diff options
Diffstat (limited to 'arch/tile/mm')
| -rw-r--r-- | arch/tile/mm/elf.c | 114 | ||||
| -rw-r--r-- | arch/tile/mm/fault.c | 255 | ||||
| -rw-r--r-- | arch/tile/mm/highmem.c | 8 | ||||
| -rw-r--r-- | arch/tile/mm/homecache.c | 185 | ||||
| -rw-r--r-- | arch/tile/mm/hugetlbpage.c | 396 | ||||
| -rw-r--r-- | arch/tile/mm/init.c | 293 | ||||
| -rw-r--r-- | arch/tile/mm/migrate.h | 6 | ||||
| -rw-r--r-- | arch/tile/mm/migrate_32.S | 41 | ||||
| -rw-r--r-- | arch/tile/mm/migrate_64.S | 167 | ||||
| -rw-r--r-- | arch/tile/mm/mmap.c | 26 | ||||
| -rw-r--r-- | arch/tile/mm/pgtable.c | 295 |
11 files changed, 994 insertions, 792 deletions
diff --git a/arch/tile/mm/elf.c b/arch/tile/mm/elf.c index 55e58e93bfc..23f044e8a7a 100644 --- a/arch/tile/mm/elf.c +++ b/arch/tile/mm/elf.c @@ -21,6 +21,8 @@ #include <asm/pgtable.h> #include <asm/pgalloc.h> #include <asm/sections.h> +#include <asm/vdso.h> +#include <arch/sim.h> /* Notify a running simulator, if any, that an exec just occurred. */ static void sim_notify_exec(const char *binary_name) @@ -35,28 +37,57 @@ static void sim_notify_exec(const char *binary_name) } while (c); } -static int notify_exec(void) +static int notify_exec(struct mm_struct *mm) { - int retval = 0; /* failure */ - struct vm_area_struct *vma = current->mm->mmap; - while (vma) { - if ((vma->vm_flags & VM_EXECUTABLE) && vma->vm_file) + char *buf, *path; + struct vm_area_struct *vma; + + if (!sim_is_simulator()) + return 1; + + if (mm->exe_file == NULL) + return 0; + + for (vma = current->mm->mmap; ; vma = vma->vm_next) { + if (vma == NULL) + return 0; + if (vma->vm_file == mm->exe_file) break; - vma = vma->vm_next; } - if (vma) { - char *buf = (char *) __get_free_page(GFP_KERNEL); - if (buf) { - char *path = d_path(&vma->vm_file->f_path, - buf, PAGE_SIZE); - if (!IS_ERR(path)) { - sim_notify_exec(path); - retval = 1; - } - free_page((unsigned long)buf); + + buf = (char *) __get_free_page(GFP_KERNEL); + if (buf == NULL) + return 0; + + path = d_path(&mm->exe_file->f_path, buf, PAGE_SIZE); + if (IS_ERR(path)) { + free_page((unsigned long)buf); + return 0; + } + + /* + * Notify simulator of an ET_DYN object so we know the load address. + * The somewhat cryptic overuse of SIM_CONTROL_DLOPEN allows us + * to be backward-compatible with older simulator releases. + */ + if (vma->vm_start == (ELF_ET_DYN_BASE & PAGE_MASK)) { + char buf[64]; + int i; + + snprintf(buf, sizeof(buf), "0x%lx:@", vma->vm_start); + for (i = 0; ; ++i) { + char c = buf[i]; + __insn_mtspr(SPR_SIM_CONTROL, + (SIM_CONTROL_DLOPEN + | (c << _SIM_CONTROL_OPERATOR_BITS))); + if (c == '\0') + break; } } - return retval; + + sim_notify_exec(path); + free_page((unsigned long)buf); + return 1; } /* Notify a running simulator, if any, that we loaded an interpreter. */ @@ -72,63 +103,23 @@ static void sim_notify_interp(unsigned long load_addr) } -/* Kernel address of page used to map read-only kernel data into userspace. */ -static void *vdso_page; - -/* One-entry array used for install_special_mapping. */ -static struct page *vdso_pages[1]; - -static int __init vdso_setup(void) -{ - vdso_page = (void *)get_zeroed_page(GFP_ATOMIC); - memcpy(vdso_page, __rt_sigreturn, __rt_sigreturn_end - __rt_sigreturn); - vdso_pages[0] = virt_to_page(vdso_page); - return 0; -} -device_initcall(vdso_setup); - -const char *arch_vma_name(struct vm_area_struct *vma) -{ - if (vma->vm_private_data == vdso_pages) - return "[vdso]"; -#ifndef __tilegx__ - if (vma->vm_start == MEM_USER_INTRPT) - return "[intrpt]"; -#endif - return NULL; -} - int arch_setup_additional_pages(struct linux_binprm *bprm, int executable_stack) { struct mm_struct *mm = current->mm; - unsigned long vdso_base; int retval = 0; + down_write(&mm->mmap_sem); + /* * Notify the simulator that an exec just occurred. * If we can't find the filename of the mapping, just use * whatever was passed as the linux_binprm filename. */ - if (!notify_exec()) + if (!notify_exec(mm)) sim_notify_exec(bprm->filename); - down_write(&mm->mmap_sem); - - /* - * MAYWRITE to allow gdb to COW and set breakpoints - * - * Make sure the vDSO gets into every core dump. Dumping its - * contents makes post-mortem fully interpretable later - * without matching up the same kernel and hardware config to - * see what PC values meant. - */ - vdso_base = VDSO_BASE; - retval = install_special_mapping(mm, vdso_base, PAGE_SIZE, - VM_READ|VM_EXEC| - VM_MAYREAD|VM_MAYWRITE|VM_MAYEXEC| - VM_ALWAYSDUMP, - vdso_pages); + retval = setup_vdso_pages(); #ifndef __tilegx__ /* @@ -140,7 +131,6 @@ int arch_setup_additional_pages(struct linux_binprm *bprm, if (!retval) { unsigned long addr = MEM_USER_INTRPT; addr = mmap_region(NULL, addr, INTRPT_SIZE, - MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE, VM_READ|VM_EXEC| VM_MAYREAD|VM_MAYWRITE|VM_MAYEXEC, 0); if (addr > (unsigned long) -PAGE_SIZE) diff --git a/arch/tile/mm/fault.c b/arch/tile/mm/fault.c index dcebfc831cd..6c0571216a9 100644 --- a/arch/tile/mm/fault.c +++ b/arch/tile/mm/fault.c @@ -34,8 +34,8 @@ #include <linux/hugetlb.h> #include <linux/syscalls.h> #include <linux/uaccess.h> +#include <linux/kdebug.h> -#include <asm/system.h> #include <asm/pgalloc.h> #include <asm/sections.h> #include <asm/traps.h> @@ -43,15 +43,18 @@ #include <arch/interrupts.h> -static noinline void force_sig_info_fault(int si_signo, int si_code, - unsigned long address, int fault_num, struct task_struct *tsk) +static noinline void force_sig_info_fault(const char *type, int si_signo, + int si_code, unsigned long address, + int fault_num, + struct task_struct *tsk, + struct pt_regs *regs) { siginfo_t info; if (unlikely(tsk->pid < 2)) { panic("Signal %d (code %d) at %#lx sent to %s!", si_signo, si_code & 0xffff, address, - tsk->pid ? "init" : "the idle task"); + is_idle_task(tsk) ? "the idle task" : "init"); } info.si_signo = si_signo; @@ -59,6 +62,7 @@ static noinline void force_sig_info_fault(int si_signo, int si_code, info.si_code = si_code; info.si_addr = (void __user *)address; info.si_trapno = fault_num; + trace_unhandled_signal(type, regs, address, si_signo); force_sig_info(si_signo, &info, tsk); } @@ -67,15 +71,17 @@ static noinline void force_sig_info_fault(int si_signo, int si_code, * Synthesize the fault a PL0 process would get by doing a word-load of * an unaligned address or a high kernel address. */ -SYSCALL_DEFINE2(cmpxchg_badaddr, unsigned long, address, - struct pt_regs *, regs) +SYSCALL_DEFINE1(cmpxchg_badaddr, unsigned long, address) { + struct pt_regs *regs = current_pt_regs(); + if (address >= PAGE_OFFSET) - force_sig_info_fault(SIGSEGV, SEGV_MAPERR, address, - INT_DTLB_MISS, current); + force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR, + address, INT_DTLB_MISS, current, regs); else - force_sig_info_fault(SIGBUS, BUS_ADRALN, address, - INT_UNALIGN_DATA, current); + force_sig_info_fault("atomic alignment fault", SIGBUS, + BUS_ADRALN, address, + INT_UNALIGN_DATA, current, regs); /* * Adjust pc to point at the actual instruction, which is unusual @@ -117,16 +123,15 @@ static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) pmd_k = pmd_offset(pud_k, address); if (!pmd_present(*pmd_k)) return NULL; - if (!pmd_present(*pmd)) { + if (!pmd_present(*pmd)) set_pmd(pmd, *pmd_k); - arch_flush_lazy_mmu_mode(); - } else + else BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k)); return pmd_k; } /* - * Handle a fault on the vmalloc or module mapping area + * Handle a fault on the vmalloc area. */ static inline int vmalloc_fault(pgd_t *pgd, unsigned long address) { @@ -144,8 +149,6 @@ static inline int vmalloc_fault(pgd_t *pgd, unsigned long address) pmd_k = vmalloc_sync_one(pgd, address); if (!pmd_k) return -1; - if (pmd_huge(*pmd_k)) - return 0; /* support TILE huge_vmap() API */ pte_k = pte_offset_kernel(pmd_k, address); if (!pte_present(*pte_k)) return -1; @@ -183,7 +186,7 @@ static pgd_t *get_current_pgd(void) HV_Context ctx = hv_inquire_context(); unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT; struct page *pgd_page = pfn_to_page(pgd_pfn); - BUG_ON(PageHighMem(pgd_page)); /* oops, HIGHPTE? */ + BUG_ON(PageHighMem(pgd_page)); return (pgd_t *) __va(ctx.page_table); } @@ -199,9 +202,14 @@ static pgd_t *get_current_pgd(void) * interrupt or a critical region, and must do as little as possible. * Similarly, we can't use atomic ops here, since we may be handling a * fault caused by an atomic op access. + * + * If we find a migrating PTE while we're in an NMI context, and we're + * at a PC that has a registered exception handler, we don't wait, + * since this thread may (e.g.) have been interrupted while migrating + * its own stack, which would then cause us to self-deadlock. */ static int handle_migrating_pte(pgd_t *pgd, int fault_num, - unsigned long address, + unsigned long address, unsigned long pc, int is_kernel_mode, int write) { pud_t *pud; @@ -223,6 +231,8 @@ static int handle_migrating_pte(pgd_t *pgd, int fault_num, pte_offset_kernel(pmd, address); pteval = *pte; if (pte_migrating(pteval)) { + if (in_nmi() && search_exception_tables(pc)) + return 0; wait_for_migration(pte); return 1; } @@ -262,12 +272,15 @@ static int handle_page_fault(struct pt_regs *regs, int si_code; int is_kernel_mode; pgd_t *pgd; + unsigned int flags; /* on TILE, protection faults are always writes */ if (!is_page_fault) write = 1; - is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL); + flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; + + is_kernel_mode = !user_mode(regs); tsk = validate_current(); @@ -290,13 +303,13 @@ static int handle_page_fault(struct pt_regs *regs, /* * Early on, we need to check for migrating PTE entries; * see homecache.c. If we find a migrating PTE, we wait until - * the backing page claims to be done migrating, then we procede. + * the backing page claims to be done migrating, then we proceed. * For kernel PTEs, we rewrite the PTE and return and retry. * Otherwise, we treat the fault like a normal "no PTE" fault, * rather than trying to patch up the existing PTE. */ pgd = get_current_pgd(); - if (handle_migrating_pte(pgd, fault_num, address, + if (handle_migrating_pte(pgd, fault_num, address, regs->pc, is_kernel_mode, write)) return 1; @@ -331,9 +344,12 @@ static int handle_page_fault(struct pt_regs *regs, /* * If we're trying to touch user-space addresses, we must * be either at PL0, or else with interrupts enabled in the - * kernel, so either way we can re-enable interrupts here. + * kernel, so either way we can re-enable interrupts here + * unless we are doing atomic access to user space with + * interrupts disabled. */ - local_irq_enable(); + if (!