->arch.guest_debug_dr7, + vcpu->arch.eff_db); + + if (dr6 != 0) { + kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; + kvm_run->debug.arch.pc = kvm_rip_read(vcpu) + + get_segment_base(vcpu, VCPU_SREG_CS); + + kvm_run->debug.arch.exception = DB_VECTOR; + kvm_run->exit_reason = KVM_EXIT_DEBUG; + *r = EMULATE_USER_EXIT; + return true; + } + } + + if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) { + dr6 = kvm_vcpu_check_hw_bp(eip, 0, + vcpu->arch.dr7, + vcpu->arch.db); + + if (dr6 != 0) { + vcpu->arch.dr6 &= ~15; + vcpu->arch.dr6 |= dr6; + kvm_queue_exception(vcpu, DB_VECTOR); + *r = EMULATE_DONE; + return true; + } + } + + return false; +} + +int x86_emulate_instruction(struct kvm_vcpu *vcpu, + unsigned long cr2, + int emulation_type, + void *insn, + int insn_len) +{ + int r; + struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; + bool writeback = true; + bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; + + /* + * Clear write_fault_to_shadow_pgtable here to ensure it is + * never reused. + */ + vcpu->arch.write_fault_to_shadow_pgtable = false; + kvm_clear_exception_queue(vcpu); + + if (!(emulation_type & EMULTYPE_NO_DECODE)) { + init_emulate_ctxt(vcpu); - if (!down) - in_page = PAGE_SIZE - offset_in_page(address); - else - in_page = offset_in_page(address) + size; - now = min(count, (unsigned long)in_page / size); - if (!now) - now = 1; - if (down) { /* - * String I/O in reverse. Yuck. Kill the guest, fix later. + * We will reenter on the same instruction since + * we do not set complete_userspace_io. This does not + * handle watchpoints yet, those would be handled in + * the emulate_ops. */ - pr_unimpl(vcpu, "guest string pio down\n"); - kvm_inject_gp(vcpu, 0); - return 1; - } - vcpu->run->io.count = now; - vcpu->arch.pio.cur_count = now; + if (kvm_vcpu_check_breakpoint(vcpu, &r)) + return r; - if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count) - kvm_x86_ops->skip_emulated_instruction(vcpu); + ctxt->interruptibility = 0; + ctxt->have_exception = false; + ctxt->perm_ok = false; - vcpu->arch.pio.guest_gva = address; + ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; - if (!vcpu->arch.pio.in) { - /* string PIO write */ - ret = pio_copy_data(vcpu); - if (ret == X86EMUL_PROPAGATE_FAULT) { - kvm_inject_gp(vcpu, 0); - return 1; - } - if (ret == 0 && !pio_string_write(vcpu)) { - complete_pio(vcpu); - if (vcpu->arch.pio.count == 0) - ret = 1; + r = x86_decode_insn(ctxt, insn, insn_len); + + trace_kvm_emulate_insn_start(vcpu); + ++vcpu->stat.insn_emulation; + if (r != EMULATION_OK) { + if (emulation_type & EMULTYPE_TRAP_UD) + return EMULATE_FAIL; + if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, + emulation_type)) + return EMULATE_DONE; + if (emulation_type & EMULTYPE_SKIP) + return EMULATE_FAIL; + return handle_emulation_failure(vcpu); } } - /* no string PIO read support yet */ + if (emulation_type & EMULTYPE_SKIP) { + kvm_rip_write(vcpu, ctxt->_eip); + return EMULATE_DONE; + } + + if (retry_instruction(ctxt, cr2, emulation_type)) + return EMULATE_DONE; + + /* this is needed for vmware backdoor interface to work since it + changes registers values during IO operation */ + if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { + vcpu->arch.emulate_regs_need_sync_from_vcpu = false; + emulator_invalidate_register_cache(ctxt); + } + +restart: + r = x86_emulate_insn(ctxt); + + if (r == EMULATION_INTERCEPTED) + return EMULATE_DONE; + + if (r == EMULATION_FAILED) { + if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, + emulation_type)) + return EMULATE_DONE; + + return handle_emulation_failure(vcpu); + } + + if (ctxt->have_exception) { + inject_emulated_exception(vcpu); + r = EMULATE_DONE; + } else if (vcpu->arch.pio.count) { + if (!vcpu->arch.pio.in) { + /* FIXME: return into emulator if single-stepping. */ + vcpu->arch.pio.count = 0; + } else { + writeback = false; + vcpu->arch.complete_userspace_io = complete_emulated_pio; + } + r = EMULATE_USER_EXIT; + } else if (vcpu->mmio_needed) { + if (!vcpu->mmio_is_write) + writeback = false; + r = EMULATE_USER_EXIT; + vcpu->arch.complete_userspace_io = complete_emulated_mmio; + } else if (r == EMULATION_RESTART) + goto restart; + else + r = EMULATE_DONE; + + if (writeback) { + toggle_interruptibility(vcpu, ctxt->interruptibility); + kvm_make_request(KVM_REQ_EVENT, vcpu); + vcpu->arch.emulate_regs_need_sync_to_vcpu = false; + kvm_rip_write(vcpu, ctxt->eip); + if (r == EMULATE_DONE) + kvm_vcpu_check_singlestep(vcpu, &r); + kvm_set_rflags(vcpu, ctxt->eflags); + } else + vcpu->arch.emulate_regs_need_sync_to_vcpu = true; + + return r; +} +EXPORT_SYMBOL_GPL(x86_emulate_instruction); + +int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) +{ + unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); + int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, + size, port, &val, 1); + /* do not return to emulator after return from userspace */ + vcpu->arch.pio.count = 0; return ret; } -EXPORT_SYMBOL_GPL(kvm_emulate_pio_string); +EXPORT_SYMBOL_GPL(kvm_fast_pio_out); + +static void tsc_bad(void *info) +{ + __this_cpu_write(cpu_tsc_khz, 0); +} -static void bounce_off(void *info) +static void tsc_khz_changed(void *data) { - /* nothing */ + struct cpufreq_freqs *freq = data; + unsigned long khz = 0; + + if (data) + khz = freq->new; + else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) + khz = cpufreq_quick_get(raw_smp_processor_id()); + if (!khz) + khz = tsc_khz; + __this_cpu_write(cpu_tsc_khz, khz); } static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, @@ -3355,21 +5317,60 @@ static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long va struct kvm_vcpu *vcpu; int i, send_ipi = 0; + /* + * We allow guests to temporarily run on slowing clocks, + * provided we notify them after, or to run on accelerating + * clocks, provided we notify them before. Thus time never + * goes backwards. + * + * However, we have a problem. We can't atomically update + * the frequency of a given CPU from this function; it is + * merely a notifier, which can be called from any CPU. + * Changing the TSC frequency at arbitrary points in time + * requires a recomputation of local variables related to + * the TSC for each VCPU. We must flag these local variables + * to be updated and be sure the update takes place with the + * new frequency before any guests proceed. + * + * Unfortunately, the combination of hotplug CPU and frequency + * change creates an intractable locking scenario; the order + * of when these callouts happen is undefined with respect to + * CPU hotplug, and they can race with each other. As such, + * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is + * undefined; you can actually have a CPU frequency change take + * place in between the computation of X and the setting of the + * variable. To protect against this problem, all updates of + * the per_cpu tsc_khz variable are done in an interrupt + * protected IPI, and all callers wishing to update the value + * must wait for a synchronous IPI to complete (which is trivial + * if the caller is on the CPU already). This establishes the + * necessary total order on variable updates. + * + * Note that because a guest time update may take place + * anytime after the setting of the VCPU's request bit, the + * correct TSC value must be set before the request. However, + * to ensure the update actually makes it to any guest which + * starts running in hardware virtualization between the set + * and the acquisition of the spinlock, we must also ping the + * CPU after setting the request bit. + * + */ + if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) return 0; if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) return 0; - per_cpu(cpu_tsc_khz, freq->cpu) = freq->new; + + smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); spin_lock(&kvm_lock); list_for_each_entry(kvm, &vm_list, vm_list) { kvm_for_each_vcpu(i, vcpu, kvm) { if (vcpu->cpu != freq->cpu) continue; - if (!kvm_request_guest_time_update(vcpu)) - continue; + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); if (vcpu->cpu != smp_processor_id()) - send_ipi++; + send_ipi = 1; } } spin_unlock(&kvm_lock); @@ -3387,38 +5388,189 @@ static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long va * guest context is entered kvmclock will be updated, * so the guest will not see stale values. */ - smp_call_function_single(freq->cpu, bounce_off, NULL, 1); + smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); } return 0; } static struct notifier_block kvmclock_cpufreq_notifier_block = { - .notifier_call = kvmclock_cpufreq_notifier + .notifier_call = kvmclock_cpufreq_notifier +}; + +static int kvmclock_cpu_notifier(struct notifier_block *nfb, + unsigned long action, void *hcpu) +{ + unsigned int cpu = (unsigned long)hcpu; + + switch (action) { + case CPU_ONLINE: + case CPU_DOWN_FAILED: + smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); + break; + case CPU_DOWN_PREPARE: + smp_call_function_single(cpu, tsc_bad, NULL, 1); + break; + } + return NOTIFY_OK; +} + +static struct notifier_block kvmclock_cpu_notifier_block = { + .notifier_call = kvmclock_cpu_notifier, + .priority = -INT_MAX }; static void kvm_timer_init(void) { int cpu; + max_tsc_khz = tsc_khz; + + cpu_notifier_register_begin(); if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { +#ifdef CONFIG_CPU_FREQ + struct cpufreq_policy policy; + memset(&policy, 0, sizeof(policy)); + cpu = get_cpu(); + cpufreq_get_policy(&policy, cpu); + if (policy.cpuinfo.max_freq) + max_tsc_khz = policy.cpuinfo.max_freq; + put_cpu(); +#endif cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); - for_each_online_cpu(cpu) { - unsigned long khz = cpufreq_get(cpu); - if (!khz) - khz = tsc_khz; - per_cpu(cpu_tsc_khz, cpu) = khz; - } - } else { - for_each_possible_cpu(cpu) - per_cpu(cpu_tsc_khz, cpu) = tsc_khz; } + pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); + for_each_online_cpu(cpu) + smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); + + __register_hotcpu_notifier(&kvmclock_cpu_notifier_block); + cpu_notifier_register_done(); + +} + +static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); + +int kvm_is_in_guest(void) +{ + return __this_cpu_read(current_vcpu) != NULL; +} + +static int kvm_is_user_mode(void) +{ + int user_mode = 3; + + if (__this_cpu_read(current_vcpu)) + user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); + + return user_mode != 0; +} + +static unsigned long kvm_get_guest_ip(void) +{ + unsigned long ip = 0; + + if (__this_cpu_read(current_vcpu)) + ip = kvm_rip_read(__this_cpu_read(current_vcpu)); + + return ip; +} + +static struct perf_guest_info_callbacks kvm_guest_cbs = { + .is_in_guest = kvm_is_in_guest, + .is_user_mode = kvm_is_user_mode, + .get_guest_ip = kvm_get_guest_ip, +}; + +void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) +{ + __this_cpu_write(current_vcpu, vcpu); +} +EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); + +void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) +{ + __this_cpu_write(current_vcpu, NULL); } +EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); + +static