diff options
Diffstat (limited to 'arch/powerpc/perf/core-book3s.c')
| -rw-r--r-- | arch/powerpc/perf/core-book3s.c | 2146 | 
1 files changed, 2146 insertions, 0 deletions
diff --git a/arch/powerpc/perf/core-book3s.c b/arch/powerpc/perf/core-book3s.c new file mode 100644 index 00000000000..fe52db2eea6 --- /dev/null +++ b/arch/powerpc/perf/core-book3s.c @@ -0,0 +1,2146 @@ +/* + * Performance event support - powerpc architecture code + * + * Copyright 2008-2009 Paul Mackerras, IBM Corporation. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + */ +#include <linux/kernel.h> +#include <linux/sched.h> +#include <linux/perf_event.h> +#include <linux/percpu.h> +#include <linux/hardirq.h> +#include <linux/uaccess.h> +#include <asm/reg.h> +#include <asm/pmc.h> +#include <asm/machdep.h> +#include <asm/firmware.h> +#include <asm/ptrace.h> +#include <asm/code-patching.h> + +#define BHRB_MAX_ENTRIES	32 +#define BHRB_TARGET		0x0000000000000002 +#define BHRB_PREDICTION		0x0000000000000001 +#define BHRB_EA			0xFFFFFFFFFFFFFFFCUL + +struct cpu_hw_events { +	int n_events; +	int n_percpu; +	int disabled; +	int n_added; +	int n_limited; +	u8  pmcs_enabled; +	struct perf_event *event[MAX_HWEVENTS]; +	u64 events[MAX_HWEVENTS]; +	unsigned int flags[MAX_HWEVENTS]; +	unsigned long mmcr[3]; +	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; +	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS]; +	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; +	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; +	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; + +	unsigned int group_flag; +	int n_txn_start; + +	/* BHRB bits */ +	u64				bhrb_filter;	/* BHRB HW branch filter */ +	int				bhrb_users; +	void				*bhrb_context; +	struct	perf_branch_stack	bhrb_stack; +	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES]; +}; + +DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); + +struct power_pmu *ppmu; + +/* + * Normally, to ignore kernel events we set the FCS (freeze counters + * in supervisor mode) bit in MMCR0, but if the kernel runs with the + * hypervisor bit set in the MSR, or if we are running on a processor + * where the hypervisor bit is forced to 1 (as on Apple G5 processors), + * then we need to use the FCHV bit to ignore kernel events. + */ +static unsigned int freeze_events_kernel = MMCR0_FCS; + +/* + * 32-bit doesn't have MMCRA but does have an MMCR2, + * and a few other names are different. + */ +#ifdef CONFIG_PPC32 + +#define MMCR0_FCHV		0 +#define MMCR0_PMCjCE		MMCR0_PMCnCE +#define MMCR0_FC56		0 +#define MMCR0_PMAO		0 +#define MMCR0_EBE		0 +#define MMCR0_BHRBA		0 +#define MMCR0_PMCC		0 +#define MMCR0_PMCC_U6		0 + +#define SPRN_MMCRA		SPRN_MMCR2 +#define MMCRA_SAMPLE_ENABLE	0 + +static inline unsigned long perf_ip_adjust(struct pt_regs *regs) +{ +	return 0; +} +static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { } +static inline u32 perf_get_misc_flags(struct pt_regs *regs) +{ +	return 0; +} +static inline void perf_read_regs(struct pt_regs *regs) +{ +	regs->result = 0; +} +static inline int perf_intr_is_nmi(struct pt_regs *regs) +{ +	return 0; +} + +static inline int siar_valid(struct pt_regs *regs) +{ +	return 1; +} + +static bool is_ebb_event(struct perf_event *event) { return false; } +static int ebb_event_check(struct perf_event *event) { return 0; } +static void ebb_event_add(struct perf_event *event) { } +static void ebb_switch_out(unsigned long mmcr0) { } +static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0) +{ +	return mmcr0; +} + +static inline void power_pmu_bhrb_enable(struct perf_event *event) {} +static inline void power_pmu_bhrb_disable(struct perf_event *event) {} +void power_pmu_flush_branch_stack(void) {} +static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {} +static void pmao_restore_workaround(bool ebb) { } +#endif /* CONFIG_PPC32 */ + +static bool regs_use_siar(struct pt_regs *regs) +{ +	return !!regs->result; +} + +/* + * Things that are specific to 64-bit implementations. + */ +#ifdef CONFIG_PPC64 + +static inline unsigned long perf_ip_adjust(struct pt_regs *regs) +{ +	unsigned long mmcra = regs->dsisr; + +	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { +		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; +		if (slot > 1) +			return 4 * (slot - 1); +	} + +	return 0; +} + +/* + * The user wants a data address recorded. + * If we're not doing instruction sampling, give them the SDAR + * (sampled data address).  If we are doing instruction sampling, then + * only give them the SDAR if it corresponds to the instruction + * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the + * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. + */ +static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) +{ +	unsigned long mmcra = regs->dsisr; +	bool sdar_valid; + +	if (ppmu->flags & PPMU_HAS_SIER) +		sdar_valid = regs->dar & SIER_SDAR_VALID; +	else { +		unsigned long sdsync; + +		if (ppmu->flags & PPMU_SIAR_VALID) +			sdsync = POWER7P_MMCRA_SDAR_VALID; +		else if (ppmu->flags & PPMU_ALT_SIPR) +			sdsync = POWER6_MMCRA_SDSYNC; +		else +			sdsync = MMCRA_SDSYNC; + +		sdar_valid = mmcra & sdsync; +	} + +	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) +		*addrp = mfspr(SPRN_SDAR); +} + +static bool regs_sihv(struct pt_regs *regs) +{ +	unsigned long sihv = MMCRA_SIHV; + +	if (ppmu->flags & PPMU_HAS_SIER) +		return !!(regs->dar & SIER_SIHV); + +	if (ppmu->flags & PPMU_ALT_SIPR) +		sihv = POWER6_MMCRA_SIHV; + +	return !!(regs->dsisr & sihv); +} + +static bool regs_sipr(struct pt_regs *regs) +{ +	unsigned long sipr = MMCRA_SIPR; + +	if (ppmu->flags & PPMU_HAS_SIER) +		return !!(regs->dar & SIER_SIPR); + +	if (ppmu->flags & PPMU_ALT_SIPR) +		sipr = POWER6_MMCRA_SIPR; + +	return !!(regs->dsisr & sipr); +} + +static inline u32 perf_flags_from_msr(struct pt_regs *regs) +{ +	if (regs->msr & MSR_PR) +		return PERF_RECORD_MISC_USER; +	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) +		return PERF_RECORD_MISC_HYPERVISOR; +	return PERF_RECORD_MISC_KERNEL; +} + +static inline u32 perf_get_misc_flags(struct pt_regs *regs) +{ +	bool use_siar = regs_use_siar(regs); + +	if (!use_siar) +		return perf_flags_from_msr(regs); + +	/* +	 * If we don't have flags in MMCRA, rather than using +	 * the MSR, we intuit the flags from the address in +	 * SIAR which should give slightly more reliable +	 * results +	 */ +	if (ppmu->flags & PPMU_NO_SIPR) { +		unsigned long siar = mfspr(SPRN_SIAR); +		if (siar >= PAGE_OFFSET) +			return PERF_RECORD_MISC_KERNEL; +		return PERF_RECORD_MISC_USER; +	} + +	/* PR has priority over HV, so order below is important */ +	if (regs_sipr(regs)) +		return PERF_RECORD_MISC_USER; + +	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) +		return PERF_RECORD_MISC_HYPERVISOR; + +	return PERF_RECORD_MISC_KERNEL; +} + +/* + * Overload regs->dsisr to store MMCRA so we only need to read it once + * on each interrupt. + * Overload regs->dar to store SIER if we have it. + * Overload regs->result to specify whether we should use the MSR (result + * is zero) or the SIAR (result is non zero). + */ +static inline void perf_read_regs(struct pt_regs *regs) +{ +	unsigned long mmcra = mfspr(SPRN_MMCRA); +	int marked = mmcra & MMCRA_SAMPLE_ENABLE; +	int use_siar; + +	regs->dsisr = mmcra; + +	if (ppmu->flags & PPMU_HAS_SIER) +		regs->dar = mfspr(SPRN_SIER); + +	/* +	 * If this isn't a PMU exception (eg a software event) the SIAR is +	 * not valid. Use pt_regs. +	 * +	 * If it is a marked event use the SIAR. +	 * +	 * If the PMU doesn't update the SIAR for non marked events use +	 * pt_regs. +	 * +	 * If the PMU has HV/PR flags then check to see if they +	 * place the exception in userspace. If so, use pt_regs. In +	 * continuous sampling mode the SIAR and the PMU exception are +	 * not synchronised, so they may be many instructions apart. +	 * This can result in confusing backtraces. We still want +	 * hypervisor samples as well as samples in the kernel with +	 * interrupts off hence the userspace check. +	 */ +	if (TRAP(regs) != 0xf00) +		use_siar = 0; +	else if (marked) +		use_siar = 1; +	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) +		use_siar = 0; +	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) +		use_siar = 0; +	else +		use_siar = 1; + +	regs->result = use_siar; +} + +/* + * If interrupts were soft-disabled when a PMU interrupt occurs, treat + * it as an NMI. + */ +static inline int perf_intr_is_nmi(struct pt_regs *regs) +{ +	return !regs->softe; +} + +/* + * On processors like P7+ that have the SIAR-Valid bit, marked instructions + * must be sampled only if the SIAR-valid bit is set. + * + * For unmarked instructions and for processors that don't have the SIAR-Valid + * bit, assume that SIAR is valid. + */ +static inline int siar_valid(struct pt_regs *regs) +{ +	unsigned long mmcra = regs->dsisr; +	int marked = mmcra & MMCRA_SAMPLE_ENABLE; + +	if (marked) { +		if (ppmu->flags & PPMU_HAS_SIER) +			return regs->dar & SIER_SIAR_VALID; + +		if (ppmu->flags & PPMU_SIAR_VALID) +			return mmcra & POWER7P_MMCRA_SIAR_VALID; +	} + +	return 1; +} + + +/* Reset all possible BHRB entries */ +static void power_pmu_bhrb_reset(void) +{ +	asm volatile(PPC_CLRBHRB); +} + +static void power_pmu_bhrb_enable(struct perf_event *event) +{ +	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); + +	if (!ppmu->bhrb_nr) +		return; + +	/* Clear BHRB if we changed task context to avoid data leaks */ +	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { +		power_pmu_bhrb_reset(); +		cpuhw->bhrb_context = event->ctx; +	} +	cpuhw->bhrb_users++; +} + +static void power_pmu_bhrb_disable(struct perf_event *event) +{ +	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); + +	if (!ppmu->bhrb_nr) +		return; + +	cpuhw->bhrb_users--; +	WARN_ON_ONCE(cpuhw->bhrb_users < 0); + +	if (!cpuhw->disabled && !cpuhw->bhrb_users) { +		/* BHRB cannot be turned off when other +		 * events are active on the PMU. +		 */ + +		/* avoid stale pointer */ +		cpuhw->bhrb_context = NULL; +	} +} + +/* Called from ctxsw to prevent one process's branch entries to + * mingle with the other process's entries during context switch. + */ +void power_pmu_flush_branch_stack(void) +{ +	if (ppmu->bhrb_nr) +		power_pmu_bhrb_reset(); +} +/* Calculate the to address for a branch */ +static __u64 power_pmu_bhrb_to(u64 addr) +{ +	unsigned int instr; +	int ret; +	__u64 target; + +	if (is_kernel_addr(addr)) +		return branch_target((unsigned int *)addr); + +	/* Userspace: need copy instruction here then translate it */ +	pagefault_disable(); +	ret = __get_user_inatomic(instr, (unsigned int __user *)addr); +	if (ret) { +		pagefault_enable(); +		return 0; +	} +	pagefault_enable(); + +	target = branch_target(&instr); +	if ((!target) || (instr & BRANCH_ABSOLUTE)) +		return target; + +	/* Translate relative branch target from kernel to user address */ +	return target - (unsigned long)&instr + addr; +} + +/* Processing BHRB entries */ +void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) +{ +	u64 val; +	u64 addr; +	int r_index, u_index, pred; + +	r_index = 0; +	u_index = 0; +	while (r_index < ppmu->bhrb_nr) { +		/* Assembly read function */ +		val = read_bhrb(r_index++); +		if (!val) +			/* Terminal marker: End of valid BHRB entries */ +			break; +		else { +			addr = val & BHRB_EA; +			pred = val & BHRB_PREDICTION; + +			if (!addr) +				/* invalid entry */ +				continue; + +			/* Branches are read most recent first (ie. mfbhrb 0 is +			 * the most recent branch). +			 * There are two types of valid entries: +			 * 1) a target entry which is the to address of a +			 *    computed goto like a blr,bctr,btar.  The next +			 *    entry read from the bhrb will be branch +			 *    corresponding to this target (ie. the actual +			 *    blr/bctr/btar instruction). +			 * 2) a from address which is an actual branch.  If a +			 *    target entry proceeds this, then this is the +			 *    matching branch for that target.  If this is not +			 *    following a target entry, then this is a branch +			 *    where the target is given as an immediate field +			 *    in the instruction (ie. an i or b form branch). +			 *    In this case we need to read the instruction from +			 *    memory to determine the target/to address. +			 */ + +			if (val & BHRB_TARGET) { +				/* Target branches use two entries +				 * (ie. computed gotos/XL form) +				 */ +				cpuhw->bhrb_entries[u_index].to = addr; +				cpuhw->bhrb_entries[u_index].mispred = pred; +				cpuhw->bhrb_entries[u_index].predicted = ~pred; + +				/* Get from address in next entry */ +				val = read_bhrb(r_index++); +				addr = val & BHRB_EA; +				if (val & BHRB_TARGET) { +					/* Shouldn't have two targets in a +					   row.. Reset index and try again */ +					r_index--; +					addr = 0; +				} +				cpuhw->bhrb_entries[u_index].from = addr; +			} else { +				/* Branches to immediate field  +				   (ie I or B form) */ +				cpuhw->bhrb_entries[u_index].from = addr; +				cpuhw->bhrb_entries[u_index].to = +					power_pmu_bhrb_to(addr); +				cpuhw->bhrb_entries[u_index].mispred = pred; +				cpuhw->bhrb_entries[u_index].predicted = ~pred; +			} +			u_index++; + +		} +	} +	cpuhw->bhrb_stack.nr = u_index; +	return; +} + +static bool is_ebb_event(struct perf_event *event) +{ +	/* +	 * This could be a per-PMU callback, but we'd rather avoid the cost. We +	 * check that the PMU supports EBB, meaning those that don't can still +	 * use bit 63 of the event code for something else if they wish. +	 */ +	return (ppmu->flags & PPMU_ARCH_207S) && +	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); +} + +static int ebb_event_check(struct perf_event *event) +{ +	struct perf_event *leader = event->group_leader; + +	/* Event and group leader must agree on EBB */ +	if (is_ebb_event(leader) != is_ebb_event(event)) +		return -EINVAL; + +	if (is_ebb_event(event)) { +		if (!