diff options
Diffstat (limited to 'arch/x86/kvm/mmu.c')
| -rw-r--r-- | arch/x86/kvm/mmu.c | 3428 | 
1 files changed, 2179 insertions, 1249 deletions
diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c index fb8b376bf28..931467881da 100644 --- a/arch/x86/kvm/mmu.c +++ b/arch/x86/kvm/mmu.c @@ -18,9 +18,11 @@   *   */ +#include "irq.h"  #include "mmu.h"  #include "x86.h"  #include "kvm_cache_regs.h" +#include "cpuid.h"  #include <linux/kvm_host.h>  #include <linux/types.h> @@ -58,15 +60,6 @@ enum {  	AUDIT_POST_SYNC  }; -char *audit_point_name[] = { -	"pre page fault", -	"post page fault", -	"pre pte write", -	"post pte write", -	"pre sync", -	"post sync" -}; -  #undef MMU_DEBUG  #ifdef MMU_DEBUG @@ -82,13 +75,10 @@ char *audit_point_name[] = {  #endif  #ifdef MMU_DEBUG -static int dbg = 0; +static bool dbg = 0;  module_param(dbg, bool, 0644);  #endif -static int oos_shadow = 1; -module_param(oos_shadow, bool, 0644); -  #ifndef MMU_DEBUG  #define ASSERT(x) do { } while (0)  #else @@ -101,7 +91,7 @@ module_param(oos_shadow, bool, 0644);  #define PTE_PREFETCH_NUM		8 -#define PT_FIRST_AVAIL_BITS_SHIFT 9 +#define PT_FIRST_AVAIL_BITS_SHIFT 10  #define PT64_SECOND_AVAIL_BITS_SHIFT 52  #define PT64_LEVEL_BITS 9 @@ -109,9 +99,6 @@ module_param(oos_shadow, bool, 0644);  #define PT64_LEVEL_SHIFT(level) \  		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) -#define PT64_LEVEL_MASK(level) \ -		(((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level)) -  #define PT64_INDEX(address, level)\  	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) @@ -121,8 +108,6 @@ module_param(oos_shadow, bool, 0644);  #define PT32_LEVEL_SHIFT(level) \  		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) -#define PT32_LEVEL_MASK(level) \ -		(((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))  #define PT32_LVL_OFFSET_MASK(level) \  	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \  						* PT32_LEVEL_BITS))) - 1)) @@ -148,10 +133,8 @@ module_param(oos_shadow, bool, 0644);  	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \  					    * PT32_LEVEL_BITS))) - 1)) -#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \ -			| PT64_NX_MASK) - -#define RMAP_EXT 4 +#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ +			| shadow_x_mask | shadow_nx_mask)  #define ACC_EXEC_MASK    1  #define ACC_WRITE_MASK   PT_WRITABLE_MASK @@ -163,20 +146,24 @@ module_param(oos_shadow, bool, 0644);  #define CREATE_TRACE_POINTS  #include "mmutrace.h" -#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) +#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT) +#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))  #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) -struct kvm_rmap_desc { -	u64 *sptes[RMAP_EXT]; -	struct kvm_rmap_desc *more; +/* make pte_list_desc fit well in cache line */ +#define PTE_LIST_EXT 3 + +struct pte_list_desc { +	u64 *sptes[PTE_LIST_EXT]; +	struct pte_list_desc *more;  };  struct kvm_shadow_walk_iterator {  	u64 addr;  	hpa_t shadow_addr; -	int level;  	u64 *sptep; +	int level;  	unsigned index;  }; @@ -185,39 +172,134 @@ struct kvm_shadow_walk_iterator {  	     shadow_walk_okay(&(_walker));			\  	     shadow_walk_next(&(_walker))) -typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte); +#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\ +	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\ +	     shadow_walk_okay(&(_walker)) &&				\ +		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\ +	     __shadow_walk_next(&(_walker), spte)) -static struct kmem_cache *pte_chain_cache; -static struct kmem_cache *rmap_desc_cache; +static struct kmem_cache *pte_list_desc_cache;  static struct kmem_cache *mmu_page_header_cache;  static struct percpu_counter kvm_total_used_mmu_pages; -static u64 __read_mostly shadow_trap_nonpresent_pte; -static u64 __read_mostly shadow_notrap_nonpresent_pte; -static u64 __read_mostly shadow_base_present_pte;  static u64 __read_mostly shadow_nx_mask;  static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */  static u64 __read_mostly shadow_user_mask;  static u64 __read_mostly shadow_accessed_mask;  static u64 __read_mostly shadow_dirty_mask; +static u64 __read_mostly shadow_mmio_mask; -static inline u64 rsvd_bits(int s, int e) +static void mmu_spte_set(u64 *sptep, u64 spte); +static void mmu_free_roots(struct kvm_vcpu *vcpu); + +void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)  { -	return ((1ULL << (e - s + 1)) - 1) << s; +	shadow_mmio_mask = mmio_mask; +} +EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); + +/* + * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number, + * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation + * number. + */ +#define MMIO_SPTE_GEN_LOW_SHIFT		3 +#define MMIO_SPTE_GEN_HIGH_SHIFT	52 + +#define MMIO_GEN_SHIFT			19 +#define MMIO_GEN_LOW_SHIFT		9 +#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 1) +#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1) +#define MMIO_MAX_GEN			((1 << MMIO_GEN_SHIFT) - 1) + +static u64 generation_mmio_spte_mask(unsigned int gen) +{ +	u64 mask; + +	WARN_ON(gen > MMIO_MAX_GEN); + +	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT; +	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT; +	return mask; +} + +static unsigned int get_mmio_spte_generation(u64 spte) +{ +	unsigned int gen; + +	spte &= ~shadow_mmio_mask; + +	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK; +	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT; +	return gen; +} + +static unsigned int kvm_current_mmio_generation(struct kvm *kvm) +{ +	/* +	 * Init kvm generation close to MMIO_MAX_GEN to easily test the +	 * code of handling generation number wrap-around. +	 */ +	return (kvm_memslots(kvm)->generation + +		      MMIO_MAX_GEN - 150) & MMIO_GEN_MASK; +} + +static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn, +			   unsigned access) +{ +	unsigned int gen = kvm_current_mmio_generation(kvm); +	u64 mask = generation_mmio_spte_mask(gen); + +	access &= ACC_WRITE_MASK | ACC_USER_MASK; +	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT; + +	trace_mark_mmio_spte(sptep, gfn, access, gen); +	mmu_spte_set(sptep, mask); +} + +static bool is_mmio_spte(u64 spte) +{ +	return (spte & shadow_mmio_mask) == shadow_mmio_mask; +} + +static gfn_t get_mmio_spte_gfn(u64 spte) +{ +	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask; +	return (spte & ~mask) >> PAGE_SHIFT; +} + +static unsigned get_mmio_spte_access(u64 spte) +{ +	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask; +	return (spte & ~mask) & ~PAGE_MASK; +} + +static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn, +			  pfn_t pfn, unsigned access) +{ +	if (unlikely(is_noslot_pfn(pfn))) { +		mark_mmio_spte(kvm, sptep, gfn, access); +		return true; +	} + +	return false;  } -void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte) +static bool check_mmio_spte(struct kvm *kvm, u64 spte)  { -	shadow_trap_nonpresent_pte = trap_pte; -	shadow_notrap_nonpresent_pte = notrap_pte; +	unsigned int kvm_gen, spte_gen; + +	kvm_gen = kvm_current_mmio_generation(kvm); +	spte_gen = get_mmio_spte_generation(spte); + +	trace_check_mmio_spte(spte, kvm_gen, spte_gen); +	return likely(kvm_gen == spte_gen);  } -EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes); -void kvm_mmu_set_base_ptes(u64 base_pte) +static inline u64 rsvd_bits(int s, int e)  { -	shadow_base_present_pte = base_pte; +	return ((1ULL << (e - s + 1)) - 1) << s;  } -EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);  void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,  		u64 dirty_mask, u64 nx_mask, u64 x_mask) @@ -230,11 +312,6 @@ void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,  }  EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes); -static bool is_write_protection(struct kvm_vcpu *vcpu) -{ -	return kvm_read_cr0_bits(vcpu, X86_CR0_WP); -} -  static int is_cpuid_PSE36(void)  {  	return 1; @@ -247,8 +324,7 @@ static int is_nx(struct kvm_vcpu *vcpu)  static int is_shadow_present_pte(u64 pte)  { -	return pte != shadow_trap_nonpresent_pte -		&& pte != shadow_notrap_nonpresent_pte; +	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);  }  static int is_large_pte(u64 pte) @@ -256,16 +332,6 @@ static int is_large_pte(u64 pte)  	return pte & PT_PAGE_SIZE_MASK;  } -static int is_writable_pte(unsigned long pte) -{ -	return pte & PT_WRITABLE_MASK; -} - -static int is_dirty_gpte(unsigned long pte) -{ -	return pte & PT_DIRTY_MASK; -} -  static int is_rmap_spte(u64 pte)  {  	return is_shadow_present_pte(pte); @@ -292,28 +358,183 @@ static gfn_t pse36_gfn_delta(u32 gpte)  	return (gpte & PT32_DIR_PSE36_MASK) << shift;  } +#ifdef CONFIG_X86_64  static void __set_spte(u64 *sptep, u64 spte)  { -	set_64bit(sptep, spte); +	*sptep = spte;  } -static u64 __xchg_spte(u64 *sptep, u64 new_spte) +static void __update_clear_spte_fast(u64 *sptep, u64 spte)  { -#ifdef CONFIG_X86_64 -	return xchg(sptep, new_spte); +	*sptep = spte; +} + +static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) +{ +	return xchg(sptep, spte); +} + +static u64 __get_spte_lockless(u64 *sptep) +{ +	return ACCESS_ONCE(*sptep); +} + +static bool __check_direct_spte_mmio_pf(u64 spte) +{ +	/* It is valid if the spte is zapped. */ +	return spte == 0ull; +}  #else -	u64 old_spte; +union split_spte { +	struct { +		u32 spte_low; +		u32 spte_high; +	}; +	u64 spte; +}; -	do { -		old_spte = *sptep; -	} while (cmpxchg64(sptep, old_spte, new_spte) != old_spte); +static void count_spte_clear(u64 *sptep, u64 spte) +{ +	struct kvm_mmu_page *sp =  page_header(__pa(sptep)); + +	if (is_shadow_present_pte(spte)) +		return; + +	/* Ensure the spte is completely set before we increase the count */ +	smp_wmb(); +	sp->clear_spte_count++; +} + +static void __set_spte(u64 *sptep, u64 spte) +{ +	union split_spte *ssptep, sspte; + +	ssptep = (union split_spte *)sptep; +	sspte = (union split_spte)spte; + +	ssptep->spte_high = sspte.spte_high; + +	/* +	 * If we map the spte from nonpresent to present, We should store +	 * the high bits firstly, then set present bit, so cpu can not +	 * fetch this spte while we are setting the spte. +	 */ +	smp_wmb(); + +	ssptep->spte_low = sspte.spte_low; +} + +static void __update_clear_spte_fast(u64 *sptep, u64 spte) +{ +	union split_spte *ssptep, sspte; + +	ssptep = (union split_spte *)sptep; +	sspte = (union split_spte)spte; + +	ssptep->spte_low = sspte.spte_low; + +	/* +	 * If we map the spte from present to nonpresent, we should clear +	 * present bit firstly to avoid vcpu fetch the old high bits. +	 */ +	smp_wmb(); + +	ssptep->spte_high = sspte.spte_high; +	count_spte_clear(sptep, spte); +} + +static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) +{ +	union split_spte *ssptep, sspte, orig; + +	ssptep = (union split_spte *)sptep; +	sspte = (union split_spte)spte; + +	/* xchg acts as a barrier before the setting of the high bits */ +	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); +	orig.spte_high = ssptep->spte_high; +	ssptep->spte_high = sspte.spte_high; +	count_spte_clear(sptep, spte); + +	return orig.spte; +} + +/* + * The idea using the light way get the spte on x86_32 guest is from + * gup_get_pte(arch/x86/mm/gup.c). + * + * An spte tlb flush may be pending, because kvm_set_pte_rmapp + * coalesces them and we are running out of the MMU lock.  Therefore + * we need to protect against in-progress updates of the spte. + * + * Reading the spte while an update is in progress may get the old value + * for the high part of the spte.  The race is fine for a present->non-present + * change (because the high part of the spte is ignored for non-present spte), + * but for a present->present change we must reread the spte. + * + * All such changes are done in two steps (present->non-present and + * non-present->present), hence it is enough to count the number of + * present->non-present updates: if it changed while reading the spte, + * we might have hit the race.  This is done using clear_spte_count. + */ +static u64 __get_spte_lockless(u64 *sptep) +{ +	struct kvm_mmu_page *sp =  page_header(__pa(sptep)); +	union split_spte spte, *orig = (union split_spte *)sptep; +	int count; + +retry: +	count = sp->clear_spte_count; +	smp_rmb(); -	return old_spte; +	spte.spte_low = orig->spte_low; +	smp_rmb(); + +	spte.spte_high = orig->spte_high; +	smp_rmb(); + +	if (unlikely(spte.spte_low != orig->spte_low || +	      count != sp->clear_spte_count)) +		goto retry; + +	return spte.spte; +} + +static bool __check_direct_spte_mmio_pf(u64 spte) +{ +	union split_spte sspte = (union split_spte)spte; +	u32 high_mmio_mask = shadow_mmio_mask >> 32; + +	/* It is valid if the spte is zapped. */ +	if (spte == 0ull) +		return true; + +	/* It is valid if the spte is being zapped. */ +	if (sspte.spte_low == 0ull && +	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask) +		return true; + +	return false; +}  #endif + +static bool spte_is_locklessly_modifiable(u64 spte) +{ +	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) == +		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);  }  static bool spte_has_volatile_bits(u64 spte)  { +	/* +	 * Always atomicly update spte if it can be updated +	 * out of mmu-lock, it can ensure dirty bit is not lost, +	 * also, it can help us to get a stable is_writable_pte() +	 * to ensure tlb flush is not missed. +	 */ +	if (spte_is_locklessly_modifiable(spte)) +		return true; +  	if (!shadow_accessed_mask)  		return false; @@ -332,30 +553,138 @@ static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)  	return (old_spte & bit_mask) && !(new_spte & bit_mask);  } -static void update_spte(u64 *sptep, u64 new_spte) +/* Rules for using mmu_spte_set: + * Set the sptep from nonpresent to present. + * Note: the sptep being assigned *must* be either not present + * or in a state where the hardware will not attempt to update + * the spte. + */ +static void mmu_spte_set(u64 *sptep, u64 new_spte)  { -	u64 mask, old_spte = *sptep; +	WARN_ON(is_shadow_present_pte(*sptep)); +	__set_spte(sptep, new_spte); +} -	WARN_ON(!is_rmap_spte(new_spte)); +/* Rules for using mmu_spte_update: + * Update the state bits, it means the mapped pfn is not changged. + * + * Whenever we overwrite a writable spte with a read-only one we + * should flush remote TLBs. Otherwise rmap_write_protect + * will find a read-only spte, even though the writable spte + * might be cached on a CPU's TLB, the return value indicates this + * case. + */ +static bool mmu_spte_update(u64 *sptep, u64 new_spte) +{ +	u64 old_spte = *sptep; +	bool ret = false; -	new_spte |= old_spte & shadow_dirty_mask; +	WARN_ON(!is_rmap_spte(new_spte)); -	mask = shadow_accessed_mask; -	if (is_writable_pte(old_spte)) -		mask |= shadow_dirty_mask; +	if (!is_shadow_present_pte(old_spte)) { +		mmu_spte_set(sptep, new_spte); +		return ret; +	} -	if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask) -		__set_spte(sptep, new_spte); +	if (!spte_has_volatile_bits(old_spte)) +		__update_clear_spte_fast(sptep, new_spte);  	else -		old_spte = __xchg_spte(sptep, new_spte); +		old_spte = __update_clear_spte_slow(sptep, new_spte); + +	/* +	 * For the spte updated out of mmu-lock is safe, since +	 * we always atomicly update it, see the comments in +	 * spte_has_volatile_bits(). +	 */ +	if (spte_is_locklessly_modifiable(old_spte) && +	      !is_writable_pte(new_spte)) +		ret = true;  	if (!shadow_accessed_mask) -		return; +		return ret;  	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))  		kvm_set_pfn_accessed(spte_to_pfn(old_spte));  	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))  		kvm_set_pfn_dirty(spte_to_pfn(old_spte)); + +	return ret; +} + +/* + * Rules for using mmu_spte_clear_track_bits: + * It sets the sptep from present to nonpresent, and track the + * state bits, it is used to clear the last level sptep. + */ +static int mmu_spte_clear_track_bits(u64 *sptep) +{ +	pfn_t pfn; +	u64 old_spte = *sptep; + +	if (!spte_has_volatile_bits(old_spte)) +		__update_clear_spte_fast(sptep, 0ull); +	else +		old_spte = __update_clear_spte_slow(sptep, 0ull); + +	if (!is_rmap_spte(old_spte)) +		return 0; + +	pfn = spte_to_pfn(old_spte); + +	/* +	 * KVM does not hold the refcount of the page used by +	 * kvm mmu, before reclaiming the page, we should +	 * unmap it from mmu first. +	 */ +	WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn))); + +	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask) +		kvm_set_pfn_accessed(pfn); +	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask)) +		kvm_set_pfn_dirty(pfn); +	return 1; +} + +/* + * Rules for using mmu_spte_clear_no_track: + * Directly clear spte without caring the state bits of sptep, + * it is used to set the upper level spte. + */ +static void mmu_spte_clear_no_track(u64 *sptep) +{ +	__update_clear_spte_fast(sptep, 0ull); +} + +static u64 mmu_spte_get_lockless(u64 *sptep) +{ +	return __get_spte_lockless(sptep); +} + +static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) +{ +	/* +	 * Prevent page table teardown by making any free-er wait during +	 * kvm_flush_remote_tlbs() IPI to all active vcpus. +	 */ +	local_irq_disable(); +	vcpu->mode = READING_SHADOW_PAGE_TABLES; +	/* +	 * Make sure a following spte read is not reordered ahead of the write +	 * to vcpu->mode. +	 */ +	smp_mb(); +} + +static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) +{ +	/* +	 * Make sure the write to vcpu->mode is not reordered in front of +	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us +	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. +	 */ +	smp_mb(); +	vcpu->mode = OUTSIDE_GUEST_MODE; +	local_irq_enable();  }  static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, @@ -374,6 +703,11 @@ static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,  	return 0;  } +static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache) +{ +	return cache->nobjs; +} +  static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,  				  struct kmem_cache *cache)  { @@ -384,15 +718,15 @@ static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,  static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,  				       int min)  { -	struct page *page; +	void *page;  	if (cache->nobjs >= min)  		return 0;  	while (cache->nobjs < ARRAY_SIZE(cache->objects)) { -		page = alloc_page(GFP_KERNEL); +		page = (void *)__get_free_page(GFP_KERNEL);  		if (!page)  			return -ENOMEM; -		cache->objects[cache->nobjs++] = page_address(page); +		cache->objects[cache->nobjs++] = page;  	}  	return 0;  } @@ -407,12 +741,8 @@ static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)  {  	int r; -	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache, -				   pte_chain_cache, 4); -	if (r) -		goto out; -	r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, -				   rmap_desc_cache, 4 + PTE_PREFETCH_NUM); +	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, +				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);  	if (r)  		goto out;  	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8); @@ -426,15 +756,14 @@ out:  static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)  { -	mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache); -	mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache); +	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, +				pte_list_desc_cache);  	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);  	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,  				mmu_page_header_cache);  } -static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc, -				    size_t size) +static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)  {  	void *p; @@ -443,26 +772,14 @@ static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,  	return p;  } -static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu) +static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)  { -	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache, -				      sizeof(struct kvm_pte_chain)); +	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);  } -static void mmu_free_pte_chain(struct kvm_pte_chain *pc) +static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)  { -	kmem_cache_free(pte_chain_cache, pc); -} - -static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu) -{ -	return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache, -				      sizeof(struct kvm_rmap_desc)); -} - -static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd) -{ -	kmem_cache_free(rmap_desc_cache, rd); +	kmem_cache_free(pte_list_desc_cache, pte_list_desc);  }  static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) @@ -482,47 +799,48 @@ static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)  }  /* - * Return the pointer to the largepage write count for a given - * gfn, handling slots that are not large page aligned. + * Return the pointer to the large page information for a given gfn, + * handling slots that are not large page aligned.   */ -static int *slot_largepage_idx(gfn_t gfn, -			       struct kvm_memory_slot *slot, -			       int level) +static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, +					      struct kvm_memory_slot *slot, +					      int level)  {  	unsigned long idx; -	idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) - -	      (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level)); -	return &slot->lpage_info[level - 2][idx].write_count; +	idx = gfn_to_index(gfn, slot->base_gfn, level); +	return &slot->arch.lpage_info[level - 2][idx];  }  static void account_shadowed(struct kvm *kvm, gfn_t gfn)  {  	struct kvm_memory_slot *slot; -	int *write_count; +	struct kvm_lpage_info *linfo;  	int i;  	slot = gfn_to_memslot(kvm, gfn);  	for (i = PT_DIRECTORY_LEVEL;  	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { -		write_count   = slot_largepage_idx(gfn, slot, i); -		*write_count += 1; +		linfo = lpage_info_slot(gfn, slot, i); +		linfo->write_count += 1;  	} +	kvm->arch.indirect_shadow_pages++;  }  static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)  {  	struct kvm_memory_slot *slot; -	int *write_count; +	struct kvm_lpage_info *linfo;  	int i;  	slot = gfn_to_memslot(kvm, gfn);  	for (i = PT_DIRECTORY_LEVEL;  	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { -		write_count   = slot_largepage_idx(gfn, slot, i); -		*write_count -= 1; -		WARN_ON(*write_count < 0); +		linfo = lpage_info_slot(gfn, slot, i); +		linfo->write_count -= 1; +		WARN_ON(linfo->write_count < 0);  	} +	kvm->arch.indirect_shadow_pages--;  }  static int has_wrprotected_page(struct kvm *kvm, @@ -530,12 +848,12 @@ static int has_wrprotected_page(struct kvm *kvm,  				int level)  {  	struct kvm_memory_slot *slot; -	int *largepage_idx; +	struct kvm_lpage_info *linfo;  	slot = gfn_to_memslot(kvm, gfn);  	if (slot) { -		largepage_idx = slot_largepage_idx(gfn, slot, level); -		return *largepage_idx; +		linfo = lpage_info_slot(gfn, slot, level); +		return linfo->write_count;  	}  	return 1; @@ -559,22 +877,35 @@ static int host_mapping_level(struct kvm *kvm, gfn_t gfn)  	return ret;  } -static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn) +static struct kvm_memory_slot * +gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, +			    bool no_dirty_log)  {  	struct kvm_memory_slot *slot; -	int host_level, level, max_level; -	slot = gfn_to_memslot(vcpu->kvm, large_gfn); -	if (slot && slot->dirty_bitmap) -		return PT_PAGE_TABLE_LEVEL; +	slot = gfn_to_memslot(vcpu->kvm, gfn); +	if (!slot || slot->flags & KVM_MEMSLOT_INVALID || +	      (no_dirty_log && slot->dirty_bitmap)) +		slot = NULL; + +	return slot; +} + +static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn) +{ +	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true); +} + +static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn) +{ +	int host_level, level, max_level;  	host_level = host_mapping_level(vcpu->kvm, large_gfn);  	if (host_level == PT_PAGE_TABLE_LEVEL)  		return host_level; -	max_level = kvm_x86_ops->get_lpage_level() < host_level ? -		kvm_x86_ops->get_lpage_level() : host_level; +	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);  	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)  		if (has_wrprotected_page(vcpu->kvm, large_gfn, level)) @@ -584,68 +915,42 @@ static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)  }  /* - * Take gfn and return the reverse mapping to it. - */ - -static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level) -{ -	struct kvm_memory_slot *slot; -	unsigned long idx; - -	slot = gfn_to_memslot(kvm, gfn); -	if (likely(level == PT_PAGE_TABLE_LEVEL)) -		return &slot->rmap[gfn - slot->base_gfn]; - -	idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) - -		(slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level)); - -	return &slot->lpage_info[level - 2][idx].rmap_pde; -} - -/* - * Reverse mapping data structures: + * Pte mapping structures:   * - * If rmapp bit zero is zero, then rmapp point to the shadw page table entry - * that points to page_address(page). + * If pte_list bit zero is zero, then pte_list point to the spte.   * - * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc - * containing more mappings. + * If pte_list bit zero is one, (then pte_list & ~1) points to a struct + * pte_list_desc containing more mappings.   * - * Returns the number of rmap entries before the spte was added or zero if + * Returns the number of pte entries before the spte was added or zero if   * the spte was not added.   *   */ -static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) +static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, +			unsigned long *pte_list)  { -	struct kvm_mmu_page *sp; -	struct kvm_rmap_desc *desc; -	unsigned long *rmapp; +	struct pte_list_desc *desc;  	int i, count = 0; -	if (!is_rmap_spte(*spte)) -		return count; -	sp = page_header(__pa(spte)); -	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); -	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level); -	if (!*rmapp) { -		rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte); -		*rmapp = (unsigned long)spte; -	} else if (!(*rmapp & 1)) { -		rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte); -		desc = mmu_alloc_rmap_desc(vcpu); -		desc->sptes[0] = (u64 *)*rmapp; +	if (!*pte_list) { +		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte); +		*pte_list = (unsigned long)spte; +	} else if (!(*pte_list & 1)) { +		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte); +		desc = mmu_alloc_pte_list_desc(vcpu); +		desc->sptes[0] = (u64 *)*pte_list;  		desc->sptes[1] = spte; -		*rmapp = (unsigned long)desc | 1; +		*pte_list = (unsigned long)desc | 1;  		++count;  	} else { -		rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte); -		desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul); -		while (desc->sptes[RMAP_EXT-1] && desc->more) { +		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte); +		desc = (struct pte_list_desc *)(*pte_list & ~1ul); +		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {  			desc = desc->more; -			count += RMAP_EXT; +			count += PTE_LIST_EXT;  		} -		if (desc->sptes[RMAP_EXT-1]) { -			desc->more = mmu_alloc_rmap_desc(vcpu); +		if (desc->sptes[PTE_LIST_EXT-1]) { +			desc->more = mmu_alloc_pte_list_desc(vcpu);  			desc = desc->more;  		}  		for (i = 0; desc->sptes[i]; ++i) @@ -655,59 +960,52 @@ static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)  	return count;  } -static void rmap_desc_remove_entry(unsigned long *rmapp, -				   struct kvm_rmap_desc *desc, -				   int i, -				   struct kvm_rmap_desc *prev_desc) +static void +pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc, +			   int i, struct pte_list_desc *prev_desc)  {  	int j; -	for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j) +	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)  		;  	desc->sptes[i] = desc->sptes[j];  	desc->sptes[j] = NULL;  	if (j != 0)  		return;  	if (!prev_desc && !desc->more) -		*rmapp = (unsigned long)desc->sptes[0]; +		*pte_list = (unsigned long)desc->sptes[0];  	else  		if (prev_desc)  			prev_desc->more = desc->more;  		else -			*rmapp = (unsigned long)desc->more | 1; -	mmu_free_rmap_desc(desc); +			*pte_list = (unsigned long)desc->more | 1; +	mmu_free_pte_list_desc(desc);  } -static void rmap_remove(struct kvm *kvm, u64 *spte) +static void pte_list_remove(u64 *spte, unsigned long *pte_list)  { -	struct kvm_rmap_desc *desc; -	struct kvm_rmap_desc *prev_desc; -	struct kvm_mmu_page *sp; -	gfn_t gfn; -	unsigned long *rmapp; +	struct pte_list_desc *desc; +	struct pte_list_desc *prev_desc;  	int i; -	sp = page_header(__pa(spte)); -	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); -	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level); -	if (!*rmapp) { -		printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte); +	if (!*pte_list) { +		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);  		BUG(); -	} else if (!(*rmapp & 1)) { -		rmap_printk("rmap_remove:  %p 1->0\n", spte); -		if ((u64 *)*rmapp != spte) { -			printk(KERN_ERR "rmap_remove:  %p 1->BUG\n", spte); +	} else if (!(*pte_list & 1)) { +		rmap_printk("pte_list_remove:  %p 1->0\n", spte); +		if ((u64 *)*pte_list != spte) { +			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);  			BUG();  		} -		*rmapp = 0; +		*pte_list = 0;  	} else { -		rmap_printk("rmap_remove:  %p many->many\n", spte); -		desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul); +		rmap_printk("pte_list_remove:  %p many->many\n", spte); +		desc = (struct pte_list_desc *)(*pte_list & ~1ul);  		prev_desc = NULL;  		while (desc) { -			for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) +			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)  				if (desc->sptes[i] == spte) { -					rmap_desc_remove_entry(rmapp, +					pte_list_desc_remove_entry(pte_list,  							       desc, i,  							       prev_desc);  					return; @@ -715,198 +1013,381 @@ static void rmap_remove(struct kvm *kvm, u64 *spte)  			prev_desc = desc;  			desc = desc->more;  		} -		pr_err("rmap_remove: %p many->many\n", spte); +		pr_err("pte_list_remove: %p many->many\n", spte);  		BUG();  	}  } -static int set_spte_track_bits(u64 *sptep, u64 new_spte) +typedef void (*pte_list_walk_fn) (u64 *spte); +static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)  { -	pfn_t pfn; -	u64 old_spte = *sptep; +	struct pte_list_desc *desc; +	int i; -	if (!spte_has_volatile_bits(old_spte)) -		__set_spte(sptep, new_spte); -	else -		old_spte = __xchg_spte(sptep, new_spte); +	if (!*pte_list) +		return; -	if (!is_rmap_spte(old_spte)) -		return 0; +	if (!(*pte_list & 1)) +		return fn((u64 *)*pte_list); -	pfn = spte_to_pfn(old_spte); -	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask) -		kvm_set_pfn_accessed(pfn); -	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask)) -		kvm_set_pfn_dirty(pfn); -	return 1; +	desc = (struct pte_list_desc *)(*pte_list & ~1ul); +	while (desc) { +		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) +			fn(desc->sptes[i]); +		desc = desc->more; +	}  } -static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte) +static unsigned long *__gfn_to_rmap(gfn_t gfn, int level, +				    struct kvm_memory_slot *slot)  { -	if (set_spte_track_bits(sptep, new_spte)) -		rmap_remove(kvm, sptep); +	unsigned long idx; + +	idx = gfn_to_index(gfn, slot->base_gfn, level); +	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];  } -static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte) +/* + * Take gfn and return the reverse mapping to it. + */ +static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)  { -	struct kvm_rmap_desc *desc; -	u64 *prev_spte; -	int i; +	struct kvm_memory_slot *slot; -	if (!*rmapp) -		return NULL; -	else if (!(*rmapp & 1)) { -		if (!spte) -			return (u64 *)*rmapp; +	slot = gfn_to_memslot(kvm, gfn); +	return __gfn_to_rmap(gfn, level, slot); +} + +static bool rmap_can_add(struct kvm_vcpu *vcpu) +{ +	struct kvm_mmu_memory_cache *cache; + +	cache = &vcpu->arch.mmu_pte_list_desc_cache; +	return mmu_memory_cache_free_objects(cache); +} + +static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) +{ +	struct kvm_mmu_page *sp; +	unsigned long *rmapp; + +	sp = page_header(__pa(spte)); +	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); +	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level); +	return pte_list_add(vcpu, spte, rmapp); +} + +static void rmap_remove(struct kvm *kvm, u64 *spte) +{ +	struct kvm_mmu_page *sp; +	gfn_t gfn; +	unsigned long *rmapp; + +	sp = page_header(__pa(spte)); +	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); +	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level); +	pte_list_remove(spte, rmapp); +} + +/* + * Used by the following functions to iterate through the sptes linked by a + * rmap.  All fields are private and not assumed to be used outside. + */ +struct rmap_iterator { +	/* private fields */ +	struct pte_list_desc *desc;	/* holds the sptep if not NULL */ +	int pos;			/* index of the sptep */ +}; + +/* + * Iteration must be started by this function.  This should also be used after + * removing/dropping sptes from the rmap link because in such cases the + * information in the itererator may not be valid. + * + * Returns sptep if found, NULL otherwise. + */ +static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter) +{ +	if (!rmap)  		return NULL; + +	if (!(rmap & 1)) { +		iter->desc = NULL; +		return (u64 *)rmap;  	} -	desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul); -	prev_spte = NULL; -	while (desc) { -		for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) { -			if (prev_spte == spte) -				return desc->sptes[i]; -			prev_spte = desc->sptes[i]; + +	iter->desc = (struct pte_list_desc *)(rmap & ~1ul); +	iter->pos = 0; +	return iter->desc->sptes[iter->pos]; +} + +/* + * Must be used with a valid iterator: e.g. after rmap_get_first(). + * + * Returns sptep if found, NULL otherwise. + */ +static u64 *rmap_get_next(struct rmap_iterator *iter) +{ +	if (iter->desc) { +		if (iter->pos < PTE_LIST_EXT - 1) { +			u64 *sptep; + +			++iter->pos; +			sptep = iter->desc->sptes[iter->pos]; +			if (sptep) +				return sptep; +		} + +		iter->desc = iter->desc->more; + +		if (iter->desc) { +			iter->pos = 0; +			/* desc->sptes[0] cannot be NULL */ +			return iter->desc->sptes[iter->pos];  		} -		desc = desc->more;  	} +  	return NULL;  } -static int rmap_write_protect(struct kvm *kvm, u64 gfn) +static void drop_spte(struct kvm *kvm, u64 *sptep) +{ +	if (mmu_spte_clear_track_bits(sptep)) +		rmap_remove(kvm, sptep); +} + + +static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) +{ +	if (is_large_pte(*sptep)) { +		WARN_ON(page_header(__pa(sptep))->role.level == +			PT_PAGE_TABLE_LEVEL); +		drop_spte(kvm, sptep); +		--kvm->stat.lpages; +		return true; +	} + +	return false; +} + +static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) +{ +	if (__drop_large_spte(vcpu->kvm, sptep)) +		kvm_flush_remote_tlbs(vcpu->kvm); +} + +/* + * Write-protect on the specified @sptep, @pt_protect indicates whether + * spte write-protection is caused by protecting shadow page table. + * + * Note: write protection is difference between drity logging and spte + * protection: + * - for dirty logging, the spte can be set to writable at anytime if + *   its dirty bitmap is properly set. + * - for spte protection, the spte can be writable only after unsync-ing + *   shadow page. + * + * Return true if tlb need be flushed. + */ +static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect) +{ +	u64 spte = *sptep; + +	if (!is_writable_pte(spte) && +	      !