aboutsummaryrefslogtreecommitdiff
path: root/arch/x86/kvm/mmu.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kvm/mmu.c')
-rw-r--r--arch/x86/kvm/mmu.c4799
1 files changed, 3750 insertions, 1049 deletions
diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c
index e55af12e11b..931467881da 100644
--- a/arch/x86/kvm/mmu.c
+++ b/arch/x86/kvm/mmu.c
@@ -7,6 +7,7 @@
* MMU support
*
* Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Yaniv Kamay <yaniv@qumranet.com>
@@ -17,8 +18,11 @@
*
*/
-#include "vmx.h"
+#include "irq.h"
#include "mmu.h"
+#include "x86.h"
+#include "kvm_cache_regs.h"
+#include "cpuid.h"
#include <linux/kvm_host.h>
#include <linux/types.h>
@@ -27,20 +31,36 @@
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/swap.h>
+#include <linux/hugetlb.h>
+#include <linux/compiler.h>
+#include <linux/srcu.h>
+#include <linux/slab.h>
+#include <linux/uaccess.h>
#include <asm/page.h>
#include <asm/cmpxchg.h>
#include <asm/io.h>
+#include <asm/vmx.h>
-#undef MMU_DEBUG
-
-#undef AUDIT
+/*
+ * When setting this variable to true it enables Two-Dimensional-Paging
+ * where the hardware walks 2 page tables:
+ * 1. the guest-virtual to guest-physical
+ * 2. while doing 1. it walks guest-physical to host-physical
+ * If the hardware supports that we don't need to do shadow paging.
+ */
+bool tdp_enabled = false;
+
+enum {
+ AUDIT_PRE_PAGE_FAULT,
+ AUDIT_POST_PAGE_FAULT,
+ AUDIT_PRE_PTE_WRITE,
+ AUDIT_POST_PTE_WRITE,
+ AUDIT_PRE_SYNC,
+ AUDIT_POST_SYNC
+};
-#ifdef AUDIT
-static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
-#else
-static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
-#endif
+#undef MMU_DEBUG
#ifdef MMU_DEBUG
@@ -54,8 +74,9 @@ static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
#endif
-#if defined(MMU_DEBUG) || defined(AUDIT)
-static int dbg = 1;
+#ifdef MMU_DEBUG
+static bool dbg = 0;
+module_param(dbg, bool, 0644);
#endif
#ifndef MMU_DEBUG
@@ -68,51 +89,16 @@ static int dbg = 1;
}
#endif
-#define PT64_PT_BITS 9
-#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
-#define PT32_PT_BITS 10
-#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
-
-#define PT_WRITABLE_SHIFT 1
-
-#define PT_PRESENT_MASK (1ULL << 0)
-#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
-#define PT_USER_MASK (1ULL << 2)
-#define PT_PWT_MASK (1ULL << 3)
-#define PT_PCD_MASK (1ULL << 4)
-#define PT_ACCESSED_MASK (1ULL << 5)
-#define PT_DIRTY_MASK (1ULL << 6)
-#define PT_PAGE_SIZE_MASK (1ULL << 7)
-#define PT_PAT_MASK (1ULL << 7)
-#define PT_GLOBAL_MASK (1ULL << 8)
-#define PT64_NX_SHIFT 63
-#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
-
-#define PT_PAT_SHIFT 7
-#define PT_DIR_PAT_SHIFT 12
-#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
-
-#define PT32_DIR_PSE36_SIZE 4
-#define PT32_DIR_PSE36_SHIFT 13
-#define PT32_DIR_PSE36_MASK \
- (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
-
-
-#define PT_FIRST_AVAIL_BITS_SHIFT 9
-#define PT64_SECOND_AVAIL_BITS_SHIFT 52
-
-#define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
+#define PTE_PREFETCH_NUM 8
-#define VALID_PAGE(x) ((x) != INVALID_PAGE)
+#define PT_FIRST_AVAIL_BITS_SHIFT 10
+#define PT64_SECOND_AVAIL_BITS_SHIFT 52
#define PT64_LEVEL_BITS 9
#define PT64_LEVEL_SHIFT(level) \
(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
-#define PT64_LEVEL_MASK(level) \
- (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
-
#define PT64_INDEX(address, level)\
(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
@@ -122,8 +108,9 @@ static int dbg = 1;
#define PT32_LEVEL_SHIFT(level) \
(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
-#define PT32_LEVEL_MASK(level) \
- (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
+#define PT32_LVL_OFFSET_MASK(level) \
+ (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
+ * PT32_LEVEL_BITS))) - 1))
#define PT32_INDEX(address, level)\
(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
@@ -132,99 +119,238 @@ static int dbg = 1;
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
#define PT64_DIR_BASE_ADDR_MASK \
(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
+#define PT64_LVL_ADDR_MASK(level) \
+ (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
+ * PT64_LEVEL_BITS))) - 1))
+#define PT64_LVL_OFFSET_MASK(level) \
+ (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
+ * PT64_LEVEL_BITS))) - 1))
#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
+#define PT32_LVL_ADDR_MASK(level) \
+ (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
+ * PT32_LEVEL_BITS))) - 1))
-#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
- | PT64_NX_MASK)
-
-#define PFERR_PRESENT_MASK (1U << 0)
-#define PFERR_WRITE_MASK (1U << 1)
-#define PFERR_USER_MASK (1U << 2)
-#define PFERR_FETCH_MASK (1U << 4)
-
-#define PT64_ROOT_LEVEL 4
-#define PT32_ROOT_LEVEL 2
-#define PT32E_ROOT_LEVEL 3
-
-#define PT_DIRECTORY_LEVEL 2
-#define PT_PAGE_TABLE_LEVEL 1
-
-#define RMAP_EXT 4
+#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
+ | shadow_x_mask | shadow_nx_mask)
#define ACC_EXEC_MASK 1
#define ACC_WRITE_MASK PT_WRITABLE_MASK
#define ACC_USER_MASK PT_USER_MASK
#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
-struct kvm_rmap_desc {
- u64 *shadow_ptes[RMAP_EXT];
- struct kvm_rmap_desc *more;
+#include <trace/events/kvm.h>
+
+#define CREATE_TRACE_POINTS
+#include "mmutrace.h"
+
+#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
+#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
+
+#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
+
+/* make pte_list_desc fit well in cache line */
+#define PTE_LIST_EXT 3
+
+struct pte_list_desc {
+ u64 *sptes[PTE_LIST_EXT];
+ struct pte_list_desc *more;
+};
+
+struct kvm_shadow_walk_iterator {
+ u64 addr;
+ hpa_t shadow_addr;
+ u64 *sptep;
+ int level;
+ unsigned index;
};
-static struct kmem_cache *pte_chain_cache;
-static struct kmem_cache *rmap_desc_cache;
+#define for_each_shadow_entry(_vcpu, _addr, _walker) \
+ for (shadow_walk_init(&(_walker), _vcpu, _addr); \
+ shadow_walk_okay(&(_walker)); \
+ shadow_walk_next(&(_walker)))
+
+#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
+ for (shadow_walk_init(&(_walker), _vcpu, _addr); \
+ shadow_walk_okay(&(_walker)) && \
+ ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
+ __shadow_walk_next(&(_walker), spte))
+
+static struct kmem_cache *pte_list_desc_cache;
static struct kmem_cache *mmu_page_header_cache;
+static struct percpu_counter kvm_total_used_mmu_pages;
+
+static u64 __read_mostly shadow_nx_mask;
+static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
+static u64 __read_mostly shadow_user_mask;
+static u64 __read_mostly shadow_accessed_mask;
+static u64 __read_mostly shadow_dirty_mask;
+static u64 __read_mostly shadow_mmio_mask;
-static u64 __read_mostly shadow_trap_nonpresent_pte;
-static u64 __read_mostly shadow_notrap_nonpresent_pte;
+static void mmu_spte_set(u64 *sptep, u64 spte);
+static void mmu_free_roots(struct kvm_vcpu *vcpu);
-void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
+void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
- shadow_trap_nonpresent_pte = trap_pte;
- shadow_notrap_nonpresent_pte = notrap_pte;
+ shadow_mmio_mask = mmio_mask;
}
-EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
+EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
+
+/*
+ * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
+ * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
+ * number.
+ */
+#define MMIO_SPTE_GEN_LOW_SHIFT 3
+#define MMIO_SPTE_GEN_HIGH_SHIFT 52
+
+#define MMIO_GEN_SHIFT 19
+#define MMIO_GEN_LOW_SHIFT 9
+#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 1)
+#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
+#define MMIO_MAX_GEN ((1 << MMIO_GEN_SHIFT) - 1)
-static int is_write_protection(struct kvm_vcpu *vcpu)
+static u64 generation_mmio_spte_mask(unsigned int gen)
{
- return vcpu->arch.cr0 & X86_CR0_WP;
+ u64 mask;
+
+ WARN_ON(gen > MMIO_MAX_GEN);
+
+ mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
+ mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
+ return mask;
}
-static int is_cpuid_PSE36(void)
+static unsigned int get_mmio_spte_generation(u64 spte)
{
- return 1;
+ unsigned int gen;
+
+ spte &= ~shadow_mmio_mask;
+
+ gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
+ gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
+ return gen;
}
-static int is_nx(struct kvm_vcpu *vcpu)
+static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
+{
+ /*
+ * Init kvm generation close to MMIO_MAX_GEN to easily test the
+ * code of handling generation number wrap-around.
+ */
+ return (kvm_memslots(kvm)->generation +
+ MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
+}
+
+static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
+ unsigned access)
{
- return vcpu->arch.shadow_efer & EFER_NX;
+ unsigned int gen = kvm_current_mmio_generation(kvm);
+ u64 mask = generation_mmio_spte_mask(gen);
+
+ access &= ACC_WRITE_MASK | ACC_USER_MASK;
+ mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
+
+ trace_mark_mmio_spte(sptep, gfn, access, gen);
+ mmu_spte_set(sptep, mask);
}
-static int is_present_pte(unsigned long pte)
+static bool is_mmio_spte(u64 spte)
{
- return pte & PT_PRESENT_MASK;
+ return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}
-static int is_shadow_present_pte(u64 pte)
+static gfn_t get_mmio_spte_gfn(u64 spte)
{
- pte &= ~PT_SHADOW_IO_MARK;
- return pte != shadow_trap_nonpresent_pte
- && pte != shadow_notrap_nonpresent_pte;
+ u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
+ return (spte & ~mask) >> PAGE_SHIFT;
}
-static int is_writeble_pte(unsigned long pte)
+static unsigned get_mmio_spte_access(u64 spte)
{
- return pte & PT_WRITABLE_MASK;
+ u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
+ return (spte & ~mask) & ~PAGE_MASK;
}
-static int is_dirty_pte(unsigned long pte)
+static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
+ pfn_t pfn, unsigned access)
{
- return pte & PT_DIRTY_MASK;
+ if (unlikely(is_noslot_pfn(pfn))) {
+ mark_mmio_spte(kvm, sptep, gfn, access);
+ return true;
+ }
+
+ return false;
+}
+
+static bool check_mmio_spte(struct kvm *kvm, u64 spte)
+{
+ unsigned int kvm_gen, spte_gen;
+
+ kvm_gen = kvm_current_mmio_generation(kvm);
+ spte_gen = get_mmio_spte_generation(spte);
+
+ trace_check_mmio_spte(spte, kvm_gen, spte_gen);
+ return likely(kvm_gen == spte_gen);
+}
+
+static inline u64 rsvd_bits(int s, int e)
+{
+ return ((1ULL << (e - s + 1)) - 1) << s;
+}
+
+void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
+ u64 dirty_mask, u64 nx_mask, u64 x_mask)
+{
+ shadow_user_mask = user_mask;
+ shadow_accessed_mask = accessed_mask;
+ shadow_dirty_mask = dirty_mask;
+ shadow_nx_mask = nx_mask;
+ shadow_x_mask = x_mask;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
+
+static int is_cpuid_PSE36(void)
+{
+ return 1;
+}
+
+static int is_nx(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.efer & EFER_NX;
+}
+
+static int is_shadow_present_pte(u64 pte)
+{
+ return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
}
-static int is_io_pte(unsigned long pte)
+static int is_large_pte(u64 pte)
{
- return pte & PT_SHADOW_IO_MARK;
+ return pte & PT_PAGE_SIZE_MASK;
}
-static int is_rmap_pte(u64 pte)
+static int is_rmap_spte(u64 pte)
{
return is_shadow_present_pte(pte);
}
+static int is_last_spte(u64 pte, int level)
+{
+ if (level == PT_PAGE_TABLE_LEVEL)
+ return 1;
+ if (is_large_pte(pte))
+ return 1;
+ return 0;
+}
+
+static pfn_t spte_to_pfn(u64 pte)
+{
+ return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
+}
+
static gfn_t pse36_gfn_delta(u32 gpte)
{
int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
@@ -232,13 +358,333 @@ static gfn_t pse36_gfn_delta(u32 gpte)
return (gpte & PT32_DIR_PSE36_MASK) << shift;
}
-static void set_shadow_pte(u64 *sptep, u64 spte)
-{
#ifdef CONFIG_X86_64
- set_64bit((unsigned long *)sptep, spte);
+static void __set_spte(u64 *sptep, u64 spte)
+{
+ *sptep = spte;
+}
+
+static void __update_clear_spte_fast(u64 *sptep, u64 spte)
+{
+ *sptep = spte;
+}
+
+static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
+{
+ return xchg(sptep, spte);
+}
+
+static u64 __get_spte_lockless(u64 *sptep)
+{
+ return ACCESS_ONCE(*sptep);
+}
+
+static bool __check_direct_spte_mmio_pf(u64 spte)
+{
+ /* It is valid if the spte is zapped. */
+ return spte == 0ull;
+}
#else
- set_64bit((unsigned long long *)sptep, spte);
+union split_spte {
+ struct {
+ u32 spte_low;
+ u32 spte_high;
+ };
+ u64 spte;
+};
+
+static void count_spte_clear(u64 *sptep, u64 spte)
+{
+ struct kvm_mmu_page *sp = page_header(__pa(sptep));
+
+ if (is_shadow_present_pte(spte))
+ return;
+
+ /* Ensure the spte is completely set before we increase the count */
+ smp_wmb();
+ sp->clear_spte_count++;
+}
+
+static void __set_spte(u64 *sptep, u64 spte)
+{
+ union split_spte *ssptep, sspte;
+
+ ssptep = (union split_spte *)sptep;
+ sspte = (union split_spte)spte;
+
+ ssptep->spte_high = sspte.spte_high;
+
+ /*
+ * If we map the spte from nonpresent to present, We should store
+ * the high bits firstly, then set present bit, so cpu can not
+ * fetch this spte while we are setting the spte.
+ */
+ smp_wmb();
+
+ ssptep->spte_low = sspte.spte_low;
+}
+
+static void __update_clear_spte_fast(u64 *sptep, u64 spte)
+{
+ union split_spte *ssptep, sspte;
+
+ ssptep = (union split_spte *)sptep;
+ sspte = (union split_spte)spte;
+
+ ssptep->spte_low = sspte.spte_low;
+
+ /*
+ * If we map the spte from present to nonpresent, we should clear
+ * present bit firstly to avoid vcpu fetch the old high bits.
+ */
+ smp_wmb();
+
+ ssptep->spte_high = sspte.spte_high;
+ count_spte_clear(sptep, spte);
+}
+
+static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
+{
+ union split_spte *ssptep, sspte, orig;
+
+ ssptep = (union split_spte *)sptep;
+ sspte = (union split_spte)spte;
+
+ /* xchg acts as a barrier before the setting of the high bits */
+ orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
+ orig.spte_high = ssptep->spte_high;
+ ssptep->spte_high = sspte.spte_high;
+ count_spte_clear(sptep, spte);
+
+ return orig.spte;
+}
+
+/*
+ * The idea using the light way get the spte on x86_32 guest is from
+ * gup_get_pte(arch/x86/mm/gup.c).
+ *
+ * An spte tlb flush may be pending, because kvm_set_pte_rmapp
+ * coalesces them and we are running out of the MMU lock. Therefore
+ * we need to protect against in-progress updates of the spte.
+ *
+ * Reading the spte while an update is in progress may get the old value
+ * for the high part of the spte. The race is fine for a present->non-present
+ * change (because the high part of the spte is ignored for non-present spte),
+ * but for a present->present change we must reread the spte.
+ *
+ * All such changes are done in two steps (present->non-present and
+ * non-present->present), hence it is enough to count the number of
+ * present->non-present updates: if it changed while reading the spte,
+ * we might have hit the race. This is done using clear_spte_count.
+ */
+static u64 __get_spte_lockless(u64 *sptep)
+{
+ struct kvm_mmu_page *sp = page_header(__pa(sptep));
+ union split_spte spte, *orig = (union split_spte *)sptep;
+ int count;
+
+retry:
+ count = sp->clear_spte_count;
+ smp_rmb();
+
+ spte.spte_low = orig->spte_low;
+ smp_rmb();
+
+ spte.spte_high = orig->spte_high;
+ smp_rmb();
+
+ if (unlikely(spte.spte_low != orig->spte_low ||
+ count != sp->clear_spte_count))
+ goto retry;
+
+ return spte.spte;
+}
+
+static bool __check_direct_spte_mmio_pf(u64 spte)
+{
+ union split_spte sspte = (union split_spte)spte;
+ u32 high_mmio_mask = shadow_mmio_mask >> 32;
+
+ /* It is valid if the spte is zapped. */
+ if (spte == 0ull)
+ return true;
+
+ /* It is valid if the spte is being zapped. */
+ if (sspte.spte_low == 0ull &&
+ (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
+ return true;
+
+ return false;
+}
#endif
+
+static bool spte_is_locklessly_modifiable(u64 spte)
+{
+ return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
+ (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
+}
+
+static bool spte_has_volatile_bits(u64 spte)
+{
+ /*
+ * Always atomicly update spte if it can be updated
+ * out of mmu-lock, it can ensure dirty bit is not lost,
+ * also, it can help us to get a stable is_writable_pte()
+ * to ensure tlb flush is not missed.
+ */
+ if (spte_is_locklessly_modifiable(spte))
+ return true;
+
+ if (!shadow_accessed_mask)
+ return false;
+
+ if (!is_shadow_present_pte(spte))
+ return false;
+
+ if ((spte & shadow_accessed_mask) &&
+ (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
+ return false;
+
+ return true;
+}
+
+static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
+{
+ return (old_spte & bit_mask) && !(new_spte & bit_mask);
+}
+
+/* Rules for using mmu_spte_set:
+ * Set the sptep from nonpresent to present.
+ * Note: the sptep being assigned *must* be either not present
+ * or in a state where the hardware will not attempt to update
+ * the spte.
+ */
+static void mmu_spte_set(u64 *sptep, u64 new_spte)
+{
+ WARN_ON(is_shadow_present_pte(*sptep));
+ __set_spte(sptep, new_spte);
+}
+
+/* Rules for using mmu_spte_update:
+ * Update the state bits, it means the mapped pfn is not changged.
+ *
+ * Whenever we overwrite a writable spte with a read-only one we
+ * should flush remote TLBs. Otherwise rmap_write_protect
+ * will find a read-only spte, even though the writable spte
+ * might be cached on a CPU's TLB, the return value indicates this
+ * case.