void kvm_set_mmio_spte_mask(void) +{ + u64 mask; + int maxphyaddr = boot_cpu_data.x86_phys_bits; + + /* + * Set the reserved bits and the present bit of an paging-structure + * entry to generate page fault with PFER.RSV = 1. + */ + /* Mask the reserved physical address bits. */ + mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr; + + /* Bit 62 is always reserved for 32bit host. */ + mask |= 0x3ull << 62; + + /* Set the present bit. */ + mask |= 1ull; + +#ifdef CONFIG_X86_64 + /* + * If reserved bit is not supported, clear the present bit to disable + * mmio page fault. + */ + if (maxphyaddr == 52) + mask &= ~1ull; +#endif + + kvm_mmu_set_mmio_spte_mask(mask); +} + +#ifdef CONFIG_X86_64 +static void pvclock_gtod_update_fn(struct work_struct *work) +{ + struct kvm *kvm; + + struct kvm_vcpu *vcpu; + int i; + + spin_lock(&kvm_lock); + list_for_each_entry(kvm, &vm_list, vm_list) + kvm_for_each_vcpu(i, vcpu, kvm) + set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests); + atomic_set(&kvm_guest_has_master_clock, 0); + spin_unlock(&kvm_lock); +} + +static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); + +/* + * Notification about pvclock gtod data update. + */ +static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, + void *priv) +{ + struct pvclock_gtod_data *gtod = &pvclock_gtod_data; + struct timekeeper *tk = priv; + + update_pvclock_gtod(tk); + + /* disable master clock if host does not trust, or does not + * use, TSC clocksource + */ + if (gtod->clock.vclock_mode != VCLOCK_TSC && + atomic_read(&kvm_guest_has_master_clock) != 0) + queue_work(system_long_wq, &pvclock_gtod_work); + + return 0; +} + +static struct notifier_block pvclock_gtod_notifier = { + .notifier_call = pvclock_gtod_notify, +}; +#endif int kvm_arch_init(void *opaque) { int r; - struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; + struct kvm_x86_ops *ops = opaque; if (kvm_x86_ops) { printk(KERN_ERR "kvm: already loaded the other module\n"); @@ -3437,33 +5589,59 @@ int kvm_arch_init(void *opaque) goto out; } + r = -ENOMEM; + shared_msrs = alloc_percpu(struct kvm_shared_msrs); + if (!shared_msrs) { + printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); + goto out; + } + r = kvm_mmu_module_init(); if (r) - goto out; + goto out_free_percpu; - kvm_init_msr_list(); + kvm_set_mmio_spte_mask(); kvm_x86_ops = ops; - kvm_mmu_set_nonpresent_ptes(0ull, 0ull); - kvm_mmu_set_base_ptes(PT_PRESENT_MASK); + kvm_init_msr_list(); + kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, PT_DIRTY_MASK, PT64_NX_MASK, 0); kvm_timer_init(); + perf_register_guest_info_callbacks(&kvm_guest_cbs); + + if (cpu_has_xsave) + host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); + + kvm_lapic_init(); +#ifdef CONFIG_X86_64 + pvclock_gtod_register_notifier(&pvclock_gtod_notifier); +#endif + return 0; +out_free_percpu: + free_percpu(shared_msrs); out: return r; } void kvm_arch_exit(void) { + perf_unregister_guest_info_callbacks(&kvm_guest_cbs); + if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); + unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); +#ifdef CONFIG_X86_64 + pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); +#endif kvm_x86_ops = NULL; kvm_mmu_module_exit(); + free_percpu(shared_msrs); } int kvm_emulate_halt(struct kvm_vcpu *vcpu) @@ -3479,13 +5657,83 @@ int kvm_emulate_halt(struct kvm_vcpu *vcpu) } EXPORT_SYMBOL_GPL(kvm_emulate_halt); -static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0, - unsigned long a1) +int kvm_hv_hypercall(struct kvm_vcpu *vcpu) { - if (is_long_mode(vcpu)) - return a0; - else - return a0 | ((gpa_t)a1 << 32); + u64 param, ingpa, outgpa, ret; + uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; + bool fast, longmode; + int cs_db, cs_l; + + /* + * hypercall generates UD from non zero cpl and real mode + * per HYPER-V spec + */ + if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 0; + } + + kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); + longmode = is_long_mode(vcpu) && cs_l == 1; + + if (!longmode) { + param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | + (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); + ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | + (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); + outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | + (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); + } +#ifdef CONFIG_X86_64 + else { + param = kvm_register_read(vcpu, VCPU_REGS_RCX); + ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); + outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); + } +#endif + + code = param & 0xffff; + fast = (param >> 16) & 0x1; + rep_cnt = (param >> 32) & 0xfff; + rep_idx = (param >> 48) & 0xfff; + + trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); + + switch (code) { + case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: + kvm_vcpu_on_spin(vcpu); + break; + default: + res = HV_STATUS_INVALID_HYPERCALL_CODE; + break; + } + + ret = res | (((u64)rep_done & 0xfff) << 32); + if (longmode) { + kvm_register_write(vcpu, VCPU_REGS_RAX, ret); + } else { + kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); + kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); + } + + return 1; +} + +/* + * kvm_pv_kick_cpu_op: Kick a vcpu. + * + * @apicid - apicid of vcpu to be kicked. + */ +static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) +{ + struct kvm_lapic_irq lapic_irq; + + lapic_irq.shorthand = 0; + lapic_irq.dest_mode = 0; + lapic_irq.dest_id = apicid; + + lapic_irq.delivery_mode = APIC_DM_REMRD; + kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL); } int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) @@ -3493,6 +5741,9 @@ int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) unsigned long nr, a0, a1, a2, a3, ret; int r = 1; + if (kvm_hv_hypercall_enabled(vcpu->kvm)) + return kvm_hv_hypercall(vcpu); + nr = kvm_register_read(vcpu, VCPU_REGS_RAX); a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); @@ -3518,8 +5769,9 @@ int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) case KVM_HC_VAPIC_POLL_IRQ: ret = 0; break; - case KVM_HC_MMU_OP: - r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret); + case KVM_HC_KICK_CPU: + kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); + ret = 0; break; default: ret = -KVM_ENOSYS; @@ -3532,203 +5784,17 @@ out: } EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); -int kvm_fix_hypercall(struct kvm_vcpu *vcpu) +static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) { + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); char instruction[3]; - int ret = 0; unsigned long rip = kvm_rip_read(vcpu); - - /* - * Blow out the MMU to ensure that no other VCPU has an active mapping - * to ensure that the updated hypercall appears atomically across all - * VCPUs. - */ - kvm_mmu_zap_all(vcpu->kvm); - kvm_x86_ops->patch_hypercall(vcpu, instruction); - if (emulator_write_emulated(rip, instruction, 3, vcpu) - != X86EMUL_CONTINUE) - ret = -EFAULT; - - return ret; -} - -static u64 mk_cr_64(u64 curr_cr, u32 new_val) -{ - return (curr_cr & ~((1ULL << 32) - 1)) | new_val; -} - -void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) -{ - struct descriptor_table dt = { limit, base }; - - kvm_x86_ops->set_gdt(vcpu, &dt); -} - -void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) -{ - struct descriptor_table dt = { limit, base }; - - kvm_x86_ops->set_idt(vcpu, &dt); -} - -void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw, - unsigned long *rflags) -{ - kvm_lmsw(vcpu, msw); - *rflags = kvm_get_rflags(vcpu); -} - -unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr) -{ - unsigned long value; - - kvm_x86_ops->decache_cr4_guest_bits(vcpu); - switch (cr) { - case 0: - value = vcpu->arch.cr0; - break; - case 2: - value = vcpu->arch.cr2; - break; - case 3: - value = vcpu->arch.cr3; - break; - case 4: - value = vcpu->arch.cr4; - break; - case 8: - value = kvm_get_cr8(vcpu); - break; - default: - vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); - return 0; - } - - return value; -} - -void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val, - unsigned long *rflags) -{ - switch (cr) { - case 0: - kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val)); - *rflags = kvm_get_rflags(vcpu); - break; - case 2: - vcpu->arch.cr2 = val; - break; - case 3: - kvm_set_cr3(vcpu, val); - break; - case 4: - kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val)); - break; - case 8: - kvm_set_cr8(vcpu, val & 0xfUL); - break; - default: - vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); - } -} - -static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i) -{ - struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i]; - int j, nent = vcpu->arch.cpuid_nent; - e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT; - /* when no next entry is found, the current entry[i] is reselected */ - for (j = i + 1; ; j = (j + 1) % nent) { - struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j]; - if (ej->function == e->function) { - ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; - return j; - } - } - return 0; /* silence gcc, even though control never reaches here */ -} - -/* find an entry with matching function, matching index (if needed), and that - * should be read next (if it's stateful) */ -static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e, - u32 function, u32 index) -{ - if (e->function != function) - return 0; - if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index) - return 0; - if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) && - !