(pt_protect && spte_is_locklessly_modifiable(spte))) +		return false; + +	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep); + +	if (pt_protect) +		spte &= ~SPTE_MMU_WRITEABLE; +	spte = spte & ~PT_WRITABLE_MASK; + +	return mmu_spte_update(sptep, spte); +} + +static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp, +				 bool pt_protect) +{ +	u64 *sptep; +	struct rmap_iterator iter; +	bool flush = false; + +	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) { +		BUG_ON(!(*sptep & PT_PRESENT_MASK)); + +		flush |= spte_write_protect(kvm, sptep, pt_protect); +		sptep = rmap_get_next(&iter); +	} + +	return flush; +} + +/** + * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages + * @kvm: kvm instance + * @slot: slot to protect + * @gfn_offset: start of the BITS_PER_LONG pages we care about + * @mask: indicates which pages we should protect + * + * Used when we do not need to care about huge page mappings: e.g. during dirty + * logging we do not have any such mappings. + */ +void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, +				     struct kvm_memory_slot *slot, +				     gfn_t gfn_offset, unsigned long mask)  {  	unsigned long *rmapp; -	u64 *spte; -	int i, write_protected = 0; - -	rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL); - -	spte = rmap_next(kvm, rmapp, NULL); -	while (spte) { -		BUG_ON(!spte); -		BUG_ON(!(*spte & PT_PRESENT_MASK)); -		rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte); -		if (is_writable_pte(*spte)) { -			update_spte(spte, *spte & ~PT_WRITABLE_MASK); -			write_protected = 1; -		} -		spte = rmap_next(kvm, rmapp, spte); + +	while (mask) { +		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), +				      PT_PAGE_TABLE_LEVEL, slot); +		__rmap_write_protect(kvm, rmapp, false); + +		/* clear the first set bit */ +		mask &= mask - 1;  	} +} -	/* check for huge page mappings */ -	for (i = PT_DIRECTORY_LEVEL; +static bool rmap_write_protect(struct kvm *kvm, u64 gfn) +{ +	struct kvm_memory_slot *slot; +	unsigned long *rmapp; +	int i; +	bool write_protected = false; + +	slot = gfn_to_memslot(kvm, gfn); + +	for (i = PT_PAGE_TABLE_LEVEL;  	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { -		rmapp = gfn_to_rmap(kvm, gfn, i); -		spte = rmap_next(kvm, rmapp, NULL); -		while (spte) { -			BUG_ON(!spte); -			BUG_ON(!(*spte & PT_PRESENT_MASK)); -			BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)); -			pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn); -			if (is_writable_pte(*spte)) { -				drop_spte(kvm, spte, -					  shadow_trap_nonpresent_pte); -				--kvm->stat.lpages; -				spte = NULL; -				write_protected = 1; -			} -			spte = rmap_next(kvm, rmapp, spte); -		} +		rmapp = __gfn_to_rmap(gfn, i, slot); +		write_protected |= __rmap_write_protect(kvm, rmapp, true);  	}  	return write_protected;  }  static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp, -			   unsigned long data) +			   struct kvm_memory_slot *slot, unsigned long data)  { -	u64 *spte; +	u64 *sptep; +	struct rmap_iterator iter;  	int need_tlb_flush = 0; -	while ((spte = rmap_next(kvm, rmapp, NULL))) { -		BUG_ON(!(*spte & PT_PRESENT_MASK)); -		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte); -		drop_spte(kvm, spte, shadow_trap_nonpresent_pte); +	while ((sptep = rmap_get_first(*rmapp, &iter))) { +		BUG_ON(!(*sptep & PT_PRESENT_MASK)); +		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep); + +		drop_spte(kvm, sptep);  		need_tlb_flush = 1;  	} +  	return need_tlb_flush;  }  static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp, -			     unsigned long data) +			     struct kvm_memory_slot *slot, unsigned long data)  { +	u64 *sptep; +	struct rmap_iterator iter;  	int need_flush = 0; -	u64 *spte, new_spte; +	u64 new_spte;  	pte_t *ptep = (pte_t *)data;  	pfn_t new_pfn;  	WARN_ON(pte_huge(*ptep));  	new_pfn = pte_pfn(*ptep); -	spte = rmap_next(kvm, rmapp, NULL); -	while (spte) { -		BUG_ON(!is_shadow_present_pte(*spte)); -		rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte); + +	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) { +		BUG_ON(!is_shadow_present_pte(*sptep)); +		rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep); +  		need_flush = 1; +  		if (pte_write(*ptep)) { -			drop_spte(kvm, spte, shadow_trap_nonpresent_pte); -			spte = rmap_next(kvm, rmapp, NULL); +			drop_spte(kvm, sptep); +			sptep = rmap_get_first(*rmapp, &iter);  		} else { -			new_spte = *spte &~ (PT64_BASE_ADDR_MASK); +			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;  			new_spte |= (u64)new_pfn << PAGE_SHIFT;  			new_spte &= ~PT_WRITABLE_MASK;  			new_spte &= ~SPTE_HOST_WRITEABLE;  			new_spte &= ~shadow_accessed_mask; -			set_spte_track_bits(spte, new_spte); -			spte = rmap_next(kvm, rmapp, spte); + +			mmu_spte_clear_track_bits(sptep); +			mmu_spte_set(sptep, new_spte); +			sptep = rmap_get_next(&iter);  		}  	} +  	if (need_flush)  		kvm_flush_remote_tlbs(kvm);  	return 0;  } -static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, -			  unsigned long data, -			  int (*handler)(struct kvm *kvm, unsigned long *rmapp, -					 unsigned long data)) +static int kvm_handle_hva_range(struct kvm *kvm, +				unsigned long start, +				unsigned long end, +				unsigned long data, +				int (*handler)(struct kvm *kvm, +					       unsigned long *rmapp, +					       struct kvm_memory_slot *slot, +					       unsigned long data))  { -	int i, j; -	int ret; -	int retval = 0; +	int j; +	int ret = 0;  	struct kvm_memslots *slots; +	struct kvm_memory_slot *memslot;  	slots = kvm_memslots(kvm); -	for (i = 0; i < slots->nmemslots; i++) { -		struct kvm_memory_slot *memslot = &slots->memslots[i]; -		unsigned long start = memslot->userspace_addr; -		unsigned long end; +	kvm_for_each_memslot(memslot, slots) { +		unsigned long hva_start, hva_end; +		gfn_t gfn_start, gfn_end; + +		hva_start = max(start, memslot->userspace_addr); +		hva_end = min(end, memslot->userspace_addr + +					(memslot->npages << PAGE_SHIFT)); +		if (hva_start >= hva_end) +			continue; +		/* +		 * {gfn(page) | page intersects with [hva_start, hva_end)} = +		 * {gfn_start, gfn_start+1, ..., gfn_end-1}. +		 */ +		gfn_start = hva_to_gfn_memslot(hva_start, memslot); +		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); -		end = start + (memslot->npages << PAGE_SHIFT); -		if (hva >= start && hva < end) { -			gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT; +		for (j = PT_PAGE_TABLE_LEVEL; +		     j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) { +			unsigned long idx, idx_end; +			unsigned long *rmapp; -			ret = handler(kvm, &memslot->rmap[gfn_offset], data); +			/* +			 * {idx(page_j) | page_j intersects with +			 *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}. +			 */ +			idx = gfn_to_index(gfn_start, memslot->base_gfn, j); +			idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j); -			for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) { -				unsigned long idx; -				int sh; +			rmapp = __gfn_to_rmap(gfn_start, j, memslot); -				sh = KVM_HPAGE_GFN_SHIFT(PT_DIRECTORY_LEVEL+j); -				idx = ((memslot->base_gfn+gfn_offset) >> sh) - -					(memslot->base_gfn >> sh); -				ret |= handler(kvm, -					&memslot->lpage_info[j][idx].rmap_pde, -					data); -			} -			trace_kvm_age_page(hva, memslot, ret); -			retval |= ret; +			for (; idx <= idx_end; ++idx) +				ret |= handler(kvm, rmapp++, memslot, data);  		}  	} -	return retval; +	return ret; +} + +static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, +			  unsigned long data, +			  int (*handler)(struct kvm *kvm, unsigned long *rmapp, +					 struct kvm_memory_slot *slot, +					 unsigned long data)) +{ +	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);  }  int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) @@ -914,39 +1395,77 @@ int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)  	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);  } +int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) +{ +	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp); +} +  void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)  {  	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);  }  static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp, -			 unsigned long data) +			 struct kvm_memory_slot *slot, unsigned long data)  { -	u64 *spte; +	u64 *sptep; +	struct rmap_iterator uninitialized_var(iter);  	int young = 0;  	/* -	 * Emulate the accessed bit for EPT, by checking if this page has +	 * In case of absence of EPT Access and Dirty Bits supports, +	 * emulate the accessed bit for EPT, by checking if this page has  	 * an EPT mapping, and clearing it if it does. On the next access,  	 * a new EPT mapping will be established.  	 * This has some overhead, but not as much as the cost of swapping  	 * out actively used pages or breaking up actively used hugepages.  	 */ +	if (!shadow_accessed_mask) { +		young = kvm_unmap_rmapp(kvm, rmapp, slot, data); +		goto out; +	} + +	for (sptep = rmap_get_first(*rmapp, &iter); sptep; +	     sptep = rmap_get_next(&iter)) { +		BUG_ON(!is_shadow_present_pte(*sptep)); + +		if (*sptep & shadow_accessed_mask) { +			young = 1; +			clear_bit((ffs(shadow_accessed_mask) - 1), +				 (unsigned long *)sptep); +		} +	} +out: +	/* @data has hva passed to kvm_age_hva(). */ +	trace_kvm_age_page(data, slot, young); +	return young; +} + +static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp, +			      struct kvm_memory_slot *slot, unsigned long data) +{ +	u64 *sptep; +	struct rmap_iterator iter; +	int young = 0; + +	/* +	 * If there's no access bit in the secondary pte set by the +	 * hardware it's up to gup-fast/gup to set the access bit in +	 * the primary pte or in the page structure. +	 */  	if (!shadow_accessed_mask) -		return kvm_unmap_rmapp(kvm, rmapp, data); - -	spte = rmap_next(kvm, rmapp, NULL); -	while (spte) { -		int _young; -		u64 _spte = *spte; -		BUG_ON(!(_spte & PT_PRESENT_MASK)); -		_young = _spte & PT_ACCESSED_MASK; -		if (_young) { +		goto out; + +	for (sptep = rmap_get_first(*rmapp, &iter); sptep; +	     sptep = rmap_get_next(&iter)) { +		BUG_ON(!is_shadow_present_pte(*sptep)); + +		if (*sptep & shadow_accessed_mask) {  			young = 1; -			clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte); +			break;  		} -		spte = rmap_next(kvm, rmapp, spte);  	} +out:  	return young;  } @@ -961,13 +1480,18 @@ static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)  	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level); -	kvm_unmap_rmapp(vcpu->kvm, rmapp, 0); +	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);  	kvm_flush_remote_tlbs(vcpu->kvm);  }  int kvm_age_hva(struct kvm *kvm, unsigned long hva)  { -	return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp); +	return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp); +} + +int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) +{ +	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);  }  #ifdef MMU_DEBUG @@ -998,16 +1522,15 @@ static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)  	percpu_counter_add(&kvm_total_used_mmu_pages, nr);  } -static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp) +static void kvm_mmu_free_page(struct kvm_mmu_page *sp)  {  	ASSERT(is_empty_shadow_page(sp->spt));  	hlist_del(&sp->hash_link);  	list_del(&sp->link); -	__free_page(virt_to_page(sp->spt)); +	free_page((unsigned long)sp->spt);  	if (!sp->role.direct) -		__free_page(virt_to_page(sp->gfns)); +		free_page((unsigned long)sp->gfns);  	kmem_cache_free(mmu_page_header_cache, sp); -	kvm_mod_used_mmu_pages(kvm, -1);  }  static unsigned kvm_page_table_hashfn(gfn_t gfn) @@ -1015,134 +1538,63 @@ static unsigned kvm_page_table_hashfn(gfn_t gfn)  	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);  } -static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, -					       u64 *parent_pte, int direct) -{ -	struct kvm_mmu_page *sp; - -	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp); -	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE); -	if (!direct) -		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, -						  PAGE_SIZE); -	set_page_private(virt_to_page(sp->spt), (unsigned long)sp); -	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); -	bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS); -	sp->multimapped = 0; -	sp->parent_pte = parent_pte; -	kvm_mod_used_mmu_pages(vcpu->kvm, +1); -	return sp; -} -  static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,  				    struct kvm_mmu_page *sp, u64 *parent_pte)  { -	struct kvm_pte_chain *pte_chain; -	struct hlist_node *node; -	int i; -  	if (!parent_pte)  		return; -	if (!sp->multimapped) { -		u64 *old = sp->parent_pte; -		if (!old) { -			sp->parent_pte = parent_pte; -			return; -		} -		sp->multimapped = 1; -		pte_chain = mmu_alloc_pte_chain(vcpu); -		INIT_HLIST_HEAD(&sp->parent_ptes); -		hlist_add_head(&pte_chain->link, &sp->parent_ptes); -		pte_chain->parent_ptes[0] = old; -	} -	hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) { -		if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1]) -			continue; -		for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) -			if (!pte_chain->parent_ptes[i]) { -				pte_chain->parent_ptes[i] = parent_pte; -				return; -			} -	} -	pte_chain = mmu_alloc_pte_chain(vcpu); -	BUG_ON(!pte_chain); -	hlist_add_head(&pte_chain->link, &sp->parent_ptes); -	pte_chain->parent_ptes[0] = parent_pte; +	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);  }  static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,  				       u64 *parent_pte)  { -	struct kvm_pte_chain *pte_chain; -	struct hlist_node *node; -	int i; - -	if (!sp->multimapped) { -		BUG_ON(sp->parent_pte != parent_pte); -		sp->parent_pte = NULL; -		return; -	} -	hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) -		for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) { -			if (!pte_chain->parent_ptes[i]) -				break; -			if (pte_chain->parent_ptes[i] != parent_pte) -				continue; -			while (i + 1 < NR_PTE_CHAIN_ENTRIES -				&& pte_chain->parent_ptes[i + 1]) { -				pte_chain->parent_ptes[i] -					= pte_chain->parent_ptes[i + 1]; -				++i; -			} -			pte_chain->parent_ptes[i] = NULL; -			if (i == 0) { -				hlist_del(&pte_chain->link); -				mmu_free_pte_chain(pte_chain); -				if (hlist_empty(&sp->parent_ptes)) { -					sp->multimapped = 0; -					sp->parent_pte = NULL; -				} -			} -			return; -		} -	BUG(); +	pte_list_remove(parent_pte, &sp->parent_ptes);  } -static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn) +static void drop_parent_pte(struct kvm_mmu_page *sp, +			    u64 *parent_pte)  { -	struct kvm_pte_chain *pte_chain; -	struct hlist_node *node; -	struct kvm_mmu_page *parent_sp; -	int i; +	mmu_page_remove_parent_pte(sp, parent_pte); +	mmu_spte_clear_no_track(parent_pte); +} -	if (!sp->multimapped && sp->parent_pte) { -		parent_sp = page_header(__pa(sp->parent_pte)); -		fn(parent_sp, sp->parent_pte); -		return; -	} +static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, +					       u64 *parent_pte, int direct) +{ +	struct kvm_mmu_page *sp; -	hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) -		for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) { -			u64 *spte = pte_chain->parent_ptes[i]; +	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); +	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache); +	if (!direct) +		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache); +	set_page_private(virt_to_page(sp->spt), (unsigned long)sp); -			if (!spte) -				break; -			parent_sp = page_header(__pa(spte)); -			fn(parent_sp, spte); -		} +	/* +	 * The active_mmu_pages list is the FIFO list, do not move the +	 * page until it is zapped. kvm_zap_obsolete_pages depends on +	 * this feature. See the comments in kvm_zap_obsolete_pages(). +	 */ +	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); +	sp->parent_ptes = 0; +	mmu_page_add_parent_pte(vcpu, sp, parent_pte); +	kvm_mod_used_mmu_pages(vcpu->kvm, +1); +	return sp;  } -static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte); +static void mark_unsync(u64 *spte);  static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)  { -	mmu_parent_walk(sp, mark_unsync); +	pte_list_walk(&sp->parent_ptes, mark_unsync);  } -static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte) +static void mark_unsync(u64 *spte)  { +	struct kvm_mmu_page *sp;  	unsigned int index; +	sp = page_header(__pa(spte));  	index = spte - sp->spt;  	if (__test_and_set_bit(index, sp->unsync_child_bitmap))  		return; @@ -1151,17 +1603,8 @@ static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)  	kvm_mmu_mark_parents_unsync(sp);  } -static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu, -				    struct kvm_mmu_page *sp) -{ -	int i; - -	for (i = 0; i < PT64_ENT_PER_PAGE; ++i) -		sp->spt[i] = shadow_trap_nonpresent_pte; -} -  static int nonpaging_sync_page(struct kvm_vcpu *vcpu, -			       struct kvm_mmu_page *sp, bool clear_unsync) +			       struct kvm_mmu_page *sp)  {  	return 1;  } @@ -1170,6 +1613,13 @@ static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)  {  } +static void nonpaging_update_pte(struct kvm_vcpu *vcpu, +				 struct kvm_mmu_page *sp, u64 *spte, +				 const void *pte) +{ +	WARN_ON(1); +} +  #define KVM_PAGE_ARRAY_NR 16  struct kvm_mmu_pages { @@ -1180,11 +1630,6 @@ struct kvm_mmu_pages {  	unsigned int nr;  }; -#define for_each_unsync_children(bitmap, idx)		\ -	for (idx = find_first_bit(bitmap, 512);		\ -	     idx < 512;					\ -	     idx = find_next_bit(bitmap, 512, idx+1)) -  static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,  			 int idx)  { @@ -1206,7 +1651,7 @@ static int __mmu_unsync_walk(struct kvm_mmu_page *sp,  {  	int i, ret, nr_unsync_leaf = 0; -	for_each_unsync_children(sp->unsync_child_bitmap, i) { +	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {  		struct kvm_mmu_page *child;  		u64 ent = sp->spt[i]; @@ -1268,16 +1713,24 @@ static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,  static void kvm_mmu_commit_zap_page(struct kvm *kvm,  				    struct list_head *invalid_list); -#define for_each_gfn_sp(kvm, sp, gfn, pos)				\ -  hlist_for_each_entry(sp, pos,						\ -   &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)	\ -	if ((sp)->gfn != (gfn)) {} else +/* + * NOTE: we should pay more attention on the zapped-obsolete page + * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk + * since it has been deleted from active_mmu_pages but still can be found + * at hast list. + * + * for_each_gfn_indirect_valid_sp has skipped that kind of page and + * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped + * all the obsolete pages. + */ +#define for_each_gfn_sp(_kvm, _sp, _gfn)				\ +	hlist_for_each_entry(_sp,					\ +	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \ +		if ((_sp)->gfn != (_gfn)) {} else -#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)		\ -  hlist_for_each_entry(sp, pos,						\ -   &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)	\ -		if ((sp)->gfn != (gfn) || (sp)->role.direct ||		\ -			(sp)->role.invalid) {} else +#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\ +	for_each_gfn_sp(_kvm, _sp, _gfn)				\ +		if ((_sp)->role.direct || (_sp)->role.invalid) {} else  /* @sp->gfn should be write-protected at the call site */  static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, @@ -1291,7 +1744,7 @@ static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,  	if (clear_unsync)  		kvm_unlink_unsync_page(vcpu->kvm, sp); -	if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) { +	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {  		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);  		return 1;  	} @@ -1313,6 +1766,13 @@ static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,  	return ret;  } +#ifdef CONFIG_KVM_MMU_AUDIT +#include "mmu_audit.c" +#else +static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } +static void mmu_audit_disable(void) { } +#endif +  static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,  			 struct list_head *invalid_list)  { @@ -1323,21 +1783,20 @@ static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,  static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)  {  	struct kvm_mmu_page *s; -	struct hlist_node *node;  	LIST_HEAD(invalid_list);  	bool flush = false; -	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) { +	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {  		if (!s->unsync)  			continue;  		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL); +		kvm_unlink_unsync_page(vcpu->kvm, s);  		if ((s->role.cr4_pae != !!is_pae(vcpu)) || -			(vcpu->arch.mmu.sync_page(vcpu, s, true))) { +			(vcpu->arch.mmu.sync_page(vcpu, s))) {  			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);  			continue;  		} -		kvm_unlink_unsync_page(vcpu->kvm, s);  		flush = true;  	} @@ -1416,7 +1875,7 @@ static void mmu_sync_children(struct kvm_vcpu *vcpu,  	kvm_mmu_pages_init(parent, &parents, &pages);  	while (mmu_unsync_walk(parent, &pages)) { -		int protected = 0; +		bool protected = false;  		for_each_sp(pages, sp, parents, i)  			protected |= rmap_write_protect(vcpu->kvm, sp->gfn); @@ -1434,6 +1893,31 @@ static void mmu_sync_children(struct kvm_vcpu *vcpu,  	}  } +static void init_shadow_page_table(struct kvm_mmu_page *sp) +{ +	int i; + +	for (i = 0; i < PT64_ENT_PER_PAGE; ++i) +		sp->spt[i] = 0ull; +} + +static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) +{ +	sp->write_flooding_count = 0; +} + +static void clear_sp_write_flooding_count(u64 *spte) +{ +	struct kvm_mmu_page *sp =  page_header(__pa(spte)); + +	__clear_sp_write_flooding_count(sp); +} + +static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) +{ +	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); +} +  static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,  					     gfn_t gfn,  					     gva_t gaddr, @@ -1445,7 +1929,6 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,  	union kvm_mmu_page_role role;  	unsigned quadrant;  	struct kvm_mmu_page *sp; -	struct hlist_node *node;  	bool need_sync = false;  	role = vcpu->arch.mmu.base_role; @@ -1460,7 +1943,10 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,  		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;  		role.quadrant = quadrant;  	} -	for_each_gfn_sp(vcpu->kvm, sp, gfn, node) { +	for_each_gfn_sp(vcpu->kvm, sp, gfn) { +		if (is_obsolete_sp(vcpu->kvm, sp)) +			continue; +  		if (!need_sync && sp->unsync)  			need_sync = true; @@ -1477,6 +1963,7 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,  		} else if (sp->unsync)  			kvm_mmu_mark_parents_unsync(sp); +		__clear_sp_write_flooding_count(sp);  		trace_kvm_mmu_get_page(sp, false);  		return sp;  	} @@ -1496,10 +1983,8 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,  		account_shadowed(vcpu->kvm, gfn);  	} -	if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte) -		vcpu->arch.mmu.prefetch_page(vcpu, sp); -	else -		nonpaging_prefetch_page(vcpu, sp); +	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; +	init_shadow_page_table(sp);  	trace_kvm_mmu_get_page(sp, true);  	return sp;  } @@ -1531,37 +2016,42 @@ static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)  	if (iterator->level < PT_PAGE_TABLE_LEVEL)  		return false; -	if (iterator->level == PT_PAGE_TABLE_LEVEL) -		if (is_large_pte(*iterator->sptep)) -			return false; -  	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);  	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;  	return true;  } -static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) +static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, +			       u64 spte)  { -	iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK; +	if (is_last_spte(spte, iterator->level)) { +		iterator->level = 0; +		return; +	} + +	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;  	--iterator->level;  } -static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp) +static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)  { -	u64 spte; - -	spte = __pa(sp->spt) -		| PT_PRESENT_MASK | PT_ACCESSED_MASK -		| PT_WRITABLE_MASK | PT_USER_MASK; -	__set_spte(sptep, spte); +	return __shadow_walk_next(iterator, *iterator->sptep);  } -static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) +static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)  { -	if (is_large_pte(*sptep)) { -		drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte); -		kvm_flush_remote_tlbs(vcpu->kvm); -	} +	u64 spte; + +	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK || +			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); + +	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK | +	       shadow_user_mask | shadow_x_mask; + +	if (accessed) +		spte |= shadow_accessed_mask; + +	mmu_spte_set(sptep, spte);  }  static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, @@ -1581,72 +2071,57 @@ static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,  		if (child->role.access == direct_access)  			return; -		mmu_page_remove_parent_pte(child, sptep); -		__set_spte(sptep, shadow_trap_nonpresent_pte); +		drop_parent_pte(child, sptep);  		kvm_flush_remote_tlbs(vcpu->kvm);  	}  } -static void kvm_mmu_page_unlink_children(struct kvm *kvm, -					 struct kvm_mmu_page *sp) +static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, +			     u64 *spte)  { -	unsigned i; -	u64 *pt; -	u64 ent; - -	pt = sp->spt; - -	for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { -		ent = pt[i]; - -		if (is_shadow_present_pte(ent)) { -			if (!is_last_spte(ent, sp->role.level)) { -				ent &= PT64_BASE_ADDR_MASK; -				mmu_page_remove_parent_pte(page_header(ent), -							   &pt[i]); -			} else { -				if (is_large_pte(ent)) -					--kvm->stat.lpages; -				drop_spte(kvm, &pt[i], -					  shadow_trap_nonpresent_pte); -			} +	u64 pte; +	struct kvm_mmu_page *child; + +	pte = *spte; +	if (is_shadow_present_pte(pte)) { +		if (is_last_spte(pte, sp->role.level)) { +			drop_spte(kvm, spte); +			if (is_large_pte(pte)) +				--kvm->stat.lpages; +		} else { +			child = page_header(pte & PT64_BASE_ADDR_MASK); +			drop_parent_pte(child, spte);  		} -		pt[i] = shadow_trap_nonpresent_pte; +		return true;  	} + +	if (is_mmio_spte(pte)) +		mmu_spte_clear_no_track(spte); + +	return false;  } -static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte) +static void kvm_mmu_page_unlink_children(struct kvm *kvm, +					 struct kvm_mmu_page *sp)  { -	mmu_page_remove_parent_pte(sp, parent_pte); +	unsigned i; + +	for (i = 0; i < PT64_ENT_PER_PAGE; ++i) +		mmu_page_zap_pte(kvm, sp, sp->spt + i);  } -static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm) +static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)  { -	int i; -	struct kvm_vcpu *vcpu; - -	kvm_for_each_vcpu(i, vcpu, kvm) -		vcpu->arch.last_pte_updated = NULL; +	mmu_page_remove_parent_pte(sp, parent_pte);  }  static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)  { -	u64 *parent_pte; - -	while (sp->multimapped || sp->parent_pte) { -		if (!sp->multimapped) -			parent_pte = sp->parent_pte; -		else { -			struct kvm_pte_chain *chain; +	u64 *sptep; +	struct rmap_iterator iter; -			chain = container_of(sp->parent_ptes.first, -					     struct kvm_pte_chain, link); -			parent_pte = chain->parent_ptes[0]; -		} -		BUG_ON(!parent_pte); -		kvm_mmu_put_page(sp, parent_pte); -		__set_spte(parent_pte, shadow_trap_nonpresent_pte); -	} +	while ((sptep = rmap_get_first(sp->parent_ptes, &iter))) +		drop_parent_pte(sp, sptep);  }  static int mmu_zap_unsync_children(struct kvm *kvm, @@ -1685,40 +2160,71 @@ static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,  	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);  	kvm_mmu_page_unlink_children(kvm, sp);  	kvm_mmu_unlink_parents(kvm, sp); +  	if (!sp->role.invalid && !sp->role.direct)  		unaccount_shadowed(kvm, sp->gfn); +  	if (sp->unsync)  		kvm_unlink_unsync_page(kvm, sp);  	if (!sp->root_count) {  		/* Count self */  		ret++;  		list_move(&sp->link, invalid_list); +		kvm_mod_used_mmu_pages(kvm, -1);  	} else {  		list_move(&sp->link, &kvm->arch.active_mmu_pages); -		kvm_reload_remote_mmus(kvm); + +		/* +		 * The obsolete pages can not be used on any vcpus. +		 * See the comments in kvm_mmu_invalidate_zap_all_pages(). +		 */ +		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp)) +			kvm_reload_remote_mmus(kvm);  	}  	sp->role.invalid = 1; -	kvm_mmu_reset_last_pte_updated(kvm);  	return ret;  }  static void kvm_mmu_commit_zap_page(struct kvm *kvm,  				    struct list_head *invalid_list)  { -	struct kvm_mmu_page *sp; +	struct kvm_mmu_page *sp, *nsp;  	if (list_empty(invalid_list))  		return; +	/* +	 * wmb: make sure everyone sees our modifications to the page tables +	 * rmb: make sure we see changes to vcpu->mode +	 */ +	smp_mb(); + +	/* +	 * Wait for all vcpus to exit guest mode and/or lockless shadow +	 * page table walks. +	 */  	kvm_flush_remote_tlbs(kvm); -	do { -		sp = list_first_entry(invalid_list, struct kvm_mmu_page, link); +	list_for_each_entry_safe(sp, nsp, invalid_list, link) {  		WARN_ON(!sp->role.invalid || sp->root_count); -		kvm_mmu_free_page(kvm, sp); -	} while (!list_empty(invalid_list)); +		kvm_mmu_free_page(sp); +	} +} + +static bool prepare_zap_oldest_mmu_page(struct kvm *kvm, +					struct list_head *invalid_list) +{ +	struct kvm_mmu_page *sp; +	if (list_empty(&kvm->arch.active_mmu_pages)) +		return false; + +	sp = list_entry(kvm->arch.active_mmu_pages.prev, +			struct kvm_mmu_page, link); +	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); + +	return true;  }  /* @@ -1728,83 +2234,45 @@ static void kvm_mmu_commit_zap_page(struct kvm *kvm,  void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)  {  	LIST_HEAD(invalid_list); -	/* -	 * If we set the number of mmu pages to be smaller be than the -	 * number of actived pages , we must to free some mmu pages before we -	 * change the value -	 */ + +	spin_lock(&kvm->mmu_lock);  	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { -		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages && -			!list_empty(&kvm->arch.active_mmu_pages)) { -			struct kvm_mmu_page *page; - -			page = container_of(kvm->arch.active_mmu_pages.prev, -					    struct kvm_mmu_page, link); -			kvm_mmu_prepare_zap_page(kvm, page, &invalid_list); -			kvm_mmu_commit_zap_page(kvm, &invalid_list); -		} +		/* Need to free some mmu pages to achieve the goal. */ +		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) +			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list)) +				break; + +		kvm_mmu_commit_zap_page(kvm, &invalid_list);  		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;  	}  	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; + +	spin_unlock(&kvm->mmu_lock);  } -static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) +int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)  {  	struct kvm_mmu_page *sp; -	struct hlist_node *node;  	LIST_HEAD(invalid_list);  	int r;  	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);  	r = 0; - -	for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) { +	spin_lock(&kvm->mmu_lock); +	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {  		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,  			 sp->role.word);  		r = 1;  		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);  	}  	kvm_mmu_commit_zap_page(kvm, &invalid_list); -	return r; -} - -static void mmu_unshadow(struct kvm *kvm, gfn_t gfn) -{ -	struct kvm_mmu_page *sp; -	struct hlist_node *node; -	LIST_HEAD(invalid_list); - -	for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) { -		pgprintk("%s: zap %llx %x\n", -			 __func__, gfn, sp->role.word); -		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); -	} -	kvm_mmu_commit_zap_page(kvm, &invalid_list); -} - -static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn) -{ -	int slot = memslot_id(kvm, gfn); -	struct kvm_mmu_page *sp = page_header(__pa(pte)); - -	__set_bit(slot, sp->slot_bitmap); -} - -static void mmu_convert_notrap(struct kvm_mmu_page *sp) -{ -	int i; -	u64 *pt = sp->spt; - -	if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte) -		return; +	spin_unlock(&kvm->mmu_lock); -	for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { -		if (pt[i] == shadow_notrap_nonpresent_pte) -			__set_spte(&pt[i], shadow_trap_nonpresent_pte); -	} +	return r;  } +EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);  /*   * The function is based on mtrr_type_lookup() in @@ -1918,15 +2386,13 @@ static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)  	sp->unsync = 1;  	kvm_mmu_mark_parents_unsync(sp); -	mmu_convert_notrap(sp);  }  static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)  {  	struct kvm_mmu_page *s; -	struct hlist_node *node; -	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) { +	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {  		if (s->unsync)  			continue;  		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL); @@ -1938,21 +2404,17 @@ static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,  				  bool can_unsync)  {  	struct kvm_mmu_page *s; -	struct hlist_node *node;  	bool need_unsync = false; -	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) { +	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {  		if (!can_unsync)  			return 1;  		if (s->role.level != PT_PAGE_TABLE_LEVEL)  			return 1; -		if (!need_unsync && !s->unsync) { -			if (!oos_shadow) -				return 1; +		if (!s->unsync)  			need_unsync = true; -		}  	}  	if (need_unsync)  		kvm_unsync_pages(vcpu, gfn); @@ -1960,57 +2422,54 @@ static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,  }  static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, -		    unsigned pte_access, int user_fault, -		    int write_fault, int dirty, int level, +		    unsigned pte_access, int level,  		    gfn_t gfn, pfn_t pfn, bool speculative, -		    bool can_unsync, bool reset_host_protection) +		    bool can_unsync, bool host_writable)  {  	u64 spte;  	int ret = 0; -	/* -	 * We don't set the accessed bit, since we sometimes want to see -	 * whether the guest actually used the pte (in order to detect -	 * demand paging). -	 */ -	spte = shadow_base_present_pte; +	if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access)) +		return 0; + +	spte = PT_PRESENT_MASK;  	if (!speculative)  		spte |= shadow_accessed_mask; -	if (!dirty) -		pte_access &= ~ACC_WRITE_MASK; +  	if (pte_access & ACC_EXEC_MASK)  		spte |= shadow_x_mask;  	else  		spte |= shadow_nx_mask; +  	if (pte_access & ACC_USER_MASK)  		spte |= shadow_user_mask; +  	if (level > PT_PAGE_TABLE_LEVEL)  		spte |= PT_PAGE_SIZE_MASK;  	if (tdp_enabled)  		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,  			kvm_is_mmio_pfn(pfn)); -	if (reset_host_protection) +	if (host_writable)  		spte |= SPTE_HOST_WRITEABLE; +	else +		pte_access &= ~ACC_WRITE_MASK;  	spte |= (u64)pfn << PAGE_SHIFT; -	if ((pte_access & ACC_WRITE_MASK) -	    || (!vcpu->arch.mmu.direct_map && write_fault -		&& !is_write_protection(vcpu) && !user_fault)) { +	if (pte_access & ACC_WRITE_MASK) { +		/* +		 * Other vcpu creates new sp in the window between +		 * mapping_level() and acquiring mmu-lock. We can +		 * allow guest to retry the access, the mapping can +		 * be fixed if guest refault. +		 */  		if (level > PT_PAGE_TABLE_LEVEL && -		    has_wrprotected_page(vcpu->kvm, gfn, level)) { -			ret = 1; -			drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte); +		    has_wrprotected_page(vcpu->kvm, gfn, level))  			goto done; -		} -		spte |= PT_WRITABLE_MASK; - -		if (!vcpu->arch.mmu.direct_map -		    && !