+ */
+static bool mmu_spte_update(u64 *sptep, u64 new_spte)
+{
+ u64 old_spte = *sptep;
+ bool ret = false;
+
+ WARN_ON(!is_rmap_spte(new_spte));
+
+ if (!is_shadow_present_pte(old_spte)) {
+ mmu_spte_set(sptep, new_spte);
+ return ret;
+ }
+
+ if (!spte_has_volatile_bits(old_spte))
+ __update_clear_spte_fast(sptep, new_spte);
+ else
+ old_spte = __update_clear_spte_slow(sptep, new_spte);
+
+ /*
+ * For the spte updated out of mmu-lock is safe, since
+ * we always atomicly update it, see the comments in
+ * spte_has_volatile_bits().
+ */
+ if (spte_is_locklessly_modifiable(old_spte) &&
+ !is_writable_pte(new_spte))
+ ret = true;
+
+ if (!shadow_accessed_mask)
+ return ret;
+
+ if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
+ kvm_set_pfn_accessed(spte_to_pfn(old_spte));
+ if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
+ kvm_set_pfn_dirty(spte_to_pfn(old_spte));
+
+ return ret;
+}
+
+/*
+ * Rules for using mmu_spte_clear_track_bits:
+ * It sets the sptep from present to nonpresent, and track the
+ * state bits, it is used to clear the last level sptep.
+ */
+static int mmu_spte_clear_track_bits(u64 *sptep)
+{
+ pfn_t pfn;
+ u64 old_spte = *sptep;
+
+ if (!spte_has_volatile_bits(old_spte))
+ __update_clear_spte_fast(sptep, 0ull);
+ else
+ old_spte = __update_clear_spte_slow(sptep, 0ull);
+
+ if (!is_rmap_spte(old_spte))
+ return 0;
+
+ pfn = spte_to_pfn(old_spte);
+
+ /*
+ * KVM does not hold the refcount of the page used by
+ * kvm mmu, before reclaiming the page, we should
+ * unmap it from mmu first.
+ */
+ WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
+
+ if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
+ kvm_set_pfn_accessed(pfn);
+ if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
+ kvm_set_pfn_dirty(pfn);
+ return 1;
+}
+
+/*
+ * Rules for using mmu_spte_clear_no_track:
+ * Directly clear spte without caring the state bits of sptep,
+ * it is used to set the upper level spte.
+ */
+static void mmu_spte_clear_no_track(u64 *sptep)
+{
+ __update_clear_spte_fast(sptep, 0ull);
+}
+
+static u64 mmu_spte_get_lockless(u64 *sptep)
+{
+ return __get_spte_lockless(sptep);
+}
+
+static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
+{
+ /*
+ * Prevent page table teardown by making any free-er wait during
+ * kvm_flush_remote_tlbs() IPI to all active vcpus.
+ */
+ local_irq_disable();
+ vcpu->mode = READING_SHADOW_PAGE_TABLES;
+ /*
+ * Make sure a following spte read is not reordered ahead of the write
+ * to vcpu->mode.
+ */
+ smp_mb();
+}
+
+static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
+{
+ /*
+ * Make sure the write to vcpu->mode is not reordered in front of
+ * reads to sptes. If it does, kvm_commit_zap_page() can see us
+ * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
+ */
+ smp_mb();
+ vcpu->mode = OUTSIDE_GUEST_MODE;
+ local_irq_enable();
}
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
@@ -257,25 +703,30 @@ static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
return 0;
}
-static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
+static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
+{
+ return cache->nobjs;
+}
+
+static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
+ struct kmem_cache *cache)
{
while (mc->nobjs)
- kfree(mc->objects[--mc->nobjs]);
+ kmem_cache_free(cache, mc->objects[--mc->nobjs]);
}
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
int min)
{
- struct page *page;
+ void *page;
if (cache->nobjs >= min)
return 0;
while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
- page = alloc_page(GFP_KERNEL);
+ page = (void *)__get_free_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
- set_page_private(page, 0);
- cache->objects[cache->nobjs++] = page_address(page);
+ cache->objects[cache->nobjs++] = page;
}
return 0;
}
@@ -290,12 +741,8 @@ static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
{
int r;
- r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
- pte_chain_cache, 4);
- if (r)
- goto out;
- r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
- rmap_desc_cache, 1);
+ r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
+ pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
if (r)
goto out;
r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
@@ -309,165 +756,256 @@ out:
static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
- mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
- mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
+ mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
+ pte_list_desc_cache);
mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
- mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
+ mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
+ mmu_page_header_cache);
}
-static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
- size_t size)
+static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
void *p;
BUG_ON(!mc->nobjs);
p = mc->objects[--mc->nobjs];
- memset(p, 0, size);
return p;
}
-static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
+static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
{
- return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
- sizeof(struct kvm_pte_chain));
+ return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
}
-static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
+static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
{
- kfree(pc);
+ kmem_cache_free(pte_list_desc_cache, pte_list_desc);
}
-static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
+static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
- return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
- sizeof(struct kvm_rmap_desc));
+ if (!sp->role.direct)
+ return sp->gfns[index];
+
+ return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}
-static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
+static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
- kfree(rd);
+ if (sp->role.direct)
+ BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
+ else
+ sp->gfns[index] = gfn;
}
/*
- * Take gfn and return the reverse mapping to it.
- * Note: gfn must be unaliased before this function get called
+ * Return the pointer to the large page information for a given gfn,
+ * handling slots that are not large page aligned.
*/
+static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
+ struct kvm_memory_slot *slot,
+ int level)
+{
+ unsigned long idx;
+
+ idx = gfn_to_index(gfn, slot->base_gfn, level);
+ return &slot->arch.lpage_info[level - 2][idx];
+}
+
+static void account_shadowed(struct kvm *kvm, gfn_t gfn)
+{
+ struct kvm_memory_slot *slot;
+ struct kvm_lpage_info *linfo;
+ int i;
+
+ slot = gfn_to_memslot(kvm, gfn);
+ for (i = PT_DIRECTORY_LEVEL;
+ i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
+ linfo = lpage_info_slot(gfn, slot, i);
+ linfo->write_count += 1;
+ }
+ kvm->arch.indirect_shadow_pages++;
+}
+
+static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
+{
+ struct kvm_memory_slot *slot;
+ struct kvm_lpage_info *linfo;
+ int i;
+
+ slot = gfn_to_memslot(kvm, gfn);
+ for (i = PT_DIRECTORY_LEVEL;
+ i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
+ linfo = lpage_info_slot(gfn, slot, i);
+ linfo->write_count -= 1;
+ WARN_ON(linfo->write_count < 0);
+ }
+ kvm->arch.indirect_shadow_pages--;
+}
-static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn)
+static int has_wrprotected_page(struct kvm *kvm,
+ gfn_t gfn,
+ int level)
{
struct kvm_memory_slot *slot;
+ struct kvm_lpage_info *linfo;
slot = gfn_to_memslot(kvm, gfn);
- return &slot->rmap[gfn - slot->base_gfn];
+ if (slot) {
+ linfo = lpage_info_slot(gfn, slot, level);
+ return linfo->write_count;
+ }
+
+ return 1;
+}
+
+static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
+{
+ unsigned long page_size;
+ int i, ret = 0;
+
+ page_size = kvm_host_page_size(kvm, gfn);
+
+ for (i = PT_PAGE_TABLE_LEVEL;
+ i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
+ if (page_size >= KVM_HPAGE_SIZE(i))
+ ret = i;
+ else
+ break;
+ }
+
+ return ret;
+}
+
+static struct kvm_memory_slot *
+gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
+ bool no_dirty_log)
+{
+ struct kvm_memory_slot *slot;
+
+ slot = gfn_to_memslot(vcpu->kvm, gfn);
+ if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
+ (no_dirty_log && slot->dirty_bitmap))
+ slot = NULL;
+
+ return slot;
+}
+
+static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
+{
+ return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
+}
+
+static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
+{
+ int host_level, level, max_level;
+
+ host_level = host_mapping_level(vcpu->kvm, large_gfn);
+
+ if (host_level == PT_PAGE_TABLE_LEVEL)
+ return host_level;
+
+ max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
+
+ for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
+ if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
+ break;
+
+ return level - 1;
}
/*
- * Reverse mapping data structures:
+ * Pte mapping structures:
+ *
+ * If pte_list bit zero is zero, then pte_list point to the spte.
*
- * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
- * that points to page_address(page).
+ * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
+ * pte_list_desc containing more mappings.
+ *
+ * Returns the number of pte entries before the spte was added or zero if
+ * the spte was not added.
*
- * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
- * containing more mappings.
*/
-static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
+static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
+ unsigned long *pte_list)
{
- struct kvm_mmu_page *sp;
- struct kvm_rmap_desc *desc;
- unsigned long *rmapp;
- int i;
-
- if (!is_rmap_pte(*spte))
- return;
- gfn = unalias_gfn(vcpu->kvm, gfn);
- sp = page_header(__pa(spte));
- sp->gfns[spte - sp->spt] = gfn;
- rmapp = gfn_to_rmap(vcpu->kvm, gfn);
- if (!*rmapp) {
- rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
- *rmapp = (unsigned long)spte;
- } else if (!(*rmapp & 1)) {
- rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
- desc = mmu_alloc_rmap_desc(vcpu);
- desc->shadow_ptes[0] = (u64 *)*rmapp;
- desc->shadow_ptes[1] = spte;
- *rmapp = (unsigned long)desc | 1;
+ struct pte_list_desc *desc;
+ int i, count = 0;
+
+ if (!*pte_list) {
+ rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
+ *pte_list = (unsigned long)spte;
+ } else if (!(*pte_list & 1)) {
+ rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
+ desc = mmu_alloc_pte_list_desc(vcpu);
+ desc->sptes[0] = (u64 *)*pte_list;
+ desc->sptes[1] = spte;
+ *pte_list = (unsigned long)desc | 1;
+ ++count;
} else {
- rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
- desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
- while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
+ rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
+ desc = (struct pte_list_desc *)(*pte_list & ~1ul);
+ while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
desc = desc->more;
- if (desc->shadow_ptes[RMAP_EXT-1]) {
- desc->more = mmu_alloc_rmap_desc(vcpu);
+ count += PTE_LIST_EXT;
+ }
+ if (desc->sptes[PTE_LIST_EXT-1]) {
+ desc->more = mmu_alloc_pte_list_desc(vcpu);
desc = desc->more;
}
- for (i = 0; desc->shadow_ptes[i]; ++i)
- ;
- desc->shadow_ptes[i] = spte;
+ for (i = 0; desc->sptes[i]; ++i)
+ ++count;
+ desc->sptes[i] = spte;
}
+ return count;
}
-static void rmap_desc_remove_entry(unsigned long *rmapp,
- struct kvm_rmap_desc *desc,
- int i,
- struct kvm_rmap_desc *prev_desc)
+static void
+pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
+ int i, struct pte_list_desc *prev_desc)
{
int j;
- for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
+ for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
;
- desc->shadow_ptes[i] = desc->shadow_ptes[j];
- desc->shadow_ptes[j] = NULL;
+ desc->sptes[i] = desc->sptes[j];
+ desc->sptes[j] = NULL;
if (j != 0)
return;
if (!prev_desc && !desc->more)
- *rmapp = (unsigned long)desc->shadow_ptes[0];
+ *pte_list = (unsigned long)desc->sptes[0];
else
if (prev_desc)
prev_desc->more = desc->more;
else
- *rmapp = (unsigned long)desc->more | 1;
- mmu_free_rmap_desc(desc);
+ *pte_list = (unsigned long)desc->more | 1;
+ mmu_free_pte_list_desc(desc);
}
-static void rmap_remove(struct kvm *kvm, u64 *spte)
+static void pte_list_remove(u64 *spte, unsigned long *pte_list)
{
- struct kvm_rmap_desc *desc;
- struct kvm_rmap_desc *prev_desc;
- struct kvm_mmu_page *sp;
- struct page *page;
- unsigned long *rmapp;
+ struct pte_list_desc *desc;
+ struct pte_list_desc *prev_desc;
int i;
- if (!is_rmap_pte(*spte))
- return;
- sp = page_header(__pa(spte));
- page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
- mark_page_accessed(page);
- if (is_writeble_pte(*spte))
- kvm_release_page_dirty(page);
- else
- kvm_release_page_clean(page);
- rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt]);
- if (!*rmapp) {
- printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
+ if (!*pte_list) {
+ printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
BUG();
- } else if (!(*rmapp & 1)) {
- rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
- if ((u64 *)*rmapp != spte) {
- printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
- spte, *spte);
+ } else if (!(*pte_list & 1)) {
+ rmap_printk("pte_list_remove: %p 1->0\n", spte);
+ if ((u64 *)*pte_list != spte) {
+ printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
BUG();
}
- *rmapp = 0;
+ *pte_list = 0;
} else {
- rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
- desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
+ rmap_printk("pte_list_remove: %p many->many\n", spte);
+ desc = (struct pte_list_desc *)(*pte_list & ~1ul);
prev_desc = NULL;
while (desc) {
- for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
- if (desc->shadow_ptes[i] == spte) {
- rmap_desc_remove_entry(rmapp,
+ for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
+ if (desc->sptes[i] == spte) {
+ pte_list_desc_remove_entry(pte_list,
desc, i,
prev_desc);
return;
@@ -475,60 +1013,485 @@ static void rmap_remove(struct kvm *kvm, u64 *spte)
prev_desc = desc;
desc = desc->more;
}
+ pr_err("pte_list_remove: %p many->many\n", spte);
BUG();
}
}
-static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
+typedef void (*pte_list_walk_fn) (u64 *spte);
+static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
{
- struct kvm_rmap_desc *desc;
- struct kvm_rmap_desc *prev_desc;
- u64 *prev_spte;
+ struct pte_list_desc *desc;
int i;
- if (!*rmapp)
- return NULL;
- else if (!(*rmapp & 1)) {
- if (!spte)
- return (u64 *)*rmapp;
+ if (!*pte_list)
+ return;
+
+ if (!(*pte_list & 1))
+ return fn((u64 *)*pte_list);
+
+ desc = (struct pte_list_desc *)(*pte_list & ~1ul);
+ while (desc) {
+ for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
+ fn(desc->sptes[i]);
+ desc = desc->more;
+ }
+}
+
+static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
+ struct kvm_memory_slot *slot)
+{
+ unsigned long idx;
+
+ idx = gfn_to_index(gfn, slot->base_gfn, level);
+ return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
+}
+
+/*
+ * Take gfn and return the reverse mapping to it.
+ */
+static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
+{
+ struct kvm_memory_slot *slot;
+
+ slot = gfn_to_memslot(kvm, gfn);
+ return __gfn_to_rmap(gfn, level, slot);
+}
+
+static bool rmap_can_add(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu_memory_cache *cache;
+
+ cache = &vcpu->arch.mmu_pte_list_desc_cache;
+ return mmu_memory_cache_free_objects(cache);
+}
+
+static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
+{
+ struct kvm_mmu_page *sp;
+ unsigned long *rmapp;
+
+ sp = page_header(__pa(spte));
+ kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
+ rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
+ return pte_list_add(vcpu, spte, rmapp);
+}
+
+static void rmap_remove(struct kvm *kvm, u64 *spte)
+{
+ struct kvm_mmu_page *sp;
+ gfn_t gfn;
+ unsigned long *rmapp;
+
+ sp = page_header(__pa(spte));
+ gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
+ rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
+ pte_list_remove(spte, rmapp);
+}
+
+/*
+ * Used by the following functions to iterate through the sptes linked by a
+ * rmap. All fields are private and not assumed to be used outside.
+ */
+struct rmap_iterator {
+ /* private fields */
+ struct pte_list_desc *desc; /* holds the sptep if not NULL */
+ int pos; /* index of the sptep */
+};
+
+/*
+ * Iteration must be started by this function. This should also be used after
+ * removing/dropping sptes from the rmap link because in such cases the
+ * information in the itererator may not be valid.
+ *
+ * Returns sptep if found, NULL otherwise.
+ */
+static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
+{
+ if (!rmap)
return NULL;
+
+ if (!(rmap & 1)) {
+ iter->desc = NULL;
+ return (u64 *)rmap;
}
- desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
- prev_desc = NULL;
- prev_spte = NULL;
- while (desc) {
- for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
- if (prev_spte == spte)
- return desc->shadow_ptes[i];
- prev_spte = desc->shadow_ptes[i];
+
+ iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
+ iter->pos = 0;
+ return iter->desc->sptes[iter->pos];
+}
+
+/*
+ * Must be used with a valid iterator: e.g. after rmap_get_first().
+ *
+ * Returns sptep if found, NULL otherwise.
+ */
+static u64 *rmap_get_next(struct rmap_iterator *iter)
+{
+ if (iter->desc) {
+ if (iter->pos < PTE_LIST_EXT - 1) {
+ u64 *sptep;
+
+ ++iter->pos;
+ sptep = iter->desc->sptes[iter->pos];
+ if (sptep)
+ return sptep;
+ }
+
+ iter->desc = iter->desc->more;
+
+ if (iter->desc) {
+ iter->pos = 0;
+ /* desc->sptes[0] cannot be NULL */
+ return iter->desc->sptes[iter->pos];
}
- desc = desc->more;
}
+
return NULL;
}
-static void rmap_write_protect(struct kvm *kvm, u64 gfn)
+static void drop_spte(struct kvm *kvm, u64 *sptep)
+{
+ if (mmu_spte_clear_track_bits(sptep))
+ rmap_remove(kvm, sptep);
+}
+
+
+static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
+{
+ if (is_large_pte(*sptep)) {
+ WARN_ON(page_header(__pa(sptep))->role.level ==
+ PT_PAGE_TABLE_LEVEL);
+ drop_spte(kvm, sptep);
+ --kvm->stat.lpages;
+ return true;
+ }
+
+ return false;
+}
+
+static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
+{
+ if (__drop_large_spte(vcpu->kvm, sptep))
+ kvm_flush_remote_tlbs(vcpu->kvm);
+}
+
+/*
+ * Write-protect on the specified @sptep, @pt_protect indicates whether
+ * spte write-protection is caused by protecting shadow page table.
+ *
+ * Note: write protection is difference between drity logging and spte
+ * protection:
+ * - for dirty logging, the spte can be set to writable at anytime if
+ * its dirty bitmap is properly set.
+ * - for spte protection, the spte can be writable only after unsync-ing
+ * shadow page.
+ *
+ * Return true if tlb need be flushed.
+ */
+static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
+{
+ u64 spte = *sptep;
+
+ if (!is_writable_pte(spte) &&
+ !(pt_protect && spte_is_locklessly_modifiable(spte)))
+ return false;
+
+ rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
+
+ if (pt_protect)
+ spte &= ~SPTE_MMU_WRITEABLE;
+ spte = spte & ~PT_WRITABLE_MASK;
+
+ return mmu_spte_update(sptep, spte);
+}
+
+static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
+ bool pt_protect)
+{
+ u64 *sptep;
+ struct rmap_iterator iter;
+ bool flush = false;
+
+ for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
+ BUG_ON(!(*sptep & PT_PRESENT_MASK));
+
+ flush |= spte_write_protect(kvm, sptep, pt_protect);
+ sptep = rmap_get_next(&iter);
+ }
+
+ return flush;
+}
+
+/**
+ * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
+ * @kvm: kvm instance
+ * @slot: slot to protect
+ * @gfn_offset: start of the BITS_PER_LONG pages we care about
+ * @mask: indicates which pages we should protect
+ *
+ * Used when we do not need to care about huge page mappings: e.g. during dirty
+ * logging we do not have any such mappings.