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT)) - return 0; - return 1; + return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); } -struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, - u32 function, u32 index) -{ - int i; - struct kvm_cpuid_entry2 *best = NULL; - - for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { - struct kvm_cpuid_entry2 *e; - - e = &vcpu->arch.cpuid_entries[i]; - if (is_matching_cpuid_entry(e, function, index)) { - if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) - move_to_next_stateful_cpuid_entry(vcpu, i); - best = e; - break; - } - /* - * Both basic or both extended? - */ - if (((e->function ^ function) & 0x80000000) == 0) - if (!best || e->function > best->function) - best = e; - } - return best; -} - -int cpuid_maxphyaddr(struct kvm_vcpu *vcpu) -{ - struct kvm_cpuid_entry2 *best; - - best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0); - if (best) - return best->eax & 0xff; - return 36; -} - -void kvm_emulate_cpuid(struct kvm_vcpu *vcpu) -{ - u32 function, index; - struct kvm_cpuid_entry2 *best; - - function = kvm_register_read(vcpu, VCPU_REGS_RAX); - index = kvm_register_read(vcpu, VCPU_REGS_RCX); - kvm_register_write(vcpu, VCPU_REGS_RAX, 0); - kvm_register_write(vcpu, VCPU_REGS_RBX, 0); - kvm_register_write(vcpu, VCPU_REGS_RCX, 0); - kvm_register_write(vcpu, VCPU_REGS_RDX, 0); - best = kvm_find_cpuid_entry(vcpu, function, index); - if (best) { - kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax); - kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx); - kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx); - kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx); - } - kvm_x86_ops->skip_emulated_instruction(vcpu); - trace_kvm_cpuid(function, - kvm_register_read(vcpu, VCPU_REGS_RAX), - kvm_register_read(vcpu, VCPU_REGS_RBX), - kvm_register_read(vcpu, VCPU_REGS_RCX), - kvm_register_read(vcpu, VCPU_REGS_RDX)); -} -EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); - /* * Check if userspace requested an interrupt window, and that the * interrupt window is open. @@ -3758,32 +5824,6 @@ static void post_kvm_run_save(struct kvm_vcpu *vcpu) !kvm_event_needs_reinjection(vcpu); } -static void vapic_enter(struct kvm_vcpu *vcpu) -{ - struct kvm_lapic *apic = vcpu->arch.apic; - struct page *page; - - if (!apic || !apic->vapic_addr) - return; - - page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); - - vcpu->arch.apic->vapic_page = page; -} - -static void vapic_exit(struct kvm_vcpu *vcpu) -{ - struct kvm_lapic *apic = vcpu->arch.apic; - - if (!apic || !apic->vapic_addr) - return; - - down_read(&vcpu->kvm->slots_lock); - kvm_release_page_dirty(apic->vapic_page); - mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); - up_read(&vcpu->kvm->slots_lock); -} - static void update_cr8_intercept(struct kvm_vcpu *vcpu) { int max_irr, tpr; @@ -3807,110 +5847,226 @@ static void update_cr8_intercept(struct kvm_vcpu *vcpu) kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); } -static void inject_pending_event(struct kvm_vcpu *vcpu) +static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) { + int r; + /* try to reinject previous events if any */ if (vcpu->arch.exception.pending) { + trace_kvm_inj_exception(vcpu->arch.exception.nr, + vcpu->arch.exception.has_error_code, + vcpu->arch.exception.error_code); kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, vcpu->arch.exception.has_error_code, - vcpu->arch.exception.error_code); - return; + vcpu->arch.exception.error_code, + vcpu->arch.exception.reinject); + return 0; } if (vcpu->arch.nmi_injected) { kvm_x86_ops->set_nmi(vcpu); - return; + return 0; } if (vcpu->arch.interrupt.pending) { kvm_x86_ops->set_irq(vcpu); - return; + return 0; + } + + if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { + r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); + if (r != 0) + return r; } /* try to inject new event if pending */ if (vcpu->arch.nmi_pending) { if (kvm_x86_ops->nmi_allowed(vcpu)) { - vcpu->arch.nmi_pending = false; + --vcpu->arch.nmi_pending; vcpu->arch.nmi_injected = true; kvm_x86_ops->set_nmi(vcpu); } - } else if (kvm_cpu_has_interrupt(vcpu)) { + } else if (kvm_cpu_has_injectable_intr(vcpu)) { + /* + * Because interrupts can be injected asynchronously, we are + * calling check_nested_events again here to avoid a race condition. + * See https://lkml.org/lkml/2014/7/2/60 for discussion about this + * proposal and current concerns. Perhaps we should be setting + * KVM_REQ_EVENT only on certain events and not unconditionally? + */ + if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { + r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); + if (r != 0) + return r; + } if (kvm_x86_ops->interrupt_allowed(vcpu)) { kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); kvm_x86_ops->set_irq(vcpu); } } + return 0; +} + +static void process_nmi(struct kvm_vcpu *vcpu) +{ + unsigned limit = 2; + + /* + * x86 is limited to one NMI running, and one NMI pending after it. + * If an NMI is already in progress, limit further NMIs to just one. + * Otherwise, allow two (and we'll inject the first one immediately). + */ + if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) + limit = 1; + + vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); + vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); + kvm_make_request(KVM_REQ_EVENT, vcpu); +} + +static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) +{ + u64 eoi_exit_bitmap[4]; + u32 tmr[8]; + + if (!kvm_apic_hw_enabled(vcpu->arch.apic)) + return; + + memset(eoi_exit_bitmap, 0, 32); + memset(tmr, 0, 32); + + kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr); + kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); + kvm_apic_update_tmr(vcpu, tmr); } +/* + * Returns 1 to let __vcpu_run() continue the guest execution loop without + * exiting to the userspace. Otherwise, the value will be returned to the + * userspace. + */ static int vcpu_enter_guest(struct kvm_vcpu *vcpu) { int r; bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && vcpu->run->request_interrupt_window; - - if (vcpu->requests) - if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests)) - kvm_mmu_unload(vcpu); - - r = kvm_mmu_reload(vcpu); - if (unlikely(r)) - goto out; + bool req_immediate_exit = false; if (vcpu->requests) { - if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests)) + if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) + kvm_mmu_unload(vcpu); + if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) __kvm_migrate_timers(vcpu); - if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests)) - kvm_write_guest_time(vcpu); - if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests)) + if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) + kvm_gen_update_masterclock(vcpu->kvm); + if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) + kvm_gen_kvmclock_update(vcpu); + if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { + r = kvm_guest_time_update(vcpu); + if (unlikely(r)) + goto out; + } + if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) kvm_mmu_sync_roots(vcpu); - if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests)) + if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) kvm_x86_ops->tlb_flush(vcpu); - if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS, - &vcpu->requests)) { + if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; r = 0; goto out; } - if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) { + if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; r = 0; goto out; } + if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { + vcpu->fpu_active = 0; + kvm_x86_ops->fpu_deactivate(vcpu); + } + if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { + /* Page is swapped out. Do synthetic halt */ + vcpu->arch.apf.halted = true; + r = 1; + goto out; + } + if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) + record_steal_time(vcpu); + if (kvm_check_request(KVM_REQ_NMI, vcpu)) + process_nmi(vcpu); + if (kvm_check_request(KVM_REQ_PMU, vcpu)) + kvm_handle_pmu_event(vcpu); + if (kvm_check_request(KVM_REQ_PMI, vcpu)) + kvm_deliver_pmi(vcpu); + if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) + vcpu_scan_ioapic(vcpu); + } + + if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { + kvm_apic_accept_events(vcpu); + if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { + r = 1; + goto out; + } + + if (inject_pending_event(vcpu, req_int_win) != 0) + req_immediate_exit = true; + /* enable NMI/IRQ window open exits if needed */ + else if (vcpu->arch.nmi_pending) + kvm_x86_ops->enable_nmi_window(vcpu); + else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) + kvm_x86_ops->enable_irq_window(vcpu); + + if (kvm_lapic_enabled(vcpu)) { + /* + * Update architecture specific hints for APIC + * virtual interrupt delivery. + */ + if (kvm_x86_ops->hwapic_irr_update) + kvm_x86_ops->hwapic_irr_update(vcpu, + kvm_lapic_find_highest_irr(vcpu)); + update_cr8_intercept(vcpu); + kvm_lapic_sync_to_vapic(vcpu); + } + } + + r = kvm_mmu_reload(vcpu); + if (unlikely(r)) { + goto cancel_injection; } preempt_disable(); kvm_x86_ops->prepare_guest_switch(vcpu); - kvm_load_guest_fpu(vcpu); + if (vcpu->fpu_active) + kvm_load_guest_fpu(vcpu); + kvm_load_guest_xcr0(vcpu); - local_irq_disable(); + vcpu->mode = IN_GUEST_MODE; + + srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); - clear_bit(KVM_REQ_KICK, &vcpu->requests); - smp_mb__after_clear_bit(); + /* We should set ->mode before check ->requests, + * see the comment in make_all_cpus_request. + */ + smp_mb__after_srcu_read_unlock(); + + local_irq_disable(); - if (vcpu->requests || need_resched() || signal_pending(current)) { - set_bit(KVM_REQ_KICK, &vcpu->requests); + if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests + || need_resched() || signal_pending(current)) { + vcpu->mode = OUTSIDE_GUEST_MODE; + smp_wmb(); local_irq_enable(); preempt_enable(); + vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); r = 1; - goto out; + goto cancel_injection; } - inject_pending_event(vcpu); - - /* enable NMI/IRQ window open exits if needed */ - if (vcpu->arch.nmi_pending) - kvm_x86_ops->enable_nmi_window(vcpu); - else if (kvm_cpu_has_interrupt(vcpu) || req_int_win) - kvm_x86_ops->enable_irq_window(vcpu); - - if (kvm_lapic_enabled(vcpu)) { - update_cr8_intercept(vcpu); - kvm_lapic_sync_to_vapic(vcpu); - } - - up_read(&vcpu->kvm->slots_lock); + if (req_immediate_exit) + smp_send_reschedule(vcpu->cpu); kvm_guest_enter(); @@ -3920,12 +6076,28 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu) set_debugreg(vcpu->arch.eff_db[1], 1); set_debugreg(vcpu->arch.eff_db[2], 2); set_debugreg(vcpu->arch.eff_db[3], 3); + set_debugreg(vcpu->arch.dr6, 6); } trace_kvm_entry(vcpu->vcpu_id); kvm_x86_ops->run(vcpu); /* + * Do this here before restoring debug registers on the host. And + * since we do this before handling the vmexit, a DR access vmexit + * can (a) read the correct value of the debug registers, (b) set + * KVM_DEBUGREG_WONT_EXIT again. + */ + if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { + int i; + + WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); + kvm_x86_ops->sync_dirty_debug_regs(vcpu); + for (i = 0; i < KVM_NR_DB_REGS; i++) + vcpu->arch.eff_db[i] = vcpu->arch.db[i]; + } + + /* * If the guest has used debug registers, at least dr7 * will be disabled while returning to the host. * If we don't have active breakpoints in the host, we don't @@ -3935,8 +6107,14 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu) if (hw_breakpoint_active()) hw_breakpoint_restore(); - set_bit(KVM_REQ_KICK, &vcpu->requests); - local_irq_enable(); + vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu, + native_read_tsc()); + + vcpu->mode = OUTSIDE_GUEST_MODE; + smp_wmb(); + + /* Interrupt is enabled by handle_external_intr() */ + kvm_x86_ops->handle_external_intr(vcpu); ++vcpu->stat.exits; @@ -3952,7 +6130,7 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu) preempt_enable(); - down_read(&vcpu->kvm->slots_lock); + vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); /* * Profile KVM exit RIPs: @@ -3962,10 +6140,19 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu) profile_hit(KVM_PROFILING, (void *)rip); } + if (unlikely(vcpu->arch.tsc_always_catchup)) + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); - kvm_lapic_sync_from_vapic(vcpu); + if (vcpu->arch.apic_attention) + kvm_lapic_sync_from_vapic(vcpu); r = kvm_x86_ops->handle_exit(vcpu); + return r; + +cancel_injection: + kvm_x86_ops->cancel_injection(vcpu); + if (unlikely(vcpu->arch.apic_attention)) + kvm_lapic_sync_from_vapic(vcpu); out: return r; } @@ -3974,37 +6161,31 @@ out: static int __vcpu_run(struct kvm_vcpu *vcpu) { int r; + struct kvm *kvm = vcpu->kvm; - if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) { - pr_debug("vcpu %d received sipi with vector # %x\n", - vcpu->vcpu_id, vcpu->arch.sipi_vector); - kvm_lapic_reset(vcpu); - r = kvm_arch_vcpu_reset(vcpu); - if (r) - return r; - vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; - } - - down_read(&vcpu->kvm->slots_lock); - vapic_enter(vcpu); + vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); r = 1; while (r > 0) { - if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) + if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && + !vcpu->arch.apf.halted) r = vcpu_enter_guest(vcpu); else { - up_read(&vcpu->kvm->slots_lock); + srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); kvm_vcpu_block(vcpu); - down_read(&vcpu->kvm->slots_lock); - if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests)) - { + vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); + if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) { + kvm_apic_accept_events(vcpu); switch(vcpu->arch.mp_state) { case KVM_MP_STATE_HALTED: + vcpu->arch.pv.pv_unhalted = false; vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; case KVM_MP_STATE_RUNNABLE: + vcpu->arch.apf.halted = false; + break; + case KVM_MP_STATE_INIT_RECEIVED: break; - case KVM_MP_STATE_SIPI_RECEIVED: default: r = -EINTR; break; @@ -4024,87 +6205,167 @@ static int __vcpu_run(struct kvm_vcpu *vcpu) vcpu->run->exit_reason = KVM_EXIT_INTR; ++vcpu->stat.request_irq_exits; } + + kvm_check_async_pf_completion(vcpu); + if (signal_pending(current)) { r = -EINTR; vcpu->run->exit_reason = KVM_EXIT_INTR; ++vcpu->stat.signal_exits; } if (need_resched()) { - up_read(&vcpu->kvm->slots_lock); - kvm_resched(vcpu); - down_read(&vcpu->kvm->slots_lock); + srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); + cond_resched(); + vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); } } - up_read(&vcpu->kvm->slots_lock); - post_kvm_run_save(vcpu); - - vapic_exit(vcpu); + srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); return r; } +static inline int complete_emulated_io(struct kvm_vcpu *vcpu) +{ + int r; + vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); + r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); + srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); + if (r != EMULATE_DONE) + return 0; + return 1; +} + +static int complete_emulated_pio(struct kvm_vcpu *vcpu) +{ + BUG_ON(!vcpu->arch.pio.count); + + return complete_emulated_io(vcpu); +} + +/* + * Implements the following, as a state machine: + * + * read: + * for each fragment + * for each mmio piece in the fragment + * write gpa, len + * exit + * copy data + * execute insn + * + * write: + * for each fragment + * for each mmio piece in the fragment + * write gpa, len + * copy data + * exit + */ +static int complete_emulated_mmio(struct kvm_vcpu *vcpu) +{ + struct kvm_run *run = vcpu->run; + struct kvm_mmio_fragment *frag; + unsigned len; + + BUG_ON(!vcpu->mmio_needed); + + /* Complete previous fragment */ + frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; + len = min(8u, frag->len); + if (!vcpu->mmio_is_write) + memcpy(frag->data, run->mmio.data, len); + + if (frag->len <= 8) { + /* Switch to the next fragment. */ + frag++; + vcpu->mmio_cur_fragment++; + } else { + /* Go forward to the next mmio piece. */ + frag->data += len; + frag->gpa += len; + frag->len -= len; + } + + if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { + vcpu->mmio_needed = 0; + + /* FIXME: return into emulator if single-stepping. */ + if (vcpu->mmio_is_write) + return 1; + vcpu->mmio_read_completed = 1; + return complete_emulated_io(vcpu); + } + + run->exit_reason = KVM_EXIT_MMIO; + run->mmio.phys_addr = frag->gpa; + if (vcpu->mmio_is_write) + memcpy(run->mmio.data, frag->data, min(8u, frag->len)); + run->mmio.len = min(8u, frag->len); + run->mmio.is_write = vcpu->mmio_is_write; + vcpu->arch.complete_userspace_io = complete_emulated_mmio; + return 0; +} + + int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { int r; sigset_t sigsaved; - vcpu_load(vcpu); + if (!tsk_used_math(current) && init_fpu(current)) + return -ENOMEM; if (vcpu->sigset_active) sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { kvm_vcpu_block(vcpu); + kvm_apic_accept_events(vcpu); clear_bit(KVM_REQ_UNHALT, &vcpu->requests); r = -EAGAIN; goto out; } /* re-sync apic's tpr */ - if (!irqchip_in_kernel(vcpu->kvm)) - kvm_set_cr8(vcpu, kvm_run->cr8); - - if (vcpu->arch.pio.cur_count) { - r = complete_pio(vcpu); - if (r) + if (!irqchip_in_kernel(vcpu->kvm)) { + if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { + r = -EINVAL; goto out; + } } - if (vcpu->mmio_needed) { - memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8); - vcpu->mmio_read_completed = 1; - vcpu->mmio_needed = 0; - down_read(&vcpu->kvm->slots_lock); - r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0, - EMULTYPE_NO_DECODE); - up_read(&vcpu->kvm->slots_lock); - if (r == EMULATE_DO_MMIO) { - /* - * Read-modify-write. Back to userspace. - */ - r = 0; + if (unlikely(vcpu->arch.complete_userspace_io)) { + int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; + vcpu->arch.complete_userspace_io = NULL; + r = cui(vcpu); + if (r <= 0) goto out; - } - } - if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) - kvm_register_write(vcpu, VCPU_REGS_RAX, - kvm_run->hypercall.ret); + } else + WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); r = __vcpu_run(vcpu); out: + post_kvm_run_save(vcpu); if (vcpu->sigset_active) sigprocmask(SIG_SETMASK, &sigsaved, NULL); - vcpu_put(vcpu); return r; } int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { - vcpu_load(vcpu); - + if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { + /* + * We are here if userspace calls get_regs() in the middle of + * instruction emulation. Registers state needs to be copied + * back from emulation context to vcpu. Userspace shouldn't do + * that usually, but some bad designed PV devices (vmware + * backdoor interface) need this to work + */ + emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); + vcpu->arch.emulate_regs_need_sync_to_vcpu = false; + } regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); @@ -4127,14 +6388,13 @@ int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) regs->rip = kvm_rip_read(vcpu); regs->rflags = kvm_get_rflags(vcpu); - vcpu_put(vcpu); - return 0; } int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { - vcpu_load(vcpu); + vcpu->arch.emulate_regs_need_sync_from_vcpu = true; + vcpu->arch.emulate_regs_need_sync_to_vcpu = false; kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); @@ -4160,17 +6420,11 @@ int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) vcpu->arch.exception.pending = false; - vcpu_put(vcpu); + kvm_make_request(KVM_REQ_EVENT, vcpu); return 0; } -void kvm_get_segment(struct kvm_vcpu *vcpu, - struct kvm_segment *var, int seg) -{ - kvm_x86_ops->get_segment(vcpu, var, seg); -} - void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) { struct kvm_segment cs; @@ -4184,9 +6438,7 @@ EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { - struct descriptor_table dt; - - vcpu_load(vcpu); + struct desc_ptr dt; kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); @@ -4199,19 +6451,18 @@ int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); kvm_x86_ops->get_idt(vcpu, &dt); - sregs->idt.limit = dt.limit; - sregs->idt.base = dt.base; + sregs->idt.limit = dt.size; + sregs->idt.base = dt.address; kvm_x86_ops->get_gdt(vcpu, &dt); - sregs->gdt.limit = dt.limit; - sregs->gdt.base = dt.base; + sregs->gdt.limit = dt.size; + sregs->gdt.base = dt.address; - kvm_x86_ops->decache_cr4_guest_bits(vcpu); - sregs->cr0 = vcpu->arch.cr0; + sregs->cr0 = kvm_read_cr0(vcpu); sregs->cr2 = vcpu->arch.cr2; - sregs->cr3 = vcpu->arch.cr3; - sregs->cr4 = vcpu->arch.cr4; + sregs->cr3 = kvm_read_cr3(vcpu); + sregs->cr4 = kvm_read_cr4(vcpu); sregs->cr8 = kvm_get_cr8(vcpu); - sregs->efer = vcpu->arch.shadow_efer; + sregs->efer = vcpu->arch.efer; sregs->apic_base = kvm_get_apic_base(vcpu); memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); @@ -4220,504 +6471,115 @@ int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, set_bit(vcpu->arch.interrupt.nr, (unsigned long *)sregs->interrupt_bitmap); - vcpu_put(vcpu); - return 0; } int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { - vcpu_load(vcpu); - mp_state->mp_state = vcpu->arch.mp_state; - vcpu_put(vcpu); - return 0; -} - -int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, - struct kvm_mp_state *mp_state) -{ - vcpu_load(vcpu); - vcpu->arch.mp_state = mp_state->mp_state; - vcpu_put(vcpu); - return 0; -} - -static void kvm_set_segment(struct kvm_vcpu *vcpu, - struct kvm_segment *var, int seg) -{ - kvm_x86_ops->set_segment(vcpu, var, seg); -} - -static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector, - struct kvm_segment *kvm_desct) -{ - kvm_desct->base = get_desc_base(seg_desc); - kvm_desct->limit = get_desc_limit(seg_desc); - if (seg_desc->g) { - kvm_desct->limit <<= 12; - kvm_desct->limit |= 0xfff; - } - kvm_desct->selector = selector; - kvm_desct->type = seg_desc->type; - kvm_desct->present = seg_desc->p; - kvm_desct->dpl = seg_desc->dpl; - kvm_desct->db = seg_desc->d; - kvm_desct->s = seg_desc->s; - kvm_desct->l = seg_desc->l; - kvm_desct->g = seg_desc->g; - kvm_desct->avl = seg_desc->avl; - if (!selector) - kvm_desct->unusable = 1; + kvm_apic_accept_events(vcpu); + if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && + vcpu->arch.pv.pv_unhalted) + mp_state->mp_state = KVM_MP_STATE_RUNNABLE; else - kvm_desct->unusable = 0; - kvm_desct->padding = 0; -} - -static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu, - u16 selector, - struct descriptor_table *dtable) -{ - if (selector & 1 << 2) { - struct kvm_segment kvm_seg; - - kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR); - - if (kvm_seg.unusable) - dtable->limit = 0; - else - dtable->limit = kvm_seg.limit; - dtable->base = kvm_seg.base; - } - else - kvm_x86_ops->get_gdt(vcpu, dtable); -} - -/* allowed just for 8 bytes segments */ -static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, - struct desc_struct *seg_desc) -{ - struct descriptor_table dtable; - u16 index = selector >> 3; - - get_segment_descriptor_dtable(vcpu, selector, &dtable); + mp_state->mp_state = vcpu->arch.mp_state; - if (dtable.limit < index * 8 + 7) { - kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc); - return 1; - } - return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu); -} - -/* allowed just for 8 bytes segments */ -static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, - struct desc_struct *seg_desc) -{ - struct descriptor_table dtable; - u16 index = selector >> 3; - - get_segment_descriptor_dtable(vcpu, selector, &dtable); - - if (dtable.limit < index * 8 + 7) - return 