diff options
Diffstat (limited to 'arch/x86/kernel/nmi.c')
| -rw-r--r-- | arch/x86/kernel/nmi.c | 871 |
1 files changed, 450 insertions, 421 deletions
diff --git a/arch/x86/kernel/nmi.c b/arch/x86/kernel/nmi.c index abb78a2cc4a..c3e985d1751 100644 --- a/arch/x86/kernel/nmi.c +++ b/arch/x86/kernel/nmi.c @@ -1,533 +1,562 @@ /* - * NMI watchdog support on APIC systems + * Copyright (C) 1991, 1992 Linus Torvalds + * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs + * Copyright (C) 2011 Don Zickus Red Hat, Inc. * - * Started by Ingo Molnar <mingo@redhat.com> - * - * Fixes: - * Mikael Pettersson : AMD K7 support for local APIC NMI watchdog. - * Mikael Pettersson : Power Management for local APIC NMI watchdog. - * Mikael Pettersson : Pentium 4 support for local APIC NMI watchdog. - * Pavel Machek and - * Mikael Pettersson : PM converted to driver model. Disable/enable API. + * Pentium III FXSR, SSE support + * Gareth Hughes <gareth@valinux.com>, May 2000 */ -#include <asm/apic.h> - -#include <linux/nmi.h> -#include <linux/mm.h> -#include <linux/delay.h> -#include <linux/interrupt.h> -#include <linux/module.h> -#include <linux/sysdev.h> -#include <linux/sysctl.h> -#include <linux/percpu.h> +/* + * Handle hardware traps and faults. + */ +#include <linux/spinlock.h> #include <linux/kprobes.h> -#include <linux/cpumask.h> -#include <linux/kernel_stat.h> #include <linux/kdebug.h> -#include <linux/smp.h> +#include <linux/nmi.h> +#include <linux/debugfs.h> +#include <linux/delay.h> +#include <linux/hardirq.h> +#include <linux/slab.h> +#include <linux/export.h> + +#if defined(CONFIG_EDAC) +#include <linux/edac.h> +#endif -#include <asm/i8259.h> -#include <asm/io_apic.h> -#include <asm/smp.h> +#include <linux/atomic.h> +#include <asm/traps.h> +#include <asm/mach_traps.h> #include <asm/nmi.h> -#include <asm/proto.h> -#include <asm/timer.h> +#include <asm/x86_init.h> -#include <asm/mce.h> +#define CREATE_TRACE_POINTS +#include <trace/events/nmi.h> -#include <mach_traps.h> +struct nmi_desc { + spinlock_t lock; + struct list_head head; +}; -int unknown_nmi_panic; -int nmi_watchdog_enabled; +static struct nmi_desc nmi_desc[NMI_MAX] = +{ + { + .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock), + .head = LIST_HEAD_INIT(nmi_desc[0].head), + }, + { + .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock), + .head = LIST_HEAD_INIT(nmi_desc[1].head), + }, + { + .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock), + .head = LIST_HEAD_INIT(nmi_desc[2].head), + }, + { + .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock), + .head = LIST_HEAD_INIT(nmi_desc[3].head), + }, -static cpumask_t backtrace_mask = CPU_MASK_NONE; +}; -/* nmi_active: - * >0: the lapic NMI watchdog is active, but can be disabled - * <0: the lapic NMI watchdog has not been set up, and cannot - * be enabled - * 0: the lapic NMI watchdog is disabled, but can be enabled - */ -atomic_t nmi_active = ATOMIC_INIT(0); /* oprofile uses this */ -EXPORT_SYMBOL(nmi_active); +struct nmi_stats { + unsigned int normal; + unsigned int unknown; + unsigned int external; + unsigned int swallow; +}; -unsigned int nmi_watchdog = NMI_NONE; -EXPORT_SYMBOL(nmi_watchdog); +static DEFINE_PER_CPU(struct nmi_stats, nmi_stats); -static int panic_on_timeout; +static int ignore_nmis; -static unsigned int nmi_hz = HZ; -static DEFINE_PER_CPU(short, wd_enabled); -static int endflag __initdata; +int unknown_nmi_panic; +/* + * Prevent NMI reason port (0x61) being accessed simultaneously, can + * only be used in NMI handler. + */ +static DEFINE_RAW_SPINLOCK(nmi_reason_lock); -static inline unsigned int get_nmi_count(int