(regs->flags & PT_FLAGS_DISABLE_IRQ)) + local_irq_enable(); mm = tsk->mm; @@ -346,6 +362,9 @@ static int handle_page_fault(struct pt_regs *regs, goto bad_area_nosemaphore; } + if (!is_kernel_mode) + flags |= FAULT_FLAG_USER; + /* * When running in the kernel we expect faults to occur only to * addresses in user space. All other faults represent errors in the @@ -368,6 +387,8 @@ static int handle_page_fault(struct pt_regs *regs, vma = NULL; /* happy compiler */ goto bad_area_nosemaphore; } + +retry: down_read(&mm->mmap_sem); } @@ -404,18 +425,22 @@ good_area: #endif if (!(vma->vm_flags & VM_WRITE)) goto bad_area; + flags |= FAULT_FLAG_WRITE; } else { if (!is_page_fault || !(vma->vm_flags & VM_READ)) goto bad_area; } - survive: /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ - fault = handle_mm_fault(mm, vma, address, write); + fault = handle_mm_fault(mm, vma, address, flags); + + if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) + return 0; + if (unlikely(fault & VM_FAULT_ERROR)) { if (fault & VM_FAULT_OOM) goto out_of_memory; @@ -423,33 +448,33 @@ good_area: goto do_sigbus; BUG(); } - if (fault & VM_FAULT_MAJOR) - tsk->maj_flt++; - else - tsk->min_flt++; + if (flags & FAULT_FLAG_ALLOW_RETRY) { + if (fault & VM_FAULT_MAJOR) + tsk->maj_flt++; + else + tsk->min_flt++; + if (fault & VM_FAULT_RETRY) { + flags &= ~FAULT_FLAG_ALLOW_RETRY; + flags |= FAULT_FLAG_TRIED; + + /* + * No need to up_read(&mm->mmap_sem) as we would + * have already released it in __lock_page_or_retry + * in mm/filemap.c. + */ + goto retry; + } + } -#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() - /* - * If this was an asynchronous fault, - * restart the appropriate engine. - */ - switch (fault_num) { #if CHIP_HAS_TILE_DMA() + /* If this was a DMA TLB fault, restart the DMA engine. */ + switch (fault_num) { case INT_DMATLB_MISS: case INT_DMATLB_MISS_DWNCL: case INT_DMATLB_ACCESS: case INT_DMATLB_ACCESS_DWNCL: __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK); break; -#endif -#if CHIP_HAS_SN_PROC() - case INT_SNITLB_MISS: - case INT_SNITLB_MISS_DWNCL: - __insn_mtspr(SPR_SNCTL, - __insn_mfspr(SPR_SNCTL) & - ~SPR_SNCTL__FRZPROC_MASK); - break; -#endif } #endif @@ -471,8 +496,8 @@ bad_area_nosemaphore: */ local_irq_enable(); - force_sig_info_fault(SIGSEGV, si_code, address, - fault_num, tsk); + force_sig_info_fault("segfault", SIGSEGV, si_code, address, + fault_num, tsk, regs); return 0; } @@ -510,7 +535,7 @@ no_context: if (unlikely(tsk->pid < 2)) { panic("Kernel page fault running %s!", - tsk->pid ? "init" : "the idle task"); + is_idle_task(tsk) ? "the idle task" : "init"); } /* @@ -530,15 +555,10 @@ no_context: */ out_of_memory: up_read(&mm->mmap_sem); - if (is_global_init(tsk)) { - yield(); - down_read(&mm->mmap_sem); - goto survive; - } - pr_alert("VM: killing process %s\n", tsk->comm); - if (!is_kernel_mode) - do_group_exit(SIGKILL); - goto no_context; + if (is_kernel_mode) + goto no_context; + pagefault_out_of_memory(); + return 0; do_sigbus: up_read(&mm->mmap_sem); @@ -547,7 +567,8 @@ do_sigbus: if (is_kernel_mode) goto no_context; - force_sig_info_fault(SIGBUS, BUS_ADRERR, address, fault_num, tsk); + force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address, + fault_num, tsk, regs); return 0; } @@ -655,20 +676,12 @@ struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num, } /* - * NOTE: the one other type of access that might bring us here - * are the memory ops in __tns_atomic_acquire/__tns_atomic_release, - * but we don't have to check specially for them since we can - * always safely return to the address of the fault and retry, - * since no separate atomic locks are involved. - */ - - /* * Now that we have released the atomic lock (if necessary), * it's safe to spin if the PTE that caused the fault was migrating. */ if (fault_num == INT_DTLB_ACCESS) write = 1; - if (handle_migrating_pte(pgd, fault_num, address, 1, write)) + if (handle_migrating_pte(pgd, fault_num, address, pc, 1, write)) return state; /* Return zero so that we continue on with normal fault handling. */ @@ -691,8 +704,60 @@ void do_page_fault(struct pt_regs *regs, int fault_num, { int is_page_fault; +#ifdef CONFIG_KPROBES + /* + * This is to notify the fault handler of the kprobes. The + * exception code is redundant as it is also carried in REGS, + * but we pass it anyhow. + */ + if (notify_die(DIE_PAGE_FAULT, "page fault", regs, -1, + regs->faultnum, SIGSEGV) == NOTIFY_STOP) + return; +#endif + +#ifdef __tilegx__ + /* + * We don't need early do_page_fault_ics() support, since unlike + * Pro we don't need to worry about unlocking the atomic locks. + * There is only one current case in GX where we touch any memory + * under ICS other than our own kernel stack, and we handle that + * here. (If we crash due to trying to touch our own stack, + * we're in too much trouble for C code to help out anyway.) + */ + if (write & ~1) { + unsigned long pc = write & ~1; + if (pc >= (unsigned long) __start_unalign_asm_code && + pc < (unsigned long) __end_unalign_asm_code) { + struct thread_info *ti = current_thread_info(); + /* + * Our EX_CONTEXT is still what it was from the + * initial unalign exception, but now we've faulted + * on the JIT page. We would like to complete the + * page fault however is appropriate, and then retry + * the instruction that caused the unalign exception. + * Our state has been "corrupted" by setting the low + * bit in "sp", and stashing r0..r3 in the + * thread_info area, so we revert all of that, then + * continue as if this were a normal page fault. + */ + regs->sp &= ~1UL; + regs->regs[0] = ti->unalign_jit_tmp[0]; + regs->regs[1] = ti->unalign_jit_tmp[1]; + regs->regs[2] = ti->unalign_jit_tmp[2]; + regs->regs[3] = ti->unalign_jit_tmp[3]; + write &= 1; + } else { + pr_alert("%s/%d: ICS set at page fault at %#lx: %#lx\n", + current->comm, current->pid, pc, address); + show_regs(regs); + do_group_exit(SIGKILL); + return; + } + } +#else /* This case should have been handled by do_page_fault_ics(). */ BUG_ON(write & ~1); +#endif #if CHIP_HAS_TILE_DMA() /* @@ -721,10 +786,6 @@ void do_page_fault(struct pt_regs *regs, int fault_num, case INT_DMATLB_MISS: case INT_DMATLB_MISS_DWNCL: #endif -#if CHIP_HAS_SN_PROC() - case INT_SNITLB_MISS: - case INT_SNITLB_MISS_DWNCL: -#endif is_page_fault = 1; break; @@ -740,7 +801,8 @@ void do_page_fault(struct pt_regs *regs, int fault_num, panic("Bad fault number %d in do_page_fault", fault_num); } - if (EX1_PL(regs->ex1) != USER_PL) { +#if CHIP_HAS_TILE_DMA() + if (!user_mode(regs)) { struct async_tlb *async; switch (fault_num) { #if CHIP_HAS_TILE_DMA() @@ -751,12 +813,6 @@ void do_page_fault(struct pt_regs *regs, int fault_num, async = ¤t->thread.dma_async_tlb; break; #endif -#if CHIP_HAS_SN_PROC() - case INT_SNITLB_MISS: - case INT_SNITLB_MISS_DWNCL: - async = ¤t->thread.sn_async_tlb; - break; -#endif default: async = NULL; } @@ -783,19 +839,28 @@ void do_page_fault(struct pt_regs *regs, int fault_num, return; } } +#endif handle_page_fault(regs, fault_num, is_page_fault, address, write); } -#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() +#if CHIP_HAS_TILE_DMA() /* - * Check an async_tlb structure to see if a deferred fault is waiting, - * and if so pass it to the page-fault code. + * This routine effectively re-issues asynchronous page faults + * when we are returning to user space. */ -static void handle_async_page_fault(struct pt_regs *regs, - struct async_tlb *async) +void do_async_page_fault(struct pt_regs *regs) { + struct async_tlb *async = ¤t->thread.dma_async_tlb; + + /* + * Clear thread flag early. If we re-interrupt while processing + * code here, we will reset it and recall this routine before + * returning to user space. + */ + clear_thread_flag(TIF_ASYNC_TLB); + if (async->fault_num) { /* * Clear async->fault_num before calling the page-fault @@ -809,35 +874,15 @@ static void handle_async_page_fault(struct pt_regs *regs, async->address, async->is_write); } } -#endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */ - - -/* - * This routine effectively re-issues asynchronous page faults - * when we are returning to user space. - */ -void do_async_page_fault(struct pt_regs *regs) -{ - /* - * Clear thread flag early. If we re-interrupt while processing - * code here, we will reset it and recall this routine before - * returning to user space. - */ - clear_thread_flag(TIF_ASYNC_TLB); +#endif /* CHIP_HAS_TILE_DMA() */ -#if CHIP_HAS_TILE_DMA() - handle_async_page_fault(regs, ¤t->thread.dma_async_tlb); -#endif -#if CHIP_HAS_SN_PROC() - handle_async_page_fault(regs, ¤t->thread.sn_async_tlb); -#endif -} void vmalloc_sync_all(void) { #ifdef __tilegx__ /* Currently all L1 kernel pmd's are static and shared. */ - BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START)); + BUILD_BUG_ON(pgd_index(VMALLOC_END - PAGE_SIZE) != + pgd_index(VMALLOC_START)); #else /* * Note that races in the updates of insync and start aren't diff --git a/arch/tile/mm/highmem.c b/arch/tile/mm/highmem.c index 31dbbd9afe4..0dc21829477 100644 --- a/arch/tile/mm/highmem.c +++ b/arch/tile/mm/highmem.c @@ -93,7 +93,7 @@ static DEFINE_PER_CPU(struct kmap_amps, amps); * If we examine it earlier we are exposed to a race where it looks * writable earlier, but becomes immutable before we write the PTE. */ -static void kmap_atomic_register(struct page *page, enum km_type type, +static void kmap_atomic_register(struct page *page, int type, unsigned long va, pte_t *ptep, pte_t pteval) { unsigned long flags; @@ -114,7 +114,6 @@ static void kmap_atomic_register(struct page *page, enum km_type type, list_add(&->list, &_list); set_pte(ptep, pteval); - arch_flush_lazy_mmu_mode(); spin_unlock(&_lock); homecache_kpte_unlock(flags); @@ -224,12 +223,12 @@ void *kmap_atomic_prot(struct page *page, pgprot_t prot) } EXPORT_SYMBOL(kmap_atomic_prot); -void *__kmap_atomic(struct page *page) +void *kmap_atomic(struct page *page) { /* PAGE_NONE is a magic value that tells us to check immutability. */ return kmap_atomic_prot(page, PAGE_NONE); } -EXPORT_SYMBOL(__kmap_atomic); +EXPORT_SYMBOL(kmap_atomic); void __kunmap_atomic(void *kvaddr) { @@ -259,7 +258,6 @@ void __kunmap_atomic(void *kvaddr) BUG_ON(vaddr >= (unsigned long)high_memory); } - arch_flush_lazy_mmu_mode(); pagefault_enable(); } EXPORT_SYMBOL(__kunmap_atomic); diff --git a/arch/tile/mm/homecache.c b/arch/tile/mm/homecache.c index d78df3a6ee1..33294fdc402 100644 --- a/arch/tile/mm/homecache.c +++ b/arch/tile/mm/homecache.c @@ -30,6 +30,7 @@ #include <linux/cache.h> #include <linux/smp.h> #include <linux/module.h> +#include <linux/hugetlb.h> #include <asm/page.h> #include <asm/sections.h> @@ -42,12 +43,9 @@ #include "migrate.h" -#if CHIP_HAS_COHERENT_LOCAL_CACHE() - /* * The noallocl2 option suppresses all use of the L2 cache