1; - return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu); -} - -static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu, - struct desc_struct *seg_desc) -{ - u32 base_addr = get_desc_base(seg_desc); - - return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr); -} - -static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg) -{ - struct kvm_segment kvm_seg; - - kvm_get_segment(vcpu, &kvm_seg, seg); - return kvm_seg.selector; -} - -static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu, - u16 selector, - struct kvm_segment *kvm_seg) -{ - struct desc_struct seg_desc; - - if (load_guest_segment_descriptor(vcpu, selector, &seg_desc)) - return 1; - seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg); - return 0; -} - -static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg) -{ - struct kvm_segment segvar = { - .base = selector << 4, - .limit = 0xffff, - .selector = selector, - .type = 3, - .present = 1, - .dpl = 3, - .db = 0, - .s = 1, - .l = 0, - .g = 0, - .avl = 0, - .unusable = 0, - }; - kvm_x86_ops->set_segment(vcpu, &segvar, seg); return 0; } -static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg) -{ - return (seg != VCPU_SREG_LDTR) && - (seg != VCPU_SREG_TR) && - (kvm_get_rflags(vcpu) & X86_EFLAGS_VM); -} - -int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, - int type_bits, int seg) +int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, + struct kvm_mp_state *mp_state) { - struct kvm_segment kvm_seg; - - if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE)) - return kvm_load_realmode_segment(vcpu, selector, seg); - if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg)) - return 1; - kvm_seg.type |= type_bits; - - if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS && - seg != VCPU_SREG_LDTR) - if (!kvm_seg.s) - kvm_seg.unusable = 1; - - kvm_set_segment(vcpu, &kvm_seg, seg); - return 0; -} - -static void save_state_to_tss32(struct kvm_vcpu *vcpu, - struct tss_segment_32 *tss) -{ - tss->cr3 = vcpu->arch.cr3; - tss->eip = kvm_rip_read(vcpu); - tss->eflags = kvm_get_rflags(vcpu); - tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX); - tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); - tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX); - tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX); - tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP); - tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP); - tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI); - tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI); - tss->es = get_segment_selector(vcpu, VCPU_SREG_ES); - tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS); - tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS); - tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS); - tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS); - tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS); - tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR); -} - -static int load_state_from_tss32(struct kvm_vcpu *vcpu, - struct tss_segment_32 *tss) -{ - kvm_set_cr3(vcpu, tss->cr3); - - kvm_rip_write(vcpu, tss->eip); - kvm_set_rflags(vcpu, tss->eflags | 2); - - kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax); - kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx); - kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx); - kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx); - kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp); - kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp); - kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi); - kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi); - - if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR)) - return 1; - - if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES)) - return 1; - - if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS)) - return 1; - - if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS)) - return 1; - - if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS)) - return 1; - - if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS)) - return 1; - - if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS)) - return 1; - return 0; -} - -static void save_state_to_tss16(struct kvm_vcpu *vcpu, - struct tss_segment_16 *tss) -{ - tss->ip = kvm_rip_read(vcpu); - tss->flag = kvm_get_rflags(vcpu); - tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX); - tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX); - tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX); - tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX); - tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP); - tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP); - tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI); - tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI); - - tss->es = get_segment_selector(vcpu, VCPU_SREG_ES); - tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS); - tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS); - tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS); - tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR); -} - -static int load_state_from_tss16(struct kvm_vcpu *vcpu, - struct tss_segment_16 *tss) -{ - kvm_rip_write(vcpu, tss->ip); - kvm_set_rflags(vcpu, tss->flag | 2); - kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax); - kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx); - kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx); - kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx); - kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp); - kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp); - kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si); - kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di); - - if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR)) - return 1; - - if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES)) - return 1; - - if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS)) - return 1; - - if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS)) - return 1; + if (!kvm_vcpu_has_lapic(vcpu) && + mp_state->mp_state != KVM_MP_STATE_RUNNABLE) + return -EINVAL; - if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS)) - return 1; + if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { + vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; + set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); + } else + vcpu->arch.mp_state = mp_state->mp_state; + kvm_make_request(KVM_REQ_EVENT, vcpu); return 0; } -static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector, - u16 old_tss_sel, u32 old_tss_base, - struct desc_struct *nseg_desc) -{ - struct tss_segment_16 tss_segment_16; - int ret = 0; - - if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16, - sizeof tss_segment_16)) - goto out; - - save_state_to_tss16(vcpu, &tss_segment_16); - - if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16, - sizeof tss_segment_16)) - goto out; - - if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc), - &tss_segment_16, sizeof tss_segment_16)) - goto out; - - if (old_tss_sel != 0xffff) { - tss_segment_16.prev_task_link = old_tss_sel; - - if (kvm_write_guest(vcpu->kvm, - get_tss_base_addr(vcpu, nseg_desc), - &tss_segment_16.prev_task_link, - sizeof tss_segment_16.prev_task_link)) - goto out; - } - - if (load_state_from_tss16(vcpu, &tss_segment_16)) - goto out; - - ret = 1; -out: - return ret; -} - -static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector, - u16 old_tss_sel, u32 old_tss_base, - struct desc_struct *nseg_desc) -{ - struct tss_segment_32 tss_segment_32; - int ret = 0; - - if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32, - sizeof tss_segment_32)) - goto out; - - save_state_to_tss32(vcpu, &tss_segment_32); - - if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32, - sizeof tss_segment_32)) - goto out; - - if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc), - &tss_segment_32, sizeof tss_segment_32)) - goto out; - - if (old_tss_sel != 0xffff) { - tss_segment_32.prev_task_link = old_tss_sel; - - if (kvm_write_guest(vcpu->kvm, - get_tss_base_addr(vcpu, nseg_desc), - &tss_segment_32.prev_task_link, - sizeof tss_segment_32.prev_task_link)) - goto out; - } - - if (load_state_from_tss32(vcpu, &tss_segment_32)) - goto out; - - ret = 1; -out: - return ret; -} - -int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason) +int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, + int reason, bool has_error_code, u32 error_code) { - struct kvm_segment tr_seg; - struct desc_struct cseg_desc; - struct desc_struct nseg_desc; - int ret = 0; - u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR); - u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR); - - old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base); - - /* FIXME: Handle errors. Failure to read either TSS or their - * descriptors should generate a pagefault. - */ - if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc)) - goto out; - - if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc)) - goto out; - - if (reason != TASK_SWITCH_IRET) { - int cpl; - - cpl = kvm_x86_ops->get_cpl(vcpu); - if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) { - kvm_queue_exception_e(vcpu, GP_VECTOR, 0); - return 1; - } - } - - if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) { - kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc); - return 1; - } - - if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) { - cseg_desc.type &= ~(1 << 1); //clear the B flag - save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc); - } - - if (reason == TASK_SWITCH_IRET) { - u32 eflags = kvm_get_rflags(vcpu); - kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT); - } + struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; + int ret; - /* set back link to prev task only if NT bit is set in eflags - note that old_tss_sel is not used afetr this point */ - if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE) - old_tss_sel = 0xffff; + init_emulate_ctxt(vcpu); - if (nseg_desc.type & 8) - ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel, - old_tss_base, &nseg_desc); - else - ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel, - old_tss_base, &nseg_desc); + ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, + has_error_code, error_code); - if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) { - u32 eflags = kvm_get_rflags(vcpu); - kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT); - } + if (ret) + return EMULATE_FAIL; - if (reason != TASK_SWITCH_IRET) { - nseg_desc.type |= (1 << 1); - save_guest_segment_descriptor(vcpu, tss_selector, - &nseg_desc); - } - - kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS); - seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg); - tr_seg.type = 11; - kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR); -out: - return ret; + kvm_rip_write(vcpu, ctxt->eip); + kvm_set_rflags(vcpu, ctxt->eflags); + kvm_make_request(KVM_REQ_EVENT, vcpu); + return