(event->attach_state & PERF_ATTACH_TASK)) +			return -EINVAL; + +		if (!leader->attr.pinned || !leader->attr.exclusive) +			return -EINVAL; + +		if (event->attr.freq || +		    event->attr.inherit || +		    event->attr.sample_type || +		    event->attr.sample_period || +		    event->attr.enable_on_exec) +			return -EINVAL; +	} + +	return 0; +} + +static void ebb_event_add(struct perf_event *event) +{ +	if (!is_ebb_event(event) || current->thread.used_ebb) +		return; + +	/* +	 * IFF this is the first time we've added an EBB event, set +	 * PMXE in the user MMCR0 so we can detect when it's cleared by +	 * userspace. We need this so that we can context switch while +	 * userspace is in the EBB handler (where PMXE is 0). +	 */ +	current->thread.used_ebb = 1; +	current->thread.mmcr0 |= MMCR0_PMXE; +} + +static void ebb_switch_out(unsigned long mmcr0) +{ +	if (!(mmcr0 & MMCR0_EBE)) +		return; + +	current->thread.siar  = mfspr(SPRN_SIAR); +	current->thread.sier  = mfspr(SPRN_SIER); +	current->thread.sdar  = mfspr(SPRN_SDAR); +	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; +	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; +} + +static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0) +{ +	if (!ebb) +		goto out; + +	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ +	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; + +	/* +	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible +	 * with pmao_restore_workaround() because we may add PMAO but we never +	 * clear it here. +	 */ +	mmcr0 |= current->thread.mmcr0; + +	/* +	 * Be careful not to set PMXE if userspace had it cleared. This is also +	 * compatible with pmao_restore_workaround() because it has already +	 * cleared PMXE and we leave PMAO alone. +	 */ +	if (!(current->thread.mmcr0 & MMCR0_PMXE)) +		mmcr0 &= ~MMCR0_PMXE; + +	mtspr(SPRN_SIAR, current->thread.siar); +	mtspr(SPRN_SIER, current->thread.sier); +	mtspr(SPRN_SDAR, current->thread.sdar); +	mtspr(SPRN_MMCR2, current->thread.mmcr2); +out: +	return mmcr0; +} + +static void pmao_restore_workaround(bool ebb) +{ +	unsigned pmcs[6]; + +	if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) +		return; + +	/* +	 * On POWER8E there is a hardware defect which affects the PMU context +	 * switch logic, ie. power_pmu_disable/enable(). +	 * +	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 +	 * by the hardware. Sometime later the actual PMU exception is +	 * delivered. +	 * +	 * If we context switch, or simply disable/enable, the PMU prior to the +	 * exception arriving, the exception will be lost when we clear PMAO. +	 * +	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO +	 * set, and this _should_ generate an exception. However because of the +	 * defect no exception is generated when we write PMAO, and we get +	 * stuck with no counters counting but no exception delivered. +	 * +	 * The workaround is to detect this case and tweak the hardware to +	 * create another pending PMU exception. +	 * +	 * We do that by setting up PMC6 (cycles) for an imminent overflow and +	 * enabling the PMU. That causes a new exception to be generated in the +	 * chip, but we don't take it yet because we have interrupts hard +	 * disabled. We then write back the PMU state as we want it to be seen +	 * by the exception handler. When we reenable interrupts the exception +	 * handler will be called and see the correct state. +	 * +	 * The logic is the same for EBB, except that the exception is gated by +	 * us having interrupts hard disabled as well as the fact that we are +	 * not in userspace. The exception is finally delivered when we return +	 * to userspace. +	 */ + +	/* Only if PMAO is set and PMAO_SYNC is clear */ +	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) +		return; + +	/* If we're doing EBB, only if BESCR[GE] is set */ +	if (ebb && !(current->thread.bescr & BESCR_GE)) +		return; + +	/* +	 * We are already soft-disabled in power_pmu_enable(). We need to hard +	 * enable to actually prevent the PMU exception from firing. +	 */ +	hard_irq_disable(); + +	/* +	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. +	 * Using read/write_pmc() in a for loop adds 12 function calls and +	 * almost doubles our code size. +	 */ +	pmcs[0] = mfspr(SPRN_PMC1); +	pmcs[1] = mfspr(SPRN_PMC2); +	pmcs[2] = mfspr(SPRN_PMC3); +	pmcs[3] = mfspr(SPRN_PMC4); +	pmcs[4] = mfspr(SPRN_PMC5); +	pmcs[5] = mfspr(SPRN_PMC6); + +	/* Ensure all freeze bits are unset */ +	mtspr(SPRN_MMCR2, 0); + +	/* Set up PMC6 to overflow in one cycle */ +	mtspr(SPRN_PMC6, 0x7FFFFFFE); + +	/* Enable exceptions and unfreeze PMC6 */ +	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); + +	/* Now we need to refreeze and restore the PMCs */ +	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); + +	mtspr(SPRN_PMC1, pmcs[0]); +	mtspr(SPRN_PMC2, pmcs[1]); +	mtspr(SPRN_PMC3, pmcs[2]); +	mtspr(SPRN_PMC4, pmcs[3]); +	mtspr(SPRN_PMC5, pmcs[4]); +	mtspr(SPRN_PMC6, pmcs[5]); +} +#endif /* CONFIG_PPC64 */ + +static void perf_event_interrupt(struct pt_regs *regs); + +/* + * Read one performance monitor counter (PMC). + */ +static unsigned long read_pmc(int idx) +{ +	unsigned long val; + +	switch (idx) { +	case 1: +		val = mfspr(SPRN_PMC1); +		break; +	case 2: +		val = mfspr(SPRN_PMC2); +		break; +	case 3: +		val = mfspr(SPRN_PMC3); +		break; +	case 4: +		val = mfspr(SPRN_PMC4); +		break; +	case 5: +		val = mfspr(SPRN_PMC5); +		break; +	case 6: +		val = mfspr(SPRN_PMC6); +		break; +#ifdef CONFIG_PPC64 +	case 7: +		val = mfspr(SPRN_PMC7); +		break; +	case 8: +		val = mfspr(SPRN_PMC8); +		break; +#endif /* CONFIG_PPC64 */ +	default: +		printk(KERN_ERR "oops trying to read PMC%d\n", idx); +		val = 0; +	} +	return val; +} + +/* + * Write one PMC. + */ +static void write_pmc(int idx, unsigned long val) +{ +	switch (idx) { +	case 1: +		mtspr(SPRN_PMC1, val); +		break; +	case 2: +		mtspr(SPRN_PMC2, val); +		break; +	case 3: +		mtspr(SPRN_PMC3, val); +		break; +	case 4: +		mtspr(SPRN_PMC4, val); +		break; +	case 5: +		mtspr(SPRN_PMC5, val); +		break; +	case 6: +		mtspr(SPRN_PMC6, val); +		break; +#ifdef CONFIG_PPC64 +	case 7: +		mtspr(SPRN_PMC7, val); +		break; +	case 8: +		mtspr(SPRN_PMC8, val); +		break; +#endif /* CONFIG_PPC64 */ +	default: +		printk(KERN_ERR "oops trying to write PMC%d\n", idx); +	} +} + +/* Called from sysrq_handle_showregs() */ +void perf_event_print_debug(void) +{ +	unsigned long sdar, sier, flags; +	u32 pmcs[MAX_HWEVENTS]; +	int i; + +	if (!ppmu->n_counter) +		return; + +	local_irq_save(flags); + +	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", +		 smp_processor_id(), ppmu->name, ppmu->n_counter); + +	for (i = 0; i < ppmu->n_counter; i++) +		pmcs[i] = read_pmc(i + 1); + +	for (; i < MAX_HWEVENTS; i++) +		pmcs[i] = 0xdeadbeef; + +	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", +		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]); + +	if (ppmu->n_counter > 4) +		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", +			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]); + +	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", +		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); + +	sdar = sier = 0; +#ifdef CONFIG_PPC64 +	sdar = mfspr(SPRN_SDAR); + +	if (ppmu->flags & PPMU_HAS_SIER) +		sier = mfspr(SPRN_SIER); + +	if (ppmu->flags & PPMU_ARCH_207S) { +		pr_info("MMCR2: %016lx EBBHR: %016lx\n", +			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); +		pr_info("EBBRR: %016lx BESCR: %016lx\n", +			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); +	} +#endif +	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n", +		mfspr(SPRN_SIAR), sdar, sier); + +	local_irq_restore(flags); +} + +/* + * Check if a set of events can all go on the PMU at once. + * If they can't, this will look at alternative codes for the events + * and see if any combination of alternative codes is feasible. + * The feasible set is returned in event_id[]. + */ +static int power_check_constraints(struct cpu_hw_events *cpuhw, +				   u64 event_id[], unsigned int cflags[], +				   int n_ev) +{ +	unsigned long mask, value, nv; +	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; +	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; +	int i, j; +	unsigned long addf = ppmu->add_fields; +	unsigned long tadd = ppmu->test_adder; + +	if (n_ev > ppmu->n_counter) +		return -1; + +	/* First see if the events will go on as-is */ +	for (i = 0; i < n_ev; ++i) { +		if ((cflags[i] & PPMU_LIMITED_PMC_REQD) +		    && !ppmu->limited_pmc_event(event_id[i])) { +			ppmu->get_alternatives(event_id[i], cflags[i], +					       cpuhw->alternatives[i]); +			event_id[i] = cpuhw->alternatives[i][0]; +		} +		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], +					 &cpuhw->avalues[i][0])) +			return -1; +	} +	value = mask = 0; +	for (i = 0; i < n_ev; ++i) { +		nv = (value | cpuhw->avalues[i][0]) + +			(value & cpuhw->avalues[i][0] & addf); +		if ((((nv + tadd) ^ value) & mask) != 0 || +		    (((nv + tadd) ^ cpuhw->avalues[i][0]) & +		     cpuhw->amasks[i][0]) != 0) +			break; +		value = nv; +		mask |= cpuhw->amasks[i][0]; +	} +	if (i == n_ev) +		return 0;	/* all OK */ + +	/* doesn't work, gather alternatives... */ +	if (!ppmu->get_alternatives) +		return -1; +	for (i = 0; i < n_ev; ++i) { +		choice[i] = 0; +		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], +						  cpuhw->alternatives[i]); +		for (j = 1; j < n_alt[i]; ++j) +			ppmu->get_constraint(cpuhw->alternatives[i][j], +					     &cpuhw->amasks[i][j], +					     &cpuhw->avalues[i][j]); +	} + +	/* enumerate all possibilities and see if any will work */ +	i = 0; +	j = -1; +	value = mask = nv = 0; +	while (i < n_ev) { +		if (j >= 0) { +			/* we're backtracking, restore context */ +			value = svalues[i]; +			mask = smasks[i]; +			j = choice[i]; +		} +		/* +		 * See if any alternative k for event_id i, +		 * where k > j, will satisfy the constraints. +		 */ +		while (++j < n_alt[i]) { +			nv = (value | cpuhw->avalues[i][j]) + +				(value & cpuhw->avalues[i][j] & addf); +			if ((((nv + tadd) ^ value) & mask) == 0 && +			    (((nv + tadd) ^ cpuhw->avalues[i][j]) +			     & cpuhw->amasks[i][j]) == 0) +				break; +		} +		if (j >= n_alt[i]) { +			/* +			 * No feasible alternative, backtrack +			 * to event_id i-1 and continue enumerating its +			 * alternatives from where we got up to. +			 */ +			if (--i < 0) +				return -1; +		} else { +			/* +			 * Found a feasible alternative for event_id i, +			 * remember where we got up to with this event_id, +			 * go on to the next event_id, and start with +			 * the first alternative for it. +			 */ +			choice[i] = j; +			svalues[i] = value; +			smasks[i] = mask; +			value = nv; +			mask |= cpuhw->amasks[i][j]; +			++i; +			j = -1; +		} +	} + +	/* OK, we have a feasible combination, tell the caller the solution */ +	for (i = 0; i < n_ev; ++i) +		event_id[i] = cpuhw->alternatives[i][choice[i]]; +	return 0; +} + +/* + * Check if newly-added events have consistent settings for + * exclude_{user,kernel,hv} with each other and any previously + * added events. + */ +static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], +			  int n_prev, int n_new) +{ +	int eu = 0, ek = 0, eh = 0; +	int i, n, first; +	struct perf_event *event; + +	n = n_prev + n_new; +	if (n <= 1) +		return 0; + +	first = 1; +	for (i = 0; i < n; ++i) { +		if (cflags[i] & PPMU_LIMITED_PMC_OK) { +			cflags[i] &= ~PPMU_LIMITED_PMC_REQD; +			continue; +		} +		event = ctrs[i]; +		if (first) { +			eu = event->attr.exclude_user; +			ek = event->attr.exclude_kernel; +			eh = event->attr.exclude_hv; +			first = 0; +		} else if (event->attr.exclude_user != eu || +			   event->attr.exclude_kernel != ek || +			   event->attr.exclude_hv != eh) { +			return -EAGAIN; +		} +	} + +	if (eu || ek || eh) +		for (i = 0; i < n; ++i) +			if (cflags[i] & PPMU_LIMITED_PMC_OK) +				cflags[i] |= PPMU_LIMITED_PMC_REQD; + +	return 0; +} + +static u64 check_and_compute_delta(u64 prev, u64 val) +{ +	u64 delta = (val - prev) & 0xfffffffful; + +	/* +	 * POWER7 can roll back counter values, if the new value is smaller +	 * than the previous value it will cause the delta and the counter to +	 * have bogus values unless we rolled a counter over.  If a coutner is +	 * rolled back, it will be smaller, but within 256, which is the maximum +	 * number of events to rollback at once.  If we dectect a rollback +	 * return 0.  This can lead to a small lack of precision in the +	 * counters. +	 */ +	if (prev > val && (prev - val) < 256) +		delta = 0; + +	return delta; +} + +static void power_pmu_read(struct perf_event *event) +{ +	s64 val, delta, prev; + +	if (event->hw.state & PERF_HES_STOPPED) +		return; + +	if (!event->hw.idx) +		return; + +	if (is_ebb_event(event)) { +		val = read_pmc(event->hw.idx); +		local64_set(&event->hw.prev_count, val); +		return; +	} + +	/* +	 * Performance monitor interrupts come even when interrupts +	 * are soft-disabled, as long as interrupts are hard-enabled. +	 * Therefore we treat them like NMIs. +	 */ +	do { +		prev = local64_read(&event->hw.prev_count); +		barrier(); +		val = read_pmc(event->hw.idx); +		delta = check_and_compute_delta(prev, val); +		if (!delta) +			return; +	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); + +	local64_add(delta, &event->count); + +	/* +	 * A number of places program the PMC with (0x80000000 - period_left). +	 * We never want period_left to be less than 1 because we will program +	 * the PMC with a value >= 0x800000000 and an edge detected PMC will +	 * roll around to 0 before taking an exception. We have seen this +	 * on POWER8. +	 * +	 * To fix this, clamp the minimum value of period_left to 1. +	 */ +	do { +		prev = local64_read(&event->hw.period_left); +		val = prev - delta; +		if (val < 1) +			val = 1; +	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev); +} + +/* + * On some machines, PMC5 and PMC6 can't be written, don't respect + * the freeze conditions, and don't generate interrupts.  