cpu) +static int __init setup_unknown_nmi_panic(char *str) { -#ifdef CONFIG_X86_64 - return cpu_pda(cpu)->__nmi_count; -#else - return nmi_count(cpu); -#endif + unknown_nmi_panic = 1; + return 1; } +__setup("unknown_nmi_panic", setup_unknown_nmi_panic); -static inline int mce_in_progress(void) -{ -#if defined(CONFIG_X86_64) && defined(CONFIG_X86_MCE) - return atomic_read(&mce_entry) > 0; -#endif - return 0; -} +#define nmi_to_desc(type) (&nmi_desc[type]) -/* - * Take the local apic timer and PIT/HPET into account. We don't - * know which one is active, when we have highres/dyntick on - */ -static inline unsigned int get_timer_irqs(int cpu) -{ -#ifdef CONFIG_X86_64 - return read_pda(apic_timer_irqs) + read_pda(irq0_irqs); -#else - return per_cpu(irq_stat, cpu).apic_timer_irqs + - per_cpu(irq_stat, cpu).irq0_irqs; -#endif -} +static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC; -#ifdef CONFIG_SMP -/* - * The performance counters used by NMI_LOCAL_APIC don't trigger when - * the CPU is idle. To make sure the NMI watchdog really ticks on all - * CPUs during the test make them busy. - */ -static __init void nmi_cpu_busy(void *data) +static int __init nmi_warning_debugfs(void) { - local_irq_enable_in_hardirq(); - /* - * Intentionally don't use cpu_relax here. This is - * to make sure that the performance counter really ticks, - * even if there is a simulator or similar that catches the - * pause instruction. On a real HT machine this is fine because - * all other CPUs are busy with "useless" delay loops and don't - * care if they get somewhat less cycles. - */ - while (endflag == 0) - mb(); + debugfs_create_u64("nmi_longest_ns", 0644, + arch_debugfs_dir, &nmi_longest_ns); + return 0; } -#endif +fs_initcall(nmi_warning_debugfs); -static void report_broken_nmi(int cpu, int *prev_nmi_count) +static void nmi_max_handler(struct irq_work *w) { - printk(KERN_CONT "\n"); - - printk(KERN_WARNING - "WARNING: CPU#%d: NMI appears to be stuck (%d->%d)!\n", - cpu, prev_nmi_count[cpu], get_nmi_count(cpu)); + struct nmiaction *a = container_of(w, struct nmiaction, irq_work); + int remainder_ns, decimal_msecs; + u64 whole_msecs = ACCESS_ONCE(a->max_duration); - printk(KERN_WARNING - "Please report this to bugzilla.kernel.org,\n"); - printk(KERN_WARNING - "and attach the output of the 'dmesg' command.\n"); + remainder_ns = do_div(whole_msecs, (1000 * 1000)); + decimal_msecs = remainder_ns / 1000; - per_cpu(wd_enabled, cpu) = 0; - atomic_dec(&nmi_active); + printk_ratelimited(KERN_INFO + "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n", + a->handler, whole_msecs, decimal_msecs); } -int __init check_nmi_watchdog(void) +static int nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b) { - unsigned int *prev_nmi_count; - int cpu; + struct nmi_desc *desc = nmi_to_desc(type); + struct nmiaction *a; + int handled=0; - if (!nmi_watchdog_active() || !atomic_read(&nmi_active)) - return 0; + rcu_read_lock(); - prev_nmi_count = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); - if (!prev_nmi_count) - goto error; - - printk(KERN_INFO "Testing NMI watchdog ... "); - -#ifdef CONFIG_SMP - if (nmi_watchdog == NMI_LOCAL_APIC) - smp_call_function(nmi_cpu_busy, (void *)&endflag, 0); -#endif + /* + * NMIs are edge-triggered, which means if you have enough + * of them concurrently, you can lose some because only one + * can be latched at any given time. Walk the whole list + * to handle those situations. + */ + list_for_each_entry_rcu(a, &desc->head, list) { + int thishandled; + u64 delta; - for_each_possible_cpu(cpu) - prev_nmi_count[cpu] = get_nmi_count(cpu); - local_irq_enable(); - mdelay((20 * 1000) / nmi_hz); /* wait 20 ticks */ + delta = sched_clock(); + thishandled = a->handler(type, regs); + handled += thishandled; + delta = sched_clock() - delta; + trace_nmi_handler(a->handler, (int)delta, thishandled); - for_each_online_cpu(cpu) { - if (!per_cpu(wd_enabled, cpu)) + if (delta < nmi_longest_ns || delta < a->max_duration) continue; - if (get_nmi_count(cpu) - prev_nmi_count[cpu] <= 5) - report_broken_nmi(cpu, prev_nmi_count); - } - endflag = 1; - if (!atomic_read(&nmi_active)) { - kfree(prev_nmi_count); - atomic_set(&nmi_active, -1); - goto error; + + a->max_duration = delta; + irq_work_queue(&a->irq_work); } - printk("OK.\n"); - /* - * now that we know it works we can reduce NMI frequency to - * something more reasonable; makes a difference in some configs - */ - if (nmi_watchdog == NMI_LOCAL_APIC) - nmi_hz = lapic_adjust_nmi_hz(1); + rcu_read_unlock(); - kfree(prev_nmi_count); - return 0; -error: - if (nmi_watchdog == NMI_IO_APIC && !timer_through_8259) - disable_8259A_irq(0); -#ifdef CONFIG_X86_32 - timer_ack = 0; -#endif - return -1; + /* return total number of NMI events handled */ + return handled; } +NOKPROBE_SYMBOL(nmi_handle); -static int __init setup_nmi_watchdog(char *str) +int __register_nmi_handler(unsigned int type, struct nmiaction *action) { - unsigned int nmi; - - if (!strncmp(str, "panic", 5)) { - panic_on_timeout = 1; - str = strchr(str, ','); - if (!str) - return 1; - ++str; - } - - get_option(&str, &nmi); + struct nmi_desc *desc = nmi_to_desc(type); + unsigned long flags; - if (nmi >= NMI_INVALID) - return 0; + if (!action->handler) + return -EINVAL; - nmi_watchdog = nmi; - return 1; -} -__setup("nmi_watchdog=", setup_nmi_watchdog); + init_irq_work(&action->irq_work, nmi_max_handler); -/* - * Suspend/resume support - */ -#ifdef CONFIG_PM + spin_lock_irqsave(&desc->lock, flags); -static int nmi_pm_active; /* nmi_active before suspend */ + /* + * most handlers of type NMI_UNKNOWN never return because + * they just assume the NMI is theirs. Just a sanity check + * to manage expectations + */ + WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head)); + WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head)); + WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head)); -static int lapic_nmi_suspend(struct sys_device *dev, pm_message_t state) -{ - /* only CPU0 goes here, other CPUs should be offline */ - nmi_pm_active = atomic_read(&nmi_active); - stop_apic_nmi_watchdog(NULL); - BUG_ON(atomic_read(&nmi_active) != 0); + /* + * some handlers need to be executed first otherwise a fake + * event confuses some handlers (kdump uses this flag) + */ + if (action->flags & NMI_FLAG_FIRST) + list_add_rcu(&action->list, &desc->head); + else + list_add_tail_rcu(&action->list, &desc->head); + + spin_unlock_irqrestore(&desc->lock, flags); return 0; } +EXPORT_SYMBOL(__register_nmi_handler); -static int lapic_nmi_resume(struct sys_device *dev) +void unregister_nmi_handler(unsigned int type, const char *name) { - /* only CPU0 goes here, other CPUs should be offline */ - if (nmi_pm_active > 0) { - setup_apic_nmi_watchdog(NULL); - touch_nmi_watchdog(); - } - return 0; -} + struct nmi_desc *desc = nmi_to_desc(type); + struct nmiaction *n; + unsigned long flags; -static struct sysdev_class nmi_sysclass = { - .name = "lapic_nmi", - .resume = lapic_nmi_resume, - .suspend = lapic_nmi_suspend, -}; + spin_lock_irqsave(&desc->lock, flags); -static struct sys_device device_lapic_nmi = { - .id = 0, - .cls = &nmi_sysclass, -}; + list_for_each_entry_rcu(n, &desc->head, list) { + /* + * the name passed in to describe the nmi handler + * is used as the lookup key + */ + if (!strcmp(n->name, name)) { + WARN(in_nmi(), + "Trying to free NMI (%s) from NMI context!