EMULATE_DONE; } EXPORT_SYMBOL_GPL(kvm_task_switch); int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { + struct msr_data apic_base_msr; int mmu_reset_needed = 0; - int pending_vec, max_bits; - struct descriptor_table dt; + int pending_vec, max_bits, idx; + struct desc_ptr dt; - vcpu_load(vcpu); + if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) + return -EINVAL; - dt.limit = sregs->idt.limit; - dt.base = sregs->idt.base; + dt.size = sregs->idt.limit; + dt.address = sregs->idt.base; kvm_x86_ops->set_idt(vcpu, &dt); - dt.limit = sregs->gdt.limit; - dt.base = sregs->gdt.base; + dt.size = sregs->gdt.limit; + dt.address = sregs->gdt.base; kvm_x86_ops->set_gdt(vcpu, &dt); vcpu->arch.cr2 = sregs->cr2; - mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3; + mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; vcpu->arch.cr3 = sregs->cr3; + __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); kvm_set_cr8(vcpu, sregs->cr8); - mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer; + mmu_reset_needed |= vcpu->arch.efer != sregs->efer; kvm_x86_ops->set_efer(vcpu, sregs->efer); - kvm_set_apic_base(vcpu, sregs->apic_base); + apic_base_msr.data = sregs->apic_base; + apic_base_msr.host_initiated = true; + kvm_set_apic_base(vcpu, &apic_base_msr); - kvm_x86_ops->decache_cr4_guest_bits(vcpu); - - mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0; + mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; kvm_x86_ops->set_cr0(vcpu, sregs->cr0); vcpu->arch.cr0 = sregs->cr0; - mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4; + mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; kvm_x86_ops->set_cr4(vcpu, sregs->cr4); + if (sregs->cr4 & X86_CR4_OSXSAVE) + kvm_update_cpuid(vcpu); + + idx = srcu_read_lock(&vcpu->kvm->srcu); if (!is_long_mode(vcpu) && is_pae(vcpu)) { - load_pdptrs(vcpu, vcpu->arch.cr3); + load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); mmu_reset_needed = 1; } + srcu_read_unlock(&vcpu->kvm->srcu, idx); if (mmu_reset_needed) kvm_mmu_reset_context(vcpu); - max_bits = (sizeof sregs->interrupt_bitmap) << 3; + max_bits = KVM_NR_INTERRUPTS; pending_vec = find_first_bit( (const unsigned long *)sregs->interrupt_bitmap, max_bits); if (pending_vec < max_bits) { kvm_queue_interrupt(vcpu, pending_vec, false); pr_debug("Set back pending irq %d\n", pending_vec); - if (irqchip_in_kernel(vcpu->kvm)) - kvm_pic_clear_isr_ack(vcpu->kvm); } kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); @@ -4735,10 +6597,10 @@ int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, /* Older userspace won't unhalt the vcpu on reset. */ if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && - !(vcpu->arch.cr0 & X86_CR0_PE)) + !is_protmode(vcpu)) vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; - vcpu_put(vcpu); + kvm_make_request(KVM_REQ_EVENT, vcpu); return 0; } @@ -4749,12 +6611,10 @@ int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, unsigned long rflags; int i, r; - vcpu_load(vcpu); - if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { r = -EBUSY; if (vcpu->arch.exception.pending) - goto unlock_out; + goto out; if (dbg->control & KVM_GUESTDBG_INJECT_DB) kvm_queue_exception(vcpu, DB_VECTOR); else @@ -4774,19 +6634,16 @@ int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { for (i = 0; i < KVM_NR_DB_REGS; ++i) vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; - vcpu->arch.switch_db_regs = - (dbg->arch.debugreg[7] & DR7_BP_EN_MASK); + vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; } else { for (i = 0; i < KVM_NR_DB_REGS; i++) vcpu->arch.eff_db[i] = vcpu->arch.db[i]; - vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK); } + kvm_update_dr7(vcpu); - if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { - vcpu->arch.singlestep_cs = - get_segment_selector(vcpu, VCPU_SREG_CS); - vcpu->arch.singlestep_rip = kvm_rip_read(vcpu); - } + if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) + vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + + get_segment_base(vcpu, VCPU_SREG_CS); /* * Trigger an rflags update that will inject or remove the trace @@ -4794,38 +6651,16 @@ int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, */ kvm_set_rflags(vcpu, rflags); - kvm_x86_ops->set_guest_debug(vcpu, dbg); + kvm_x86_ops->update_db_bp_intercept(vcpu); r = 0; -unlock_out: - vcpu_put(vcpu); +out: return r; } /* - * fxsave fpu state. Taken from x86_64/processor.h. To be killed when - * we have asm/x86/processor.h - */ -struct fxsave { - u16 cwd; - u16 swd; - u16 twd; - u16 fop; - u64 rip; - u64 rdp; - u32 mxcsr; - u32 mxcsr_mask; - u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */ -#ifdef CONFIG_X86_64 - u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */ -#else - u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */ -#endif -}; - -/* * Translate a guest virtual address to a guest physical address. */ int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, @@ -4833,25 +6668,23 @@ int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, { unsigned long vaddr = tr->linear_address; gpa_t gpa; + int idx; - vcpu_load(vcpu); - down_read(&vcpu->kvm->slots_lock); - gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr); - up_read(&vcpu->kvm->slots_lock); + idx = srcu_read_lock(&vcpu->kvm->srcu); + gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); + srcu_read_unlock(&vcpu->kvm->srcu, idx); tr->physical_address = gpa; tr->valid = gpa != UNMAPPED_GVA; tr->writeable = 1; tr->usermode = 0; - vcpu_put(vcpu); return 0; } int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { - struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image; - - vcpu_load(vcpu); + struct i387_fxsave_struct *fxsave = + &vcpu->arch.guest_fpu.state->fxsave; memcpy(fpu->fpr, fxsave->st_space, 128); fpu->fcw = fxsave->cwd; @@ -4862,16 +6695,13 @@ int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) fpu->last_dp = fxsave->rdp; memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); - vcpu_put(vcpu); - return 0; } int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { - struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image; - - vcpu_load(vcpu); + struct i387_fxsave_struct *fxsave = + &vcpu->arch.guest_fpu.state->fxsave; memcpy(fxsave->st_space, fpu->fpr, 128); fxsave->cwd = fpu->fcw; @@ -4882,76 +6712,83 @@ int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) fxsave->rdp = fpu->last_dp; memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); - vcpu_put(vcpu); - return 0; } -void fx_init(struct kvm_vcpu *vcpu) +int fx_init(struct kvm_vcpu *vcpu) { - unsigned after_mxcsr_mask; + int err; + + err = fpu_alloc(&vcpu->arch.guest_fpu); + if (err) + return err; + + fpu_finit(&vcpu->arch.guest_fpu); /* - * Touch the fpu the first time in non atomic context as if - * this is the first fpu instruction the exception handler - * will fire before the instruction returns and it'll have to - * allocate ram with GFP_KERNEL. + * Ensure guest xcr0 is valid for loading */ - if (!used_math()) - kvm_fx_save(&vcpu->arch.host_fx_image); - - /* Initialize guest FPU by resetting ours and saving into guest's */ - preempt_disable(); - kvm_fx_save(&vcpu->arch.host_fx_image); - kvm_fx_finit(); - kvm_fx_save(&vcpu->arch.guest_fx_image); - kvm_fx_restore(&vcpu->arch.host_fx_image); - preempt_enable(); + vcpu->arch.xcr0 = XSTATE_FP; vcpu->arch.cr0 |= X86_CR0_ET; - after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space); - vcpu->arch.guest_fx_image.mxcsr = 0x1f80; - memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask, - 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask); + + return 0; } EXPORT_SYMBOL_GPL(fx_init); +static void fx_free(struct kvm_vcpu *vcpu) +{ + fpu_free(&vcpu->arch.guest_fpu); +} + void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) { - if (!vcpu->fpu_active || vcpu->guest_fpu_loaded) + if (vcpu->guest_fpu_loaded) return; + /* + * Restore all possible states in the guest, + * and assume host would use all available bits. + * Guest xcr0 would be loaded later. + */ + kvm_put_guest_xcr0(vcpu); vcpu->guest_fpu_loaded = 1; - kvm_fx_save(&vcpu->arch.host_fx_image); - kvm_fx_restore(&vcpu->arch.guest_fx_image); + __kernel_fpu_begin(); + fpu_restore_checking(&vcpu->arch.guest_fpu); + trace_kvm_fpu(1); } -EXPORT_SYMBOL_GPL(kvm_load_guest_fpu); void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) { + kvm_put_guest_xcr0(vcpu); + if (!vcpu->guest_fpu_loaded) return; vcpu->guest_fpu_loaded = 0; - kvm_fx_save(&vcpu->arch.guest_fx_image); - kvm_fx_restore(&vcpu->arch.host_fx_image); + fpu_save_init(&vcpu->arch.guest_fpu); + __kernel_fpu_end(); ++vcpu->stat.fpu_reload; + kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); + trace_kvm_fpu(0); } -EXPORT_SYMBOL_GPL(kvm_put_guest_fpu); void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) { - if (vcpu->arch.time_page) { - kvm_release_page_dirty(vcpu->arch.time_page); - vcpu->arch.time_page = NULL; - } + kvmclock_reset(vcpu); + free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); + fx_free(vcpu); kvm_x86_ops->vcpu_free(vcpu); } struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) { + if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) + printk_once(KERN_WARNING + "kvm: SMP vm created on host with unstable TSC; " + "guest TSC will not be reliable\n"); return kvm_x86_ops->vcpu_create(kvm, id); } @@ -4959,60 +6796,184 @@ int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) { int r; - /* We do fxsave: this must be aligned. */ - BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF); - vcpu->arch.mtrr_state.have_fixed = 1; - vcpu_load(vcpu); - r = kvm_arch_vcpu_reset(vcpu); - if (r == 0) - r = kvm_mmu_setup(vcpu); + r = vcpu_load(vcpu); + if (r) + return r; + kvm_vcpu_reset(vcpu); + kvm_mmu_setup(vcpu); vcpu_put(vcpu); - if (r < 0) - goto free_vcpu; - return 0; -free_vcpu: - kvm_x86_ops->vcpu_free(vcpu); + return r; +} + +int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) +{ + int r; + struct msr_data msr; + struct kvm *kvm = vcpu->kvm; + + r = vcpu_load(vcpu); + if (r) + return r; + msr.data = 0x0; + msr.index = MSR_IA32_TSC; + msr.host_initiated = true; + kvm_write_tsc(vcpu, &msr); + vcpu_put(vcpu); + + schedule_delayed_work(&kvm->arch.kvmclock_sync_work, + KVMCLOCK_SYNC_PERIOD); + return r; } void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) { - vcpu_load(vcpu); + int r; + vcpu->arch.apf.msr_val = 0; + + r = vcpu_load(vcpu); + BUG_ON(r); kvm_mmu_unload(vcpu); vcpu_put(vcpu); + fx_free(vcpu); kvm_x86_ops->vcpu_free(vcpu); } -int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu) +void kvm_vcpu_reset(struct kvm_vcpu *vcpu) { - vcpu->arch.nmi_pending = false; + atomic_set(&vcpu->arch.nmi_queued, 0); + vcpu->arch.nmi_pending = 0; vcpu->arch.nmi_injected = false; - vcpu->arch.switch_db_regs = 0; memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); vcpu->arch.dr6 = DR6_FIXED_1; + kvm_update_dr6(vcpu); vcpu->arch.dr7 = DR7_FIXED_1; + kvm_update_dr7(vcpu); + + kvm_make_request(KVM_REQ_EVENT, vcpu); + vcpu->arch.apf.msr_val = 0; + vcpu->arch.st.msr_val = 0; + + kvmclock_reset(vcpu); - return