to cache - * locally from a remote home. There's no point in using it if we - * don't have coherent local caching, though. + * locally from a remote home. */ static int __write_once noallocl2; static int __init set_noallocl2(char *str) @@ -57,16 +55,6 @@ static int __init set_noallocl2(char *str) } early_param("noallocl2", set_noallocl2); -#else - -#define noallocl2 0 - -#endif - -/* Provide no-op versions of these routines to keep flush_remote() cleaner. */ -#define mark_caches_evicted_start() 0 -#define mark_caches_evicted_finish(mask, timestamp) do {} while (0) - /* * Update the irq_stat for cpus that we are going to interrupt @@ -106,7 +94,6 @@ static void hv_flush_update(const struct cpumask *cache_cpumask, * there's never any good reason for hv_flush_remote() to fail. * - Accepts a 32-bit PFN rather than a 64-bit PA, which generally * is the type that Linux wants to pass around anyway. - * - Centralizes the mark_caches_evicted() handling. * - Canonicalizes that lengths of zero make cpumasks NULL. * - Handles deferring TLB flushes for dataplane tiles. * - Tracks remote interrupts in the per-cpu irq_cpustat_t. @@ -125,7 +112,6 @@ void flush_remote(unsigned long cache_pfn, unsigned long cache_control, HV_Remote_ASID *asids, int asidcount) { int rc; - int timestamp = 0; /* happy compiler */ struct cpumask cache_cpumask_copy, tlb_cpumask_copy; struct cpumask *cache_cpumask, *tlb_cpumask; HV_PhysAddr cache_pa; @@ -156,15 +142,11 @@ void flush_remote(unsigned long cache_pfn, unsigned long cache_control, hv_flush_update(cache_cpumask, tlb_cpumask, tlb_va, tlb_length, asids, asidcount); cache_pa = (HV_PhysAddr)cache_pfn << PAGE_SHIFT; - if (cache_control & HV_FLUSH_EVICT_L2) - timestamp = mark_caches_evicted_start(); rc = hv_flush_remote(cache_pa, cache_control, cpumask_bits(cache_cpumask), tlb_va, tlb_length, tlb_pgsize, cpumask_bits(tlb_cpumask), asids, asidcount); - if (cache_control & HV_FLUSH_EVICT_L2) - mark_caches_evicted_finish(cache_cpumask, timestamp); if (rc == 0) return; cpumask_scnprintf(cache_buf, sizeof(cache_buf), &cache_cpumask_copy); @@ -179,59 +161,88 @@ void flush_remote(unsigned long cache_pfn, unsigned long cache_control, panic("Unsafe to continue."); } -void homecache_evict(const struct cpumask *mask) +static void homecache_finv_page_va(void* va, int home) { - flush_remote(0, HV_FLUSH_EVICT_L2, mask, 0, 0, 0, NULL, NULL, 0); + int cpu = get_cpu(); + if (home == cpu) { + finv_buffer_local(va, PAGE_SIZE); + } else if (home == PAGE_HOME_HASH) { + finv_buffer_remote(va, PAGE_SIZE, 1); + } else { + BUG_ON(home < 0 || home >= NR_CPUS); + finv_buffer_remote(va, PAGE_SIZE, 0); + } + put_cpu(); } -/* Return a mask of the cpus whose caches currently own these pages. */ -static void homecache_mask(struct page *page, int pages, - struct cpumask *home_mask) +void homecache_finv_map_page(struct page *page, int home) { - int i; - cpumask_clear(home_mask); - for (i = 0; i < pages; ++i) { - int home = page_home(&page[i]); - if (home == PAGE_HOME_IMMUTABLE || - home == PAGE_HOME_INCOHERENT) { - cpumask_copy(home_mask, cpu_possible_mask); - return; - } -#if CHIP_HAS_CBOX_HOME_MAP() - if (home == PAGE_HOME_HASH) { - cpumask_or(home_mask, home_mask, &hash_for_home_map); - continue; - } + unsigned long flags; + unsigned long va; + pte_t *ptep; + pte_t pte; + + if (home == PAGE_HOME_UNCACHED) + return; + local_irq_save(flags); +#ifdef CONFIG_HIGHMEM + va = __fix_to_virt(FIX_KMAP_BEGIN + kmap_atomic_idx_push() + + (KM_TYPE_NR * smp_processor_id())); +#else + va = __fix_to_virt(FIX_HOMECACHE_BEGIN + smp_processor_id()); #endif - if (home == PAGE_HOME_UNCACHED) - continue; - BUG_ON(home < 0 || home >= NR_CPUS); - cpumask_set_cpu(home, home_mask); - } + ptep = virt_to_kpte(va); + pte = pfn_pte(page_to_pfn(page), PAGE_KERNEL); + __set_pte(ptep, pte_set_home(pte, home)); + homecache_finv_page_va((void *)va, home); + __pte_clear(ptep); + hv_flush_page(va, PAGE_SIZE); +#ifdef CONFIG_HIGHMEM + kmap_atomic_idx_pop(); +#endif + local_irq_restore(flags); } -/* - * Return the passed length, or zero if it's long enough that we - * believe we should evict the whole L2 cache. - */ -static unsigned long cache_flush_length(unsigned long length) +static void homecache_finv_page_home(struct page *page, int home) +{ + if (!PageHighMem(page) && home == page_home(page)) + homecache_finv_page_va(page_address(page), home); + else + homecache_finv_map_page(page, home); +} + +static inline bool incoherent_home(int home) +{ + return home == PAGE_HOME_IMMUTABLE || home == PAGE_HOME_INCOHERENT; +} + +static void homecache_finv_page_internal(struct page *page, int force_map) { - return (length >= CHIP_L2_CACHE_SIZE()) ? HV_FLUSH_EVICT_L2 : length; + int home = page_home(page); + if (home == PAGE_HOME_UNCACHED) + return; + if (incoherent_home(home)) { + int cpu; + for_each_cpu(cpu, &cpu_cacheable_map) + homecache_finv_map_page(page, cpu); + } else if (force_map) { + /* Force if, e.g., the normal mapping is migrating. */ + homecache_finv_map_page(page, home); + } else { + homecache_finv_page_home(page, home); + } + sim_validate_lines_evicted(PFN_PHYS(page_to_pfn(page)), PAGE_SIZE); } -/* Flush a page out of whatever cache(s) it is in. */ -void homecache_flush_cache(struct page *page, int order) +void homecache_finv_page(struct page *page) { - int pages = 1 << order; - int length = cache_flush_length(pages * PAGE_SIZE); - unsigned long pfn = page_to_pfn(page); - struct cpumask home_mask; - - homecache_mask(page, pages, &home_mask); - flush_remote(pfn, length, &home_mask, 0, 0, 0, NULL, NULL, 0); - sim_validate_lines_evicted(PFN_PHYS(pfn), pages * PAGE_SIZE); + homecache_finv_page_internal(page, 0); } +void homecache_evict(const struct cpumask *mask) +{ + flush_remote(0, HV_FLUSH_EVICT_L2, mask, 0, 0, 0, NULL, NULL, 0); +} /* Report the home corresponding to a given PTE. */ static int pte_to_home(pte_t pte) @@ -245,10 +256,8 @@ static int pte_to_home(pte_t pte) return PAGE_HOME_INCOHERENT; case HV_PTE_MODE_UNCACHED: return PAGE_HOME_UNCACHED; -#if CHIP_HAS_CBOX_HOME_MAP() case HV_PTE_MODE_CACHE_HASH_L3: return PAGE_HOME_HASH; -#endif } panic("Bad PTE %#llx\n", pte.val); } @@ -305,20 +314,16 @@ pte_t pte_set_home(pte_t pte, int home) HV_PTE_MODE_CACHE_NO_L3); } } else -#if CHIP_HAS_CBOX_HOME_MAP() if (hash_default) pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_HASH_L3); else -#endif pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_NO_L3); pte = hv_pte_set_nc(pte); break; -#if CHIP_HAS_CBOX_HOME_MAP() case PAGE_HOME_HASH: pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_HASH_L3); break; -#endif default: BUG_ON(home < 0 || home >= NR_CPUS || @@ -328,7 +333,6 @@ pte_t pte_set_home(pte_t pte, int home) break; } -#if CHIP_HAS_NC_AND_NOALLOC_BITS() if (noallocl2) pte = hv_pte_set_no_alloc_l2(pte); @@ -337,7 +341,6 @@ pte_t pte_set_home(pte_t pte, int home) hv_pte_get_mode(pte) == HV_PTE_MODE_CACHE_NO_L3) { pte = hv_pte_set_mode(pte, HV_PTE_MODE_UNCACHED); } -#endif /* Checking this case here gives a better panic than from the hv. */ BUG_ON(hv_pte_get_mode(pte) == 0); @@ -353,21 +356,16 @@ EXPORT_SYMBOL(pte_set_home); * so they're not suitable for anything but infrequent use. */ -#if CHIP_HAS_CBOX_HOME_MAP() -static inline int initial_page_home(void) { return PAGE_HOME_HASH; } -#else -static inline int initial_page_home(void) { return 0; } -#endif - int page_home(struct page *page) { if (PageHighMem(page)) { - return initial_page_home(); + return PAGE_HOME_HASH; } else { unsigned long kva = (unsigned long)page_address(page); - return pte_to_home(*virt_to_pte(NULL, kva)); + return pte_to_home(*virt_to_kpte(kva)); } } +EXPORT_SYMBOL(page_home); void homecache_change_page_home(struct page *page, int order, int home) { @@ -383,12 +381,13 @@ void homecache_change_page_home(struct page *page, int order, int home) NULL, 0); for (i = 0; i < pages; ++i, kva += PAGE_SIZE) { - pte_t *ptep = virt_to_pte(NULL, kva); + pte_t *ptep = virt_to_kpte(kva); pte_t pteval = *ptep; BUG_ON(!pte_present(pteval) || pte_huge(pteval)); - *ptep = pte_set_home(pteval, home); + __set_pte(ptep, pte_set_home(pteval, home)); } } +EXPORT_SYMBOL(homecache_change_page_home); struct page *homecache_alloc_pages(gfp_t gfp_mask, unsigned int order, int home) @@ -413,19 +412,25 @@ struct page *homecache_alloc_pages_node(int nid, gfp_t gfp_mask, return page; } -void homecache_free_pages(unsigned long addr, unsigned int order) +void __homecache_free_pages(struct page *page, unsigned int order) { - struct page *page; - - if (addr == 0) - return; - - VM_BUG_ON(!virt_addr_valid((void *)addr)); - page = virt_to_page((void *)addr); if (put_page_testzero(page)) { - int pages = (1 << order); - homecache_change_page_home(page, order, initial_page_home()); - while (pages--) - __free_page(page++); + homecache_change_page_home(page, order, PAGE_HOME_HASH); + if (order == 0) { + free_hot_cold_page(page, false); + } else { + init_page_count(page); + __free_pages(page, order); + } + } +} +EXPORT_SYMBOL(__homecache_free_pages); + +void homecache_free_pages(unsigned long addr, unsigned int order) +{ + if (addr != 0) { + VM_BUG_ON(!virt_addr_valid((void *)addr)); + __homecache_free_pages(virt_to_page((void *)addr), order); } } +EXPORT_SYMBOL(homecache_free_pages); diff --git a/arch/tile/mm/hugetlbpage.c b/arch/tile/mm/hugetlbpage.c index 201a582c413..e514899e110 100644 --- a/arch/tile/mm/hugetlbpage.c +++ b/arch/tile/mm/hugetlbpage.c @@ -27,85 +27,129 @@ #include <linux/mman.h> #include <asm/tlb.h> #include <asm/tlbflush.h> +#include <asm/setup.h> + +#ifdef CONFIG_HUGETLB_SUPER_PAGES + +/* + * Provide an additional huge page size (in addition to the regular default + * huge page size) if no "hugepagesz" arguments are specified. + * Note that it must be smaller than the default huge page size so + * that it's possible to allocate them on demand from the buddy allocator. + * You can change this to 64K (on a 16K build), 256K, 1M, or 4M, + * or not define it at all. + */ +#define ADDITIONAL_HUGE_SIZE (1024 * 1024UL) + +/* "Extra" page-size multipliers, one per level of the page table. */ +int huge_shift[HUGE_SHIFT_ENTRIES] = { +#ifdef ADDITIONAL_HUGE_SIZE +#define ADDITIONAL_HUGE_SHIFT __builtin_ctzl(ADDITIONAL_HUGE_SIZE / PAGE_SIZE) + [HUGE_SHIFT_PAGE] = ADDITIONAL_HUGE_SHIFT +#endif +}; + +#endif pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) { pgd_t *pgd; pud_t *pud; - pte_t *pte = NULL; - /* We do not yet support multiple huge page sizes. */ - BUG_ON(sz != PMD_SIZE); + addr &= -sz; /* Mask off any low bits in the address. */ pgd = pgd_offset(mm, addr); pud = pud_alloc(mm, pgd, addr); - if (pud) - pte = (pte_t *) pmd_alloc(mm, pud, addr); - BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); - return