\n", n->name); + list_del_rcu(&n->list); + break; + } + } + + spin_unlock_irqrestore(&desc->lock, flags); + synchronize_rcu(); +} +EXPORT_SYMBOL_GPL(unregister_nmi_handler); -static int __init init_lapic_nmi_sysfs(void) +static void +pci_serr_error(unsigned char reason, struct pt_regs *regs) { - int error; + /* check to see if anyone registered against these types of errors */ + if (nmi_handle(NMI_SERR, regs, false)) + return; + + pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n", + reason, smp_processor_id()); /* - * should really be a BUG_ON but b/c this is an - * init call, it just doesn't work. -dcz + * On some machines, PCI SERR line is used to report memory + * errors. EDAC makes use of it. */ - if (nmi_watchdog != NMI_LOCAL_APIC) - return 0; - - if (atomic_read(&nmi_active) < 0) - return 0; - - error = sysdev_class_register(&nmi_sysclass); - if (!error) - error = sysdev_register(&device_lapic_nmi); - return error; -} +#if defined(CONFIG_EDAC) + if (edac_handler_set()) { + edac_atomic_assert_error(); + return; + } +#endif -/* must come after the local APIC's device_initcall() */ -late_initcall(init_lapic_nmi_sysfs); + if (panic_on_unrecovered_nmi) + panic("NMI: Not continuing"); -#endif /* CONFIG_PM */ + pr_emerg("Dazed and confused, but trying to continue\n"); -static void __acpi_nmi_enable(void *__unused) -{ - apic_write(APIC_LVT0, APIC_DM_NMI); + /* Clear and disable the PCI SERR error line. */ + reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR; + outb(reason, NMI_REASON_PORT); } +NOKPROBE_SYMBOL(pci_serr_error); -/* - * Enable timer based NMIs on all CPUs: - */ -void acpi_nmi_enable(void) +static void +io_check_error(unsigned char reason, struct pt_regs *regs) { - if (atomic_read(&nmi_active) && nmi_watchdog == NMI_IO_APIC) - on_each_cpu(__acpi_nmi_enable, NULL, 1); -} + unsigned long i; -static void __acpi_nmi_disable(void *__unused) -{ - apic_write(APIC_LVT0, APIC_DM_NMI | APIC_LVT_MASKED); -} + /* check to see if anyone registered against these types of errors */ + if (nmi_handle(NMI_IO_CHECK, regs, false)) + return; -/* - * Disable timer based NMIs on all CPUs: - */ -void acpi_nmi_disable(void) -{ - if (atomic_read(&nmi_active) && nmi_watchdog == NMI_IO_APIC) - on_each_cpu(__acpi_nmi_disable, NULL, 1); -} + pr_emerg( + "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n", + reason, smp_processor_id()); + show_regs(regs); -void setup_apic_nmi_watchdog(void *unused) -{ - if (__get_cpu_var(wd_enabled)) - return; + if (panic_on_io_nmi) + panic("NMI IOCK error: Not continuing"); - /* cheap hack to support suspend/resume */ - /* if cpu0 is not active neither should the other cpus */ - if (smp_processor_id() != 0 && atomic_read(&nmi_active) <= 0) - return; + /* Re-enable the IOCK line, wait for a few seconds */ + reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK; + outb(reason, NMI_REASON_PORT); - switch (nmi_watchdog) { - case NMI_LOCAL_APIC: - /* enable it before to avoid race with handler */ - __get_cpu_var(wd_enabled) = 1; - if (lapic_watchdog_init(nmi_hz) < 0) { - __get_cpu_var(wd_enabled) = 0; - return; - } - /* FALL THROUGH */ - case NMI_IO_APIC: - __get_cpu_var(wd_enabled) = 1; - atomic_inc(&nmi_active); + i = 20000; + while (--i) { + touch_nmi_watchdog(); + udelay(100); } + + reason &= ~NMI_REASON_CLEAR_IOCHK; + outb(reason, NMI_REASON_PORT); } +NOKPROBE_SYMBOL(io_check_error); -void stop_apic_nmi_watchdog(void *unused) +static void +unknown_nmi_error(unsigned char reason, struct