This tells + * us if `event' is using such a PMC. + */ +static int is_limited_pmc(int pmcnum) +{ +	return (ppmu->flags & PPMU_LIMITED_PMC5_6) +		&& (pmcnum == 5 || pmcnum == 6); +} + +static void freeze_limited_counters(struct cpu_hw_events *cpuhw, +				    unsigned long pmc5, unsigned long pmc6) +{ +	struct perf_event *event; +	u64 val, prev, delta; +	int i; + +	for (i = 0; i < cpuhw->n_limited; ++i) { +		event = cpuhw->limited_counter[i]; +		if (!event->hw.idx) +			continue; +		val = (event->hw.idx == 5) ? pmc5 : pmc6; +		prev = local64_read(&event->hw.prev_count); +		event->hw.idx = 0; +		delta = check_and_compute_delta(prev, val); +		if (delta) +			local64_add(delta, &event->count); +	} +} + +static void thaw_limited_counters(struct cpu_hw_events *cpuhw, +				  unsigned long pmc5, unsigned long pmc6) +{ +	struct perf_event *event; +	u64 val, prev; +	int i; + +	for (i = 0; i < cpuhw->n_limited; ++i) { +		event = cpuhw->limited_counter[i]; +		event->hw.idx = cpuhw->limited_hwidx[i]; +		val = (event->hw.idx == 5) ? pmc5 : pmc6; +		prev = local64_read(&event->hw.prev_count); +		if (check_and_compute_delta(prev, val)) +			local64_set(&event->hw.prev_count, val); +		perf_event_update_userpage(event); +	} +} + +/* + * Since limited events don't respect the freeze conditions, we + * have to read them immediately after freezing or unfreezing the + * other events.  We try to keep the values from the limited + * events as consistent as possible by keeping the delay (in + * cycles and instructions) between freezing/unfreezing and reading + * the limited events as small and consistent as possible. + * Therefore, if any limited events are in use, we read them + * both, and always in the same order, to minimize variability, + * and do it inside the same asm that writes MMCR0. + */ +static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) +{ +	unsigned long pmc5, pmc6; + +	if (!cpuhw->n_limited) { +		mtspr(SPRN_MMCR0, mmcr0); +		return; +	} + +	/* +	 * Write MMCR0, then read PMC5 and PMC6 immediately. +	 * To ensure we don't get a performance monitor interrupt +	 * between writing MMCR0 and freezing/thawing the limited +	 * events, we first write MMCR0 with the event overflow +	 * interrupt enable bits turned off. +	 */ +	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" +		     : "=&r" (pmc5), "=&r" (pmc6) +		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), +		       "i" (SPRN_MMCR0), +		       "i" (SPRN_PMC5), "i" (SPRN_PMC6)); + +	if (mmcr0 & MMCR0_FC) +		freeze_limited_counters(cpuhw, pmc5, pmc6); +	else +		thaw_limited_counters(cpuhw, pmc5, pmc6); + +	/* +	 * Write the full MMCR0 including the event overflow interrupt +	 * enable bits, if necessary. +	 */ +	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) +		mtspr(SPRN_MMCR0, mmcr0); +} + +/* + * Disable all events to prevent PMU interrupts and to allow + * events to be added or removed. + */ +static void power_pmu_disable(struct pmu *pmu) +{ +	struct cpu_hw_events *cpuhw; +	unsigned long flags, mmcr0, val; + +	if (!ppmu) +		return; +	local_irq_save(flags); +	cpuhw = &__get_cpu_var(cpu_hw_events); + +	if (!cpuhw->disabled) { +		/* +		 * Check if we ever enabled the PMU on this cpu. +		 */ +		if (!cpuhw->pmcs_enabled) { +			ppc_enable_pmcs(); +			cpuhw->pmcs_enabled = 1; +		} + +		/* +		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 +		 */ +		val  = mmcr0 = mfspr(SPRN_MMCR0); +		val |= MMCR0_FC; +		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | +			 MMCR0_FC56); + +		/* +		 * The barrier is to make sure the mtspr has been +		 * executed and the PMU has frozen the events etc. +		 * before we return. +		 */ +		write_mmcr0(cpuhw, val); +		mb(); + +		/* +		 * Disable instruction sampling if it was enabled +		 */ +		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { +			mtspr(SPRN_MMCRA, +			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); +			mb(); +		} + +		cpuhw->disabled = 1; +		cpuhw->n_added = 0; + +		ebb_switch_out(mmcr0); +	} + +	local_irq_restore(flags); +} + +/* + * Re-enable all events if disable == 0. + * If we were previously disabled and events were added, then + * put the new config on the PMU. + */ +static void power_pmu_enable(struct pmu *pmu) +{ +	struct perf_event *event; +	struct cpu_hw_events *cpuhw; +	unsigned long flags; +	long i; +	unsigned long val, mmcr0; +	s64 left; +	unsigned int hwc_index[MAX_HWEVENTS]; +	int n_lim; +	int idx; +	bool ebb; + +	if (!ppmu) +		return; +	local_irq_save(flags); + +	cpuhw = &__get_cpu_var(cpu_hw_events); +	if (!cpuhw->disabled) +		goto out; + +	if (cpuhw->n_events == 0) { +		ppc_set_pmu_inuse(0); +		goto out; +	} + +	cpuhw->disabled = 0; + +	/* +	 * EBB requires an exclusive group and all events must have the EBB +	 * flag set, or not set, so we can just check a single event. Also we +	 * know we have at least one event. +	 */ +	ebb = is_ebb_event(cpuhw->event[0]); + +	/* +	 * If we didn't change anything, or only removed events, +	 * no need to recalculate MMCR* settings and reset the PMCs. +	 * Just reenable the PMU with the current MMCR* settings +	 * (possibly updated for removal of events). +	 */ +	if (!cpuhw->n_added) { +		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); +		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); +		goto out_enable; +	} + +	/* +	 * Compute MMCR* values for the new set of events +	 */ +	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, +			       cpuhw->mmcr)) { +		/* shouldn't ever get here */ +		printk(KERN_ERR "oops compute_mmcr failed\n"); +		goto out; +	} + +	/* +	 * Add in MMCR0 freeze bits corresponding to the +	 * attr.exclude_* bits for the first event. +	 * We have already checked that all events have the +	 * same values for these bits as the first event. +	 */ +	event = cpuhw->event[0]; +	if (event->attr.exclude_user) +		cpuhw->mmcr[0] |= MMCR0_FCP; +	if (event->attr.exclude_kernel) +		cpuhw->mmcr[0] |= freeze_events_kernel; +	if (event->attr.exclude_hv) +		cpuhw->mmcr[0] |= MMCR0_FCHV; + +	/* +	 * Write the new configuration to MMCR* with the freeze +	 * bit set and set the hardware events to their initial values. +	 * Then unfreeze the events. +	 */ +	ppc_set_pmu_inuse(1); +	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); +	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); +	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) +				| MMCR0_FC); + +	/* +	 * Read off any pre-existing events that need to move +	 * to another PMC. +	 */ +	for (i = 0; i < cpuhw->n_events; ++i) { +		event = cpuhw->event[i]; +		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { +			power_pmu_read(event); +			write_pmc(event->hw.idx, 0); +			event->hw.idx = 0; +		} +	} + +	/* +	 * Initialize the PMCs for all the new and moved events. +	 */ +	cpuhw->n_limited = n_lim = 0; +	for (i = 0; i < cpuhw->n_events; ++i) { +		event = cpuhw->event[i]; +		if (event->hw.idx) +			continue; +		idx = hwc_index[i] + 1; +		if (is_limited_pmc(idx)) { +			cpuhw->limited_counter[n_lim] = event; +			cpuhw->limited_hwidx[n_lim] = idx; +			++n_lim; +			continue; +		} + +		if (ebb) +			val = local64_read(&event->hw.prev_count); +		else { +			val = 0; +			if (event->hw.sample_period) { +				left = local64_read(&event->hw.period_left); +				if (left < 0x80000000L) +					val = 0x80000000L - left; +			} +			local64_set(&event->hw.prev_count, val); +		} + +		event->hw.idx = idx; +		if (event->hw.state & PERF_HES_STOPPED) +			val = 0; +		write_pmc(idx, val); + +		perf_event_update_userpage(event); +	} +	cpuhw->n_limited = n_lim; +	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; + + out_enable: +	pmao_restore_workaround(ebb); + +	if (ppmu->flags & PPMU_ARCH_207S) +		mtspr(SPRN_MMCR2, 0); + +	mmcr0 = ebb_switch_in(ebb, cpuhw->mmcr[0]); + +	mb(); +	if (cpuhw->bhrb_users) +		ppmu->config_bhrb(cpuhw->bhrb_filter); + +	write_mmcr0(cpuhw, mmcr0); + +	/* +	 * Enable instruction sampling if necessary +	 */ +	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { +		mb(); +		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); +	} + + out: + +	local_irq_restore(flags); +} + +static int collect_events(struct perf_event *group, int max_count, +			  struct perf_event *ctrs[], u64 *events, +			  unsigned int *flags) +{ +	int n = 0; +	struct perf_event *event; + +	if (!is_software_event(group)) { +		if (n >= max_count) +			return -1; +		ctrs[n] = group; +		flags[n] = group->hw.event_base; +		events[n++] = group->hw.config; +	} +	list_for_each_entry(event, &group->sibling_list, group_entry) { +		if (!is_software_event(event) && +		    event->state != PERF_EVENT_STATE_OFF) { +			if (n >= max_count) +				return -1; +			ctrs[n] = event; +			flags[n] = event->hw.event_base; +			events[n++] = event->hw.config; +		} +	} +	return n; +} + +/* + * Add a event to the PMU. + * If all events are not already frozen, then we disable and + * re-enable the PMU in order to get hw_perf_enable to do the + * actual work of reconfiguring the PMU. + */ +static int power_pmu_add(struct perf_event *event, int ef_flags) +{ +	struct cpu_hw_events *cpuhw; +	unsigned long flags; +	int n0; +	int ret = -EAGAIN; + +	local_irq_save(flags); +	perf_pmu_disable(event->pmu); + +	/* +	 * Add the event to the list (if there is room) +	 * and check whether the total set is still feasible. +	 */ +	cpuhw = &__get_cpu_var(cpu_hw_events); +	n0 = cpuhw->n_events; +	if (n0 >= ppmu->n_counter) +		goto out; +	cpuhw->event[n0] = event; +	cpuhw->events[n0] = event->hw.config; +	cpuhw->flags[n0] = event->hw.event_base; + +	/* +	 * This event may have been disabled/stopped in record_and_restart() +	 * because we exceeded the ->event_limit. If re-starting the event, +	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user +	 * notification is re-enabled. +	 */ +	if (!(ef_flags & PERF_EF_START)) +		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; +	else +		event->hw.state = 0; + +	/* +	 * If group events scheduling transaction was started, +	 * skip the schedulability test here, it will be performed +	 * at commit time(->commit_txn) as a whole +	 */ +	if (cpuhw->group_flag & PERF_EVENT_TXN) +		goto nocheck; + +	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) +		goto out; +	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) +		goto out; +	event->hw.config = cpuhw->events[n0]; + +nocheck: +	ebb_event_add(event); + +	++cpuhw->n_events; +	++cpuhw->n_added; + +	ret = 0; + out: +	if (has_branch_stack(event)) { +		power_pmu_bhrb_enable(event); +		cpuhw->bhrb_filter = ppmu->bhrb_filter_map( +					event->attr.branch_sample_type); +	} + +	perf_pmu_enable(event->pmu); +	local_irq_restore(flags); +	return ret; +} + +/* + * Remove a event from the PMU. + */ +static void power_pmu_del(struct perf_event *event, int ef_flags) +{ +	struct cpu_hw_events *cpuhw; +	long i; +	unsigned long flags; + +	local_irq_save(flags); +	perf_pmu_disable(event->pmu); + +	power_pmu_read(event); + +	cpuhw = &__get_cpu_var(cpu_hw_events); +	for (i = 0; i < cpuhw->n_events; ++i) { +		if (event == cpuhw->event[i]) { +			while (++i < cpuhw->n_events) { +				cpuhw->event[i-1] = cpuhw->event[i]; +				cpuhw->events[i-1] = cpuhw->events[i]; +				cpuhw->flags[i-1] = cpuhw->flags[i]; +			} +			--cpuhw->n_events; +			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr); +			if (event->hw.idx) { +				write_pmc(event->hw.idx, 0); +				event->hw.idx = 0; +			} +			perf_event_update_userpage(event); +			break; +		} +	} +	for (i = 0; i < cpuhw->n_limited; ++i) +		if (event == cpuhw->limited_counter[i]) +			break; +	if (i < cpuhw->n_limited) { +		while (++i < cpuhw->n_limited) { +			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; +			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; +		} +		--cpuhw->n_limited; +	} +	if (cpuhw->n_events == 0) { +		/* disable exceptions if no events are running */ +		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); +	} + +	if (has_branch_stack(event)) +		power_pmu_bhrb_disable(event); + +	perf_pmu_enable(event->pmu); +	local_irq_restore(flags); +} + +/* + * POWER-PMU does not support disabling individual counters, hence + * program their cycle counter to their max value and ignore the interrupts. + */ + +static void power_pmu_start(struct perf_event *event, int ef_flags) +{ +	unsigned long flags; +	s64 left; +	unsigned long val; + +	if (!event->hw.idx || !event->hw.sample_period) +		return; + +	if (!(event->hw.state & PERF_HES_STOPPED)) +		return; + +	if (ef_flags & PERF_EF_RELOAD) +		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); + +	local_irq_save(flags); +	perf_pmu_disable(event->pmu); + +	event->hw.state = 0; +	left = local64_read(&event->hw.period_left); + +	val = 0; +	if (left < 0x80000000L) +		val = 0x80000000L - left; + +	write_pmc(event->hw.idx, val); + +	perf_event_update_userpage(event); +	perf_pmu_enable(event->pmu); +	local_irq_restore(flags); +} + +static void power_pmu_stop(struct perf_event *event, int ef_flags) +{ +	unsigned long flags; + +	if (!event->hw.idx || !event->hw.sample_period) +		return; + +	if (event->hw.state & PERF_HES_STOPPED) +		return; + +	local_irq_save(flags); +	perf_pmu_disable(event->pmu); + +	power_pmu_read(event); +	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; +	write_pmc(event->hw.idx, 0); + +	perf_event_update_userpage(event); +	perf_pmu_enable(event->pmu); +	local_irq_restore(flags); +} + +/* + * Start group events scheduling transaction + * Set the flag to make pmu::enable() not perform the + * schedulability test, it will be performed at commit time + */ +void power_pmu_start_txn(struct pmu *pmu) +{ +	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); + +	perf_pmu_disable(pmu); +	cpuhw->group_flag |= PERF_EVENT_TXN; +	cpuhw->n_txn_start = cpuhw->n_events; +} + +/* + * Stop group events scheduling transaction + * Clear the flag and pmu::enable() will perform the + * schedulability test. + */ +void power_pmu_cancel_txn(struct pmu *pmu) +{ +	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); + +	cpuhw->group_flag &= ~PERF_EVENT_TXN; +	perf_pmu_enable(pmu); +} + +/* + * Commit group events scheduling transaction + * Perform the group schedulability test as a whole + * Return 0 if success + */ +int power_pmu_commit_txn(struct pmu *pmu) +{ +	struct cpu_hw_events *cpuhw; +	long i, n; + +	if (!ppmu) +		return -EAGAIN; +	cpuhw = &__get_cpu_var(cpu_hw_events); +	n = cpuhw->n_events; +	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) +		return -EAGAIN; +	