+ */
+void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
+ struct kvm_memory_slot *slot,
+ gfn_t gfn_offset, unsigned long mask)
{
unsigned long *rmapp;
- u64 *spte;
- int write_protected = 0;
-
- gfn = unalias_gfn(kvm, gfn);
- rmapp = gfn_to_rmap(kvm, gfn);
-
- spte = rmap_next(kvm, rmapp, NULL);
- while (spte) {
- BUG_ON(!spte);
- BUG_ON(!(*spte & PT_PRESENT_MASK));
- rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
- if (is_writeble_pte(*spte)) {
- set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
- write_protected = 1;
+
+ while (mask) {
+ rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
+ PT_PAGE_TABLE_LEVEL, slot);
+ __rmap_write_protect(kvm, rmapp, false);
+
+ /* clear the first set bit */
+ mask &= mask - 1;
+ }
+}
+
+static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
+{
+ struct kvm_memory_slot *slot;
+ unsigned long *rmapp;
+ int i;
+ bool write_protected = false;
+
+ slot = gfn_to_memslot(kvm, gfn);
+
+ for (i = PT_PAGE_TABLE_LEVEL;
+ i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
+ rmapp = __gfn_to_rmap(gfn, i, slot);
+ write_protected |= __rmap_write_protect(kvm, rmapp, true);
+ }
+
+ return write_protected;
+}
+
+static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
+ struct kvm_memory_slot *slot, unsigned long data)
+{
+ u64 *sptep;
+ struct rmap_iterator iter;
+ int need_tlb_flush = 0;
+
+ while ((sptep = rmap_get_first(*rmapp, &iter))) {
+ BUG_ON(!(*sptep & PT_PRESENT_MASK));
+ rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
+
+ drop_spte(kvm, sptep);
+ need_tlb_flush = 1;
+ }
+
+ return need_tlb_flush;
+}
+
+static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
+ struct kvm_memory_slot *slot, unsigned long data)
+{
+ u64 *sptep;
+ struct rmap_iterator iter;
+ int need_flush = 0;
+ u64 new_spte;
+ pte_t *ptep = (pte_t *)data;
+ pfn_t new_pfn;
+
+ WARN_ON(pte_huge(*ptep));
+ new_pfn = pte_pfn(*ptep);
+
+ for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
+ BUG_ON(!is_shadow_present_pte(*sptep));
+ rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
+
+ need_flush = 1;
+
+ if (pte_write(*ptep)) {
+ drop_spte(kvm, sptep);
+ sptep = rmap_get_first(*rmapp, &iter);
+ } else {
+ new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
+ new_spte |= (u64)new_pfn << PAGE_SHIFT;
+
+ new_spte &= ~PT_WRITABLE_MASK;
+ new_spte &= ~SPTE_HOST_WRITEABLE;
+ new_spte &= ~shadow_accessed_mask;
+
+ mmu_spte_clear_track_bits(sptep);
+ mmu_spte_set(sptep, new_spte);
+ sptep = rmap_get_next(&iter);
}
- spte = rmap_next(kvm, rmapp, spte);
}
- if (write_protected)
+
+ if (need_flush)
kvm_flush_remote_tlbs(kvm);
+
+ return 0;
+}
+
+static int kvm_handle_hva_range(struct kvm *kvm,
+ unsigned long start,
+ unsigned long end,
+ unsigned long data,
+ int (*handler)(struct kvm *kvm,
+ unsigned long *rmapp,
+ struct kvm_memory_slot *slot,
+ unsigned long data))
+{
+ int j;
+ int ret = 0;
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+
+ slots = kvm_memslots(kvm);
+
+ kvm_for_each_memslot(memslot, slots) {
+ unsigned long hva_start, hva_end;
+ gfn_t gfn_start, gfn_end;
+
+ hva_start = max(start, memslot->userspace_addr);
+ hva_end = min(end, memslot->userspace_addr +
+ (memslot->npages << PAGE_SHIFT));
+ if (hva_start >= hva_end)
+ continue;
+ /*
+ * {gfn(page) | page intersects with [hva_start, hva_end)} =
+ * {gfn_start, gfn_start+1, ..., gfn_end-1}.
+ */
+ gfn_start = hva_to_gfn_memslot(hva_start, memslot);
+ gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
+
+ for (j = PT_PAGE_TABLE_LEVEL;
+ j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
+ unsigned long idx, idx_end;
+ unsigned long *rmapp;
+
+ /*
+ * {idx(page_j) | page_j intersects with
+ * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
+ */
+ idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
+ idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
+
+ rmapp = __gfn_to_rmap(gfn_start, j, memslot);
+
+ for (; idx <= idx_end; ++idx)
+ ret |= handler(kvm, rmapp++, memslot, data);
+ }
+ }
+
+ return ret;
+}
+
+static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
+ unsigned long data,
+ int (*handler)(struct kvm *kvm, unsigned long *rmapp,
+ struct kvm_memory_slot *slot,
+ unsigned long data))
+{
+ return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
+}
+
+int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
+{
+ return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
+}
+
+int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
+{
+ return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
+}
+
+void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
+{
+ kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
+}
+
+static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
+ struct kvm_memory_slot *slot, unsigned long data)
+{
+ u64 *sptep;
+ struct rmap_iterator uninitialized_var(iter);
+ int young = 0;
+
+ /*
+ * In case of absence of EPT Access and Dirty Bits supports,
+ * emulate the accessed bit for EPT, by checking if this page has
+ * an EPT mapping, and clearing it if it does. On the next access,
+ * a new EPT mapping will be established.
+ * This has some overhead, but not as much as the cost of swapping
+ * out actively used pages or breaking up actively used hugepages.
+ */
+ if (!shadow_accessed_mask) {
+ young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
+ goto out;
+ }
+
+ for (sptep = rmap_get_first(*rmapp, &iter); sptep;
+ sptep = rmap_get_next(&iter)) {
+ BUG_ON(!is_shadow_present_pte(*sptep));
+
+ if (*sptep & shadow_accessed_mask) {
+ young = 1;
+ clear_bit((ffs(shadow_accessed_mask) - 1),
+ (unsigned long *)sptep);
+ }
+ }
+out:
+ /* @data has hva passed to kvm_age_hva(). */
+ trace_kvm_age_page(data, slot, young);
+ return young;
+}
+
+static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
+ struct kvm_memory_slot *slot, unsigned long data)
+{
+ u64 *sptep;
+ struct rmap_iterator iter;
+ int young = 0;
+
+ /*
+ * If there's no access bit in the secondary pte set by the
+ * hardware it's up to gup-fast/gup to set the access bit in
+ * the primary pte or in the page structure.
+ */
+ if (!shadow_accessed_mask)
+ goto out;
+
+ for (sptep = rmap_get_first(*rmapp, &iter); sptep;
+ sptep = rmap_get_next(&iter)) {
+ BUG_ON(!is_shadow_present_pte(*sptep));
+
+ if (*sptep & shadow_accessed_mask) {
+ young = 1;
+ break;
+ }
+ }
+out:
+ return young;
+}
+
+#define RMAP_RECYCLE_THRESHOLD 1000
+
+static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
+{
+ unsigned long *rmapp;
+ struct kvm_mmu_page *sp;
+
+ sp = page_header(__pa(spte));
+
+ rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
+
+ kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
+ kvm_flush_remote_tlbs(vcpu->kvm);
+}
+
+int kvm_age_hva(struct kvm *kvm, unsigned long hva)
+{
+ return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
+}
+
+int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
+{
+ return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}
#ifdef MMU_DEBUG
@@ -538,8 +1501,8 @@ static int is_empty_shadow_page(u64 *spt)
u64 *end;
for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
- if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) {
- printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
+ if (is_shadow_present_pte(*pos)) {
+ printk(KERN_ERR "%s: %p %llx\n", __func__,
pos, *pos);
return 0;
}
@@ -547,211 +1510,604 @@ static int is_empty_shadow_page(u64 *spt)
}
#endif
-static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
+/*
+ * This value is the sum of all of the kvm instances's
+ * kvm->arch.n_used_mmu_pages values. We need a global,
+ * aggregate version in order to make the slab shrinker
+ * faster
+ */
+static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
+{
+ kvm->arch.n_used_mmu_pages += nr;
+ percpu_counter_add(&kvm_total_used_mmu_pages, nr);
+}
+
+static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
{
ASSERT(is_empty_shadow_page(sp->spt));
+ hlist_del(&sp->hash_link);
list_del(&sp->link);
- __free_page(virt_to_page(sp->spt));
- __free_page(virt_to_page(sp->gfns));
- kfree(sp);
- ++kvm->arch.n_free_mmu_pages;
+ free_page((unsigned long)sp->spt);
+ if (!sp->role.direct)
+ free_page((unsigned long)sp->gfns);
+ kmem_cache_free(mmu_page_header_cache, sp);
}
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
- return gfn;
+ return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
+}
+
+static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp, u64 *parent_pte)
+{
+ if (!parent_pte)
+ return;
+
+ pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
+}
+
+static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
+ u64 *parent_pte)
+{
+ pte_list_remove(parent_pte, &sp->parent_ptes);
+}
+
+static void drop_parent_pte(struct kvm_mmu_page *sp,
+ u64 *parent_pte)
+{
+ mmu_page_remove_parent_pte(sp, parent_pte);
+ mmu_spte_clear_no_track(parent_pte);
}
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
- u64 *parent_pte)
+ u64 *parent_pte, int direct)
{
struct kvm_mmu_page *sp;
- sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
- sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
- sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
+ sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
+ sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
+ if (!direct)
+ sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
+
+ /*
+ * The active_mmu_pages list is the FIFO list, do not move the
+ * page until it is zapped. kvm_zap_obsolete_pages depends on
+ * this feature. See the comments in kvm_zap_obsolete_pages().
+ */
list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
- ASSERT(is_empty_shadow_page(sp->spt));
- sp->slot_bitmap = 0;
- sp->multimapped = 0;
- sp->parent_pte = parent_pte;
- --vcpu->kvm->arch.n_free_mmu_pages;
+ sp->parent_ptes = 0;
+ mmu_page_add_parent_pte(vcpu, sp, parent_pte);
+ kvm_mod_used_mmu_pages(vcpu->kvm, +1);
return sp;
}
-static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp, u64 *parent_pte)
+static void mark_unsync(u64 *spte);
+static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
{
- struct kvm_pte_chain *pte_chain;
- struct hlist_node *node;
- int i;
+ pte_list_walk(&sp->parent_ptes, mark_unsync);
+}
- if (!parent_pte)
+static void mark_unsync(u64 *spte)
+{
+ struct kvm_mmu_page *sp;
+ unsigned int index;
+
+ sp = page_header(__pa(spte));
+ index = spte - sp->spt;
+ if (__test_and_set_bit(index, sp->unsync_child_bitmap))
return;
- if (!sp->multimapped) {
- u64 *old = sp->parent_pte;
+ if (sp->unsync_children++)
+ return;
+ kvm_mmu_mark_parents_unsync(sp);
+}
- if (!old) {
- sp->parent_pte = parent_pte;
- return;
- }
- sp->multimapped = 1;
- pte_chain = mmu_alloc_pte_chain(vcpu);
- INIT_HLIST_HEAD(&sp->parent_ptes);
- hlist_add_head(&pte_chain->link, &sp->parent_ptes);
- pte_chain->parent_ptes[0] = old;
- }
- hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
- if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
+static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp)
+{
+ return 1;
+}
+
+static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
+{
+}
+
+static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp, u64 *spte,
+ const void *pte)
+{
+ WARN_ON(1);
+}
+
+#define KVM_PAGE_ARRAY_NR 16
+
+struct kvm_mmu_pages {
+ struct mmu_page_and_offset {
+ struct kvm_mmu_page *sp;
+ unsigned int idx;
+ } page[KVM_PAGE_ARRAY_NR];
+ unsigned int nr;
+};
+
+static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
+ int idx)
+{
+ int i;
+
+ if (sp->unsync)
+ for (i=0; i < pvec->nr; i++)
+ if (pvec->page[i].sp == sp)
+ return 0;
+
+ pvec->page[pvec->nr].sp = sp;
+ pvec->page[pvec->nr].idx = idx;
+ pvec->nr++;
+ return (pvec->nr == KVM_PAGE_ARRAY_NR);
+}
+
+static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
+ struct kvm_mmu_pages *pvec)
+{
+ int i, ret, nr_unsync_leaf = 0;
+
+ for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
+ struct kvm_mmu_page *child;
+ u64 ent = sp->spt[i];
+
+ if (!is_shadow_present_pte(ent) || is_large_pte(ent))
+ goto clear_child_bitmap;
+
+ child = page_header(ent & PT64_BASE_ADDR_MASK);
+
+ if (child->unsync_children) {
+ if (mmu_pages_add(pvec, child, i))
+ return -ENOSPC;
+
+ ret = __mmu_unsync_walk(child, pvec);
+ if (!ret)
+ goto clear_child_bitmap;
+ else if (ret > 0)
+ nr_unsync_leaf += ret;
+ else
+ return ret;
+ } else if (child->unsync) {
+ nr_unsync_leaf++;
+ if (mmu_pages_add(pvec, child, i))
+ return -ENOSPC;
+ } else
+ goto clear_child_bitmap;
+
+ continue;
+
+clear_child_bitmap:
+ __clear_bit(i, sp->unsync_child_bitmap);
+ sp->unsync_children--;
+ WARN_ON((int)sp->unsync_children < 0);
+ }
+
+
+ return nr_unsync_leaf;
+}
+
+static int mmu_unsync_walk(struct kvm_mmu_page *sp,
+ struct kvm_mmu_pages *pvec)
+{
+ if (!sp->unsync_children)
+ return 0;
+
+ mmu_pages_add(pvec, sp, 0);
+ return __mmu_unsync_walk(sp, pvec);
+}
+
+static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+ WARN_ON(!sp->unsync);
+ trace_kvm_mmu_sync_page(sp);
+ sp->unsync = 0;
+ --kvm->stat.mmu_unsync;
+}
+
+static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
+ struct list_head *invalid_list);
+static void kvm_mmu_commit_zap_page(struct kvm *kvm,
+ struct list_head *invalid_list);
+
+/*
+ * NOTE: we should pay more attention on the zapped-obsolete page
+ * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
+ * since it has been deleted from active_mmu_pages but still can be found
+ * at hast list.
+ *
+ * for_each_gfn_indirect_valid_sp has skipped that kind of page and
+ * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
+ * all the obsolete pages.