pt_regs *regs) { - /* only support LOCAL and IO APICs for now */ - if (!nmi_watchdog_active()) - return; - if (__get_cpu_var(wd_enabled) == 0) + int handled; + + /* + * Use 'false' as back-to-back NMIs are dealt with one level up. + * Of course this makes having multiple 'unknown' handlers useless + * as only the first one is ever run (unless it can actually determine + * if it caused the NMI) + */ + handled = nmi_handle(NMI_UNKNOWN, regs, false); + if (handled) { + __this_cpu_add(nmi_stats.unknown, handled); return; - if (nmi_watchdog == NMI_LOCAL_APIC) - lapic_watchdog_stop(); - __get_cpu_var(wd_enabled) = 0; - atomic_dec(&nmi_active); -} + } -/* - * the best way to detect whether a CPU has a 'hard lockup' problem - * is to check it's local APIC timer IRQ counts. If they are not - * changing then that CPU has some problem. - * - * as these watchdog NMI IRQs are generated on every CPU, we only - * have to check the current processor. - * - * since NMIs don't listen to _any_ locks, we have to be extremely - * careful not to rely on unsafe variables. The printk might lock - * up though, so we have to break up any console locks first ... - * [when there will be more tty-related locks, break them up here too!] - */ + __this_cpu_add(nmi_stats.unknown, 1); -static DEFINE_PER_CPU(unsigned, last_irq_sum); -static DEFINE_PER_CPU(local_t, alert_counter); -static DEFINE_PER_CPU(int, nmi_touch); + pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", + reason, smp_processor_id()); -void touch_nmi_watchdog(void) -{ - if (nmi_watchdog_active()) { - unsigned cpu; + pr_emerg("Do you have a strange power saving mode enabled?\n"); + if (unknown_nmi_panic || panic_on_unrecovered_nmi) + panic("NMI: Not continuing"); - /* - * Tell other CPUs to reset their alert counters. We cannot - * do it ourselves because the alert count increase is not - * atomic. - */ - for_each_present_cpu(cpu) { - if (per_cpu(nmi_touch, cpu) != 1) - per_cpu(nmi_touch, cpu) = 1; - } - } - - /* - * Tickle the softlockup detector too: - */ - touch_softlockup_watchdog(); + pr_emerg("Dazed and confused, but trying to continue\n"); } -EXPORT_SYMBOL(touch_nmi_watchdog); +NOKPROBE_SYMBOL(unknown_nmi_error); + +static DEFINE_PER_CPU(bool, swallow_nmi); +static DEFINE_PER_CPU(unsigned long, last_nmi_rip); -notrace __kprobes int -nmi_watchdog_tick(struct pt_regs *regs, unsigned reason) +static void default_do_nmi(struct pt_regs *regs) { + unsigned char reason = 0; + int handled; + bool b2b = false; + /* - * Since current_thread_info()-> is always on the stack, and we - * always switch the stack NMI-atomically, it's safe to use - * smp_processor_id(). + * CPU-specific NMI must be processed before non-CPU-specific + * NMI, otherwise we may lose it, because the CPU-specific + * NMI can not be detected/processed on other CPUs. */ - unsigned int sum; - int touched = 0; - int cpu = smp_processor_id(); - int rc = 0; - - /* check for other users first */ - if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) - == NOTIFY_STOP) { - rc = 1; - touched = 1; - } - - sum = get_timer_irqs(cpu); - if (__get_cpu_var(nmi_touch)) { - __get_cpu_var(nmi_touch) = 0; - touched = 1; - } - - if (cpu_isset(cpu, backtrace_mask)) { - static DEFINE_SPINLOCK(lock); /* Serialise the printks */ - - spin_lock(&lock); - printk(KERN_WARNING "NMI backtrace for cpu %d\n", cpu); - dump_stack(); - spin_unlock(&lock); - cpu_clear(cpu, backtrace_mask); - } + /* + * Back-to-back NMIs are interesting because they can either + * be two NMI or more than two NMIs (any thing over two is dropped + * due to NMI being edge-triggered). If this is the second