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); +	if (i < 0) +		return -EAGAIN; + +	for (i = cpuhw->n_txn_start; i < n; ++i) +		cpuhw->event[i]->hw.config = cpuhw->events[i]; + +	cpuhw->group_flag &= ~PERF_EVENT_TXN; +	perf_pmu_enable(pmu); +	return 0; +} + +/* + * Return 1 if we might be able to put event on a limited PMC, + * or 0 if not. + * A event can only go on a limited PMC if it counts something + * that a limited PMC can count, doesn't require interrupts, and + * doesn't exclude any processor mode. + */ +static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, +				 unsigned int flags) +{ +	int n; +	u64 alt[MAX_EVENT_ALTERNATIVES]; + +	if (event->attr.exclude_user +	    || event->attr.exclude_kernel +	    || event->attr.exclude_hv +	    || event->attr.sample_period) +		return 0; + +	if (ppmu->limited_pmc_event(ev)) +		return 1; + +	/* +	 * The requested event_id isn't on a limited PMC already; +	 * see if any alternative code goes on a limited PMC. +	 */ +	if (!ppmu->get_alternatives) +		return 0; + +	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; +	n = ppmu->get_alternatives(ev, flags, alt); + +	return n > 0; +} + +/* + * Find an alternative event_id that goes on a normal PMC, if possible, + * and return the event_id code, or 0 if there is no such alternative. + * (Note: event_id code 0 is "don't count" on all machines.) + */ +static u64 normal_pmc_alternative(u64 ev, unsigned long flags) +{ +	u64 alt[MAX_EVENT_ALTERNATIVES]; +	int n; + +	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); +	n = ppmu->get_alternatives(ev, flags, alt); +	if (!n) +		return 0; +	return alt[0]; +} + +/* Number of perf_events counting hardware events */ +static atomic_t num_events; +/* Used to avoid races in calling reserve/release_pmc_hardware */ +static DEFINE_MUTEX(pmc_reserve_mutex); + +/* + * Release the PMU if this is the last perf_event. + */ +static void hw_perf_event_destroy(struct perf_event *event) +{ +	if (!atomic_add_unless(&num_events, -1, 1)) { +		mutex_lock(&pmc_reserve_mutex); +		if (atomic_dec_return(&num_events) == 0) +			release_pmc_hardware(); +		mutex_unlock(&pmc_reserve_mutex); +	} +} + +/* + * Translate a generic cache event_id config to a raw event_id code. + */ +static int hw_perf_cache_event(u64 config, u64 *eventp) +{ +	unsigned long type, op, result; +	int ev; + +	if (!ppmu->cache_events) +		return -EINVAL; + +	/* unpack config */ +	type = config & 0xff; +	op = (config >> 8) & 0xff; +	result = (config >> 16) & 0xff; + +	if (type >= PERF_COUNT_HW_CACHE_MAX || +	    op >= PERF_COUNT_HW_CACHE_OP_MAX || +	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX) +		return -EINVAL; + +	ev = (*ppmu->cache_events)[type][op][result]; +	if (ev == 0) +		return -EOPNOTSUPP; +	if (ev == -1) +		return -EINVAL; +	*eventp = ev; +	return 0; +} + +static int power_pmu_event_init(struct perf_event *event) +{ +	u64 ev; +	unsigned long flags; +	struct perf_event *ctrs[MAX_HWEVENTS]; +	u64 events[MAX_HWEVENTS]; +	unsigned int cflags[MAX_HWEVENTS]; +	int n; +	int err; +	struct cpu_hw_events *cpuhw; + +	if (!ppmu) +		return -ENOENT; + +	if (has_branch_stack(event)) { +	        /* PMU has BHRB enabled */ +		if (!(ppmu->flags & PPMU_ARCH_207S)) +			return -EOPNOTSUPP; +	} + +	switch (event->attr.type) { +	case PERF_TYPE_HARDWARE: +		ev = event->attr.config; +		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) +			return -EOPNOTSUPP; +		ev = ppmu->generic_events[ev]; +		break; +	case PERF_TYPE_HW_CACHE: +		err = hw_perf_cache_event(event->attr.config, &ev); +		if (err) +			return err; +		break; +	case PERF_TYPE_RAW: +		ev = event->attr.config; +		break; +	default: +		return -ENOENT; +	} + +	event->hw.config_base = ev; +	event->hw.idx = 0; + +	/* +	 * If we are not running on a hypervisor, force the +	 * exclude_hv bit to 0 so that we don't care what +	 * the user set it to. +	 */ +	if (!firmware_has_feature(FW_FEATURE_LPAR)) +		event->attr.exclude_hv = 0; + +	/* +	 * If this is a per-task event, then we can use +	 * PM_RUN_* events interchangeably with their non RUN_* +	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. +	 * XXX we should check if the task is an idle task. +	 */ +	flags = 0; +	if (event->attach_state & PERF_ATTACH_TASK) +		flags |= PPMU_ONLY_COUNT_RUN; + +	/* +	 * If this machine has limited events, check whether this +	 * event_id could go on a limited event. +	 */ +	if (ppmu->flags & PPMU_LIMITED_PMC5_6) { +		if (can_go_on_limited_pmc(event, ev, flags)) { +			flags |= PPMU_LIMITED_PMC_OK; +		} else if (ppmu->limited_pmc_event(ev)) { +			/* +			 * The requested event_id is on a limited PMC, +			 * but we can't use a limited PMC; see if any +			 * alternative goes on a normal PMC. +			 */ +			ev = normal_pmc_alternative(ev, flags); +			if (!ev) +				return -EINVAL; +		} +	} + +	/* Extra checks for EBB */ +	err = ebb_event_check(event); +	if (err) +		return err; + +	/* +	 * If this is in a group, check if it can go on with all the +	 * other hardware events in the group.  We assume the event +	 * hasn't been linked into its leader's sibling list at this point. +	 */ +	n = 0; +	if (event->group_leader != event) { +		n = collect_events(event->group_leader, ppmu->n_counter - 1, +				   ctrs, events, cflags); +		if (n < 0) +			return -EINVAL; +	} +	events[n] = ev; +	ctrs[n] = event; +	cflags[n] = flags; +	if (check_excludes(ctrs, cflags, n, 1)) +		return -EINVAL; + +	cpuhw = &get_cpu_var(cpu_hw_events); +	err = power_check_constraints(cpuhw, events, cflags, n + 1); + +	if (has_branch_stack(event)) { +		cpuhw->bhrb_filter = ppmu->bhrb_filter_map( +					event->attr.branch_sample_type); + +		if(cpuhw->bhrb_filter == -1) +			return -EOPNOTSUPP; +	} + +	put_cpu_var(cpu_hw_events); +	if (err) +		return -EINVAL; + +	event->hw.config = events[n]; +	event->hw.event_base = cflags[n]; +	event->hw.last_period = event->hw.sample_period; +	local64_set(&event->hw.period_left, event->hw.last_period); + +	/* +	 * For EBB events we just context switch the PMC value, we don't do any +	 * of the sample_period logic. We use hw.prev_count for this. +	 */ +	if (is_ebb_event(event)) +		local64_set(&event->hw.prev_count, 0); + +	/* +	 * See if we need to reserve the PMU. +	 * If no events are currently in use, then we have to take a +	 * mutex to ensure that we don't race with another task doing +	 * reserve_pmc_hardware or release_pmc_hardware. +	 */ +	err = 0; +	if (!atomic_inc_not_zero(&num_events)) { +		mutex_lock(&pmc_reserve_mutex); +		if (atomic_read(&num_events) == 0 && +		    reserve_pmc_hardware(perf_event_interrupt)) +			err = -EBUSY; +		else +			atomic_inc(&num_events); +		mutex_unlock(&pmc_reserve_mutex); +	} +	event->destroy = hw_perf_event_destroy; + +	return err; +} + +static int power_pmu_event_idx(struct perf_event *event) +{ +	return event->hw.idx; +} + +ssize_t power_events_sysfs_show(struct device *dev, +				struct device_attribute *attr, char *page) +{ +	struct perf_pmu_events_attr *pmu_attr; + +	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); + +	return sprintf(page, "event=0x%02llx\n", pmu_attr->id); +} + +struct pmu power_pmu = { +	.pmu_enable	= power_pmu_enable, +	.pmu_disable	= power_pmu_disable, +	.event_init	= power_pmu_event_init, +	.add		= power_pmu_add, +	.del		= power_pmu_del, +	.start		= power_pmu_start, +	.stop		= power_pmu_stop, +	.read		= power_pmu_read, +	.start_txn	= power_pmu_start_txn, +	.cancel_txn	= power_pmu_cancel_txn, +	.commit_txn	= power_pmu_commit_txn, +	.event_idx	= power_pmu_event_idx, +	.flush_branch_stack = power_pmu_flush_branch_stack, +}; + +/* + * A counter has overflowed; update its count and record + * things if requested.  