(pte_access & ACC_WRITE_MASK)) -			spte &= ~PT_USER_MASK; +		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;  		/*  		 * Optimization: for pte sync, if spte was writable the hash @@ -2026,8 +2485,7 @@ static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,  				 __func__, gfn);  			ret = 1;  			pte_access &= ~ACC_WRITE_MASK; -			if (is_writable_pte(spte)) -				spte &= ~PT_WRITABLE_MASK; +			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);  		}  	} @@ -2035,25 +2493,22 @@ static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,  		mark_page_dirty(vcpu->kvm, gfn);  set_pte: -	update_spte(sptep, spte); +	if (mmu_spte_update(sptep, spte)) +		kvm_flush_remote_tlbs(vcpu->kvm);  done:  	return ret;  }  static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, -			 unsigned pt_access, unsigned pte_access, -			 int user_fault, int write_fault, int dirty, -			 int *ptwrite, int level, gfn_t gfn, -			 pfn_t pfn, bool speculative, -			 bool reset_host_protection) +			 unsigned pte_access, int write_fault, int *emulate, +			 int level, gfn_t gfn, pfn_t pfn, bool speculative, +			 bool host_writable)  {  	int was_rmapped = 0;  	int rmap_count; -	pgprintk("%s: spte %llx access %x write_fault %d" -		 " user_fault %d gfn %llx\n", -		 __func__, *sptep, pt_access, -		 write_fault, user_fault, gfn); +	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, +		 *sptep, write_fault, gfn);  	if (is_rmap_spte(*sptep)) {  		/* @@ -2066,26 +2521,27 @@ static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,  			u64 pte = *sptep;  			child = page_header(pte & PT64_BASE_ADDR_MASK); -			mmu_page_remove_parent_pte(child, sptep); -			__set_spte(sptep, shadow_trap_nonpresent_pte); +			drop_parent_pte(child, sptep);  			kvm_flush_remote_tlbs(vcpu->kvm);  		} else if (pfn != spte_to_pfn(*sptep)) {  			pgprintk("hfn old %llx new %llx\n",  				 spte_to_pfn(*sptep), pfn); -			drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte); +			drop_spte(vcpu->kvm, sptep);  			kvm_flush_remote_tlbs(vcpu->kvm);  		} else  			was_rmapped = 1;  	} -	if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault, -		      dirty, level, gfn, pfn, speculative, true, -		      reset_host_protection)) { +	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative, +	      true, host_writable)) {  		if (write_fault) -			*ptwrite = 1; +			*emulate = 1;  		kvm_mmu_flush_tlb(vcpu);  	} +	if (unlikely(is_mmio_spte(*sptep) && emulate)) +		*emulate = 1; +  	pgprintk("%s: setting spte %llx\n", __func__, *sptep);  	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",  		 is_large_pte(*sptep)? "2MB" : "4kB", @@ -2094,51 +2550,27 @@ static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,  	if (!was_rmapped && is_large_pte(*sptep))  		++vcpu->kvm->stat.lpages; -	page_header_update_slot(vcpu->kvm, sptep, gfn); -	if (!was_rmapped) { -		rmap_count = rmap_add(vcpu, sptep, gfn); -		if (rmap_count > RMAP_RECYCLE_THRESHOLD) -			rmap_recycle(vcpu, sptep, gfn); -	} -	kvm_release_pfn_clean(pfn); -	if (speculative) { -		vcpu->arch.last_pte_updated = sptep; -		vcpu->arch.last_pte_gfn = gfn; +	if (is_shadow_present_pte(*sptep)) { +		if (!was_rmapped) { +			rmap_count = rmap_add(vcpu, sptep, gfn); +			if (rmap_count > RMAP_RECYCLE_THRESHOLD) +				rmap_recycle(vcpu, sptep, gfn); +		}  	} -} -static void nonpaging_new_cr3(struct kvm_vcpu *vcpu) -{ -} - -static struct kvm_memory_slot * -pte_prefetch_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn, bool no_dirty_log) -{ -	struct kvm_memory_slot *slot; - -	slot = gfn_to_memslot(vcpu->kvm, gfn); -	if (!slot || slot->flags & KVM_MEMSLOT_INVALID || -	      (no_dirty_log && slot->dirty_bitmap)) -		slot = NULL; - -	return slot; +	kvm_release_pfn_clean(pfn);  }  static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,  				     bool no_dirty_log)  {  	struct kvm_memory_slot *slot; -	unsigned long hva; -	slot = pte_prefetch_gfn_to_memslot(vcpu, gfn, no_dirty_log); -	if (!slot) { -		get_page(bad_page); -		return page_to_pfn(bad_page); -	} +	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); +	if (!slot) +		return KVM_PFN_ERR_FAULT; -	hva = gfn_to_hva_memslot(slot, gfn); - -	return hva_to_pfn_atomic(vcpu->kvm, hva); +	return gfn_to_pfn_memslot_atomic(slot, gfn);  }  static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, @@ -2151,7 +2583,7 @@ static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,  	gfn_t gfn;  	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); -	if (!pte_prefetch_gfn_to_memslot(vcpu, gfn, access & ACC_WRITE_MASK)) +	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))  		return -1;  	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start); @@ -2159,10 +2591,9 @@ static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,  		return -1;  	for (i = 0; i < ret; i++, gfn++, start++) -		mmu_set_spte(vcpu, start, ACC_ALL, -			     access, 0, 0, 1, NULL, -			     sp->role.level, gfn, -			     page_to_pfn(pages[i]), true, true); +		mmu_set_spte(vcpu, start, access, 0, NULL, +			     sp->role.level, gfn, page_to_pfn(pages[i]), +			     true, true);  	return 0;  } @@ -2179,7 +2610,7 @@ static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,  	spte = sp->spt + i;  	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { -		if (*spte != shadow_trap_nonpresent_pte || spte == sptep) { +		if (is_shadow_present_pte(*spte) || spte == sptep) {  			if (!start)  				continue;  			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) @@ -2211,24 +2642,29 @@ static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)  }  static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write, -			int level, gfn_t gfn, pfn_t pfn) +			int map_writable, int level, gfn_t gfn, pfn_t pfn, +			bool prefault)  {  	struct kvm_shadow_walk_iterator iterator;  	struct kvm_mmu_page *sp; -	int pt_write = 0; +	int emulate = 0;  	gfn_t pseudo_gfn; +	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) +		return 0; +  	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {  		if (iterator.level == level) { -			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL, -				     0, write, 1, &pt_write, -				     level, gfn, pfn, false, true); +			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, +				     write, &emulate, level, gfn, pfn, +				     prefault, map_writable);  			direct_pte_prefetch(vcpu, iterator.sptep);  			++vcpu->stat.pf_fixed;  			break;  		} -		if (*iterator.sptep == shadow_trap_nonpresent_pte) { +		drop_large_spte(vcpu, iterator.sptep); +		if (!is_shadow_present_pte(*iterator.sptep)) {  			u64 base_addr = iterator.addr;  			base_addr &= PT64_LVL_ADDR_MASK(iterator.level); @@ -2236,20 +2672,11 @@ static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,  			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,  					      iterator.level - 1,  					      1, ACC_ALL, iterator.sptep); -			if (!sp) { -				pgprintk("nonpaging_map: ENOMEM\n"); -				kvm_release_pfn_clean(pfn); -				return -ENOMEM; -			} -			__set_spte(iterator.sptep, -				   __pa(sp->spt) -				   | PT_PRESENT_MASK | PT_WRITABLE_MASK -				   | shadow_user_mask | shadow_x_mask -				   | shadow_accessed_mask); +			link_shadow_page(iterator.sptep, sp, true);  		}  	} -	return pt_write; +	return emulate;  }  static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) @@ -2265,49 +2692,257 @@ static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *  	send_sig_info(SIGBUS, &info, tsk);  } -static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn) +static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)  { -	kvm_release_pfn_clean(pfn); -	if (is_hwpoison_pfn(pfn)) { -		kvm_send_hwpoison_signal(gfn_to_hva(kvm, gfn), current); +	/* +	 * Do not cache the mmio info caused by writing the readonly gfn +	 * into the spte otherwise read access on readonly gfn also can +	 * caused mmio page fault and treat it as mmio access. +	 * Return 1 to tell kvm to emulate it. +	 */ +	if (pfn == KVM_PFN_ERR_RO_FAULT) +		return 1; + +	if (pfn == KVM_PFN_ERR_HWPOISON) { +		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);  		return 0; -	} else if (is_fault_pfn(pfn)) -		return -EFAULT; +	} -	return 1; +	return -EFAULT; +} + +static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu, +					gfn_t *gfnp, pfn_t *pfnp, int *levelp) +{ +	pfn_t pfn = *pfnp; +	gfn_t gfn = *gfnp; +	int level = *levelp; + +	/* +	 * Check if it's a transparent hugepage. If this would be an +	 * hugetlbfs page, level wouldn't be set to +	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done +	 * here. +	 */ +	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) && +	    level == PT_PAGE_TABLE_LEVEL && +	    PageTransCompound(pfn_to_page(pfn)) && +	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) { +		unsigned long mask; +		/* +		 * mmu_notifier_retry was successful and we hold the +		 * mmu_lock here, so the pmd can't become splitting +		 * from under us, and in turn +		 * __split_huge_page_refcount() can't run from under +		 * us and we can safely transfer the refcount from +		 * PG_tail to PG_head as we switch the pfn to tail to +		 * head. +		 */ +		*levelp = level = PT_DIRECTORY_LEVEL; +		mask = KVM_PAGES_PER_HPAGE(level) - 1; +		VM_BUG_ON((gfn & mask) != (pfn & mask)); +		if (pfn & mask) { +			gfn &= ~mask; +			*gfnp = gfn; +			kvm_release_pfn_clean(pfn); +			pfn &= ~mask; +			kvm_get_pfn(pfn); +			*pfnp = pfn; +		} +	}  } -static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn) +static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, +				pfn_t pfn, unsigned access, int *ret_val) +{ +	bool ret = true; + +	/* The pfn is invalid, report the error! */ +	if (unlikely(is_error_pfn(pfn))) { +		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); +		goto exit; +	} + +	if (unlikely(is_noslot_pfn(pfn))) +		vcpu_cache_mmio_info(vcpu, gva, gfn, access); + +	ret = false; +exit: +	return ret; +} + +static bool page_fault_can_be_fast(u32 error_code) +{ +	/* +	 * Do not fix the mmio spte with invalid generation number which +	 * need to be updated by slow page fault path. +	 */ +	if (unlikely(error_code & PFERR_RSVD_MASK)) +		return false; + +	/* +	 * #PF can be fast only if the shadow page table is present and it +	 * is caused by write-protect, that means we just need change the +	 * W bit of the spte which can be done out of mmu-lock. +	 */ +	if (!(error_code & PFERR_PRESENT_MASK) || +	      !(error_code & PFERR_WRITE_MASK)) +		return false; + +	return true; +} + +static bool +fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, +			u64 *sptep, u64 spte) +{ +	gfn_t gfn; + +	WARN_ON(!sp->role.direct); + +	/* +	 * The gfn of direct spte is stable since it is calculated +	 * by sp->gfn. +	 */ +	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); + +	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte) +		mark_page_dirty(vcpu->kvm, gfn); + +	return true; +} + +/* + * Return value: + * - true: let the vcpu to access on the same address again. + * - false: let the real page fault path to fix it. + */ +static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level, +			    u32 error_code) +{ +	struct kvm_shadow_walk_iterator iterator; +	struct kvm_mmu_page *sp; +	bool ret = false; +	u64 spte = 0ull; + +	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) +		return false; + +	if (!page_fault_can_be_fast(error_code)) +		return false; + +	walk_shadow_page_lockless_begin(vcpu); +	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte) +		if (!is_shadow_present_pte(spte) || iterator.level < level) +			break; + +	/* +	 * If the mapping has been changed, let the vcpu fault on the +	 * same address again. +	 */ +	if (!is_rmap_spte(spte)) { +		ret = true; +		goto exit; +	} + +	sp = page_header(__pa(iterator.sptep)); +	if (!is_last_spte(spte, sp->role.level)) +		goto exit; + +	/* +	 * Check if it is a spurious fault caused by TLB lazily flushed. +	 * +	 * Need not check the access of upper level table entries since +	 * they are always ACC_ALL. +	 */ +	 if (is_writable_pte(spte)) { +		ret = true; +		goto exit; +	} + +	/* +	 * Currently, to simplify the code, only the spte write-protected +	 * by dirty-log can be fast fixed. +	 */ +	if (!spte_is_locklessly_modifiable(spte)) +		goto exit; + +	/* +	 * Do not fix write-permission on the large spte since we only dirty +	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte() +	 * that means other pages are missed if its slot is dirty-logged. +	 * +	 * Instead, we let the slow page fault path create a normal spte to +	 * fix the access. +	 * +	 * See the comments in kvm_arch_commit_memory_region(). +	 */ +	if (sp->role.level > PT_PAGE_TABLE_LEVEL) +		goto exit; + +	/* +	 * Currently, fast page fault only works for direct mapping since +	 * the gfn is not stable for indirect shadow page. +	 * See Documentation/virtual/kvm/locking.txt to get more detail. +	 */ +	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte); +exit: +	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep, +			      spte, ret); +	walk_shadow_page_lockless_end(vcpu); + +	return ret; +} + +static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, +			 gva_t gva, pfn_t *pfn, bool write, bool *writable); +static void make_mmu_pages_available(struct kvm_vcpu *vcpu); + +static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code, +			 gfn_t gfn, bool prefault)  {  	int r;  	int level; +	int force_pt_level;  	pfn_t pfn;  	unsigned long mmu_seq; +	bool map_writable, write = error_code & PFERR_WRITE_MASK; -	level = mapping_level(vcpu, gfn); +	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn); +	if (likely(!force_pt_level)) { +		level = mapping_level(vcpu, gfn); +		/* +		 * This path builds a PAE pagetable - so we can map +		 * 2mb pages at maximum. Therefore check if the level +		 * is larger than that. +		 */ +		if (level > PT_DIRECTORY_LEVEL) +			level = PT_DIRECTORY_LEVEL; -	/* -	 * This path builds a PAE pagetable - so we can map 2mb pages at -	 * maximum. Therefore check if the level is larger than that. -	 */ -	if (level > PT_DIRECTORY_LEVEL) -		level = PT_DIRECTORY_LEVEL; +		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); +	} else +		level = PT_PAGE_TABLE_LEVEL; -	gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); +	if (fast_page_fault(vcpu, v, level, error_code)) +		return 0;  	mmu_seq = vcpu->kvm->mmu_notifier_seq;  	smp_rmb(); -	pfn = gfn_to_pfn(vcpu->kvm, gfn); -	/* mmio */ -	if (is_error_pfn(pfn)) -		return kvm_handle_bad_page(vcpu->kvm, gfn, pfn); +	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable)) +		return 0; + +	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r)) +		return r;  	spin_lock(&vcpu->kvm->mmu_lock); -	if (mmu_notifier_retry(vcpu, mmu_seq)) +	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))  		goto out_unlock; -	kvm_mmu_free_some_pages(vcpu); -	r = __direct_map(vcpu, v, write, level, gfn, pfn); +	make_mmu_pages_available(vcpu); +	if (likely(!force_pt_level)) +		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level); +	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn, +			 prefault);  	spin_unlock(&vcpu->kvm->mmu_lock); @@ -2328,22 +2963,25 @@ static void mmu_free_roots(struct kvm_vcpu *vcpu)  	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))  		return; -	spin_lock(&vcpu->kvm->mmu_lock); +  	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&  	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||  	     vcpu->arch.mmu.direct_map)) {  		hpa_t root = vcpu->arch.mmu.root_hpa; +		spin_lock(&vcpu->kvm->mmu_lock);  		sp = page_header(root);  		--sp->root_count;  		if (!sp->root_count && sp->role.invalid) {  			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);  			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);  		} -		vcpu->arch.mmu.root_hpa = INVALID_PAGE;  		spin_unlock(&vcpu->kvm->mmu_lock); +		vcpu->arch.mmu.root_hpa = INVALID_PAGE;  		return;  	} + +	spin_lock(&vcpu->kvm->mmu_lock);  	for (i = 0; i < 4; ++i) {  		hpa_t root = vcpu->arch.mmu.pae_root[i]; @@ -2381,7 +3019,7 @@ static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)  	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {  		spin_lock(&vcpu->kvm->mmu_lock); -		kvm_mmu_free_some_pages(vcpu); +		make_mmu_pages_available(vcpu);  		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,  				      1, ACC_ALL, NULL);  		++sp->root_count; @@ -2393,8 +3031,9 @@ static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)  			ASSERT(!VALID_PAGE(root));  			spin_lock(&vcpu->kvm->mmu_lock); -			kvm_mmu_free_some_pages(vcpu); -			sp = kvm_mmu_get_page(vcpu, i << 30, i << 30, +			make_mmu_pages_available(vcpu); +			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT), +					      i << 30,  					      PT32_ROOT_LEVEL, 1, ACC_ALL,  					      NULL);  			root = __pa(sp->spt); @@ -2431,7 +3070,7 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)  		ASSERT(!VALID_PAGE(root));  		spin_lock(&vcpu->kvm->mmu_lock); -		