+ */
+#define for_each_gfn_sp(_kvm, _sp, _gfn) \
+ hlist_for_each_entry(_sp, \
+ &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
+ if ((_sp)->gfn != (_gfn)) {} else
+
+#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
+ for_each_gfn_sp(_kvm, _sp, _gfn) \
+ if ((_sp)->role.direct || (_sp)->role.invalid) {} else
+
+/* @sp->gfn should be write-protected at the call site */
+static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
+ struct list_head *invalid_list, bool clear_unsync)
+{
+ if (sp->role.cr4_pae != !!is_pae(vcpu)) {
+ kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
+ return 1;
+ }
+
+ if (clear_unsync)
+ kvm_unlink_unsync_page(vcpu->kvm, sp);
+
+ if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
+ kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
+ return 1;
+ }
+
+ kvm_mmu_flush_tlb(vcpu);
+ return 0;
+}
+
+static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp)
+{
+ LIST_HEAD(invalid_list);
+ int ret;
+
+ ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
+ if (ret)
+ kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
+
+ return ret;
+}
+
+#ifdef CONFIG_KVM_MMU_AUDIT
+#include "mmu_audit.c"
+#else
+static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
+static void mmu_audit_disable(void) { }
+#endif
+
+static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
+ struct list_head *invalid_list)
+{
+ return __kvm_sync_page(vcpu, sp, invalid_list, true);
+}
+
+/* @gfn should be write-protected at the call site */
+static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+ struct kvm_mmu_page *s;
+ LIST_HEAD(invalid_list);
+ bool flush = false;
+
+ for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
+ if (!s->unsync)
continue;
- for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
- if (!pte_chain->parent_ptes[i]) {
- pte_chain->parent_ptes[i] = parent_pte;
- return;
- }
+
+ WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
+ kvm_unlink_unsync_page(vcpu->kvm, s);
+ if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
+ (vcpu->arch.mmu.sync_page(vcpu, s))) {
+ kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
+ continue;
+ }
+ flush = true;
}
- pte_chain = mmu_alloc_pte_chain(vcpu);
- BUG_ON(!pte_chain);
- hlist_add_head(&pte_chain->link, &sp->parent_ptes);
- pte_chain->parent_ptes[0] = parent_pte;
+
+ kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
+ if (flush)
+ kvm_mmu_flush_tlb(vcpu);
}
-static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
- u64 *parent_pte)
+struct mmu_page_path {
+ struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
+ unsigned int idx[PT64_ROOT_LEVEL-1];
+};
+
+#define for_each_sp(pvec, sp, parents, i) \
+ for (i = mmu_pages_next(&pvec, &parents, -1), \
+ sp = pvec.page[i].sp; \
+ i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
+ i = mmu_pages_next(&pvec, &parents, i))
+
+static int mmu_pages_next(struct kvm_mmu_pages *pvec,
+ struct mmu_page_path *parents,
+ int i)
{
- struct kvm_pte_chain *pte_chain;
- struct hlist_node *node;
- int i;
+ int n;
- if (!sp->multimapped) {
- BUG_ON(sp->parent_pte != parent_pte);
- sp->parent_pte = NULL;
- return;
+ for (n = i+1; n < pvec->nr; n++) {
+ struct kvm_mmu_page *sp = pvec->page[n].sp;
+
+ if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
+ parents->idx[0] = pvec->page[n].idx;
+ return n;
+ }
+
+ parents->parent[sp->role.level-2] = sp;
+ parents->idx[sp->role.level-1] = pvec->page[n].idx;
}
- hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
- for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
- if (!pte_chain->parent_ptes[i])
- break;
- if (pte_chain->parent_ptes[i] != parent_pte)
- continue;
- while (i + 1 < NR_PTE_CHAIN_ENTRIES
- && pte_chain->parent_ptes[i + 1]) {
- pte_chain->parent_ptes[i]
- = pte_chain->parent_ptes[i + 1];
- ++i;
- }
- pte_chain->parent_ptes[i] = NULL;
- if (i == 0) {
- hlist_del(&pte_chain->link);
- mmu_free_pte_chain(pte_chain);
- if (hlist_empty(&sp->parent_ptes)) {
- sp->multimapped = 0;
- sp->parent_pte = NULL;
- }
- }
+
+ return n;
+}
+
+static void mmu_pages_clear_parents(struct mmu_page_path *parents)
+{
+ struct kvm_mmu_page *sp;
+ unsigned int level = 0;
+
+ do {
+ unsigned int idx = parents->idx[level];
+
+ sp = parents->parent[level];
+ if (!sp)
return;
- }
- BUG();
+
+ --sp->unsync_children;
+ WARN_ON((int)sp->unsync_children < 0);
+ __clear_bit(idx, sp->unsync_child_bitmap);
+ level++;
+ } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
}
-static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
+static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
+ struct mmu_page_path *parents,
+ struct kvm_mmu_pages *pvec)
{
- unsigned index;
- struct hlist_head *bucket;
+ parents->parent[parent->role.level-1] = NULL;
+ pvec->nr = 0;
+}
+
+static void mmu_sync_children(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *parent)
+{
+ int i;
struct kvm_mmu_page *sp;
- struct hlist_node *node;
-
- pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
- index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
- bucket = &kvm->arch.mmu_page_hash[index];
- hlist_for_each_entry(sp, node, bucket, hash_link)
- if (sp->gfn == gfn && !sp->role.metaphysical) {
- pgprintk("%s: found role %x\n",
- __FUNCTION__, sp->role.word);
- return sp;
+ struct mmu_page_path parents;
+ struct kvm_mmu_pages pages;
+ LIST_HEAD(invalid_list);
+
+ kvm_mmu_pages_init(parent, &parents, &pages);
+ while (mmu_unsync_walk(parent, &pages)) {
+ bool protected = false;
+
+ for_each_sp(pages, sp, parents, i)
+ protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
+
+ if (protected)
+ kvm_flush_remote_tlbs(vcpu->kvm);
+
+ for_each_sp(pages, sp, parents, i) {
+ kvm_sync_page(vcpu, sp, &invalid_list);
+ mmu_pages_clear_parents(&parents);
}
- return NULL;
+ kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
+ cond_resched_lock(&vcpu->kvm->mmu_lock);
+ kvm_mmu_pages_init(parent, &parents, &pages);
+ }
+}
+
+static void init_shadow_page_table(struct kvm_mmu_page *sp)
+{
+ int i;
+
+ for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
+ sp->spt[i] = 0ull;
+}
+
+static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
+{
+ sp->write_flooding_count = 0;
+}
+
+static void clear_sp_write_flooding_count(u64 *spte)
+{
+ struct kvm_mmu_page *sp = page_header(__pa(spte));
+
+ __clear_sp_write_flooding_count(sp);
+}
+
+static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+ return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
gfn_t gfn,
gva_t gaddr,
unsigned level,
- int metaphysical,
+ int direct,
unsigned access,
u64 *parent_pte)
{
union kvm_mmu_page_role role;
- unsigned index;
unsigned quadrant;
- struct hlist_head *bucket;
struct kvm_mmu_page *sp;
- struct hlist_node *node;
+ bool need_sync = false;
- role.word = 0;
- role.glevels = vcpu->arch.mmu.root_level;
+ role = vcpu->arch.mmu.base_role;
role.level = level;
- role.metaphysical = metaphysical;
+ role.direct = direct;
+ if (role.direct)
+ role.cr4_pae = 0;
role.access = access;
- if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
+ if (!vcpu->arch.mmu.direct_map
+ && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
role.quadrant = quadrant;
}
- pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
- gfn, role.word);
- index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
- bucket = &vcpu->kvm->arch.mmu_page_hash[index];
- hlist_for_each_entry(sp, node, bucket, hash_link)
- if (sp->gfn == gfn && sp->role.word == role.word) {
- mmu_page_add_parent_pte(vcpu, sp, parent_pte);
- pgprintk("%s: found\n", __FUNCTION__);
- return sp;
- }
+ for_each_gfn_sp(vcpu->kvm, sp, gfn) {
+ if (is_obsolete_sp(vcpu->kvm, sp))
+ continue;
+
+ if (!need_sync && sp->unsync)
+ need_sync = true;
+
+ if (sp->role.word != role.word)
+ continue;
+
+ if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
+ break;
+
+ mmu_page_add_parent_pte(vcpu, sp, parent_pte);
+ if (sp->unsync_children) {
+ kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
+ kvm_mmu_mark_parents_unsync(sp);
+ } else if (sp->unsync)
+ kvm_mmu_mark_parents_unsync(sp);
+
+ __clear_sp_write_flooding_count(sp);
+ trace_kvm_mmu_get_page(sp, false);
+ return sp;
+ }
++vcpu->kvm->stat.mmu_cache_miss;
- sp = kvm_mmu_alloc_page(vcpu, parent_pte);
+ sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
if (!sp)
return sp;
- pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
sp->gfn = gfn;
sp->role = role;
- hlist_add_head(&sp->hash_link, bucket);
- vcpu->arch.mmu.prefetch_page(vcpu, sp);
- if (!metaphysical)
- rmap_write_protect(vcpu->kvm, gfn);
+ hlist_add_head(&sp->hash_link,
+ &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
+ if (!direct) {
+ if (rmap_write_protect(vcpu->kvm, gfn))
+ kvm_flush_remote_tlbs(vcpu->kvm);
+ if (level > PT_PAGE_TABLE_LEVEL && need_sync)
+ kvm_sync_pages(vcpu, gfn);
+
+ account_shadowed(vcpu->kvm, gfn);
+ }
+ sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
+ init_shadow_page_table(sp);
+ trace_kvm_mmu_get_page(sp, true);
return sp;
}
-static void kvm_mmu_page_unlink_children(struct kvm *kvm,
- struct kvm_mmu_page *sp)
+static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
+ struct kvm_vcpu *vcpu, u64 addr)
{
- unsigned i;
- u64 *pt;
- u64 ent;
+ iterator->addr = addr;
+ iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
+ iterator->level = vcpu->arch.mmu.shadow_root_level;
+
+ if (iterator->level == PT64_ROOT_LEVEL &&
+ vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
+ !vcpu->arch.mmu.direct_map)
+ --iterator->level;
+
+ if (iterator->level == PT32E_ROOT_LEVEL) {
+ iterator->shadow_addr
+ = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
+ iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
+ --iterator->level;
+ if (!iterator->shadow_addr)
+ iterator->level = 0;
+ }
+}
- pt = sp->spt;
+static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
+{
+ if (iterator->level < PT_PAGE_TABLE_LEVEL)
+ return false;
- if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
- for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
- if (is_shadow_present_pte(pt[i]))
- rmap_remove(kvm, &pt[i]);
- pt[i] = shadow_trap_nonpresent_pte;
- }
- kvm_flush_remote_tlbs(kvm);
+ iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
+ iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
+ return true;
+}
+
+static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
+ u64 spte)
+{
+ if (is_last_spte(spte, iterator->level)) {
+ iterator->level = 0;
return;
}
- for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
- ent = pt[i];
+ iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
+ --iterator->level;
+}
- pt[i] = shadow_trap_nonpresent_pte;
- if (!is_shadow_present_pte(ent))
- continue;
- ent &= PT64_BASE_ADDR_MASK;
- mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
+static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
+{
+ return __shadow_walk_next(iterator, *iterator->sptep);
+}
+
+static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
+{
+ u64 spte;
+
+ BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
+ VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
+
+ spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
+ shadow_user_mask | shadow_x_mask;
+
+ if (accessed)
+ spte |= shadow_accessed_mask;
+
+ mmu_spte_set(sptep, spte);
+}
+
+static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
+ unsigned direct_access)
+{
+ if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
+ struct kvm_mmu_page *child;
+
+ /*
+ * For the direct sp, if the guest pte's dirty bit
+ * changed form clean to dirty, it will corrupt the
+ * sp's access: allow writable in the read-only sp,
+ * so we should update the spte at this point to get
+ * a new sp with the correct access.
+ */
+ child = page_header(*sptep & PT64_BASE_ADDR_MASK);
+ if (child->role.access == direct_access)
+ return;
+
+ drop_parent_pte(child, sptep);
+ kvm_flush_remote_tlbs(vcpu->kvm);
}
- kvm_flush_remote_tlbs(kvm);
+}
+
+static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
+ u64 *spte)
+{
+ u64 pte;
+ struct kvm_mmu_page *child;
+
+ pte = *spte;
+ if (is_shadow_present_pte(pte)) {
+ if (is_last_spte(pte, sp->role.level)) {
+ drop_spte(kvm, spte);
+ if (is_large_pte(pte))
+ --kvm->stat.lpages;
+ } else {
+ child = page_header(pte & PT64_BASE_ADDR_MASK);
+ drop_parent_pte(child, spte);
+ }
+ return true;
+ }
+
+ if (is_mmio_spte(pte))
+ mmu_spte_clear_no_track(spte);
+
+ return false;
+}
+
+static void kvm_mmu_page_unlink_children(struct kvm *kvm,
+ struct kvm_mmu_page *sp)
+{
+ unsigned i;
+
+ for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
+ mmu_page_zap_pte(kvm, sp, sp->spt + i);
}
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
@@ -759,325 +2115,873 @@ static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
mmu_page_remove_parent_pte(sp, parent_pte);
}
-static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
+static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
{
- int i;
+ u64 *sptep;
+ struct rmap_iterator iter;
- for (i = 0; i < KVM_MAX_VCPUS; ++i)
- if (kvm->vcpus[i])
- kvm->vcpus[i]->arch.last_pte_updated = NULL;
+ while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
+ drop_parent_pte(sp, sptep);
}
-static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
+static int mmu_zap_unsync_children(struct kvm *kvm,
+ struct kvm_mmu_page *parent,
+ struct list_head *invalid_list)
{
- u64 *parent_pte;
+ int i, zapped = 0;
+ struct mmu_page_path parents;
+ struct kvm_mmu_pages pages;
- ++kvm->stat.mmu_shadow_zapped;
- while (sp->multimapped || sp->parent_pte) {
- if (!sp->multimapped)
- parent_pte = sp->parent_pte;
- else {
- struct kvm_pte_chain *chain;
-
- chain = container_of(sp->parent_ptes.first,
- struct kvm_pte_chain, link);
- parent_pte = chain->parent_ptes[0];
+ if (parent->role.level == PT_PAGE_TABLE_LEVEL)
+ return 0;
+
+ kvm_mmu_pages_init(parent, &parents, &pages);
+ while (mmu_unsync_walk(parent, &pages)) {
+ struct kvm_mmu_page *sp;
+
+ for_each_sp(pages, sp, parents, i) {
+ kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
+ mmu_pages_clear_parents(&parents);
+ zapped++;
}
- BUG_ON(!parent_pte);
- kvm_mmu_put_page(sp, parent_pte);
- set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
+ kvm_mmu_pages_init(parent, &parents, &pages);
}
+
+ return zapped;
+}
+
+static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
+ struct list_head *invalid_list)
+{
+ int ret;
+
+ trace_kvm_mmu_prepare_zap_page(sp);
+ ++kvm->stat.mmu_shadow_zapped;
+ ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
kvm_mmu_page_unlink_children(kvm, sp);
+ kvm_mmu_unlink_parents(kvm, sp);
+
+ if (!sp->role.invalid && !sp->role.direct)
+ unaccount_shadowed(kvm, sp->gfn);
+
+ if (sp->unsync)
+ kvm_unlink_unsync_page(kvm, sp);
if (!sp->root_count) {
- hlist_del(&sp->hash_link);
- kvm_mmu_free_page(kvm, sp);
- } else
+ /* Count self */
+ ret++;
+ list_move(&sp->link, invalid_list);
+ kvm_mod_used_mmu_pages(kvm, -1);
+ } else {
list_move(&sp->link, &kvm->arch.active_mmu_pages);
- kvm_mmu_reset_last_pte_updated(kvm);
+
+ /*
+ * The obsolete pages can not be used on any vcpus.
+ * See the comments in kvm_mmu_invalidate_zap_all_pages().
+ */
+ if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
+ kvm_reload_remote_mmus(kvm);
+ }
+
+ sp->role.invalid = 1;
+ return ret;
+}
+
+static void kvm_mmu_commit_zap_page(struct kvm *kvm,
+ struct list_head *invalid_list)
+{
+ struct kvm_mmu_page *sp, *nsp;
+
+ if (list_empty(invalid_list))
+ return;
+
+ /*
+ * wmb: make sure everyone sees our modifications to the page tables
+ * rmb: make sure we see changes to vcpu->mode
+ */
+ smp_mb();
+
+ /*
+ * Wait for all vcpus to exit guest mode and/or lockless shadow
+ * page table walks.
+ */
+ kvm_flush_remote_tlbs(kvm);
+
+ list_for_each_entry_safe(sp, nsp, invalid_list, link) {
+ WARN_ON(!sp->role.invalid || sp->root_count);
+ kvm_mmu_free_page(sp);
+ }
+}
+
+static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
+ struct list_head *invalid_list)
+{
+ struct kvm_mmu_page *sp;
+
+ if (list_empty(&kvm->arch.active_mmu_pages))
+ return false;
+
+ sp = list_entry(kvm->arch.active_mmu_pages.prev,
+ struct kvm_mmu_page, link);
+ kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
+
+ return true;
}
/*
* Changing the number of mmu pages allocated to the vm
- * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
+ * Note: if goal_nr_mmu_pages is too small, you will get dead lock
*/
-void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
+void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
{
- /*
- * If we set the number of mmu pages to be smaller be than the
- * number of actived pages , we must to free some mmu pages before we
- * change the value
- */
+ LIST_HEAD(invalid_list);
- if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
- kvm_nr_mmu_pages) {
- int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
- - kvm->arch.n_free_mmu_pages;
+ spin_lock(&kvm->mmu_lock);
- while (n_used_mmu_pages > kvm_nr_mmu_pages) {
- struct kvm_mmu_page *page;
+ if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
+ /* Need to free some mmu pages to achieve the goal. */
+ while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
+ if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
+ break;
- page = container_of(kvm->arch.active_mmu_pages.prev,
- struct kvm_mmu_page, link);
- kvm_mmu_zap_page(kvm, page);
- n_used_mmu_pages--;
- }
- kvm->arch.n_free_mmu_pages = 0;
+ kvm_mmu_commit_zap_page(kvm, &invalid_list);
+ goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
}
- else
- kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
- - kvm->arch.n_alloc_mmu_pages;
- kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
+ kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
+
+ spin_unlock(&kvm->mmu_lock);
}
-static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
+int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
{
- unsigned index;
- struct hlist_head *bucket;
struct kvm_mmu_page *sp;
- struct hlist_node *node, *n;
+ LIST_HEAD(invalid_list);
int r;
- pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
+ pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
r = 0;
- index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
- bucket = &kvm->arch.mmu_page_hash[index];
- hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
- if (sp->gfn == gfn && !sp->role.metaphysical) {
- pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
- sp->role.word);
- kvm_mmu_zap_page(kvm, sp);
- r = 1;
- }
+ spin_lock(&kvm->mmu_lock);
+ for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
+ pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
+ sp->role.word);
+ r = 1;
+ kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
+ }
+ kvm_mmu_commit_zap_page(kvm, &invalid_list);
+ spin_unlock(&kvm->mmu_lock);
+
return r;
}
+EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
-static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
+/*
+ * The function is based on mtrr_type_lookup() in
+ * arch/x86/kernel/cpu/mtrr/generic.c
+ */
+static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
+ u64 start, u64 end)
{
- struct kvm_mmu_page *sp;
+ int i;
+ u64 base, mask;
+ u8 prev_match, curr_match;
+ int num_var_ranges = KVM_NR_VAR_MTRR;
+
+ if (!mtrr_state->enabled)
+ return 0xFF;
+
+ /* Make end inclusive end, instead of exclusive */
+ end--;
+
+ /* Look in fixed ranges. Just return the type as per start */
+ if (mtrr_state->have_fixed && (start < 0x100000)) {
+ int idx;
+
+ if (start < 0x80000) {
+ idx = 0;
+ idx += (start >> 16);
+ return mtrr_state->fixed_ranges[idx];
+ } else if (start < 0xC0000) {
+ idx = 1 * 8;
+ idx += ((start - 0x80000) >> 14);
+ return mtrr_state->fixed_ranges[idx];
+ } else if (start < 0x1000000) {
+ idx = 3 * 8;
+ idx += ((start - 0xC0000) >> 12);
+ return mtrr_state->fixed_ranges[idx];
+ }
+ }
+
+ /*
+ * Look in variable ranges
+ * Look of multiple ranges matching this address and pick type
+ * as per MTRR precedence
+ */
+ if (!(mtrr_state->enabled & 2))
+ return mtrr_state->def_type;
+
+ prev_match = 0xFF;
+ for (i = 0; i < num_var_ranges; ++i) {
+ unsigned short start_state, end_state;
+
+ if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
+ continue;
+
+ base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
+ (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
+ mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
+ (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
+
+ start_state = ((start & mask) == (base & mask));
+ end_state = ((end & mask) == (base & mask));
+ if (start_state != end_state)
+ return 0xFE;
+
+ if ((start & mask) != (base & mask))
+ continue;
+
+ curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
+ if (prev_match == 0xFF) {
+ prev_match = curr_match;
+ continue;
+ }
+
+ if (prev_match == MTRR_TYPE_UNCACHABLE ||
+ curr_match == MTRR_TYPE_UNCACHABLE)
+ return MTRR_TYPE_UNCACHABLE;
- while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
- pgprintk("%s: zap %lx %x\n", __FUNCTION__, gfn, sp->role.word);
- kvm_mmu_zap_page(kvm, sp);
+ if ((prev_match == MTRR_TYPE_WRBACK &&
+ curr_match == MTRR_TYPE_WRTHROUGH) ||
+ (prev_match == MTRR_TYPE_WRTHROUGH &&
+ curr_match == MTRR_TYPE_WRBACK)) {
+ prev_match = MTRR_TYPE_WRTHROUGH;
+ curr_match = MTRR_TYPE_WRTHROUGH;
+ }
+
+ if (prev_match != curr_match)
+ return MTRR_TYPE_UNCACHABLE;
}
+
+ if (prev_match != 0xFF)
+ return prev_match;
+
+ return mtrr_state->def_type;
}
-static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
+u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
{
- int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
- struct kvm_mmu_page *sp = page_header(__pa(pte));
+ u8 mtrr;
- __set_bit(slot, &sp->slot_bitmap);
+ mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
+ (gfn << PAGE_SHIFT) + PAGE_SIZE);
+ if (mtrr == 0xfe || mtrr == 0xff)
+ mtrr = MTRR_TYPE_WRBACK;
+ return mtrr;
}
+EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
-struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
+static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
- struct page *page;
+ trace_kvm_mmu_unsync_page(sp);
+ ++vcpu->kvm->stat.mmu_unsync;
+ sp->unsync = 1;
+
+ kvm_mmu_mark_parents_unsync(sp);
+}
- gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
+static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+ struct kvm_mmu_page *s;
- if (gpa == UNMAPPED_GVA)
- return NULL;
+ for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
+ if (s->unsync)
+ continue;
+ WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
+ __kvm_unsync_page(vcpu, s);
+ }
+}
- down_read(&current->mm->mmap_sem);
- page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
- up_read(&current->mm->mmap_sem);
+static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
+ bool can_unsync)
+{
+ struct kvm_mmu_page *s;
+ bool need_unsync = false;
+
+ for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
+ if (!can_unsync)
+ return 1;
+
+ if (s->role.level != PT_PAGE_TABLE_LEVEL)
+ return 1;
- return page;
+ if (!s->unsync)
+ need_unsync = true;
+ }
+ if (need_unsync)
+ kvm_unsync_pages(vcpu, gfn);
+ return 0;
}
-static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
- unsigned pt_access, unsigned pte_access,
- int user_fault, int write_fault, int dirty,
- int *ptwrite, gfn_t gfn, struct page *page)
+static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
+ unsigned pte_access, int level,
+ gfn_t gfn, pfn_t pfn, bool speculative,
+ bool can_unsync, bool host_writable)
{
u64 spte;
- int was_rmapped = 0;
- int was_writeble = is_writeble_pte(*shadow_pte);
- hfn_t host_pfn = (*shadow_pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
-
- pgprintk("%s: spte %llx access %x write_fault %d"
- " user_fault %d gfn %lx\n",
- __FUNCTION__, *shadow_pte, pt_access,
- write_fault, user_fault, gfn);
-
- if (is_rmap_pte(*shadow_pte)) {
- if (host_pfn != page_to_pfn(page)) {
- pgprintk("hfn old %lx new %lx\n",
- host_pfn, page_to_pfn(page));
- rmap_remove(vcpu->kvm, shadow_pte);
+ int ret = 0;
+
+ if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
+ return 0;
+
+ spte = PT_PRESENT_MASK;
+ if (!speculative)
+ spte |= shadow_accessed_mask;
+
+ if (pte_access & ACC_EXEC_MASK)
+ spte |= shadow_x_mask;
+ else
+ spte |= shadow_nx_mask;
+
+ if (pte_access & ACC_USER_MASK)
+ spte |= shadow_user_mask;
+
+ if (level > PT_PAGE_TABLE_LEVEL)
+ spte |= PT_PAGE_SIZE_MASK;
+ if (tdp_enabled)
+ spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
+ kvm_is_mmio_pfn(pfn));
+
+ if (host_writable)
+ spte |= SPTE_HOST_WRITEABLE;
+ else
+ pte_access &= ~ACC_WRITE_MASK;
+
+ spte |= (u64)pfn << PAGE_SHIFT;
+
+ if (pte_access & ACC_WRITE_MASK) {
+
+ /*
+ * Other vcpu creates new sp in the window between
+ * mapping_level() and acquiring mmu-lock. We can
+ * allow guest to retry the access, the mapping can
+ * be fixed if guest refault.