Note that interrupts are hard-disabled + * here so there is no possibility of being interrupted. + */ +static void record_and_restart(struct perf_event *event, unsigned long val, +			       struct pt_regs *regs) +{ +	u64 period = event->hw.sample_period; +	s64 prev, delta, left; +	int record = 0; + +	if (event->hw.state & PERF_HES_STOPPED) { +		write_pmc(event->hw.idx, 0); +		return; +	} + +	/* we don't have to worry about interrupts here */ +	prev = local64_read(&event->hw.prev_count); +	delta = check_and_compute_delta(prev, val); +	local64_add(delta, &event->count); + +	/* +	 * See if the total period for this event has expired, +	 * and update for the next period. +	 */ +	val = 0; +	left = local64_read(&event->hw.period_left) - delta; +	if (delta == 0) +		left++; +	if (period) { +		if (left <= 0) { +			left += period; +			if (left <= 0) +				left = period; +			record = siar_valid(regs); +			event->hw.last_period = event->hw.sample_period; +		} +		if (left < 0x80000000LL) +			val = 0x80000000LL - left; +	} + +	write_pmc(event->hw.idx, val); +	local64_set(&event->hw.prev_count, val); +	local64_set(&event->hw.period_left, left); +	perf_event_update_userpage(event); + +	/* +	 * Finally record data if requested. +	 */ +	if (record) { +		struct perf_sample_data data; + +		perf_sample_data_init(&data, ~0ULL, event->hw.last_period); + +		if (event->attr.sample_type & PERF_SAMPLE_ADDR) +			perf_get_data_addr(regs, &data.addr); + +		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { +			struct cpu_hw_events *cpuhw; +			cpuhw = &__get_cpu_var(cpu_hw_events); +			power_pmu_bhrb_read(cpuhw); +			data.br_stack = &cpuhw->bhrb_stack; +		} + +		if (perf_event_overflow(event, &data, regs)) +			power_pmu_stop(event, 0); +	} +} + +/* + * Called from generic code to get the misc flags (i.e. processor mode) + * for an event_id. + */ +unsigned long perf_misc_flags(struct pt_regs *regs) +{ +	u32 flags = perf_get_misc_flags(regs); + +	if (flags) +		return flags; +	return user_mode(regs) ? PERF_RECORD_MISC_USER : +		PERF_RECORD_MISC_KERNEL; +} + +/* + * Called from generic code to get the instruction pointer + * for an event_id. + */ +unsigned long perf_instruction_pointer(struct pt_regs *regs) +{ +	bool use_siar = regs_use_siar(regs); + +	if (use_siar && siar_valid(regs)) +		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); +	else if (use_siar) +		return 0;		// no valid instruction pointer +	else +		return regs->nip; +} + +static bool pmc_overflow_power7(unsigned long val) +{ +	/* +	 * Events on POWER7 can roll back if a speculative event doesn't +	 * eventually complete. Unfortunately in some rare cases they will +	 * raise a performance monitor exception. We need to catch this to +	 * ensure we reset the PMC. In all cases the PMC will be 256 or less +	 * cycles from overflow. +	 * +	 * We only do this if the first pass fails to find any overflowing +	 * PMCs because a user might set a period of less than 256 and we +	 * don't want to mistakenly reset them. +	 */ +	if ((0x80000000 - val) <= 256) +		return true; + +	return false; +} + +static bool pmc_overflow(unsigned long val) +{ +	if ((int)val < 0) +		return true; + +	return false; +} + +/* + * Performance monitor interrupt stuff + */ +static void perf_event_interrupt(struct pt_regs *regs) +{ +	int i, j; +	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); +	struct perf_event *event; +	unsigned long val[8]; +	int found, active; +	int nmi; + +	if (cpuhw->n_limited) +		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), +					mfspr(SPRN_PMC6)); + +	perf_read_regs(regs); + +	nmi = perf_intr_is_nmi(regs); +	if (nmi) +		nmi_enter(); +	else +		irq_enter(); + +	/* Read all the PMCs since we'll need them a bunch of times */ +	for (i = 0; i < ppmu->n_counter; ++i) +		val[i] = read_pmc(i + 1); + +	/* Try to find what caused the IRQ */ +	found = 0; +	for (i = 0; i < ppmu->n_counter; ++i) { +		if (!pmc_overflow(val[i])) +			continue; +		if (is_limited_pmc(i + 1)) +			continue; /* these won't generate IRQs */ +		/* +		 * We've found one that's overflowed.  For active +		 * counters we need to log this.  For inactive +		 * counters, we need to reset it anyway +		 */ +		found = 1; +		active = 0; +		for (j = 0; j < cpuhw->n_events; ++j) { +			event = cpuhw->event[j]; +			if (event->hw.idx == (i + 1)) { +				active = 1; +				record_and_restart(event, val[i], regs); +				break; +			} +		} +		if (!active) +			/* reset non active counters that have overflowed */ +			write_pmc(i + 1, 0); +	} +	if (!found && pvr_version_is(PVR_POWER7)) { +		/* check active counters for special buggy p7 overflow */ +		for (i = 0; i < cpuhw->n_events; ++i) { +			event = cpuhw->event[i]; +			if (!event->hw.idx || is_limited_pmc(event->hw.idx)) +				continue; +			if (pmc_overflow_power7(val[event->hw.idx - 1])) { +				/* event has overflowed in a buggy way*/ +				found = 1; +				record_and_restart(event, +						   val[event->hw.idx - 1], +						   regs); +			} +		} +	} +	if (!found && !nmi && printk_ratelimit()) +		printk(KERN_WARNING "Can't find PMC that caused IRQ\n"); + +	/* +	 * Reset MMCR0 to its normal value.  This will set PMXE and +	 * clear FC (freeze counters) and PMAO (perf mon alert occurred) +	 * and thus allow interrupts to occur again. +	 * XXX might want to use MSR.PM to keep the events frozen until +	 * we get back out of this interrupt. +	 */ +	write_mmcr0(cpuhw, cpuhw->mmcr[0]); + +	if (nmi) +		nmi_exit(); +	else +		irq_exit(); +} + +static void power_pmu_setup(int cpu) +{ +	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); + +	if (!ppmu) +		return; +	memset(cpuhw, 0, sizeof(*cpuhw)); +	cpuhw->mmcr[0] = MMCR0_FC; +} + +static int +power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu) +{ +	unsigned int cpu = (long)hcpu; + +	switch (action & ~CPU_TASKS_FROZEN) { +	case CPU_UP_PREPARE: +		power_pmu_setup(cpu); +		break; + +	default: +		break; +	} + +	return NOTIFY_OK; +} + +int register_power_pmu(struct power_pmu *pmu) +{ +	if (ppmu) +		return -EBUSY;		/* something's already registered */ + +	ppmu = pmu; +	pr_info("%s performance monitor hardware support registered\n", +		pmu->name); + +	power_pmu.attr_groups = ppmu->attr_groups; + +#ifdef MSR_HV +	/* +	 * Use FCHV to ignore kernel events if MSR.HV is set. +	 */ +	if (mfmsr() & MSR_HV) +		freeze_events_kernel = MMCR0_FCHV; +#endif /* CONFIG_PPC64 */ + +	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); +	perf_cpu_notifier(power_pmu_notifier); + +	return 0; +}  | 