kvm_x86_ops->vcpu_reset(vcpu); + kvm_clear_async_pf_completion_queue(vcpu); + kvm_async_pf_hash_reset(vcpu); + vcpu->arch.apf.halted = false; + + kvm_pmu_reset(vcpu); + + memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); + vcpu->arch.regs_avail = ~0; + vcpu->arch.regs_dirty = ~0; + + kvm_x86_ops->vcpu_reset(vcpu); +} + +void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector) +{ + struct kvm_segment cs; + + kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); + cs.selector = vector << 8; + cs.base = vector << 12; + kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); + kvm_rip_write(vcpu, 0); } int kvm_arch_hardware_enable(void *garbage) { + struct kvm *kvm; + struct kvm_vcpu *vcpu; + int i; + int ret; + u64 local_tsc; + u64 max_tsc = 0; + bool stable, backwards_tsc = false; + + kvm_shared_msr_cpu_online(); + ret = kvm_x86_ops->hardware_enable(garbage); + if (ret != 0) + return ret; + + local_tsc = native_read_tsc(); + stable = !check_tsc_unstable(); + list_for_each_entry(kvm, &vm_list, vm_list) { + kvm_for_each_vcpu(i, vcpu, kvm) { + if (!stable && vcpu->cpu == smp_processor_id()) + set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); + if (stable && vcpu->arch.last_host_tsc > local_tsc) { + backwards_tsc = true; + if (vcpu->arch.last_host_tsc > max_tsc) + max_tsc = vcpu->arch.last_host_tsc; + } + } + } + /* - * Since this may be called from a hotplug notifcation, - * we can't get the CPU frequency directly. + * Sometimes, even reliable TSCs go backwards. This happens on + * platforms that reset TSC during suspend or hibernate actions, but + * maintain synchronization. We must compensate. Fortunately, we can + * detect that condition here, which happens early in CPU bringup, + * before any KVM threads can be running. Unfortunately, we can't + * bring the TSCs fully up to date with real time, as we aren't yet far + * enough into CPU bringup that we know how much real time has actually + * elapsed; our helper function, get_kernel_ns() will be using boot + * variables that haven't been updated yet. + * + * So we simply find the maximum observed TSC above, then record the + * adjustment to TSC in each VCPU. When the VCPU later gets loaded, + * the adjustment will be applied. Note that we accumulate + * adjustments, in case multiple suspend cycles happen before some VCPU + * gets a chance to run again. In the event that no KVM threads get a + * chance to run, we will miss the entire elapsed period, as we'll have + * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may + * loose cycle time. This isn't too big a deal, since the loss will be + * uniform across all VCPUs (not to mention the scenario is extremely + * unlikely). It is possible that a second hibernate recovery happens + * much faster than a first, causing the observed TSC here to be + * smaller; this would require additional padding adjustment, which is + * why we set last_host_tsc to the local tsc observed here. + * + * N.B. - this code below runs only on platforms with reliable TSC, + * as that is the only way backwards_tsc is set above. Also note + * that this runs for ALL vcpus, which is not a bug; all VCPUs should + * have the same delta_cyc adjustment applied if backwards_tsc + * is detected. Note further, this adjustment is only done once, + * as we reset last_host_tsc on all VCPUs to stop this from being + * called multiple times (one for each physical CPU bringup). + * + * Platforms with unreliable TSCs don't have to deal with this, they + * will be compensated by the logic in vcpu_load, which sets the TSC to + * catchup mode. This will catchup all VCPUs to real time, but cannot + * guarantee that they stay in perfect synchronization. */ - if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { - int cpu = raw_smp_processor_id(); - per_cpu(cpu_tsc_khz, cpu) = 0; - } + if (backwards_tsc) { + u64 delta_cyc = max_tsc - local_tsc; + backwards_tsc_observed = true; + list_for_each_entry(kvm, &vm_list, vm_list) { + kvm_for_each_vcpu(i, vcpu, kvm) { + vcpu->arch.tsc_offset_adjustment += delta_cyc; + vcpu->arch.last_host_tsc = local_tsc; + set_bit(KVM_REQ_MASTERCLOCK_UPDATE, + &vcpu->requests); + } - kvm_shared_msr_cpu_online(); + /* + * We have to disable TSC offset matching.. if you were + * booting a VM while issuing an S4 host suspend.... + * you may have some problem. Solving this issue is + * left as an exercise to the reader. + */ + kvm->arch.last_tsc_nsec = 0; + kvm->arch.last_tsc_write = 0; + } - return kvm_x86_ops->hardware_enable(garbage); + } + return 0; } void kvm_arch_hardware_disable(void *garbage) @@ -5036,6 +6997,13 @@ void kvm_arch_check_processor_compat(void *rtn) kvm_x86_ops->check_processor_compatibility(rtn); } +bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) +{ + return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); +} + +struct static_key kvm_no_apic_vcpu __read_mostly; + int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) { struct page *page; @@ -5045,7 +7013,8 @@ int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) BUG_ON(vcpu->kvm == NULL); kvm = vcpu->kvm; - vcpu->arch.mmu.root_hpa = INVALID_PAGE; + vcpu->arch.pv.pv_unhalted = false; + vcpu->arch.emulate_ctxt.ops = &emulate_ops; if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; else @@ -5058,6 +7027,8 @@ int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) } vcpu->arch.pio_data = page_address(page); + kvm_set_tsc_khz(vcpu, max_tsc_khz); + r = kvm_mmu_create(vcpu); if (r < 0) goto fail_free_pio_data; @@ -5066,18 +7037,42 @@ int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) r = kvm_create_lapic(vcpu); if (r < 0) goto fail_mmu_destroy; - } + } else + static_key_slow_inc(&kvm_no_apic_vcpu); vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, GFP_KERNEL); if (!vcpu->arch.mce_banks) { r = -ENOMEM; - goto fail_mmu_destroy; + goto fail_free_lapic; } vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; - return 0; + if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { + r = -ENOMEM; + goto fail_free_mce_banks; + } + + r = fx_init(vcpu); + if (r) + goto fail_free_wbinvd_dirty_mask; + + vcpu->arch.ia32_tsc_adjust_msr = 0x0; + vcpu->arch.pv_time_enabled = false; + vcpu->arch.guest_supported_xcr0 = 0; + vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; + + kvm_async_pf_hash_reset(vcpu); + kvm_pmu_init(vcpu); + + return 0; +fail_free_wbinvd_dirty_mask: + free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); +fail_free_mce_banks: + kfree(vcpu->arch.mce_banks); +fail_free_lapic: + kvm_free_lapic(vcpu); fail_mmu_destroy: kvm_mmu_destroy(vcpu); fail_free_pio_data: @@ -5088,34 +7083,52 @@ fail: void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) { + int idx; + + kvm_pmu_destroy(vcpu); + kfree(vcpu->arch.mce_banks); kvm_free_lapic(vcpu); - down_read(&vcpu->kvm->slots_lock); + idx = srcu_read_lock(&vcpu->kvm->srcu); kvm_mmu_destroy(vcpu); - up_read(&vcpu->kvm->slots_lock); + srcu_read_unlock(&vcpu->kvm->srcu, idx); free_page((unsigned long)vcpu->arch.pio_data); + if (!irqchip_in_kernel(vcpu->kvm)) + static_key_slow_dec(&kvm_no_apic_vcpu); } -struct kvm *kvm_arch_create_vm(void) +int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) { - struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); - - if (!kvm) - return ERR_PTR(-ENOMEM); + if (type) + return -EINVAL; INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); + atomic_set(&kvm->arch.noncoherent_dma_count, 0); /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); + /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ + set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, + &kvm->arch.irq_sources_bitmap); + + raw_spin_lock_init(&kvm->arch.tsc_write_lock); + mutex_init(&kvm->arch.apic_map_lock); + spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); + + pvclock_update_vm_gtod_copy(kvm); - rdtscll(kvm->arch.vm_init_tsc); + INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); + INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); - return kvm; + return 0; } static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) { - vcpu_load(vcpu); + int r; + r = vcpu_load(vcpu); + BUG_ON(r); kvm_mmu_unload(vcpu); vcpu_put(vcpu); } @@ -5128,8 +7141,10 @@ static void kvm_free_vcpus(struct kvm *kvm) /* * Unpin any mmu pages first. */ - kvm_for_each_vcpu(i, vcpu, kvm) + kvm_for_each_vcpu(i, vcpu, kvm) { + kvm_clear_async_pf_completion_queue(vcpu); kvm_unload_vcpu_mmu(vcpu); + } kvm_for_each_vcpu(i, vcpu, kvm) kvm_arch_vcpu_free(vcpu); @@ -5143,112 +7158,226 @@ static void kvm_free_vcpus(struct kvm *kvm) void kvm_arch_sync_events(struct kvm *kvm) { + cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); + cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); kvm_free_all_assigned_devices(kvm); + kvm_free_pit(kvm); } void kvm_arch_destroy_vm(struct kvm *kvm) { + if (current->mm == kvm->mm) { + /* + * Free memory regions allocated on behalf of userspace, + * unless the the memory map has changed due to process exit + * or fd copying. + */ + struct kvm_userspace_memory_region mem; + memset(&mem, 0, sizeof(mem)); + mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT; + kvm_set_memory_region(kvm, &mem); + + mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT; + kvm_set_memory_region(kvm, &mem); + + mem.slot = TSS_PRIVATE_MEMSLOT; + kvm_set_memory_region(kvm, &mem); + } kvm_iommu_unmap_guest(kvm); - kvm_free_pit(kvm); kfree(kvm->arch.vpic); kfree(kvm->arch.vioapic); kvm_free_vcpus(kvm); - kvm_free_physmem(kvm); if (kvm->arch.apic_access_page) put_page(kvm->arch.apic_access_page); if (kvm->arch.ept_identity_pagetable) put_page(kvm->arch.ept_identity_pagetable); - kfree(kvm); + kfree(rcu_dereference_check(kvm->arch.apic_map, 1)); } -int kvm_arch_set_memory_region(struct kvm *kvm, - struct kvm_userspace_memory_region *mem, - struct kvm_memory_slot old, - int user_alloc) +void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, + struct kvm_memory_slot *dont) { - int npages = mem->memory_size >> PAGE_SHIFT; - struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot]; + int i; - /*To keep backward compatibility with older userspace, - *x86 needs to hanlde !user_alloc case. - */ - if (!user_alloc) { - if (npages && !old.rmap) { - unsigned long userspace_addr; - - down_write(¤t->mm->mmap_sem); - userspace_addr = do_mmap(NULL, 0, - npages * PAGE_SIZE, - PROT_READ | PROT_WRITE, - MAP_PRIVATE | MAP_ANONYMOUS, - 0); - up_write(¤t->mm->mmap_sem); - - if (IS_ERR((void *)userspace_addr)) - return PTR_ERR((void *)userspace_addr); - - /* set userspace_addr atomically for kvm_hva_to_rmapp */ - spin_lock(&kvm->mmu_lock); - memslot->userspace_addr = userspace_addr; - spin_unlock(&kvm->mmu_lock); - } else { - if (!old.user_alloc && old.rmap) { - int ret; - - down_write(¤t->mm->mmap_sem); - ret = do_munmap(current->mm, old.userspace_addr, - old.npages * PAGE_SIZE); - up_write(¤t->mm->mmap_sem); - if (ret < 0) - printk(KERN_WARNING - "kvm_vm_ioctl_set_memory_region: " - "failed to munmap memory\n"); - } + for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { + if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { + kvm_kvfree(free->arch.rmap[i]); + free->arch.rmap[i] = NULL; + } + if (i == 0) + continue; + + if (!dont || free->arch.lpage_info[i - 1] != + dont->arch.lpage_info[i - 1]) { + kvm_kvfree(free->arch.lpage_info[i - 1]); + free->arch.lpage_info[i - 1] = NULL; } } +} - spin_lock(&kvm->mmu_lock); - if (!kvm->arch.n_requested_mmu_pages) { - unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); - kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); +int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, + unsigned long npages) +{ + int i; + + for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { + unsigned long ugfn; + int lpages; + int level = i + 1; + + lpages = gfn_to_index(slot->base_gfn + npages - 1, + slot->base_gfn, level) + 1; + + slot->arch.rmap[i] = + kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); + if (!slot->arch.rmap[i]) + goto out_free; + if (i == 0) + continue; + + slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages * + sizeof(*slot->arch.lpage_info[i - 1])); + if (!slot->arch.lpage_info[i - 1]) + goto out_free; + + if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) + slot->arch.lpage_info[i - 1][0].write_count = 1; + if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) + slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1; + ugfn = slot->userspace_addr >> PAGE_SHIFT; + /* + * If the gfn and userspace address are not aligned wrt each + * other, or if explicitly asked to, disable large page + * support for this slot + */ + if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || + !kvm_largepages_enabled()) { + unsigned long j; + + for (j = 0; j < lpages; ++j) + slot->arch.lpage_info[i - 1][j].write_count = 1; + } } - kvm_mmu_slot_remove_write_access(kvm, mem->slot); - spin_unlock(&kvm->mmu_lock); + return 0; + +out_free: + for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { + kvm_kvfree(slot->arch.rmap[i]); + slot->arch.rmap[i] = NULL; + if (i == 0) + continue; + + kvm_kvfree(slot->arch.lpage_info[i - 1]); + slot->arch.lpage_info[i - 1] = NULL; + } + return -ENOMEM; +} + +void kvm_arch_memslots_updated(struct kvm *kvm) +{ + /* + * memslots->generation has been incremented. + * mmio generation may have reached its maximum value. + */ + kvm_mmu_invalidate_mmio_sptes(kvm); +} + +int kvm_arch_prepare_memory_region(struct kvm *kvm, + struct kvm_memory_slot *memslot, + struct kvm_userspace_memory_region *mem, + enum kvm_mr_change change) +{ + /* + * Only private memory slots need to be mapped here since + * KVM_SET_MEMORY_REGION ioctl is no longer supported. + */ + if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) { + unsigned long userspace_addr; + + /* + * MAP_SHARED to prevent internal slot pages from being moved + * by fork()/COW. + */ + userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE, + PROT_READ | PROT_WRITE, + MAP_SHARED | MAP_ANONYMOUS, 0); + + if (IS_ERR((void *)userspace_addr)) + return PTR_ERR((void *)userspace_addr); + + memslot->userspace_addr = userspace_addr; + } return 0; } -void kvm_arch_flush_shadow(struct kvm *kvm) +void kvm_arch_commit_memory_region(struct kvm *kvm, + struct kvm_userspace_memory_region *mem, + const struct kvm_memory_slot *old, + enum kvm_mr_change change) +{ + + int nr_mmu_pages = 0; + + if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) { + int ret; + + ret = vm_munmap(old->userspace_addr, + old->npages * PAGE_SIZE); + if (ret < 0) + printk(KERN_WARNING + "kvm_vm_ioctl_set_memory_region: " + "failed to munmap memory\n"); + } + + if (!kvm->arch.n_requested_mmu_pages) + nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); + + if (nr_mmu_pages) + kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); + /* + * Write protect all pages for dirty logging. + * + * All the sptes including the large sptes which point to this + * slot are set to readonly. We can not create any new large + * spte on this slot until the end of the logging. + * + * See the comments in fast_page_fault(). + */ + if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) + kvm_mmu_slot_remove_write_access(kvm, mem->slot); +} + +void kvm_arch_flush_shadow_all(struct kvm *kvm) +{ + kvm_mmu_invalidate_zap_all_pages(kvm); +} + +void kvm_arch_flush_shadow_memslot(struct kvm *kvm, + struct kvm_memory_slot *slot) { - kvm_mmu_zap_all(kvm); - kvm_reload_remote_mmus(kvm); + kvm_mmu_invalidate_zap_all_pages(kvm); } int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) { - return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE - || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED - || vcpu->arch.nmi_pending || + if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) + kvm_x86_ops->check_nested_events(vcpu, false); + + return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && + !vcpu->arch.apf.halted) + || !list_empty_careful(&vcpu->async_pf.done) + || kvm_apic_has_events(vcpu) + || vcpu->arch.pv.pv_unhalted + || atomic_read(&vcpu->arch.nmi_queued) || (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu)); } -void kvm_vcpu_kick(struct kvm_vcpu *vcpu) +int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) { - int me; - int cpu = vcpu->cpu; - - if (waitqueue_active(&vcpu->wq)) { - wake_up_interruptible(&vcpu->wq); - ++vcpu->stat.halt_wakeup; - } - - me = get_cpu(); - if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) - if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests)) - smp_send_reschedule(cpu); - put_cpu(); + return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; } int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) @@ -5256,13 +7385,22 @@ int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) return kvm_x86_ops->interrupt_allowed(vcpu); } +bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) +{ + unsigned long current_rip = kvm_rip_read(vcpu) + + get_segment_base(vcpu, VCPU_SREG_CS); + + return current_rip == linear_rip; +} +EXPORT_SYMBOL_GPL(kvm_is_linear_rip); + unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) { unsigned long rflags; rflags = kvm_x86_ops->get_rflags(vcpu); if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) - rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF); + rflags &= ~X86_EFLAGS_TF; return rflags; } EXPORT_SYMBOL_GPL(kvm_get_rflags); @@ -5270,14 +7408,173 @@ EXPORT_SYMBOL_GPL(kvm_get_rflags); void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) { if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && - vcpu->arch.singlestep_cs == - get_segment_selector(vcpu, VCPU_SREG_CS) && - vcpu->arch.singlestep_rip == kvm_rip_read(vcpu)) - rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF; + kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) + rflags |= X86_EFLAGS_TF; kvm_x86_ops->set_rflags(vcpu, rflags); + kvm_make_request(KVM_REQ_EVENT, vcpu); } EXPORT_SYMBOL_GPL(kvm_set_rflags); +void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) +{ + int r; + + if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || + work->wakeup_all) + return; + + r = kvm_mmu_reload(vcpu); + if (unlikely(r)) + return; + + if (!vcpu->arch.mmu.direct_map && + work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) + return; + + vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); +} + +static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) +{ + return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); +} + +static inline u32 kvm_async_pf_next_probe(u32 key) +{ + return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); +} + +static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) +{ + u32 key = kvm_async_pf_hash_fn(gfn); + + while (vcpu->arch.apf.gfns[key] != ~0) + key = kvm_async_pf_next_probe(key); + + vcpu->arch.apf.gfns[key] = gfn; +} + +static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) +{ + int i; + u32 key = kvm_async_pf_hash_fn(gfn); + + for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && + (vcpu->arch.apf.gfns[key] != gfn && + vcpu->arch.apf.gfns[key] != ~0); i++) + key = kvm_async_pf_next_probe(key); + + return key; +} + +bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) +{ + return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; +} + +static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) +{ + u32 i, j, k; + + i = j = kvm_async_pf_gfn_slot(vcpu, gfn); + while (true) { + vcpu->arch.apf.gfns[i] = ~0; + do { + j = kvm_async_pf_next_probe(j); + if (vcpu->arch.apf.gfns[j] == ~0) + return; + k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); + /* + * k lies cyclically in ]i,j] + * | i.k.j | + * |....j i.k.| or |.k..j i...| + */ + } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); + vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; + i = j; + } +} + +static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) +{ + + return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, + sizeof(val)); +} + +void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, + struct kvm_async_pf *work) +{ + struct x86_exception fault; + + trace_kvm_async_pf_not_present(work->arch.token, work->gva); + kvm_add_async_pf_gfn(vcpu, work->arch.gfn); + + if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || + (vcpu->arch.apf.send_user_only && + kvm_x86_ops->get_cpl(vcpu) == 0)) + kvm_make_request(KVM_REQ_APF_HALT, vcpu); + else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { + fault.vector = PF_VECTOR; + fault.error_code_valid = true; + fault.error_code = 0; + fault.nested_page_fault = false; + fault.address = work->arch.token; + kvm_inject_page_fault(vcpu, &fault); + } +} + +void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, + struct kvm_async_pf *work) +{ + struct x86_exception fault; + + trace_kvm_async_pf_ready(work->arch.token, work->gva); + if (work->wakeup_all) + work->arch.token = ~0; /* broadcast wakeup */ + else + kvm_del_async_pf_gfn(vcpu, work->arch.gfn); + + if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && + !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { + fault.vector = PF_VECTOR; + fault.error_code_valid = true; + fault.error_code = 0; + fault.nested_page_fault = false; + fault.address = work->arch.token; + kvm_inject_page_fault(vcpu, &fault); + } + vcpu->arch.apf.halted = false; + vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; +} + +bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) +{ + if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) + return true; + else + return !kvm_event_needs_reinjection(vcpu) && + kvm_x86_ops->interrupt_allowed(vcpu); +} + +void kvm_arch_register_noncoherent_dma(struct kvm *kvm) +{ + atomic_inc(&kvm->arch.noncoherent_dma_count); +} +EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); + +void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) +{ + atomic_dec(&kvm->arch.noncoherent_dma_count); +} +EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); + +bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) +{ + return atomic_read(&kvm->arch.noncoherent_dma_count); +} +EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); + EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); @@ -5289,3 +7586,5 @@ EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); |