kvm_mmu_free_some_pages(vcpu); +		make_mmu_pages_available(vcpu);  		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,  				      0, ACC_ALL, NULL);  		root = __pa(sp->spt); @@ -2455,7 +3094,7 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)  		ASSERT(!VALID_PAGE(root));  		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) { -			pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i); +			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);  			if (!is_present_gpte(pdptr)) {  				vcpu->arch.mmu.pae_root[i] = 0;  				continue; @@ -2465,7 +3104,7 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)  				return 1;  		}  		spin_lock(&vcpu->kvm->mmu_lock); -		kvm_mmu_free_some_pages(vcpu); +		make_mmu_pages_available(vcpu);  		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,  				      PT32_ROOT_LEVEL, 0,  				      ACC_ALL, NULL); @@ -2524,11 +3163,13 @@ static void mmu_sync_roots(struct kvm_vcpu *vcpu)  	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))  		return; -	trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); +	vcpu_clear_mmio_info(vcpu, ~0ul); +	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);  	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {  		hpa_t root = vcpu->arch.mmu.root_hpa;  		sp = page_header(root);  		mmu_sync_children(vcpu, sp); +		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);  		return;  	}  	for (i = 0; i < 4; ++i) { @@ -2540,7 +3181,7 @@ static void mmu_sync_roots(struct kvm_vcpu *vcpu)  			mmu_sync_children(vcpu, sp);  		}  	} -	trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); +	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);  }  void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) @@ -2549,30 +3190,129 @@ void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)  	mmu_sync_roots(vcpu);  	spin_unlock(&vcpu->kvm->mmu_lock);  } +EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);  static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr, -				  u32 access, u32 *error) +				  u32 access, struct x86_exception *exception)  { -	if (error) -		*error = 0; +	if (exception) +		exception->error_code = 0;  	return vaddr;  }  static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr, -					 u32 access, u32 *error) +					 u32 access, +					 struct x86_exception *exception)  { -	if (error) -		*error = 0; +	if (exception) +		exception->error_code = 0;  	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);  } +static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct) +{ +	if (direct) +		return vcpu_match_mmio_gpa(vcpu, addr); + +	return vcpu_match_mmio_gva(vcpu, addr); +} + + +/* + * On direct hosts, the last spte is only allows two states + * for mmio page fault: + *   - It is the mmio spte + *   - It is zapped or it is being zapped. + * + * This function completely checks the spte when the last spte + * is not the mmio spte. + */ +static bool check_direct_spte_mmio_pf(u64 spte) +{ +	return __check_direct_spte_mmio_pf(spte); +} + +static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr) +{ +	struct kvm_shadow_walk_iterator iterator; +	u64 spte = 0ull; + +	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) +		return spte; + +	walk_shadow_page_lockless_begin(vcpu); +	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) +		if (!is_shadow_present_pte(spte)) +			break; +	walk_shadow_page_lockless_end(vcpu); + +	return spte; +} + +int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct) +{ +	u64 spte; + +	if (quickly_check_mmio_pf(vcpu, addr, direct)) +		return RET_MMIO_PF_EMULATE; + +	spte = walk_shadow_page_get_mmio_spte(vcpu, addr); + +	if (is_mmio_spte(spte)) { +		gfn_t gfn = get_mmio_spte_gfn(spte); +		unsigned access = get_mmio_spte_access(spte); + +		if (!check_mmio_spte(vcpu->kvm, spte)) +			return RET_MMIO_PF_INVALID; + +		if (direct) +			addr = 0; + +		trace_handle_mmio_page_fault(addr, gfn, access); +		vcpu_cache_mmio_info(vcpu, addr, gfn, access); +		return RET_MMIO_PF_EMULATE; +	} + +	/* +	 * It's ok if the gva is remapped by other cpus on shadow guest, +	 * it's a BUG if the gfn is not a mmio page. +	 */ +	if (direct && !check_direct_spte_mmio_pf(spte)) +		return RET_MMIO_PF_BUG; + +	/* +	 * If the page table is zapped by other cpus, let CPU fault again on +	 * the address. +	 */ +	return RET_MMIO_PF_RETRY; +} +EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common); + +static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, +				  u32 error_code, bool direct) +{ +	int ret; + +	ret = handle_mmio_page_fault_common(vcpu, addr, direct); +	WARN_ON(ret == RET_MMIO_PF_BUG); +	return ret; +} +  static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva, -				u32 error_code) +				u32 error_code, bool prefault)  {  	gfn_t gfn;  	int r;  	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code); + +	if (unlikely(error_code & PFERR_RSVD_MASK)) { +		r = handle_mmio_page_fault(vcpu, gva, error_code, true); + +		if (likely(r != RET_MMIO_PF_INVALID)) +			return r; +	} +  	r = mmu_topup_memory_caches(vcpu);  	if (r)  		return r; @@ -2583,40 +3323,108 @@ static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,  	gfn = gva >> PAGE_SHIFT;  	return nonpaging_map(vcpu, gva & PAGE_MASK, -			     error_code & PFERR_WRITE_MASK, gfn); +			     error_code, gfn, prefault); +} + +static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn) +{ +	struct kvm_arch_async_pf arch; + +	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; +	arch.gfn = gfn; +	arch.direct_map = vcpu->arch.mmu.direct_map; +	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu); + +	return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch); +} + +static bool can_do_async_pf(struct kvm_vcpu *vcpu) +{ +	if (unlikely(!irqchip_in_kernel(vcpu->kvm) || +		     kvm_event_needs_reinjection(vcpu))) +		return false; + +	return kvm_x86_ops->interrupt_allowed(vcpu); +} + +static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, +			 gva_t gva, pfn_t *pfn, bool write, bool *writable) +{ +	bool async; + +	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable); + +	if (!async) +		return false; /* *pfn has correct page already */ + +	if (!prefault && can_do_async_pf(vcpu)) { +		trace_kvm_try_async_get_page(gva, gfn); +		if (kvm_find_async_pf_gfn(vcpu, gfn)) { +			trace_kvm_async_pf_doublefault(gva, gfn); +			kvm_make_request(KVM_REQ_APF_HALT, vcpu); +			return true; +		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn)) +			return true; +	} + +	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable); + +	return false;  } -static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, -				u32 error_code) +static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code, +			  bool prefault)  {  	pfn_t pfn;  	int r;  	int level; +	int force_pt_level;  	gfn_t gfn = gpa >> PAGE_SHIFT;  	unsigned long mmu_seq; +	int write = error_code & PFERR_WRITE_MASK; +	bool map_writable;  	ASSERT(vcpu);  	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa)); +	if (unlikely(error_code & PFERR_RSVD_MASK)) { +		r = handle_mmio_page_fault(vcpu, gpa, error_code, true); + +		if (likely(r != RET_MMIO_PF_INVALID)) +			return r; +	} +  	r = mmu_topup_memory_caches(vcpu);  	if (r)  		return r; -	level = mapping_level(vcpu, gfn); +	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn); +	if (likely(!force_pt_level)) { +		level = mapping_level(vcpu, gfn); +		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); +	} else +		level = PT_PAGE_TABLE_LEVEL; -	gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); +	if (fast_page_fault(vcpu, gpa, level, error_code)) +		return 0;  	mmu_seq = vcpu->kvm->mmu_notifier_seq;  	smp_rmb(); -	pfn = gfn_to_pfn(vcpu->kvm, gfn); -	if (is_error_pfn(pfn)) -		return kvm_handle_bad_page(vcpu->kvm, gfn, pfn); + +	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable)) +		return 0; + +	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r)) +		return r; +  	spin_lock(&vcpu->kvm->mmu_lock); -	if (mmu_notifier_retry(vcpu, mmu_seq)) +	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))  		goto out_unlock; -	kvm_mmu_free_some_pages(vcpu); -	r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK, -			 level, gfn, pfn); +	make_mmu_pages_available(vcpu); +	if (likely(!force_pt_level)) +		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level); +	r = __direct_map(vcpu, gpa, write, map_writable, +			 level, gfn, pfn, prefault);  	spin_unlock(&vcpu->kvm->mmu_lock);  	return r; @@ -2627,27 +3435,19 @@ out_unlock:  	return 0;  } -static void nonpaging_free(struct kvm_vcpu *vcpu) +static void nonpaging_init_context(struct kvm_vcpu *vcpu, +				   struct kvm_mmu *context)  { -	mmu_free_roots(vcpu); -} - -static int nonpaging_init_context(struct kvm_vcpu *vcpu, -				  struct kvm_mmu *context) -{ -	context->new_cr3 = nonpaging_new_cr3;  	context->page_fault = nonpaging_page_fault;  	context->gva_to_gpa = nonpaging_gva_to_gpa; -	context->free = nonpaging_free; -	context->prefetch_page = nonpaging_prefetch_page;  	context->sync_page = nonpaging_sync_page;  	context->invlpg = nonpaging_invlpg; +	context->update_pte = nonpaging_update_pte;  	context->root_level = 0;  	context->shadow_root_level = PT32E_ROOT_LEVEL;  	context->root_hpa = INVALID_PAGE;  	context->direct_map = true;  	context->nx = false; -	return 0;  }  void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu) @@ -2655,36 +3455,55 @@ void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)  	++vcpu->stat.tlb_flush;  	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);  } +EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb); -static void paging_new_cr3(struct kvm_vcpu *vcpu) +void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)  { -	pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);  	mmu_free_roots(vcpu);  }  static unsigned long get_cr3(struct kvm_vcpu *vcpu)  { -	return vcpu->arch.cr3; +	return kvm_read_cr3(vcpu);  } -static void inject_page_fault(struct kvm_vcpu *vcpu) +static void inject_page_fault(struct kvm_vcpu *vcpu, +			      struct x86_exception *fault)  { -	vcpu->arch.mmu.inject_page_fault(vcpu); +	vcpu->arch.mmu.inject_page_fault(vcpu, fault);  } -static void paging_free(struct kvm_vcpu *vcpu) +static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn, +			   unsigned access, int *nr_present)  { -	nonpaging_free(vcpu); +	if (unlikely(is_mmio_spte(*sptep))) { +		if (gfn != get_mmio_spte_gfn(*sptep)) { +			mmu_spte_clear_no_track(sptep); +			return true; +		} + +		(*nr_present)++; +		mark_mmio_spte(kvm, sptep, gfn, access); +		return true; +	} + +	return false;  } -static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level) +static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)  { -	int bit7; +	unsigned index; -	bit7 = (gpte >> 7) & 1; -	return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0; +	index = level - 1; +	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2); +	return mmu->last_pte_bitmap & (1 << index);  } +#define PTTYPE_EPT 18 /* arbitrary */ +#define PTTYPE PTTYPE_EPT +#include "paging_tmpl.h" +#undef PTTYPE +  #define PTTYPE 64  #include "paging_tmpl.h"  #undef PTTYPE @@ -2694,15 +3513,19 @@ static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)  #undef PTTYPE  static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, -				  struct kvm_mmu *context, -				  int level) +				  struct kvm_mmu *context)  {  	int maxphyaddr = cpuid_maxphyaddr(vcpu);  	u64 exb_bit_rsvd = 0; +	u64 gbpages_bit_rsvd = 0; + +	context->bad_mt_xwr = 0;  	if (!context->nx)  		exb_bit_rsvd = rsvd_bits(63, 63); -	switch (level) { +	if (!guest_cpuid_has_gbpages(vcpu)) +		gbpages_bit_rsvd = rsvd_bits(7, 7); +	switch (context->root_level) {  	case PT32_ROOT_LEVEL:  		/* no rsvd bits for 2 level 4K page table entries */  		context->rsvd_bits_mask[0][1] = 0; @@ -2724,7 +3547,7 @@ static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,  	case PT32E_ROOT_LEVEL:  		context->rsvd_bits_mask[0][2] =  			rsvd_bits(maxphyaddr, 63) | -			rsvd_bits(7, 8) | rsvd_bits(1, 2);	/* PDPTE */ +			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */  		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |  			rsvd_bits(maxphyaddr, 62);	/* PDE */  		context->rsvd_bits_mask[0][0] = exb_bit_rsvd | @@ -2736,16 +3559,16 @@ static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,  		break;  	case PT64_ROOT_LEVEL:  		context->rsvd_bits_mask[0][3] = exb_bit_rsvd | -			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8); +			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 7);  		context->rsvd_bits_mask[0][2] = exb_bit_rsvd | -			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8); +			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);  		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |  			rsvd_bits(maxphyaddr, 51);  		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |  			rsvd_bits(maxphyaddr, 51);  		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];  		context->rsvd_bits_mask[1][2] = exb_bit_rsvd | -			rsvd_bits(maxphyaddr, 51) | +			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |  			rsvd_bits(13, 29);  		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |  			rsvd_bits(maxphyaddr, 51) | @@ -2755,79 +3578,191 @@ static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,  	}  } -static int paging64_init_context_common(struct kvm_vcpu *vcpu, -					struct kvm_mmu *context, -					int level) +static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, +		struct kvm_mmu *context, bool execonly) +{ +	int maxphyaddr = cpuid_maxphyaddr(vcpu); +	int pte; + +	context->rsvd_bits_mask[0][3] = +		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); +	context->rsvd_bits_mask[0][2] = +		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); +	context->rsvd_bits_mask[0][1] = +		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); +	context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51); + +	/* large page */ +	context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3]; +	context->rsvd_bits_mask[1][2] = +		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29); +	context->rsvd_bits_mask[1][1] = +		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20); +	context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0]; + +	for (pte = 0; pte < 64; pte++) { +		int rwx_bits = pte & 7; +		int mt = pte >> 3; +		if (mt == 0x2 || mt == 0x3 || mt == 0x7 || +				rwx_bits == 0x2 || rwx_bits == 0x6 || +				(rwx_bits == 0x4 && !execonly)) +			context->bad_mt_xwr |= (1ull << pte); +	} +} + +void update_permission_bitmask(struct kvm_vcpu *vcpu, +		struct kvm_mmu *mmu, bool ept) +{ +	unsigned bit, byte, pfec; +	u8 map; +	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0; + +	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP); +	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP); +	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { +		pfec = byte << 1; +		map = 0; +		wf = pfec & PFERR_WRITE_MASK; +		uf = pfec & PFERR_USER_MASK; +		ff = pfec & PFERR_FETCH_MASK; +		/* +		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not +		 * subject to SMAP restrictions, and cleared otherwise. The +		 * bit is only meaningful if the SMAP bit is set in CR4. +		 */ +		smapf = !(pfec & PFERR_RSVD_MASK); +		for (bit = 0; bit < 8; ++bit) { +			x = bit & ACC_EXEC_MASK; +			w = bit & ACC_WRITE_MASK; +			u = bit & ACC_USER_MASK; + +			if (!ept) { +				/* Not really needed: !nx will cause pte.nx to fault */ +				x |= !mmu->nx; +				/* Allow supervisor writes if !cr0.wp */ +				w |= !is_write_protection(vcpu) && !uf; +				/* Disallow supervisor fetches of user code if cr4.smep */ +				x &= !