pte; +#ifdef CONFIG_HUGETLB_SUPER_PAGES + if (sz >= PGDIR_SIZE) { + BUG_ON(sz != PGDIR_SIZE && + sz != PGDIR_SIZE << huge_shift[HUGE_SHIFT_PGDIR]); + return (pte_t *)pud; + } else { + pmd_t *pmd = pmd_alloc(mm, pud, addr); + if (sz >= PMD_SIZE) { + BUG_ON(sz != PMD_SIZE && + sz != (PMD_SIZE << huge_shift[HUGE_SHIFT_PMD])); + return (pte_t *)pmd; + } + else { + if (sz != PAGE_SIZE << huge_shift[HUGE_SHIFT_PAGE]) + panic("Unexpected page size %#lx\n", sz); + return pte_alloc_map(mm, NULL, pmd, addr); + } + } +#else + BUG_ON(sz != PMD_SIZE); + return (pte_t *) pmd_alloc(mm, pud, addr); +#endif } -pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) +static pte_t *get_pte(pte_t *base, int index, int level) { - pgd_t *pgd; - pud_t *pud; - pmd_t *pmd = NULL; - - pgd = pgd_offset(mm, addr); - if (pgd_present(*pgd)) { - pud = pud_offset(pgd, addr); - if (pud_present(*pud)) - pmd = pmd_offset(pud, addr); + pte_t *ptep = base + index; +#ifdef CONFIG_HUGETLB_SUPER_PAGES + if (!pte_present(*ptep) && huge_shift[level] != 0) { + unsigned long mask = -1UL << huge_shift[level]; + pte_t *super_ptep = base + (index & mask); + pte_t pte = *super_ptep; + if (pte_present(pte) && pte_super(pte)) + ptep = super_ptep; } - return (pte_t *) pmd; +#endif + return ptep; } -#ifdef HUGETLB_TEST -struct page *follow_huge_addr(struct mm_struct *mm, unsigned long address, - int write) +pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) { - unsigned long start = address; - int length = 1; - int nr; - struct page *page; - struct vm_area_struct *vma; - - vma = find_vma(mm, addr); - if (!vma || !is_vm_hugetlb_page(vma)) - return ERR_PTR(-EINVAL); - - pte = huge_pte_offset(mm, address); - - /* hugetlb should be locked, and hence, prefaulted */ - WARN_ON(!pte || pte_none(*pte)); - - page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)]; - - WARN_ON(!PageHead(page)); + pgd_t *pgd; + pud_t *pud; + pmd_t *pmd; +#ifdef CONFIG_HUGETLB_SUPER_PAGES + pte_t *pte; +#endif - return page; -} + /* Get the top-level page table entry. */ + pgd = (pgd_t *)get_pte((pte_t *)mm->pgd, pgd_index(addr), 0); -int pmd_huge(pmd_t pmd) -{ - return 0; -} + /* We don't have four levels. */ + pud = pud_offset(pgd, addr); +#ifndef __PAGETABLE_PUD_FOLDED +# error support fourth page table level +#endif + if (!pud_present(*pud)) + return NULL; + + /* Check for an L0 huge PTE, if we have three levels. */ +#ifndef __PAGETABLE_PMD_FOLDED + if (pud_huge(*pud)) + return (pte_t *)pud; + + pmd = (pmd_t *)get_pte((pte_t *)pud_page_vaddr(*pud), + pmd_index(addr), 1); + if (!pmd_present(*pmd)) + return NULL; +#else + pmd = pmd_offset(pud, addr); +#endif -int pud_huge(pud_t pud) -{ - return 0; -} + /* Check for an L1 huge PTE. */ + if (pmd_huge(*pmd)) + return (pte_t *)pmd; + +#ifdef CONFIG_HUGETLB_SUPER_PAGES + /* Check for an L2 huge PTE. */ + pte = get_pte((pte_t *)pmd_page_vaddr(*pmd), pte_index(addr), 2); + if (!pte_present(*pte)) + return NULL; + if (pte_super(*pte)) + return pte; +#endif -struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address, - pmd_t *pmd, int write) -{ return NULL; } -#else - struct page *follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) { @@ -149,50 +193,21 @@ int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) return 0; } -#endif - #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { struct hstate *h = hstate_file(file); - struct mm_struct *mm = current->mm; - struct vm_area_struct *vma; - unsigned long start_addr; - - if (len > mm->cached_hole_size) { - start_addr = mm->free_area_cache; - } else { - start_addr = TASK_UNMAPPED_BASE; - mm->cached_hole_size = 0; - } - -full_search: - addr = ALIGN(start_addr, huge_page_size(h)); - - for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { - /* At this point: (!vma || addr < vma->vm_end). */ - if (TASK_SIZE - len < addr) { - /* - * Start a new search - just in case we missed - * some holes. - */ - if (start_addr != TASK_UNMAPPED_BASE) { - start_addr = TASK_UNMAPPED_BASE; - mm->cached_hole_size = 0; - goto full_search; - } - return -ENOMEM; - } - if (!vma || addr + len <= vma->vm_start) { - mm->free_area_cache = addr + len; - return addr; - } - if (addr + mm->cached_hole_size < vma->vm_start) - mm->cached_hole_size = vma->vm_start - addr; - addr = ALIGN(vma->vm_end, huge_page_size(h)); - } + struct vm_unmapped_area_info info; + + info.flags = 0; + info.length = len; + info.low_limit = TASK_UNMAPPED_BASE; + info.high_limit = TASK_SIZE; + info.align_mask = PAGE_MASK & ~huge_page_mask(h); + info.align_offset = 0; + return vm_unmapped_area(&info); } static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file, @@ -200,92 +215,30 @@ static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long pgoff, unsigned long flags) { struct hstate *h = hstate_file(file); - struct mm_struct *mm = current->mm; - struct vm_area_struct *vma, *prev_vma; - unsigned long base = mm->mmap_base, addr = addr0; - unsigned long largest_hole = mm->cached_hole_size; - int first_time = 1; - - /* don't allow allocations above current base */ - if (mm->free_area_cache > base) - mm->free_area_cache = base; - - if (len <= largest_hole) { - largest_hole = 0; - mm->free_area_cache = base; - } -try_again: - /* make sure it can fit in the remaining address space */ - if (mm->free_area_cache < len) - goto fail; - - /* either no address requested or cant fit in requested address hole */ - addr = (mm->free_area_cache - len) & huge_page_mask(h); - do { - /* - * Lookup failure means no vma is above this address, - * i.e. return with success: - */ - vma = find_vma_prev(mm, addr, &prev_vma); - if (!vma) { - return addr; - break; - } + struct vm_unmapped_area_info info; + unsigned long addr; - /* - * new region fits between prev_vma->vm_end and - * vma->vm_start, use it: - */ - if (addr + len <= vma->vm_start && - (!prev_vma || (addr >= prev_vma->vm_end))) { - /* remember the address as a hint for next time */ - mm->cached_hole_size = largest_hole; - mm->free_area_cache = addr; - return addr; - } else { - /* pull free_area_cache down to the first hole */ - if (mm->free_area_cache == vma->vm_end) { - mm->free_area_cache = vma->vm_start; - mm->cached_hole_size = largest_hole; - } - } + info.flags = VM_UNMAPPED_AREA_TOPDOWN; + info.length = len; + info.low_limit = PAGE_SIZE; + info.high_limit = current->mm->mmap_base; + info.align_mask = PAGE_MASK & ~huge_page_mask(h); + info.align_offset = 0; + addr = vm_unmapped_area(&info); - /* remember the largest hole we saw so far */ - if (addr + largest_hole < vma->vm_start) - largest_hole = vma->vm_start - addr; - - /* try just below the current vma->vm_start */ - addr = (vma->vm_start - len) & huge_page_mask(h); - - } while (len <= vma->vm_start); - -fail: - /* - * if hint left us with no space for the requested - * mapping then try again: - */ - if (first_time) { - mm->free_area_cache = base; - largest_hole = 0; - first_time = 0; - goto try_again; - } /* * A failed mmap() very likely causes application failure, * so fall back to the bottom-up function here. This scenario * can happen with large stack limits and large mmap() * allocations. */ - mm->free_area_cache = TASK_UNMAPPED_BASE; - mm->cached_hole_size = ~0UL; - addr = hugetlb_get_unmapped_area_bottomup(file, addr0, - len, pgoff, flags); - - /* - * Restore the topdown base: - */ - mm->free_area_cache = base; - mm->cached_hole_size = ~0UL; + if (addr & ~PAGE_MASK) { + VM_BUG_ON(addr != -ENOMEM); + info.flags = 0; + info.low_limit = TASK_UNMAPPED_BASE; + info.high_limit = TASK_SIZE; + addr = vm_unmapped_area(&info); + } return addr; } @@ -322,21 +275,102 @@ unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, return hugetlb_get_unmapped_area_topdown(file, addr, len, pgoff, flags); } +#endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */ -static __init int setup_hugepagesz(char *opt) +#ifdef CONFIG_HUGETLB_SUPER_PAGES +static __init int __setup_hugepagesz(unsigned long ps) { - unsigned long ps = memparse(opt, &opt); - if (ps == PMD_SIZE) { - hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT); - } else if (ps == PUD_SIZE) { - hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT); + int log_ps = __builtin_ctzl(ps); + int level, base_shift; + + if ((1UL << log_ps) != ps || (log_ps & 1) != 0) { + pr_warn("Not enabling %ld byte huge pages;" + " must be a power of four.\n", ps); + return -EINVAL; + } + + if (ps > 64*1024*1024*1024UL) { + pr_warn("Not enabling %ld MB huge pages;" + " largest legal value is 64 GB .\n", ps >> 20); + return -EINVAL; + } else if (ps >= PUD_SIZE) { + static long hv_jpage_size; + if (hv_jpage_size == 0) + hv_jpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_JUMBO); + if (hv_jpage_size != PUD_SIZE) { + pr_warn("Not enabling >= %ld MB huge pages:" + " hypervisor reports size %ld\n", + PUD_SIZE >> 20, hv_jpage_size); + return -EINVAL; + } + level = 0; + base_shift = PUD_SHIFT; + } else if (ps >= PMD_SIZE) { + level = 1; + base_shift = PMD_SHIFT; + } else if (ps > PAGE_SIZE) { + level = 2; + base_shift = PAGE_SHIFT; } else { - pr_err("hugepagesz: Unsupported page size %lu M\n", - ps >> 20); - return 0; + pr_err("hugepagesz: huge page size %ld too small\n", ps); + return -EINVAL; + } + + if (log_ps != base_shift) { + int shift_val = log_ps - base_shift; + if (huge_shift[level] != 0) { + int old_shift = base_shift + huge_shift[level]; + pr_warn("Not enabling %ld MB huge pages;" + " already have size %ld MB.\n", + ps >> 20, (1UL << old_shift) >> 20); + return -EINVAL; + } + if (hv_set_pte_super_shift(level, shift_val) != 0) { + pr_warn("Not enabling %ld MB huge pages;" + " no hypervisor support.