half + * of the back-to-back NMI, assume we dropped things and process + * more handlers. Otherwise reset the 'swallow' NMI behaviour + */ + if (regs->ip == __this_cpu_read(last_nmi_rip)) + b2b = true; + else + __this_cpu_write(swallow_nmi, false); - /* Could check oops_in_progress here too, but it's safer not to */ - if (mce_in_progress()) - touched = 1; + __this_cpu_write(last_nmi_rip, regs->ip); - /* if the none of the timers isn't firing, this cpu isn't doing much */ - if (!touched && __get_cpu_var(last_irq_sum) == sum) { + handled = nmi_handle(NMI_LOCAL, regs, b2b); + __this_cpu_add(nmi_stats.normal, handled); + if (handled) { /* - * Ayiee, looks like this CPU is stuck ... - * wait a few IRQs (5 seconds) before doing the oops ... + * There are cases when a NMI handler handles multiple + * events in the current NMI. One of these events may + * be queued for in the next NMI. Because the event is + * already handled, the next NMI will result in an unknown + * NMI. Instead lets flag this for a potential NMI to + * swallow. */ - local_inc(&__get_cpu_var(alert_counter)); - if (local_read(&__get_cpu_var(alert_counter)) == 5 * nmi_hz) - /* - * die_nmi will return ONLY if NOTIFY_STOP happens.. - */ - die_nmi("BUG: NMI Watchdog detected LOCKUP", - regs, panic_on_timeout); - } else { - __get_cpu_var(last_irq_sum) = sum; - local_set(&__get_cpu_var(alert_counter), 0); + if (handled > 1) + __this_cpu_write(swallow_nmi, true); + return; } - /* see if the nmi watchdog went off */ - if (!__get_cpu_var(wd_enabled)) - return rc; - switch (nmi_watchdog) { - case NMI_LOCAL_APIC: - rc |= lapic_wd_event(nmi_hz); - break; - case NMI_IO_APIC: + /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */ + raw_spin_lock(&nmi_reason_lock); + reason = x86_platform.get_nmi_reason(); + + if (reason & NMI_REASON_MASK) { + if (reason & NMI_REASON_SERR) + pci_serr_error(reason, regs); + else if (reason & NMI_REASON_IOCHK) + io_check_error(reason, regs); +#ifdef CONFIG_X86_32 /* - * don't know how to accurately check for this. - * just assume it was a watchdog timer interrupt - * This matches the old behaviour. + * Reassert NMI in case it became active + * meanwhile as it's edge-triggered: */ - rc = 1; - break; + reassert_nmi(); +#endif + __this_cpu_add(nmi_stats.external, 1); + raw_spin_unlock(&nmi_reason_lock); + return; } - return rc; + raw_spin_unlock(&nmi_reason_lock); + + /* + * Only one NMI can be latched at a time. To handle + * this we may process multiple nmi handlers at once to + * cover the case where an NMI is dropped. The downside + * to this approach is we may process an NMI prematurely, + * while its real NMI is sitting latched. This will cause + * an unknown NMI on the next run of the NMI processing. + * + * We tried to flag that condition above, by setting the + * swallow_nmi flag when we process more than one event. + * This condition is also only present on the second half + * of a back-to-back NMI, so we flag that condition too. + * + * If both are true, we assume we already processed this + * NMI previously and we swallow it. Otherwise we reset + * the logic. + * + * There are scenarios where we may accidentally swallow + * a 'real' unknown NMI. For example, while processing + * a perf NMI another perf NMI comes in along with a + * 'real' unknown NMI. These two NMIs get combined into + * one (as descibed above). When the next NMI gets + * processed, it will be flagged by perf as handled, but + * noone will know that there was a 'real' unknown NMI sent + * also. As a result it gets swallowed. Or if the first + * perf NMI returns two events handled then the second + * NMI will get eaten by the logic below, again losing a + * 'real' unknown NMI. But this is the best we can do + * for now. + */ + if (b2b && __this_cpu_read(swallow_nmi)) + __this_cpu_add(nmi_stats.swallow, 1); + else + unknown_nmi_error(reason, regs); } +NOKPROBE_SYMBOL(default_do_nmi); -#ifdef CONFIG_SYSCTL +/* + * NMIs can hit breakpoints which will cause it to lose its + * NMI context with the CPU when the breakpoint does an iret. + */ +#ifdef CONFIG_X86_32 +/* + * For i386, NMIs use the same stack as the kernel, and we can + * add a workaround to the iret problem in C (preventing nested + * NMIs if an NMI takes a trap). Simply have 3 states the NMI + * can be in: + * + * 1) not running + * 2) executing + * 3) latched + * + * When no NMI is in progress, it is in the "not running" state. + * When an NMI comes in, it goes into the "executing" state. + * Normally, if another NMI is triggered, it does not interrupt + * the running NMI and the HW will simply latch it so that when + * the first NMI finishes, it will restart the second NMI. + * (Note, the latch is binary, thus multiple NMIs triggering, + * when one is running, are ignored. Only one NMI is restarted.) + * + * If an NMI hits a breakpoint that executes an iret, another + * NMI can preempt it. We do not want to allow this new NMI + * to run, but we want to execute it when the first one finishes. + * We set the state to "latched", and the exit of the first NMI will + * perform a dec_return, if the result is zero (NOT_RUNNING), then + * it will simply exit the NMI handler. If not, the dec_return + * would have set the state to NMI_EXECUTING (what we want it to + * be when we are running). In this case, we simply jump back + * to rerun the NMI handler again, and restart the 'latched' NMI. + * + * No trap (breakpoint or page fault) should be hit before nmi_restart, + * thus there is no race between the first check of state for NOT_RUNNING + * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs + * at this point. + * + * In case the NMI takes a page fault, we need to save off the CR2 + * because the NMI could have preempted another page fault and corrupt + * the CR2 that is about to be read. As nested NMIs must be restarted + * and they can not take breakpoints or page faults, the update of the + * CR2 must be done before converting the nmi state back to NOT_RUNNING. + * Otherwise, there would be a race of another nested NMI coming in + * after setting state to NOT_RUNNING but before updating the nmi_cr2. + */ +enum nmi_states { + NMI_NOT_RUNNING = 0, + NMI_EXECUTING, + NMI_LATCHED, +}; +static DEFINE_PER_CPU(enum nmi_states, nmi_state); +static DEFINE_PER_CPU(unsigned long, nmi_cr2); + +#define nmi_nesting_preprocess(regs) \ + do { \ + if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { \ + this_cpu_write(nmi_state, NMI_LATCHED); \ + return; \ + } \ + this_cpu_write(nmi_state, NMI_EXECUTING); \ + this_cpu_write(nmi_cr2, read_cr2()); \ + } while (0); \ + nmi_restart: + +#define nmi_nesting_postprocess() \ + do { \ + if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) \ + write_cr2(this_cpu_read(nmi_cr2)); \ + if (this_cpu_dec_return(nmi_state)) \ + goto nmi_restart; \ + } while (0) +#else /* x86_64 */ +/* + * In x86_64 things are a bit more difficult. This has the same problem + * where an NMI hitting a breakpoint that calls iret will remove the + * NMI context, allowing a nested NMI to enter. What makes this more + * difficult is that both NMIs and breakpoints have their own stack. + * When a new NMI or breakpoint is executed, the stack is set to a fixed + * point. If an NMI is nested, it