+ */
+ if (level > PT_PAGE_TABLE_LEVEL &&
+ has_wrprotected_page(vcpu->kvm, gfn, level))
+ goto done;
+
+ spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
+
+ /*
+ * Optimization: for pte sync, if spte was writable the hash
+ * lookup is unnecessary (and expensive). Write protection
+ * is responsibility of mmu_get_page / kvm_sync_page.
+ * Same reasoning can be applied to dirty page accounting.
+ */
+ if (!can_unsync && is_writable_pte(*sptep))
+ goto set_pte;
+
+ if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
+ pgprintk("%s: found shadow page for %llx, marking ro\n",
+ __func__, gfn);
+ ret = 1;
+ pte_access &= ~ACC_WRITE_MASK;
+ spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
}
- else
+ }
+
+ if (pte_access & ACC_WRITE_MASK)
+ mark_page_dirty(vcpu->kvm, gfn);
+
+set_pte:
+ if (mmu_spte_update(sptep, spte))
+ kvm_flush_remote_tlbs(vcpu->kvm);
+done:
+ return ret;
+}
+
+static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
+ unsigned pte_access, int write_fault, int *emulate,
+ int level, gfn_t gfn, pfn_t pfn, bool speculative,
+ bool host_writable)
+{
+ int was_rmapped = 0;
+ int rmap_count;
+
+ pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
+ *sptep, write_fault, gfn);
+
+ if (is_rmap_spte(*sptep)) {
+ /*
+ * If we overwrite a PTE page pointer with a 2MB PMD, unlink
+ * the parent of the now unreachable PTE.
+ */
+ if (level > PT_PAGE_TABLE_LEVEL &&
+ !is_large_pte(*sptep)) {
+ struct kvm_mmu_page *child;
+ u64 pte = *sptep;
+
+ child = page_header(pte & PT64_BASE_ADDR_MASK);
+ drop_parent_pte(child, sptep);
+ kvm_flush_remote_tlbs(vcpu->kvm);
+ } else if (pfn != spte_to_pfn(*sptep)) {
+ pgprintk("hfn old %llx new %llx\n",
+ spte_to_pfn(*sptep), pfn);
+ drop_spte(vcpu->kvm, sptep);
+ kvm_flush_remote_tlbs(vcpu->kvm);
+ } else
was_rmapped = 1;
}
+ if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
+ true, host_writable)) {
+ if (write_fault)
+ *emulate = 1;
+ kvm_mmu_flush_tlb(vcpu);
+ }
+
+ if (unlikely(is_mmio_spte(*sptep) && emulate))
+ *emulate = 1;
+
+ pgprintk("%s: setting spte %llx\n", __func__, *sptep);
+ pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
+ is_large_pte(*sptep)? "2MB" : "4kB",
+ *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
+ *sptep, sptep);
+ if (!was_rmapped && is_large_pte(*sptep))
+ ++vcpu->kvm->stat.lpages;
+
+ if (is_shadow_present_pte(*sptep)) {
+ if (!was_rmapped) {
+ rmap_count = rmap_add(vcpu, sptep, gfn);
+ if (rmap_count > RMAP_RECYCLE_THRESHOLD)
+ rmap_recycle(vcpu, sptep, gfn);
+ }
+ }
+
+ kvm_release_pfn_clean(pfn);
+}
+
+static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
+ bool no_dirty_log)
+{
+ struct kvm_memory_slot *slot;
+
+ slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
+ if (!slot)
+ return KVM_PFN_ERR_FAULT;
+
+ return gfn_to_pfn_memslot_atomic(slot, gfn);
+}
+
+static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp,
+ u64 *start, u64 *end)
+{
+ struct page *pages[PTE_PREFETCH_NUM];
+ unsigned access = sp->role.access;
+ int i, ret;
+ gfn_t gfn;
+
+ gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
+ if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
+ return -1;
+
+ ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
+ if (ret <= 0)
+ return -1;
+
+ for (i = 0; i < ret; i++, gfn++, start++)
+ mmu_set_spte(vcpu, start, access, 0, NULL,
+ sp->role.level, gfn, page_to_pfn(pages[i]),
+ true, true);
+
+ return 0;
+}
+
+static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp, u64 *sptep)
+{
+ u64 *spte, *start = NULL;
+ int i;
+
+ WARN_ON(!sp->role.direct);
+
+ i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
+ spte = sp->spt + i;
+
+ for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
+ if (is_shadow_present_pte(*spte) || spte == sptep) {
+ if (!start)
+ continue;
+ if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
+ break;
+ start = NULL;
+ } else if (!start)
+ start = spte;
+ }
+}
+
+static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
+{
+ struct kvm_mmu_page *sp;
+
/*
- * We don't set the accessed bit, since we sometimes want to see
- * whether the guest actually used the pte (in order to detect
- * demand paging).
+ * Since it's no accessed bit on EPT, it's no way to
+ * distinguish between actually accessed translations
+ * and prefetched, so disable pte prefetch if EPT is
+ * enabled.
*/
- spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
- if (!dirty)
- pte_access &= ~ACC_WRITE_MASK;
- if (!(pte_access & ACC_EXEC_MASK))
- spte |= PT64_NX_MASK;
-
- spte |= PT_PRESENT_MASK;
- if (pte_access & ACC_USER_MASK)
- spte |= PT_USER_MASK;
+ if (!shadow_accessed_mask)
+ return;
- if (is_error_page(page)) {
- set_shadow_pte(shadow_pte,
- shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
- kvm_release_page_clean(page);
+ sp = page_header(__pa(sptep));
+ if (sp->role.level > PT_PAGE_TABLE_LEVEL)
return;
- }
- spte |= page_to_phys(page);
+ __direct_pte_prefetch(vcpu, sp, sptep);
+}
+
+static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
+ int map_writable, int level, gfn_t gfn, pfn_t pfn,
+ bool prefault)
+{
+ struct kvm_shadow_walk_iterator iterator;
+ struct kvm_mmu_page *sp;
+ int emulate = 0;
+ gfn_t pseudo_gfn;
- if ((pte_access & ACC_WRITE_MASK)
- || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
- struct kvm_mmu_page *shadow;
+ if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+ return 0;
- spte |= PT_WRITABLE_MASK;
- if (user_fault) {
- mmu_unshadow(vcpu->kvm, gfn);
- goto unshadowed;
+ for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
+ if (iterator.level == level) {
+ mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
+ write, &emulate, level, gfn, pfn,
+ prefault, map_writable);
+ direct_pte_prefetch(vcpu, iterator.sptep);
+ ++vcpu->stat.pf_fixed;
+ break;
}
- shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
- if (shadow) {
- pgprintk("%s: found shadow page for %lx, marking ro\n",
- __FUNCTION__, gfn);
- pte_access &= ~ACC_WRITE_MASK;
- if (is_writeble_pte(spte)) {
- spte &= ~PT_WRITABLE_MASK;
- kvm_x86_ops->tlb_flush(vcpu);
- }
- if (write_fault)
- *ptwrite = 1;
+ drop_large_spte(vcpu, iterator.sptep);
+ if (!is_shadow_present_pte(*iterator.sptep)) {
+ u64 base_addr = iterator.addr;
+
+ base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
+ pseudo_gfn = base_addr >> PAGE_SHIFT;
+ sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
+ iterator.level - 1,
+ 1, ACC_ALL, iterator.sptep);
+
+ link_shadow_page(iterator.sptep, sp, true);
}
}
+ return emulate;
+}
-unshadowed:
+static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
+{
+ siginfo_t info;
- if (pte_access & ACC_WRITE_MASK)
- mark_page_dirty(vcpu->kvm, gfn);
+ info.si_signo = SIGBUS;
+ info.si_errno = 0;
+ info.si_code = BUS_MCEERR_AR;
+ info.si_addr = (void __user *)address;
+ info.si_addr_lsb = PAGE_SHIFT;
- pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
- set_shadow_pte(shadow_pte, spte);
- page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
- if (!was_rmapped) {
- rmap_add(vcpu, shadow_pte, gfn);
- if (!is_rmap_pte(*shadow_pte))
- kvm_release_page_clean(page);
- } else {
- if (was_writeble)
- kvm_release_page_dirty(page);
- else
- kvm_release_page_clean(page);
+ send_sig_info(SIGBUS, &info, tsk);
+}
+
+static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
+{
+ /*
+ * Do not cache the mmio info caused by writing the readonly gfn
+ * into the spte otherwise read access on readonly gfn also can
+ * caused mmio page fault and treat it as mmio access.
+ * Return 1 to tell kvm to emulate it.
+ */
+ if (pfn == KVM_PFN_ERR_RO_FAULT)
+ return 1;
+
+ if (pfn == KVM_PFN_ERR_HWPOISON) {
+ kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
+ return 0;
}
- if (!ptwrite || !*ptwrite)
- vcpu->arch.last_pte_updated = shadow_pte;
+
+ return -EFAULT;
}
-static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
+static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
+ gfn_t *gfnp, pfn_t *pfnp, int *levelp)
{
+ pfn_t pfn = *pfnp;
+ gfn_t gfn = *gfnp;
+ int level = *levelp;
+
+ /*
+ * Check if it's a transparent hugepage. If this would be an
+ * hugetlbfs page, level wouldn't be set to
+ * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
+ * here.
+ */
+ if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
+ level == PT_PAGE_TABLE_LEVEL &&
+ PageTransCompound(pfn_to_page(pfn)) &&
+ !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
+ unsigned long mask;
+ /*
+ * mmu_notifier_retry was successful and we hold the
+ * mmu_lock here, so the pmd can't become splitting
+ * from under us, and in turn
+ * __split_huge_page_refcount() can't run from under
+ * us and we can safely transfer the refcount from
+ * PG_tail to PG_head as we switch the pfn to tail to
+ * head.
+ */
+ *levelp = level = PT_DIRECTORY_LEVEL;
+ mask = KVM_PAGES_PER_HPAGE(level) - 1;
+ VM_BUG_ON((gfn & mask) != (pfn & mask));
+ if (pfn & mask) {
+ gfn &= ~mask;
+ *gfnp = gfn;
+ kvm_release_pfn_clean(pfn);
+ pfn &= ~mask;
+ kvm_get_pfn(pfn);
+ *pfnp = pfn;
+ }
+ }
}
-static int __nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write,
- gfn_t gfn, struct page *page)
+static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
+ pfn_t pfn, unsigned access, int *ret_val)
{
- int level = PT32E_ROOT_LEVEL;
- hpa_t table_addr = vcpu->arch.mmu.root_hpa;
- int pt_write = 0;
+ bool ret = true;
- for (; ; level--) {
- u32 index = PT64_INDEX(v, level);
- u64 *table;
+ /* The pfn is invalid, report the error! */
+ if (unlikely(is_error_pfn(pfn))) {
+ *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
+ goto exit;
+ }
- ASSERT(VALID_PAGE(table_addr));
- table = __va(table_addr);
+ if (unlikely(is_noslot_pfn(pfn)))
+ vcpu_cache_mmio_info(vcpu, gva, gfn, access);
- if (level == 1) {
- mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
- 0, write, 1, &pt_write, gfn, page);
- return pt_write || is_io_pte(table[index]);
- }
+ ret = false;
+exit:
+ return ret;
+}
- if (table[index] == shadow_trap_nonpresent_pte) {
- struct kvm_mmu_page *new_table;
- gfn_t pseudo_gfn;
-
- pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
- >> PAGE_SHIFT;
- new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
- v, level - 1,
- 1, ACC_ALL, &table[index]);
- if (!new_table) {
- pgprintk("nonpaging_map: ENOMEM\n");
- kvm_release_page_clean(page);
- return -ENOMEM;
- }
+static bool page_fault_can_be_fast(u32 error_code)
+{
+ /*
+ * Do not fix the mmio spte with invalid generation number which
+ * need to be updated by slow page fault path.
+ */
+ if (unlikely(error_code & PFERR_RSVD_MASK))
+ return false;
- table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
- | PT_WRITABLE_MASK | PT_USER_MASK;
- }
- table_addr = table[index] & PT64_BASE_ADDR_MASK;
+ /*
+ * #PF can be fast only if the shadow page table is present and it
+ * is caused by write-protect, that means we just need change the
+ * W bit of the spte which can be done out of mmu-lock.
+ */
+ if (!(error_code & PFERR_PRESENT_MASK) ||
+ !(error_code & PFERR_WRITE_MASK))
+ return false;
+
+ return true;
+}
+
+static bool
+fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
+ u64 *sptep, u64 spte)
+{
+ gfn_t gfn;
+
+ WARN_ON(!sp->role.direct);
+
+ /*
+ * The gfn of direct spte is stable since it is calculated
+ * by sp->gfn.
+ */
+ gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
+
+ if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
+ mark_page_dirty(vcpu->kvm, gfn);
+
+ return true;
+}
+
+/*
+ * Return value:
+ * - true: let the vcpu to access on the same address again.
+ * - false: let the real page fault path to fix it.
+ */
+static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
+ u32 error_code)
+{
+ struct kvm_shadow_walk_iterator iterator;
+ struct kvm_mmu_page *sp;
+ bool ret = false;
+ u64 spte = 0ull;
+
+ if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+ return false;
+
+ if (!page_fault_can_be_fast(error_code))
+ return false;
+
+ walk_shadow_page_lockless_begin(vcpu);
+ for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
+ if (!is_shadow_present_pte(spte) || iterator.level < level)
+ break;
+
+ /*
+ * If the mapping has been changed, let the vcpu fault on the
+ * same address again.
+ */
+ if (!is_rmap_spte(spte)) {
+ ret = true;
+ goto exit;
+ }
+
+ sp = page_header(__pa(iterator.sptep));
+ if (!is_last_spte(spte, sp->role.level))
+ goto exit;
+
+ /*
+ * Check if it is a spurious fault caused by TLB lazily flushed.
+ *
+ * Need not check the access of upper level table entries since
+ * they are always ACC_ALL.
+ */
+ if (is_writable_pte(spte)) {
+ ret = true;
+ goto exit;
}
+
+ /*
+ * Currently, to simplify the code, only the spte write-protected
+ * by dirty-log can be fast fixed.
+ */
+ if (!spte_is_locklessly_modifiable(spte))
+ goto exit;
+
+ /*
+ * Do not fix write-permission on the large spte since we only dirty
+ * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
+ * that means other pages are missed if its slot is dirty-logged.
+ *
+ * Instead, we let the slow page fault path create a normal spte to
+ * fix the access.
+ *
+ * See the comments in kvm_arch_commit_memory_region().
+ */
+ if (sp->role.level > PT_PAGE_TABLE_LEVEL)
+ goto exit;
+
+ /*
+ * Currently, fast page fault only works for direct mapping since
+ * the gfn is not stable for indirect shadow page.
+ * See Documentation/virtual/kvm/locking.txt to get more detail.
+ */
+ ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
+exit:
+ trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
+ spte, ret);
+ walk_shadow_page_lockless_end(vcpu);
+
+ return ret;
}
-static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
+static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
+ gva_t gva, pfn_t *pfn, bool write, bool *writable);
+static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
+
+static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
+ gfn_t gfn, bool prefault)
{
int r;
+ int level;
+ int force_pt_level;
+ pfn_t pfn;
+ unsigned long mmu_seq;
+ bool map_writable, write = error_code & PFERR_WRITE_MASK;
+
+ force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
+ if (likely(!force_pt_level)) {
+ level = mapping_level(vcpu, gfn);
+ /*
+ * This path builds a PAE pagetable - so we can map
+ * 2mb pages at maximum. Therefore check if the level
+ * is larger than that.
+ */
+ if (level > PT_DIRECTORY_LEVEL)
+ level = PT_DIRECTORY_LEVEL;
+
+ gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
+ } else
+ level = PT_PAGE_TABLE_LEVEL;
- struct page *page;
+ if (fast_page_fault(vcpu, v, level, error_code))
+ return 0;
- down_read(&vcpu->kvm->slots_lock);
+ mmu_seq = vcpu->kvm->mmu_notifier_seq;
+ smp_rmb();
- down_read(&current->mm->mmap_sem);
- page = gfn_to_page(vcpu->kvm, gfn);
- up_read(&current->mm->mmap_sem);
+ if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
+ return 0;
+
+ if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
+ return r;
spin_lock(&vcpu->kvm->mmu_lock);
- kvm_mmu_free_some_pages(vcpu);
- r = __nonpaging_map(vcpu, v, write, gfn, page);
+ if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
+ goto out_unlock;
+ make_mmu_pages_available(vcpu);
+ if (likely(!force_pt_level))
+ transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
+ r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
+ prefault);
spin_unlock(&vcpu->kvm->mmu_lock);
- up_read(&vcpu->kvm->slots_lock);
return r;
-}
-
-
-static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp)
-{
- int i;
- for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
- sp->spt[i] = shadow_trap_nonpresent_pte;
+out_unlock:
+ spin_unlock(&vcpu->kvm->mmu_lock);
+ kvm_release_pfn_clean(pfn);
+ return 0;
}
+
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
int i;
struct kvm_mmu_page *sp;
+ LIST_HEAD(invalid_list);
if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
return;
- spin_lock(&vcpu->kvm->mmu_lock);
-#ifdef CONFIG_X86_64
- if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
+
+ if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
+ (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
+ vcpu->arch.mmu.direct_map)) {
hpa_t root = vcpu->arch.mmu.root_hpa;
+ spin_lock(&vcpu->kvm->mmu_lock);
sp = page_header(root);
--sp->root_count;
- vcpu->arch.mmu.root_hpa = INVALID_PAGE;
+ if (!sp->root_count && sp->role.invalid) {
+ kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
+ kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
+ }
spin_unlock(&vcpu->kvm->mmu_lock);
+ vcpu->arch.mmu.root_hpa = INVALID_PAGE;
return;
}
-#endif
+
+ spin_lock(&vcpu->kvm->mmu_lock);
for (i = 0; i < 4; ++i) {
hpa_t root = vcpu->arch.mmu.pae_root[i];
@@ -1085,68 +2989,330 @@ static void mmu_free_roots(struct kvm_vcpu *vcpu)
root &= PT64_BASE_ADDR_MASK;
sp = page_header(root);
--sp->root_count;
+ if (!sp->root_count && sp->role.invalid)
+ kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
+ &invalid_list);
}
vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
}
+ kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
spin_unlock(&vcpu->kvm->mmu_lock);
vcpu->arch.mmu.root_hpa = INVALID_PAGE;
}
-static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
+static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
- int i;
- gfn_t root_gfn;
- struct kvm_mmu_page *sp;
+ int ret = 0;
- root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
+ if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
+ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+ ret = 1;
+ }
+
+ return ret;
+}
+
+static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu_page *sp;
+ unsigned i;
-#ifdef CONFIG_X86_64
if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
+ spin_lock(&vcpu->kvm->mmu_lock);
+ make_mmu_pages_available(vcpu);
+ sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
+ 1, ACC_ALL, NULL);
+ ++sp->root_count;
+ spin_unlock(&vcpu->kvm->mmu_lock);
+ vcpu->arch.mmu.root_hpa = __pa(sp->spt);
+ } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
+ for (i = 0; i < 4; ++i) {
+ hpa_t root = vcpu->arch.mmu.pae_root[i];
+
+ ASSERT(!VALID_PAGE(root));
+ spin_lock(&vcpu->kvm->mmu_lock);
+ make_mmu_pages_available(vcpu);
+ sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
+ i << 30,
+ PT32_ROOT_LEVEL, 1, ACC_ALL,
+ NULL);
+ root = __pa(sp->spt);
+ ++sp->root_count;
+ spin_unlock(&vcpu->kvm->mmu_lock);
+ vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
+ }
+ vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
+ } else
+ BUG();
+
+ return 0;
+}
+
+static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu_page *sp;
+ u64 pdptr, pm_mask;
+ gfn_t root_gfn;
+ int i;
+
+ root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
+
+ if (mmu_check_root(vcpu, root_gfn))
+ return 1;
+
+ /*
+ * Do we shadow a long mode page table? If so we need to
+ * write-protect the guests page table root.