\n", ps >> 20); + return -EINVAL; + } + printk(KERN_DEBUG "Enabled %ld MB huge pages\n", ps >> 20); + huge_shift[level] = shift_val; + } + + hugetlb_add_hstate(log_ps - PAGE_SHIFT); + + return 0; +} + +static bool saw_hugepagesz; + +static __init int setup_hugepagesz(char *opt) +{ + if (!saw_hugepagesz) { + saw_hugepagesz = true; + memset(huge_shift, 0, sizeof(huge_shift)); } - return 1; + return __setup_hugepagesz(memparse(opt, NULL)); } __setup("hugepagesz=", setup_hugepagesz); -#endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/ +#ifdef ADDITIONAL_HUGE_SIZE +/* + * Provide an additional huge page size if no "hugepagesz" args are given. + * In that case, all the cores have properly set up their hv super_shift + * already, but we need to notify the hugetlb code to enable the + * new huge page size from the Linux point of view. + */ +static __init int add_default_hugepagesz(void) +{ + if (!saw_hugepagesz) { + BUILD_BUG_ON(ADDITIONAL_HUGE_SIZE >= PMD_SIZE || + ADDITIONAL_HUGE_SIZE <= PAGE_SIZE); + BUILD_BUG_ON((PAGE_SIZE << ADDITIONAL_HUGE_SHIFT) != + ADDITIONAL_HUGE_SIZE); + BUILD_BUG_ON(ADDITIONAL_HUGE_SHIFT & 1); + hugetlb_add_hstate(ADDITIONAL_HUGE_SHIFT); + } + return 0; +} +arch_initcall(add_default_hugepagesz); +#endif + +#endif /* CONFIG_HUGETLB_SUPER_PAGES */ diff --git a/arch/tile/mm/init.c b/arch/tile/mm/init.c index 0b9ce69b0ee..bfb3127b4df 100644 --- a/arch/tile/mm/init.c +++ b/arch/tile/mm/init.c @@ -38,7 +38,6 @@ #include <linux/uaccess.h> #include <asm/mmu_context.h> #include <asm/processor.h> -#include <asm/system.h> #include <asm/pgtable.h> #include <asm/pgalloc.h> #include <asm/dma.h> @@ -53,26 +52,13 @@ #include "migrate.h" -/* - * We could set FORCE_MAX_ZONEORDER to "(HPAGE_SHIFT - PAGE_SHIFT + 1)" - * in the Tile Kconfig, but this generates configure warnings. - * Do it here and force people to get it right to compile this file. - * The problem is that with 4KB small pages and 16MB huge pages, - * the default value doesn't allow us to group enough small pages - * together to make up a huge page. - */ -#if CONFIG_FORCE_MAX_ZONEORDER < HPAGE_SHIFT - PAGE_SHIFT + 1 -# error "Change FORCE_MAX_ZONEORDER in arch/tile/Kconfig to match page size" -#endif - #define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0)) #ifndef __tilegx__ unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE; +EXPORT_SYMBOL(VMALLOC_RESERVE); #endif -DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); - /* Create an L2 page table */ static pte_t * __init alloc_pte(void) { @@ -96,7 +82,7 @@ static int num_l2_ptes[MAX_NUMNODES]; static void init_prealloc_ptes(int node, int pages) { - BUG_ON(pages & (HV_L2_ENTRIES-1)); + BUG_ON(pages & (PTRS_PER_PTE - 1)); if (pages) { num_l2_ptes[node] = pages; l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t), @@ -120,10 +106,8 @@ pte_t *get_prealloc_pte(unsigned long pfn) */ static int initial_heap_home(void) { -#if CHIP_HAS_CBOX_HOME_MAP() if (hash_default) return PAGE_HOME_HASH; -#endif return smp_processor_id(); } @@ -145,14 +129,9 @@ static void __init assign_pte(pmd_t *pmd, pte_t *page_table) #ifdef __tilegx__ -#if HV_L1_SIZE != HV_L2_SIZE -# error Rework assumption that L1 and L2 page tables are same size. -#endif - -/* Since pmd_t arrays and pte_t arrays are the same size, just use casts. */ static inline pmd_t *alloc_pmd(void) { - return (pmd_t *)alloc_pte(); + return __alloc_bootmem(L1_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0); } static inline void assign_pmd(pud_t *pud, pmd_t *pmd) @@ -169,7 +148,21 @@ void __init shatter_pmd(pmd_t *pmd) assign_pte(pmd, pte); } -#ifdef CONFIG_HIGHMEM +#ifdef __tilegx__ +static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va) +{ + pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va); + if (pud_none(*pud)) + assign_pmd(pud, alloc_pmd()); + return pmd_offset(pud, va); +} +#else +static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va) +{ + return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va); +} +#endif + /* * This function initializes a certain range of kernel virtual memory * with new bootmem page tables, everywhere page tables are missing in @@ -182,34 +175,24 @@ void __init shatter_pmd(pmd_t *pmd) * checking the pgd every time. */ static void __init page_table_range_init(unsigned long start, - unsigned long end, pgd_t *pgd_base) + unsigned long end, pgd_t *pgd) { - pgd_t *pgd; - int pgd_idx; unsigned long vaddr; - - vaddr = start; - pgd_idx = pgd_index(vaddr); - pgd = pgd_base + pgd_idx; - - for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) { - pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr); + start = round_down(start, PMD_SIZE); + end = round_up(end, PMD_SIZE); + for (vaddr = start; vaddr < end; vaddr += PMD_SIZE) { + pmd_t *pmd = get_pmd(pgd, vaddr); if (pmd_none(*pmd)) assign_pte(pmd, alloc_pte()); - vaddr += PMD_SIZE; } } -#endif /* CONFIG_HIGHMEM */ - -#if CHIP_HAS_CBOX_HOME_MAP() static int __initdata ktext_hash = 1; /* .text pages */ static int __initdata kdata_hash = 1; /* .data and .bss pages */ int __write_once hash_default = 1; /* kernel allocator pages */ EXPORT_SYMBOL(hash_default); int __write_once kstack_hash = 1; /* if no homecaching, use h4h */ -#endif /* CHIP_HAS_CBOX_HOME_MAP */ /* * CPUs to use to for striping the pages of kernel data. If hash-for-home @@ -227,14 +210,12 @@ int __write_once kdata_huge; /* if no homecaching, small pages */ static pgprot_t __init construct_pgprot(pgprot_t prot, int home) { prot = pte_set_home(prot, home); -#if CHIP_HAS_CBOX_HOME_MAP() if (home == PAGE_HOME_IMMUTABLE) { if (ktext_hash) prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3); else prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3); } -#endif return prot; } @@ -246,40 +227,28 @@ static pgprot_t __init init_pgprot(ulong address) { int cpu; unsigned long page; - enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET }; + enum { CODE_DELTA = MEM_SV_START - PAGE_OFFSET }; -#if CHIP_HAS_CBOX_HOME_MAP() /* For kdata=huge, everything is just hash-for-home. */ if (kdata_huge) return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH); -#endif /* We map the aliased pages of permanent text inaccessible. */ if (address < (ulong) _sinittext - CODE_DELTA) return PAGE_NONE; - /* - * We map read-only data non-coherent for performance. We could - * use neighborhood caching on TILE64, but it's not clear it's a win. - */ + /* We map read-only data non-coherent for performance. */ if ((address >= (ulong) __start_rodata && address < (ulong) __end_rodata) || address == (ulong) empty_zero_page) { return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE); } - /* As a performance optimization, keep the boot init stack here. */ - if (address >= (ulong)&init_thread_union && - address < (ulong)&init_thread_union + THREAD_SIZE) - return construct_pgprot(PAGE_KERNEL, smp_processor_id()); - #ifndef __tilegx__ -#if !ATOMIC_LOCKS_FOUND_VIA_TABLE() /* Force the atomic_locks[] array page to be hash-for-home. */ if (address == (ulong) atomic_locks) return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH); #endif -#endif /* * Everything else that isn't data or bss is heap, so mark it @@ -297,28 +266,18 @@ static pgprot_t __init init_pgprot(ulong address) if (address >= (ulong) _end || address < (ulong) _einitdata) return construct_pgprot(PAGE_KERNEL, initial_heap_home()); -#if CHIP_HAS_CBOX_HOME_MAP() /* Use hash-for-home if requested for data/bss. */ if (kdata_hash) return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH); -#endif - - /* - * Make the w1data homed like heap to start with, to avoid - * making it part of the page-striped data area when we're just - * going to convert it to read-only soon anyway. - */ - if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end) - return construct_pgprot(PAGE_KERNEL, initial_heap_home()); /* * Otherwise we just hand out consecutive cpus. To avoid * requiring this function to hold state, we just walk forward from - * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach - * the requested address, while walking cpu home around kdata_mask. - * This is typically no more than a dozen or so iterations. + * __end_rodata by PAGE_SIZE, skipping the readonly and init data, to + * reach the requested address, while walking cpu home around + * kdata_mask. This is typically no more than a dozen or so iterations. */ - page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK; + page = (((ulong)__end_rodata) + PAGE_SIZE - 1) & PAGE_MASK; BUG_ON(address < page || address >= (ulong)_end); cpu = cpumask_first(&kdata_mask); for (; page < address; page += PAGE_SIZE) { @@ -328,11 +287,9 @@ static pgprot_t __init init_pgprot(ulong address) if (page == (ulong)empty_zero_page) continue; #ifndef __tilegx__ -#if !ATOMIC_LOCKS_FOUND_VIA_TABLE() if (page == (ulong)atomic_locks) continue; #endif -#endif cpu = cpumask_next(cpu, &kdata_mask); if (cpu == NR_CPUS) cpu = cpumask_first(&kdata_mask); @@ -375,7 +332,7 @@ static int __init setup_ktext(char *str) ktext_arg_seen = 1; - /* Default setting on Tile64: use a huge page */ + /* Default setting: use a huge page */ if (strcmp(str, "huge") == 0) pr_info("ktext: using one huge locally cached page\n"); @@ -421,31 +378,14 @@ static inline pgprot_t ktext_set_nocache(pgprot_t prot) { if (!ktext_nocache) prot = hv_pte_set_nc(prot); -#if CHIP_HAS_NC_AND_NOALLOC_BITS() else prot = hv_pte_set_no_alloc_l2(prot); -#endif return prot; } -#ifndef __tilegx__ -static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va) -{ - return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va); -} -#else -static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va) -{ - pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va); - if (pud_none(*pud)) - assign_pmd(pud, alloc_pmd()); - return pmd_offset(pud, va); -} -#endif - /* Temporary page table we use for staging. */ static pgd_t pgtables[PTRS_PER_PGD] - __attribute__((section(".init.page"))); + __attribute__((aligned(HV_PAGE_TABLE_ALIGN))); /* * This maps the physical memory to kernel virtual address space, a total @@ -463,6 +403,7 @@ static pgd_t pgtables[PTRS_PER_PGD] */ static void __init kernel_physical_mapping_init(pgd_t *pgd_base) { + unsigned long long irqmask; unsigned long address, pfn; pmd_t *pmd; pte_t *pte; @@ -471,7 +412,6 @@ static void __init kernel_physical_mapping_init(pgd_t *pgd_base) struct cpumask kstripe_mask; int rc, i; -#if CHIP_HAS_CBOX_HOME_MAP() if (ktext_arg_seen && ktext_hash) { pr_warning("warning: \"ktext\" boot argument ignored" " if \"kcache_hash\" sets up text hash-for-home\n"); @@ -488,7 +428,6 @@ static void __init kernel_physical_mapping_init(pgd_t *pgd_base) " kcache_hash=all or =allbutstack\n"); kdata_huge = 0; } -#endif /* * Set up a mask for cpus to use for kernel striping. @@ -569,8 +508,9 @@ static void __init kernel_physical_mapping_init(pgd_t *pgd_base) } } - address = MEM_SV_INTRPT; + address = MEM_SV_START; pmd = get_pmd(pgtables, address); + pfn = 0; /* code starts at PA 0 */ if (ktext_small) { /* Allocate an L2 PTE for the kernel text */ int cpu = 0; @@ -592,11 +532,16 @@ static void __init kernel_physical_mapping_init(pgd_t *pgd_base) prot = ktext_set_nocache(prot); } - BUG_ON(address != (unsigned long)_stext); - pfn = 0; /* code starts at PA 0 */ - pte = alloc_pte(); - for (pte_ofs = 0; address < (unsigned long)_einittext; - pfn++, pte_ofs++, address += PAGE_SIZE) { + BUG_ON(address != (unsigned long)_text); + pte = NULL; + for (; address < (unsigned long)_einittext; + pfn++, address += PAGE_SIZE) { + pte_ofs = pte_index(address); + if (pte_ofs == 0) { + if (pte) + assign_pte(pmd++, pte); + pte = alloc_pte(); + } if (!ktext_local) { prot = set_remote_cache_cpu(prot, cpu); cpu = cpumask_next(cpu, &ktext_mask); @@ -605,17 +550,16 @@ static void __init kernel_physical_mapping_init(pgd_t *pgd_base) } pte[pte_ofs] = pfn_pte(pfn, prot); } - assign_pte(pmd, pte); + if (pte) + assign_pte(pmd, pte); } else { pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC); pteval = pte_mkhuge(pteval); -#if CHIP_HAS_CBOX_HOME_MAP() if (ktext_hash) { pteval = hv_pte_set_mode(pteval, HV_PTE_MODE_CACHE_HASH_L3); pteval = ktext_set_nocache(pteval); } else -#endif /* CHIP_HAS_CBOX_HOME_MAP() */ if (cpumask_weight(&ktext_mask) == 1) { pteval = set_remote_cache_cpu(pteval, cpumask_first(&ktext_mask)); @@ -628,7 +572,9 @@ static void __init kernel_physical_mapping_init(pgd_t *pgd_base) else pteval = hv_pte_set_mode(pteval, HV_PTE_MODE_CACHE_NO_L3); - *(pte_t *)pmd = pteval; + for (; address < (unsigned long)_einittext; + pfn += PFN_DOWN(HPAGE_SIZE), address += HPAGE_SIZE) + *(pte_t *)(pmd++) = pfn_pte(pfn, pteval); } /* Set swapper_pgprot here so it is flushed to memory right away. */ @@ -643,16 +589,30 @@ static void __init kernel_physical_mapping_init(pgd_t *pgd_base) * - install pgtables[] as the real page table * - flush the TLB so the new page table takes effect */ + irqmask = interrupt_mask_save_mask(); + interrupt_mask_set_mask(-1ULL); rc = flush_and_install_context(__pa(pgtables), init_pgprot((unsigned long)pgtables), __get_cpu_var(current_asid), cpumask_bits(my_cpu_mask)); + interrupt_mask_restore_mask(irqmask); BUG_ON(rc != 0); /* Copy the page table back to the normal swapper_pg_dir. */ memcpy(pgd_base, pgtables, sizeof(pgtables)); __install_page_table(pgd_base, __get_cpu_var(current_asid), swapper_pgprot); + + /* + * We just read swapper_pgprot and thus brought it into the cache, + * with its new home & caching mode. When we start the other CPUs, + * they're going to reference swapper_pgprot via their initial fake + * VA-is-PA mappings, which cache everything locally. At that + * time, if it's in our cache with a conflicting home, the + * simulator's coherence checker will complain. So, flush it out + * of our cache; we're not going to ever use it again anyway. + */ + __insn_finv(&swapper_pgprot); } /* @@ -698,6 +658,7 @@ static void __init permanent_kmaps_init(pgd_t *pgd_base) #endif /* CONFIG_HIGHMEM */ +#ifndef CONFIG_64BIT static void __init init_free_pfn_range(unsigned long start, unsigned long end) { unsigned long pfn; @@ -727,7 +688,7 @@ static void __init init_free_pfn_range(unsigned long start, unsigned long end) } init_page_count(page); __free_pages(page, order); - totalram_pages += count; + adjust_managed_page_count(page, count); page += count; pfn += count; @@ -740,16 +701,15 @@ static void __init set_non_bootmem_pages_init(void) for_each_zone(z) { unsigned long start, end; int nid = z->zone_pgdat->node_id; +#ifdef CONFIG_HIGHMEM int idx = zone_idx(z); +#endif start = z->zone_start_pfn; - if (start == 0) - continue; /* bootmem */ end = start + z->spanned_pages; - if (idx == ZONE_NORMAL) { - BUG_ON(start != node_start_pfn[nid]); - start = node_free_pfn[nid]; - } + start = max(start, node_free_pfn[nid]); + start = max(start, max_low_pfn); + #ifdef CONFIG_HIGHMEM if (idx == ZONE_HIGHMEM) totalhigh_pages += z->spanned_pages; @@ -770,6 +730,7 @@ static void __init set_non_bootmem_pages_init(void) init_free_pfn_range(start, end); } } +#endif /* * paging_init() sets up the page tables - note that all of lowmem is @@ -777,9 +738,6 @@ static void __init set_non_bootmem_pages_init(void) */ void __init paging_init(void) { -#ifdef CONFIG_HIGHMEM - unsigned long vaddr, end; -#endif #ifdef __tilegx__ pud_t *pud; #endif @@ -787,14 +745,11 @@ void __init paging_init(void) kernel_physical_mapping_init(pgd_base); + /* Fixed mappings, only the page table structure has to be created. */ + page_table_range_init(fix_to_virt(__end_of_fixed_addresses - 1), + FIXADDR_TOP, pgd_base); + #ifdef CONFIG_HIGHMEM - /* - * Fixed mappings, only the page table structure has to be - * created - mappings will be set by set_fixmap(): - */ - vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK; - end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK; - page_table_range_init(vaddr, end, pgd_base); permanent_kmaps_init(pgd_base); #endif @@ -806,7 +761,7 @@ void __init paging_init(void) * changing init_mm once we get up and running, and there's no * need for e.g. vmalloc_sync_all(). */ - BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END)); + BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END - 1)); pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START); assign_pmd(pud, alloc_pmd()); #endif @@ -831,15 +786,13 @@ static void __init set_max_mapnr_init(void) void __init mem_init(void) { - int codesize, datasize, initsize; int i; #ifndef __tilegx__ void *last; #endif #ifdef CONFIG_FLATMEM - if (!mem_map) - BUG(); + BUG_ON(!mem_map); #endif #ifdef CONFIG_HIGHMEM @@ -857,24 +810,14 @@ void __init mem_init(void) set_max_mapnr_init(); /* this will put all bootmem onto the freelists */ - totalram_pages += free_all_bootmem(); + free_all_bootmem(); +#ifndef CONFIG_64BIT /* count all remaining LOWMEM and give all HIGHMEM to page allocator */ set_non_bootmem_pages_init(); +#endif - codesize = (unsigned long)&_etext - (unsigned long)&_text; - datasize = (unsigned long)&_end - (unsigned long)&_sdata; - initsize = (unsigned long)&_einittext - (unsigned long)&_sinittext; - initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata; - - pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n", - (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), - num_physpages << (PAGE_SHIFT-10), - codesize >> 10, - datasize >> 10, - initsize >> 10, - (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10)) - ); + mem_init_print_info(NULL); /* * In debug mode, dump some interesting memory mappings. @@ -885,10 +828,6 @@ void __init mem_init(void) printk(KERN_DEBUG " PKMAP %#lx - %#lx\n", PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1); #endif -#ifdef CONFIG_HUGEVMAP - printk(KERN_DEBUG " HUGEMAP %#lx - %#lx\n", - HUGE_VMAP_BASE, HUGE_VMAP_END - 1); -#endif printk(KERN_DEBUG " VMALLOC %#lx - %#lx\n", _VMALLOC_START, _VMALLOC_END - 1); #ifdef __tilegx__ @@ -944,41 +883,25 @@ int remove_memory(u64 start, u64 size) { return -EINVAL; } + +#ifdef CONFIG_MEMORY_HOTREMOVE +int arch_remove_memory(u64 start, u64 size) +{ + /* TODO */ + return -EBUSY; +} +#endif #endif struct kmem_cache *pgd_cache; void __init pgtable_cache_init(void) { - pgd_cache = kmem_cache_create("pgd", - PTRS_PER_PGD*sizeof(pgd_t), - PTRS_PER_PGD*sizeof(pgd_t), - 0, - NULL); + pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL); if (!pgd_cache) panic("pgtable_cache_init(): Cannot create pgd cache"); } -#if !CHIP_HAS_COHERENT_LOCAL_CACHE() -/* - * The __w1data area holds data that is only written during initialization, - * and is read-only and thus freely cacheable thereafter. Fix the page - * table entries that cover that region accordingly. - */ -static void mark_w1data_ro(void) -{ - /* Loop over page table entries */ - unsigned long addr = (unsigned long)__w1data_begin; - BUG_ON((addr & (PAGE_SIZE-1)) != 0); - for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) { - unsigned long pfn = kaddr_to_pfn((void *)addr); - pte_t *ptep = virt_to_pte(NULL, addr); - BUG_ON(pte_huge(*ptep)); /* not relevant for kdata_huge */ - set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO)); - } -} -#endif - #ifdef CONFIG_DEBUG_PAGEALLOC static long __write_once initfree; #else @@ -989,7 +912,7 @@ static long __write_once initfree = 1; static int __init set_initfree(char *str) { long val; - if (strict_strtol(str, 0, &val)) { + if (kstrtol(str, 0, &val) == 0) { initfree = val; pr_info("initfree: %s free init pages\n", initfree ? "will" : "won't"); @@ -1018,7 +941,7 @@ static void free_init_pages(char *what, unsigned long begin, unsigned long end) */ int pfn = kaddr_to_pfn((void *)addr); struct page *page = pfn_to_page(pfn); - pte_t *ptep = virt_to_pte(NULL, addr); + pte_t *ptep = virt_to_kpte(addr); if (!initfree) { /* * If debugging page accesses then do not free @@ -1029,31 +952,24 @@ static void free_init_pages(char *what, unsigned long begin, unsigned long end) pte_clear(&init_mm, addr, ptep); continue; } - __ClearPageReserved(page); - init_page_count(page); if (pte_huge(*ptep)) BUG_ON(!kdata_huge); else set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL)); memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); - free_page(addr); - totalram_pages++; + free_reserved_page(page); } pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10); } void free_initmem(void) { - const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET; + const unsigned long text_delta = MEM_SV_START - PAGE_OFFSET; /* - * Evict the dirty initdata on the boot cpu, evict the w1data - * wherever it's homed, and evict all the init code everywhere. - * We are guaranteed that no one will touch the init pages any - * more, and although other cpus may be touching the w1data, - * we only actually change the caching on tile64, which won't - * be keeping local copies in the other tiles' caches anyway. + * Evict the cache on all cores to avoid incoherence. + * We are guaranteed that no one will touch the init pages any more. */ homecache_evict(&cpu_cacheable_map); @@ -1064,26 +980,11 @@ void free_initmem(void) /* * Free the pages mapped from 0xc0000000 that correspond to code - * pages from MEM_SV_INTRPT that we won't use again after init. + * pages from MEM_SV_START that we won't use again after init. */ free_init_pages("unused kernel text", (unsigned long)_sinittext - text_delta, (unsigned long)_einittext - text_delta); - -#if !CHIP_HAS_COHERENT_LOCAL_CACHE() - /* - * Upgrade the .w1data section to globally cached. - * We don't do this on tilepro, since the cache architecture - * pretty much makes it irrelevant, and in any case we end - * up having racing issues with other tiles that may touch - * the data after we flush the cache but before we update - * the PTEs and flush the TLBs, causing sharer shootdowns - * later. Even though this is to clean data, it seems like - * an unnecessary complication. - */ - mark_w1data_ro(); -#endif - /* Do a global TLB flush so everyone sees the changes. */ flush_tlb_all(); } diff --git a/arch/tile/mm/migrate.h b/arch/tile/mm/migrate.h index cd45a0837fa..91683d97917 100644 --- a/arch/tile/mm/migrate.h +++ b/arch/tile/mm/migrate.h @@ -24,6 +24,9 @@ /* * This function is used as a helper when setting up the initial * page table (swapper_pg_dir). + * + * You must mask ALL interrupts prior to invoking this code, since + * you can't legally touch the stack during the cache flush. */ extern int flush_and_install_context(HV_PhysAddr page_table, HV_PTE access, HV_ASID asid, @@ -39,6 +42,9 @@ extern int flush_and_install_context(HV_PhysAddr page_table, HV_PTE access, * * Note that any non-NULL pointers must not point to the page that * is handled by the stack_pte itself. + * + * You must mask ALL interrupts prior to invoking this code, since + * you can't legally touch the stack during the cache flush. */ extern int homecache_migrate_stack_and_flush(pte_t stack_pte, unsigned long va, size_t length, pte_t *stack_ptep, diff --git a/arch/tile/mm/migrate_32.S b/arch/tile/mm/migrate_32.S index f738765cd1e..772085491bf 100644 --- a/arch/tile/mm/migrate_32.S +++ b/arch/tile/mm/migrate_32.S @@ -18,6 +18,7 @@ #include <linux/linkage.h> #include <linux/threads.h> #include <asm/page.h> +#include <asm/thread_info.h> #include <asm/types.h> #include <asm/asm-offsets.h> #include <hv/hypervisor.h> @@ -39,8 +40,7 @@ #define FRAME_R32 16 #define FRAME_R33 20 #define FRAME_R34 24 -#define FRAME_R35 28 -#define FRAME_SIZE 32 +#define FRAME_SIZE 28 @@ -65,12 +65,11 @@ #define r_my_cpumask r5 /* Locals (callee-save); must not be more than FRAME_xxx above. */ -#define r_save_ics r30 -#define r_context_lo r31 -#define r_context_hi r32 -#define r_access_lo r33 -#define r_access_hi r34 -#define r_asid r35 +#define r_context_lo r30 +#define r_context_hi r31 +#define r_access_lo r32 +#define r_access_hi r33 +#define r_asid r34 STD_ENTRY(flush_and_install_context) /* @@ -103,11 +102,7 @@ STD_ENTRY(flush_and_install_context) sw r_tmp, r33 addi r_tmp, sp, FRAME_R34 } - { - sw r_tmp, r34 - addi r_tmp, sp, FRAME_R35 - } - sw r_tmp, r35 + sw r_tmp, r34 /* Move some arguments to callee-save registers. */ { @@ -120,13 +115,6 @@ STD_ENTRY(flush_and_install_context) } move r_asid, r_asid_in - /* Disable interrupts, since we can't use our stack. */ - { - mfspr r_save_ics, INTERRUPT_CRITICAL_SECTION - movei r_tmp, 1 - } - mtspr INTERRUPT_CRITICAL_SECTION, r_tmp - /* First, flush our L2 cache. */ { move r0, zero /* cache_pa */ @@ -148,7 +136,7 @@ STD_ENTRY(flush_and_install_context) move r8, zero /* asids */ move r9, zero /* asidcount */ } - jal hv_flush_remote + jal _hv_flush_remote bnz r0, .Ldone /* Now install the new page table. */ @@ -162,9 +150,9 @@ STD_ENTRY(flush_and_install_context) } { move r4, r_asid - movei r5, HV_CTX_DIRECTIO + moveli r5, HV_CTX_DIRECTIO | CTX_PAGE_FLAG } - jal hv_install_context + jal _hv_install_context bnz r0, .Ldone /* Finally, flush the TLB. */ @@ -174,9 +162,6 @@ STD_ENTRY(flush_and_install_context) } .Ldone: - /* Reset interrupts back how they were before. */ - mtspr INTERRUPT_CRITICAL_SECTION, r_save_ics - /* Restore the callee-saved registers and return. */ addli lr, sp, FRAME_SIZE { @@ -201,10 +186,6 @@ STD_ENTRY(flush_and_install_context) } { lw r34, r_tmp - addli r_tmp, sp, FRAME_R35 - } - { - lw r35, r_tmp addi sp, sp, FRAME_SIZE } jrp lr diff --git a/arch/tile/mm/migrate_64.S b/arch/tile/mm/migrate_64.S new file mode 100644 index 00000000000..a49eee38f87 --- /dev/null +++ b/arch/tile/mm/migrate_64.S @@ -0,0 +1,167 @@ +/* + * Copyright 2011 Tilera Corporation. All Rights Reserved. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation, version 2. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or + * NON INFRINGEMENT. See the GNU General Public License for + * more details. + * + * This routine is a helper for migrating the home of a set of pages to + * a new cpu. See the documentation in homecache.c for more information. + */ + +#include <linux/linkage.h> +#include <linux/threads.h> +#include <asm/page.h> +#include <asm/thread_info.h> +#include <asm/types.h> +#include <asm/asm-offsets.h> +#include <hv/hypervisor.h> + + .text + +/* + * First, some definitions that apply to all the code in the file. + */ + +/* Locals (caller-save) */ +#define r_tmp r10 +#define r_save_sp r11 + +/* What we save where in the stack frame; must include all callee-saves. */ +#define FRAME_SP 8 +#define FRAME_R30 16 +#define FRAME_R31 24 +#define FRAME_R32 32 +#define FRAME_SIZE 40 + + + + +/* + * On entry: + * + * r0 the new context PA to install (moved to r_context) + * r1 PTE to use for context access (moved to r_access) + * r2 ASID to use for new context (moved to r_asid) + * r3 pointer to cpumask with just this cpu set in it (r_my_cpumask) + */ + +/* Arguments (caller-save) */ +#define r_context_in r0 +#define r_access_in r1 +#define r_asid_in r2 +#define r_my_cpumask r3 + +/* Locals (callee-save); must not be more than FRAME_xxx above. */ +#define r_context r30 +#define r_access r31 +#define r_asid r32 + +/* + * Caller-save locals and frame constants are the same as + * for homecache_migrate_stack_and_flush. + */ + +STD_ENTRY(flush_and_install_context) + /* + * Create a stack frame; we can't touch it once we flush the + * cache until we install the new page table and flush the TLB. + */ + { + move r_save_sp, sp + st sp, lr + addi sp, sp, -FRAME_SIZE + } + addi r_tmp, sp, FRAME_SP + { + st r_tmp, r_save_sp + addi r_tmp, sp, FRAME_R30 + } + { + st r_tmp, r30 + addi r_tmp, sp, FRAME_R31 + } + { + st r_tmp, r31 + addi r_tmp, sp, FRAME_R32 + } + st r_tmp, r32 + + /* Move some arguments to callee-save registers. */ + { + move r_context, r_context_in + move r_access, r_access_in + } + move r_asid, r_asid_in + + /* First, flush our L2 cache. */ + { + move r0, zero /* cache_pa */ + moveli r1, hw2_last(HV_FLUSH_EVICT_L2) /* cache_control */ + } + { + shl16insli r1, r1, hw1(HV_FLUSH_EVICT_L2) + move r2, r_my_cpumask /* cache_cpumask */ + } + { + shl16insli r1, r1, hw0(HV_FLUSH_EVICT_L2) + move r3, zero /* tlb_va */ + } + { + move r4, zero /* tlb_length */ + move r5, zero /* tlb_pgsize */ + } + { + move r6, zero /* tlb_cpumask */ + move r7, zero /* asids */ + } + { + move r8, zero /* asidcount */ + jal _hv_flush_remote + } + bnez r0, 1f + + /* Now install the new page table. */ + { + move r0, r_context + move r1, r_access + } + { + move r2, r_asid + moveli r3, HV_CTX_DIRECTIO | CTX_PAGE_FLAG + } + jal _hv_install_context + bnez r0, 1f + + /* Finally, flush the TLB. */ + { + movei r0, 0 /* preserve_global */ + jal hv_flush_all + } + +1: /* Restore the callee-saved registers and return. */ + addli lr, sp, FRAME_SIZE + { + ld lr, lr + addli r_tmp, sp, FRAME_R30 + } + { + ld r30, r_tmp + addli r_tmp, sp, FRAME_R31 + } + { + ld r31, r_tmp + addli r_tmp, sp, FRAME_R32 + } + { + ld r32, r_tmp + addi sp, sp, FRAME_SIZE + } + jrp lr + STD_ENDPROC(flush_and_install_context) diff --git a/arch/tile/mm/mmap.c b/arch/tile/mm/mmap.c index f96f4cec602..851a94e6ae5 100644 --- a/arch/tile/mm/mmap.c +++ b/arch/tile/mm/mmap.c @@ -58,18 +58,36 @@ void arch_pick_mmap_layout(struct mm_struct *mm) #else int is_32bit = 0; #endif + unsigned long random_factor = 0UL; + + /* + * 8 bits of randomness in 32bit mmaps, 24 address space bits + * 12 bits of randomness in 64bit mmaps, 28 address space bits + */ + if (current->flags & PF_RANDOMIZE) { + if (is_32bit) + random_factor = get_random_int() % (1<<8); + else + random_factor = get_random_int() % (1<<12); + + random_factor <<= PAGE_SHIFT; + } /* * Use standard layout if the expected stack growth is unlimited * or we are running native 64 bits. */ - if (!is_32bit || rlimit(RLIMIT_STACK) == RLIM_INFINITY) { - mm->mmap_base = TASK_UNMAPPED_BASE; + if (rlimit(RLIMIT_STACK) == RLIM_INFINITY) { + mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; mm->get_unmapped_area = arch_get_unmapped_area; - mm->unmap_area = arch_unmap_area; } else { mm->mmap_base = mmap_base(mm); mm->get_unmapped_area = arch_get_unmapped_area_topdown; - mm->unmap_area = arch_unmap_area_topdown; } } + +unsigned long arch_randomize_brk(struct mm_struct *mm) +{ + unsigned long range_end = mm->brk + 0x02000000; + return randomize_range(mm->brk, range_end, 0) ? : mm->brk; +} diff --git a/arch/tile/mm/pgtable.c b/arch/tile/mm/pgtable.c index 1f5430c53d0..5e86eac4bfa 100644 --- a/arch/tile/mm/pgtable.c +++ b/arch/tile/mm/pgtable.c @@ -27,7 +27,6 @@ #include <linux/vmalloc.h> #include <linux/smp.h> -#include <asm/system.h> #include <asm/pgtable.h> #include <asm/pgalloc.h> #include <asm/fixmap.h> @@ -41,7 +40,7 @@ * The normal show_free_areas() is too verbose on Tile, with dozens * of processors and often four NUMA zones each with high and lowmem. */ -void show_mem(void) +void show_mem(unsigned int filter) { struct zone *zone; @@ -62,7 +61,7 @@ void show_mem(void) global_page_state(NR_PAGETABLE), global_page_state(NR_BOUNCE), global_page_state(NR_FILE_PAGES), - nr_swap_pages); + get_nr_swap_pages()); for_each_zone(zone) { unsigned long flags, order, total = 0, largest_order = -1; @@ -84,63 +83,72 @@ void show_mem(void) } } -/* - * Associate a virtual page frame with a given physical page frame - * and protection flags for that frame. +/** + * shatter_huge_page() - ensure a given address is mapped by a small page. + * + * This function converts a huge PTE mapping kernel LOWMEM into a bunch + * of small PTEs with the same caching. No cache flush required, but we + * must do a global TLB flush. + * + * Any caller that wishes to modify a kernel mapping that might + * have been made with a huge page should call this function, + * since doing so properly avoids race conditions with installing the + * newly-shattered page and then flushing all the TLB entries. + * + * @addr: Address at which to shatter any existing huge page. */ -static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags) +void shatter_huge_page(unsigned long addr) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; - pte_t *pte; + unsigned long flags = 0; /* happy compiler */ +#ifdef __PAGETABLE_PMD_FOLDED + struct list_head *pos; +#endif - pgd = swapper_pg_dir + pgd_index(vaddr); - if (pgd_none(*pgd)) { - BUG(); - return; - } - pud = pud_offset(pgd, vaddr); - if (pud_none(*pud)) { - BUG(); + /* Get a pointer to the pmd entry that we need to change. */ + addr &= HPAGE_MASK; + BUG_ON(pgd_addr_invalid(addr)); + BUG_ON(addr < PAGE_OFFSET); /* only for kernel LOWMEM */ + pgd = swapper_pg_dir + pgd_index(addr); + pud = pud_offset(pgd, addr); + BUG_ON(!pud_present(*pud)); + pmd = pmd_offset(pud, addr); + BUG_ON(!pmd_present(*pmd)); + if (!pmd_huge_page(*pmd)) return; - } - pmd = pmd_offset(pud, vaddr); - if (pmd_none(*pmd)) { - BUG(); + + spin_lock_irqsave(&init_mm.page_table_lock, flags); + if (!pmd_huge_page(*pmd)) { + /* Lost the race to convert the huge page. */ + spin_unlock_irqrestore(&init_mm.page_table_lock, flags); return; } - pte = pte_offset_kernel(pmd, vaddr); - /* <pfn,flags> stored as-is, to permit clearing entries */ - set_pte(pte, pfn_pte(pfn, flags)); - - /* - * It's enough to flush this one mapping. - * This appears conservative since it is only called - * from __set_fixmap. - */ - local_flush_tlb_page(NULL, vaddr, PAGE_SIZE); -} -void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags) -{ - unsigned long address = __fix_to_virt(idx); - - if (idx >= __end_of_fixed_addresses) { - BUG(); - return; + /* Shatter the huge page into the preallocated L2 page table. */ + pmd_populate_kernel(&init_mm, pmd, get_prealloc_pte(pmd_pfn(*pmd))); + +#ifdef __PAGETABLE_PMD_FOLDED + /* Walk every pgd on the system and update the pmd there. */ + spin_lock(&pgd_lock); + list_for_each(pos, &pgd_list) { + pmd_t *copy_pmd; + pgd = list_to_pgd(pos) + pgd_index(addr); + pud = pud_offset(pgd, addr); + copy_pmd = pmd_offset(pud, addr); + __set_pmd(copy_pmd, *pmd); } - set_pte_pfn(address, phys >> PAGE_SHIFT, flags); -} + spin_unlock(&pgd_lock); +#endif -#if defined(CONFIG_HIGHPTE) -pte_t *_pte_offset_map(pmd_t *dir, unsigned long address) -{ - pte_t *pte = kmap_atomic(pmd_page(*dir)) + - (pmd_ptfn(*dir) << HV_LOG2_PAGE_TABLE_ALIGN) & ~PAGE_MASK; - return &pte[pte_index(address)]; + /* Tell every cpu to notice the change. */ + flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE, + cpu_possible_mask, NULL, 0); + + /* Hold the lock until the TLB flush is finished to avoid races. */ + spin_unlock_irqrestore(&init_mm.page_table_lock, flags); } -#endif /* * List of all pgd's needed so it can invalidate entries in both cached @@ -148,9 +156,13 @@ pte_t *_pte_offset_map(pmd_t *dir, unsigned long address) * against pageattr.c; it is the unique case in which a valid change * of kernel pagetables can't be lazily synchronized by vmalloc faults. * vmalloc faults work because attached pagetables are never freed. - * The locking scheme was chosen on the basis of manfred's - * recommendations and having no core impact whatsoever. - * -- wli + * + * The lock is always taken with interrupts disabled, unlike on x86 + * and other platforms, because we need to take the lock in + * shatter_huge_page(), which may be called from an interrupt context. + * We are not at risk from the tlbflush IPI deadlock that was seen on + * x86, since we use the flush_remote() API to have the hypervisor do + * the TLB flushes regardless of irq disabling. */ DEFINE_SPINLOCK(pgd_lock); LIST_HEAD(pgd_list); @@ -184,9 +196,9 @@ static void pgd_ctor(pgd_t *pgd) BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0); #endif - clone_pgd_range(pgd + KERNEL_PGD_INDEX_START, - swapper_pg_dir + KERNEL_PGD_INDEX_START, - KERNEL_PGD_PTRS); + memcpy(pgd + KERNEL_PGD_INDEX_START, + swapper_pg_dir + KERNEL_PGD_INDEX_START, + KERNEL_PGD_PTRS * sizeof(pgd_t)); pgd_list_add(pgd); spin_unlock_irqrestore(&pgd_lock, flags); @@ -218,20 +230,32 @@ void pgd_free(struct mm_struct *mm, pgd_t *pgd) #define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER) -struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address) +struct page *pgtable_alloc_one(struct mm_struct *mm, unsigned long address, + int order) { - gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO|__GFP_COMP; + gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO; struct page *p; - -#ifdef CONFIG_HIGHPTE - flags |= __GFP_HIGHMEM; -#endif + int i; p = alloc_pages(flags, L2_USER_PGTABLE_ORDER); if (p == NULL) return NULL; - pgtable_page_ctor(p); + if (!pgtable_page_ctor(p)) { + __free_pages(p, L2_USER_PGTABLE_ORDER); + return NULL; + } + + /* + * Make every page have a page_count() of one, not just the first. + * We don't use __GFP_COMP since it doesn't look like it works + * correctly with tlb_remove_page(). + */ + for (i = 1; i < order; ++i) { + init_page_count(p+i); + inc_zone_page_state(p+i, NR_PAGETABLE); + } + return p; } @@ -240,30 +264,30 @@ struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address) * process). We have to correct whatever pte_alloc_one() did before * returning the pages to the allocator. */ -void pte_free(struct mm_struct *mm, struct page *p) +void pgtable_free(struct mm_struct *mm, struct page *p, int order) { + int i; + pgtable_page_dtor(p); - __free_pages(p, L2_USER_PGTABLE_ORDER); + __free_page(p); + + for (i = 1; i < order; ++i) { + __free_page(p+i); + dec_zone_page_state(p+i, NR_PAGETABLE); + } } -void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte, - unsigned long address) +void __pgtable_free_tlb(struct mmu_gather *tlb, struct page *pte, + unsigned long address, int order) { int i; pgtable_page_dtor(pte); - tlb->need_flush = 1; - if (tlb_fast_mode(tlb)) { - struct page *pte_pages[L2_USER_PGTABLE_PAGES]; - for (i = 0; i < L2_USER_PGTABLE_PAGES; ++i) - pte_pages[i] = pte + i; - free_pages_and_swap_cache(pte_pages, L2_USER_PGTABLE_PAGES); - return; - } - for (i = 0; i < L2_USER_PGTABLE_PAGES; ++i) { - tlb->pages[tlb->nr++] = pte + i; - if (tlb->nr >= FREE_PTE_NR) - tlb_flush_mmu(tlb, 0, 0); + tlb_remove_page(tlb, pte); + + for (i = 1; i < order; ++i) { + tlb_remove_page(tlb, pte + i); + dec_zone_page_state(pte + i, NR_PAGETABLE); } } @@ -304,6 +328,17 @@ void ptep_set_wrprotect(struct mm_struct *mm, #endif +/* + * Return a pointer to the PTE that corresponds to the given + * address in the given page table. A NULL page table just uses + * the standard kernel page table; the preferred API in this case + * is virt_to_kpte(). + * + * The returned pointer can point to a huge page in other levels + * of the page table than the bottom, if the huge page is present + * in the page table. For bottom-level PTEs, the returned pointer + * can point to a PTE that is either present or not. + */ pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr) { pgd_t *pgd; @@ -317,13 +352,23 @@ pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr) pud = pud_offset(pgd, addr); if (!pud_present(*pud)) return NULL; + if (pud_huge_page(*pud)) + return (pte_t *)pud; pmd = pmd_offset(pud, addr); - if (pmd_huge_page(*pmd)) - return (pte_t *)pmd; if (!pmd_present(*pmd)) return NULL; + if (pmd_huge_page(*pmd)) + return (pte_t *)pmd; return pte_offset_kernel(pmd, addr); } +EXPORT_SYMBOL(virt_to_pte); + +pte_t *virt_to_kpte(unsigned long kaddr) +{ + BUG_ON(kaddr < PAGE_OFFSET); + return virt_to_pte(NULL, kaddr); +} +EXPORT_SYMBOL(virt_to_kpte); pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu) { @@ -346,41 +391,65 @@ int get_remote_cache_cpu(pgprot_t prot) return x + y * smp_width; } -void set_pte_order(pte_t *ptep, pte_t pte, int order) +/* + * Convert a kernel VA to a PA and homing information. + */ +int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte) { - unsigned long pfn = pte_pfn(pte); - struct page *page = pfn_to_page(pfn); + struct page *page = virt_to_page(va); + pte_t null_pte = { 0 }; + + *cpa = __pa(va); - /* Update the home of a PTE if necessary */ - pte = pte_set_home(pte, page_home(page)); + /* Note that this is not writing a page table, just returning a pte. */ + *pte = pte_set_home(null_pte, page_home(page)); + + return 0; /* return non-zero if not hfh? */ +} +EXPORT_SYMBOL(va_to_cpa_and_pte); +void __set_pte(pte_t *ptep, pte_t pte) +{ #ifdef __tilegx__ *ptep = pte; #else - /* - * When setting a PTE, write the high bits first, then write - * the low bits. This sets the "present" bit only after the - * other bits are in place. If a particular PTE update - * involves transitioning from one valid PTE to another, it - * may be necessary to call set_pte_order() more than once, - * transitioning via a suitable intermediate state. - * Note that this sequence also means that if we are transitioning - * from any migrating PTE to a non-migrating one, we will not - * see a half-updated PTE with the migrating bit off. - */ -#if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32 -# error Must write the present and migrating bits last -#endif - ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32); - barrier(); - ((u32 *)ptep)[0] = (u32)(pte_val(pte)); -#endif +# if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32 +# error Must write the present and migrating bits last +# endif + if (pte_present(pte)) { + ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32); + barrier(); + ((u32 *)ptep)[0] = (u32)(pte_val(pte)); + } else { + ((u32 *)ptep)[0] = (u32)(pte_val(pte)); + barrier(); + ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32); + } +#endif /* __tilegx__ */ +} + +void set_pte(pte_t *ptep, pte_t pte) +{ + if (pte_present(pte) && + (!CHIP_HAS_MMIO() || hv_pte_get_mode(pte) != HV_PTE_MODE_MMIO)) { + /* The PTE actually references physical memory. */ + unsigned long pfn = pte_pfn(pte); + if (pfn_valid(pfn)) { + /* Update the home of the PTE from the struct page. */ + pte = pte_set_home(pte, page_home(pfn_to_page(pfn))); + } else if (hv_pte_get_mode(pte) == 0) { + /* remap_pfn_range(), etc, must supply PTE mode. */ + panic("set_pte(): out-of-range PFN and mode 0\n"); + } + } + + __set_pte(ptep, pte); } /* Can this mm load a PTE with cached_priority set? */ static inline int mm_is_priority_cached(struct mm_struct *mm) { - return mm->context.priority_cached; + return mm->context.priority_cached != 0; } /* @@ -390,8 +459,8 @@ static inline int mm_is_priority_cached(struct mm_struct *mm) void start_mm_caching(struct mm_struct *mm) { if (!mm_is_priority_cached(mm)) { - mm->context.priority_cached = -1U; - hv_set_caching(-1U); + mm->context.priority_cached = -1UL; + hv_set_caching(-1UL); } } @@ -406,7 +475,7 @@ void start_mm_caching(struct mm_struct *mm) * Presumably we'll come back later and have more luck and clear * the value then; for now we'll just keep the cache marked for priority. */ -static unsigned int update_priority_cached(struct mm_struct *mm) +static unsigned long update_priority_cached(struct mm_struct *mm) { if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) { struct vm_area_struct *vm; @@ -474,20 +543,13 @@ void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, addr = area->addr; if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size, phys_addr, pgprot)) { - remove_vm_area((void *)(PAGE_MASK & (unsigned long) addr)); + free_vm_area(area); return NULL; } return (__force void __iomem *) (offset + (char *)addr); } EXPORT_SYMBOL(ioremap_prot); -/* Map a PCI MMIO bus address into VA space. */ -void __iomem *ioremap(resource_size_t phys_addr, unsigned long size) -{ - panic("ioremap for PCI MMIO is not supported"); -} -EXPORT_SYMBOL(ioremap); - /* Unmap an MMIO VA mapping. */ void iounmap(volatile void __iomem *addr_in) { @@ -505,12 +567,7 @@ void iounmap(volatile void __iomem *addr_in) in parallel. Reuse of the virtual address is prevented by leaving it in the global lists until we're done with it. cpa takes care of the direct mappings. */ - read_lock(&vmlist_lock); - for (p = vmlist; p; p = p->next) { - if (p->addr == addr) - break; - } - read_unlock(&vmlist_lock); + p = find_vm_area((void *)addr); if (!p) { pr_err("iounmap: bad address %p\n", addr); |