will have its stack set at that same + * fixed address that the first NMI had, and will start corrupting the + * stack. This is handled in entry_64.S, but the same problem exists with + * the breakpoint stack. + * + * If a breakpoint is being processed, and the debug stack is being used, + * if an NMI comes in and also hits a breakpoint, the stack pointer + * will be set to the same fixed address as the breakpoint that was + * interrupted, causing that stack to be corrupted. To handle this case, + * check if the stack that was interrupted is the debug stack, and if + * so, change the IDT so that new breakpoints will use the current stack + * and not switch to the fixed address. On return of the NMI, switch back + * to the original IDT. + */ +static DEFINE_PER_CPU(int, update_debug_stack); -static int __init setup_unknown_nmi_panic(char *str) +static inline void nmi_nesting_preprocess(struct pt_regs *regs) { - unknown_nmi_panic = 1; - return 1; + /* + * If we interrupted a breakpoint, it is possible that + * the nmi handler will have breakpoints too. We need to + * change the IDT such that breakpoints that happen here + * continue to use the NMI stack. + */ + if (unlikely(is_debug_stack(regs->sp))) { + debug_stack_set_zero(); + this_cpu_write(update_debug_stack, 1); + } } -__setup("unknown_nmi_panic", setup_unknown_nmi_panic); -static int unknown_nmi_panic_callback(struct pt_regs *regs, int cpu) +static inline void nmi_nesting_postprocess(void) { - unsigned char reason = get_nmi_reason(); - char buf[64]; - - sprintf(buf, "NMI received for unknown reason %02x\n", reason); - die_nmi(buf, regs, 1); /* Always panic here */ - return 0; + if (unlikely(this_cpu_read(update_debug_stack))) { + debug_stack_reset(); + this_cpu_write(update_debug_stack, 0); + } } +#endif -/* - * proc handler for /proc/sys/kernel/nmi - */ -int proc_nmi_enabled(struct ctl_table *table, int write, struct file *file, - void __user *buffer, size_t *length, loff_t *ppos) +dotraplinkage notrace void +do_nmi(struct pt_regs *regs, long error_code) { - int old_state; - - nmi_watchdog_enabled = (atomic_read(&nmi_active) > 0) ? 1 : 0; - old_state = nmi_watchdog_enabled; - proc_dointvec(table, write, file, buffer, length, ppos); - if (!!old_state == !!nmi_watchdog_enabled) - return 0; - - if (atomic_read(&nmi_active) < 0 || !nmi_watchdog_active()) { - printk(KERN_WARNING - "NMI watchdog is permanently disabled\n"); - return -EIO; - } + nmi_nesting_preprocess(regs); - if (nmi_watchdog == NMI_LOCAL_APIC) { - if (nmi_watchdog_enabled) - enable_lapic_nmi_watchdog(); - else - disable_lapic_nmi_watchdog(); - } else { - printk(KERN_WARNING - "NMI watchdog doesn't know what hardware to touch\n"); - return -EIO; - } - return 0; -} + nmi_enter(); + + inc_irq_stat(__nmi_count); + + if (!ignore_nmis) + default_do_nmi(regs); -#endif /* CONFIG_SYSCTL */ + nmi_exit(); -int do_nmi_callback(struct pt_regs *regs, int cpu) + /* On i386, may loop back to preprocess */ + nmi_nesting_postprocess(); +} +NOKPROBE_SYMBOL(do_nmi); + +void stop_nmi(void) { -#ifdef CONFIG_SYSCTL - if (unknown_nmi_panic) - return unknown_nmi_panic_callback(regs, cpu); -#endif - return 0; + ignore_nmis++; } -void __trigger_all_cpu_backtrace(void) +void restart_nmi(void) { - int i; + ignore_nmis--; +} - backtrace_mask = cpu_online_map; - /* Wait for up to 10 seconds for all CPUs to do the backtrace */ - for (i = 0; i < 10 * 1000; i++) { - if (cpus_empty(backtrace_mask)) - break; - mdelay(1); - } +/* reset the back-to-back NMI logic */ +void local_touch_nmi(void) +{ + __this_cpu_write(last_nmi_rip, 0); } +EXPORT_SYMBOL_GPL(local_touch_nmi); |