+ */
+ if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
hpa_t root = vcpu->arch.mmu.root_hpa;
ASSERT(!VALID_PAGE(root));
- sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
- PT64_ROOT_LEVEL, 0, ACC_ALL, NULL);
+
+ spin_lock(&vcpu->kvm->mmu_lock);
+ make_mmu_pages_available(vcpu);
+ sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
+ 0, ACC_ALL, NULL);
root = __pa(sp->spt);
++sp->root_count;
+ spin_unlock(&vcpu->kvm->mmu_lock);
vcpu->arch.mmu.root_hpa = root;
- return;
+ return 0;
}
-#endif
+
+ /*
+ * We shadow a 32 bit page table. This may be a legacy 2-level
+ * or a PAE 3-level page table. In either case we need to be aware that
+ * the shadow page table may be a PAE or a long mode page table.
+ */
+ pm_mask = PT_PRESENT_MASK;
+ if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
+ pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
+
for (i = 0; i < 4; ++i) {
hpa_t root = vcpu->arch.mmu.pae_root[i];
ASSERT(!VALID_PAGE(root));
if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
- if (!is_present_pte(vcpu->arch.pdptrs[i])) {
+ pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
+ if (!is_present_gpte(pdptr)) {
vcpu->arch.mmu.pae_root[i] = 0;
continue;
}
- root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
- } else if (vcpu->arch.mmu.root_level == 0)
- root_gfn = 0;
+ root_gfn = pdptr >> PAGE_SHIFT;
+ if (mmu_check_root(vcpu, root_gfn))
+ return 1;
+ }
+ spin_lock(&vcpu->kvm->mmu_lock);
+ make_mmu_pages_available(vcpu);
sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
- PT32_ROOT_LEVEL, !is_paging(vcpu),
+ PT32_ROOT_LEVEL, 0,
ACC_ALL, NULL);
root = __pa(sp->spt);
++sp->root_count;
- vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
+ spin_unlock(&vcpu->kvm->mmu_lock);
+
+ vcpu->arch.mmu.pae_root[i] = root | pm_mask;
}
vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
+
+ /*
+ * If we shadow a 32 bit page table with a long mode page
+ * table we enter this path.
+ */
+ if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
+ if (vcpu->arch.mmu.lm_root == NULL) {
+ /*
+ * The additional page necessary for this is only
+ * allocated on demand.
+ */
+
+ u64 *lm_root;
+
+ lm_root = (void*)get_zeroed_page(GFP_KERNEL);
+ if (lm_root == NULL)
+ return 1;
+
+ lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
+
+ vcpu->arch.mmu.lm_root = lm_root;
+ }
+
+ vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
+ }
+
+ return 0;
+}
+
+static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
+{
+ if (vcpu->arch.mmu.direct_map)
+ return mmu_alloc_direct_roots(vcpu);
+ else
+ return mmu_alloc_shadow_roots(vcpu);
+}
+
+static void mmu_sync_roots(struct kvm_vcpu *vcpu)
+{
+ int i;
+ struct kvm_mmu_page *sp;
+
+ if (vcpu->arch.mmu.direct_map)
+ return;
+
+ if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+ return;
+
+ vcpu_clear_mmio_info(vcpu, ~0ul);
+ kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
+ if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
+ hpa_t root = vcpu->arch.mmu.root_hpa;
+ sp = page_header(root);
+ mmu_sync_children(vcpu, sp);
+ kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
+ return;
+ }
+ for (i = 0; i < 4; ++i) {
+ hpa_t root = vcpu->arch.mmu.pae_root[i];
+
+ if (root && VALID_PAGE(root)) {
+ root &= PT64_BASE_ADDR_MASK;
+ sp = page_header(root);
+ mmu_sync_children(vcpu, sp);
+ }
+ }
+ kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
}
-static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
+void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
+ spin_lock(&vcpu->kvm->mmu_lock);
+ mmu_sync_roots(vcpu);
+ spin_unlock(&vcpu->kvm->mmu_lock);
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
+
+static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
+ u32 access, struct x86_exception *exception)
+{
+ if (exception)
+ exception->error_code = 0;
return vaddr;
}
+static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
+ u32 access,
+ struct x86_exception *exception)
+{
+ if (exception)
+ exception->error_code = 0;
+ return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
+}
+
+static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
+{
+ if (direct)
+ return vcpu_match_mmio_gpa(vcpu, addr);
+
+ return vcpu_match_mmio_gva(vcpu, addr);
+}
+
+
+/*
+ * On direct hosts, the last spte is only allows two states
+ * for mmio page fault:
+ * - It is the mmio spte
+ * - It is zapped or it is being zapped.
+ *
+ * This function completely checks the spte when the last spte
+ * is not the mmio spte.
+ */
+static bool check_direct_spte_mmio_pf(u64 spte)
+{
+ return __check_direct_spte_mmio_pf(spte);
+}
+
+static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
+{
+ struct kvm_shadow_walk_iterator iterator;
+ u64 spte = 0ull;
+
+ if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+ return spte;
+
+ walk_shadow_page_lockless_begin(vcpu);
+ for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
+ if (!is_shadow_present_pte(spte))
+ break;
+ walk_shadow_page_lockless_end(vcpu);
+
+ return spte;
+}
+
+int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
+{
+ u64 spte;
+
+ if (quickly_check_mmio_pf(vcpu, addr, direct))
+ return RET_MMIO_PF_EMULATE;
+
+ spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
+
+ if (is_mmio_spte(spte)) {
+ gfn_t gfn = get_mmio_spte_gfn(spte);
+ unsigned access = get_mmio_spte_access(spte);
+
+ if (!check_mmio_spte(vcpu->kvm, spte))
+ return RET_MMIO_PF_INVALID;
+
+ if (direct)
+ addr = 0;
+
+ trace_handle_mmio_page_fault(addr, gfn, access);
+ vcpu_cache_mmio_info(vcpu, addr, gfn, access);
+ return RET_MMIO_PF_EMULATE;
+ }
+
+ /*
+ * It's ok if the gva is remapped by other cpus on shadow guest,
+ * it's a BUG if the gfn is not a mmio page.
+ */
+ if (direct && !check_direct_spte_mmio_pf(spte))
+ return RET_MMIO_PF_BUG;
+
+ /*
+ * If the page table is zapped by other cpus, let CPU fault again on
+ * the address.
+ */
+ return RET_MMIO_PF_RETRY;
+}
+EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
+
+static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
+ u32 error_code, bool direct)
+{
+ int ret;
+
+ ret = handle_mmio_page_fault_common(vcpu, addr, direct);
+ WARN_ON(ret == RET_MMIO_PF_BUG);
+ return ret;
+}
+
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
- u32 error_code)
+ u32 error_code, bool prefault)
{
gfn_t gfn;
int r;
- pgprintk("%s: gva %lx error %x\n", __FUNCTION__, gva, error_code);
+ pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
+
+ if (unlikely(error_code & PFERR_RSVD_MASK)) {
+ r = handle_mmio_page_fault(vcpu, gva, error_code, true);
+
+ if (likely(r != RET_MMIO_PF_INVALID))
+ return r;
+ }
+
r = mmu_topup_memory_caches(vcpu);
if (r)
return r;
@@ -1157,53 +3323,187 @@ static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
gfn = gva >> PAGE_SHIFT;
return nonpaging_map(vcpu, gva & PAGE_MASK,
- error_code & PFERR_WRITE_MASK, gfn);
+ error_code, gfn, prefault);
}
-static void nonpaging_free(struct kvm_vcpu *vcpu)
+static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
{
- mmu_free_roots(vcpu);
+ struct kvm_arch_async_pf arch;
+
+ arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
+ arch.gfn = gfn;
+ arch.direct_map = vcpu->arch.mmu.direct_map;
+ arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
+
+ return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
+}
+
+static bool can_do_async_pf(struct kvm_vcpu *vcpu)
+{
+ if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
+ kvm_event_needs_reinjection(vcpu)))
+ return false;
+
+ return kvm_x86_ops->interrupt_allowed(vcpu);
+}
+
+static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
+ gva_t gva, pfn_t *pfn, bool write, bool *writable)
+{
+ bool async;
+
+ *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
+
+ if (!async)
+ return false; /* *pfn has correct page already */
+
+ if (!prefault && can_do_async_pf(vcpu)) {
+ trace_kvm_try_async_get_page(gva, gfn);
+ if (kvm_find_async_pf_gfn(vcpu, gfn)) {
+ trace_kvm_async_pf_doublefault(gva, gfn);
+ kvm_make_request(KVM_REQ_APF_HALT, vcpu);
+ return true;
+ } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
+ return true;
+ }
+
+ *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
+
+ return false;
}
-static int nonpaging_init_context(struct kvm_vcpu *vcpu)
+static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
+ bool prefault)
{
- struct kvm_mmu *context = &vcpu->arch.mmu;
+ pfn_t pfn;
+ int r;
+ int level;
+ int force_pt_level;
+ gfn_t gfn = gpa >> PAGE_SHIFT;
+ unsigned long mmu_seq;
+ int write = error_code & PFERR_WRITE_MASK;
+ bool map_writable;
+
+ ASSERT(vcpu);
+ ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
+
+ if (unlikely(error_code & PFERR_RSVD_MASK)) {
+ r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
+
+ if (likely(r != RET_MMIO_PF_INVALID))
+ return r;
+ }
+
+ r = mmu_topup_memory_caches(vcpu);
+ if (r)
+ return r;
+
+ force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
+ if (likely(!force_pt_level)) {
+ level = mapping_level(vcpu, gfn);
+ gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
+ } else
+ level = PT_PAGE_TABLE_LEVEL;
+
+ if (fast_page_fault(vcpu, gpa, level, error_code))
+ return 0;
+
+ mmu_seq = vcpu->kvm->mmu_notifier_seq;
+ smp_rmb();
+
+ if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
+ return 0;
+
+ if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
+ return r;
+
+ spin_lock(&vcpu->kvm->mmu_lock);
+ if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
+ goto out_unlock;
+ make_mmu_pages_available(vcpu);
+ if (likely(!force_pt_level))
+ transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
+ r = __direct_map(vcpu, gpa, write, map_writable,
+ level, gfn, pfn, prefault);
+ spin_unlock(&vcpu->kvm->mmu_lock);
+
+ return r;
- context->new_cr3 = nonpaging_new_cr3;
+out_unlock:
+ spin_unlock(&vcpu->kvm->mmu_lock);
+ kvm_release_pfn_clean(pfn);
+ return 0;
+}
+
+static void nonpaging_init_context(struct kvm_vcpu *vcpu,
+ struct kvm_mmu *context)
+{
context->page_fault = nonpaging_page_fault;
context->gva_to_gpa = nonpaging_gva_to_gpa;
- context->free = nonpaging_free;
- context->prefetch_page = nonpaging_prefetch_page;
+ context->sync_page = nonpaging_sync_page;
+ context->invlpg = nonpaging_invlpg;
+ context->update_pte = nonpaging_update_pte;
context->root_level = 0;
context->shadow_root_level = PT32E_ROOT_LEVEL;
context->root_hpa = INVALID_PAGE;
- return 0;
+ context->direct_map = true;
+ context->nx = false;
}
void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
{
++vcpu->stat.tlb_flush;
- kvm_x86_ops->tlb_flush(vcpu);
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
}
+EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb);
-static void paging_new_cr3(struct kvm_vcpu *vcpu)
+void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
{
- pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->arch.cr3);
mmu_free_roots(vcpu);
}
+static unsigned long get_cr3(struct kvm_vcpu *vcpu)
+{
+ return kvm_read_cr3(vcpu);
+}
+
static void inject_page_fault(struct kvm_vcpu *vcpu,
- u64 addr,
- u32 err_code)
+ struct x86_exception *fault)
+{
+ vcpu->arch.mmu.inject_page_fault(vcpu, fault);
+}
+
+static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
+ unsigned access, int *nr_present)
{
- kvm_inject_page_fault(vcpu, addr, err_code);
+ if (unlikely(is_mmio_spte(*sptep))) {
+ if (gfn != get_mmio_spte_gfn(*sptep)) {
+ mmu_spte_clear_no_track(sptep);
+ return true;
+ }
+
+ (*nr_present)++;
+ mark_mmio_spte(kvm, sptep, gfn, access);
+ return true;
+ }
+
+ return false;
}
-static void paging_free(struct kvm_vcpu *vcpu)
+static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
- nonpaging_free(vcpu);
+ unsigned index;
+
+ index = level - 1;
+ index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
+ return mmu->last_pte_bitmap & (1 << index);
}
+#define PTTYPE_EPT 18 /* arbitrary */
+#define PTTYPE PTTYPE_EPT
+#include "paging_tmpl.h"
+#undef PTTYPE
+
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE
@@ -1212,75 +3512,393 @@ static void paging_free(struct kvm_vcpu *vcpu)
#include "paging_tmpl.h"
#undef PTTYPE
-static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
+static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
+ struct kvm_mmu *context)
+{
+ int maxphyaddr = cpuid_maxphyaddr(vcpu);
+ u64 exb_bit_rsvd = 0;
+ u64 gbpages_bit_rsvd = 0;
+
+ context->bad_mt_xwr = 0;
+
+ if (!context->nx)
+ exb_bit_rsvd = rsvd_bits(63, 63);
+ if (!guest_cpuid_has_gbpages(vcpu))
+ gbpages_bit_rsvd = rsvd_bits(7, 7);
+ switch (context->root_level) {
+ case PT32_ROOT_LEVEL:
+ /* no rsvd bits for 2 level 4K page table entries */
+ context->rsvd_bits_mask[0][1] = 0;
+ context->rsvd_bits_mask[0][0] = 0;
+ context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
+
+ if (!is_pse(vcpu)) {
+ context->rsvd_bits_mask[1][1] = 0;
+ break;
+ }
+
+ if (is_cpuid_PSE36())
+ /* 36bits PSE 4MB page */
+ context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
+ else
+ /* 32 bits PSE 4MB page */
+ context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
+ break;
+ case PT32E_ROOT_LEVEL:
+ context->rsvd_bits_mask[0][2] =
+ rsvd_bits(maxphyaddr, 63) |
+ rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
+ context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
+ rsvd_bits(maxphyaddr, 62); /* PDE */
+ context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
+ rsvd_bits(maxphyaddr, 62); /* PTE */
+ context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
+ rsvd_bits(maxphyaddr, 62) |
+ rsvd_bits(13, 20); /* large page */
+ context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
+ break;
+ case PT64_ROOT_LEVEL:
+ context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
+ rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 7);
+ context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
+ gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
+ context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
+ rsvd_bits(maxphyaddr, 51);
+ context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
+ rsvd_bits(maxphyaddr, 51);
+ context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
+ context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
+ gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
+ rsvd_bits(13, 29);
+ context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
+ rsvd_bits(maxphyaddr, 51) |
+ rsvd_bits(13, 20); /* large page */
+ context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
+ break;
+ }
+}
+
+static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
+ struct kvm_mmu *context, bool execonly)
+{
+ int maxphyaddr = cpuid_maxphyaddr(vcpu);
+ int pte;
+
+ context->rsvd_bits_mask[0][3] =
+ rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
+ context->rsvd_bits_mask[0][2] =
+ rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
+ context->rsvd_bits_mask[0][1] =
+ rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
+ context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
+
+ /* large page */
+ context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
+ context->rsvd_bits_mask[1][2] =
+ rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
+ context->rsvd_bits_mask[1][1] =
+ rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
+ context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
+
+ for (pte = 0; pte < 64; pte++) {
+ int rwx_bits = pte & 7;
+ int mt = pte >> 3;
+ if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
+ rwx_bits == 0x2 || rwx_bits == 0x6 ||
+ (rwx_bits == 0x4 && !execonly))
+ context->bad_mt_xwr |= (1ull << pte);
+ }
+}
+
+void update_permission_bitmask(struct kvm_vcpu *vcpu,
+ struct kvm_mmu *mmu, bool ept)
+{
+ unsigned bit, byte, pfec;
+ u8 map;
+ bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
+
+ cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
+ cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
+ for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
+ pfec = byte << 1;
+ map = 0;
+ wf = pfec & PFERR_WRITE_MASK;
+ uf = pfec & PFERR_USER_MASK;
+ ff = pfec & PFERR_FETCH_MASK;
+ /*
+ * PFERR_RSVD_MASK bit is set in PFEC if the access is not
+ * subject to SMAP restrictions, and cleared otherwise. The
+ * bit is only meaningful if the SMAP bit is set in CR4.
+ */
+ smapf = !(pfec & PFERR_RSVD_MASK);
+ for (bit = 0; bit < 8; ++bit) {
+ x = bit & ACC_EXEC_MASK;
+ w = bit & ACC_WRITE_MASK;
+ u = bit & ACC_USER_MASK;
+
+ if (!ept) {
+ /* Not really needed: !nx will cause pte.nx to fault */
+ x |= !mmu->nx;
+ /* Allow supervisor writes if !cr0.wp */
+ w |= !is_write_protection(vcpu) && !uf;
+ /* Disallow supervisor fetches of user code if cr4.smep */
+ x &= !(cr4_smep && u && !uf);
+
+ /*
+ * SMAP:kernel-mode data accesses from user-mode
+ * mappings should fault. A fault is considered
+ * as a SMAP violation if all of the following
+ * conditions are ture:
+ * - X86_CR4_SMAP is set in CR4
+ * - An user page is accessed
+ * - Page fault in kernel mode
+ * - if CPL = 3 or X86_EFLAGS_AC is clear
+ *
+ * Here, we cover the first three conditions.
+ * The fourth is computed dynamically in
+ * permission_fault() and is in smapf.
+ *
+ * Also, SMAP does not affect instruction
+ * fetches, add the !ff check here to make it
+ * clearer.