(cr4_smep && u && !uf); + +				/* +				 * SMAP:kernel-mode data accesses from user-mode +				 * mappings should fault. A fault is considered +				 * as a SMAP violation if all of the following +				 * conditions are ture: +				 *   - X86_CR4_SMAP is set in CR4 +				 *   - An user page is accessed +				 *   - Page fault in kernel mode +				 *   - if CPL = 3 or X86_EFLAGS_AC is clear +				 * +				 *   Here, we cover the first three conditions. +				 *   The fourth is computed dynamically in +				 *   permission_fault() and is in smapf. +				 * +				 *   Also, SMAP does not affect instruction +				 *   fetches, add the !ff check here to make it +				 *   clearer. +				 */ +				smap = cr4_smap && u && !uf && !ff; +			} else +				/* Not really needed: no U/S accesses on ept  */ +				u = 1; + +			fault = (ff && !x) || (uf && !u) || (wf && !w) || +				(smapf && smap); +			map |= fault << bit; +		} +		mmu->permissions[byte] = map; +	} +} + +static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) +{ +	u8 map; +	unsigned level, root_level = mmu->root_level; +	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */ + +	if (root_level == PT32E_ROOT_LEVEL) +		--root_level; +	/* PT_PAGE_TABLE_LEVEL always terminates */ +	map = 1 | (1 << ps_set_index); +	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) { +		if (level <= PT_PDPE_LEVEL +		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu))) +			map |= 1 << (ps_set_index | (level - 1)); +	} +	mmu->last_pte_bitmap = map; +} + +static void paging64_init_context_common(struct kvm_vcpu *vcpu, +					 struct kvm_mmu *context, +					 int level)  {  	context->nx = is_nx(vcpu); +	context->root_level = level; -	reset_rsvds_bits_mask(vcpu, context, level); +	reset_rsvds_bits_mask(vcpu, context); +	update_permission_bitmask(vcpu, context, false); +	update_last_pte_bitmap(vcpu, context);  	ASSERT(is_pae(vcpu)); -	context->new_cr3 = paging_new_cr3;  	context->page_fault = paging64_page_fault;  	context->gva_to_gpa = paging64_gva_to_gpa; -	context->prefetch_page = paging64_prefetch_page;  	context->sync_page = paging64_sync_page;  	context->invlpg = paging64_invlpg; -	context->free = paging_free; -	context->root_level = level; +	context->update_pte = paging64_update_pte;  	context->shadow_root_level = level;  	context->root_hpa = INVALID_PAGE;  	context->direct_map = false; -	return 0;  } -static int paging64_init_context(struct kvm_vcpu *vcpu, -				 struct kvm_mmu *context) +static void paging64_init_context(struct kvm_vcpu *vcpu, +				  struct kvm_mmu *context)  { -	return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL); +	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);  } -static int paging32_init_context(struct kvm_vcpu *vcpu, -				 struct kvm_mmu *context) +static void paging32_init_context(struct kvm_vcpu *vcpu, +				  struct kvm_mmu *context)  {  	context->nx = false; +	context->root_level = PT32_ROOT_LEVEL; -	reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL); +	reset_rsvds_bits_mask(vcpu, context); +	update_permission_bitmask(vcpu, context, false); +	update_last_pte_bitmap(vcpu, context); -	context->new_cr3 = paging_new_cr3;  	context->page_fault = paging32_page_fault;  	context->gva_to_gpa = paging32_gva_to_gpa; -	context->free = paging_free; -	context->prefetch_page = paging32_prefetch_page;  	context->sync_page = paging32_sync_page;  	context->invlpg = paging32_invlpg; -	context->root_level = PT32_ROOT_LEVEL; +	context->update_pte = paging32_update_pte;  	context->shadow_root_level = PT32E_ROOT_LEVEL;  	context->root_hpa = INVALID_PAGE;  	context->direct_map = false; -	return 0;  } -static int paging32E_init_context(struct kvm_vcpu *vcpu, -				  struct kvm_mmu *context) +static void paging32E_init_context(struct kvm_vcpu *vcpu, +				   struct kvm_mmu *context)  { -	return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); +	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);  } -static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) +static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)  {  	struct kvm_mmu *context = vcpu->arch.walk_mmu; -	context->new_cr3 = nonpaging_new_cr3; +	context->base_role.word = 0;  	context->page_fault = tdp_page_fault; -	context->free = nonpaging_free; -	context->prefetch_page = nonpaging_prefetch_page;  	context->sync_page = nonpaging_sync_page;  	context->invlpg = nonpaging_invlpg; +	context->update_pte = nonpaging_update_pte;  	context->shadow_root_level = kvm_x86_ops->get_tdp_level();  	context->root_hpa = INVALID_PAGE;  	context->direct_map = true;  	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;  	context->get_cr3 = get_cr3; +	context->get_pdptr = kvm_pdptr_read;  	context->inject_page_fault = kvm_inject_page_fault; -	context->nx = is_nx(vcpu);  	if (!is_paging(vcpu)) {  		context->nx = false; @@ -2835,62 +3770,86 @@ static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)  		context->root_level = 0;  	} else if (is_long_mode(vcpu)) {  		context->nx = is_nx(vcpu); -		reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL); -		context->gva_to_gpa = paging64_gva_to_gpa;  		context->root_level = PT64_ROOT_LEVEL; +		reset_rsvds_bits_mask(vcpu, context); +		context->gva_to_gpa = paging64_gva_to_gpa;  	} else if (is_pae(vcpu)) {  		context->nx = is_nx(vcpu); -		reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL); -		context->gva_to_gpa = paging64_gva_to_gpa;  		context->root_level = PT32E_ROOT_LEVEL; +		reset_rsvds_bits_mask(vcpu, context); +		context->gva_to_gpa = paging64_gva_to_gpa;  	} else {  		context->nx = false; -		reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL); -		context->gva_to_gpa = paging32_gva_to_gpa;  		context->root_level = PT32_ROOT_LEVEL; +		reset_rsvds_bits_mask(vcpu, context); +		context->gva_to_gpa = paging32_gva_to_gpa;  	} -	return 0; +	update_permission_bitmask(vcpu, context, false); +	update_last_pte_bitmap(vcpu, context);  } -int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context) +void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)  { -	int r; +	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);  	ASSERT(vcpu);  	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));  	if (!is_paging(vcpu)) -		r = nonpaging_init_context(vcpu, context); +		nonpaging_init_context(vcpu, context);  	else if (is_long_mode(vcpu)) -		r = paging64_init_context(vcpu, context); +		paging64_init_context(vcpu, context);  	else if (is_pae(vcpu)) -		r = paging32E_init_context(vcpu, context); +		paging32E_init_context(vcpu, context);  	else -		r = paging32_init_context(vcpu, context); +		paging32_init_context(vcpu, context); +	vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);  	vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);  	vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu); - -	return r; +	vcpu->arch.mmu.base_role.smep_andnot_wp +		= smep && !is_write_protection(vcpu);  }  EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu); -static int init_kvm_softmmu(struct kvm_vcpu *vcpu) +void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context, +		bool execonly)  { -	int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu); +	ASSERT(vcpu); +	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); + +	context->shadow_root_level = kvm_x86_ops->get_tdp_level(); + +	context->nx = true; +	context->page_fault = ept_page_fault; +	context->gva_to_gpa = ept_gva_to_gpa; +	context->sync_page = ept_sync_page; +	context->invlpg = ept_invlpg; +	context->update_pte = ept_update_pte; +	context->root_level = context->shadow_root_level; +	context->root_hpa = INVALID_PAGE; +	context->direct_map = false; + +	update_permission_bitmask(vcpu, context, true); +	reset_rsvds_bits_mask_ept(vcpu, context, execonly); +} +EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); +static void init_kvm_softmmu(struct kvm_vcpu *vcpu) +{ +	kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);  	vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;  	vcpu->arch.walk_mmu->get_cr3           = get_cr3; +	vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;  	vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault; - -	return r;  } -static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu) +static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)  {  	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;  	g_context->get_cr3           = get_cr3; +	g_context->get_pdptr         = kvm_pdptr_read;  	g_context->inject_page_fault = kvm_inject_page_fault;  	/* @@ -2905,28 +3864,27 @@ static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)  		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;  	} else if (is_long_mode(vcpu)) {  		g_context->nx = is_nx(vcpu); -		reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);  		g_context->root_level = PT64_ROOT_LEVEL; +		reset_rsvds_bits_mask(vcpu, g_context);  		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;  	} else if (is_pae(vcpu)) {  		g_context->nx = is_nx(vcpu); -		reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);  		g_context->root_level = PT32E_ROOT_LEVEL; +		reset_rsvds_bits_mask(vcpu, g_context);  		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;  	} else {  		g_context->nx = false; -		reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);  		g_context->root_level = PT32_ROOT_LEVEL; +		reset_rsvds_bits_mask(vcpu, g_context);  		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;  	} -	return 0; +	update_permission_bitmask(vcpu, g_context, false); +	update_last_pte_bitmap(vcpu, g_context);  } -static int init_kvm_mmu(struct kvm_vcpu *vcpu) +static void init_kvm_mmu(struct kvm_vcpu *vcpu)  { -	vcpu->arch.update_pte.pfn = bad_pfn; -  	if (mmu_is_nested(vcpu))  		return init_kvm_nested_mmu(vcpu);  	else if (tdp_enabled) @@ -2935,18 +3893,12 @@ static int init_kvm_mmu(struct kvm_vcpu *vcpu)  		return init_kvm_softmmu(vcpu);  } -static void destroy_kvm_mmu(struct kvm_vcpu *vcpu) +void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)  {  	ASSERT(vcpu); -	if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) -		/* mmu.free() should set root_hpa = INVALID_PAGE */ -		vcpu->arch.mmu.free(vcpu); -} -int kvm_mmu_reset_context(struct kvm_vcpu *vcpu) -{ -	destroy_kvm_mmu(vcpu); -	return init_kvm_mmu(vcpu); +	kvm_mmu_unload(vcpu); +	init_kvm_mmu(vcpu);  }  EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); @@ -2958,9 +3910,7 @@ int kvm_mmu_load(struct kvm_vcpu *vcpu)  	if (r)  		goto out;  	r = mmu_alloc_roots(vcpu); -	spin_lock(&vcpu->kvm->mmu_lock); -	mmu_sync_roots(vcpu); -	spin_unlock(&vcpu->kvm->mmu_lock); +	kvm_mmu_sync_roots(vcpu);  	if (r)  		goto out;  	/* set_cr3() should ensure TLB has been flushed */ @@ -2973,33 +3923,12 @@ EXPORT_SYMBOL_GPL(kvm_mmu_load);  void kvm_mmu_unload(struct kvm_vcpu *vcpu)  {  	mmu_free_roots(vcpu); +	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));  }  EXPORT_SYMBOL_GPL(kvm_mmu_unload); -static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu, -				  struct kvm_mmu_page *sp, -				  u64 *spte) -{ -	u64 pte; -	struct kvm_mmu_page *child; - -	pte = *spte; -	if (is_shadow_present_pte(pte)) { -		if (is_last_spte(pte, sp->role.level)) -			drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte); -		else { -			child = page_header(pte & PT64_BASE_ADDR_MASK); -			mmu_page_remove_parent_pte(child, spte); -		} -	} -	__set_spte(spte, shadow_trap_nonpresent_pte); -	if (is_large_pte(pte)) -		--vcpu->kvm->stat.lpages; -} -  static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu, -				  struct kvm_mmu_page *sp, -				  u64 *spte, +				  struct kvm_mmu_page *sp, u64 *spte,  				  const void *new)  {  	if (sp->role.level != PT_PAGE_TABLE_LEVEL) { @@ -3007,14 +3936,8 @@ static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,  		return;          } -	if (is_rsvd_bits_set(&vcpu->arch.mmu, *(u64 *)new, PT_PAGE_TABLE_LEVEL)) -		return; -  	++vcpu->kvm->stat.mmu_pte_updated; -	if (!sp->role.cr4_pae) -		paging32_update_pte(vcpu, sp, spte, new); -	else -		paging64_update_pte(vcpu, sp, spte, new); +	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);  }  static bool need_remote_flush(u64 old, u64 new) @@ -3025,8 +3948,8 @@ static bool need_remote_flush(u64 old, u64 new)  		return true;  	if ((old ^ new) & PT64_BASE_ADDR_MASK)  		return true; -	old ^= PT64_NX_MASK; -	new ^= PT64_NX_MASK; +	old ^= shadow_nx_mask; +	new ^= shadow_nx_mask;  	return (old & ~new & PT64_PERM_MASK) != 0;  } @@ -3042,192 +3965,183 @@ static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,  		kvm_mmu_flush_tlb(vcpu);  } -static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu) +static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, +				    const u8 *new, int *bytes)  { -	u64 *spte = vcpu->arch.last_pte_updated; +	u64 gentry; +	int r; -	return !!(spte && (*spte & shadow_accessed_mask)); +	/* +	 * Assume that the pte write on a page table of the same type +	 * as the current vcpu paging mode since we update the sptes only +	 * when they have the same mode. +	 */ +	if (is_pae(vcpu) && *bytes == 4) { +		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */ +		*gpa &= ~(gpa_t)7; +		*bytes = 8; +		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8); +		if (r) +			gentry = 0; +		new = (const u8 *)&gentry; +	} + +	switch (*bytes) { +	case 4: +		gentry = *(const u32 *)new; +		break; +	case 8: +		gentry = *(const u64 *)new; +		break; +	default: +		gentry = 0; +		break; +	} + +	return gentry;  } -static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, -					  u64 gpte) +/* + * If we're seeing too many writes to a page, it may no longer be a page table, + * or we may be forking, in which case it is better to unmap the page. + */ +static bool detect_write_flooding(struct kvm_mmu_page *sp)  { -	gfn_t gfn; -	pfn_t pfn; +	/* +	 * Skip write-flooding detected for the sp whose level is 1, because +	 * it can become unsync, then the guest page is not write-protected. +	 */ +	if (sp->role.level == PT_PAGE_TABLE_LEVEL) +		return false; -	if (!is_present_gpte(gpte)) -		return; -	gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; +	return ++sp->write_flooding_count >= 3; +} -	vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq; -	smp_rmb(); -	pfn = gfn_to_pfn(vcpu->kvm, gfn); +/* + * Misaligned accesses are too much trouble to fix up; also, they usually + * indicate a page is not used as a page table. + */ +static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, +				    int bytes) +{ +	unsigned offset, pte_size, misaligned; -	if (is_error_pfn(pfn)) { -		kvm_release_pfn_clean(pfn); -		return; -	} -	vcpu->arch.update_pte.gfn = gfn; -	vcpu->arch.update_pte.pfn = pfn; +	pgprintk("misaligned: gpa %llx bytes %d role %x\n", +		 gpa, bytes, sp->role.word); + +	offset = offset_in_page(gpa); +	pte_size = sp->role.cr4_pae ? 8 : 4; + +	/* +	 * Sometimes, the OS only writes the last one bytes to update status +	 * bits, for example, in linux, andb instruction is used in clear_bit(). +	 */ +	if (!(offset & (pte_size - 1)) && bytes == 1) +		return false; + +	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); +	misaligned |= bytes < 4; + +	return misaligned;  } -static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn) +static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)  { -	u64 *spte = vcpu->arch.last_pte_updated; +	unsigned page_offset, quadrant; +	u64 *spte; +	int level; + +	page_offset = offset_in_page(gpa); +	level = sp->role.level; +	*nspte = 1; +	if (!sp->role.cr4_pae) { +		page_offset <<= 1;	/* 32->64 */ +		/* +		 * A 32-bit pde maps 4MB while the shadow pdes map +		 * only 2MB.  So we need to double the offset again +		 * and zap two pdes instead of one. +		 */ +		if (level == PT32_ROOT_LEVEL) { +			page_offset &= ~7; /* kill rounding error */ +			page_offset <<= 1; +			*nspte = 2; +		} +		quadrant = page_offset >> PAGE_SHIFT; +		page_offset &= ~PAGE_MASK; +		if (quadrant != sp->role.quadrant) +			return NULL; +	} -	if (spte -	    && vcpu->arch.last_pte_gfn == gfn -	    && shadow_accessed_mask -	    && !(*spte & shadow_accessed_mask) -	    && is_shadow_present_pte(*spte)) -		set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte); +	spte = &sp->spt[page_offset / sizeof(*spte)]; +	return spte;  }  void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, -		       const u8 *new, int bytes, -		       bool guest_initiated) +		       const u8 *new, int bytes)  {  	gfn_t gfn = gpa >> PAGE_SHIFT;  	union kvm_mmu_page_role mask = { .word = 0 };  	struct kvm_mmu_page *sp; -	struct hlist_node *node;  	LIST_HEAD(invalid_list); -	u64 entry, gentry; -	u64 *spte; -	unsigned offset = offset_in_page(gpa); -	unsigned pte_size; -	unsigned page_offset; -	unsigned misaligned; -	unsigned quadrant; -	int level; -	int flooded = 0; +	u64 entry, gentry, *spte;  	int npte; -	int r; -	int invlpg_counter;  	bool remote_flush, local_flush, zap_page; +	/* +	 * If we don't have indirect shadow pages, it means no page is +	 * write-protected, so we can exit simply. +	 */ +	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) +		return; +  	zap_page = remote_flush = local_flush = false;  	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); -	invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter); +	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);  	/* -	 * Assume that the pte write on a page table of the same type -	 * as the current vcpu paging mode.  This is nearly always true -	 * (might be false while changing modes).  Note it is verified later -	 * by update_pte(). +	 * No need to care whether allocation memory is successful +	 * or not since pte prefetch is skiped if it does not have +	 * enough objects in the cache.  	 */ -	if ((is_pae(vcpu) && bytes == 4) || !new) { -		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */ -		if (is_pae(vcpu)) { -			gpa &= ~(gpa_t)7; -			bytes = 8; -		} -		r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8)); -		if (r) -			gentry = 0; -		new = (const u8 *)&gentry; -	} +	mmu_topup_memory_caches(vcpu); -	switch (bytes) { -	case 4: -		gentry = *(const u32 *)new; -		break; -	case 8: -		gentry = *(const u64 *)new; -		break; -	default: -		gentry = 0; -		break; -	} - -	mmu_guess_page_from_pte_write(vcpu, gpa, gentry);  	spin_lock(&vcpu->kvm->mmu_lock); -	if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter) -		gentry = 0; -	kvm_mmu_access_page(vcpu, gfn); -	kvm_mmu_free_some_pages(vcpu);  	++vcpu->kvm->stat.mmu_pte_write; -	trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); -	if (guest_initiated) { -		if (gfn == vcpu->arch.last_pt_write_gfn -		    && !last_updated_pte_accessed(vcpu)) { -			++vcpu->arch.last_pt_write_count; -			if (vcpu->arch.last_pt_write_count >= 3) -				flooded = 1; -		} else { -			vcpu->arch.last_pt_write_gfn = gfn; -			vcpu->arch.last_pt_write_count = 1; -			vcpu->arch.last_pte_updated = NULL; -		} -	} +	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);  	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1; -	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) { -		pte_size = sp->role.cr4_pae ? 