+ */
+ smap = cr4_smap && u && !uf && !ff;
+ } else
+ /* Not really needed: no U/S accesses on ept */
+ u = 1;
+
+ fault = (ff && !x) || (uf && !u) || (wf && !w) ||
+ (smapf && smap);
+ map |= fault << bit;
+ }
+ mmu->permissions[byte] = map;
+ }
+}
+
+static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
+{
+ u8 map;
+ unsigned level, root_level = mmu->root_level;
+ const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
+
+ if (root_level == PT32E_ROOT_LEVEL)
+ --root_level;
+ /* PT_PAGE_TABLE_LEVEL always terminates */
+ map = 1 | (1 << ps_set_index);
+ for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
+ if (level <= PT_PDPE_LEVEL
+ && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
+ map |= 1 << (ps_set_index | (level - 1));
+ }
+ mmu->last_pte_bitmap = map;
+}
+
+static void paging64_init_context_common(struct kvm_vcpu *vcpu,
+ struct kvm_mmu *context,
+ int level)
{
- struct kvm_mmu *context = &vcpu->arch.mmu;
+ context->nx = is_nx(vcpu);
+ context->root_level = level;
+
+ reset_rsvds_bits_mask(vcpu, context);
+ update_permission_bitmask(vcpu, context, false);
+ update_last_pte_bitmap(vcpu, context);
ASSERT(is_pae(vcpu));
- context->new_cr3 = paging_new_cr3;
context->page_fault = paging64_page_fault;
context->gva_to_gpa = paging64_gva_to_gpa;
- context->prefetch_page = paging64_prefetch_page;
- context->free = paging_free;
- context->root_level = level;
+ context->sync_page = paging64_sync_page;
+ context->invlpg = paging64_invlpg;
+ context->update_pte = paging64_update_pte;
context->shadow_root_level = level;
context->root_hpa = INVALID_PAGE;
- return 0;
+ context->direct_map = false;
}
-static int paging64_init_context(struct kvm_vcpu *vcpu)
+static void paging64_init_context(struct kvm_vcpu *vcpu,
+ struct kvm_mmu *context)
{
- return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
+ paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
}
-static int paging32_init_context(struct kvm_vcpu *vcpu)
+static void paging32_init_context(struct kvm_vcpu *vcpu,
+ struct kvm_mmu *context)
{
- struct kvm_mmu *context = &vcpu->arch.mmu;
+ context->nx = false;
+ context->root_level = PT32_ROOT_LEVEL;
+
+ reset_rsvds_bits_mask(vcpu, context);
+ update_permission_bitmask(vcpu, context, false);
+ update_last_pte_bitmap(vcpu, context);
- context->new_cr3 = paging_new_cr3;
context->page_fault = paging32_page_fault;
context->gva_to_gpa = paging32_gva_to_gpa;
- context->free = paging_free;
- context->prefetch_page = paging32_prefetch_page;
- context->root_level = PT32_ROOT_LEVEL;
+ context->sync_page = paging32_sync_page;
+ context->invlpg = paging32_invlpg;
+ context->update_pte = paging32_update_pte;
context->shadow_root_level = PT32E_ROOT_LEVEL;
context->root_hpa = INVALID_PAGE;
- return 0;
+ context->direct_map = false;
+}
+
+static void paging32E_init_context(struct kvm_vcpu *vcpu,
+ struct kvm_mmu *context)
+{
+ paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
}
-static int paging32E_init_context(struct kvm_vcpu *vcpu)
+static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
{
- return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
+ struct kvm_mmu *context = vcpu->arch.walk_mmu;
+
+ context->base_role.word = 0;
+ context->page_fault = tdp_page_fault;
+ context->sync_page = nonpaging_sync_page;
+ context->invlpg = nonpaging_invlpg;
+ context->update_pte = nonpaging_update_pte;
+ context->shadow_root_level = kvm_x86_ops->get_tdp_level();
+ context->root_hpa = INVALID_PAGE;
+ context->direct_map = true;
+ context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
+ context->get_cr3 = get_cr3;
+ context->get_pdptr = kvm_pdptr_read;
+ context->inject_page_fault = kvm_inject_page_fault;
+
+ if (!is_paging(vcpu)) {
+ context->nx = false;
+ context->gva_to_gpa = nonpaging_gva_to_gpa;
+ context->root_level = 0;
+ } else if (is_long_mode(vcpu)) {
+ context->nx = is_nx(vcpu);
+ context->root_level = PT64_ROOT_LEVEL;
+ reset_rsvds_bits_mask(vcpu, context);
+ context->gva_to_gpa = paging64_gva_to_gpa;
+ } else if (is_pae(vcpu)) {
+ context->nx = is_nx(vcpu);
+ context->root_level = PT32E_ROOT_LEVEL;
+ reset_rsvds_bits_mask(vcpu, context);
+ context->gva_to_gpa = paging64_gva_to_gpa;
+ } else {
+ context->nx = false;
+ context->root_level = PT32_ROOT_LEVEL;
+ reset_rsvds_bits_mask(vcpu, context);
+ context->gva_to_gpa = paging32_gva_to_gpa;
+ }
+
+ update_permission_bitmask(vcpu, context, false);
+ update_last_pte_bitmap(vcpu, context);
}
-static int init_kvm_mmu(struct kvm_vcpu *vcpu)
+void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
+ bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
ASSERT(vcpu);
ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
if (!is_paging(vcpu))
- return nonpaging_init_context(vcpu);
+ nonpaging_init_context(vcpu, context);
else if (is_long_mode(vcpu))
- return paging64_init_context(vcpu);
+ paging64_init_context(vcpu, context);
else if (is_pae(vcpu))
- return paging32E_init_context(vcpu);
+ paging32E_init_context(vcpu, context);
else
- return paging32_init_context(vcpu);
+ paging32_init_context(vcpu, context);
+
+ vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
+ vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
+ vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
+ vcpu->arch.mmu.base_role.smep_andnot_wp
+ = smep && !is_write_protection(vcpu);
}
+EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
-static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
+void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
+ bool execonly)
{
ASSERT(vcpu);
- if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
- vcpu->arch.mmu.free(vcpu);
- vcpu->arch.mmu.root_hpa = INVALID_PAGE;
+ ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
+
+ context->shadow_root_level = kvm_x86_ops->get_tdp_level();
+
+ context->nx = true;
+ context->page_fault = ept_page_fault;
+ context->gva_to_gpa = ept_gva_to_gpa;
+ context->sync_page = ept_sync_page;
+ context->invlpg = ept_invlpg;
+ context->update_pte = ept_update_pte;
+ context->root_level = context->shadow_root_level;
+ context->root_hpa = INVALID_PAGE;
+ context->direct_map = false;
+
+ update_permission_bitmask(vcpu, context, true);
+ reset_rsvds_bits_mask_ept(vcpu, context, execonly);
+}
+EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
+
+static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
+{
+ kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
+ vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
+ vcpu->arch.walk_mmu->get_cr3 = get_cr3;
+ vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
+ vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
+}
+
+static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
+
+ g_context->get_cr3 = get_cr3;
+ g_context->get_pdptr = kvm_pdptr_read;
+ g_context->inject_page_fault = kvm_inject_page_fault;
+
+ /*
+ * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
+ * translation of l2_gpa to l1_gpa addresses is done using the
+ * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
+ * functions between mmu and nested_mmu are swapped.
+ */
+ if (!is_paging(vcpu)) {
+ g_context->nx = false;
+ g_context->root_level = 0;
+ g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
+ } else if (is_long_mode(vcpu)) {
+ g_context->nx = is_nx(vcpu);
+ g_context->root_level = PT64_ROOT_LEVEL;
+ reset_rsvds_bits_mask(vcpu, g_context);
+ g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
+ } else if (is_pae(vcpu)) {
+ g_context->nx = is_nx(vcpu);
+ g_context->root_level = PT32E_ROOT_LEVEL;
+ reset_rsvds_bits_mask(vcpu, g_context);
+ g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
+ } else {
+ g_context->nx = false;
+ g_context->root_level = PT32_ROOT_LEVEL;
+ reset_rsvds_bits_mask(vcpu, g_context);
+ g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
}
+
+ update_permission_bitmask(vcpu, g_context, false);
+ update_last_pte_bitmap(vcpu, g_context);
+}
+
+static void init_kvm_mmu(struct kvm_vcpu *vcpu)
+{
+ if (mmu_is_nested(vcpu))
+ return init_kvm_nested_mmu(vcpu);
+ else if (tdp_enabled)
+ return init_kvm_tdp_mmu(vcpu);
+ else
+ return init_kvm_softmmu(vcpu);
}
-int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
+void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
{
- destroy_kvm_mmu(vcpu);
- return init_kvm_mmu(vcpu);
+ ASSERT(vcpu);
+
+ kvm_mmu_unload(vcpu);
+ init_kvm_mmu(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
@@ -1291,12 +3909,12 @@ int kvm_mmu_load(struct kvm_vcpu *vcpu)
r = mmu_topup_memory_caches(vcpu);
if (r)
goto out;
- spin_lock(&vcpu->kvm->mmu_lock);
- kvm_mmu_free_some_pages(vcpu);
- mmu_alloc_roots(vcpu);
- spin_unlock(&vcpu->kvm->mmu_lock);
- kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
- kvm_mmu_flush_tlb(vcpu);
+ r = mmu_alloc_roots(vcpu);
+ kvm_mmu_sync_roots(vcpu);
+ if (r)
+ goto out;
+ /* set_cr3() should ensure TLB has been flushed */
+ vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
out:
return r;
}
@@ -1305,43 +3923,21 @@ EXPORT_SYMBOL_GPL(kvm_mmu_load);
void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
mmu_free_roots(vcpu);
+ WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
}
-
-static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp,
- u64 *spte)
-{
- u64 pte;
- struct kvm_mmu_page *child;
-
- pte = *spte;
- if (is_shadow_present_pte(pte)) {
- if (sp->role.level == PT_PAGE_TABLE_LEVEL)
- rmap_remove(vcpu->kvm, spte);
- else {
- child = page_header(pte & PT64_BASE_ADDR_MASK);
- mmu_page_remove_parent_pte(child, spte);
- }
- }
- set_shadow_pte(spte, shadow_trap_nonpresent_pte);
-}
+EXPORT_SYMBOL_GPL(kvm_mmu_unload);
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp,
- u64 *spte,
- const void *new, int bytes,
- int offset_in_pte)
+ struct kvm_mmu_page *sp, u64 *spte,
+ const void *new)
{
if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
++vcpu->kvm->stat.mmu_pde_zapped;
return;
- }
+ }
++vcpu->kvm->stat.mmu_pte_updated;
- if (sp->role.glevels == PT32_ROOT_LEVEL)
- paging32_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
- else
- paging64_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
+ vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
}
static bool need_remote_flush(u64 old, u64 new)
@@ -1352,165 +3948,200 @@ static bool need_remote_flush(u64 old, u64 new)
return true;
if ((old ^ new) & PT64_BASE_ADDR_MASK)
return true;
- old ^= PT64_NX_MASK;
- new ^= PT64_NX_MASK;
+ old ^= shadow_nx_mask;
+ new ^= shadow_nx_mask;
return (old & ~new & PT64_PERM_MASK) != 0;
}
-static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
+static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
+ bool remote_flush, bool local_flush)
{
- if (need_remote_flush(old, new))
+ if (zap_page)
+ return;
+
+ if (remote_flush)
kvm_flush_remote_tlbs(vcpu->kvm);
- else
+ else if (local_flush)
kvm_mmu_flush_tlb(vcpu);
}
-static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
+static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
+ const u8 *new, int *bytes)
{
- u64 *spte = vcpu->arch.last_pte_updated;
+ u64 gentry;
+ int r;
+
+ /*
+ * Assume that the pte write on a page table of the same type
+ * as the current vcpu paging mode since we update the sptes only
+ * when they have the same mode.
+ */
+ if (is_pae(vcpu) && *bytes == 4) {
+ /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
+ *gpa &= ~(gpa_t)7;
+ *bytes = 8;
+ r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
+ if (r)
+ gentry = 0;
+ new = (const u8 *)&gentry;
+ }
+
+ switch (*bytes) {
+ case 4:
+ gentry = *(const u32 *)new;
+ break;
+ case 8:
+ gentry = *(const u64 *)new;
+ break;
+ default:
+ gentry = 0;
+ break;
+ }
- return !!(spte && (*spte & PT_ACCESSED_MASK));
+ return gentry;
}
-static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
- const u8 *new, int bytes)
+/*
+ * If we're seeing too many writes to a page, it may no longer be a page table,
+ * or we may be forking, in which case it is better to unmap the page.
+ */
+static bool detect_write_flooding(struct kvm_mmu_page *sp)
{
- gfn_t gfn;
- int r;
- u64 gpte = 0;
- struct page *page;
+ /*
+ * Skip write-flooding detected for the sp whose level is 1, because
+ * it can become unsync, then the guest page is not write-protected.
+ */
+ if (sp->role.level == PT_PAGE_TABLE_LEVEL)
+ return false;
- if (bytes != 4 && bytes != 8)
- return;
+ return ++sp->write_flooding_count >= 3;
+}
+
+/*
+ * Misaligned accesses are too much trouble to fix up; also, they usually
+ * indicate a page is not used as a page table.
+ */
+static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
+ int bytes)
+{
+ unsigned offset, pte_size, misaligned;
+
+ pgprintk("misaligned: gpa %llx bytes %d role %x\n",
+ gpa, bytes, sp->role.word);
+
+ offset = offset_in_page(gpa);
+ pte_size = sp->role.cr4_pae ? 8 : 4;
/*
- * Assume that the pte write on a page table of the same type
- * as the current vcpu paging mode. This is nearly always true
- * (might be false while changing modes). Note it is verified later
- * by update_pte().
+ * Sometimes, the OS only writes the last one bytes to update status
+ * bits, for example, in linux, andb instruction is used in clear_bit().
*/
- if (is_pae(vcpu)) {
- /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
- if ((bytes == 4) && (gpa % 4 == 0)) {
- r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
- if (r)
- return;
- memcpy((void *)&gpte + (gpa % 8), new, 4);
- } else if ((bytes == 8) && (gpa % 8 == 0)) {
- memcpy((void *)&gpte, new, 8);
+ if (!(offset & (pte_size - 1)) && bytes == 1)
+ return false;
+
+ misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
+ misaligned |= bytes < 4;
+
+ return misaligned;
+}
+
+static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
+{
+ unsigned page_offset, quadrant;
+ u64 *spte;
+ int level;
+
+ page_offset = offset_in_page(gpa);
+ level = sp->role.level;
+ *nspte = 1;
+ if (!sp->role.cr4_pae) {
+ page_offset <<= 1; /* 32->64 */
+ /*
+ * A 32-bit pde maps 4MB while the shadow pdes map
+ * only 2MB. So we need to double the offset again
+ * and zap two pdes instead of one.
+ */
+ if (level == PT32_ROOT_LEVEL) {
+ page_offset &= ~7; /* kill rounding error */
+ page_offset <<= 1;
+ *nspte = 2;
}
- } else {
- if ((bytes == 4) && (gpa % 4 == 0))
- memcpy((void *)&gpte, new, 4);
+ quadrant = page_offset >> PAGE_SHIFT;
+ page_offset &= ~PAGE_MASK;
+ if (quadrant != sp->role.quadrant)
+ return NULL;
}
- if (!is_present_pte(gpte))
- return;
- gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
-
- down_read(&current->mm->mmap_sem);
- page = gfn_to_page(vcpu->kvm, gfn);
- up_read(&current->mm->mmap_sem);
- vcpu->arch.update_pte.gfn = gfn;
- vcpu->arch.update_pte.page = page;
+ spte = &sp->spt[page_offset / sizeof(*spte)];
+ return spte;
}
void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
const u8 *new, int bytes)
{
gfn_t gfn = gpa >> PAGE_SHIFT;
+ union kvm_mmu_page_role mask = { .word = 0 };
struct kvm_mmu_page *sp;
- struct hlist_node *node, *n;
- struct hlist_head *bucket;
- unsigned index;
- u64 entry;
- u64 *spte;
- unsigned offset = offset_in_page(gpa);
- unsigned pte_size;
- unsigned page_offset;
- unsigned misaligned;
- unsigned quadrant;
- int level;
- int flooded = 0;
+ LIST_HEAD(invalid_list);
+ u64 entry, gentry, *spte;
int npte;
+ bool remote_flush, local_flush, zap_page;
+
+ /*
+ * If we don't have indirect shadow pages, it means no page is
+ * write-protected, so we can exit simply.
+ */
+ if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
+ return;
+
+ zap_page = remote_flush = local_flush = false;
+
+ pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
+
+ gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
+
+ /*
+ * No need to care whether allocation memory is successful
+ * or not since pte prefetch is skiped if it does not have
+ * enough objects in the cache.
+ */
+ mmu_topup_memory_caches(vcpu);
- pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
- mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
spin_lock(&vcpu->kvm->mmu_lock);
- kvm_mmu_free_some_pages(vcpu);
++vcpu->kvm->stat.mmu_pte_write;
- kvm_mmu_audit(vcpu, "pre pte write");
- if (gfn == vcpu->arch.last_pt_write_gfn
- && !last_updated_pte_accessed(vcpu)) {
- ++vcpu->arch.last_pt_write_count;
- if (vcpu->arch.last_pt_write_count >= 3)
- flooded = 1;
- } else {
- vcpu->arch.last_pt_write_gfn = gfn;
- vcpu->arch.last_pt_write_count = 1;
- vcpu->arch.last_pte_updated = NULL;
- }
- index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
- bucket = &vcpu->kvm->arch.mmu_page_hash[index];
- hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
- if (sp->gfn != gfn || sp->role.metaphysical)
- continue;
- pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
- misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
- misaligned |= bytes < 4;
- if (misaligned || flooded) {
- /*
- * Misaligned accesses are too much trouble to fix
- * up; also, they usually indicate a page is not used
- * as a page table.
- *
- * If we're seeing too many writes to a page,
- * it may no longer be a page table, or we may be
- * forking, in which case it is better to unmap the
- * page.
- */
- pgprintk("misaligned: gpa %llx bytes %d role %x\n",
- gpa, bytes, sp->role.word);
- kvm_mmu_zap_page(vcpu->kvm, sp);
+ kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
+
+ mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
+ for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
+ if (detect_write_misaligned(sp, gpa, bytes) ||
+ detect_write_flooding(sp)) {
+ zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
+ &invalid_list);
++vcpu->kvm->stat.mmu_flooded;
continue;
}
- page_offset = offset;
- level = sp->role.level;
- npte = 1;
- if (sp->role.glevels == PT32_ROOT_LEVEL) {
- page_offset <<= 1; /* 32->64 */
- /*
- * A 32-bit pde maps 4MB while the shadow pdes map
- * only 2MB. So we need to double the offset again
- * and zap two pdes instead of one.
- */
- if (level == PT32_ROOT_LEVEL) {
- page_offset &= ~7; /* kill rounding error */
- page_offset <<= 1;
- npte = 2;
- }
- quadrant = page_offset >> PAGE_SHIFT;
- page_offset &= ~PAGE_MASK;
- if (quadrant != sp->role.quadrant)
- continue;
- }
- spte = &sp->spt[page_offset / sizeof(*spte)];
+
+ spte = get_written_sptes(sp, gpa, &npte);
+ if (!spte)
+ continue;
+
+ local_flush = true;
while (npte--) {
entry = *spte;
- mmu_pte_write_zap_pte(vcpu, sp, spte);
- mmu_pte_write_new_pte(vcpu, sp, spte, new, bytes,
- page_offset & (pte_size - 1));
- mmu_pte_write_flush_tlb(vcpu, entry, *spte);
+ mmu_page_zap_pte(vcpu->kvm, sp, spte);
+ if (gentry &&
+ !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
+ & mask.word) && rmap_can_add(vcpu))
+ mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
+ if (need_remote_flush(entry, *spte))
+ remote_flush = true;
++spte;
}
}
- kvm_mmu_audit(vcpu, "post pte write");
+ mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
+ kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
+ kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
spin_unlock(&vcpu->kvm->mmu_lock);
- if (vcpu->arch.update_pte.page) {
- kvm_release_page_clean(vcpu->arch.update_pte.page);
- vcpu->arch.update_pte.page = NULL;
- }
}
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
@@ -1518,34 +4149,48 @@ int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
gpa_t gpa;
int r;
- down_read(&vcpu->kvm->slots_lock);
- gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
- up_read(&vcpu->kvm->slots_lock);
+ if (vcpu->arch.mmu.direct_map)
+ return 0;
+
+ gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
- spin_lock(&vcpu->kvm->mmu_lock);
r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
- spin_unlock(&vcpu->kvm->mmu_lock);
+
return r;
}
+EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
-void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
+static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
- while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
- struct kvm_mmu_page *sp;
+ LIST_HEAD(invalid_list);
+
+ if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
+ return;
+
+ while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
+ if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
+ break;
- sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
- struct kvm_mmu_page, link);
- kvm_mmu_zap_page(vcpu->kvm, sp);
++vcpu->kvm->stat.mmu_recycled;
}
+ kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
}
-int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
+static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
{
- int r;
+ if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
+ return vcpu_match_mmio_gpa(vcpu, addr);
+
+ return vcpu_match_mmio_gva(vcpu, addr);
+}
+
+int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
+ void *insn, int insn_len)
+{
+ int r, emulation_type = EMULTYPE_RETRY;
enum emulation_result er;
- r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
+ r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
if (r < 0)
goto out;
@@ -1554,21 +4199,19 @@ int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
goto out;
}
- r = mmu_topup_memory_caches(vcpu);
- if (r)
- goto out;
+ if (is_mmio_page_fault(vcpu, cr2))
+ emulation_type = 0;
- er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
+ er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
switch (er) {
case EMULATE_DONE:
return 1;
- case EMULATE_DO_MMIO:
+ case EMULATE_USER_EXIT:
++vcpu->stat.mmio_exits;
- return 0;
+ /* fall through */
case EMULATE_FAIL:
- kvm_report_emulation_failure(vcpu, "pagetable");
- return 1;
+ return 0;
default:
BUG();
}
@@ -1577,16 +4220,31 @@ out:
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
-static void free_mmu_pages(struct kvm_vcpu *vcpu)
+void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
- struct kvm_mmu_page *sp;
+ vcpu->arch.mmu.invlpg(vcpu, gva);
+ kvm_mmu_flush_tlb(vcpu);
+ ++vcpu->stat.invlpg;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
- while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
- sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
- struct kvm_mmu_page, link);
- kvm_mmu_zap_page(vcpu->kvm, sp);
- }
+void kvm_enable_tdp(void)
+{
+ tdp_enabled = true;
+}
+EXPORT_SYMBOL_GPL(kvm_enable_tdp);
+
+void kvm_disable_tdp(void)
+{
+ tdp_enabled = false;
+}
+EXPORT_SYMBOL_GPL(kvm_disable_tdp);
+
+static void free_mmu_pages(struct kvm_vcpu *vcpu)
+{
free_page((unsigned long)vcpu->arch.mmu.pae_root);
+ if (vcpu->arch.mmu.lm_root != NULL)
+ free_page((unsigned long)vcpu->arch.mmu.lm_root);
}
static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
@@ -1596,12 +4254,6 @@ static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
ASSERT(vcpu);
- if (vcpu->kvm->arch.n_requested_mmu_pages)
- vcpu->kvm->arch.n_free_mmu_pages =
- vcpu->kvm->arch.n_requested_mmu_pages;
- else
- vcpu->kvm->arch.n_free_mmu_pages =
- vcpu->kvm->arch.n_alloc_mmu_pages;
/*
* When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
* Therefore we need to allocate shadow page tables in the first
@@ -1609,95 +4261,271 @@ static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
*/
page = alloc_page(GFP_KERNEL | __GFP_DMA32);
if (!page)
- goto error_1;
+ return -ENOMEM;
+
vcpu->arch.mmu.pae_root = page_address(page);
for (i = 0; i < 4; ++i)
vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
return 0;
-
-error_1:
- free_mmu_pages(vcpu);
- return -ENOMEM;
}
int kvm_mmu_create(struct kvm_vcpu *vcpu)
{
ASSERT(vcpu);
- ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
+
+ vcpu->arch.walk_mmu = &vcpu->arch.mmu;
+ vcpu->arch.mmu.root_hpa = INVALID_PAGE;
+ vcpu->arch.mmu.translate_gpa = translate_gpa;
+ vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
return alloc_mmu_pages(vcpu);
}
-int kvm_mmu_setup(struct kvm_vcpu *vcpu)
+void kvm_mmu_setup(struct kvm_vcpu *vcpu)
{
ASSERT(vcpu);
ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
- return init_kvm_mmu(vcpu);
+ init_kvm_mmu(vcpu);
}
-void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
+void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
{
- ASSERT(vcpu);
+ struct kvm_memory_slot *memslot;
+ gfn_t last_gfn;
+ int i;
- destroy_kvm_mmu(vcpu);
- free_mmu_pages(vcpu);
- mmu_free_memory_caches(vcpu);
-}
+ memslot = id_to_memslot(kvm->memslots, slot);
+ last_gfn = memslot->base_gfn + memslot->npages - 1;
-void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
-{
- struct kvm_mmu_page *sp;
+ spin_lock(&kvm->mmu_lock);
- list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
- int i;
- u64 *pt;
+ for (i = PT_PAGE_TABLE_LEVEL;
+ i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
+ unsigned long *rmapp;
+ unsigned long last_index, index;
- if (!test_bit(slot, &sp->slot_bitmap))
- continue;
+ rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
+ last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
- pt = sp->spt;
- for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
- /* avoid RMW */
- if (pt[i] & PT_WRITABLE_MASK)
- pt[i] &= ~PT_WRITABLE_MASK;
+ for (index = 0; index <= last_index; ++index, ++rmapp) {
+ if (*rmapp)
+ __rmap_write_protect(kvm, rmapp, false);
+
+ if (need_resched() || spin_needbreak(&kvm->mmu_lock))
+ cond_resched_lock(&kvm->mmu_lock);
+ }
}
+
+ spin_unlock(&kvm->mmu_lock);
+
+ /*
+ * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
+ * which do tlb flush out of mmu-lock should be serialized by
+ * kvm->slots_lock otherwise tlb flush would be missed.
+ */
+ lockdep_assert_held(&kvm->slots_lock);
+
+ /*
+ * We can flush all the TLBs out of the mmu lock without TLB
+ * corruption since we just change the spte from writable to
+ * readonly so that we only need to care the case of changing
+ * spte from present to present (changing the spte from present
+ * to nonpresent will flush all the TLBs immediately), in other
+ * words, the only case we care is mmu_spte_update() where we
+ * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
+ * instead of PT_WRITABLE_MASK, that means it does not depend
+ * on PT_WRITABLE_MASK anymore.
+ */
+ kvm_flush_remote_tlbs(kvm);
}
-void kvm_mmu_zap_all(struct kvm *kvm)
+#define BATCH_ZAP_PAGES 10
+static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
struct kvm_mmu_page *sp, *node;
+ int batch = 0;
+
+restart:
+ list_for_each_entry_safe_reverse(sp, node,
+ &kvm->arch.active_mmu_pages, link) {
+ int ret;
+
+ /*
+ * No obsolete page exists before new created page since
+ * active_mmu_pages is the FIFO list.
+ */
+ if (!is_obsolete_sp(kvm, sp))
+ break;
+
+ /*
+ * Since we are reversely walking the list and the invalid
+ * list will be moved to the head, skip the invalid page
+ * can help us to avoid the infinity list walking.
+ */
+ if (sp->role.invalid)
+ continue;
+
+ /*
+ * Need not flush tlb since we only zap the sp with invalid
+ * generation number.
+ */
+ if (batch >= BATCH_ZAP_PAGES &&
+ cond_resched_lock(&kvm->mmu_lock)) {
+ batch = 0;
+ goto restart;
+ }
+
+ ret = kvm_mmu_prepare_zap_page(kvm, sp,
+ &kvm->arch.zapped_obsolete_pages);
+ batch += ret;
+
+ if (ret)
+ goto restart;
+ }
+
+ /*
+ * Should flush tlb before free page tables since lockless-walking
+ * may use the pages.
+ */
+ kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
+}
+/*
+ * Fast invalidate all shadow pages and use lock-break technique
+ * to zap obsolete pages.
+ *
+ * It's required when memslot is being deleted or VM is being
+ * destroyed, in these cases, we should ensure that KVM MMU does
+ * not use any resource of the being-deleted slot or all slots
+ * after calling the function.
+ */
+void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
+{
spin_lock(&kvm->mmu_lock);
- list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
- kvm_mmu_zap_page(kvm, sp);
+ trace_kvm_mmu_invalidate_zap_all_pages(kvm);
+ kvm->arch.mmu_valid_gen++;
+
+ /*
+ * Notify all vcpus to reload its shadow page table
+ * and flush TLB. Then all vcpus will switch to new
+ * shadow page table with the new mmu_valid_gen.
+ *
+ * Note: we should do this under the protection of
+ * mmu-lock, otherwise, vcpu would purge shadow page
+ * but miss tlb flush.
+ */
+ kvm_reload_remote_mmus(kvm);
+
+ kvm_zap_obsolete_pages(kvm);
spin_unlock(&kvm->mmu_lock);
+}
- kvm_flush_remote_tlbs(kvm);
+static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
+{
+ return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}
-void kvm_mmu_module_exit(void)
+void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
{
- if (pte_chain_cache)
- kmem_cache_destroy(pte_chain_cache);
- if (rmap_desc_cache)
- kmem_cache_destroy(rmap_desc_cache);
+ /*
+ * The very rare case: if the generation-number is round,
+ * zap all shadow pages.
+ */
+ if (unlikely(kvm_current_mmio_generation(kvm) >= MMIO_MAX_GEN)) {
+ printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
+ kvm_mmu_invalidate_zap_all_pages(kvm);
+ }
+}
+
+static unsigned long
+mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
+{
+ struct kvm *kvm;
+ int nr_to_scan = sc->nr_to_scan;
+ unsigned long freed = 0;
+
+ spin_lock(&kvm_lock);
+
+ list_for_each_entry(kvm, &vm_list, vm_list) {
+ int idx;
+ LIST_HEAD(invalid_list);
+
+ /*
+ * Never scan more than sc->nr_to_scan VM instances.
+ * Will not hit this condition practically since we do not try
+ * to shrink more than one VM and it is very unlikely to see
+ * !n_used_mmu_pages so many times.
+ */
+ if (!nr_to_scan--)
+ break;
+ /*
+ * n_used_mmu_pages is accessed without holding kvm->mmu_lock
+ * here. We may skip a VM instance errorneosly, but we do not
+ * want to shrink a VM that only started to populate its MMU
+ * anyway.
+ */
+ if (!kvm->arch.n_used_mmu_pages &&
+ !kvm_has_zapped_obsolete_pages(kvm))
+ continue;
+
+ idx = srcu_read_lock(&kvm->srcu);
+ spin_lock(&kvm->mmu_lock);
+
+ if (kvm_has_zapped_obsolete_pages(kvm)) {
+ kvm_mmu_commit_zap_page(kvm,
+ &kvm->arch.zapped_obsolete_pages);
+ goto unlock;
+ }
+
+ if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
+ freed++;
+ kvm_mmu_commit_zap_page(kvm, &invalid_list);
+
+unlock:
+ spin_unlock(&kvm->mmu_lock);
+ srcu_read_unlock(&kvm->srcu, idx);
+
+ /*
+ * unfair on small ones
+ * per-vm shrinkers cry out
+ * sadness comes quickly
+ */
+ list_move_tail(&kvm->vm_list, &vm_list);
+ break;
+ }
+
+ spin_unlock(&kvm_lock);
+ return freed;
+}
+
+static unsigned long
+mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
+{
+ return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
+}
+
+static struct shrinker mmu_shrinker = {
+ .count_objects = mmu_shrink_count,
+ .scan_objects = mmu_shrink_scan,
+ .seeks = DEFAULT_SEEKS * 10,
+};
+
+static void mmu_destroy_caches(void)
+{
+ if (pte_list_desc_cache)
+ kmem_cache_destroy(pte_list_desc_cache);
if (mmu_page_header_cache)
kmem_cache_destroy(mmu_page_header_cache);
}
int kvm_mmu_module_init(void)
{
- pte_chain_cache = kmem_cache_create("kvm_pte_chain",
- sizeof(struct kvm_pte_chain),
+ pte_list_desc_cache = kmem_cache_create("pte_list_desc",
+ sizeof(struct pte_list_desc),
0, 0, NULL);
- if (!pte_chain_cache)
- goto nomem;
- rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
- sizeof(struct kvm_rmap_desc),
- 0, 0, NULL);
- if (!rmap_desc_cache)
+ if (!pte_list_desc_cache)
goto nomem;
mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
@@ -1706,10 +4534,15 @@ int kvm_mmu_module_init(void)
if (!mmu_page_header_cache)
goto nomem;
+ if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
+ goto nomem;
+
+ register_shrinker(&mmu_shrinker);
+
return 0;
nomem:
- kvm_mmu_module_exit();
+ mmu_destroy_caches();
return -ENOMEM;
}
@@ -1718,12 +4551,15 @@ nomem:
*/
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
- int i;
unsigned int nr_mmu_pages;
unsigned int nr_pages = 0;
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
- for (i = 0; i < kvm->nmemslots; i++)
- nr_pages += kvm->memslots[i].npages;
+ slots = kvm_memslots(kvm);
+
+ kvm_for_each_memslot(memslot, slots)
+ nr_pages += memslot->npages;
nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
nr_mmu_pages = max(nr_mmu_pages,
@@ -1732,176 +4568,41 @@ unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
return nr_mmu_pages;
}
-#ifdef AUDIT
-
-static const char *audit_msg;
-
-static gva_t canonicalize(gva_t gva)
-{
-#ifdef CONFIG_X86_64
- gva = (long long)(gva << 16) >> 16;
-#endif
- return gva;
-}
-
-static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
- gva_t va, int level)
-{
- u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
- int i;
- gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
-
- for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
- u64 ent = pt[i];
-
- if (ent == shadow_trap_nonpresent_pte)
- continue;
-
- va = canonicalize(va);
- if (level > 1) {
- if (ent == shadow_notrap_nonpresent_pte)
- printk(KERN_ERR "audit: (%s) nontrapping pte"
- " in nonleaf level: levels %d gva %lx"
- " level %d pte %llx\n", audit_msg,
- vcpu->arch.mmu.root_level, va, level, ent);
-
- audit_mappings_page(vcpu, ent, va, level - 1);
- } else {
- gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
- struct page *page = gpa_to_page(vcpu, gpa);
- hpa_t hpa = page_to_phys(page);
-
- if (is_shadow_present_pte(ent)
- && (ent & PT64_BASE_ADDR_MASK) != hpa)
- printk(KERN_ERR "xx audit error: (%s) levels %d"
- " gva %lx gpa %llx hpa %llx ent %llx %d\n",
- audit_msg, vcpu->arch.mmu.root_level,
- va, gpa, hpa, ent,
- is_shadow_present_pte(ent));
- else if (ent == shadow_notrap_nonpresent_pte
- && !is_error_hpa(hpa))
- printk(KERN_ERR "audit: (%s) notrap shadow,"
- " valid guest gva %lx\n", audit_msg, va);
- kvm_release_page_clean(page);
-
- }
- }
-}
-
-static void audit_mappings(struct kvm_vcpu *vcpu)
+int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
{
- unsigned i;
-
- if (vcpu->arch.mmu.root_level == 4)
- audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
- else
- for (i = 0; i < 4; ++i)
- if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
- audit_mappings_page(vcpu,
- vcpu->arch.mmu.pae_root[i],
- i << 30,
- 2);
-}
-
-static int count_rmaps(struct kvm_vcpu *vcpu)
-{
- int nmaps = 0;
- int i, j, k;
-
- for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
- struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
- struct kvm_rmap_desc *d;
-
- for (j = 0; j < m->npages; ++j) {
- unsigned long *rmapp = &m->rmap[j];
-
- if (!*rmapp)
- continue;
- if (!(*rmapp & 1)) {
- ++nmaps;
- continue;
- }
- d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
- while (d) {
- for (k = 0; k < RMAP_EXT; ++k)
- if (d->shadow_ptes[k])
- ++nmaps;
- else
- break;
- d = d->more;
- }
- }
- }
- return nmaps;
-}
-
-static int count_writable_mappings(struct kvm_vcpu *vcpu)
-{
- int nmaps = 0;
- struct kvm_mmu_page *sp;
- int i;
-
- list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
- u64 *pt = sp->spt;
-
- if (sp->role.level != PT_PAGE_TABLE_LEVEL)
- continue;
-
- for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
- u64 ent = pt[i];
+ struct kvm_shadow_walk_iterator iterator;
+ u64 spte;
+ int nr_sptes = 0;
- if (!(ent & PT_PRESENT_MASK))
- continue;
- if (!(ent & PT_WRITABLE_MASK))
- continue;
- ++nmaps;
- }
+ if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+ return nr_sptes;
+
+ walk_shadow_page_lockless_begin(vcpu);
+ for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
+ sptes[iterator.level-1] = spte;
+ nr_sptes++;
+ if (!is_shadow_present_pte(spte))
+ break;
}
- return nmaps;
-}
+ walk_shadow_page_lockless_end(vcpu);
-static void audit_rmap(struct kvm_vcpu *vcpu)
-{
- int n_rmap = count_rmaps(vcpu);
- int n_actual = count_writable_mappings(vcpu);
-
- if (n_rmap != n_actual)
- printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
- __FUNCTION__, audit_msg, n_rmap, n_actual);
+ return nr_sptes;
}
+EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
-static void audit_write_protection(struct kvm_vcpu *vcpu)
+void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
- struct kvm_mmu_page *sp;
- struct kvm_memory_slot *slot;
- unsigned long *rmapp;
- gfn_t gfn;
-
- list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
- if (sp->role.metaphysical)
- continue;
+ ASSERT(vcpu);
- slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
- gfn = unalias_gfn(vcpu->kvm, sp->gfn);
- rmapp = &slot->rmap[gfn - slot->base_gfn];
- if (*rmapp)
- printk(KERN_ERR "%s: (%s) shadow page has writable"
- " mappings: gfn %lx role %x\n",
- __FUNCTION__, audit_msg, sp->gfn,
- sp->role.word);
- }
+ kvm_mmu_unload(vcpu);
+ free_mmu_pages(vcpu);
+ mmu_free_memory_caches(vcpu);
}
-static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
+void kvm_mmu_module_exit(void)
{
- int olddbg = dbg;
-
- dbg = 0;
- audit_msg = msg;
- audit_rmap(vcpu);
- audit_write_protection(vcpu);
- audit_mappings(vcpu);
- dbg = olddbg;
+ mmu_destroy_caches();
+ percpu_counter_destroy(&kvm_total_used_mmu_pages);
+ unregister_shrinker(&mmu_shrinker);
+ mmu_audit_disable();
}
-
-#endif