8 : 4; -		misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); -		misaligned |= bytes < 4; -		if (misaligned || flooded) { -			/* -			 * Misaligned accesses are too much trouble to fix -			 * up; also, they usually indicate a page is not used -			 * as a page table. -			 * -			 * If we're seeing too many writes to a page, -			 * it may no longer be a page table, or we may be -			 * forking, in which case it is better to unmap the -			 * page. -			 */ -			pgprintk("misaligned: gpa %llx bytes %d role %x\n", -				 gpa, bytes, sp->role.word); +	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { +		if (detect_write_misaligned(sp, gpa, bytes) || +		      detect_write_flooding(sp)) {  			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,  						     &invalid_list);  			++vcpu->kvm->stat.mmu_flooded;  			continue;  		} -		page_offset = offset; -		level = sp->role.level; -		npte = 1; -		if (!sp->role.cr4_pae) { -			page_offset <<= 1;	/* 32->64 */ -			/* -			 * A 32-bit pde maps 4MB while the shadow pdes map -			 * only 2MB.  So we need to double the offset again -			 * and zap two pdes instead of one. -			 */ -			if (level == PT32_ROOT_LEVEL) { -				page_offset &= ~7; /* kill rounding error */ -				page_offset <<= 1; -				npte = 2; -			} -			quadrant = page_offset >> PAGE_SHIFT; -			page_offset &= ~PAGE_MASK; -			if (quadrant != sp->role.quadrant) -				continue; -		} + +		spte = get_written_sptes(sp, gpa, &npte); +		if (!spte) +			continue; +  		local_flush = true; -		spte = &sp->spt[page_offset / sizeof(*spte)];  		while (npte--) {  			entry = *spte; -			mmu_pte_write_zap_pte(vcpu, sp, spte); +			mmu_page_zap_pte(vcpu->kvm, sp, spte);  			if (gentry &&  			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word) -			      & mask.word)) +			      & mask.word) && rmap_can_add(vcpu))  				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry); -			if (!remote_flush && need_remote_flush(entry, *spte)) +			if (need_remote_flush(entry, *spte))  				remote_flush = true;  			++spte;  		}  	}  	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);  	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); -	trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); +	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);  	spin_unlock(&vcpu->kvm->mmu_lock); -	if (!is_error_pfn(vcpu->arch.update_pte.pfn)) { -		kvm_release_pfn_clean(vcpu->arch.update_pte.pfn); -		vcpu->arch.update_pte.pfn = bad_pfn; -	}  }  int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) @@ -3240,35 +4154,43 @@ int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)  	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); -	spin_lock(&vcpu->kvm->mmu_lock);  	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); -	spin_unlock(&vcpu->kvm->mmu_lock); +  	return r;  }  EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt); -void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu) +static void make_mmu_pages_available(struct kvm_vcpu *vcpu)  {  	LIST_HEAD(invalid_list); -	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES && -	       !list_empty(&vcpu->kvm->arch.active_mmu_pages)) { -		struct kvm_mmu_page *sp; +	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES)) +		return; + +	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) { +		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list)) +			break; -		sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev, -				  struct kvm_mmu_page, link); -		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); -		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);  		++vcpu->kvm->stat.mmu_recycled;  	} +	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);  } -int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code) +static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)  { -	int r; +	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu)) +		return vcpu_match_mmio_gpa(vcpu, addr); + +	return vcpu_match_mmio_gva(vcpu, addr); +} + +int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code, +		       void *insn, int insn_len) +{ +	int r, emulation_type = EMULTYPE_RETRY;  	enum emulation_result er; -	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code); +	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);  	if (r < 0)  		goto out; @@ -3277,16 +4199,15 @@ int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)  		goto out;  	} -	r = mmu_topup_memory_caches(vcpu); -	if (r) -		goto out; +	if (is_mmio_page_fault(vcpu, cr2)) +		emulation_type = 0; -	er = emulate_instruction(vcpu, cr2, error_code, 0); +	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);  	switch (er) {  	case EMULATE_DONE:  		return 1; -	case EMULATE_DO_MMIO: +	case EMULATE_USER_EXIT:  		++vcpu->stat.mmio_exits;  		/* fall through */  	case EMULATE_FAIL: @@ -3352,134 +4273,259 @@ static int alloc_mmu_pages(struct kvm_vcpu *vcpu)  int kvm_mmu_create(struct kvm_vcpu *vcpu)  {  	ASSERT(vcpu); -	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); + +	vcpu->arch.walk_mmu = &vcpu->arch.mmu; +	vcpu->arch.mmu.root_hpa = INVALID_PAGE; +	vcpu->arch.mmu.translate_gpa = translate_gpa; +	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;  	return alloc_mmu_pages(vcpu);  } -int kvm_mmu_setup(struct kvm_vcpu *vcpu) +void kvm_mmu_setup(struct kvm_vcpu *vcpu)  {  	ASSERT(vcpu);  	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); -	return init_kvm_mmu(vcpu); +	init_kvm_mmu(vcpu);  }  void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)  { -	struct kvm_mmu_page *sp; +	struct kvm_memory_slot *memslot; +	gfn_t last_gfn; +	int i; -	list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) { -		int i; -		u64 *pt; +	memslot = id_to_memslot(kvm->memslots, slot); +	last_gfn = memslot->base_gfn + memslot->npages - 1; -		if (!test_bit(slot, sp->slot_bitmap)) -			continue; +	spin_lock(&kvm->mmu_lock); + +	for (i = PT_PAGE_TABLE_LEVEL; +	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { +		unsigned long *rmapp; +		unsigned long last_index, index; + +		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL]; +		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i); + +		for (index = 0; index <= last_index; ++index, ++rmapp) { +			if (*rmapp) +				__rmap_write_protect(kvm, rmapp, false); -		pt = sp->spt; -		for (i = 0; i < PT64_ENT_PER_PAGE; ++i) -			/* avoid RMW */ -			if (is_writable_pte(pt[i])) -				pt[i] &= ~PT_WRITABLE_MASK; +			if (need_resched() || spin_needbreak(&kvm->mmu_lock)) +				cond_resched_lock(&kvm->mmu_lock); +		}  	} + +	spin_unlock(&kvm->mmu_lock); + +	/* +	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log() +	 * which do tlb flush out of mmu-lock should be serialized by +	 * kvm->slots_lock otherwise tlb flush would be missed. +	 */ +	lockdep_assert_held(&kvm->slots_lock); + +	/* +	 * We can flush all the TLBs out of the mmu lock without TLB +	 * corruption since we just change the spte from writable to +	 * readonly so that we only need to care the case of changing +	 * spte from present to present (changing the spte from present +	 * to nonpresent will flush all the TLBs immediately), in other +	 * words, the only case we care is mmu_spte_update() where we +	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE +	 * instead of PT_WRITABLE_MASK, that means it does not depend +	 * on PT_WRITABLE_MASK anymore. +	 */  	kvm_flush_remote_tlbs(kvm);  } -void kvm_mmu_zap_all(struct kvm *kvm) +#define BATCH_ZAP_PAGES	10 +static void kvm_zap_obsolete_pages(struct kvm *kvm)  {  	struct kvm_mmu_page *sp, *node; -	LIST_HEAD(invalid_list); +	int batch = 0; -	spin_lock(&kvm->mmu_lock);  restart: -	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) -		if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list)) +	list_for_each_entry_safe_reverse(sp, node, +	      &kvm->arch.active_mmu_pages, link) { +		int ret; + +		/* +		 * No obsolete page exists before new created page since +		 * active_mmu_pages is the FIFO list. +		 */ +		if (!is_obsolete_sp(kvm, sp)) +			break; + +		/* +		 * Since we are reversely walking the list and the invalid +		 * list will be moved to the head, skip the invalid page +		 * can help us to avoid the infinity list walking. +		 */ +		if (sp->role.invalid) +			continue; + +		/* +		 * Need not flush tlb since we only zap the sp with invalid +		 * generation number. +		 */ +		if (batch >= BATCH_ZAP_PAGES && +		      cond_resched_lock(&kvm->mmu_lock)) { +			batch = 0;  			goto restart; +		} -	kvm_mmu_commit_zap_page(kvm, &invalid_list); +		ret = kvm_mmu_prepare_zap_page(kvm, sp, +				&kvm->arch.zapped_obsolete_pages); +		batch += ret; + +		if (ret) +			goto restart; +	} + +	/* +	 * Should flush tlb before free page tables since lockless-walking +	 * may use the pages. +	 */ +	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); +} + +/* + * Fast invalidate all shadow pages and use lock-break technique + * to zap obsolete pages. + * + * It's required when memslot is being deleted or VM is being + * destroyed, in these cases, we should ensure that KVM MMU does + * not use any resource of the being-deleted slot or all slots + * after calling the function. + */ +void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm) +{ +	spin_lock(&kvm->mmu_lock); +	trace_kvm_mmu_invalidate_zap_all_pages(kvm); +	kvm->arch.mmu_valid_gen++; + +	/* +	 * Notify all vcpus to reload its shadow page table +	 * and flush TLB. Then all vcpus will switch to new +	 * shadow page table with the new mmu_valid_gen. +	 * +	 * Note: we should do this under the protection of +	 * mmu-lock, otherwise, vcpu would purge shadow page +	 * but miss tlb flush. +	 */ +	kvm_reload_remote_mmus(kvm); + +	kvm_zap_obsolete_pages(kvm);  	spin_unlock(&kvm->mmu_lock);  } -static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm, -					       struct list_head *invalid_list) +static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)  { -	struct kvm_mmu_page *page; +	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); +} -	page = container_of(kvm->arch.active_mmu_pages.prev, -			    struct kvm_mmu_page, link); -	return kvm_mmu_prepare_zap_page(kvm, page, invalid_list); +void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm) +{ +	/* +	 * The very rare case: if the generation-number is round, +	 * zap all shadow pages. +	 */ +	if (unlikely(kvm_current_mmio_generation(kvm) >= MMIO_MAX_GEN)) { +		printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n"); +		kvm_mmu_invalidate_zap_all_pages(kvm); +	}  } -static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask) +static unsigned long +mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)  {  	struct kvm *kvm; -	struct kvm *kvm_freed = NULL; - -	if (nr_to_scan == 0) -		goto out; +	int nr_to_scan = sc->nr_to_scan; +	unsigned long freed = 0;  	spin_lock(&kvm_lock);  	list_for_each_entry(kvm, &vm_list, vm_list) { -		int idx, freed_pages; +		int idx;  		LIST_HEAD(invalid_list); +		/* +		 * Never scan more than sc->nr_to_scan VM instances. +		 * Will not hit this condition practically since we do not try +		 * to shrink more than one VM and it is very unlikely to see +		 * !n_used_mmu_pages so many times. +		 */ +		if (!nr_to_scan--) +			break; +		/* +		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock +		 * here. We may skip a VM instance errorneosly, but we do not +		 * want to shrink a VM that only started to populate its MMU +		 * anyway. +		 */ +		if (!kvm->arch.n_used_mmu_pages && +		      !kvm_has_zapped_obsolete_pages(kvm)) +			continue; +  		idx = srcu_read_lock(&kvm->srcu);  		spin_lock(&kvm->mmu_lock); -		if (!kvm_freed && nr_to_scan > 0 && -		    kvm->arch.n_used_mmu_pages > 0) { -			freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm, -							  &invalid_list); -			kvm_freed = kvm; + +		if (kvm_has_zapped_obsolete_pages(kvm)) { +			kvm_mmu_commit_zap_page(kvm, +			      &kvm->arch.zapped_obsolete_pages); +			goto unlock;  		} -		nr_to_scan--; +		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list)) +			freed++;  		kvm_mmu_commit_zap_page(kvm, &invalid_list); + +unlock:  		spin_unlock(&kvm->mmu_lock);  		srcu_read_unlock(&kvm->srcu, idx); + +		/* +		 * unfair on small ones +		 * per-vm shrinkers cry out +		 * sadness comes quickly +		 */ +		list_move_tail(&kvm->vm_list, &vm_list); +		break;  	} -	if (kvm_freed) -		list_move_tail(&kvm_freed->vm_list, &vm_list);  	spin_unlock(&kvm_lock); +	return freed; +} -out: +static unsigned long +mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) +{  	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);  }  static struct shrinker mmu_shrinker = { -	.shrink = mmu_shrink, +	.count_objects = mmu_shrink_count, +	.scan_objects = mmu_shrink_scan,  	.seeks = DEFAULT_SEEKS * 10,  };  static void mmu_destroy_caches(void)  { -	if (pte_chain_cache) -		kmem_cache_destroy(pte_chain_cache); -	if (rmap_desc_cache) -		kmem_cache_destroy(rmap_desc_cache); +	if (pte_list_desc_cache) +		kmem_cache_destroy(pte_list_desc_cache);  	if (mmu_page_header_cache)  		kmem_cache_destroy(mmu_page_header_cache);  } -void kvm_mmu_module_exit(void) -{ -	mmu_destroy_caches(); -	percpu_counter_destroy(&kvm_total_used_mmu_pages); -	unregister_shrinker(&mmu_shrinker); -} -  int kvm_mmu_module_init(void)  { -	pte_chain_cache = kmem_cache_create("kvm_pte_chain", -					    sizeof(struct kvm_pte_chain), +	pte_list_desc_cache = kmem_cache_create("pte_list_desc", +					    sizeof(struct pte_list_desc),  					    0, 0, NULL); -	if (!pte_chain_cache) -		goto nomem; -	rmap_desc_cache = kmem_cache_create("kvm_rmap_desc", -					    sizeof(struct kvm_rmap_desc), -					    0, 0, NULL); -	if (!rmap_desc_cache) +	if (!pte_list_desc_cache)  		goto nomem;  	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", @@ -3505,15 +4551,15 @@ nomem:   */  unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)  { -	int i;  	unsigned int nr_mmu_pages;  	unsigned int  nr_pages = 0;  	struct kvm_memslots *slots; +	struct kvm_memory_slot *memslot;  	slots = kvm_memslots(kvm); -	for (i = 0; i < slots->nmemslots; i++) -		nr_pages += slots->memslots[i].npages; +	kvm_for_each_memslot(memslot, slots) +		nr_pages += memslot->npages;  	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;  	nr_mmu_pages = max(nr_mmu_pages, @@ -3522,157 +4568,41 @@ unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)  	return nr_mmu_pages;  } -static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer, -				unsigned len) -{ -	if (len > buffer->len) -		return NULL; -	return buffer->ptr; -} - -static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer, -				unsigned len) -{ -	void *ret; - -	ret = pv_mmu_peek_buffer(buffer, len); -	if (!ret) -		return ret; -	buffer->ptr += len; -	buffer->len -= len; -	buffer->processed += len; -	return ret; -} - -static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu, -			     gpa_t addr, gpa_t value) -{ -	int bytes = 8; -	int r; - -	if (!is_long_mode(vcpu) && !is_pae(vcpu)) -		bytes = 4; - -	r = mmu_topup_memory_caches(vcpu); -	if (r) -		return r; - -	if (!emulator_write_phys(vcpu, addr, &value, bytes)) -		return -EFAULT; - -	return 1; -} - -static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu) -{ -	(void)kvm_set_cr3(vcpu, vcpu->arch.cr3); -	return 1; -} - -static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr) -{ -	spin_lock(&vcpu->kvm->mmu_lock); -	mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT); -	spin_unlock(&vcpu->kvm->mmu_lock); -	return 1; -} - -static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu, -			     struct kvm_pv_mmu_op_buffer *buffer) -{ -	struct kvm_mmu_op_header *header; - -	header = pv_mmu_peek_buffer(buffer, sizeof *header); -	if (!header) -		return 0; -	switch (header->op) { -	case KVM_MMU_OP_WRITE_PTE: { -		struct kvm_mmu_op_write_pte *wpte; - -		wpte = pv_mmu_read_buffer(buffer, sizeof *wpte); -		if (!wpte) -			return 0; -		return kvm_pv_mmu_write(vcpu, wpte->pte_phys, -					wpte->pte_val); -	} -	case KVM_MMU_OP_FLUSH_TLB: { -		struct kvm_mmu_op_flush_tlb *ftlb; - -		ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb); -		if (!ftlb) -			return 0; -		return kvm_pv_mmu_flush_tlb(vcpu); -	} -	case KVM_MMU_OP_RELEASE_PT: { -		struct kvm_mmu_op_release_pt *rpt; - -		rpt = pv_mmu_read_buffer(buffer, sizeof *rpt); -		if (!rpt) -			return 0; -		return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys); -	} -	default: return 0; -	} -} - -int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes, -		  gpa_t addr, unsigned long *ret) -{ -	int r; -	struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer; - -	buffer->ptr = buffer->buf; -	buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf); -	buffer->processed = 0; - -	r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len); -	if (r) -		goto out; - -	while (buffer->len) { -		r = kvm_pv_mmu_op_one(vcpu, buffer); -		if (r < 0) -			goto out; -		if (r == 0) -			break; -	} - -	r = 1; -out: -	*ret = buffer->processed; -	return r; -} -  int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])  {  	struct kvm_shadow_walk_iterator iterator; +	u64 spte;  	int nr_sptes = 0; -	spin_lock(&vcpu->kvm->mmu_lock); -	for_each_shadow_entry(vcpu, addr, iterator) { -		sptes[iterator.level-1] = *iterator.sptep; +	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) +		return nr_sptes; + +	walk_shadow_page_lockless_begin(vcpu); +	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { +		sptes[iterator.level-1] = spte;  		nr_sptes++; -		if (!is_shadow_present_pte(*iterator.sptep)) +		if (!is_shadow_present_pte(spte))  			break;  	} -	spin_unlock(&vcpu->kvm->mmu_lock); +	walk_shadow_page_lockless_end(vcpu);  	return nr_sptes;  }  EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy); -#ifdef CONFIG_KVM_MMU_AUDIT -#include "mmu_audit.c" -#else -static void mmu_audit_disable(void) { } -#endif -  void kvm_mmu_destroy(struct kvm_vcpu *vcpu)  {  	ASSERT(vcpu); -	destroy_kvm_mmu(vcpu); +	kvm_mmu_unload(vcpu);  	free_mmu_pages(vcpu);  	mmu_free_memory_caches(vcpu); +} + +void kvm_mmu_module_exit(void) +{ +	mmu_destroy_caches(); +	percpu_counter_destroy(&kvm_total_used_mmu_pages); +	unregister_shrinker(&mmu_shrinker);  	mmu_audit_disable();  }  | 
